2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
32 #include "aic94xx_reg.h"
33 #include "aic94xx_hwi.h"
34 #include "aic94xx_seq.h"
35 #include "aic94xx_dump.h"
39 /* ---------- Initialization ---------- */
41 static void asd_get_user_sas_addr(struct asd_ha_struct
*asd_ha
)
43 extern char sas_addr_str
[];
44 /* If the user has specified a WWN it overrides other settings
46 if (sas_addr_str
[0] != '\0')
47 asd_destringify_sas_addr(asd_ha
->hw_prof
.sas_addr
,
49 else if (asd_ha
->hw_prof
.sas_addr
[0] != 0)
50 asd_stringify_sas_addr(sas_addr_str
, asd_ha
->hw_prof
.sas_addr
);
53 static void asd_propagate_sas_addr(struct asd_ha_struct
*asd_ha
)
57 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
58 if (asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
[0] == 0)
60 /* Set a phy's address only if it has none.
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i
,
63 SAS_ADDR(asd_ha
->hw_prof
.sas_addr
));
64 memcpy(asd_ha
->hw_prof
.phy_desc
[i
].sas_addr
,
65 asd_ha
->hw_prof
.sas_addr
, SAS_ADDR_SIZE
);
69 /* ---------- PHY initialization ---------- */
71 static void asd_init_phy_identify(struct asd_phy
*phy
)
73 phy
->identify_frame
= phy
->id_frm_tok
->vaddr
;
75 memset(phy
->identify_frame
, 0, sizeof(*phy
->identify_frame
));
77 phy
->identify_frame
->dev_type
= SAS_END_DEV
;
78 if (phy
->sas_phy
.role
& PHY_ROLE_INITIATOR
)
79 phy
->identify_frame
->initiator_bits
= phy
->sas_phy
.iproto
;
80 if (phy
->sas_phy
.role
& PHY_ROLE_TARGET
)
81 phy
->identify_frame
->target_bits
= phy
->sas_phy
.tproto
;
82 memcpy(phy
->identify_frame
->sas_addr
, phy
->phy_desc
->sas_addr
,
84 phy
->identify_frame
->phy_id
= phy
->sas_phy
.id
;
87 static int asd_init_phy(struct asd_phy
*phy
)
89 struct asd_ha_struct
*asd_ha
= phy
->sas_phy
.ha
->lldd_ha
;
90 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
94 sas_phy
->iproto
= SAS_PROTO_ALL
;
96 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
97 sas_phy
->role
= PHY_ROLE_INITIATOR
;
98 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
99 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
101 phy
->id_frm_tok
= asd_alloc_coherent(asd_ha
,
102 sizeof(*phy
->identify_frame
),
104 if (!phy
->id_frm_tok
) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy
->id
);
108 asd_init_phy_identify(phy
);
110 memset(phy
->frame_rcvd
, 0, sizeof(phy
->frame_rcvd
));
115 static int asd_init_phys(struct asd_ha_struct
*asd_ha
)
118 u8 phy_mask
= asd_ha
->hw_prof
.enabled_phys
;
120 for (i
= 0; i
< ASD_MAX_PHYS
; i
++) {
121 struct asd_phy
*phy
= &asd_ha
->phys
[i
];
123 phy
->phy_desc
= &asd_ha
->hw_prof
.phy_desc
[i
];
125 phy
->sas_phy
.enabled
= 0;
127 phy
->sas_phy
.sas_addr
= &phy
->phy_desc
->sas_addr
[0];
128 phy
->sas_phy
.frame_rcvd
= &phy
->frame_rcvd
[0];
129 phy
->sas_phy
.ha
= &asd_ha
->sas_ha
;
130 phy
->sas_phy
.lldd_phy
= phy
;
133 /* Now enable and initialize only the enabled phys. */
134 for_each_phy(phy_mask
, phy_mask
, i
) {
135 int err
= asd_init_phy(&asd_ha
->phys
[i
]);
143 /* ---------- Sliding windows ---------- */
145 static int asd_init_sw(struct asd_ha_struct
*asd_ha
)
147 struct pci_dev
*pcidev
= asd_ha
->pcidev
;
152 err
= pci_read_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, &v
);
154 asd_printk("couldn't access conf. space of %s\n",
159 err
= pci_write_config_dword(pcidev
, PCI_CONF_MBAR_KEY
, v
);
161 asd_printk("couldn't write to MBAR_KEY of %s\n",
166 /* Set sliding windows A, B and C to point to proper internal
169 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWA
, REG_BASE_ADDR
);
170 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWB
,
171 REG_BASE_ADDR_CSEQCIO
);
172 pci_write_config_dword(pcidev
, PCI_CONF_MBAR0_SWC
, REG_BASE_ADDR_EXSI
);
173 asd_ha
->io_handle
[0].swa_base
= REG_BASE_ADDR
;
174 asd_ha
->io_handle
[0].swb_base
= REG_BASE_ADDR_CSEQCIO
;
175 asd_ha
->io_handle
[0].swc_base
= REG_BASE_ADDR_EXSI
;
176 MBAR0_SWB_SIZE
= asd_ha
->io_handle
[0].len
- 0x80;
177 if (!asd_ha
->iospace
) {
178 /* MBAR1 will point to OCM (On Chip Memory) */
179 pci_write_config_dword(pcidev
, PCI_CONF_MBAR1
, OCM_BASE_ADDR
);
180 asd_ha
->io_handle
[1].swa_base
= OCM_BASE_ADDR
;
182 spin_lock_init(&asd_ha
->iolock
);
187 /* ---------- SCB initialization ---------- */
190 * asd_init_scbs - manually allocate the first SCB.
191 * @asd_ha: pointer to host adapter structure
193 * This allocates the very first SCB which would be sent to the
194 * sequencer for execution. Its bus address is written to
195 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
196 * the _next_ scb to be DMA-ed to the host adapter is read from the last
197 * SCB DMA-ed to the host adapter, we have to always stay one step
198 * ahead of the sequencer and keep one SCB already allocated.
