]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/csiostor/csio_hw.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / csiostor / csio_hw.c
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56 /* Default MSI param level */
57 int csio_msi = 2;
58
59 /* FCoE function instances */
60 static int dev_num;
61
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 return csio_match_state(hw, csio_hws_ready);
109 }
110
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 return csio_match_state(hw, csio_hws_removing);
114 }
115
116
117 /*
118 * csio_hw_wait_op_done_val - wait until an operation is completed
119 * @hw: the HW module
120 * @reg: the register to check for completion
121 * @mask: a single-bit field within @reg that indicates completion
122 * @polarity: the value of the field when the operation is completed
123 * @attempts: number of check iterations
124 * @delay: delay in usecs between iterations
125 * @valp: where to store the value of the register at completion time
126 *
127 * Wait until an operation is completed by checking a bit in a register
128 * up to @attempts times. If @valp is not NULL the value of the register
129 * at the time it indicated completion is stored there. Returns 0 if the
130 * operation completes and -EAGAIN otherwise.
131 */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 uint32_t val;
137 while (1) {
138 val = csio_rd_reg32(hw, reg);
139
140 if (!!(val & mask) == polarity) {
141 if (valp)
142 *valp = val;
143 return 0;
144 }
145
146 if (--attempts == 0)
147 return -EAGAIN;
148 if (delay)
149 udelay(delay);
150 }
151 }
152
153 /*
154 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 * @hw: the adapter
156 * @addr: the indirect TP register address
157 * @mask: specifies the field within the register to modify
158 * @val: new value for the field
159 *
160 * Sets a field of an indirect TP register to the given value.
161 */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 unsigned int mask, unsigned int val)
165 {
166 csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 uint32_t value)
174 {
175 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176
177 csio_wr_reg32(hw, val | value, reg);
178 /* Flush */
179 csio_rd_reg32(hw, reg);
180
181 }
182
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 addr, len, buf, 0);
188 }
189
190 /*
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192 */
193 #define EEPROM_MAX_RD_POLL 40
194 #define EEPROM_MAX_WR_POLL 6
195 #define EEPROM_STAT_ADDR 0x7bfc
196 #define VPD_BASE 0x400
197 #define VPD_BASE_OLD 0
198 #define VPD_LEN 1024
199 #define VPD_INFO_FLD_HDR_SIZE 3
200
201 /*
202 * csio_hw_seeprom_read - read a serial EEPROM location
203 * @hw: hw to read
204 * @addr: EEPROM virtual address
205 * @data: where to store the read data
206 *
207 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 * VPD capability. Note that this function must be called with a virtual
209 * address.
210 */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 uint16_t val = 0;
215 int attempts = EEPROM_MAX_RD_POLL;
216 uint32_t base = hw->params.pci.vpd_cap_addr;
217
218 if (addr >= EEPROMVSIZE || (addr & 3))
219 return -EINVAL;
220
221 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222
223 do {
224 udelay(10);
225 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
227
228 if (!(val & PCI_VPD_ADDR_F)) {
229 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 return -EINVAL;
231 }
232
233 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 *data = le32_to_cpu(*(__le32 *)data);
235
236 return 0;
237 }
238
239 /*
240 * Partial EEPROM Vital Product Data structure. Includes only the ID and
241 * VPD-R sections.
242 */
243 struct t4_vpd_hdr {
244 u8 id_tag;
245 u8 id_len[2];
246 u8 id_data[ID_LEN];
247 u8 vpdr_tag;
248 u8 vpdr_len[2];
249 };
250
251 /*
252 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 * the VPD
254 * @v: Pointer to buffered vpd data structure
255 * @kw: The keyword to search for
256 *
257 * Returns the value of the information field keyword or
258 * -EINVAL otherwise.
259 */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 int32_t i;
264 int32_t offset , len;
265 const uint8_t *buf = &v->id_tag;
266 const uint8_t *vpdr_len = &v->vpdr_tag;
267 offset = sizeof(struct t4_vpd_hdr);
268 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269
270 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 return -EINVAL;
272
273 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 if (memcmp(buf + i , kw, 2) == 0) {
275 i += VPD_INFO_FLD_HDR_SIZE;
276 return i;
277 }
278
279 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 }
281
282 return -EINVAL;
283 }
284
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 *pos = pci_find_capability(pdev, cap);
289 if (*pos)
290 return 0;
291
292 return -1;
293 }
294
295 /*
296 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 * @hw: HW module
298 * @p: where to store the parameters
299 *
300 * Reads card parameters stored in VPD EEPROM.
301 */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 int i, ret, ec, sn, addr;
306 uint8_t *vpd, csum;
307 const struct t4_vpd_hdr *v;
308 /* To get around compilation warning from strstrip */
309 char *s;
310
311 if (csio_is_valid_vpd(hw))
312 return 0;
313
314 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 &hw->params.pci.vpd_cap_addr);
316 if (ret)
317 return -EINVAL;
318
319 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 if (vpd == NULL)
321 return -ENOMEM;
322
323 /*
324 * Card information normally starts at VPD_BASE but early cards had
325 * it at 0.
326 */
327 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329
330 for (i = 0; i < VPD_LEN; i += 4) {
331 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 if (ret) {
333 kfree(vpd);
334 return ret;
335 }
336 }
337
338 /* Reset the VPD flag! */
339 hw->flags &= (~CSIO_HWF_VPD_VALID);
340
341 v = (const struct t4_vpd_hdr *)vpd;
342
343 #define FIND_VPD_KW(var, name) do { \
344 var = csio_hw_get_vpd_keyword_val(v, name); \
345 if (var < 0) { \
346 csio_err(hw, "missing VPD keyword " name "\n"); \
347 kfree(vpd); \
348 return -EINVAL; \
349 } \
350 } while (0)
351
352 FIND_VPD_KW(i, "RV");
353 for (csum = 0; i >= 0; i--)
354 csum += vpd[i];
355
356 if (csum) {
357 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 kfree(vpd);
359 return -EINVAL;
360 }
361 FIND_VPD_KW(ec, "EC");
362 FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364
365 memcpy(p->id, v->id_data, ID_LEN);
366 s = strstrip(p->id);
367 memcpy(p->ec, vpd + ec, EC_LEN);
368 s = strstrip(p->ec);
369 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 s = strstrip(p->sn);
372
373 csio_valid_vpd_copied(hw);
374
375 kfree(vpd);
376 return 0;
377 }
378
379 /*
380 * csio_hw_sf1_read - read data from the serial flash
381 * @hw: the HW module
382 * @byte_cnt: number of bytes to read
383 * @cont: whether another operation will be chained
384 * @lock: whether to lock SF for PL access only
385 * @valp: where to store the read data
386 *
387 * Reads up to 4 bytes of data from the serial flash. The location of
388 * the read needs to be specified prior to calling this by issuing the
389 * appropriate commands to the serial flash.
390 */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 int32_t lock, uint32_t *valp)
394 {
395 int ret;
396
397 if (!byte_cnt || byte_cnt > 4)
398 return -EINVAL;
399 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 return -EBUSY;
401
402 csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 10, NULL);
406 if (!ret)
407 *valp = csio_rd_reg32(hw, SF_DATA_A);
408 return ret;
409 }
410
411 /*
412 * csio_hw_sf1_write - write data to the serial flash
413 * @hw: the HW module
414 * @byte_cnt: number of bytes to write
415 * @cont: whether another operation will be chained
416 * @lock: whether to lock SF for PL access only
417 * @val: value to write
418 *
419 * Writes up to 4 bytes of data to the serial flash. The location of
420 * the write needs to be specified prior to calling this by issuing the
421 * appropriate commands to the serial flash.
422 */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 int32_t lock, uint32_t val)
426 {
427 if (!byte_cnt || byte_cnt > 4)
428 return -EINVAL;
429 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 return -EBUSY;
431
432 csio_wr_reg32(hw, val, SF_DATA_A);
433 csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435
436 return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 10, NULL);
438 }
439
440 /*
441 * csio_hw_flash_wait_op - wait for a flash operation to complete
442 * @hw: the HW module
443 * @attempts: max number of polls of the status register
444 * @delay: delay between polls in ms
445 *
446 * Wait for a flash operation to complete by polling the status register.
447 */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 int ret;
452 uint32_t status;
453
454 while (1) {
455 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 if (ret != 0)
457 return ret;
458
459 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 if (ret != 0)
461 return ret;
462
463 if (!(status & 1))
464 return 0;
465 if (--attempts == 0)
466 return -EAGAIN;
467 if (delay)
468 msleep(delay);
469 }
470 }
471
472 /*
473 * csio_hw_read_flash - read words from serial flash
474 * @hw: the HW module
475 * @addr: the start address for the read
476 * @nwords: how many 32-bit words to read
477 * @data: where to store the read data
478 * @byte_oriented: whether to store data as bytes or as words
479 *
480 * Read the specified number of 32-bit words from the serial flash.
481 * If @byte_oriented is set the read data is stored as a byte array
482 * (i.e., big-endian), otherwise as 32-bit words in the platform's
483 * natural endianess.
484 */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 uint32_t *data, int32_t byte_oriented)
488 {
489 int ret;
490
491 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 return -EINVAL;
493
494 addr = swab32(addr) | SF_RD_DATA_FAST;
495
496 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 if (ret != 0)
498 return ret;
499
500 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 if (ret != 0)
502 return ret;
503
504 for ( ; nwords; nwords--, data++) {
505 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 if (nwords == 1)
507 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
508 if (ret)
509 return ret;
510 if (byte_oriented)
511 *data = (__force __u32) htonl(*data);
512 }
513 return 0;
514 }
515
516 /*
517 * csio_hw_write_flash - write up to a page of data to the serial flash
518 * @hw: the hw
519 * @addr: the start address to write
520 * @n: length of data to write in bytes
521 * @data: the data to write
522 *
523 * Writes up to a page of data (256 bytes) to the serial flash starting
524 * at the given address. All the data must be written to the same page.
525 */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 uint32_t n, const uint8_t *data)
529 {
530 int ret = -EINVAL;
531 uint32_t buf[64];
532 uint32_t i, c, left, val, offset = addr & 0xff;
533
534 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 return -EINVAL;
536
537 val = swab32(addr) | SF_PROG_PAGE;
538
539 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 if (ret != 0)
541 goto unlock;
542
543 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 if (ret != 0)
545 goto unlock;
546
547 for (left = n; left; left -= c) {
548 c = min(left, 4U);
549 for (val = 0, i = 0; i < c; ++i)
550 val = (val << 8) + *data++;
551
552 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 if (ret)
554 goto unlock;
555 }
556 ret = csio_hw_flash_wait_op(hw, 8, 1);
557 if (ret)
558 goto unlock;
559
560 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
561
562 /* Read the page to verify the write succeeded */
563 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 if (ret)
565 return ret;
566
567 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 csio_err(hw,
569 "failed to correctly write the flash page at %#x\n",
570 addr);
571 return -EINVAL;
572 }
573
574 return 0;
575
576 unlock:
577 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
578 return ret;
579 }
580
581 /*
582 * csio_hw_flash_erase_sectors - erase a range of flash sectors
583 * @hw: the HW module
584 * @start: the first sector to erase
585 * @end: the last sector to erase
586 *
587 * Erases the sectors in the given inclusive range.
588 */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 int ret = 0;
593
594 while (start <= end) {
595
596 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 if (ret != 0)
598 goto out;
599
600 ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 SF_ERASE_SECTOR | (start << 8));
602 if (ret != 0)
603 goto out;
604
605 ret = csio_hw_flash_wait_op(hw, 14, 500);
606 if (ret != 0)
607 goto out;
608
609 start++;
610 }
611 out:
612 if (ret)
613 csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 start, ret);
615 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
616 return 0;
617 }
618
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628
629 /*
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
633 *
634 * Reads the FW version from flash.
