]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/csiostor/csio_hw.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / csiostor / csio_hw.c
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56 /* Default MSI param level */
57 int csio_msi = 2;
58
59 /* FCoE function instances */
60 static int dev_num;
61
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 return csio_match_state(hw, csio_hws_ready);
109 }
110
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 return csio_match_state(hw, csio_hws_removing);
114 }
115
116
117 /*
118 * csio_hw_wait_op_done_val - wait until an operation is completed
119 * @hw: the HW module
120 * @reg: the register to check for completion
121 * @mask: a single-bit field within @reg that indicates completion
122 * @polarity: the value of the field when the operation is completed
123 * @attempts: number of check iterations
124 * @delay: delay in usecs between iterations
125 * @valp: where to store the value of the register at completion time
126 *
127 * Wait until an operation is completed by checking a bit in a register
128 * up to @attempts times. If @valp is not NULL the value of the register
129 * at the time it indicated completion is stored there. Returns 0 if the
130 * operation completes and -EAGAIN otherwise.
131 */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 uint32_t val;
137 while (1) {
138 val = csio_rd_reg32(hw, reg);
139
140 if (!!(val & mask) == polarity) {
141 if (valp)
142 *valp = val;
143 return 0;
144 }
145
146 if (--attempts == 0)
147 return -EAGAIN;
148 if (delay)
149 udelay(delay);
150 }
151 }
152
153 /*
154 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 * @hw: the adapter
156 * @addr: the indirect TP register address
157 * @mask: specifies the field within the register to modify
158 * @val: new value for the field
159 *
160 * Sets a field of an indirect TP register to the given value.
161 */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 unsigned int mask, unsigned int val)
165 {
166 csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 uint32_t value)
174 {
175 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176
177 csio_wr_reg32(hw, val | value, reg);
178 /* Flush */
179 csio_rd_reg32(hw, reg);
180
181 }
182
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 addr, len, buf, 0);
188 }
189
190 /*
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192 */
193 #define EEPROM_MAX_RD_POLL 40
194 #define EEPROM_MAX_WR_POLL 6
195 #define EEPROM_STAT_ADDR 0x7bfc
196 #define VPD_BASE 0x400
197 #define VPD_BASE_OLD 0
198 #define VPD_LEN 1024
199 #define VPD_INFO_FLD_HDR_SIZE 3
200
201 /*
202 * csio_hw_seeprom_read - read a serial EEPROM location
203 * @hw: hw to read
204 * @addr: EEPROM virtual address
205 * @data: where to store the read data
206 *
207 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 * VPD capability. Note that this function must be called with a virtual
209 * address.
210 */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 uint16_t val = 0;
215 int attempts = EEPROM_MAX_RD_POLL;
216 uint32_t base = hw->params.pci.vpd_cap_addr;
217
218 if (addr >= EEPROMVSIZE || (addr & 3))
219 return -EINVAL;
220
221 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222
223 do {
224 udelay(10);
225 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
227
228 if (!(val & PCI_VPD_ADDR_F)) {
229 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 return -EINVAL;
231 }
232
233 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 *data = le32_to_cpu(*(__le32 *)data);
235
236 return 0;
237 }
238
239 /*
240 * Partial EEPROM Vital Product Data structure. Includes only the ID and
241 * VPD-R sections.
242 */
243 struct t4_vpd_hdr {
244 u8 id_tag;
245 u8 id_len[2];
246 u8 id_data[ID_LEN];
247 u8 vpdr_tag;
248 u8 vpdr_len[2];
249 };
250
251 /*
252 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 * the VPD
254 * @v: Pointer to buffered vpd data structure
255 * @kw: The keyword to search for
256 *
257 * Returns the value of the information field keyword or
258 * -EINVAL otherwise.
259 */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 int32_t i;
264 int32_t offset , len;
265 const uint8_t *buf = &v->id_tag;
266 const uint8_t *vpdr_len = &v->vpdr_tag;
267 offset = sizeof(struct t4_vpd_hdr);
268 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269
270 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 return -EINVAL;
272
273 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 if (memcmp(buf + i , kw, 2) == 0) {
275 i += VPD_INFO_FLD_HDR_SIZE;
276 return i;
277 }
278
279 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 }
281
282 return -EINVAL;
283 }
284
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 *pos = pci_find_capability(pdev, cap);
289 if (*pos)
290 return 0;
291
292 return -1;
293 }
294
295 /*
296 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 * @hw: HW module
298 * @p: where to store the parameters
299 *
300 * Reads card parameters stored in VPD EEPROM.
301 */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 int i, ret, ec, sn, addr;
306 uint8_t *vpd, csum;
307 const struct t4_vpd_hdr *v;
308 /* To get around compilation warning from strstrip */
309 char *s;
310
311 if (csio_is_valid_vpd(hw))
312 return 0;
313
314 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 &hw->params.pci.vpd_cap_addr);
316 if (ret)
317 return -EINVAL;
318
319 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 if (vpd == NULL)
321 return -ENOMEM;
322
323 /*
324 * Card information normally starts at VPD_BASE but early cards had
325 * it at 0.
326 */
327 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329
330 for (i = 0; i < VPD_LEN; i += 4) {
331 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 if (ret) {
333 kfree(vpd);
334 return ret;
335 }
336 }
337
338 /* Reset the VPD flag! */
339 hw->flags &= (~CSIO_HWF_VPD_VALID);
340
341 v = (const struct t4_vpd_hdr *)vpd;
342
343 #define FIND_VPD_KW(var, name) do { \
344 var = csio_hw_get_vpd_keyword_val(v, name); \
345 if (var < 0) { \
346 csio_err(hw, "missing VPD keyword " name "\n"); \
347 kfree(vpd); \
348 return -EINVAL; \
349 } \
350 } while (0)
351
352 FIND_VPD_KW(i, "RV");
353 for (csum = 0; i >= 0; i--)
354 csum += vpd[i];
355
356 if (csum) {
357 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 kfree(vpd);
359 return -EINVAL;
360 }
361 FIND_VPD_KW(ec, "EC");
362 FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364
365 memcpy(p->id, v->id_data, ID_LEN);
366 s = strstrip(p->id);
367 memcpy(p->ec, vpd + ec, EC_LEN);
368 s = strstrip(p->ec);
369 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 s = strstrip(p->sn);
372
373 csio_valid_vpd_copied(hw);
374
375 kfree(vpd);
376 return 0;
377 }
378
379 /*
380 * csio_hw_sf1_read - read data from the serial flash
381 * @hw: the HW module
382 * @byte_cnt: number of bytes to read
383 * @cont: whether another operation will be chained
384 * @lock: whether to lock SF for PL access only
385 * @valp: where to store the read data
386 *
387 * Reads up to 4 bytes of data from the serial flash. The location of
388 * the read needs to be specified prior to calling this by issuing the
389 * appropriate commands to the serial flash.
390 */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 int32_t lock, uint32_t *valp)
394 {
395 int ret;
396
397 if (!byte_cnt || byte_cnt > 4)
398 return -EINVAL;
399 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 return -EBUSY;
401
402 csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 10, NULL);
406 if (!ret)
407 *valp = csio_rd_reg32(hw, SF_DATA_A);
408 return ret;
409 }
410
411 /*
412 * csio_hw_sf1_write - write data to the serial flash
413 * @hw: the HW module
414 * @byte_cnt: number of bytes to write
415 * @cont: whether another operation will be chained
416 * @lock: whether to lock SF for PL access only
417 * @val: value to write
418 *
419 * Writes up to 4 bytes of data to the serial flash. The location of
420 * the write needs to be specified prior to calling this by issuing the
421 * appropriate commands to the serial flash.
422 */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 int32_t lock, uint32_t val)
426 {
427 if (!byte_cnt || byte_cnt > 4)
428 return -EINVAL;
429 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 return -EBUSY;
431
432 csio_wr_reg32(hw, val, SF_DATA_A);
433 csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435
436 return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 10, NULL);
438 }
439
440 /*
441 * csio_hw_flash_wait_op - wait for a flash operation to complete
442 * @hw: the HW module
443 * @attempts: max number of polls of the status register
444 * @delay: delay between polls in ms
445 *
446 * Wait for a flash operation to complete by polling the status register.
447 */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 int ret;
452 uint32_t status;
453
454 while (1) {
455 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 if (ret != 0)
457 return ret;
458
459 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 if (ret != 0)
461 return ret;
462
463 if (!(status & 1))
464 return 0;
465 if (--attempts == 0)
466 return -EAGAIN;
467 if (delay)
468 msleep(delay);
469 }
470 }
471
472 /*
473 * csio_hw_read_flash - read words from serial flash
474 * @hw: the HW module
475 * @addr: the start address for the read
476 * @nwords: how many 32-bit words to read
477 * @data: where to store the read data
478 * @byte_oriented: whether to store data as bytes or as words
479 *
480 * Read the specified number of 32-bit words from the serial flash.
481 * If @byte_oriented is set the read data is stored as a byte array
482 * (i.e., big-endian), otherwise as 32-bit words in the platform's
483 * natural endianess.
484 */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 uint32_t *data, int32_t byte_oriented)
488 {
489 int ret;
490
491 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 return -EINVAL;
493
494 addr = swab32(addr) | SF_RD_DATA_FAST;
495
496 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 if (ret != 0)
498 return ret;
499
500 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 if (ret != 0)
502 return ret;
503
504 for ( ; nwords; nwords--, data++) {
505 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 if (nwords == 1)
507 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
508 if (ret)
509 return ret;
510 if (byte_oriented)
511 *data = (__force __u32) htonl(*data);
512 }
513 return 0;
514 }
515
516 /*
517 * csio_hw_write_flash - write up to a page of data to the serial flash
518 * @hw: the hw
519 * @addr: the start address to write
520 * @n: length of data to write in bytes
521 * @data: the data to write
522 *
523 * Writes up to a page of data (256 bytes) to the serial flash starting
524 * at the given address. All the data must be written to the same page.
525 */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 uint32_t n, const uint8_t *data)
529 {
530 int ret = -EINVAL;
531 uint32_t buf[64];
532 uint32_t i, c, left, val, offset = addr & 0xff;
533
534 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 return -EINVAL;
536
537 val = swab32(addr) | SF_PROG_PAGE;
538
539 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 if (ret != 0)
541 goto unlock;
542
543 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 if (ret != 0)
545 goto unlock;
546
547 for (left = n; left; left -= c) {
548 c = min(left, 4U);
549 for (val = 0, i = 0; i < c; ++i)
550 val = (val << 8) + *data++;
551
552 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 if (ret)
554 goto unlock;
555 }
556 ret = csio_hw_flash_wait_op(hw, 8, 1);
557 if (ret)
558 goto unlock;
559
560 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
561
562 /* Read the page to verify the write succeeded */
563 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 if (ret)
565 return ret;
566
567 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 csio_err(hw,
569 "failed to correctly write the flash page at %#x\n",
570 addr);
571 return -EINVAL;
572 }
573
574 return 0;
575
576 unlock:
577 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
578 return ret;
579 }
580
581 /*
582 * csio_hw_flash_erase_sectors - erase a range of flash sectors
583 * @hw: the HW module
584 * @start: the first sector to erase
585 * @end: the last sector to erase
586 *
587 * Erases the sectors in the given inclusive range.
588 */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 int ret = 0;
593
594 while (start <= end) {
595
596 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 if (ret != 0)
598 goto out;
599
600 ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 SF_ERASE_SECTOR | (start << 8));
602 if (ret != 0)
603 goto out;
604
605 ret = csio_hw_flash_wait_op(hw, 14, 500);
606 if (ret != 0)
607 goto out;
608
609 start++;
610 }
611 out:
612 if (ret)
613 csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 start, ret);
615 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
616 return 0;
617 }
618
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628
629 /*
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
633 *
634 * Reads the FW version from flash.
635 */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 return csio_hw_read_flash(hw, FLASH_FW_START +
640 offsetof(struct fw_hdr, fw_ver), 1,
641 vers, 0);
642 }
643
644 /*
645 * csio_hw_get_tp_version - read the TP microcode version
646 * @hw: HW module
647 * @vers: where to place the version
648 *
649 * Reads the TP microcode version from flash.
650 */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 return csio_hw_read_flash(hw, FLASH_FW_START +
655 offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 vers, 0);
657 }
658
659 /*
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
664 *
665 * Write the supplied firmware image to the card's serial flash.
666 */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 uint32_t csum;
671 int32_t addr;
672 int ret;
673 uint32_t i;
674 uint8_t first_page[SF_PAGE_SIZE];
675 const __be32 *p = (const __be32 *)fw_data;
676 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 uint32_t sf_sec_size;
678
679 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 csio_err(hw, "Serial Flash data invalid\n");
681 return -EINVAL;
682 }
683
684 if (!size) {
685 csio_err(hw, "FW image has no data\n");
686 return -EINVAL;
687 }
688
689 if (size & 511) {
690 csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 return -EINVAL;
692 }
693
694 if (ntohs(hdr->len512) * 512 != size) {
695 csio_err(hw, "FW image size differs from size in FW header\n");
696 return -EINVAL;
697 }
698
699 if (size > FLASH_FW_MAX_SIZE) {
700 csio_err(hw, "FW image too large, max is %u bytes\n",
701 FLASH_FW_MAX_SIZE);
702 return -EINVAL;
703 }
704
705 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 csum += ntohl(p[i]);
707
708 if (csum != 0xffffffff) {
709 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 return -EINVAL;
711 }
712
713 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
715
716 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718
719 ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 FLASH_FW_START_SEC + i - 1);
721 if (ret) {
722 csio_err(hw, "Flash Erase failed\n");
723 goto out;
724 }
725
726 /*
727 * We write the correct version at the end so the driver can see a bad
728 * version if the FW write fails. Start by writing a copy of the
729 * first page with a bad version.