200 static int asd_init_scbs(struct asd_ha_struct
*asd_ha
)
202 struct asd_seq_data
*seq
= &asd_ha
->seq
;
205 /* allocate the index array and bitmap */
206 asd_ha
->seq
.tc_index_bitmap_bits
= asd_ha
->hw_prof
.max_scbs
;
207 asd_ha
->seq
.tc_index_array
= kzalloc(asd_ha
->seq
.tc_index_bitmap_bits
*
208 sizeof(void *), GFP_KERNEL
);
209 if (!asd_ha
->seq
.tc_index_array
)
212 bitmap_bytes
= (asd_ha
->seq
.tc_index_bitmap_bits
+7)/8;
213 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
214 asd_ha
->seq
.tc_index_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
215 if (!asd_ha
->seq
.tc_index_bitmap
)
218 spin_lock_init(&seq
->tc_index_lock
);
220 seq
->next_scb
.size
= sizeof(struct scb
);
221 seq
->next_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
, GFP_KERNEL
,
222 &seq
->next_scb
.dma_handle
);
223 if (!seq
->next_scb
.vaddr
) {
224 kfree(asd_ha
->seq
.tc_index_bitmap
);
225 kfree(asd_ha
->seq
.tc_index_array
);
226 asd_ha
->seq
.tc_index_bitmap
= NULL
;
227 asd_ha
->seq
.tc_index_array
= NULL
;
232 spin_lock_init(&seq
->pend_q_lock
);
233 INIT_LIST_HEAD(&seq
->pend_q
);
238 static inline void asd_get_max_scb_ddb(struct asd_ha_struct
*asd_ha
)
240 asd_ha
->hw_prof
.max_scbs
= asd_get_cmdctx_size(asd_ha
)/ASD_SCB_SIZE
;
241 asd_ha
->hw_prof
.max_ddbs
= asd_get_devctx_size(asd_ha
)/ASD_DDB_SIZE
;
242 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
243 asd_ha
->hw_prof
.max_scbs
,
244 asd_ha
->hw_prof
.max_ddbs
);
247 /* ---------- Done List initialization ---------- */
249 static void asd_dl_tasklet_handler(unsigned long);
251 static int asd_init_dl(struct asd_ha_struct
*asd_ha
)
253 asd_ha
->seq
.actual_dl
254 = asd_alloc_coherent(asd_ha
,
255 ASD_DL_SIZE
* sizeof(struct done_list_struct
),
257 if (!asd_ha
->seq
.actual_dl
)
259 asd_ha
->seq
.dl
= asd_ha
->seq
.actual_dl
->vaddr
;
260 asd_ha
->seq
.dl_toggle
= ASD_DEF_DL_TOGGLE
;
261 asd_ha
->seq
.dl_next
= 0;
262 tasklet_init(&asd_ha
->seq
.dl_tasklet
, asd_dl_tasklet_handler
,
263 (unsigned long) asd_ha
);
268 /* ---------- EDB and ESCB init ---------- */
270 static int asd_alloc_edbs(struct asd_ha_struct
*asd_ha
, unsigned int gfp_flags
)
272 struct asd_seq_data
*seq
= &asd_ha
->seq
;
275 seq
->edb_arr
= kmalloc(seq
->num_edbs
*sizeof(*seq
->edb_arr
), gfp_flags
);
279 for (i
= 0; i
< seq
->num_edbs
; i
++) {
280 seq
->edb_arr
[i
] = asd_alloc_coherent(asd_ha
, ASD_EDB_SIZE
,
282 if (!seq
->edb_arr
[i
])
284 memset(seq
->edb_arr
[i
]->vaddr
, 0, ASD_EDB_SIZE
);
287 ASD_DPRINTK("num_edbs:%d\n", seq
->num_edbs
);
292 for (i
-- ; i
>= 0; i
--)
293 asd_free_coherent(asd_ha
, seq
->edb_arr
[i
]);
300 static int asd_alloc_escbs(struct asd_ha_struct
*asd_ha
,
301 unsigned int gfp_flags
)
303 struct asd_seq_data
*seq
= &asd_ha
->seq
;
304 struct asd_ascb
*escb
;
307 seq
->escb_arr
= kmalloc(seq
->num_escbs
*sizeof(*seq
->escb_arr
),
312 escbs
= seq
->num_escbs
;
313 escb
= asd_ascb_alloc_list(asd_ha
, &escbs
, gfp_flags
);
315 asd_printk("couldn't allocate list of escbs\n");
318 seq
->num_escbs
-= escbs
; /* subtract what was not allocated */
319 ASD_DPRINTK("num_escbs:%d\n", seq
->num_escbs
);
321 for (i
= 0; i
< seq
->num_escbs
; i
++, escb
= list_entry(escb
->list
.next
,
324 seq
->escb_arr
[i
] = escb
;
325 escb
->scb
->header
.opcode
= EMPTY_SCB
;
330 kfree(seq
->escb_arr
);
331 seq
->escb_arr
= NULL
;
336 static void asd_assign_edbs2escbs(struct asd_ha_struct
*asd_ha
)
338 struct asd_seq_data
*seq
= &asd_ha
->seq
;
341 for (i
= 0; i
< seq
->num_escbs
; i
++) {
342 struct asd_ascb
*ascb
= seq
->escb_arr
[i
];
343 struct empty_scb
*escb
= &ascb
->scb
->escb
;
347 escb
->num_valid
= ASD_EDBS_PER_SCB
;
349 for (k
= 0; k
< ASD_EDBS_PER_SCB
; k
++) {
350 struct sg_el
*eb
= &escb
->eb
[k
];
351 struct asd_dma_tok
*edb
= seq
->edb_arr
[z
++];
353 memset(eb
, 0, sizeof(*eb
));
354 eb
->bus_addr
= cpu_to_le64(((u64
) edb
->dma_handle
));
355 eb
->size
= cpu_to_le32(((u32
) edb
->size
));
361 * asd_init_escbs -- allocate and initialize empty scbs
362 * @asd_ha: pointer to host adapter structure
364 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
365 * They transport sense data, etc.