635 */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 return csio_hw_read_flash(hw, FLASH_FW_START +
640 offsetof(struct fw_hdr, fw_ver), 1,
641 vers, 0);
642 }
643
644 /*
645 * csio_hw_get_tp_version - read the TP microcode version
646 * @hw: HW module
647 * @vers: where to place the version
648 *
649 * Reads the TP microcode version from flash.
650 */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 return csio_hw_read_flash(hw, FLASH_FW_START +
655 offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 vers, 0);
657 }
658
659 /*
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
664 *
665 * Write the supplied firmware image to the card's serial flash.
666 */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 uint32_t csum;
671 int32_t addr;
672 int ret;
673 uint32_t i;
674 uint8_t first_page[SF_PAGE_SIZE];
675 const __be32 *p = (const __be32 *)fw_data;
676 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 uint32_t sf_sec_size;
678
679 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 csio_err(hw, "Serial Flash data invalid\n");
681 return -EINVAL;
682 }
683
684 if (!size) {
685 csio_err(hw, "FW image has no data\n");
686 return -EINVAL;
687 }
688
689 if (size & 511) {
690 csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 return -EINVAL;
692 }
693
694 if (ntohs(hdr->len512) * 512 != size) {
695 csio_err(hw, "FW image size differs from size in FW header\n");
696 return -EINVAL;
697 }
698
699 if (size > FLASH_FW_MAX_SIZE) {
700 csio_err(hw, "FW image too large, max is %u bytes\n",
701 FLASH_FW_MAX_SIZE);
702 return -EINVAL;
703 }
704
705 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 csum += ntohl(p[i]);
707
708 if (csum != 0xffffffff) {
709 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 return -EINVAL;
711 }
712
713 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
715
716 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718
719 ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 FLASH_FW_START_SEC + i - 1);
721 if (ret) {
722 csio_err(hw, "Flash Erase failed\n");
723 goto out;
724 }
725
726 /*
727 * We write the correct version at the end so the driver can see a bad
728 * version if the FW write fails. Start by writing a copy of the
729 * first page with a bad version.
730 */
731 memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 if (ret)
735 goto out;
736
737 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 FW_IMG_START, FW_IMG_START + size);
739
740 addr = FLASH_FW_START;
741 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 addr += SF_PAGE_SIZE;
743 fw_data += SF_PAGE_SIZE;
744 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 if (ret)
746 goto out;
747 }
748
749 ret = csio_hw_write_flash(hw,
750 FLASH_FW_START +
751 offsetof(struct fw_hdr, fw_ver),
752 sizeof(hdr->fw_ver),
753 (const uint8_t *)&hdr->fw_ver);
754
755 out:
756 if (ret)
757 csio_err(hw, "firmware download failed, error %d\n", ret);
758 return ret;
759 }
760
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 int ret;
765 uint32_t info = 0;
766
767 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 if (!ret)
769 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
771 if (ret != 0)
772 return ret;
773
774 if ((info & 0xff) != 0x20) /* not a Numonix flash */
775 return -EINVAL;
776 info >>= 16; /* log2 of size */
777 if (info >= 0x14 && info < 0x18)
778 hw->params.sf_nsec = 1 << (info - 16);
779 else if (info == 0x18)
780 hw->params.sf_nsec = 64;
781 else
782 return -EINVAL;
783 hw->params.sf_size = 1 << info;
784
785 return 0;
786 }
787
788 /*****************************************************************************/
789 /* HW State machine assists */
790 /*****************************************************************************/
791
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
794 {
795 uint32_t reg;
796 int cnt = 6;
797
798 while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
799 (--cnt != 0))
800 mdelay(100);
801
802 if ((cnt == 0) && (((int32_t)(SOURCEPF_G(reg)) < 0) ||
803 (SOURCEPF_G(reg) >= CSIO_MAX_PFN))) {
804 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
805 return -EIO;
806 }
807
808 hw->pfn = SOURCEPF_G(reg);
809
810 return 0;
811 }
812
813 /*
814 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
815 * @hw: HW module
816 * @state: Device state
817 *
818 * FW_HELLO_CMD has to be polled for completion.
819 */
820 static int
821 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
822 {
823 struct csio_mb *mbp;
824 int rv = 0;
825 enum fw_retval retval;
826 uint8_t mpfn;
827 char state_str[16];
828 int retries = FW_CMD_HELLO_RETRIES;
829
830 memset(state_str, 0, sizeof(state_str));
831
832 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
833 if (!mbp) {
834 rv = -ENOMEM;
835 CSIO_INC_STATS(hw, n_err_nomem);
836 goto out;
837 }
838
839 retry:
840 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
841 hw->pfn, CSIO_MASTER_MAY, NULL);
842
843 rv = csio_mb_issue(hw, mbp);
844 if (rv) {
845 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
846 goto out_free_mb;
847 }
848
849 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
850 if (retval != FW_SUCCESS) {
851 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
852 rv = -EINVAL;
853 goto out_free_mb;
854 }
855
856 /* Firmware has designated us to be master */
857 if (hw->pfn == mpfn) {
858 hw->flags |= CSIO_HWF_MASTER;
859 } else if (*state == CSIO_DEV_STATE_UNINIT) {
860 /*
861 * If we're not the Master PF then we need to wait around for
862 * the Master PF Driver to finish setting up the adapter.
863 *
864 * Note that we also do this wait if we're a non-Master-capable
865 * PF and there is no current Master PF; a Master PF may show up
866 * momentarily and we wouldn't want to fail pointlessly. (This
867 * can happen when an OS loads lots of different drivers rapidly
868 * at the same time). In this case, the Master PF returned by
869 * the firmware will be PCIE_FW_MASTER_MASK so the test below
870 * will work ...
871 */
872
873 int waiting = FW_CMD_HELLO_TIMEOUT;
874
875 /*
876 * Wait for the firmware to either indicate an error or
877 * initialized state. If we see either of these we bail out
878 * and report the issue to the caller. If we exhaust the
879 * "hello timeout" and we haven't exhausted our retries, try
880 * again. Otherwise bail with a timeout error.
881 */
882 for (;;) {
883 uint32_t pcie_fw;
884
885 spin_unlock_irq(&hw->lock);
886 msleep(50);
887 spin_lock_irq(&hw->lock);
888 waiting -= 50;
889
890 /*
891 * If neither Error nor Initialialized are indicated
892 * by the firmware keep waiting till we exaust our
893 * timeout ... and then retry if we haven't exhausted
894 * our retries ...
895 */
896 pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
897 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
898 if (waiting <= 0) {
899 if (retries-- > 0)
900 goto retry;
901
902 rv = -ETIMEDOUT;
903 break;
904 }
905 continue;
906 }
907
908 /*
909 * We either have an Error or Initialized condition
910 * report errors preferentially.
911 */
912 if (state) {
913 if (pcie_fw & PCIE_FW_ERR_F) {
914 *state = CSIO_DEV_STATE_ERR;
915 rv = -ETIMEDOUT;
916 } else if (pcie_fw & PCIE_FW_INIT_F)
917 *state = CSIO_DEV_STATE_INIT;
918 }
919
920 /*
921 * If we arrived before a Master PF was selected and
922 * there's not a valid Master PF, grab its identity
923 * for our caller.
924 */
925 if (mpfn == PCIE_FW_MASTER_M &&
926 (pcie_fw & PCIE_FW_MASTER_VLD_F))
927 mpfn = PCIE_FW_MASTER_G(pcie_fw);
928 break;
929 }
930 hw->flags &= ~CSIO_HWF_MASTER;
931 }
932
933 switch (*state) {
934 case CSIO_DEV_STATE_UNINIT:
935 strcpy(state_str, "Initializing");
936 break;
937 case CSIO_DEV_STATE_INIT:
938 strcpy(state_str, "Initialized");
939 break;
940 case CSIO_DEV_STATE_ERR:
941 strcpy(state_str, "Error");
942 break;
943 default:
944 strcpy(state_str, "Unknown");
945 break;
946 }
947
948 if (hw->pfn == mpfn)
949 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
950 hw->pfn, state_str);
951 else
952 csio_info(hw,
953 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
954 hw->pfn, mpfn, state_str);
955
956 out_free_mb:
957 mempool_free(mbp, hw->mb_mempool);
958 out:
959 return rv;
960 }
961
962 /*
963 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
964 * @hw: HW module
965 *
966 */
967 static int
968 csio_do_bye(struct csio_hw *hw)
969 {
970 struct csio_mb *mbp;
971 enum fw_retval retval;
972
973 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
974 if (!mbp) {
975 CSIO_INC_STATS(hw, n_err_nomem);
976 return -ENOMEM;
977 }
978
979 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
980
981 if (csio_mb_issue(hw, mbp)) {
982 csio_err(hw, "Issue of BYE command failed\n");
983 mempool_free(mbp, hw->mb_mempool);
984 return -EINVAL;
985 }
986
987 retval = csio_mb_fw_retval(mbp);
988 if (retval != FW_SUCCESS) {
989 mempool_free(mbp, hw->mb_mempool);
990 return -EINVAL;
991 }
992
993 mempool_free(mbp, hw->mb_mempool);
994
995 return 0;
996 }
997
998 /*
999 * csio_do_reset- Perform the device reset.
1000 * @hw: HW module
1001 * @fw_rst: FW reset
1002 *
1003 * If fw_rst is set, issues FW reset mbox cmd otherwise
1004 * does PIO reset.
1005 * Performs reset of the function.
1006 */
1007 static int
1008 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1009 {
1010 struct csio_mb *mbp;
1011 enum fw_retval retval;
1012
1013 if (!fw_rst) {
1014 /* PIO reset */
1015 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1016 mdelay(2000);
1017 return 0;
1018 }
1019
1020 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1021 if (!mbp) {
1022 CSIO_INC_STATS(hw, n_err_nomem);
1023 return -ENOMEM;
1024 }
1025
1026 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1027 PIORSTMODE_F | PIORST_F, 0, NULL);
1028
1029 if (csio_mb_issue(hw, mbp)) {
1030 csio_err(hw, "Issue of RESET command failed.n");
1031 mempool_free(mbp, hw->mb_mempool);
1032 return -EINVAL;
1033 }
1034
1035 retval = csio_mb_fw_retval(mbp);
1036 if (retval != FW_SUCCESS) {
1037 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1038 mempool_free(mbp, hw->mb_mempool);
1039 return -EINVAL;
1040 }
1041
1042 mempool_free(mbp, hw->mb_mempool);
1043
1044 return 0;
1045 }
1046
1047 static int
1048 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1049 {
1050 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1051 uint16_t caps;
1052
1053 caps = ntohs(rsp->fcoecaps);
1054
1055 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1056 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1057 return -EINVAL;
1058 }
1059
1060 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1061 csio_err(hw, "No FCoE Control Offload capability\n");
1062 return -EINVAL;
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1070 * @hw: the HW module
1071 * @mbox: mailbox to use for the FW RESET command (if desired)
1072 * @force: force uP into RESET even if FW RESET command fails
1073 *
1074 * Issues a RESET command to firmware (if desired) with a HALT indication
1075 * and then puts the microprocessor into RESET state. The RESET command
1076 * will only be issued if a legitimate mailbox is provided (mbox <=
1077 * PCIE_FW_MASTER_MASK).