730 */
731 memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 if (ret)
735 goto out;
736
737 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 FW_IMG_START, FW_IMG_START + size);
739
740 addr = FLASH_FW_START;
741 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 addr += SF_PAGE_SIZE;
743 fw_data += SF_PAGE_SIZE;
744 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 if (ret)
746 goto out;
747 }
748
749 ret = csio_hw_write_flash(hw,
750 FLASH_FW_START +
751 offsetof(struct fw_hdr, fw_ver),
752 sizeof(hdr->fw_ver),
753 (const uint8_t *)&hdr->fw_ver);
754
755 out:
756 if (ret)
757 csio_err(hw, "firmware download failed, error %d\n", ret);
758 return ret;
759 }
760
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 int ret;
765 uint32_t info = 0;
766
767 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 if (!ret)
769 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
771 if (ret != 0)
772 return ret;
773
774 if ((info & 0xff) != 0x20) /* not a Numonix flash */
775 return -EINVAL;
776 info >>= 16; /* log2 of size */
777 if (info >= 0x14 && info < 0x18)
778 hw->params.sf_nsec = 1 << (info - 16);
779 else if (info == 0x18)
780 hw->params.sf_nsec = 64;
781 else
782 return -EINVAL;
783 hw->params.sf_size = 1 << info;
784
785 return 0;
786 }
787
788 /*****************************************************************************/
789 /* HW State machine assists */
790 /*****************************************************************************/
791
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
794 {
795 uint32_t reg;
796 int cnt = 6;
797 int src_pf;
798
799 while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
800 (--cnt != 0))
801 mdelay(100);
802
803 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
804 src_pf = SOURCEPF_G(reg);
805 else
806 src_pf = T6_SOURCEPF_G(reg);
807
808 if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
809 (src_pf >= CSIO_MAX_PFN))) {
810 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
811 return -EIO;
812 }
813
814 hw->pfn = src_pf;
815
816 return 0;
817 }
818
819 /*
820 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
821 * @hw: HW module
822 * @state: Device state
823 *
824 * FW_HELLO_CMD has to be polled for completion.
825 */
826 static int
827 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
828 {
829 struct csio_mb *mbp;
830 int rv = 0;
831 enum fw_retval retval;
832 uint8_t mpfn;
833 char state_str[16];
834 int retries = FW_CMD_HELLO_RETRIES;
835
836 memset(state_str, 0, sizeof(state_str));
837
838 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
839 if (!mbp) {
840 rv = -ENOMEM;
841 CSIO_INC_STATS(hw, n_err_nomem);
842 goto out;
843 }
844
845 retry:
846 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
847 hw->pfn, CSIO_MASTER_MAY, NULL);
848
849 rv = csio_mb_issue(hw, mbp);
850 if (rv) {
851 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
852 goto out_free_mb;
853 }
854
855 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
856 if (retval != FW_SUCCESS) {
857 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
858 rv = -EINVAL;
859 goto out_free_mb;
860 }
861
862 /* Firmware has designated us to be master */
863 if (hw->pfn == mpfn) {
864 hw->flags |= CSIO_HWF_MASTER;
865 } else if (*state == CSIO_DEV_STATE_UNINIT) {
866 /*
867 * If we're not the Master PF then we need to wait around for
868 * the Master PF Driver to finish setting up the adapter.
869 *
870 * Note that we also do this wait if we're a non-Master-capable
871 * PF and there is no current Master PF; a Master PF may show up
872 * momentarily and we wouldn't want to fail pointlessly. (This
873 * can happen when an OS loads lots of different drivers rapidly
874 * at the same time). In this case, the Master PF returned by
875 * the firmware will be PCIE_FW_MASTER_MASK so the test below
876 * will work ...
877 */
878
879 int waiting = FW_CMD_HELLO_TIMEOUT;
880
881 /*
882 * Wait for the firmware to either indicate an error or
883 * initialized state. If we see either of these we bail out
884 * and report the issue to the caller. If we exhaust the
885 * "hello timeout" and we haven't exhausted our retries, try
886 * again. Otherwise bail with a timeout error.
887 */
888 for (;;) {
889 uint32_t pcie_fw;
890
891 spin_unlock_irq(&hw->lock);
892 msleep(50);
893 spin_lock_irq(&hw->lock);
894 waiting -= 50;
895
896 /*
897 * If neither Error nor Initialialized are indicated
898 * by the firmware keep waiting till we exaust our
899 * timeout ... and then retry if we haven't exhausted
900 * our retries ...
901 */
902 pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
903 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
904 if (waiting <= 0) {
905 if (retries-- > 0)
906 goto retry;
907
908 rv = -ETIMEDOUT;
909 break;
910 }
911 continue;
912 }
913
914 /*
915 * We either have an Error or Initialized condition
916 * report errors preferentially.
917 */
918 if (state) {
919 if (pcie_fw & PCIE_FW_ERR_F) {
920 *state = CSIO_DEV_STATE_ERR;
921 rv = -ETIMEDOUT;
922 } else if (pcie_fw & PCIE_FW_INIT_F)
923 *state = CSIO_DEV_STATE_INIT;
924 }
925
926 /*
927 * If we arrived before a Master PF was selected and
928 * there's not a valid Master PF, grab its identity
929 * for our caller.
930 */
931 if (mpfn == PCIE_FW_MASTER_M &&
932 (pcie_fw & PCIE_FW_MASTER_VLD_F))
933 mpfn = PCIE_FW_MASTER_G(pcie_fw);
934 break;
935 }
936 hw->flags &= ~CSIO_HWF_MASTER;
937 }
938
939 switch (*state) {
940 case CSIO_DEV_STATE_UNINIT:
941 strcpy(state_str, "Initializing");
942 break;
943 case CSIO_DEV_STATE_INIT:
944 strcpy(state_str, "Initialized");
945 break;
946 case CSIO_DEV_STATE_ERR:
947 strcpy(state_str, "Error");
948 break;
949 default:
950 strcpy(state_str, "Unknown");
951 break;
952 }
953
954 if (hw->pfn == mpfn)
955 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
956 hw->pfn, state_str);
957 else
958 csio_info(hw,
959 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
960 hw->pfn, mpfn, state_str);
961
962 out_free_mb:
963 mempool_free(mbp, hw->mb_mempool);
964 out:
965 return rv;
966 }
967
968 /*
969 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
970 * @hw: HW module
971 *
972 */
973 static int
974 csio_do_bye(struct csio_hw *hw)
975 {
976 struct csio_mb *mbp;
977 enum fw_retval retval;
978
979 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
980 if (!mbp) {
981 CSIO_INC_STATS(hw, n_err_nomem);
982 return -ENOMEM;
983 }
984
985 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
986
987 if (csio_mb_issue(hw, mbp)) {
988 csio_err(hw, "Issue of BYE command failed\n");
989 mempool_free(mbp, hw->mb_mempool);
990 return -EINVAL;
991 }
992
993 retval = csio_mb_fw_retval(mbp);
994 if (retval != FW_SUCCESS) {
995 mempool_free(mbp, hw->mb_mempool);
996 return -EINVAL;
997 }
998
999 mempool_free(mbp, hw->mb_mempool);
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * csio_do_reset- Perform the device reset.
1006 * @hw: HW module
1007 * @fw_rst: FW reset
1008 *
1009 * If fw_rst is set, issues FW reset mbox cmd otherwise
1010 * does PIO reset.
1011 * Performs reset of the function.
1012 */
1013 static int
1014 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1015 {
1016 struct csio_mb *mbp;
1017 enum fw_retval retval;
1018
1019 if (!fw_rst) {
1020 /* PIO reset */
1021 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1022 mdelay(2000);
1023 return 0;
1024 }
1025
1026 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1027 if (!mbp) {
1028 CSIO_INC_STATS(hw, n_err_nomem);
1029 return -ENOMEM;
1030 }
1031
1032 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1033 PIORSTMODE_F | PIORST_F, 0, NULL);
1034
1035 if (csio_mb_issue(hw, mbp)) {
1036 csio_err(hw, "Issue of RESET command failed.n");
1037 mempool_free(mbp, hw->mb_mempool);
1038 return -EINVAL;
1039 }
1040
1041 retval = csio_mb_fw_retval(mbp);
1042 if (retval != FW_SUCCESS) {
1043 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1044 mempool_free(mbp, hw->mb_mempool);
1045 return -EINVAL;
1046 }
1047
1048 mempool_free(mbp, hw->mb_mempool);
1049
1050 return 0;
1051 }
1052
1053 static int
1054 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1055 {
1056 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1057 uint16_t caps;
1058
1059 caps = ntohs(rsp->fcoecaps);
1060
1061 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1062 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1063 return -EINVAL;
1064 }
1065
1066 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1067 csio_err(hw, "No FCoE Control Offload capability\n");
1068 return -EINVAL;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1076 * @hw: the HW module
1077 * @mbox: mailbox to use for the FW RESET command (if desired)
1078 * @force: force uP into RESET even if FW RESET command fails
1079 *
1080 * Issues a RESET command to firmware (if desired) with a HALT indication
1081 * and then puts the microprocessor into RESET state. The RESET command
1082 * will only be issued if a legitimate mailbox is provided (mbox <=
1083 * PCIE_FW_MASTER_MASK).
1084 *
1085 * This is generally used in order for the host to safely manipulate the
1086 * adapter without fear of conflicting with whatever the firmware might
1087 * be doing. The only way out of this state is to RESTART the firmware
1088 * ...
1089 */
1090 static int
1091 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1092 {
1093 enum fw_retval retval = 0;
1094
1095 /*
1096 * If a legitimate mailbox is provided, issue a RESET command
1097 * with a HALT indication.
1098 */
1099 if (mbox <= PCIE_FW_MASTER_M) {
1100 struct csio_mb *mbp;
1101
1102 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1103 if (!mbp) {
1104 CSIO_INC_STATS(hw, n_err_nomem);
1105 return -ENOMEM;
1106 }
1107
1108 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1109 PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1110 NULL);
1111
1112 if (csio_mb_issue(hw, mbp)) {
1113 csio_err(hw, "Issue of RESET command failed!\n");
1114 mempool_free(mbp, hw->mb_mempool);
1115 return -EINVAL;
1116 }
1117
1118 retval = csio_mb_fw_retval(mbp);
1119 mempool_free(mbp, hw->mb_mempool);
1120 }
1121
1122 /*
1123 * Normally we won't complete the operation if the firmware RESET
1124 * command fails but if our caller insists we'll go ahead and put the
1125 * uP into RESET. This can be useful if the firmware is hung or even
1126 * missing ... We'll have to take the risk of putting the uP into
1127 * RESET without the cooperation of firmware in that case.
1128 *
1129 * We also force the firmware's HALT flag to be on in case we bypassed
1130 * the firmware RESET command above or we're dealing with old firmware
1131 * which doesn't have the HALT capability. This will serve as a flag
1132 * for the incoming firmware to know that it's coming out of a HALT
1133 * rather than a RESET ... if it's new enough to understand that ...
1134 */
1135 if (retval == 0 || force) {
1136 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1137 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1138 PCIE_FW_HALT_F);
1139 }
1140
1141 /*
1142 * And we always return the result of the firmware RESET command
1143 * even when we force the uP into RESET ...
1144 */
1145 return retval ? -EINVAL : 0;
1146 }
1147
1148 /*
1149 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1150 * @hw: the HW module
1151 * @reset: if we want to do a RESET to restart things
1152 *
1153 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1154 * return the previous PF Master remains as the new PF Master and there
1155 * is no need to issue a new HELLO command, etc.
1156 *
1157 * We do this in two ways:
1158 *
1159 * 1. If we're dealing with newer firmware we'll simply want to take
1160 * the chip's microprocessor out of RESET. This will cause the
1161 * firmware to start up from its start vector. And then we'll loop
1162 * until the firmware indicates it's started again (PCIE_FW.HALT
1163 * reset to 0) or we timeout.
1164 *
1165 * 2. If we're dealing with older firmware then we'll need to RESET
1166 * the chip since older firmware won't recognize the PCIE_FW.HALT
1167 * flag and automatically RESET itself on startup.
1168 */
1169 static int
1170 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1171 {
1172 if (reset) {
1173 /*
1174 * Since we're directing the RESET instead of the firmware
1175 * doing it automatically, we need to clear the PCIE_FW.HALT
1176 * bit.
1177 */
1178 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1179
1180 /*
1181 * If we've been given a valid mailbox, first try to get the
1182 * firmware to do the RESET. If that works, great and we can
1183 * return success. Otherwise, if we haven't been given a
1184 * valid mailbox or the RESET command failed, fall back to
1185 * hitting the chip with a hammer.