367 static int asd_init_escbs(struct asd_ha_struct
*asd_ha
)
369 struct asd_seq_data
*seq
= &asd_ha
->seq
;
372 /* Allocate two empty data buffers (edb) per sequencer. */
373 int edbs
= 2*(1+asd_ha
->hw_prof
.num_phys
);
375 seq
->num_escbs
= (edbs
+ASD_EDBS_PER_SCB
-1)/ASD_EDBS_PER_SCB
;
376 seq
->num_edbs
= seq
->num_escbs
* ASD_EDBS_PER_SCB
;
378 err
= asd_alloc_edbs(asd_ha
, GFP_KERNEL
);
380 asd_printk("couldn't allocate edbs\n");
384 err
= asd_alloc_escbs(asd_ha
, GFP_KERNEL
);
386 asd_printk("couldn't allocate escbs\n");
390 asd_assign_edbs2escbs(asd_ha
);
391 /* In order to insure that normal SCBs do not overfill sequencer
392 * memory and leave no space for escbs (halting condition),
393 * we increment pending here by the number of escbs. However,
394 * escbs are never pending.
396 seq
->pending
= seq
->num_escbs
;
397 seq
->can_queue
= 1 + (asd_ha
->hw_prof
.max_scbs
- seq
->pending
)/2;
402 /* ---------- HW initialization ---------- */
405 * asd_chip_hardrst -- hard reset the chip
406 * @asd_ha: pointer to host adapter structure
408 * This takes 16 cycles and is synchronous to CFCLK, which runs
409 * at 200 MHz, so this should take at most 80 nanoseconds.
411 int asd_chip_hardrst(struct asd_ha_struct
*asd_ha
)
417 for (i
= 0 ; i
< 4 ; i
++) {
418 asd_write_reg_dword(asd_ha
, COMBIST
, HARDRST
);
423 reg
= asd_read_reg_dword(asd_ha
, CHIMINT
);
424 if (reg
& HARDRSTDET
) {
425 asd_write_reg_dword(asd_ha
, CHIMINT
,
426 HARDRSTDET
|PORRSTDET
);
429 } while (--count
> 0);
435 * asd_init_chip -- initialize the chip
436 * @asd_ha: pointer to host adapter structure
438 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
439 * microcode and starts the sequencers. The caller has to explicitly
440 * enable HA interrupts with asd_enable_ints(asd_ha).
442 static int asd_init_chip(struct asd_ha_struct
*asd_ha
)
446 err
= asd_chip_hardrst(asd_ha
);
448 asd_printk("couldn't hard reset %s\n",
449 pci_name(asd_ha
->pcidev
));
453 asd_disable_ints(asd_ha
);
455 err
= asd_init_seqs(asd_ha
);
457 asd_printk("couldn't init seqs for %s\n",
458 pci_name(asd_ha
->pcidev
));
462 err
= asd_start_seqs(asd_ha
);
464 asd_printk("coudln't start seqs for %s\n",
465 pci_name(asd_ha
->pcidev
));
472 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
474 static int max_devs
= 0;
475 module_param_named(max_devs
, max_devs
, int, S_IRUGO
);
476 MODULE_PARM_DESC(max_devs
, "\n"
477 "\tMaximum number of SAS devices to support (not LUs).\n"
478 "\tDefault: 2176, Maximum: 65663.\n");
480 static int max_cmnds
= 0;
481 module_param_named(max_cmnds
, max_cmnds
, int, S_IRUGO
);
482 MODULE_PARM_DESC(max_cmnds
, "\n"
483 "\tMaximum number of commands queuable.\n"
484 "\tDefault: 512, Maximum: 66047.\n");
486 static void asd_extend_devctx_ocm(struct asd_ha_struct
*asd_ha
)
488 unsigned long dma_addr
= OCM_BASE_ADDR
;
491 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
492 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, (dma_addr_t
) dma_addr
);
493 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
495 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
496 asd_ha
->hw_prof
.max_ddbs
+= MAX_DEVS
;
499 static int asd_extend_devctx(struct asd_ha_struct
*asd_ha
)
501 dma_addr_t dma_handle
;
502 unsigned long dma_addr
;
506 asd_extend_devctx_ocm(asd_ha
);
508 asd_ha
->hw_prof
.ddb_ext
= NULL
;
509 if (max_devs
<= asd_ha
->hw_prof
.max_ddbs
|| max_devs
> 0xFFFF) {
510 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
514 size
= (max_devs
- asd_ha
->hw_prof
.max_ddbs
+ 1) * ASD_DDB_SIZE
;
516 asd_ha
->hw_prof
.ddb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
517 if (!asd_ha
->hw_prof
.ddb_ext
) {
518 asd_printk("couldn't allocate memory for %d devices\n",
520 max_devs
= asd_ha
->hw_prof
.max_ddbs
;
523 dma_handle
= asd_ha
->hw_prof
.ddb_ext
->dma_handle
;
524 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_DDB_SIZE
);
525 dma_addr
-= asd_ha
->hw_prof
.max_ddbs
* ASD_DDB_SIZE
;
526 dma_handle
= (dma_addr_t
) dma_addr
;
527 asd_write_reg_addr(asd_ha
, DEVCTXBASE
, dma_handle
);
528 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
530 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
532 asd_ha
->hw_prof
.max_ddbs