1078 *
1079 * This is generally used in order for the host to safely manipulate the
1080 * adapter without fear of conflicting with whatever the firmware might
1081 * be doing. The only way out of this state is to RESTART the firmware
1082 * ...
1083 */
1084 static int
1085 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1086 {
1087 enum fw_retval retval = 0;
1088
1089 /*
1090 * If a legitimate mailbox is provided, issue a RESET command
1091 * with a HALT indication.
1092 */
1093 if (mbox <= PCIE_FW_MASTER_M) {
1094 struct csio_mb *mbp;
1095
1096 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1097 if (!mbp) {
1098 CSIO_INC_STATS(hw, n_err_nomem);
1099 return -ENOMEM;
1100 }
1101
1102 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1103 PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1104 NULL);
1105
1106 if (csio_mb_issue(hw, mbp)) {
1107 csio_err(hw, "Issue of RESET command failed!\n");
1108 mempool_free(mbp, hw->mb_mempool);
1109 return -EINVAL;
1110 }
1111
1112 retval = csio_mb_fw_retval(mbp);
1113 mempool_free(mbp, hw->mb_mempool);
1114 }
1115
1116 /*
1117 * Normally we won't complete the operation if the firmware RESET
1118 * command fails but if our caller insists we'll go ahead and put the
1119 * uP into RESET. This can be useful if the firmware is hung or even
1120 * missing ... We'll have to take the risk of putting the uP into
1121 * RESET without the cooperation of firmware in that case.
1122 *
1123 * We also force the firmware's HALT flag to be on in case we bypassed
1124 * the firmware RESET command above or we're dealing with old firmware
1125 * which doesn't have the HALT capability. This will serve as a flag
1126 * for the incoming firmware to know that it's coming out of a HALT
1127 * rather than a RESET ... if it's new enough to understand that ...
1128 */
1129 if (retval == 0 || force) {
1130 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1131 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1132 PCIE_FW_HALT_F);
1133 }
1134
1135 /*
1136 * And we always return the result of the firmware RESET command
1137 * even when we force the uP into RESET ...
1138 */
1139 return retval ? -EINVAL : 0;
1140 }
1141
1142 /*
1143 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1144 * @hw: the HW module
1145 * @reset: if we want to do a RESET to restart things
1146 *
1147 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1148 * return the previous PF Master remains as the new PF Master and there
1149 * is no need to issue a new HELLO command, etc.
1150 *
1151 * We do this in two ways:
1152 *
1153 * 1. If we're dealing with newer firmware we'll simply want to take
1154 * the chip's microprocessor out of RESET. This will cause the
1155 * firmware to start up from its start vector. And then we'll loop
1156 * until the firmware indicates it's started again (PCIE_FW.HALT
1157 * reset to 0) or we timeout.
1158 *
1159 * 2. If we're dealing with older firmware then we'll need to RESET
1160 * the chip since older firmware won't recognize the PCIE_FW.HALT
1161 * flag and automatically RESET itself on startup.
1162 */
1163 static int
1164 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1165 {
1166 if (reset) {
1167 /*
1168 * Since we're directing the RESET instead of the firmware
1169 * doing it automatically, we need to clear the PCIE_FW.HALT
1170 * bit.
1171 */
1172 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1173
1174 /*
1175 * If we've been given a valid mailbox, first try to get the
1176 * firmware to do the RESET. If that works, great and we can
1177 * return success. Otherwise, if we haven't been given a
1178 * valid mailbox or the RESET command failed, fall back to
1179 * hitting the chip with a hammer.
1180 */
1181 if (mbox <= PCIE_FW_MASTER_M) {
1182 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1183 msleep(100);
1184 if (csio_do_reset(hw, true) == 0)
1185 return 0;
1186 }
1187
1188 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1189 msleep(2000);
1190 } else {
1191 int ms;
1192
1193 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1194 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1195 if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1196 return 0;
1197 msleep(100);
1198 ms += 100;
1199 }
1200 return -ETIMEDOUT;
1201 }
1202 return 0;
1203 }
1204
1205 /*
1206 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1207 * @hw: the HW module
1208 * @mbox: mailbox to use for the FW RESET command (if desired)
1209 * @fw_data: the firmware image to write
1210 * @size: image size
1211 * @force: force upgrade even if firmware doesn't cooperate
1212 *
1213 * Perform all of the steps necessary for upgrading an adapter's
1214 * firmware image. Normally this requires the cooperation of the
1215 * existing firmware in order to halt all existing activities
1216 * but if an invalid mailbox token is passed in we skip that step
1217 * (though we'll still put the adapter microprocessor into RESET in
1218 * that case).
1219 *
1220 * On successful return the new firmware will have been loaded and
1221 * the adapter will have been fully RESET losing all previous setup
1222 * state. On unsuccessful return the adapter may be completely hosed ...
1223 * positive errno indicates that the adapter is ~probably~ intact, a
1224 * negative errno indicates that things are looking bad ...
1225 */
1226 static int
1227 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1228 const u8 *fw_data, uint32_t size, int32_t force)
1229 {
1230 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1231 int reset, ret;
1232
1233 ret = csio_hw_fw_halt(hw, mbox, force);
1234 if (ret != 0 && !force)
1235 return ret;
1236
1237 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1238 if (ret != 0)
1239 return ret;
1240
1241 /*
1242 * Older versions of the firmware don't understand the new
1243 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1244 * restart. So for newly loaded older firmware we'll have to do the
1245 * RESET for it so it starts up on a clean slate. We can tell if
1246 * the newly loaded firmware will handle this right by checking
1247 * its header flags to see if it advertises the capability.
1248 */
1249 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1250 return csio_hw_fw_restart(hw, mbox, reset);
1251 }
1252
1253 /*
1254 * csio_get_device_params - Get device parameters.
1255 * @hw: HW module
1256 *
1257 */
1258 static int
1259 csio_get_device_params(struct csio_hw *hw)
1260 {
1261 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1262 struct csio_mb *mbp;
1263 enum fw_retval retval;
1264 u32 param[6];
1265 int i, j = 0;
1266
1267 /* Initialize portids to -1 */
1268 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1269 hw->pport[i].portid = -1;
1270
1271 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1272 if (!mbp) {
1273 CSIO_INC_STATS(hw, n_err_nomem);
1274 return -ENOMEM;
1275 }
1276
1277 /* Get port vec information. */
1278 param[0] = FW_PARAM_DEV(PORTVEC);
1279
1280 /* Get Core clock. */
1281 param[1] = FW_PARAM_DEV(CCLK);
1282
1283 /* Get EQ id start and end. */
1284 param[2] = FW_PARAM_PFVF(EQ_START);
1285 param[3] = FW_PARAM_PFVF(EQ_END);
1286
1287 /* Get IQ id start and end. */
1288 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1289 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1290
1291 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1292 ARRAY_SIZE(param), param, NULL, false, NULL);
1293 if (csio_mb_issue(hw, mbp)) {
1294 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1295 mempool_free(mbp, hw->mb_mempool);
1296 return -EINVAL;
1297 }
1298
1299 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1300 ARRAY_SIZE(param), param);
1301 if (retval != FW_SUCCESS) {
1302 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1303 retval);
1304 mempool_free(mbp, hw->mb_mempool);
1305 return -EINVAL;
1306 }
1307
1308 /* cache the information. */
1309 hw->port_vec = param[0];
1310 hw->vpd.cclk = param[1];
1311 wrm->fw_eq_start = param[2];
1312 wrm->fw_iq_start = param[4];
1313
1314 /* Using FW configured max iqs & eqs */
1315 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1316 !csio_is_hw_master(hw)) {
1317 hw->cfg_niq = param[5] - param[4] + 1;
1318 hw->cfg_neq = param[3] - param[2] + 1;
1319 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1320 hw->cfg_niq, hw->cfg_neq);
1321 }
1322
1323 hw->port_vec &= csio_port_mask;
1324
1325 hw->num_pports = hweight32(hw->port_vec);
1326
1327 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1328 hw->port_vec, hw->num_pports);
1329
1330 for (i = 0; i < hw->num_pports; i++) {
1331 while ((hw->port_vec & (1 << j)) == 0)
1332 j++;
1333 hw->pport[i].portid = j++;
1334 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1335 }
1336 mempool_free(mbp, hw->mb_mempool);
1337
1338 return 0;
1339 }
1340
1341
1342 /*
1343 * csio_config_device_caps - Get and set device capabilities.
1344 * @hw: HW module
1345 *
1346 */
1347 static int
1348 csio_config_device_caps(struct csio_hw *hw)
1349 {
1350 struct csio_mb *mbp;
1351 enum fw_retval retval;
1352 int rv = -EINVAL;
1353
1354 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1355 if (!mbp) {
1356 CSIO_INC_STATS(hw, n_err_nomem);
1357 return -ENOMEM;
1358 }
1359
1360 /* Get device capabilities */
1361 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1362
1363 if (csio_mb_issue(hw, mbp)) {
1364 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1365 goto out;
1366 }
1367
1368 retval = csio_mb_fw_retval(mbp);
1369 if (retval != FW_SUCCESS) {
1370 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1371 goto out;
1372 }
1373
1374 /* Validate device capabilities */
1375 rv = csio_hw_validate_caps(hw, mbp);
1376 if (rv != 0)
1377 goto out;
1378
1379 /* Don't config device capabilities if already configured */
1380 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1381 rv = 0;
1382 goto out;
1383 }
1384
1385 /* Write back desired device capabilities */
1386 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1387 false, true, NULL);
1388
1389 if (csio_mb_issue(hw, mbp)) {
1390 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1391 goto out;
1392 }
1393
1394 retval = csio_mb_fw_retval(mbp);
1395 if (retval != FW_SUCCESS) {
1396 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1397 goto out;
1398 }
1399
1400 rv = 0;
1401 out:
1402 mempool_free(mbp, hw->mb_mempool);
1403 return rv;
1404 }
1405
1406 /*
1407 * csio_enable_ports - Bring up all available ports.
1408 * @hw: HW module.
1409 *
1410 */
1411 static int
1412 csio_enable_ports(struct csio_hw *hw)
1413 {
1414 struct csio_mb *mbp;
1415 enum fw_retval retval;
1416 uint8_t portid;
1417 int i;
1418
1419 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1420 if (!mbp) {
1421 CSIO_INC_STATS(hw, n_err_nomem);
1422 return -ENOMEM;
1423 }
1424
1425 for (i = 0; i < hw->num_pports; i++) {
1426 portid = hw->pport[i].portid;
1427
1428 /* Read PORT information */
1429 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1430 false, 0, 0, NULL);
1431
1432 if (csio_mb_issue(hw, mbp)) {
1433 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1434 portid);
1435 mempool_free(mbp, hw->mb_mempool);
1436 return -EINVAL;
1437 }
1438
1439 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1440 &hw->pport[i].pcap);
1441 if (retval != FW_SUCCESS) {
1442 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1443 portid, retval);
1444 mempool_free(mbp, hw->mb_mempool);
1445 return -EINVAL;
1446 }
1447
1448 /* Write back PORT information */
1449 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1450 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1451
1452 if (csio_mb_issue(hw, mbp)) {
1453 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1454 portid);
1455 mempool_free(mbp, hw->mb_mempool);
1456 return -EINVAL;
1457 }
1458
1459 retval = csio_mb_fw_retval(mbp);
1460 if (retval != FW_SUCCESS) {
1461 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1462 portid, retval);
1463 mempool_free(mbp, hw->mb_mempool);
1464 return -EINVAL;
1465 }
1466
1467 } /* For all ports */
1468
1469 mempool_free(mbp, hw->mb_mempool);
1470
1471 return 0;
1472 }
1473
1474 /*
1475 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1476 * @hw: HW module
1477 * Issued with lock held.