1186 */
1187 if (mbox <= PCIE_FW_MASTER_M) {
1188 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1189 msleep(100);
1190 if (csio_do_reset(hw, true) == 0)
1191 return 0;
1192 }
1193
1194 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1195 msleep(2000);
1196 } else {
1197 int ms;
1198
1199 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1200 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1201 if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1202 return 0;
1203 msleep(100);
1204 ms += 100;
1205 }
1206 return -ETIMEDOUT;
1207 }
1208 return 0;
1209 }
1210
1211 /*
1212 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1213 * @hw: the HW module
1214 * @mbox: mailbox to use for the FW RESET command (if desired)
1215 * @fw_data: the firmware image to write
1216 * @size: image size
1217 * @force: force upgrade even if firmware doesn't cooperate
1218 *
1219 * Perform all of the steps necessary for upgrading an adapter's
1220 * firmware image. Normally this requires the cooperation of the
1221 * existing firmware in order to halt all existing activities
1222 * but if an invalid mailbox token is passed in we skip that step
1223 * (though we'll still put the adapter microprocessor into RESET in
1224 * that case).
1225 *
1226 * On successful return the new firmware will have been loaded and
1227 * the adapter will have been fully RESET losing all previous setup
1228 * state. On unsuccessful return the adapter may be completely hosed ...
1229 * positive errno indicates that the adapter is ~probably~ intact, a
1230 * negative errno indicates that things are looking bad ...
1231 */
1232 static int
1233 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1234 const u8 *fw_data, uint32_t size, int32_t force)
1235 {
1236 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1237 int reset, ret;
1238
1239 ret = csio_hw_fw_halt(hw, mbox, force);
1240 if (ret != 0 && !force)
1241 return ret;
1242
1243 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1244 if (ret != 0)
1245 return ret;
1246
1247 /*
1248 * Older versions of the firmware don't understand the new
1249 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1250 * restart. So for newly loaded older firmware we'll have to do the
1251 * RESET for it so it starts up on a clean slate. We can tell if
1252 * the newly loaded firmware will handle this right by checking
1253 * its header flags to see if it advertises the capability.
1254 */
1255 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1256 return csio_hw_fw_restart(hw, mbox, reset);
1257 }
1258
1259 /*
1260 * csio_get_device_params - Get device parameters.
1261 * @hw: HW module
1262 *
1263 */
1264 static int
1265 csio_get_device_params(struct csio_hw *hw)
1266 {
1267 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1268 struct csio_mb *mbp;
1269 enum fw_retval retval;
1270 u32 param[6];
1271 int i, j = 0;
1272
1273 /* Initialize portids to -1 */
1274 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1275 hw->pport[i].portid = -1;
1276
1277 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1278 if (!mbp) {
1279 CSIO_INC_STATS(hw, n_err_nomem);
1280 return -ENOMEM;
1281 }
1282
1283 /* Get port vec information. */
1284 param[0] = FW_PARAM_DEV(PORTVEC);
1285
1286 /* Get Core clock. */
1287 param[1] = FW_PARAM_DEV(CCLK);
1288
1289 /* Get EQ id start and end. */
1290 param[2] = FW_PARAM_PFVF(EQ_START);
1291 param[3] = FW_PARAM_PFVF(EQ_END);
1292
1293 /* Get IQ id start and end. */
1294 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1295 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1296
1297 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1298 ARRAY_SIZE(param), param, NULL, false, NULL);
1299 if (csio_mb_issue(hw, mbp)) {
1300 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1301 mempool_free(mbp, hw->mb_mempool);
1302 return -EINVAL;
1303 }
1304
1305 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1306 ARRAY_SIZE(param), param);
1307 if (retval != FW_SUCCESS) {
1308 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1309 retval);
1310 mempool_free(mbp, hw->mb_mempool);
1311 return -EINVAL;
1312 }
1313
1314 /* cache the information. */
1315 hw->port_vec = param[0];
1316 hw->vpd.cclk = param[1];
1317 wrm->fw_eq_start = param[2];
1318 wrm->fw_iq_start = param[4];
1319
1320 /* Using FW configured max iqs & eqs */
1321 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1322 !csio_is_hw_master(hw)) {
1323 hw->cfg_niq = param[5] - param[4] + 1;
1324 hw->cfg_neq = param[3] - param[2] + 1;
1325 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1326 hw->cfg_niq, hw->cfg_neq);
1327 }
1328
1329 hw->port_vec &= csio_port_mask;
1330
1331 hw->num_pports = hweight32(hw->port_vec);
1332
1333 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1334 hw->port_vec, hw->num_pports);
1335
1336 for (i = 0; i < hw->num_pports; i++) {
1337 while ((hw->port_vec & (1 << j)) == 0)
1338 j++;
1339 hw->pport[i].portid = j++;
1340 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1341 }
1342 mempool_free(mbp, hw->mb_mempool);
1343
1344 return 0;
1345 }
1346
1347
1348 /*
1349 * csio_config_device_caps - Get and set device capabilities.
1350 * @hw: HW module
1351 *
1352 */
1353 static int
1354 csio_config_device_caps(struct csio_hw *hw)
1355 {
1356 struct csio_mb *mbp;
1357 enum fw_retval retval;
1358 int rv = -EINVAL;
1359
1360 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1361 if (!mbp) {
1362 CSIO_INC_STATS(hw, n_err_nomem);
1363 return -ENOMEM;
1364 }
1365
1366 /* Get device capabilities */
1367 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1368
1369 if (csio_mb_issue(hw, mbp)) {
1370 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1371 goto out;
1372 }
1373
1374 retval = csio_mb_fw_retval(mbp);
1375 if (retval != FW_SUCCESS) {
1376 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1377 goto out;
1378 }
1379
1380 /* Validate device capabilities */
1381 rv = csio_hw_validate_caps(hw, mbp);
1382 if (rv != 0)
1383 goto out;
1384
1385 /* Don't config device capabilities if already configured */
1386 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1387 rv = 0;
1388 goto out;
1389 }
1390
1391 /* Write back desired device capabilities */
1392 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1393 false, true, NULL);
1394
1395 if (csio_mb_issue(hw, mbp)) {
1396 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1397 goto out;
1398 }
1399
1400 retval = csio_mb_fw_retval(mbp);
1401 if (retval != FW_SUCCESS) {
1402 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1403 goto out;
1404 }
1405
1406 rv = 0;
1407 out:
1408 mempool_free(mbp, hw->mb_mempool);
1409 return rv;
1410 }
1411
1412 /*
1413 * csio_enable_ports - Bring up all available ports.
1414 * @hw: HW module.
1415 *
1416 */
1417 static int
1418 csio_enable_ports(struct csio_hw *hw)
1419 {
1420 struct csio_mb *mbp;
1421 enum fw_retval retval;
1422 uint8_t portid;
1423 int i;
1424
1425 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1426 if (!mbp) {
1427 CSIO_INC_STATS(hw, n_err_nomem);
1428 return -ENOMEM;
1429 }
1430
1431 for (i = 0; i < hw->num_pports; i++) {
1432 portid = hw->pport[i].portid;
1433
1434 /* Read PORT information */
1435 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1436 false, 0, 0, NULL);
1437
1438 if (csio_mb_issue(hw, mbp)) {
1439 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1440 portid);
1441 mempool_free(mbp, hw->mb_mempool);
1442 return -EINVAL;
1443 }
1444
1445 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1446 &hw->pport[i].pcap);
1447 if (retval != FW_SUCCESS) {
1448 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1449 portid, retval);
1450 mempool_free(mbp, hw->mb_mempool);
1451 return -EINVAL;
1452 }
1453
1454 /* Write back PORT information */
1455 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1456 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1457
1458 if (csio_mb_issue(hw, mbp)) {
1459 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1460 portid);
1461 mempool_free(mbp, hw->mb_mempool);
1462 return -EINVAL;
1463 }
1464
1465 retval = csio_mb_fw_retval(mbp);
1466 if (retval != FW_SUCCESS) {
1467 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1468 portid, retval);
1469 mempool_free(mbp, hw->mb_mempool);
1470 return -EINVAL;
1471 }
1472
1473 } /* For all ports */
1474
1475 mempool_free(mbp, hw->mb_mempool);
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1482 * @hw: HW module
1483 * Issued with lock held.
1484 */
1485 static int
1486 csio_get_fcoe_resinfo(struct csio_hw *hw)
1487 {
1488 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1489 struct fw_fcoe_res_info_cmd *rsp;
1490 struct csio_mb *mbp;
1491 enum fw_retval retval;
1492
1493 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1494 if (!mbp) {
1495 CSIO_INC_STATS(hw, n_err_nomem);
1496 return -ENOMEM;
1497 }
1498
1499 /* Get FCoE FW resource information */
1500 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1501
1502 if (csio_mb_issue(hw, mbp)) {
1503 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1504 mempool_free(mbp, hw->mb_mempool);
1505 return -EINVAL;
1506 }
1507
1508 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1509 retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1510 if (retval != FW_SUCCESS) {
1511 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1512 retval);
1513 mempool_free(mbp, hw->mb_mempool);
1514 return -EINVAL;
1515 }
1516
1517 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1518 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1519 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1520 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1521 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1522 res_info->max_ssns = ntohl(rsp->max_ssns);
1523 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1524 res_info->used_ssns = ntohl(rsp->used_ssns);
1525 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1526 res_info->max_vnps = ntohl(rsp->max_vnps);
1527 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1528 res_info->used_vnps = ntohl(rsp->used_vnps);
1529
1530 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1531 res_info->max_xchgs);
1532 mempool_free(mbp, hw->mb_mempool);
1533
1534 return 0;
1535 }
1536
1537 static int
1538 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1539 {
1540 struct csio_mb *mbp;
1541 enum fw_retval retval;
1542 u32 _param[1];
1543
1544 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1545 if (!mbp) {
1546 CSIO_INC_STATS(hw, n_err_nomem);
1547 return -ENOMEM;
1548 }
1549
1550 /*
1551 * Find out whether we're dealing with a version of
1552 * the firmware which has configuration file support.
1553 */
1554 _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1555 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1556
1557 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1558 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1559 if (csio_mb_issue(hw, mbp)) {
1560 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1561 mempool_free(mbp, hw->mb_mempool);
1562 return -EINVAL;
1563 }
1564
1565 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1566 ARRAY_SIZE(_param), _param);
1567 if (retval != FW_SUCCESS) {
1568 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1569 retval);
1570 mempool_free(mbp, hw->mb_mempool);
1571 return -EINVAL;
1572 }
1573
1574 mempool_free(mbp, hw->mb_mempool);
1575 *param = _param[0];
1576
1577 return 0;
1578 }
1579
1580 static int
1581 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1582 {
1583 int ret = 0;
1584 const struct firmware *cf;
1585 struct pci_dev *pci_dev = hw->pdev;
1586 struct device *dev = &pci_dev->dev;
1587 unsigned int mtype = 0, maddr = 0;
1588 uint32_t *cfg_data;
1589 int value_to_add = 0;
1590 const char *fw_cfg_file;
1591
1592 if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1593 fw_cfg_file = FW_CFG_NAME_T5;
1594 else
1595 fw_cfg_file = FW_CFG_NAME_T6;
1596
1597 if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1598 csio_err(hw, "could not find config file %s, err: %d\n",
1599 fw_cfg_file, ret);
1600 return -ENOENT;
1601 }
1602
1603 if (cf->size%4 != 0)
1604 value_to_add = 4 - (cf->size % 4);
1605
1606 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1607 if (cfg_data == NULL) {
1608 ret = -ENOMEM;
1609 goto leave;
1610 }
1611
1612 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1613 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1614 ret = -EINVAL;
1615 goto leave;
1616 }
1617
1618 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1619 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1620
1621 ret = csio_memory_write(hw, mtype, maddr,
1622 cf->size + value_to_add, cfg_data);
1623
1624 if ((ret == 0) && (value_to_add != 0)) {
1625 union {
1626 u32 word;
1627 char buf[4];
1628 } last;
1629 size_t size = cf->size & ~0x3;
1630 int i;
1631
1632 last.word = cfg_data[size >> 2];
1633 for (i = value_to_add; i < 4; i++)
1634 last.buf[i] = 0;
1635 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1636 }
1637 if (ret == 0) {
1638 csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
1639 snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
1640 }
1641
1642 leave:
1643 kfree(cfg_data);
1644 release_firmware(cf);
1645 return ret;
1646 }
1647
1648 /*
1649 * HW initialization: contact FW, obtain config, perform basic init.
1650 *
1651 * If the firmware we're dealing with has Configuration File support, then
1652 * we use that to perform all configuration -- either using the configuration
1653 * file stored in flash on the adapter or using a filesystem-local file
1654 * if available.
1655 *
1656 * If we don't have configuration file support in the firmware, then we'll
1657 * have to set things up the old fashioned way with hard-coded register
1658 * writes and firmware commands ...
1659 */
1660
1661 /*
1662 * Attempt to initialize the HW via a Firmware Configuration File.