= max_devs
;
537 static int asd_extend_cmdctx(struct asd_ha_struct
*asd_ha
)
539 dma_addr_t dma_handle
;
540 unsigned long dma_addr
;
544 asd_ha
->hw_prof
.scb_ext
= NULL
;
545 if (max_cmnds
<= asd_ha
->hw_prof
.max_scbs
|| max_cmnds
> 0xFFFF) {
546 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
550 size
= (max_cmnds
- asd_ha
->hw_prof
.max_scbs
+ 1) * ASD_SCB_SIZE
;
552 asd_ha
->hw_prof
.scb_ext
= asd_alloc_coherent(asd_ha
, size
, GFP_KERNEL
);
553 if (!asd_ha
->hw_prof
.scb_ext
) {
554 asd_printk("couldn't allocate memory for %d commands\n",
556 max_cmnds
= asd_ha
->hw_prof
.max_scbs
;
559 dma_handle
= asd_ha
->hw_prof
.scb_ext
->dma_handle
;
560 dma_addr
= ALIGN((unsigned long) dma_handle
, ASD_SCB_SIZE
);
561 dma_addr
-= asd_ha
->hw_prof
.max_scbs
* ASD_SCB_SIZE
;
562 dma_handle
= (dma_addr_t
) dma_addr
;
563 asd_write_reg_addr(asd_ha
, CMDCTXBASE
, dma_handle
);
564 d
= asd_read_reg_dword(asd_ha
, CTXDOMAIN
);
566 asd_write_reg_dword(asd_ha
, CTXDOMAIN
, d
);
568 asd_ha
->hw_prof
.max_scbs
= max_cmnds
;
574 * asd_init_ctxmem -- initialize context memory
575 * asd_ha: pointer to host adapter structure
577 * This function sets the maximum number of SCBs and
578 * DDBs which can be used by the sequencer. This is normally
579 * 512 and 128 respectively. If support for more SCBs or more DDBs
580 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
581 * initialized here to extend context memory to point to host memory,
582 * thus allowing unlimited support for SCBs and DDBs -- only limited
585 static int asd_init_ctxmem(struct asd_ha_struct
*asd_ha
)
589 asd_get_max_scb_ddb(asd_ha
);
590 asd_extend_devctx(asd_ha
);
591 asd_extend_cmdctx(asd_ha
);
593 /* The kernel wants bitmaps to be unsigned long sized. */
594 bitmap_bytes
= (asd_ha
->hw_prof
.max_ddbs
+7)/8;
595 bitmap_bytes
= BITS_TO_LONGS(bitmap_bytes
*8)*sizeof(unsigned long);
596 asd_ha
->hw_prof
.ddb_bitmap
= kzalloc(bitmap_bytes
, GFP_KERNEL
);
597 if (!asd_ha
->hw_prof
.ddb_bitmap
)
599 spin_lock_init(&asd_ha
->hw_prof
.ddb_lock
);
604 int asd_init_hw(struct asd_ha_struct
*asd_ha
)
609 err
= asd_init_sw(asd_ha
);
613 err
= pci_read_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
, &v
);
615 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
616 pci_name(asd_ha
->pcidev
));
619 pci_write_config_dword(asd_ha
->pcidev
, PCIC_HSTPCIX_CNTRL
,
622 asd_printk("couldn't disable split completion timer of %s\n",
623 pci_name(asd_ha
->pcidev
));
627 err
= asd_read_ocm(asd_ha
);
629 asd_printk("couldn't read ocm(%d)\n", err
);
630 /* While suspicios, it is not an error that we
631 * couldn't read the OCM. */
634 err
= asd_read_flash(asd_ha
);
636 asd_printk("couldn't read flash(%d)\n", err
);
637 /* While suspicios, it is not an error that we
638 * couldn't read FLASH memory.
642 asd_init_ctxmem(asd_ha
);
644 asd_get_user_sas_addr(asd_ha
);
645 if (!asd_ha
->hw_prof
.sas_addr
[0]) {
646 asd_printk("No SAS Address provided for %s\n",
647 pci_name(asd_ha
->pcidev
));
652 asd_propagate_sas_addr(asd_ha
);
654 err
= asd_init_phys(asd_ha
);
656 asd_printk("couldn't initialize phys for %s\n",
657 pci_name(asd_ha
->pcidev
));
661 err
= asd_init_scbs(asd_ha
);
663 asd_printk("couldn't initialize scbs for %s\n",
664 pci_name(asd_ha
->pcidev
));
668 err
= asd_init_dl(asd_ha
);
670 asd_printk("couldn't initialize the done list:%d\n",
675 err
= asd_init_escbs(asd_ha
);
677 asd_printk("couldn't initialize escbs\n");
681 err
= asd_init_chip(asd_ha
);
683 asd_printk("couldn't init the chip\n");
690 /* ---------- Chip reset ---------- */
693 * asd_chip_reset -- reset the host adapter, etc
694 * @asd_ha: pointer to host adapter structure of interest
696 * Called from the ISR. Hard reset the chip. Let everything
697 * timeout. This should be no different than hot-unplugging the
698 * host adapter. Once everything times out we'll init the chip with
699 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
702 static void asd_chip_reset(struct asd_ha_struct
*asd_ha
)
704 struct sas_ha_struct
*sas_ha
= &asd_ha
->sas_ha
;
706 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha
->pcidev
));
707 asd_chip_hardrst(asd_ha
);
708 sas_ha
->notify_ha_event(sas_ha
, HAE_RESET
);