1478 */
1479 static int
1480 csio_get_fcoe_resinfo(struct csio_hw *hw)
1481 {
1482 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1483 struct fw_fcoe_res_info_cmd *rsp;
1484 struct csio_mb *mbp;
1485 enum fw_retval retval;
1486
1487 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1488 if (!mbp) {
1489 CSIO_INC_STATS(hw, n_err_nomem);
1490 return -ENOMEM;
1491 }
1492
1493 /* Get FCoE FW resource information */
1494 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1495
1496 if (csio_mb_issue(hw, mbp)) {
1497 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1498 mempool_free(mbp, hw->mb_mempool);
1499 return -EINVAL;
1500 }
1501
1502 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1503 retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1504 if (retval != FW_SUCCESS) {
1505 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1506 retval);
1507 mempool_free(mbp, hw->mb_mempool);
1508 return -EINVAL;
1509 }
1510
1511 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1512 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1513 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1514 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1515 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1516 res_info->max_ssns = ntohl(rsp->max_ssns);
1517 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1518 res_info->used_ssns = ntohl(rsp->used_ssns);
1519 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1520 res_info->max_vnps = ntohl(rsp->max_vnps);
1521 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1522 res_info->used_vnps = ntohl(rsp->used_vnps);
1523
1524 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1525 res_info->max_xchgs);
1526 mempool_free(mbp, hw->mb_mempool);
1527
1528 return 0;
1529 }
1530
1531 static int
1532 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1533 {
1534 struct csio_mb *mbp;
1535 enum fw_retval retval;
1536 u32 _param[1];
1537
1538 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1539 if (!mbp) {
1540 CSIO_INC_STATS(hw, n_err_nomem);
1541 return -ENOMEM;
1542 }
1543
1544 /*
1545 * Find out whether we're dealing with a version of
1546 * the firmware which has configuration file support.
1547 */
1548 _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1549 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1550
1551 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1552 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1553 if (csio_mb_issue(hw, mbp)) {
1554 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1555 mempool_free(mbp, hw->mb_mempool);
1556 return -EINVAL;
1557 }
1558
1559 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1560 ARRAY_SIZE(_param), _param);
1561 if (retval != FW_SUCCESS) {
1562 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1563 retval);
1564 mempool_free(mbp, hw->mb_mempool);
1565 return -EINVAL;
1566 }
1567
1568 mempool_free(mbp, hw->mb_mempool);
1569 *param = _param[0];
1570
1571 return 0;
1572 }
1573
1574 static int
1575 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1576 {
1577 int ret = 0;
1578 const struct firmware *cf;
1579 struct pci_dev *pci_dev = hw->pdev;
1580 struct device *dev = &pci_dev->dev;
1581 unsigned int mtype = 0, maddr = 0;
1582 uint32_t *cfg_data;
1583 int value_to_add = 0;
1584
1585 if (request_firmware(&cf, FW_CFG_NAME_T5, dev) < 0) {
1586 csio_err(hw, "could not find config file %s, err: %d\n",
1587 FW_CFG_NAME_T5, ret);
1588 return -ENOENT;
1589 }
1590
1591 if (cf->size%4 != 0)
1592 value_to_add = 4 - (cf->size % 4);
1593
1594 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1595 if (cfg_data == NULL) {
1596 ret = -ENOMEM;
1597 goto leave;
1598 }
1599
1600 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1601 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1602 ret = -EINVAL;
1603 goto leave;
1604 }
1605
1606 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1607 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1608
1609 ret = csio_memory_write(hw, mtype, maddr,
1610 cf->size + value_to_add, cfg_data);
1611
1612 if ((ret == 0) && (value_to_add != 0)) {
1613 union {
1614 u32 word;
1615 char buf[4];
1616 } last;
1617 size_t size = cf->size & ~0x3;
1618 int i;
1619
1620 last.word = cfg_data[size >> 2];
1621 for (i = value_to_add; i < 4; i++)
1622 last.buf[i] = 0;
1623 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1624 }
1625 if (ret == 0) {
1626 csio_info(hw, "config file upgraded to %s\n",
1627 FW_CFG_NAME_T5);
1628 snprintf(path, 64, "%s%s", "/lib/firmware/", FW_CFG_NAME_T5);
1629 }
1630
1631 leave:
1632 kfree(cfg_data);
1633 release_firmware(cf);
1634 return ret;
1635 }
1636
1637 /*
1638 * HW initialization: contact FW, obtain config, perform basic init.
1639 *
1640 * If the firmware we're dealing with has Configuration File support, then
1641 * we use that to perform all configuration -- either using the configuration
1642 * file stored in flash on the adapter or using a filesystem-local file
1643 * if available.
1644 *
1645 * If we don't have configuration file support in the firmware, then we'll
1646 * have to set things up the old fashioned way with hard-coded register
1647 * writes and firmware commands ...
1648 */
1649
1650 /*
1651 * Attempt to initialize the HW via a Firmware Configuration File.
1652 */
1653 static int
1654 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1655 {
1656 struct csio_mb *mbp = NULL;
1657 struct fw_caps_config_cmd *caps_cmd;
1658 unsigned int mtype, maddr;
1659 int rv = -EINVAL;
1660 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1661 char path[64];
1662 char *config_name = NULL;
1663
1664 /*
1665 * Reset device if necessary
1666 */
1667 if (reset) {
1668 rv = csio_do_reset(hw, true);
1669 if (rv != 0)
1670 goto bye;
1671 }
1672
1673 /*
1674 * If we have a configuration file in host ,
1675 * then use that. Otherwise, use the configuration file stored
1676 * in the HW flash ...
1677 */
1678 spin_unlock_irq(&hw->lock);
1679 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1680 spin_lock_irq(&hw->lock);
1681 if (rv != 0) {
1682 /*
1683 * config file was not found. Use default
1684 * config file from flash.
1685 */
1686 config_name = "On FLASH";
1687 mtype = FW_MEMTYPE_CF_FLASH;
1688 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1689 } else {
1690 config_name = path;
1691 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1692 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1693 }
1694
1695 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1696 if (!mbp) {
1697 CSIO_INC_STATS(hw, n_err_nomem);
1698 return -ENOMEM;
1699 }
1700 /*
1701 * Tell the firmware to process the indicated Configuration File.
1702 * If there are no errors and the caller has provided return value
1703 * pointers for the [fini] section version, checksum and computed
1704 * checksum, pass those back to the caller.
1705 */
1706 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1707 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1708 caps_cmd->op_to_write =
1709 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1710 FW_CMD_REQUEST_F |
1711 FW_CMD_READ_F);
1712 caps_cmd->cfvalid_to_len16 =
1713 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1714 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1715 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1716 FW_LEN16(*caps_cmd));
1717
1718 if (csio_mb_issue(hw, mbp)) {
1719 rv = -EINVAL;
1720 goto bye;
1721 }
1722
1723 rv = csio_mb_fw_retval(mbp);
1724 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1725 * Configuration File in FLASH), our last gasp effort is to use the
1726 * Firmware Configuration File which is embedded in the
1727 * firmware. A very few early versions of the firmware didn't
1728 * have one embedded but we can ignore those.
1729 */
1730 if (rv == ENOENT) {
1731 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1732 caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1733 FW_CMD_REQUEST_F |
1734 FW_CMD_READ_F);
1735 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1736
1737 if (csio_mb_issue(hw, mbp)) {
1738 rv = -EINVAL;
1739 goto bye;
1740 }
1741
1742 rv = csio_mb_fw_retval(mbp);
1743 config_name = "Firmware Default";
1744 }
1745 if (rv != FW_SUCCESS)
1746 goto bye;
1747
1748 finiver = ntohl(caps_cmd->finiver);
1749 finicsum = ntohl(caps_cmd->finicsum);
1750 cfcsum = ntohl(caps_cmd->cfcsum);
1751
1752 /*
1753 * And now tell the firmware to use the configuration we just loaded.
1754 */
1755 caps_cmd->op_to_write =
1756 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1757 FW_CMD_REQUEST_F |
1758 FW_CMD_WRITE_F);
1759 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1760
1761 if (csio_mb_issue(hw, mbp)) {
1762 rv = -EINVAL;
1763 goto bye;
1764 }
1765
1766 rv = csio_mb_fw_retval(mbp);
1767 if (rv != FW_SUCCESS) {
1768 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1769 goto bye;
1770 }
1771
1772 if (finicsum != cfcsum) {
1773 csio_warn(hw,
1774 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1775 finicsum, cfcsum);
1776 }
1777
1778 /* Validate device capabilities */
1779 rv = csio_hw_validate_caps(hw, mbp);
1780 if (rv != 0)
1781 goto bye;
1782
1783 mempool_free(mbp, hw->mb_mempool);
1784 mbp = NULL;
1785
1786 /*
1787 * Note that we're operating with parameters
1788 * not supplied by the driver, rather than from hard-wired
1789 * initialization constants buried in the driver.
1790 */
1791 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1792
1793 /* device parameters */
1794 rv = csio_get_device_params(hw);
1795 if (rv != 0)
1796 goto bye;
1797
1798 /* Configure SGE */
1799 csio_wr_sge_init(hw);
1800
1801 /*
1802 * And finally tell the firmware to initialize itself using the
1803 * parameters from the Configuration File.
1804 */
1805 /* Post event to notify completion of configuration */
1806 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1807
1808 csio_info(hw, "Successfully configure using Firmware "
1809 "Configuration File %s, version %#x, computed checksum %#x\n",
1810 config_name, finiver, cfcsum);
1811 return 0;
1812
1813 /*
1814 * Something bad happened. Return the error ...
1815 */
1816 bye:
1817 if (mbp)
1818 mempool_free(mbp, hw->mb_mempool);
1819 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1820 csio_warn(hw, "Configuration file error %d\n", rv);
1821 return rv;
1822 }
1823
1824 /* Is the given firmware API compatible with the one the driver was compiled
1825 * with?
1826 */
1827 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1828 {
1829
1830 /* short circuit if it's the exact same firmware version */
1831 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1832 return 1;
1833
1834 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1835 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1836 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1837 return 1;
1838 #undef SAME_INTF
1839
1840 return 0;
1841 }
1842
1843 /* The firmware in the filesystem is usable, but should it be installed?
1844 * This routine explains itself in detail if it indicates the filesystem
1845 * firmware should be installed.