1663 */
1664 static int
1665 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1666 {
1667 struct csio_mb *mbp = NULL;
1668 struct fw_caps_config_cmd *caps_cmd;
1669 unsigned int mtype, maddr;
1670 int rv = -EINVAL;
1671 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1672 char path[64];
1673 char *config_name = NULL;
1674
1675 /*
1676 * Reset device if necessary
1677 */
1678 if (reset) {
1679 rv = csio_do_reset(hw, true);
1680 if (rv != 0)
1681 goto bye;
1682 }
1683
1684 /*
1685 * If we have a configuration file in host ,
1686 * then use that. Otherwise, use the configuration file stored
1687 * in the HW flash ...
1688 */
1689 spin_unlock_irq(&hw->lock);
1690 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1691 spin_lock_irq(&hw->lock);
1692 if (rv != 0) {
1693 /*
1694 * config file was not found. Use default
1695 * config file from flash.
1696 */
1697 config_name = "On FLASH";
1698 mtype = FW_MEMTYPE_CF_FLASH;
1699 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1700 } else {
1701 config_name = path;
1702 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1703 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1704 }
1705
1706 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1707 if (!mbp) {
1708 CSIO_INC_STATS(hw, n_err_nomem);
1709 return -ENOMEM;
1710 }
1711 /*
1712 * Tell the firmware to process the indicated Configuration File.
1713 * If there are no errors and the caller has provided return value
1714 * pointers for the [fini] section version, checksum and computed
1715 * checksum, pass those back to the caller.
1716 */
1717 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1718 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1719 caps_cmd->op_to_write =
1720 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1721 FW_CMD_REQUEST_F |
1722 FW_CMD_READ_F);
1723 caps_cmd->cfvalid_to_len16 =
1724 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1725 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1726 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1727 FW_LEN16(*caps_cmd));
1728
1729 if (csio_mb_issue(hw, mbp)) {
1730 rv = -EINVAL;
1731 goto bye;
1732 }
1733
1734 rv = csio_mb_fw_retval(mbp);
1735 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1736 * Configuration File in FLASH), our last gasp effort is to use the
1737 * Firmware Configuration File which is embedded in the
1738 * firmware. A very few early versions of the firmware didn't
1739 * have one embedded but we can ignore those.
1740 */
1741 if (rv == ENOENT) {
1742 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1743 caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1744 FW_CMD_REQUEST_F |
1745 FW_CMD_READ_F);
1746 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1747
1748 if (csio_mb_issue(hw, mbp)) {
1749 rv = -EINVAL;
1750 goto bye;
1751 }
1752
1753 rv = csio_mb_fw_retval(mbp);
1754 config_name = "Firmware Default";
1755 }
1756 if (rv != FW_SUCCESS)
1757 goto bye;
1758
1759 finiver = ntohl(caps_cmd->finiver);
1760 finicsum = ntohl(caps_cmd->finicsum);
1761 cfcsum = ntohl(caps_cmd->cfcsum);
1762
1763 /*
1764 * And now tell the firmware to use the configuration we just loaded.
1765 */
1766 caps_cmd->op_to_write =
1767 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1768 FW_CMD_REQUEST_F |
1769 FW_CMD_WRITE_F);
1770 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1771
1772 if (csio_mb_issue(hw, mbp)) {
1773 rv = -EINVAL;
1774 goto bye;
1775 }
1776
1777 rv = csio_mb_fw_retval(mbp);
1778 if (rv != FW_SUCCESS) {
1779 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1780 goto bye;
1781 }
1782
1783 if (finicsum != cfcsum) {
1784 csio_warn(hw,
1785 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1786 finicsum, cfcsum);
1787 }
1788
1789 /* Validate device capabilities */
1790 rv = csio_hw_validate_caps(hw, mbp);
1791 if (rv != 0)
1792 goto bye;
1793
1794 mempool_free(mbp, hw->mb_mempool);
1795 mbp = NULL;
1796
1797 /*
1798 * Note that we're operating with parameters
1799 * not supplied by the driver, rather than from hard-wired
1800 * initialization constants buried in the driver.
1801 */
1802 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1803
1804 /* device parameters */
1805 rv = csio_get_device_params(hw);
1806 if (rv != 0)
1807 goto bye;
1808
1809 /* Configure SGE */
1810 csio_wr_sge_init(hw);
1811
1812 /*
1813 * And finally tell the firmware to initialize itself using the
1814 * parameters from the Configuration File.
1815 */
1816 /* Post event to notify completion of configuration */
1817 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1818
1819 csio_info(hw, "Successfully configure using Firmware "
1820 "Configuration File %s, version %#x, computed checksum %#x\n",
1821 config_name, finiver, cfcsum);
1822 return 0;
1823
1824 /*
1825 * Something bad happened. Return the error ...
1826 */
1827 bye:
1828 if (mbp)
1829 mempool_free(mbp, hw->mb_mempool);
1830 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1831 csio_warn(hw, "Configuration file error %d\n", rv);
1832 return rv;
1833 }
1834
1835 /* Is the given firmware API compatible with the one the driver was compiled
1836 * with?
1837 */
1838 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1839 {
1840
1841 /* short circuit if it's the exact same firmware version */
1842 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1843 return 1;
1844
1845 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1846 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1847 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1848 return 1;
1849 #undef SAME_INTF
1850
1851 return 0;
1852 }
1853
1854 /* The firmware in the filesystem is usable, but should it be installed?
1855 * This routine explains itself in detail if it indicates the filesystem
1856 * firmware should be installed.
1857 */
1858 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1859 int k, int c)
1860 {
1861 const char *reason;
1862
1863 if (!card_fw_usable) {
1864 reason = "incompatible or unusable";
1865 goto install;
1866 }
1867
1868 if (k > c) {
1869 reason = "older than the version supported with this driver";
1870 goto install;
1871 }
1872
1873 return 0;
1874
1875 install:
1876 csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1877 "installing firmware %u.%u.%u.%u on card.\n",
1878 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1879 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1880 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1881 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1882
1883 return 1;
1884 }
1885
1886 static struct fw_info fw_info_array[] = {
1887 {
1888 .chip = CHELSIO_T5,
1889 .fs_name = FW_CFG_NAME_T5,
1890 .fw_mod_name = FW_FNAME_T5,
1891 .fw_hdr = {
1892 .chip = FW_HDR_CHIP_T5,
1893 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1894 .intfver_nic = FW_INTFVER(T5, NIC),
1895 .intfver_vnic = FW_INTFVER(T5, VNIC),
1896 .intfver_ri = FW_INTFVER(T5, RI),
1897 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
1898 .intfver_fcoe = FW_INTFVER(T5, FCOE),
1899 },
1900 }, {
1901 .chip = CHELSIO_T6,
1902 .fs_name = FW_CFG_NAME_T6,
1903 .fw_mod_name = FW_FNAME_T6,
1904 .fw_hdr = {
1905 .chip = FW_HDR_CHIP_T6,
1906 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
1907 .intfver_nic = FW_INTFVER(T6, NIC),
1908 .intfver_vnic = FW_INTFVER(T6, VNIC),
1909 .intfver_ri = FW_INTFVER(T6, RI),
1910 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
1911 .intfver_fcoe = FW_INTFVER(T6, FCOE),
1912 },
1913 }
1914 };
1915
1916 static struct fw_info *find_fw_info(int chip)
1917 {
1918 int i;
1919
1920 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1921 if (fw_info_array[i].chip == chip)
1922 return &fw_info_array[i];
1923 }
1924 return NULL;
1925 }
1926
1927 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1928 const u8 *fw_data, unsigned int fw_size,
1929 struct fw_hdr *card_fw, enum csio_dev_state state,
1930 int *reset)
1931 {
1932 int ret, card_fw_usable, fs_fw_usable;
1933 const struct fw_hdr *fs_fw;
1934 const struct fw_hdr *drv_fw;
1935
1936 drv_fw = &fw_info->fw_hdr;
1937
1938 /* Read the header of the firmware on the card */
1939 ret = csio_hw_read_flash(hw, FLASH_FW_START,
1940 sizeof(*card_fw) / sizeof(uint32_t),
1941 (uint32_t *)card_fw, 1);
1942 if (ret == 0) {
1943 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1944 } else {
1945 csio_err(hw,
1946 "Unable to read card's firmware header: %d\n", ret);
1947 card_fw_usable = 0;
1948 }
1949
1950 if (fw_data != NULL) {
1951 fs_fw = (const void *)fw_data;
1952 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1953 } else {
1954 fs_fw = NULL;
1955 fs_fw_usable = 0;
1956 }
1957
1958 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1959 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1960 /* Common case: the firmware on the card is an exact match and
1961 * the filesystem one is an exact match too, or the filesystem
1962 * one is absent/incompatible.
1963 */
1964 } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1965 csio_should_install_fs_fw(hw, card_fw_usable,
1966 be32_to_cpu(fs_fw->fw_ver),
1967 be32_to_cpu(card_fw->fw_ver))) {
1968 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1969 fw_size, 0);
1970 if (ret != 0) {
1971 csio_err(hw,
1972 "failed to install firmware: %d\n", ret);
1973 goto bye;
1974 }
1975
1976 /* Installed successfully, update the cached header too. */
1977 memcpy(card_fw, fs_fw, sizeof(*card_fw));
1978 card_fw_usable = 1;
1979 *reset = 0; /* already reset as part of load_fw */
1980 }
1981
1982 if (!card_fw_usable) {
1983 uint32_t d, c, k;
1984
1985 d = be32_to_cpu(drv_fw->fw_ver);
1986 c = be32_to_cpu(card_fw->fw_ver);
1987 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1988
1989 csio_err(hw, "Cannot find a usable firmware: "
1990 "chip state %d, "
1991 "driver compiled with %d.%d.%d.%d, "
1992 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1993 state,
1994 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1995 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1996 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1997 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1998 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1999 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2000 ret = EINVAL;
2001 goto bye;
2002 }
2003
2004 /* We're using whatever's on the card and it's known to be good. */
2005 hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2006 hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2007
2008 bye:
2009 return ret;
2010 }
2011
2012 /*
2013 * Returns -EINVAL if attempts to flash the firmware failed
2014 * else returns 0,
2015 * if flashing was not attempted because the card had the
2016 * latest firmware ECANCELED is returned
2017 */
2018 static int
2019 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2020 {
2021 int ret = -ECANCELED;
2022 const struct firmware *fw;
2023 struct fw_info *fw_info;
2024 struct fw_hdr *card_fw;
2025 struct pci_dev *pci_dev = hw->pdev;
2026 struct device *dev = &pci_dev->dev ;
2027 const u8 *fw_data = NULL;
2028 unsigned int fw_size = 0;
2029 const char *fw_bin_file;
2030
2031 /* This is the firmware whose headers the driver was compiled
2032 * against
2033 */
2034 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2035 if (fw_info == NULL) {
2036 csio_err(hw,
2037 "unable to get firmware info for chip %d.\n",
2038 CHELSIO_CHIP_VERSION(hw->chip_id));
2039 return -EINVAL;
2040 }
2041
2042 if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2043 fw_bin_file = FW_FNAME_T5;
2044 else
2045 fw_bin_file = FW_FNAME_T6;
2046
2047 if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2048 csio_err(hw, "could not find firmware image %s, err: %d\n",
2049 fw_bin_file, ret);
2050 } else {
2051 fw_data = fw->data;
2052 fw_size = fw->size;
2053 }
2054
2055 /* allocate memory to read the header of the firmware on the
2056 * card
2057 */
2058 card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2059
2060 /* upgrade FW logic */
2061 ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2062 hw->fw_state, reset);
2063
2064 /* Cleaning up */
2065 if (fw != NULL)
2066 release_firmware(fw);
2067 kfree(card_fw);
2068 return ret;
2069 }
2070
2071 static int csio_hw_check_fwver(struct csio_hw *hw)
2072 {
2073 if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2074 (hw->fwrev < CSIO_MIN_T6_FW)) {
2075 csio_hw_print_fw_version(hw, "T6 unsupported fw");
2076 return -1;
2077 }
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * csio_hw_configure - Configure HW
2084 * @hw - HW module
2085 *
2086 */
2087 static void
2088 csio_hw_configure(struct csio_hw *hw)
2089 {
2090 int reset = 1;
2091 int rv;
2092 u32 param[1];
2093
2094 rv = csio_hw_dev_ready(hw);
2095 if (rv != 0) {
2096 CSIO_INC_STATS(hw, n_err_fatal);
2097 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2098 goto out;
2099 }
2100
2101 /* HW version */
2102 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2103
2104 /* Needed for FW download */
2105 rv = csio_hw_get_flash_params(hw);
2106 if (rv != 0) {
2107 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2108 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2109 goto out;
2110 }
2111
2112 /* Set PCIe completion timeout to 4 seconds */
2113 if (pci_is_pcie(hw->pdev))
2114 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2115 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2116
2117 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2118
2119 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2120 if (rv != 0)
2121 goto out;
2122
2123 csio_hw_print_fw_version(hw, "Firmware revision");
2124
2125 rv = csio_do_hello(hw, &hw->fw_state);
2126 if (rv != 0) {
2127 CSIO_INC_STATS(hw, n_err_fatal);
2128 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2129 goto out;
2130 }
2131
2132 /* Read vpd */
2133 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2134 if (rv != 0)
2135 goto out;
2136
2137 csio_hw_get_fw_version(hw, &hw->fwrev);
2138 csio_hw_get_tp_version(hw, &hw->tp_vers);
2139 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2140
2141 /* Do firmware update */
2142 spin_unlock_irq(&hw->lock);
2143 rv = csio_hw_flash_fw(hw, &reset);
2144 spin_lock_irq(&hw->lock);
2145
2146 if (rv != 0)
2147 goto out;
2148
2149 rv = csio_hw_check_fwver(hw);
2150 if (rv < 0)
2151 goto out;
2152
2153 /* If the firmware doesn't support Configuration Files,
2154 * return an error.