711 /* ---------- Done List Routines ---------- */
713 static void asd_dl_tasklet_handler(unsigned long data
)
715 struct asd_ha_struct
*asd_ha
= (struct asd_ha_struct
*) data
;
716 struct asd_seq_data
*seq
= &asd_ha
->seq
;
720 struct done_list_struct
*dl
= &seq
->dl
[seq
->dl_next
];
721 struct asd_ascb
*ascb
;
723 if ((dl
->toggle
& DL_TOGGLE_MASK
) != seq
->dl_toggle
)
727 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
728 ascb
= asd_tc_index_find(seq
, (int)le16_to_cpu(dl
->index
));
729 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
730 if (unlikely(!ascb
)) {
731 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
733 } else if (ascb
->scb
->header
.opcode
== EMPTY_SCB
) {
735 } else if (!ascb
->uldd_timer
&& !del_timer(&ascb
->timer
)) {
738 spin_lock_irqsave(&seq
->pend_q_lock
, flags
);
739 list_del_init(&ascb
->list
);
741 spin_unlock_irqrestore(&seq
->pend_q_lock
, flags
);
743 ascb
->tasklet_complete(ascb
, dl
);
746 seq
->dl_next
= (seq
->dl_next
+ 1) & (ASD_DL_SIZE
-1);
748 seq
->dl_toggle
^= DL_TOGGLE_MASK
;
752 /* ---------- Interrupt Service Routines ---------- */
755 * asd_process_donelist_isr -- schedule processing of done list entries
756 * @asd_ha: pointer to host adapter structure
758 static inline void asd_process_donelist_isr(struct asd_ha_struct
*asd_ha
)
760 tasklet_schedule(&asd_ha
->seq
.dl_tasklet
);
764 * asd_com_sas_isr -- process device communication interrupt (COMINT)
765 * @asd_ha: pointer to host adapter structure
767 static inline void asd_com_sas_isr(struct asd_ha_struct
*asd_ha
)
769 u32 comstat
= asd_read_reg_dword(asd_ha
, COMSTAT
);
771 /* clear COMSTAT int */
772 asd_write_reg_dword(asd_ha
, COMSTAT
, 0xFFFFFFFF);
774 if (comstat
& CSBUFPERR
) {
775 asd_printk("%s: command/status buffer dma parity error\n",
776 pci_name(asd_ha
->pcidev
));
777 } else if (comstat
& CSERR
) {
779 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
781 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
782 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
783 pci_name(asd_ha
->pcidev
),
785 asd_read_reg_dword(asd_ha
, CSDMAADR
),
786 asd_read_reg_dword(asd_ha
, CSDMAADR
+4));
787 asd_printk("CSBUFFER:\n");
788 for (i
= 0; i
< 8; i
++) {
789 asd_printk("%08x %08x %08x %08x\n",
790 asd_read_reg_dword(asd_ha
, CSBUFFER
),
791 asd_read_reg_dword(asd_ha
, CSBUFFER
+4),
792 asd_read_reg_dword(asd_ha
, CSBUFFER
+8),
793 asd_read_reg_dword(asd_ha
, CSBUFFER
+12));
795 asd_dump_seq_state(asd_ha
, 0);
796 } else if (comstat
& OVLYERR
) {
797 u32 dmaerr
= asd_read_reg_dword(asd_ha
, DMAERR
);
798 dmaerr
= (dmaerr
>> 8) & 0xFF;
799 asd_printk("%s: overlay dma error:0x%x\n",
800 pci_name(asd_ha
->pcidev
),
803 asd_chip_reset(asd_ha
);
806 static inline void asd_arp2_err(struct asd_ha_struct
*asd_ha
, u32 dchstatus
)
808 static const char *halt_code
[256] = {
809 "UNEXPECTED_INTERRUPT0",
810 "UNEXPECTED_INTERRUPT1",
811 "UNEXPECTED_INTERRUPT2",
812 "UNEXPECTED_INTERRUPT3",
813 "UNEXPECTED_INTERRUPT4",
814 "UNEXPECTED_INTERRUPT5",
815 "UNEXPECTED_INTERRUPT6",
816 "UNEXPECTED_INTERRUPT7",
817 "UNEXPECTED_INTERRUPT8",
818 "UNEXPECTED_INTERRUPT9",
819 "UNEXPECTED_INTERRUPT10",
820 [11 ... 19] = "unknown[11,19]",
821 "NO_FREE_SCB_AVAILABLE",
822 "INVALID_SCB_OPCODE",
823 "INVALID_MBX_OPCODE",
826 "ATA_TAG_TABLE_FAULT",
827 "ATA_TAG_MASK_FAULT",
828 "BAD_LINK_QUEUE_STATE",
829 "DMA2CHIM_QUEUE_ERROR",
830 "EMPTY_SCB_LIST_FULL",
832 "IN_USE_SCB_ON_FREE_LIST",
833 "BAD_OPEN_WAIT_STATE",
834 "INVALID_STP_AFFILIATION",
837 "TOO_MANY_EMPTIES_NEEDED",
838 "EMPTY_REQ_QUEUE_ERROR",
839 "Q_MONIRTT_MGMT_ERROR",
840 "TARGET_MODE_FLOW_ERROR",
841 "DEVICE_QUEUE_NOT_FOUND",
842 "START_IRTT_TIMER_ERROR",
843 "ABORT_TASK_ILLEGAL_REQ",
844 [43 ... 255] = "unknown[43,255]"
847 if (dchstatus
& CSEQINT
) {
848 u32 arp2int
= asd_read_reg_dword(asd_ha
, CARP2INT
);
850 if (arp2int
& (ARP2WAITTO
|ARP2ILLOPC
|ARP2PERR
|ARP2CIOPERR
)) {
851 asd_printk("%s: CSEQ arp2int:0x%x\n",
852 pci_name(asd_ha
->pcidev
),
854 } else if (arp2int
& ARP2HALTC
)
855 asd_printk("%s: CSEQ halted: %s\n",
856 pci_name(asd_ha
->pcidev
),
857 halt_code
[(arp2int
>>16)&0xFF]);
859 asd_printk("%s: CARP2INT:0x%x\n",
860 pci_name(asd_ha
->pcidev