1846 */
1847 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1848 int k, int c)
1849 {
1850 const char *reason;
1851
1852 if (!card_fw_usable) {
1853 reason = "incompatible or unusable";
1854 goto install;
1855 }
1856
1857 if (k > c) {
1858 reason = "older than the version supported with this driver";
1859 goto install;
1860 }
1861
1862 return 0;
1863
1864 install:
1865 csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1866 "installing firmware %u.%u.%u.%u on card.\n",
1867 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1868 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1869 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1870 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1871
1872 return 1;
1873 }
1874
1875 static struct fw_info fw_info_array[] = {
1876 {
1877 .chip = CHELSIO_T5,
1878 .fs_name = FW_CFG_NAME_T5,
1879 .fw_mod_name = FW_FNAME_T5,
1880 .fw_hdr = {
1881 .chip = FW_HDR_CHIP_T5,
1882 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1883 .intfver_nic = FW_INTFVER(T5, NIC),
1884 .intfver_vnic = FW_INTFVER(T5, VNIC),
1885 .intfver_ri = FW_INTFVER(T5, RI),
1886 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
1887 .intfver_fcoe = FW_INTFVER(T5, FCOE),
1888 },
1889 }
1890 };
1891
1892 static struct fw_info *find_fw_info(int chip)
1893 {
1894 int i;
1895
1896 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1897 if (fw_info_array[i].chip == chip)
1898 return &fw_info_array[i];
1899 }
1900 return NULL;
1901 }
1902
1903 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1904 const u8 *fw_data, unsigned int fw_size,
1905 struct fw_hdr *card_fw, enum csio_dev_state state,
1906 int *reset)
1907 {
1908 int ret, card_fw_usable, fs_fw_usable;
1909 const struct fw_hdr *fs_fw;
1910 const struct fw_hdr *drv_fw;
1911
1912 drv_fw = &fw_info->fw_hdr;
1913
1914 /* Read the header of the firmware on the card */
1915 ret = csio_hw_read_flash(hw, FLASH_FW_START,
1916 sizeof(*card_fw) / sizeof(uint32_t),
1917 (uint32_t *)card_fw, 1);
1918 if (ret == 0) {
1919 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1920 } else {
1921 csio_err(hw,
1922 "Unable to read card's firmware header: %d\n", ret);
1923 card_fw_usable = 0;
1924 }
1925
1926 if (fw_data != NULL) {
1927 fs_fw = (const void *)fw_data;
1928 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1929 } else {
1930 fs_fw = NULL;
1931 fs_fw_usable = 0;
1932 }
1933
1934 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1935 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1936 /* Common case: the firmware on the card is an exact match and
1937 * the filesystem one is an exact match too, or the filesystem
1938 * one is absent/incompatible.
1939 */
1940 } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1941 csio_should_install_fs_fw(hw, card_fw_usable,
1942 be32_to_cpu(fs_fw->fw_ver),
1943 be32_to_cpu(card_fw->fw_ver))) {
1944 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1945 fw_size, 0);
1946 if (ret != 0) {
1947 csio_err(hw,
1948 "failed to install firmware: %d\n", ret);
1949 goto bye;
1950 }
1951
1952 /* Installed successfully, update the cached header too. */
1953 memcpy(card_fw, fs_fw, sizeof(*card_fw));
1954 card_fw_usable = 1;
1955 *reset = 0; /* already reset as part of load_fw */
1956 }
1957
1958 if (!card_fw_usable) {
1959 uint32_t d, c, k;
1960
1961 d = be32_to_cpu(drv_fw->fw_ver);
1962 c = be32_to_cpu(card_fw->fw_ver);
1963 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1964
1965 csio_err(hw, "Cannot find a usable firmware: "
1966 "chip state %d, "
1967 "driver compiled with %d.%d.%d.%d, "
1968 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1969 state,
1970 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1971 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1972 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1973 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1974 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1975 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1976 ret = EINVAL;
1977 goto bye;
1978 }
1979
1980 /* We're using whatever's on the card and it's known to be good. */
1981 hw->fwrev = be32_to_cpu(card_fw->fw_ver);
1982 hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1983
1984 bye:
1985 return ret;
1986 }
1987
1988 /*
1989 * Returns -EINVAL if attempts to flash the firmware failed
1990 * else returns 0,
1991 * if flashing was not attempted because the card had the
1992 * latest firmware ECANCELED is returned
1993 */
1994 static int
1995 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
1996 {
1997 int ret = -ECANCELED;
1998 const struct firmware *fw;
1999 struct fw_info *fw_info;
2000 struct fw_hdr *card_fw;
2001 struct pci_dev *pci_dev = hw->pdev;
2002 struct device *dev = &pci_dev->dev ;
2003 const u8 *fw_data = NULL;
2004 unsigned int fw_size = 0;
2005
2006 /* This is the firmware whose headers the driver was compiled
2007 * against
2008 */
2009 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2010 if (fw_info == NULL) {
2011 csio_err(hw,
2012 "unable to get firmware info for chip %d.\n",
2013 CHELSIO_CHIP_VERSION(hw->chip_id));
2014 return -EINVAL;
2015 }
2016
2017 if (request_firmware(&fw, FW_FNAME_T5, dev) < 0) {
2018 csio_err(hw, "could not find firmware image %s, err: %d\n",
2019 FW_FNAME_T5, ret);
2020 } else {
2021 fw_data = fw->data;
2022 fw_size = fw->size;
2023 }
2024
2025 /* allocate memory to read the header of the firmware on the
2026 * card
2027 */
2028 card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2029
2030 /* upgrade FW logic */
2031 ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2032 hw->fw_state, reset);
2033
2034 /* Cleaning up */
2035 if (fw != NULL)
2036 release_firmware(fw);
2037 kfree(card_fw);
2038 return ret;
2039 }
2040
2041 /*
2042 * csio_hw_configure - Configure HW
2043 * @hw - HW module
2044 *
2045 */
2046 static void
2047 csio_hw_configure(struct csio_hw *hw)
2048 {
2049 int reset = 1;
2050 int rv;
2051 u32 param[1];
2052
2053 rv = csio_hw_dev_ready(hw);
2054 if (rv != 0) {
2055 CSIO_INC_STATS(hw, n_err_fatal);
2056 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2057 goto out;
2058 }
2059
2060 /* HW version */
2061 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2062
2063 /* Needed for FW download */
2064 rv = csio_hw_get_flash_params(hw);
2065 if (rv != 0) {
2066 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2067 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2068 goto out;
2069 }
2070
2071 /* Set PCIe completion timeout to 4 seconds */
2072 if (pci_is_pcie(hw->pdev))
2073 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2074 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2075
2076 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2077
2078 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2079 if (rv != 0)
2080 goto out;
2081
2082 csio_hw_print_fw_version(hw, "Firmware revision");
2083
2084 rv = csio_do_hello(hw, &hw->fw_state);
2085 if (rv != 0) {
2086 CSIO_INC_STATS(hw, n_err_fatal);
2087 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2088 goto out;
2089 }
2090
2091 /* Read vpd */
2092 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2093 if (rv != 0)
2094 goto out;
2095
2096 csio_hw_get_fw_version(hw, &hw->fwrev);
2097 csio_hw_get_tp_version(hw, &hw->tp_vers);
2098 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2099
2100 /* Do firmware update */
2101 spin_unlock_irq(&hw->lock);
2102 rv = csio_hw_flash_fw(hw, &reset);
2103 spin_lock_irq(&hw->lock);
2104
2105 if (rv != 0)
2106 goto out;
2107
2108 /* If the firmware doesn't support Configuration Files,
2109 * return an error.
2110 */
2111 rv = csio_hw_check_fwconfig(hw, param);
2112 if (rv != 0) {
2113 csio_info(hw, "Firmware doesn't support "
2114 "Firmware Configuration files\n");
2115 goto out;
2116 }
2117
2118 /* The firmware provides us with a memory buffer where we can
2119 * load a Configuration File from the host if we want to
2120 * override the Configuration File in flash.
2121 */
2122 rv = csio_hw_use_fwconfig(hw, reset, param);
2123 if (rv == -ENOENT) {
2124 csio_info(hw, "Could not initialize "
2125 "adapter, error%d\n", rv);
2126 goto out;
2127 }
2128 if (rv != 0) {
2129 csio_info(hw, "Could not initialize "
2130 "adapter, error%d\n", rv);
2131 goto out;
2132 }
2133
2134 } else {
2135 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2136
2137 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2138
2139 /* device parameters */
2140 rv = csio_get_device_params(hw);
2141 if (rv != 0)
2142 goto out;
2143
2144 /* Get device capabilities */
2145 rv = csio_config_device_caps(hw);
2146 if (rv != 0)
2147 goto out;
2148
2149 /* Configure SGE */
2150 csio_wr_sge_init(hw);
2151
2152 /* Post event to notify completion of configuration */
2153 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2154 goto out;
2155 }
2156 } /* if not master */
2157
2158 out:
2159 return;
2160 }
2161
2162 /*
2163 * csio_hw_initialize - Initialize HW
2164 * @hw - HW module
2165 *
2166 */
2167 static void
2168 csio_hw_initialize(struct csio_hw *hw)
2169 {
2170 struct csio_mb *mbp;
2171 enum fw_retval retval;
2172 int rv;
2173 int i;
2174
2175 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2176 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2177 if (!mbp)
2178 goto out;
2179
2180 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2181
2182 if (csio_mb_issue(hw, mbp)) {
2183 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2184 goto free_and_out;
2185 }
2186
2187 retval = csio_mb_fw_retval(mbp);
2188 if (retval != FW_SUCCESS) {
2189 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2190 retval);
2191 goto free_and_out;
2192 }
2193
2194 mempool_free(mbp, hw->mb_mempool);
2195 }
2196
2197 rv = csio_get_fcoe_resinfo(hw);
2198 if (rv != 0) {
2199 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2200 goto out;
2201 }
2202
2203 spin_unlock_irq(&hw->lock);
2204 rv = csio_config_queues(hw);
2205 spin_lock_irq(&hw->lock);
2206
2207 if (rv != 0) {
2208 csio_err(hw, "Config of queues failed!: %d\n", rv);
2209 goto out;
2210 }
2211
2212 for (i = 0; i < hw->num_pports; i++)
2213 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2214
2215 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2216 rv = csio_enable_ports(hw);
2217 if (rv != 0) {
2218 csio_err(hw, "Failed to enable ports: %d\n", rv);
2219 goto out;
2220 }
2221 }
2222
2223 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2224 return;
2225
2226 free_and_out:
2227 mempool_free(mbp, hw->mb_mempool);
2228 out:
2229 return;
2230 }
2231
2232 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2233
2234 /*
2235 * csio_hw_intr_enable - Enable HW interrupts
2236 * @hw: Pointer to HW module.
2237 *
2238 * Enable interrupts in HW registers.
2239 */
2240 static void
2241 csio_hw_intr_enable(struct csio_hw *hw)
2242 {
2243 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2244 uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2245 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2246
2247 /*
2248 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2249 * by FW, so do nothing for INTX.
2250 */
2251 if (hw->intr_mode == CSIO_IM_MSIX)
2252 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2253 AIVEC_V(AIVEC_M), vec);
2254 else if (hw->intr_mode == CSIO_IM_MSI)
2255 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2256 AIVEC_V(AIVEC_M), 0);
2257
2258 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2259
2260 /* Turn on MB interrupts - this will internally flush PIO as well */
2261 csio_mb_intr_enable(hw);
2262
2263 /* These are common registers - only a master can modify them */
2264 if (csio_is_hw_master(hw)) {
2265 /*
2266 * Disable the Serial FLASH interrupt, if enabled!
2267 */
2268 pl &= (~SF_F);
2269 csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2270
2271 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2272 EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2273 ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2274 ERR_DATA_CPL_ON_HIGH_QID1_F |
2275 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2276 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2277 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2278 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2279 SGE_INT_ENABLE3_A);
2280 csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2281 }
2282
2283 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2284
2285 }
2286
2287 /*
2288 * csio_hw_intr_disable - Disable HW interrupts
2289 * @hw: Pointer to HW module.
2290 *
2291 * Turn off Mailbox and PCI_PF_CFG interrupts.