2155 */
2156 rv = csio_hw_check_fwconfig(hw, param);
2157 if (rv != 0) {
2158 csio_info(hw, "Firmware doesn't support "
2159 "Firmware Configuration files\n");
2160 goto out;
2161 }
2162
2163 /* The firmware provides us with a memory buffer where we can
2164 * load a Configuration File from the host if we want to
2165 * override the Configuration File in flash.
2166 */
2167 rv = csio_hw_use_fwconfig(hw, reset, param);
2168 if (rv == -ENOENT) {
2169 csio_info(hw, "Could not initialize "
2170 "adapter, error%d\n", rv);
2171 goto out;
2172 }
2173 if (rv != 0) {
2174 csio_info(hw, "Could not initialize "
2175 "adapter, error%d\n", rv);
2176 goto out;
2177 }
2178
2179 } else {
2180 rv = csio_hw_check_fwver(hw);
2181 if (rv < 0)
2182 goto out;
2183
2184 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2185
2186 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2187
2188 /* device parameters */
2189 rv = csio_get_device_params(hw);
2190 if (rv != 0)
2191 goto out;
2192
2193 /* Get device capabilities */
2194 rv = csio_config_device_caps(hw);
2195 if (rv != 0)
2196 goto out;
2197
2198 /* Configure SGE */
2199 csio_wr_sge_init(hw);
2200
2201 /* Post event to notify completion of configuration */
2202 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2203 goto out;
2204 }
2205 } /* if not master */
2206
2207 out:
2208 return;
2209 }
2210
2211 /*
2212 * csio_hw_initialize - Initialize HW
2213 * @hw - HW module
2214 *
2215 */
2216 static void
2217 csio_hw_initialize(struct csio_hw *hw)
2218 {
2219 struct csio_mb *mbp;
2220 enum fw_retval retval;
2221 int rv;
2222 int i;
2223
2224 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2225 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2226 if (!mbp)
2227 goto out;
2228
2229 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2230
2231 if (csio_mb_issue(hw, mbp)) {
2232 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2233 goto free_and_out;
2234 }
2235
2236 retval = csio_mb_fw_retval(mbp);
2237 if (retval != FW_SUCCESS) {
2238 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2239 retval);
2240 goto free_and_out;
2241 }
2242
2243 mempool_free(mbp, hw->mb_mempool);
2244 }
2245
2246 rv = csio_get_fcoe_resinfo(hw);
2247 if (rv != 0) {
2248 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2249 goto out;
2250 }
2251
2252 spin_unlock_irq(&hw->lock);
2253 rv = csio_config_queues(hw);
2254 spin_lock_irq(&hw->lock);
2255
2256 if (rv != 0) {
2257 csio_err(hw, "Config of queues failed!: %d\n", rv);
2258 goto out;
2259 }
2260
2261 for (i = 0; i < hw->num_pports; i++)
2262 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2263
2264 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2265 rv = csio_enable_ports(hw);
2266 if (rv != 0) {
2267 csio_err(hw, "Failed to enable ports: %d\n", rv);
2268 goto out;
2269 }
2270 }
2271
2272 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2273 return;
2274
2275 free_and_out:
2276 mempool_free(mbp, hw->mb_mempool);
2277 out:
2278 return;
2279 }
2280
2281 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2282
2283 /*
2284 * csio_hw_intr_enable - Enable HW interrupts
2285 * @hw: Pointer to HW module.
2286 *
2287 * Enable interrupts in HW registers.
2288 */
2289 static void
2290 csio_hw_intr_enable(struct csio_hw *hw)
2291 {
2292 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2293 u32 pf = 0;
2294 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2295
2296 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2297 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2298 else
2299 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2300
2301 /*
2302 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2303 * by FW, so do nothing for INTX.
2304 */
2305 if (hw->intr_mode == CSIO_IM_MSIX)
2306 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2307 AIVEC_V(AIVEC_M), vec);
2308 else if (hw->intr_mode == CSIO_IM_MSI)
2309 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2310 AIVEC_V(AIVEC_M), 0);
2311
2312 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2313
2314 /* Turn on MB interrupts - this will internally flush PIO as well */
2315 csio_mb_intr_enable(hw);
2316
2317 /* These are common registers - only a master can modify them */
2318 if (csio_is_hw_master(hw)) {
2319 /*
2320 * Disable the Serial FLASH interrupt, if enabled!
2321 */
2322 pl &= (~SF_F);
2323 csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2324
2325 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2326 EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2327 ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2328 ERR_DATA_CPL_ON_HIGH_QID1_F |
2329 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2330 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2331 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2332 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2333 SGE_INT_ENABLE3_A);
2334 csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2335 }
2336
2337 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2338
2339 }
2340
2341 /*
2342 * csio_hw_intr_disable - Disable HW interrupts
2343 * @hw: Pointer to HW module.
2344 *
2345 * Turn off Mailbox and PCI_PF_CFG interrupts.
2346 */
2347 void
2348 csio_hw_intr_disable(struct csio_hw *hw)
2349 {
2350 u32 pf = 0;
2351
2352 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2353 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2354 else
2355 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2356
2357 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2358 return;
2359
2360 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2361
2362 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2363 if (csio_is_hw_master(hw))
2364 csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2365
2366 /* Turn off MB interrupts */
2367 csio_mb_intr_disable(hw);
2368
2369 }
2370
2371 void
2372 csio_hw_fatal_err(struct csio_hw *hw)
2373 {
2374 csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2375 csio_hw_intr_disable(hw);
2376
2377 /* Do not reset HW, we may need FW state for debugging */
2378 csio_fatal(hw, "HW Fatal error encountered!\n");
2379 }
2380
2381 /*****************************************************************************/
2382 /* START: HW SM */
2383 /*****************************************************************************/
2384 /*
2385 * csio_hws_uninit - Uninit state
2386 * @hw - HW module
2387 * @evt - Event
2388 *
2389 */
2390 static void
2391 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2392 {
2393 hw->prev_evt = hw->cur_evt;
2394 hw->cur_evt = evt;
2395 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2396
2397 switch (evt) {
2398 case CSIO_HWE_CFG:
2399 csio_set_state(&hw->sm, csio_hws_configuring);
2400 csio_hw_configure(hw);
2401 break;
2402
2403 default:
2404 CSIO_INC_STATS(hw, n_evt_unexp);
2405 break;
2406 }
2407 }
2408
2409 /*
2410 * csio_hws_configuring - Configuring state
2411 * @hw - HW module
2412 * @evt - Event
2413 *
2414 */
2415 static void
2416 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2417 {
2418 hw->prev_evt = hw->cur_evt;
2419 hw->cur_evt = evt;
2420 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2421
2422 switch (evt) {
2423 case CSIO_HWE_INIT:
2424 csio_set_state(&hw->sm, csio_hws_initializing);
2425 csio_hw_initialize(hw);
2426 break;
2427
2428 case CSIO_HWE_INIT_DONE:
2429 csio_set_state(&hw->sm, csio_hws_ready);
2430 /* Fan out event to all lnode SMs */
2431 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2432 break;
2433
2434 case CSIO_HWE_FATAL:
2435 csio_set_state(&hw->sm, csio_hws_uninit);
2436 break;
2437
2438 case CSIO_HWE_PCI_REMOVE:
2439 csio_do_bye(hw);
2440 break;
2441 default:
2442 CSIO_INC_STATS(hw, n_evt_unexp);
2443 break;
2444 }
2445 }
2446
2447 /*
2448 * csio_hws_initializing - Initialiazing state
2449 * @hw - HW module
2450 * @evt - Event
2451 *
2452 */
2453 static void
2454 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2455 {
2456 hw->prev_evt = hw->cur_evt;
2457 hw->cur_evt = evt;
2458 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2459
2460 switch (evt) {
2461 case CSIO_HWE_INIT_DONE:
2462 csio_set_state(&hw->sm, csio_hws_ready);
2463
2464 /* Fan out event to all lnode SMs */
2465 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2466
2467 /* Enable interrupts */
2468 csio_hw_intr_enable(hw);
2469 break;
2470
2471 case CSIO_HWE_FATAL:
2472 csio_set_state(&hw->sm, csio_hws_uninit);
2473 break;
2474
2475 case CSIO_HWE_PCI_REMOVE:
2476 csio_do_bye(hw);
2477 break;
2478
2479 default:
2480 CSIO_INC_STATS(hw, n_evt_unexp);
2481 break;
2482 }
2483 }
2484
2485 /*
2486 * csio_hws_ready - Ready state
2487 * @hw - HW module
2488 * @evt - Event
2489 *
2490 */
2491 static void
2492 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2493 {
2494 /* Remember the event */
2495 hw->evtflag = evt;
2496
2497 hw->prev_evt = hw->cur_evt;
2498 hw->cur_evt = evt;
2499 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2500
2501 switch (evt) {
2502 case CSIO_HWE_HBA_RESET:
2503 case CSIO_HWE_FW_DLOAD:
2504 case CSIO_HWE_SUSPEND:
2505 case CSIO_HWE_PCI_REMOVE:
2506 case CSIO_HWE_PCIERR_DETECTED:
2507 csio_set_state(&hw->sm, csio_hws_quiescing);
2508 /* cleanup all outstanding cmds */
2509 if (evt == CSIO_HWE_HBA_RESET ||
2510 evt == CSIO_HWE_PCIERR_DETECTED)
2511 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2512 else
2513 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2514
2515 csio_hw_intr_disable(hw);
2516 csio_hw_mbm_cleanup(hw);
2517 csio_evtq_stop(hw);
2518 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2519 csio_evtq_flush(hw);
2520 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2521 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2522 break;
2523
2524 case CSIO_HWE_FATAL:
2525 csio_set_state(&hw->sm, csio_hws_uninit);
2526 break;
2527
2528 default:
2529 CSIO_INC_STATS(hw, n_evt_unexp);
2530 break;
2531 }
2532 }
2533
2534 /*
2535 * csio_hws_quiescing - Quiescing state
2536 * @hw - HW module
2537 * @evt - Event
2538 *
2539 */
2540 static void
2541 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2542 {
2543 hw->prev_evt = hw->cur_evt;
2544 hw->cur_evt = evt;
2545 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2546
2547 switch (evt) {
2548 case CSIO_HWE_QUIESCED:
2549 switch (hw->evtflag) {
2550 case CSIO_HWE_FW_DLOAD:
2551 csio_set_state(&hw->sm, csio_hws_resetting);
2552 /* Download firmware */
2553 /* Fall through */
2554
2555 case CSIO_HWE_HBA_RESET:
2556 csio_set_state(&hw->sm, csio_hws_resetting);
2557 /* Start reset of the HBA */
2558 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2559 csio_wr_destroy_queues(hw, false);
2560 csio_do_reset(hw, false);
2561 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2562 break;
2563
2564 case CSIO_HWE_PCI_REMOVE:
2565 csio_set_state(&hw->sm, csio_hws_removing);
2566 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2567 csio_wr_destroy_queues(hw, true);
2568 /* Now send the bye command */
2569 csio_do_bye(hw);
2570 break;
2571
2572 case CSIO_HWE_SUSPEND:
2573 csio_set_state(&hw->sm, csio_hws_quiesced);
2574 break;
2575
2576 case CSIO_HWE_PCIERR_DETECTED:
2577 csio_set_state(&hw->sm, csio_hws_pcierr);
2578 csio_wr_destroy_queues(hw, false);
2579 break;
2580
2581 default:
2582 CSIO_INC_STATS(hw, n_evt_unexp);
2583 break;
2584
2585 }
2586 break;
2587
2588 default:
2589 CSIO_INC_STATS(hw, n_evt_unexp);
2590 break;
2591 }
2592 }
2593
2594 /*
2595 * csio_hws_quiesced - Quiesced state
2596 * @hw - HW module
2597 * @evt - Event
2598 *
2599 */
2600 static void
2601 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2602 {
2603 hw->prev_evt = hw->cur_evt;
2604 hw->cur_evt = evt;
2605 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2606
2607 switch (evt) {
2608 case CSIO_HWE_RESUME:
2609 csio_set_state(&hw->sm, csio_hws_configuring);
2610 csio_hw_configure(hw);
2611 break;
2612
2613 default:
2614 CSIO_INC_STATS(hw, n_evt_unexp);
2615 break;
2616 }
2617 }
2618
2619 /*
2620 * csio_hws_resetting - HW Resetting state
2621 * @hw - HW module
2622 * @evt - Event
2623 *
2624 */
2625 static void
2626 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2627 {
2628 hw->prev_evt = hw->cur_evt;
2629 hw->cur_evt = evt;
2630 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2631
2632 switch (evt) {
2633 case CSIO_HWE_HBA_RESET_DONE:
2634 csio_evtq_start(hw);
2635 csio_set_state(&hw->sm, csio_hws_configuring);
2636 csio_hw_configure(hw);
2637 break;
2638
2639 default:
2640 CSIO_INC_STATS(hw, n_evt_unexp);
2641 break;
2642 }
2643 }
2644
2645 /*
2646 * csio_hws_removing - PCI Hotplug removing state
2647 * @hw - HW module
2648 * @evt - Event
2649 *
2650 */
2651 static void
2652 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2653 {
2654 hw->prev_evt = hw->cur_evt;
2655 hw->cur_evt = evt;
2656 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2657
2658 switch (evt) {
2659 case CSIO_HWE_HBA_RESET:
2660 if (!csio_is_hw_master(hw))
2661 break;
2662 /*
2663 * The BYE should have alerady been issued, so we cant
2664 * use the mailbox interface. Hence we use the PL_RST
2665 * register directly.