),
863 if (dchstatus
& LSEQINT_MASK
) {
865 u8 lseq_mask
= dchstatus
& LSEQINT_MASK
;
867 for_each_sequencer(lseq_mask
, lseq_mask
, lseq
) {
868 u32 arp2int
= asd_read_reg_dword(asd_ha
,
870 if (arp2int
& (ARP2WAITTO
| ARP2ILLOPC
| ARP2PERR
872 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
873 pci_name(asd_ha
->pcidev
),
875 /* XXX we should only do lseq reset */
876 } else if (arp2int
& ARP2HALTC
)
877 asd_printk("%s: LSEQ%d halted: %s\n",
878 pci_name(asd_ha
->pcidev
),
879 lseq
,halt_code
[(arp2int
>>16)&0xFF]);
881 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
882 pci_name(asd_ha
->pcidev
), lseq
,
886 asd_chip_reset(asd_ha
);
890 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
891 * @asd_ha: pointer to host adapter structure
893 static inline void asd_dch_sas_isr(struct asd_ha_struct
*asd_ha
)
895 u32 dchstatus
= asd_read_reg_dword(asd_ha
, DCHSTATUS
);
897 if (dchstatus
& CFIFTOERR
) {
898 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha
->pcidev
));
899 asd_chip_reset(asd_ha
);
901 asd_arp2_err(asd_ha
, dchstatus
);
905 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
906 * @asd_ha: pointer to host adapter structure
908 static inline void asd_rbi_exsi_isr(struct asd_ha_struct
*asd_ha
)
910 u32 stat0r
= asd_read_reg_dword(asd_ha
, ASISTAT0R
);
912 if (!(stat0r
& ASIERR
)) {
913 asd_printk("hmm, EXSI interrupted but no error?\n");
917 if (stat0r
& ASIFMTERR
) {
918 asd_printk("ASI SEEPROM format error for %s\n",
919 pci_name(asd_ha
->pcidev
));
920 } else if (stat0r
& ASISEECHKERR
) {
921 u32 stat1r
= asd_read_reg_dword(asd_ha
, ASISTAT1R
);
922 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
923 stat1r
& CHECKSUM_MASK
,
924 pci_name(asd_ha
->pcidev
));
926 u32 statr
= asd_read_reg_dword(asd_ha
, ASIERRSTATR
);
928 if (!(statr
& CPI2ASIMSTERR_MASK
)) {
929 ASD_DPRINTK("hmm, ASIERR?\n");
932 u32 addr
= asd_read_reg_dword(asd_ha
, ASIERRADDR
);
933 u32 data
= asd_read_reg_dword(asd_ha
, ASIERRDATAR
);
935 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
936 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
937 "master id: 0x%x, master err: 0x%x\n",
938 pci_name(asd_ha
->pcidev
),
940 (statr
& CPI2ASIBYTECNT_MASK
) >> 16,
941 (statr
& CPI2ASIBYTEEN_MASK
) >> 12,
942 (statr
& CPI2ASITARGERR_MASK
) >> 8,
943 (statr
& CPI2ASITARGMID_MASK
) >> 4,
944 (statr
& CPI2ASIMSTERR_MASK
));
947 asd_chip_reset(asd_ha
);
951 * asd_hst_pcix_isr -- process host interface interrupts
952 * @asd_ha: pointer to host adapter structure
954 * Asserted on PCIX errors: target abort, etc.
956 static inline void asd_hst_pcix_isr(struct asd_ha_struct
*asd_ha
)
962 pci_read_config_word(asd_ha
->pcidev
, PCI_STATUS
, &status
);
963 pci_read_config_dword(asd_ha
->pcidev
, PCIX_STATUS
, &pcix_status
);
964 pci_read_config_dword(asd_ha
->pcidev
, ECC_CTRL_STAT
, &ecc_status
);
966 if (status
& PCI_STATUS_DETECTED_PARITY
)
967 asd_printk("parity error for %s\n", pci_name(asd_ha
->pcidev
));
968 else if (status
& PCI_STATUS_REC_MASTER_ABORT
)
969 asd_printk("master abort for %s\n", pci_name(asd_ha
->pcidev
));
970 else if (status
& PCI_STATUS_REC_TARGET_ABORT
)
971 asd_printk("target abort for %s\n", pci_name(asd_ha
->pcidev
));
972 else if (status
& PCI_STATUS_PARITY
)
973 asd_printk("data parity for %s\n", pci_name(asd_ha
->pcidev
));
974 else if (pcix_status
& RCV_SCE
) {
975 asd_printk("received split completion error for %s\n",
976 pci_name(asd_ha
->pcidev
));
977 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
978 /* XXX: Abort task? */
980 } else if (pcix_status
& UNEXP_SC
) {
981 asd_printk("unexpected split completion for %s\n",
982 pci_name(asd_ha
->pcidev
));
983 pci_write_config_dword(asd_ha
->pcidev
,PCIX_STATUS
,pcix_status
);
986 } else if (pcix_status
& SC_DISCARD
)
987 asd_printk("split completion discarded for %s\n",
988 pci_name(asd_ha
->pcidev
));
989 else if (ecc_status
& UNCOR_ECCERR
)
990 asd_printk("uncorrectable ECC error for %s\n",
991 pci_name(asd_ha
->pcidev
));
992 asd_chip_reset(asd_ha
);
996 * asd_hw_isr -- host adapter interrupt service routine
998 * @dev_id: pointer to host adapter structure
1001 * The ISR processes done list entries and level 3 error handling.