2292 */
2293 void
2294 csio_hw_intr_disable(struct csio_hw *hw)
2295 {
2296 uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2297
2298 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2299 return;
2300
2301 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2302
2303 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2304 if (csio_is_hw_master(hw))
2305 csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2306
2307 /* Turn off MB interrupts */
2308 csio_mb_intr_disable(hw);
2309
2310 }
2311
2312 void
2313 csio_hw_fatal_err(struct csio_hw *hw)
2314 {
2315 csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2316 csio_hw_intr_disable(hw);
2317
2318 /* Do not reset HW, we may need FW state for debugging */
2319 csio_fatal(hw, "HW Fatal error encountered!\n");
2320 }
2321
2322 /*****************************************************************************/
2323 /* START: HW SM */
2324 /*****************************************************************************/
2325 /*
2326 * csio_hws_uninit - Uninit state
2327 * @hw - HW module
2328 * @evt - Event
2329 *
2330 */
2331 static void
2332 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2333 {
2334 hw->prev_evt = hw->cur_evt;
2335 hw->cur_evt = evt;
2336 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2337
2338 switch (evt) {
2339 case CSIO_HWE_CFG:
2340 csio_set_state(&hw->sm, csio_hws_configuring);
2341 csio_hw_configure(hw);
2342 break;
2343
2344 default:
2345 CSIO_INC_STATS(hw, n_evt_unexp);
2346 break;
2347 }
2348 }
2349
2350 /*
2351 * csio_hws_configuring - Configuring state
2352 * @hw - HW module
2353 * @evt - Event
2354 *
2355 */
2356 static void
2357 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2358 {
2359 hw->prev_evt = hw->cur_evt;
2360 hw->cur_evt = evt;
2361 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2362
2363 switch (evt) {
2364 case CSIO_HWE_INIT:
2365 csio_set_state(&hw->sm, csio_hws_initializing);
2366 csio_hw_initialize(hw);
2367 break;
2368
2369 case CSIO_HWE_INIT_DONE:
2370 csio_set_state(&hw->sm, csio_hws_ready);
2371 /* Fan out event to all lnode SMs */
2372 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2373 break;
2374
2375 case CSIO_HWE_FATAL:
2376 csio_set_state(&hw->sm, csio_hws_uninit);
2377 break;
2378
2379 case CSIO_HWE_PCI_REMOVE:
2380 csio_do_bye(hw);
2381 break;
2382 default:
2383 CSIO_INC_STATS(hw, n_evt_unexp);
2384 break;
2385 }
2386 }
2387
2388 /*
2389 * csio_hws_initializing - Initialiazing state
2390 * @hw - HW module
2391 * @evt - Event
2392 *
2393 */
2394 static void
2395 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2396 {
2397 hw->prev_evt = hw->cur_evt;
2398 hw->cur_evt = evt;
2399 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2400
2401 switch (evt) {
2402 case CSIO_HWE_INIT_DONE:
2403 csio_set_state(&hw->sm, csio_hws_ready);
2404
2405 /* Fan out event to all lnode SMs */
2406 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2407
2408 /* Enable interrupts */
2409 csio_hw_intr_enable(hw);
2410 break;
2411
2412 case CSIO_HWE_FATAL:
2413 csio_set_state(&hw->sm, csio_hws_uninit);
2414 break;
2415
2416 case CSIO_HWE_PCI_REMOVE:
2417 csio_do_bye(hw);
2418 break;
2419
2420 default:
2421 CSIO_INC_STATS(hw, n_evt_unexp);
2422 break;
2423 }
2424 }
2425
2426 /*
2427 * csio_hws_ready - Ready state
2428 * @hw - HW module
2429 * @evt - Event
2430 *
2431 */
2432 static void
2433 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2434 {
2435 /* Remember the event */
2436 hw->evtflag = evt;
2437
2438 hw->prev_evt = hw->cur_evt;
2439 hw->cur_evt = evt;
2440 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2441
2442 switch (evt) {
2443 case CSIO_HWE_HBA_RESET:
2444 case CSIO_HWE_FW_DLOAD:
2445 case CSIO_HWE_SUSPEND:
2446 case CSIO_HWE_PCI_REMOVE:
2447 case CSIO_HWE_PCIERR_DETECTED:
2448 csio_set_state(&hw->sm, csio_hws_quiescing);
2449 /* cleanup all outstanding cmds */
2450 if (evt == CSIO_HWE_HBA_RESET ||
2451 evt == CSIO_HWE_PCIERR_DETECTED)
2452 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2453 else
2454 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2455
2456 csio_hw_intr_disable(hw);
2457 csio_hw_mbm_cleanup(hw);
2458 csio_evtq_stop(hw);
2459 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2460 csio_evtq_flush(hw);
2461 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2462 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2463 break;
2464
2465 case CSIO_HWE_FATAL:
2466 csio_set_state(&hw->sm, csio_hws_uninit);
2467 break;
2468
2469 default:
2470 CSIO_INC_STATS(hw, n_evt_unexp);
2471 break;
2472 }
2473 }
2474
2475 /*
2476 * csio_hws_quiescing - Quiescing state
2477 * @hw - HW module
2478 * @evt - Event
2479 *
2480 */
2481 static void
2482 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2483 {
2484 hw->prev_evt = hw->cur_evt;
2485 hw->cur_evt = evt;
2486 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2487
2488 switch (evt) {
2489 case CSIO_HWE_QUIESCED:
2490 switch (hw->evtflag) {
2491 case CSIO_HWE_FW_DLOAD:
2492 csio_set_state(&hw->sm, csio_hws_resetting);
2493 /* Download firmware */
2494 /* Fall through */
2495
2496 case CSIO_HWE_HBA_RESET:
2497 csio_set_state(&hw->sm, csio_hws_resetting);
2498 /* Start reset of the HBA */
2499 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2500 csio_wr_destroy_queues(hw, false);
2501 csio_do_reset(hw, false);
2502 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2503 break;
2504
2505 case CSIO_HWE_PCI_REMOVE:
2506 csio_set_state(&hw->sm, csio_hws_removing);
2507 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2508 csio_wr_destroy_queues(hw, true);
2509 /* Now send the bye command */
2510 csio_do_bye(hw);
2511 break;
2512
2513 case CSIO_HWE_SUSPEND:
2514 csio_set_state(&hw->sm, csio_hws_quiesced);
2515 break;
2516
2517 case CSIO_HWE_PCIERR_DETECTED:
2518 csio_set_state(&hw->sm, csio_hws_pcierr);
2519 csio_wr_destroy_queues(hw, false);
2520 break;
2521
2522 default:
2523 CSIO_INC_STATS(hw, n_evt_unexp);
2524 break;
2525
2526 }
2527 break;
2528
2529 default:
2530 CSIO_INC_STATS(hw, n_evt_unexp);
2531 break;
2532 }
2533 }
2534
2535 /*
2536 * csio_hws_quiesced - Quiesced state
2537 * @hw - HW module
2538 * @evt - Event
2539 *
2540 */
2541 static void
2542 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2543 {
2544 hw->prev_evt = hw->cur_evt;
2545 hw->cur_evt = evt;
2546 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2547
2548 switch (evt) {
2549 case CSIO_HWE_RESUME:
2550 csio_set_state(&hw->sm, csio_hws_configuring);
2551 csio_hw_configure(hw);
2552 break;
2553
2554 default:
2555 CSIO_INC_STATS(hw, n_evt_unexp);
2556 break;
2557 }
2558 }
2559
2560 /*
2561 * csio_hws_resetting - HW Resetting state
2562 * @hw - HW module
2563 * @evt - Event
2564 *
2565 */
2566 static void
2567 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2568 {
2569 hw->prev_evt = hw->cur_evt;
2570 hw->cur_evt = evt;
2571 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2572
2573 switch (evt) {
2574 case CSIO_HWE_HBA_RESET_DONE:
2575 csio_evtq_start(hw);
2576 csio_set_state(&hw->sm, csio_hws_configuring);
2577 csio_hw_configure(hw);
2578 break;
2579
2580 default:
2581 CSIO_INC_STATS(hw, n_evt_unexp);
2582 break;
2583 }
2584 }
2585
2586 /*
2587 * csio_hws_removing - PCI Hotplug removing state
2588 * @hw - HW module
2589 * @evt - Event
2590 *
2591 */
2592 static void
2593 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2594 {
2595 hw->prev_evt = hw->cur_evt;
2596 hw->cur_evt = evt;
2597 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2598
2599 switch (evt) {
2600 case CSIO_HWE_HBA_RESET:
2601 if (!csio_is_hw_master(hw))
2602 break;
2603 /*
2604 * The BYE should have alerady been issued, so we cant
2605 * use the mailbox interface. Hence we use the PL_RST
2606 * register directly.
2607 */
2608 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2609 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2610 mdelay(2000);
2611 break;
2612
2613 /* Should never receive any new events */
2614 default:
2615 CSIO_INC_STATS(hw, n_evt_unexp);
2616 break;
2617
2618 }
2619 }
2620
2621 /*
2622 * csio_hws_pcierr - PCI Error state
2623 * @hw - HW module
2624 * @evt - Event
2625 *
2626 */
2627 static void
2628 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2629 {
2630 hw->prev_evt = hw->cur_evt;
2631 hw->cur_evt = evt;
2632 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2633
2634 switch (evt) {
2635 case CSIO_HWE_PCIERR_SLOT_RESET:
2636 csio_evtq_start(hw);
2637 csio_set_state(&hw->sm, csio_hws_configuring);
2638 csio_hw_configure(hw);
2639 break;
2640
2641 default:
2642 CSIO_INC_STATS(hw, n_evt_unexp);
2643 break;
2644 }
2645 }
2646
2647 /*****************************************************************************/
2648 /* END: HW SM */
2649 /*****************************************************************************/
2650
2651 /*
2652 * csio_handle_intr_status - table driven interrupt handler
2653 * @hw: HW instance
2654 * @reg: the interrupt status register to process
2655 * @acts: table of interrupt actions
2656 *
2657 * A table driven interrupt handler that applies a set of masks to an
2658 * interrupt status word and performs the corresponding actions if the
2659 * interrupts described by the mask have occured. The actions include
2660 * optionally emitting a warning or alert message. The table is terminated
2661 * by an entry specifying mask 0. Returns the number of fatal interrupt
2662 * conditions.
2663 */
2664 int
2665 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2666 const struct intr_info *acts)
2667 {
2668 int fatal = 0;
2669 unsigned int mask = 0;
2670 unsigned int status = csio_rd_reg32(hw, reg);
2671
2672 for ( ; acts->mask; ++acts) {
2673 if (!(status & acts->mask))
2674 continue;
2675 if (acts->fatal) {
2676 fatal++;
2677 csio_fatal(hw, "Fatal %s (0x%x)\n",
2678 acts->msg, status & acts->mask);
2679 } else if (acts->msg)
2680 csio_info(hw, "%s (0x%x)\n",
2681 acts->msg, status & acts->mask);
2682 mask |= acts->mask;
2683 }
2684 status &= mask;
2685 if (status) /* clear processed interrupts */
2686 csio_wr_reg32(hw, status, reg);
2687 return fatal;
2688 }
2689
2690 /*
2691 * TP interrupt handler.
2692 */
2693 static void csio_tp_intr_handler(struct csio_hw *hw)
2694 {
2695 static struct intr_info tp_intr_info[] = {
2696 { 0x3fffffff, "TP parity error", -1, 1 },
2697 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2698 { 0, NULL, 0, 0 }
2699 };
2700
2701 if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2702 csio_hw_fatal_err(hw);
2703 }
2704
2705 /*
2706 * SGE interrupt handler.