2666 */
2667 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2668 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2669 mdelay(2000);
2670 break;
2671
2672 /* Should never receive any new events */
2673 default:
2674 CSIO_INC_STATS(hw, n_evt_unexp);
2675 break;
2676
2677 }
2678 }
2679
2680 /*
2681 * csio_hws_pcierr - PCI Error state
2682 * @hw - HW module
2683 * @evt - Event
2684 *
2685 */
2686 static void
2687 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2688 {
2689 hw->prev_evt = hw->cur_evt;
2690 hw->cur_evt = evt;
2691 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2692
2693 switch (evt) {
2694 case CSIO_HWE_PCIERR_SLOT_RESET:
2695 csio_evtq_start(hw);
2696 csio_set_state(&hw->sm, csio_hws_configuring);
2697 csio_hw_configure(hw);
2698 break;
2699
2700 default:
2701 CSIO_INC_STATS(hw, n_evt_unexp);
2702 break;
2703 }
2704 }
2705
2706 /*****************************************************************************/
2707 /* END: HW SM */
2708 /*****************************************************************************/
2709
2710 /*
2711 * csio_handle_intr_status - table driven interrupt handler
2712 * @hw: HW instance
2713 * @reg: the interrupt status register to process
2714 * @acts: table of interrupt actions
2715 *
2716 * A table driven interrupt handler that applies a set of masks to an
2717 * interrupt status word and performs the corresponding actions if the
2718 * interrupts described by the mask have occured. The actions include
2719 * optionally emitting a warning or alert message. The table is terminated
2720 * by an entry specifying mask 0. Returns the number of fatal interrupt
2721 * conditions.
2722 */
2723 int
2724 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2725 const struct intr_info *acts)
2726 {
2727 int fatal = 0;
2728 unsigned int mask = 0;
2729 unsigned int status = csio_rd_reg32(hw, reg);
2730
2731 for ( ; acts->mask; ++acts) {
2732 if (!(status & acts->mask))
2733 continue;
2734 if (acts->fatal) {
2735 fatal++;
2736 csio_fatal(hw, "Fatal %s (0x%x)\n",
2737 acts->msg, status & acts->mask);
2738 } else if (acts->msg)
2739 csio_info(hw, "%s (0x%x)\n",
2740 acts->msg, status & acts->mask);
2741 mask |= acts->mask;
2742 }
2743 status &= mask;
2744 if (status) /* clear processed interrupts */
2745 csio_wr_reg32(hw, status, reg);
2746 return fatal;
2747 }
2748
2749 /*
2750 * TP interrupt handler.
2751 */
2752 static void csio_tp_intr_handler(struct csio_hw *hw)
2753 {
2754 static struct intr_info tp_intr_info[] = {
2755 { 0x3fffffff, "TP parity error", -1, 1 },
2756 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2757 { 0, NULL, 0, 0 }
2758 };
2759
2760 if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2761 csio_hw_fatal_err(hw);
2762 }
2763
2764 /*
2765 * SGE interrupt handler.
2766 */
2767 static void csio_sge_intr_handler(struct csio_hw *hw)
2768 {
2769 uint64_t v;
2770
2771 static struct intr_info sge_intr_info[] = {
2772 { ERR_CPL_EXCEED_IQE_SIZE_F,
2773 "SGE received CPL exceeding IQE size", -1, 1 },
2774 { ERR_INVALID_CIDX_INC_F,
2775 "SGE GTS CIDX increment too large", -1, 0 },
2776 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2777 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2778 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2779 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2780 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2781 0 },
2782 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2783 0 },
2784 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2785 0 },
2786 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2787 0 },
2788 { ERR_ING_CTXT_PRIO_F,
2789 "SGE too many priority ingress contexts", -1, 0 },
2790 { ERR_EGR_CTXT_PRIO_F,
2791 "SGE too many priority egress contexts", -1, 0 },
2792 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2793 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2794 { 0, NULL, 0, 0 }
2795 };
2796
2797 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2798 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2799 if (v) {
2800 csio_fatal(hw, "SGE parity error (%#llx)\n",
2801 (unsigned long long)v);
2802 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2803 SGE_INT_CAUSE1_A);
2804 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2805 }
2806
2807 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2808
2809 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2810 v != 0)
2811 csio_hw_fatal_err(hw);
2812 }
2813
2814 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2815 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2816 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2817 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2818
2819 /*
2820 * CIM interrupt handler.
2821 */
2822 static void csio_cim_intr_handler(struct csio_hw *hw)
2823 {
2824 static struct intr_info cim_intr_info[] = {
2825 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2826 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2827 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2828 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2829 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2830 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2831 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2832 { 0, NULL, 0, 0 }
2833 };
2834 static struct intr_info cim_upintr_info[] = {
2835 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2836 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2837 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2838 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2839 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2840 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2841 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2842 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2843 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2844 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2845 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2846 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2847 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2848 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2849 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2850 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2851 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2852 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2853 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2854 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2855 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2856 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2857 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2858 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2859 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2860 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2861 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2862 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2863 { 0, NULL, 0, 0 }
2864 };
2865
2866 int fat;
2867
2868 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2869 cim_intr_info) +
2870 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2871 cim_upintr_info);
2872 if (fat)
2873 csio_hw_fatal_err(hw);
2874 }
2875
2876 /*
2877 * ULP RX interrupt handler.
2878 */
2879 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2880 {
2881 static struct intr_info ulprx_intr_info[] = {
2882 { 0x1800000, "ULPRX context error", -1, 1 },
2883 { 0x7fffff, "ULPRX parity error", -1, 1 },
2884 { 0, NULL, 0, 0 }
2885 };
2886
2887 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2888 csio_hw_fatal_err(hw);
2889 }
2890
2891 /*
2892 * ULP TX interrupt handler.
2893 */
2894 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2895 {
2896 static struct intr_info ulptx_intr_info[] = {
2897 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2898 0 },
2899 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2900 0 },
2901 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2902 0 },
2903 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2904 0 },
2905 { 0xfffffff, "ULPTX parity error", -1, 1 },
2906 { 0, NULL, 0, 0 }
2907 };
2908
2909 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2910 csio_hw_fatal_err(hw);
2911 }
2912
2913 /*
2914 * PM TX interrupt handler.
2915 */
2916 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2917 {
2918 static struct intr_info pmtx_intr_info[] = {
2919 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2920 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2921 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2922 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2923 { 0xffffff0, "PMTX framing error", -1, 1 },
2924 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2925 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2926 1 },
2927 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2928 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2929 { 0, NULL, 0, 0 }
2930 };
2931
2932 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2933 csio_hw_fatal_err(hw);
2934 }
2935
2936 /*
2937 * PM RX interrupt handler.
2938 */
2939 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2940 {
2941 static struct intr_info pmrx_intr_info[] = {
2942 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2943 { 0x3ffff0, "PMRX framing error", -1, 1 },
2944 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2945 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2946 1 },
2947 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2948 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2949 { 0, NULL, 0, 0 }
2950 };
2951
2952 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2953 csio_hw_fatal_err(hw);
2954 }
2955
2956 /*
2957 * CPL switch interrupt handler.
2958 */
2959 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2960 {
2961 static struct intr_info cplsw_intr_info[] = {
2962 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2963 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2964 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2965 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2966 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2967 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2968 { 0, NULL, 0, 0 }
2969 };
2970
2971 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2972 csio_hw_fatal_err(hw);
2973 }
2974
2975 /*
2976 * LE interrupt handler.
2977 */
2978 static void csio_le_intr_handler(struct csio_hw *hw)
2979 {
2980 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
2981
2982 static struct intr_info le_intr_info[] = {
2983 { LIPMISS_F, "LE LIP miss", -1, 0 },
2984 { LIP0_F, "LE 0 LIP error", -1, 0 },
2985 { PARITYERR_F, "LE parity error", -1, 1 },
2986 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2987 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
2988 { 0, NULL, 0, 0 }
2989 };
2990
2991 static struct intr_info t6_le_intr_info[] = {
2992 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
2993 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
2994 { TCAMINTPERR_F, "LE parity error", -1, 1 },
2995 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2996 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
2997 { 0, NULL, 0, 0 }
2998 };
2999
3000 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3001 (chip == CHELSIO_T5) ?
3002 le_intr_info : t6_le_intr_info))
3003 csio_hw_fatal_err(hw);
3004 }
3005
3006 /*
3007 * MPS interrupt handler.
3008 */
3009 static void csio_mps_intr_handler(struct csio_hw *hw)
3010 {
3011 static struct intr_info mps_rx_intr_info[] = {
3012 { 0xffffff, "MPS Rx parity error", -1, 1 },
3013 { 0, NULL, 0, 0 }
3014 };
3015 static struct intr_info mps_tx_intr_info[] = {
3016 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3017 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3018 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3019 -1, 1 },
3020 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3021 -1, 1 },
3022 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3023 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3024 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3025 { 0, NULL, 0, 0 }
3026 };
3027 static struct intr_info mps_trc_intr_info[] = {
3028 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3029 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3030 -1, 1 },
3031 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3032 { 0, NULL, 0, 0 }
3033 };
3034 static struct intr_info mps_stat_sram_intr_info[] = {
3035 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3036 { 0, NULL, 0, 0 }
3037 };
3038 static struct intr_info mps_stat_tx_intr_info[] = {
3039 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3040 { 0, NULL, 0, 0 }
3041 };
3042 static struct intr_info mps_stat_rx_intr_info[] = {
3043 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3044 { 0, NULL, 0, 0 }
3045 };
3046 static struct intr_info mps_cls_intr_info[] = {
3047 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3048 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3049 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3050 { 0, NULL, 0, 0 }
3051 };
3052
3053 int fat;
3054
3055 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3056 mps_rx_intr_info) +
3057 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3058 mps_tx_intr_info) +
3059 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3060 mps_trc_intr_info) +
3061 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3062 mps_stat_sram_intr_info) +
3063 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3064 mps_stat_tx_intr_info) +
3065 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3066 mps_stat_rx_intr_info) +
3067 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3068 mps_cls_intr_info);
3069
3070 csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3071 csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
3072 if (fat)
3073 csio_hw_fatal_err(hw);
3074 }
3075
3076 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3077 ECC_UE_INT_CAUSE_F)
3078
3079 /*
3080 * EDC/MC interrupt handler.
3081 */
3082 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3083 {
3084 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3085
3086 unsigned int addr, cnt_addr, v;
3087
3088 if (idx <= MEM_EDC1) {
3089 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3090 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3091 } else {
3092 addr = MC_INT_CAUSE_A;
3093 cnt_addr = MC_ECC_STATUS_A;
3094 }
3095
3096 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3097 if (v & PERR_INT_CAUSE_F)
3098 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3099 if (v & ECC_CE_INT_CAUSE_F) {
3100 uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3101
3102 csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3103 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3104 cnt, name[idx], cnt > 1 ? "s" : "");
3105 }
3106 if (v & ECC_UE_INT_CAUSE_F)
3107 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3108
3109 csio_wr_reg32(hw, v, addr);
3110 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3111 csio_hw_fatal_err(hw);
3112 }
3113
3114 /*
3115 * MA interrupt handler.
3116 */
3117 static void csio_ma_intr_handler(struct csio_hw *hw)
3118 {
3119 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3120
3121 if (status & MEM_PERR_INT_CAUSE_F)
3122 csio_fatal(hw, "MA parity error, parity status %#x\n",
3123 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3124 if (status & MEM_WRAP_INT_CAUSE_F) {
3125 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3126 csio_fatal(hw,
3127 "MA address wrap-around error by client %u to address %#x\n",
3128 MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3129 }
3130 csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3131 csio_hw_fatal_err(hw);
3132 }
3133
3134 /*
3135 * SMB interrupt handler.
3136 */
3137 static void csio_smb_intr_handler(struct csio_hw *hw)
3138 {
3139 static struct intr_info smb_intr_info[] = {
3140 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3141 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3142 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3143 { 0, NULL, 0, 0 }
3144 };
3145
3146 if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3147 csio_hw_fatal_err(hw);
3148 }
3149
3150 /*
3151 * NC-SI interrupt handler.
3152 */
3153 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3154 {
3155 static struct intr_info ncsi_intr_info[] = {
3156 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3157 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3158 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3159 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3160 { 0, NULL, 0, 0 }
3161 };
3162
3163 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3164 csio_hw_fatal_err(hw);
3165 }
3166
3167 /*
3168 * XGMAC interrupt handler.