1003 irqreturn_t
asd_hw_isr(int irq
, void *dev_id
, struct pt_regs
*regs
)
1005 struct asd_ha_struct
*asd_ha
= dev_id
;
1006 u32 chimint
= asd_read_reg_dword(asd_ha
, CHIMINT
);
1011 asd_write_reg_dword(asd_ha
, CHIMINT
, chimint
);
1012 (void) asd_read_reg_dword(asd_ha
, CHIMINT
);
1014 if (chimint
& DLAVAIL
)
1015 asd_process_donelist_isr(asd_ha
);
1016 if (chimint
& COMINT
)
1017 asd_com_sas_isr(asd_ha
);
1018 if (chimint
& DEVINT
)
1019 asd_dch_sas_isr(asd_ha
);
1020 if (chimint
& INITERR
)
1021 asd_rbi_exsi_isr(asd_ha
);
1022 if (chimint
& HOSTERR
)
1023 asd_hst_pcix_isr(asd_ha
);
1028 /* ---------- SCB handling ---------- */
1030 static inline struct asd_ascb
*asd_ascb_alloc(struct asd_ha_struct
*asd_ha
,
1031 unsigned int gfp_flags
)
1033 extern kmem_cache_t
*asd_ascb_cache
;
1034 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1035 struct asd_ascb
*ascb
;
1036 unsigned long flags
;
1038 ascb
= kmem_cache_alloc(asd_ascb_cache
, gfp_flags
);
1041 memset(ascb
, 0, sizeof(*ascb
));
1042 ascb
->dma_scb
.size
= sizeof(struct scb
);
1043 ascb
->dma_scb
.vaddr
= dma_pool_alloc(asd_ha
->scb_pool
,
1045 &ascb
->dma_scb
.dma_handle
);
1046 if (!ascb
->dma_scb
.vaddr
) {
1047 kmem_cache_free(asd_ascb_cache
, ascb
);
1050 memset(ascb
->dma_scb
.vaddr
, 0, sizeof(struct scb
));
1051 asd_init_ascb(asd_ha
, ascb
);
1053 spin_lock_irqsave(&seq
->tc_index_lock
, flags
);
1054 ascb
->tc_index
= asd_tc_index_get(seq
, ascb
);
1055 spin_unlock_irqrestore(&seq
->tc_index_lock
, flags
);
1056 if (ascb
->tc_index
== -1)
1059 ascb
->scb
->header
.index
= cpu_to_le16((u16
)ascb
->tc_index
);
1064 dma_pool_free(asd_ha
->scb_pool
, ascb
->dma_scb
.vaddr
,
1065 ascb
->dma_scb
.dma_handle
);
1066 kmem_cache_free(asd_ascb_cache
, ascb
);
1067 ASD_DPRINTK("no index for ascb\n");
1072 * asd_ascb_alloc_list -- allocate a list of aSCBs
1073 * @asd_ha: pointer to host adapter structure
1074 * @num: pointer to integer number of aSCBs
1075 * @gfp_flags: GFP_ flags.
1077 * This is the only function which is used to allocate aSCBs.
1078 * It can allocate one or many. If more than one, then they form
1079 * a linked list in two ways: by their list field of the ascb struct
1080 * and by the next_scb field of the scb_header.
1082 * Returns NULL if no memory was available, else pointer to a list
1083 * of ascbs. When this function returns, @num would be the number
1084 * of SCBs which were not able to be allocated, 0 if all requested
1085 * were able to be allocated.
1087 struct asd_ascb
*asd_ascb_alloc_list(struct asd_ha_struct
1089 unsigned int gfp_flags
)
1091 struct asd_ascb
*first
= NULL
;
1093 for ( ; *num
> 0; --*num
) {
1094 struct asd_ascb
*ascb
= asd_ascb_alloc(asd_ha
, gfp_flags
);
1101 struct asd_ascb
*last
= list_entry(first
->list
.prev
,
1104 list_add_tail(&ascb
->list
, &first
->list
);
1105 last
->scb
->header
.next_scb
=
1106 cpu_to_le64(((u64
)ascb
->dma_scb
.dma_handle
));
1114 * asd_swap_head_scb -- swap the head scb
1115 * @asd_ha: pointer to host adapter structure
1116 * @ascb: pointer to the head of an ascb list
1118 * The sequencer knows the DMA address of the next SCB to be DMAed to
1119 * the host adapter, from initialization or from the last list DMAed.
1120 * seq->next_scb keeps the address of this SCB. The sequencer will
1121 * DMA to the host adapter this list of SCBs. But the head (first
1122 * element) of this list is not known to the sequencer. Here we swap
1123 * the head of the list with the known SCB (memcpy()).
1124 * Only one memcpy() is required per list so it is in our interest
1125 * to keep the list of SCB as long as possible so that the ratio
1126 * of number of memcpy calls to the number of SCB DMA-ed is as small
1129 * LOCKING: called with the pending list lock held.
1131 static inline void asd_swap_head_scb(struct asd_ha_struct
*asd_ha
,
1132 struct asd_ascb
*ascb
)
1134 struct asd_seq_data
*seq
= &asd_ha
->seq
;
1135 struct asd_ascb
*last
= list_entry(ascb
->list
.prev
,
1138 struct asd_dma_tok t
= ascb
->dma_scb
;
1140 memcpy(seq
->next_scb
.vaddr
, ascb
->scb
, sizeof(*ascb
->scb
));
1141 ascb
->dma_scb
= seq
->next_scb
;
1142 ascb
->scb
= ascb
->dma_scb
.vaddr
;
1144 last
->scb
->header
.next_scb
=
1145 cpu_to_le64(((u64
)seq
->next_scb
.dma_handle
));
1149 * asd_start_timers -- (add and) start timers of SCBs
1150 * @list: pointer to struct list_head of the scbs
1151 * @to: timeout in jiffies
1153 * If an SCB in the @list has no timer function, assign the default
1154 * one, then start the timer of the SCB. This function is
1155 * intended to be called from asd_post_ascb_list(), just prior to
1156 * posting the SCBs to the sequencer.
1158 static inline void asd_start_scb_timers(struct list_head
*list
)
1160 struct asd_ascb
*ascb
;
1161 list_for_each_entry(ascb
, list
, list
) {
1162 if (!ascb
->uldd_timer
) {
1163 ascb
->timer
.data
= (unsigned long) ascb
;
1164 ascb
->timer
.function
= asd_ascb_timedout
;
1165 ascb
->timer
.expires
= jiffies
+ AIC94XX_SCB_TIMEOUT
;
1166 add_timer(&ascb
->timer
);
1172 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1173 * @asd_ha: pointer to a host adapter structure
1174 * @ascb: pointer to the first aSCB in the list
1175 * @num: number of aSCBs in the list (to be posted)
1177 * See queueing comment in asd_post_escb_list().
1179 * Additional note on queuing: In order to minimize the ratio of memcpy()
1180 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1182 * Two cases are possible:
1183 * A) can_queue >= num,
1184 * B) can_queue < num.
1185 * Case A: we can send the whole batch at once. Increment "pending"
1186 * in the beginning of this function, when it is checked, in order to
1187 * eliminate races when this function is called by multiple processes.