2707 */
2708 static void csio_sge_intr_handler(struct csio_hw *hw)
2709 {
2710 uint64_t v;
2711
2712 static struct intr_info sge_intr_info[] = {
2713 { ERR_CPL_EXCEED_IQE_SIZE_F,
2714 "SGE received CPL exceeding IQE size", -1, 1 },
2715 { ERR_INVALID_CIDX_INC_F,
2716 "SGE GTS CIDX increment too large", -1, 0 },
2717 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2718 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2719 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2720 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2721 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2722 0 },
2723 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2724 0 },
2725 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2726 0 },
2727 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2728 0 },
2729 { ERR_ING_CTXT_PRIO_F,
2730 "SGE too many priority ingress contexts", -1, 0 },
2731 { ERR_EGR_CTXT_PRIO_F,
2732 "SGE too many priority egress contexts", -1, 0 },
2733 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2734 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2735 { 0, NULL, 0, 0 }
2736 };
2737
2738 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2739 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2740 if (v) {
2741 csio_fatal(hw, "SGE parity error (%#llx)\n",
2742 (unsigned long long)v);
2743 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2744 SGE_INT_CAUSE1_A);
2745 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2746 }
2747
2748 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2749
2750 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2751 v != 0)
2752 csio_hw_fatal_err(hw);
2753 }
2754
2755 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2756 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2757 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2758 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2759
2760 /*
2761 * CIM interrupt handler.
2762 */
2763 static void csio_cim_intr_handler(struct csio_hw *hw)
2764 {
2765 static struct intr_info cim_intr_info[] = {
2766 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2767 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2768 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2769 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2770 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2771 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2772 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2773 { 0, NULL, 0, 0 }
2774 };
2775 static struct intr_info cim_upintr_info[] = {
2776 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2777 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2778 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2779 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2780 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2781 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2782 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2783 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2784 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2785 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2786 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2787 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2788 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2789 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2790 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2791 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2792 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2793 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2794 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2795 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2796 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2797 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2798 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2799 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2800 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2801 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2802 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2803 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2804 { 0, NULL, 0, 0 }
2805 };
2806
2807 int fat;
2808
2809 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2810 cim_intr_info) +
2811 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2812 cim_upintr_info);
2813 if (fat)
2814 csio_hw_fatal_err(hw);
2815 }
2816
2817 /*
2818 * ULP RX interrupt handler.
2819 */
2820 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2821 {
2822 static struct intr_info ulprx_intr_info[] = {
2823 { 0x1800000, "ULPRX context error", -1, 1 },
2824 { 0x7fffff, "ULPRX parity error", -1, 1 },
2825 { 0, NULL, 0, 0 }
2826 };
2827
2828 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2829 csio_hw_fatal_err(hw);
2830 }
2831
2832 /*
2833 * ULP TX interrupt handler.
2834 */
2835 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2836 {
2837 static struct intr_info ulptx_intr_info[] = {
2838 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2839 0 },
2840 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2841 0 },
2842 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2843 0 },
2844 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2845 0 },
2846 { 0xfffffff, "ULPTX parity error", -1, 1 },
2847 { 0, NULL, 0, 0 }
2848 };
2849
2850 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2851 csio_hw_fatal_err(hw);
2852 }
2853
2854 /*
2855 * PM TX interrupt handler.
2856 */
2857 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2858 {
2859 static struct intr_info pmtx_intr_info[] = {
2860 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2861 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2862 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2863 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2864 { 0xffffff0, "PMTX framing error", -1, 1 },
2865 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2866 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2867 1 },
2868 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2869 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2870 { 0, NULL, 0, 0 }
2871 };
2872
2873 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2874 csio_hw_fatal_err(hw);
2875 }
2876
2877 /*
2878 * PM RX interrupt handler.
2879 */
2880 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2881 {
2882 static struct intr_info pmrx_intr_info[] = {
2883 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2884 { 0x3ffff0, "PMRX framing error", -1, 1 },
2885 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2886 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2887 1 },
2888 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2889 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2890 { 0, NULL, 0, 0 }
2891 };
2892
2893 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2894 csio_hw_fatal_err(hw);
2895 }
2896
2897 /*
2898 * CPL switch interrupt handler.
2899 */
2900 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2901 {
2902 static struct intr_info cplsw_intr_info[] = {
2903 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2904 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2905 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2906 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2907 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2908 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2909 { 0, NULL, 0, 0 }
2910 };
2911
2912 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2913 csio_hw_fatal_err(hw);
2914 }
2915
2916 /*
2917 * LE interrupt handler.
2918 */
2919 static void csio_le_intr_handler(struct csio_hw *hw)
2920 {
2921 static struct intr_info le_intr_info[] = {
2922 { LIPMISS_F, "LE LIP miss", -1, 0 },
2923 { LIP0_F, "LE 0 LIP error", -1, 0 },
2924 { PARITYERR_F, "LE parity error", -1, 1 },
2925 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2926 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
2927 { 0, NULL, 0, 0 }
2928 };
2929
2930 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, le_intr_info))
2931 csio_hw_fatal_err(hw);
2932 }
2933
2934 /*
2935 * MPS interrupt handler.
2936 */
2937 static void csio_mps_intr_handler(struct csio_hw *hw)
2938 {
2939 static struct intr_info mps_rx_intr_info[] = {
2940 { 0xffffff, "MPS Rx parity error", -1, 1 },
2941 { 0, NULL, 0, 0 }
2942 };
2943 static struct intr_info mps_tx_intr_info[] = {
2944 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
2945 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2946 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
2947 -1, 1 },
2948 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
2949 -1, 1 },
2950 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
2951 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
2952 { FRMERR_F, "MPS Tx framing error", -1, 1 },
2953 { 0, NULL, 0, 0 }
2954 };
2955 static struct intr_info mps_trc_intr_info[] = {
2956 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
2957 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
2958 -1, 1 },
2959 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
2960 { 0, NULL, 0, 0 }
2961 };
2962 static struct intr_info mps_stat_sram_intr_info[] = {
2963 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2964 { 0, NULL, 0, 0 }
2965 };
2966 static struct intr_info mps_stat_tx_intr_info[] = {
2967 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2968 { 0, NULL, 0, 0 }
2969 };
2970 static struct intr_info mps_stat_rx_intr_info[] = {
2971 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2972 { 0, NULL, 0, 0 }
2973 };
2974 static struct intr_info mps_cls_intr_info[] = {
2975 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
2976 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
2977 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
2978 { 0, NULL, 0, 0 }
2979 };
2980
2981 int fat;
2982
2983 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
2984 mps_rx_intr_info) +
2985 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
2986 mps_tx_intr_info) +
2987 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
2988 mps_trc_intr_info) +
2989 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
2990 mps_stat_sram_intr_info) +
2991 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
2992 mps_stat_tx_intr_info) +
2993 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
2994 mps_stat_rx_intr_info) +
2995 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
2996 mps_cls_intr_info);
2997
2998 csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
2999 csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
3000 if (fat)
3001 csio_hw_fatal_err(hw);
3002 }
3003
3004 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3005 ECC_UE_INT_CAUSE_F)
3006
3007 /*
3008 * EDC/MC interrupt handler.
3009 */
3010 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3011 {
3012 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3013
3014 unsigned int addr, cnt_addr, v;
3015
3016 if (idx <= MEM_EDC1) {
3017 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3018 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3019 } else {
3020 addr = MC_INT_CAUSE_A;
3021 cnt_addr = MC_ECC_STATUS_A;
3022 }
3023
3024 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3025 if (v & PERR_INT_CAUSE_F)
3026 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3027 if (v & ECC_CE_INT_CAUSE_F) {
3028 uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3029
3030 csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3031 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3032 cnt, name[idx], cnt > 1 ? "s" : "");
3033 }
3034 if (v & ECC_UE_INT_CAUSE_F)
3035 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3036
3037 csio_wr_reg32(hw, v, addr);
3038 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3039 csio_hw_fatal_err(hw);
3040 }
3041
3042 /*
3043 * MA interrupt handler.
3044 */
3045 static void csio_ma_intr_handler(struct csio_hw *hw)
3046 {
3047 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3048
3049 if (status & MEM_PERR_INT_CAUSE_F)
3050 csio_fatal(hw, "MA parity error, parity status %#x\n",
3051 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3052 if (status & MEM_WRAP_INT_CAUSE_F) {
3053 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3054 csio_fatal(hw,
3055 "MA address wrap-around error by client %u to address %#x\n",
3056 MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3057 }
3058 csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3059 csio_hw_fatal_err(hw);
3060 }
3061
3062 /*
3063 * SMB interrupt handler.
3064 */
3065 static void csio_smb_intr_handler(struct csio_hw *hw)
3066 {
3067 static struct intr_info smb_intr_info[] = {
3068 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3069 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3070 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3071 { 0, NULL, 0, 0 }
3072 };
3073
3074 if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3075 csio_hw_fatal_err(hw);
3076 }
3077
3078 /*
3079 * NC-SI interrupt handler.
3080 */
3081 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3082 {
3083 static struct intr_info ncsi_intr_info[] = {
3084 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3085 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3086 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3087 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3088 { 0, NULL, 0, 0 }
3089 };
3090
3091 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3092 csio_hw_fatal_err(hw);
3093 }
3094
3095 /*
3096 * XGMAC interrupt handler.
3097 */
3098 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3099 {
3100 uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3101
3102 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3103 if (!v)
3104 return;
3105
3106 if (v & TXFIFO_PRTY_ERR_F)
3107 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3108 if (v & RXFIFO_PRTY_ERR_F)
3109 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3110 csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3111 csio_hw_fatal_err(hw);
3112 }
3113
3114 /*
3115 * PL interrupt handler.
3116 */
3117 static void csio_pl_intr_handler(struct csio_hw *hw)
3118 {
3119 static struct intr_info pl_intr_info[] = {
3120 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3121 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3122 { 0, NULL, 0, 0 }
3123 };
3124
3125 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3126 csio_hw_fatal_err(hw);
3127 }
3128
3129 /*
3130 * csio_hw_slow_intr_handler - control path interrupt handler
3131 * @hw: HW module
3132 *
3133 * Interrupt handler for non-data global interrupt events, e.g., errors.
3134 * The designation 'slow' is because it involves register reads, while
3135 * data interrupts typically don't involve any MMIOs.
3136 */
3137 int
3138 csio_hw_slow_intr_handler(struct csio_hw *hw)
3139 {
3140 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3141
3142 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3143 CSIO_INC_STATS(hw, n_plint_unexp);
3144 return 0;
3145 }
3146
3147 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3148
3149 CSIO_INC_STATS(hw, n_plint_cnt);
3150
3151 if (cause & CIM_F)
3152 csio_cim_intr_handler(hw);
3153
3154 if (cause & MPS_F)
3155 csio_mps_intr_handler(hw);
3156
3157 if (cause & NCSI_F)
3158 csio_ncsi_intr_handler(hw);
3159
3160 if (cause & PL_F)
3161 csio_pl_intr_handler(hw);
3162
3163 if (cause & SMB_F)
3164 csio_smb_intr_handler(hw);
3165
3166 if (cause & XGMAC0_F)
3167 csio_xgmac_intr_handler(hw, 0);
3168
3169 if (cause & XGMAC1_F)
3170 csio_xgmac_intr_handler(hw, 1);
3171
3172 if (cause & XGMAC_KR0_F)
3173 csio_xgmac_intr_handler(hw, 2);
3174
3175 if (cause & XGMAC_KR1_F)
3176 csio_xgmac_intr_handler(hw, 3);
3177
3178 if (cause & PCIE_F)
3179 hw->chip_ops->chip_pcie_intr_handler(hw);
3180
3181 if (cause & MC_F)
3182 csio_mem_intr_handler(hw, MEM_MC);
3183
3184 if (cause & EDC0_F)
3185 csio_mem_intr_handler(hw, MEM_EDC0);
3186
3187 if (cause & EDC1_F)
3188 csio_mem_intr_handler(hw, MEM_EDC1);
3189
3190 if (cause & LE_F)
3191 csio_le_intr_handler(hw);
3192
3193 if (cause & TP_F)
3194 csio_tp_intr_handler(hw);
3195
3196 if (cause & MA_F)
3197 csio_ma_intr_handler(hw);
3198
3199 if (cause & PM_TX_F)
3200 csio_pmtx_intr_handler(hw);
3201
3202 if (cause & PM_RX_F)
3203 csio_pmrx_intr_handler(hw);
3204
3205 if (cause & ULP_RX_F)
3206 csio_ulprx_intr_handler(hw);
3207
3208 if (cause & CPL_SWITCH_F)
3209 csio_cplsw_intr_handler(hw);
3210
3211 if (cause & SGE_F)
3212 csio_sge_intr_handler(hw);
3213
3214 if (cause & ULP_TX_F)
3215 csio_ulptx_intr_handler(hw);
3216
3217 /* Clear the interrupts just processed for which we are the master. */
3218 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3219 csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3220
3221 return 1;
3222 }
3223
3224 /*****************************************************************************
3225 * HW <--> mailbox interfacing routines.