3169 */
3170 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3171 {
3172 uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3173
3174 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3175 if (!v)
3176 return;
3177
3178 if (v & TXFIFO_PRTY_ERR_F)
3179 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3180 if (v & RXFIFO_PRTY_ERR_F)
3181 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3182 csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3183 csio_hw_fatal_err(hw);
3184 }
3185
3186 /*
3187 * PL interrupt handler.
3188 */
3189 static void csio_pl_intr_handler(struct csio_hw *hw)
3190 {
3191 static struct intr_info pl_intr_info[] = {
3192 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3193 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3194 { 0, NULL, 0, 0 }
3195 };
3196
3197 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3198 csio_hw_fatal_err(hw);
3199 }
3200
3201 /*
3202 * csio_hw_slow_intr_handler - control path interrupt handler
3203 * @hw: HW module
3204 *
3205 * Interrupt handler for non-data global interrupt events, e.g., errors.
3206 * The designation 'slow' is because it involves register reads, while
3207 * data interrupts typically don't involve any MMIOs.
3208 */
3209 int
3210 csio_hw_slow_intr_handler(struct csio_hw *hw)
3211 {
3212 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3213
3214 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3215 CSIO_INC_STATS(hw, n_plint_unexp);
3216 return 0;
3217 }
3218
3219 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3220
3221 CSIO_INC_STATS(hw, n_plint_cnt);
3222
3223 if (cause & CIM_F)
3224 csio_cim_intr_handler(hw);
3225
3226 if (cause & MPS_F)
3227 csio_mps_intr_handler(hw);
3228
3229 if (cause & NCSI_F)
3230 csio_ncsi_intr_handler(hw);
3231
3232 if (cause & PL_F)
3233 csio_pl_intr_handler(hw);
3234
3235 if (cause & SMB_F)
3236 csio_smb_intr_handler(hw);
3237
3238 if (cause & XGMAC0_F)
3239 csio_xgmac_intr_handler(hw, 0);
3240
3241 if (cause & XGMAC1_F)
3242 csio_xgmac_intr_handler(hw, 1);
3243
3244 if (cause & XGMAC_KR0_F)
3245 csio_xgmac_intr_handler(hw, 2);
3246
3247 if (cause & XGMAC_KR1_F)
3248 csio_xgmac_intr_handler(hw, 3);
3249
3250 if (cause & PCIE_F)
3251 hw->chip_ops->chip_pcie_intr_handler(hw);
3252
3253 if (cause & MC_F)
3254 csio_mem_intr_handler(hw, MEM_MC);
3255
3256 if (cause & EDC0_F)
3257 csio_mem_intr_handler(hw, MEM_EDC0);
3258
3259 if (cause & EDC1_F)
3260 csio_mem_intr_handler(hw, MEM_EDC1);
3261
3262 if (cause & LE_F)
3263 csio_le_intr_handler(hw);
3264
3265 if (cause & TP_F)
3266 csio_tp_intr_handler(hw);
3267
3268 if (cause & MA_F)
3269 csio_ma_intr_handler(hw);
3270
3271 if (cause & PM_TX_F)
3272 csio_pmtx_intr_handler(hw);
3273
3274 if (cause & PM_RX_F)
3275 csio_pmrx_intr_handler(hw);
3276
3277 if (cause & ULP_RX_F)
3278 csio_ulprx_intr_handler(hw);
3279
3280 if (cause & CPL_SWITCH_F)
3281 csio_cplsw_intr_handler(hw);
3282
3283 if (cause & SGE_F)
3284 csio_sge_intr_handler(hw);
3285
3286 if (cause & ULP_TX_F)
3287 csio_ulptx_intr_handler(hw);
3288
3289 /* Clear the interrupts just processed for which we are the master. */
3290 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3291 csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3292
3293 return 1;
3294 }
3295
3296 /*****************************************************************************
3297 * HW <--> mailbox interfacing routines.
3298 ****************************************************************************/
3299 /*
3300 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3301 *
3302 * @data: Private data pointer.
3303 *
3304 * Called from worker thread context.
3305 */
3306 static void
3307 csio_mberr_worker(void *data)
3308 {
3309 struct csio_hw *hw = (struct csio_hw *)data;
3310 struct csio_mbm *mbm = &hw->mbm;
3311 LIST_HEAD(cbfn_q);
3312 struct csio_mb *mbp_next;
3313 int rv;
3314
3315 del_timer_sync(&mbm->timer);
3316
3317 spin_lock_irq(&hw->lock);
3318 if (list_empty(&mbm->cbfn_q)) {
3319 spin_unlock_irq(&hw->lock);
3320 return;
3321 }
3322
3323 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3324 mbm->stats.n_cbfnq = 0;
3325
3326 /* Try to start waiting mailboxes */
3327 if (!list_empty(&mbm->req_q)) {
3328 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3329 list_del_init(&mbp_next->list);
3330
3331 rv = csio_mb_issue(hw, mbp_next);
3332 if (rv != 0)
3333 list_add_tail(&mbp_next->list, &mbm->req_q);
3334 else
3335 CSIO_DEC_STATS(mbm, n_activeq);
3336 }
3337 spin_unlock_irq(&hw->lock);
3338
3339 /* Now callback completions */
3340 csio_mb_completions(hw, &cbfn_q);
3341 }
3342
3343 /*
3344 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3345 *
3346 * @data: private data pointer
3347 *
3348 **/
3349 static void
3350 csio_hw_mb_timer(uintptr_t data)
3351 {
3352 struct csio_hw *hw = (struct csio_hw *)data;
3353 struct csio_mb *mbp = NULL;
3354
3355 spin_lock_irq(&hw->lock);
3356 mbp = csio_mb_tmo_handler(hw);
3357 spin_unlock_irq(&hw->lock);
3358
3359 /* Call back the function for the timed-out Mailbox */
3360 if (mbp)
3361 mbp->mb_cbfn(hw, mbp);
3362
3363 }
3364
3365 /*
3366 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3367 * @hw: HW module
3368 *
3369 * Called with lock held, should exit with lock held.
3370 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3371 * into a local queue. Drops lock and calls the completions. Holds
3372 * lock and returns.
3373 */
3374 static void
3375 csio_hw_mbm_cleanup(struct csio_hw *hw)
3376 {
3377 LIST_HEAD(cbfn_q);
3378
3379 csio_mb_cancel_all(hw, &cbfn_q);
3380
3381 spin_unlock_irq(&hw->lock);
3382 csio_mb_completions(hw, &cbfn_q);
3383 spin_lock_irq(&hw->lock);
3384 }
3385
3386 /*****************************************************************************
3387 * Event handling
3388 ****************************************************************************/
3389 int
3390 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3391 uint16_t len)
3392 {
3393 struct csio_evt_msg *evt_entry = NULL;
3394
3395 if (type >= CSIO_EVT_MAX)
3396 return -EINVAL;
3397
3398 if (len > CSIO_EVT_MSG_SIZE)
3399 return -EINVAL;
3400
3401 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3402 return -EINVAL;
3403
3404 if (list_empty(&hw->evt_free_q)) {
3405 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3406 type, len);
3407 return -ENOMEM;
3408 }
3409
3410 evt_entry = list_first_entry(&hw->evt_free_q,
3411 struct csio_evt_msg, list);
3412 list_del_init(&evt_entry->list);
3413
3414 /* copy event msg and queue the event */
3415 evt_entry->type = type;
3416 memcpy((void *)evt_entry->data, evt_msg, len);
3417 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3418
3419 CSIO_DEC_STATS(hw, n_evt_freeq);
3420 CSIO_INC_STATS(hw, n_evt_activeq);
3421
3422 return 0;
3423 }
3424
3425 static int
3426 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3427 uint16_t len, bool msg_sg)
3428 {
3429 struct csio_evt_msg *evt_entry = NULL;
3430 struct csio_fl_dma_buf *fl_sg;
3431 uint32_t off = 0;
3432 unsigned long flags;
3433 int n, ret = 0;
3434
3435 if (type >= CSIO_EVT_MAX)
3436 return -EINVAL;
3437
3438 if (len > CSIO_EVT_MSG_SIZE)
3439 return -EINVAL;
3440
3441 spin_lock_irqsave(&hw->lock, flags);
3442 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3443 ret = -EINVAL;
3444 goto out;
3445 }
3446
3447 if (list_empty(&hw->evt_free_q)) {
3448 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3449 type, len);
3450 ret = -ENOMEM;
3451 goto out;
3452 }
3453
3454 evt_entry = list_first_entry(&hw->evt_free_q,
3455 struct csio_evt_msg, list);
3456 list_del_init(&evt_entry->list);
3457
3458 /* copy event msg and queue the event */
3459 evt_entry->type = type;
3460
3461 /* If Payload in SG list*/
3462 if (msg_sg) {
3463 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3464 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3465 memcpy((void *)((uintptr_t)evt_entry->data + off),
3466 fl_sg->flbufs[n].vaddr,
3467 fl_sg->flbufs[n].len);
3468 off += fl_sg->flbufs[n].len;
3469 }
3470 } else
3471 memcpy((void *)evt_entry->data, evt_msg, len);
3472
3473 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3474 CSIO_DEC_STATS(hw, n_evt_freeq);
3475 CSIO_INC_STATS(hw, n_evt_activeq);
3476 out:
3477 spin_unlock_irqrestore(&hw->lock, flags);
3478 return ret;
3479 }
3480
3481 static void
3482 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3483 {
3484 if (evt_entry) {
3485 spin_lock_irq(&hw->lock);
3486 list_del_init(&evt_entry->list);
3487 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3488 CSIO_DEC_STATS(hw, n_evt_activeq);
3489 CSIO_INC_STATS(hw, n_evt_freeq);
3490 spin_unlock_irq(&hw->lock);
3491 }
3492 }
3493
3494 void
3495 csio_evtq_flush(struct csio_hw *hw)
3496 {
3497 uint32_t count;
3498 count = 30;
3499 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3500 spin_unlock_irq(&hw->lock);
3501 msleep(2000);
3502 spin_lock_irq(&hw->lock);
3503 }
3504
3505 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3506 }
3507
3508 static void
3509 csio_evtq_stop(struct csio_hw *hw)
3510 {
3511 hw->flags |= CSIO_HWF_FWEVT_STOP;
3512 }
3513
3514 static void
3515 csio_evtq_start(struct csio_hw *hw)
3516 {
3517 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3518 }
3519
3520 static void
3521 csio_evtq_cleanup(struct csio_hw *hw)
3522 {
3523 struct list_head *evt_entry, *next_entry;
3524
3525 /* Release outstanding events from activeq to freeq*/
3526 if (!list_empty(&hw->evt_active_q))
3527 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3528
3529 hw->stats.n_evt_activeq = 0;
3530 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3531
3532 /* Freeup event entry */
3533 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3534 kfree(evt_entry);
3535 CSIO_DEC_STATS(hw, n_evt_freeq);
3536 }
3537
3538 hw->stats.n_evt_freeq = 0;
3539 }
3540
3541
3542 static void
3543 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3544 struct csio_fl_dma_buf *flb, void *priv)
3545 {
3546 __u8 op;
3547 void *msg = NULL;
3548 uint32_t msg_len = 0;
3549 bool msg_sg = 0;
3550
3551 op = ((struct rss_header *) wr)->opcode;
3552 if (op == CPL_FW6_PLD) {
3553 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3554 if (!flb || !flb->totlen) {
3555 CSIO_INC_STATS(hw, n_cpl_unexp);
3556 return;
3557 }
3558
3559 msg = (void *) flb;
3560 msg_len = flb->totlen;
3561 msg_sg = 1;
3562 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3563
3564 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3565 /* skip RSS header */
3566 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3567 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3568 sizeof(struct cpl_fw4_msg);
3569 } else {
3570 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3571 CSIO_INC_STATS(hw, n_cpl_unexp);
3572 return;
3573 }
3574
3575 /*
3576 * Enqueue event to EventQ. Events processing happens
3577 * in Event worker thread context
3578 */
3579 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3580 (uint16_t)msg_len, msg_sg))
3581 CSIO_INC_STATS(hw, n_evt_drop);
3582 }
3583
3584 void
3585 csio_evtq_worker(struct work_struct *work)
3586 {
3587 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3588 struct list_head *evt_entry, *next_entry;
3589 LIST_HEAD(evt_q);
3590 struct csio_evt_msg *evt_msg;
3591 struct cpl_fw6_msg *msg;
3592 struct csio_rnode *rn;
3593 int rv = 0;
3594 uint8_t evtq_stop = 0;
3595
3596 csio_dbg(hw, "event worker thread active evts#%d\n",
3597 hw->stats.n_evt_activeq);
3598
3599 spin_lock_irq(&hw->lock);
3600 while (!list_empty(&hw->evt_active_q)) {
3601 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3602 spin_unlock_irq(&hw->lock);
3603
3604 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3605 evt_msg = (struct csio_evt_msg *) evt_entry;
3606
3607 /* Drop events if queue is STOPPED */
3608 spin_lock_irq(&hw->lock);
3609 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3610 evtq_stop = 1;
3611 spin_unlock_irq(&hw->lock);
3612 if (evtq_stop) {
3613 CSIO_INC_STATS(hw, n_evt_drop);
3614 goto free_evt;
3615 }
3616
3617 switch (evt_msg->type) {
3618 case CSIO_EVT_FW:
3619 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3620
3621 if ((msg->opcode == CPL_FW6_MSG ||
3622 msg->opcode == CPL_FW4_MSG) &&
3623 !msg->type) {
3624 rv = csio_mb_fwevt_handler(hw,
3625 msg->data);
3626 if (!rv)
3627 break;
3628 /* Handle any remaining fw events */
3629 csio_fcoe_fwevt_handler(hw,
3630 msg->opcode, msg->data);
3631 } else if (msg->opcode == CPL_FW6_PLD) {
3632
3633 csio_fcoe_fwevt_handler(hw,
3634 msg->opcode, msg->data);
3635 } else {
3636 csio_warn(hw,
3637 "Unhandled FW msg op %x type %x\n",
3638 msg->opcode, msg->type);
3639 CSIO_INC_STATS(hw, n_evt_drop);
3640 }
3641 break;
3642
3643 case CSIO_EVT_MBX:
3644 csio_mberr_worker(hw);
3645 break;
3646
3647 case CSIO_EVT_DEV_LOSS:
3648 memcpy(&rn, evt_msg->data, sizeof(rn));
3649 csio_rnode_devloss_handler(rn);
3650 break;
3651
3652 default:
3653 csio_warn(hw, "Unhandled event %x on evtq\n",
3654 evt_msg->type);
3655 CSIO_INC_STATS(hw, n_evt_unexp);
3656 break;
3657 }
3658 free_evt:
3659 csio_free_evt(hw, evt_msg);
3660 }
3661
3662 spin_lock_irq(&hw->lock);
3663 }
3664 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3665 spin_unlock_irq(&hw->lock);
3666 }
3667
3668 int
3669 csio_fwevtq_handler(struct csio_hw *hw)
3670 {
3671 int rv;
3672
3673 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3674 CSIO_INC_STATS(hw, n_int_stray);
3675 return -EINVAL;
3676 }
3677
3678 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3679 csio_process_fwevtq_entry, NULL);
3680 return rv;
3681 }
3682
3683 /****************************************************************************
3684 * Entry points
3685 ****************************************************************************/
3686
3687 /* Management module */
3688 /*
3689 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3690 * mgmt - mgmt module
3691 * @io_req - io request
3692 *
3693 * Return - 0:if given IO Req exists in active Q.