1188 * Case B: should never happen if the managing layer considers
1191 int asd_post_ascb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1194 unsigned long flags
;
1198 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1199 can_queue
= asd_ha
->hw_prof
.max_scbs
- asd_ha
->seq
.pending
;
1200 if (can_queue
>= num
)
1201 asd_ha
->seq
.pending
+= num
;
1206 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1207 asd_printk("%s: scb queue full\n", pci_name(asd_ha
->pcidev
));
1208 return -SAS_QUEUE_FULL
;
1211 asd_swap_head_scb(asd_ha
, ascb
);
1213 __list_add(&list
, ascb
->list
.prev
, &ascb
->list
);
1215 asd_start_scb_timers(&list
);
1217 asd_ha
->seq
.scbpro
+= num
;
1218 list_splice_init(&list
, asd_ha
->seq
.pend_q
.prev
);
1219 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1220 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1226 * asd_post_escb_list -- post a list of 1 or more empty scb
1227 * @asd_ha: pointer to a host adapter structure
1228 * @ascb: pointer to the first empty SCB in the list
1229 * @num: number of aSCBs in the list (to be posted)
1231 * This is essentially the same as asd_post_ascb_list, but we do not
1232 * increment pending, add those to the pending list or get indexes.
1233 * See asd_init_escbs() and asd_init_post_escbs().
1235 * Since sending a list of ascbs is a superset of sending a single
1236 * ascb, this function exists to generalize this. More specifically,
1237 * when sending a list of those, we want to do only a _single_
1238 * memcpy() at swap head, as opposed to for each ascb sent (in the
1239 * case of sending them one by one). That is, we want to minimize the
1240 * ratio of memcpy() operations to the number of ascbs sent. The same
1241 * logic applies to asd_post_ascb_list().
1243 int asd_post_escb_list(struct asd_ha_struct
*asd_ha
, struct asd_ascb
*ascb
,
1246 unsigned long flags
;
1248 spin_lock_irqsave(&asd_ha
->seq
.pend_q_lock
, flags
);
1249 asd_swap_head_scb(asd_ha
, ascb
);
1250 asd_ha
->seq
.scbpro
+= num
;
1251 asd_write_reg_dword(asd_ha
, SCBPRO
, (u32
)asd_ha
->seq
.scbpro
);
1252 spin_unlock_irqrestore(&asd_ha
->seq
.pend_q_lock
, flags
);
1257 /* ---------- LED ---------- */
1260 * asd_turn_led -- turn on/off an LED
1261 * @asd_ha: pointer to host adapter structure
1262 * @phy_id: the PHY id whose LED we want to manupulate
1263 * @op: 1 to turn on, 0 to turn off
1265 void asd_turn_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1267 if (phy_id
< ASD_MAX_PHYS
) {
1268 u32 v
= asd_read_reg_dword(asd_ha
, LmCONTROL(phy_id
));
1273 asd_write_reg_dword(asd_ha
, LmCONTROL(phy_id
), v
);
1278 * asd_control_led -- enable/disable an LED on the board
1279 * @asd_ha: pointer to host adapter structure
1280 * @phy_id: integer, the phy id
1281 * @op: integer, 1 to enable, 0 to disable the LED
1283 * First we output enable the LED, then we set the source
1284 * to be an external module.
1286 void asd_control_led(struct asd_ha_struct
*asd_ha
, int phy_id
, int op
)
1288 if (phy_id
< ASD_MAX_PHYS
) {
1291 v
= asd_read_reg_dword(asd_ha
, GPIOOER
);
1295 v
&= ~(1 << phy_id
);
1296 asd_write_reg_dword(asd_ha
, GPIOOER
, v
);
1298 v
= asd_read_reg_dword(asd_ha
, GPIOCNFGR
);
1302 v
&= ~(1 << phy_id
);
1303 asd_write_reg_dword(asd_ha
, GPIOCNFGR
, v
);
1307 /* ---------- PHY enable ---------- */
1309 static int asd_enable_phy(struct asd_ha_struct
*asd_ha
, int phy_id
)
1311 struct asd_phy
*phy
= &asd_ha
->phys
[phy_id
];
1313 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, INT_ENABLE_2
), 0);
1314 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, HOT_PLUG_DELAY
),
1315 HOTPLUG_DELAY_TIMEOUT
);
1317 /* Get defaults from manuf. sector */
1318 /* XXX we need defaults for those in case MS is broken. */
1319 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_0
),
1320 phy
->phy_desc
->phy_control_0
);
1321 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_1
),
1322 phy
->phy_desc
->phy_control_1
);
1323 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_2
),
1324 phy
->phy_desc
->phy_control_2
);
1325 asd_write_reg_byte(asd_ha
, LmSEQ_OOB_REG(phy_id
, PHY_CONTROL_3
),
1326 phy
->phy_desc
->phy_control_3
);
1328 asd_write_reg_dword(asd_ha
, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id
),
1329 ASD_COMINIT_TIMEOUT
);
1331 asd_write_reg_addr(asd_ha
, LmSEQ_TX_ID_ADDR_FRAME(phy_id
),
1332 phy
->id_frm_tok
->dma_handle
);
1334 asd_control_led(asd_ha
, phy_id
, 1);
1339 int asd_enable_phys(struct asd_ha_struct
*asd_ha
, const u8 phy_mask
)
1344 struct asd_ascb
*ascb
;
1345 struct asd_ascb
*ascb_list
;
1348 asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__
);
1352 for_each_phy(phy_mask
, phy_m
, i
) {
1354 asd_enable_phy(asd_ha
, i
);
1358 ascb_list
= asd_ascb_alloc_list(asd_ha
, &k
, GFP_KERNEL
);
1360 asd_printk("no memory for control phy ascb list\n");
1366 for_each_phy(phy_mask
, phy_m
, i
) {
1367 asd_build_control_phy(ascb
, i
, ENABLE_PHY
);
1368 ascb
= list_entry(ascb
->list
.next
, struct asd_ascb
, list
);
1370 ASD_DPRINTK("posting %d control phy scbs\n", num
);
1371 k
= asd_post_ascb_list(asd_ha
, ascb_list
, num
);
1373 asd_ascb_free_list(ascb_list
);