3694 * -EINVAL :if lookup fails.
3695 */
3696 int
3697 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3698 {
3699 struct list_head *tmp;
3700
3701 /* Lookup ioreq in the ACTIVEQ */
3702 list_for_each(tmp, &mgmtm->active_q) {
3703 if (io_req == (struct csio_ioreq *)tmp)
3704 return 0;
3705 }
3706 return -EINVAL;
3707 }
3708
3709 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3710
3711 /*
3712 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3713 * @data - Event data.
3714 *
3715 * Return - none.
3716 */
3717 static void
3718 csio_mgmt_tmo_handler(uintptr_t data)
3719 {
3720 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3721 struct list_head *tmp;
3722 struct csio_ioreq *io_req;
3723
3724 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3725
3726 spin_lock_irq(&mgmtm->hw->lock);
3727
3728 list_for_each(tmp, &mgmtm->active_q) {
3729 io_req = (struct csio_ioreq *) tmp;
3730 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3731
3732 if (!io_req->tmo) {
3733 /* Dequeue the request from retry Q. */
3734 tmp = csio_list_prev(tmp);
3735 list_del_init(&io_req->sm.sm_list);
3736 if (io_req->io_cbfn) {
3737 /* io_req will be freed by completion handler */
3738 io_req->wr_status = -ETIMEDOUT;
3739 io_req->io_cbfn(mgmtm->hw, io_req);
3740 } else {
3741 CSIO_DB_ASSERT(0);
3742 }
3743 }
3744 }
3745
3746 /* If retry queue is not empty, re-arm timer */
3747 if (!list_empty(&mgmtm->active_q))
3748 mod_timer(&mgmtm->mgmt_timer,
3749 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3750 spin_unlock_irq(&mgmtm->hw->lock);
3751 }
3752
3753 static void
3754 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3755 {
3756 struct csio_hw *hw = mgmtm->hw;
3757 struct csio_ioreq *io_req;
3758 struct list_head *tmp;
3759 uint32_t count;
3760
3761 count = 30;
3762 /* Wait for all outstanding req to complete gracefully */
3763 while ((!list_empty(&mgmtm->active_q)) && count--) {
3764 spin_unlock_irq(&hw->lock);
3765 msleep(2000);
3766 spin_lock_irq(&hw->lock);
3767 }
3768
3769 /* release outstanding req from ACTIVEQ */
3770 list_for_each(tmp, &mgmtm->active_q) {
3771 io_req = (struct csio_ioreq *) tmp;
3772 tmp = csio_list_prev(tmp);
3773 list_del_init(&io_req->sm.sm_list);
3774 mgmtm->stats.n_active--;
3775 if (io_req->io_cbfn) {
3776 /* io_req will be freed by completion handler */
3777 io_req->wr_status = -ETIMEDOUT;
3778 io_req->io_cbfn(mgmtm->hw, io_req);
3779 }
3780 }
3781 }
3782
3783 /*
3784 * csio_mgmt_init - Mgmt module init entry point
3785 * @mgmtsm - mgmt module
3786 * @hw - HW module
3787 *
3788 * Initialize mgmt timer, resource wait queue, active queue,
3789 * completion q. Allocate Egress and Ingress
3790 * WR queues and save off the queue index returned by the WR
3791 * module for future use. Allocate and save off mgmt reqs in the
3792 * mgmt_req_freelist for future use. Make sure their SM is initialized
3793 * to uninit state.
3794 * Returns: 0 - on success
3795 * -ENOMEM - on error.
3796 */
3797 static int
3798 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3799 {
3800 struct timer_list *timer = &mgmtm->mgmt_timer;
3801
3802 init_timer(timer);
3803 timer->function = csio_mgmt_tmo_handler;
3804 timer->data = (unsigned long)mgmtm;
3805
3806 INIT_LIST_HEAD(&mgmtm->active_q);
3807 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3808
3809 mgmtm->hw = hw;
3810 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3811
3812 return 0;
3813 }
3814
3815 /*
3816 * csio_mgmtm_exit - MGMT module exit entry point
3817 * @mgmtsm - mgmt module
3818 *
3819 * This function called during MGMT module uninit.
3820 * Stop timers, free ioreqs allocated.
3821 * Returns: None
3822 *
3823 */
3824 static void
3825 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3826 {
3827 del_timer_sync(&mgmtm->mgmt_timer);
3828 }
3829
3830
3831 /**
3832 * csio_hw_start - Kicks off the HW State machine
3833 * @hw: Pointer to HW module.
3834 *
3835 * It is assumed that the initialization is a synchronous operation.
3836 * So when we return afer posting the event, the HW SM should be in
3837 * the ready state, if there were no errors during init.
3838 */
3839 int
3840 csio_hw_start(struct csio_hw *hw)
3841 {
3842 spin_lock_irq(&hw->lock);
3843 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3844 spin_unlock_irq(&hw->lock);
3845
3846 if (csio_is_hw_ready(hw))
3847 return 0;
3848 else
3849 return -EINVAL;
3850 }
3851
3852 int
3853 csio_hw_stop(struct csio_hw *hw)
3854 {
3855 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3856
3857 if (csio_is_hw_removing(hw))
3858 return 0;
3859 else
3860 return -EINVAL;
3861 }
3862
3863 /* Max reset retries */
3864 #define CSIO_MAX_RESET_RETRIES 3
3865
3866 /**
3867 * csio_hw_reset - Reset the hardware
3868 * @hw: HW module.
3869 *
3870 * Caller should hold lock across this function.
3871 */
3872 int
3873 csio_hw_reset(struct csio_hw *hw)
3874 {
3875 if (!csio_is_hw_master(hw))
3876 return -EPERM;
3877
3878 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3879 csio_dbg(hw, "Max hw reset attempts reached..");
3880 return -EINVAL;
3881 }
3882
3883 hw->rst_retries++;
3884 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3885
3886 if (csio_is_hw_ready(hw)) {
3887 hw->rst_retries = 0;
3888 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3889 return 0;
3890 } else
3891 return -EINVAL;
3892 }
3893
3894 /*
3895 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3896 * @hw: HW module.
3897 */
3898 static void
3899 csio_hw_get_device_id(struct csio_hw *hw)
3900 {
3901 /* Is the adapter device id cached already ?*/
3902 if (csio_is_dev_id_cached(hw))
3903 return;
3904
3905 /* Get the PCI vendor & device id */
3906 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3907 &hw->params.pci.vendor_id);
3908 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3909 &hw->params.pci.device_id);
3910
3911 csio_dev_id_cached(hw);
3912 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3913
3914 } /* csio_hw_get_device_id */
3915
3916 /*
3917 * csio_hw_set_description - Set the model, description of the hw.
3918 * @hw: HW module.
3919 * @ven_id: PCI Vendor ID
3920 * @dev_id: PCI Device ID
3921 */
3922 static void
3923 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3924 {
3925 uint32_t adap_type, prot_type;
3926
3927 if (ven_id == CSIO_VENDOR_ID) {
3928 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3929 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3930
3931 if (prot_type == CSIO_T5_FCOE_ASIC) {
3932 memcpy(hw->hw_ver,
3933 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3934 memcpy(hw->model_desc,
3935 csio_t5_fcoe_adapters[adap_type].description,
3936 32);
3937 } else {
3938 char tempName[32] = "Chelsio FCoE Controller";
3939 memcpy(hw->model_desc, tempName, 32);
3940 }
3941 }
3942 } /* csio_hw_set_description */
3943
3944 /**
3945 * csio_hw_init - Initialize HW module.
3946 * @hw: Pointer to HW module.
3947 *
3948 * Initialize the members of the HW module.
3949 */
3950 int
3951 csio_hw_init(struct csio_hw *hw)
3952 {
3953 int rv = -EINVAL;
3954 uint32_t i;
3955 uint16_t ven_id, dev_id;
3956 struct csio_evt_msg *evt_entry;
3957
3958 INIT_LIST_HEAD(&hw->sm.sm_list);
3959 csio_init_state(&hw->sm, csio_hws_uninit);
3960 spin_lock_init(&hw->lock);
3961 INIT_LIST_HEAD(&hw->sln_head);
3962
3963 /* Get the PCI vendor & device id */
3964 csio_hw_get_device_id(hw);
3965
3966 strcpy(hw->name, CSIO_HW_NAME);
3967
3968 /* Initialize the HW chip ops T5 specific ops */
3969 hw->chip_ops = &t5_ops;
3970
3971 /* Set the model & its description */
3972
3973 ven_id = hw->params.pci.vendor_id;
3974 dev_id = hw->params.pci.device_id;
3975
3976 csio_hw_set_description(hw, ven_id, dev_id);
3977
3978 /* Initialize default log level */
3979 hw->params.log_level = (uint32_t) csio_dbg_level;
3980
3981 csio_set_fwevt_intr_idx(hw, -1);
3982 csio_set_nondata_intr_idx(hw, -1);
3983
3984 /* Init all the modules: Mailbox, WorkRequest and Transport */
3985 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3986 goto err;
3987
3988 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3989 if (rv)
3990 goto err_mbm_exit;
3991
3992 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3993 if (rv)
3994 goto err_wrm_exit;
3995
3996 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3997 if (rv)
3998 goto err_scsim_exit;
3999 /* Pre-allocate evtq and initialize them */
4000 INIT_LIST_HEAD(&hw->evt_active_q);
4001 INIT_LIST_HEAD(&hw->evt_free_q);
4002 for (i = 0; i < csio_evtq_sz; i++) {
4003
4004 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4005 if (!evt_entry) {
4006 rv = -ENOMEM;
4007 csio_err(hw, "Failed to initialize eventq");
4008 goto err_evtq_cleanup;
4009 }
4010
4011 list_add_tail(&evt_entry->list, &hw->evt_free_q);
4012 CSIO_INC_STATS(hw, n_evt_freeq);
4013 }
4014
4015 hw->dev_num = dev_num;
4016 dev_num++;
4017
4018 return 0;
4019
4020 err_evtq_cleanup:
4021 csio_evtq_cleanup(hw);
4022 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4023 err_scsim_exit:
4024 csio_scsim_exit(csio_hw_to_scsim(hw));
4025 err_wrm_exit:
4026 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4027 err_mbm_exit:
4028 csio_mbm_exit(csio_hw_to_mbm(hw));
4029 err:
4030 return rv;
4031 }
4032
4033 /**
4034 * csio_hw_exit - Un-initialize HW module.
4035 * @hw: Pointer to HW module.
4036 *
4037 */
4038 void
4039 csio_hw_exit(struct csio_hw *hw)
4040 {
4041 csio_evtq_cleanup(hw);
4042 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4043 csio_scsim_exit(csio_hw_to_scsim(hw));
4044 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4045 csio_mbm_exit(csio_hw_to_mbm(hw));
4046 }