3226 ****************************************************************************/
3227 /*
3228 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3229 *
3230 * @data: Private data pointer.
3231 *
3232 * Called from worker thread context.
3233 */
3234 static void
3235 csio_mberr_worker(void *data)
3236 {
3237 struct csio_hw *hw = (struct csio_hw *)data;
3238 struct csio_mbm *mbm = &hw->mbm;
3239 LIST_HEAD(cbfn_q);
3240 struct csio_mb *mbp_next;
3241 int rv;
3242
3243 del_timer_sync(&mbm->timer);
3244
3245 spin_lock_irq(&hw->lock);
3246 if (list_empty(&mbm->cbfn_q)) {
3247 spin_unlock_irq(&hw->lock);
3248 return;
3249 }
3250
3251 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3252 mbm->stats.n_cbfnq = 0;
3253
3254 /* Try to start waiting mailboxes */
3255 if (!list_empty(&mbm->req_q)) {
3256 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3257 list_del_init(&mbp_next->list);
3258
3259 rv = csio_mb_issue(hw, mbp_next);
3260 if (rv != 0)
3261 list_add_tail(&mbp_next->list, &mbm->req_q);
3262 else
3263 CSIO_DEC_STATS(mbm, n_activeq);
3264 }
3265 spin_unlock_irq(&hw->lock);
3266
3267 /* Now callback completions */
3268 csio_mb_completions(hw, &cbfn_q);
3269 }
3270
3271 /*
3272 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3273 *
3274 * @data: private data pointer
3275 *
3276 **/
3277 static void
3278 csio_hw_mb_timer(uintptr_t data)
3279 {
3280 struct csio_hw *hw = (struct csio_hw *)data;
3281 struct csio_mb *mbp = NULL;
3282
3283 spin_lock_irq(&hw->lock);
3284 mbp = csio_mb_tmo_handler(hw);
3285 spin_unlock_irq(&hw->lock);
3286
3287 /* Call back the function for the timed-out Mailbox */
3288 if (mbp)
3289 mbp->mb_cbfn(hw, mbp);
3290
3291 }
3292
3293 /*
3294 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3295 * @hw: HW module
3296 *
3297 * Called with lock held, should exit with lock held.
3298 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3299 * into a local queue. Drops lock and calls the completions. Holds
3300 * lock and returns.
3301 */
3302 static void
3303 csio_hw_mbm_cleanup(struct csio_hw *hw)
3304 {
3305 LIST_HEAD(cbfn_q);
3306
3307 csio_mb_cancel_all(hw, &cbfn_q);
3308
3309 spin_unlock_irq(&hw->lock);
3310 csio_mb_completions(hw, &cbfn_q);
3311 spin_lock_irq(&hw->lock);
3312 }
3313
3314 /*****************************************************************************
3315 * Event handling
3316 ****************************************************************************/
3317 int
3318 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3319 uint16_t len)
3320 {
3321 struct csio_evt_msg *evt_entry = NULL;
3322
3323 if (type >= CSIO_EVT_MAX)
3324 return -EINVAL;
3325
3326 if (len > CSIO_EVT_MSG_SIZE)
3327 return -EINVAL;
3328
3329 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3330 return -EINVAL;
3331
3332 if (list_empty(&hw->evt_free_q)) {
3333 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3334 type, len);
3335 return -ENOMEM;
3336 }
3337
3338 evt_entry = list_first_entry(&hw->evt_free_q,
3339 struct csio_evt_msg, list);
3340 list_del_init(&evt_entry->list);
3341
3342 /* copy event msg and queue the event */
3343 evt_entry->type = type;
3344 memcpy((void *)evt_entry->data, evt_msg, len);
3345 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3346
3347 CSIO_DEC_STATS(hw, n_evt_freeq);
3348 CSIO_INC_STATS(hw, n_evt_activeq);
3349
3350 return 0;
3351 }
3352
3353 static int
3354 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3355 uint16_t len, bool msg_sg)
3356 {
3357 struct csio_evt_msg *evt_entry = NULL;
3358 struct csio_fl_dma_buf *fl_sg;
3359 uint32_t off = 0;
3360 unsigned long flags;
3361 int n, ret = 0;
3362
3363 if (type >= CSIO_EVT_MAX)
3364 return -EINVAL;
3365
3366 if (len > CSIO_EVT_MSG_SIZE)
3367 return -EINVAL;
3368
3369 spin_lock_irqsave(&hw->lock, flags);
3370 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3371 ret = -EINVAL;
3372 goto out;
3373 }
3374
3375 if (list_empty(&hw->evt_free_q)) {
3376 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3377 type, len);
3378 ret = -ENOMEM;
3379 goto out;
3380 }
3381
3382 evt_entry = list_first_entry(&hw->evt_free_q,
3383 struct csio_evt_msg, list);
3384 list_del_init(&evt_entry->list);
3385
3386 /* copy event msg and queue the event */
3387 evt_entry->type = type;
3388
3389 /* If Payload in SG list*/
3390 if (msg_sg) {
3391 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3392 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3393 memcpy((void *)((uintptr_t)evt_entry->data + off),
3394 fl_sg->flbufs[n].vaddr,
3395 fl_sg->flbufs[n].len);
3396 off += fl_sg->flbufs[n].len;
3397 }
3398 } else
3399 memcpy((void *)evt_entry->data, evt_msg, len);
3400
3401 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3402 CSIO_DEC_STATS(hw, n_evt_freeq);
3403 CSIO_INC_STATS(hw, n_evt_activeq);
3404 out:
3405 spin_unlock_irqrestore(&hw->lock, flags);
3406 return ret;
3407 }
3408
3409 static void
3410 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3411 {
3412 if (evt_entry) {
3413 spin_lock_irq(&hw->lock);
3414 list_del_init(&evt_entry->list);
3415 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3416 CSIO_DEC_STATS(hw, n_evt_activeq);
3417 CSIO_INC_STATS(hw, n_evt_freeq);
3418 spin_unlock_irq(&hw->lock);
3419 }
3420 }
3421
3422 void
3423 csio_evtq_flush(struct csio_hw *hw)
3424 {
3425 uint32_t count;
3426 count = 30;
3427 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3428 spin_unlock_irq(&hw->lock);
3429 msleep(2000);
3430 spin_lock_irq(&hw->lock);
3431 }
3432
3433 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3434 }
3435
3436 static void
3437 csio_evtq_stop(struct csio_hw *hw)
3438 {
3439 hw->flags |= CSIO_HWF_FWEVT_STOP;
3440 }
3441
3442 static void
3443 csio_evtq_start(struct csio_hw *hw)
3444 {
3445 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3446 }
3447
3448 static void
3449 csio_evtq_cleanup(struct csio_hw *hw)
3450 {
3451 struct list_head *evt_entry, *next_entry;
3452
3453 /* Release outstanding events from activeq to freeq*/
3454 if (!list_empty(&hw->evt_active_q))
3455 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3456
3457 hw->stats.n_evt_activeq = 0;
3458 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3459
3460 /* Freeup event entry */
3461 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3462 kfree(evt_entry);
3463 CSIO_DEC_STATS(hw, n_evt_freeq);
3464 }
3465
3466 hw->stats.n_evt_freeq = 0;
3467 }
3468
3469
3470 static void
3471 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3472 struct csio_fl_dma_buf *flb, void *priv)
3473 {
3474 __u8 op;
3475 void *msg = NULL;
3476 uint32_t msg_len = 0;
3477 bool msg_sg = 0;
3478
3479 op = ((struct rss_header *) wr)->opcode;
3480 if (op == CPL_FW6_PLD) {
3481 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3482 if (!flb || !flb->totlen) {
3483 CSIO_INC_STATS(hw, n_cpl_unexp);
3484 return;
3485 }
3486
3487 msg = (void *) flb;
3488 msg_len = flb->totlen;
3489 msg_sg = 1;
3490 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3491
3492 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3493 /* skip RSS header */
3494 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3495 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3496 sizeof(struct cpl_fw4_msg);
3497 } else {
3498 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3499 CSIO_INC_STATS(hw, n_cpl_unexp);
3500 return;
3501 }
3502
3503 /*
3504 * Enqueue event to EventQ. Events processing happens
3505 * in Event worker thread context
3506 */
3507 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3508 (uint16_t)msg_len, msg_sg))
3509 CSIO_INC_STATS(hw, n_evt_drop);
3510 }
3511
3512 void
3513 csio_evtq_worker(struct work_struct *work)
3514 {
3515 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3516 struct list_head *evt_entry, *next_entry;
3517 LIST_HEAD(evt_q);
3518 struct csio_evt_msg *evt_msg;
3519 struct cpl_fw6_msg *msg;
3520 struct csio_rnode *rn;
3521 int rv = 0;
3522 uint8_t evtq_stop = 0;
3523
3524 csio_dbg(hw, "event worker thread active evts#%d\n",
3525 hw->stats.n_evt_activeq);
3526
3527 spin_lock_irq(&hw->lock);
3528 while (!list_empty(&hw->evt_active_q)) {
3529 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3530 spin_unlock_irq(&hw->lock);
3531
3532 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3533 evt_msg = (struct csio_evt_msg *) evt_entry;
3534
3535 /* Drop events if queue is STOPPED */
3536 spin_lock_irq(&hw->lock);
3537 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3538 evtq_stop = 1;
3539 spin_unlock_irq(&hw->lock);
3540 if (evtq_stop) {
3541 CSIO_INC_STATS(hw, n_evt_drop);
3542 goto free_evt;
3543 }
3544
3545 switch (evt_msg->type) {
3546 case CSIO_EVT_FW:
3547 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3548
3549 if ((msg->opcode == CPL_FW6_MSG ||
3550 msg->opcode == CPL_FW4_MSG) &&
3551 !msg->type) {
3552 rv = csio_mb_fwevt_handler(hw,
3553 msg->data);
3554 if (!rv)
3555 break;
3556 /* Handle any remaining fw events */
3557 csio_fcoe_fwevt_handler(hw,
3558 msg->opcode, msg->data);
3559 } else if (msg->opcode == CPL_FW6_PLD) {
3560
3561 csio_fcoe_fwevt_handler(hw,
3562 msg->opcode, msg->data);
3563 } else {
3564 csio_warn(hw,
3565 "Unhandled FW msg op %x type %x\n",
3566 msg->opcode, msg->type);
3567 CSIO_INC_STATS(hw, n_evt_drop);
3568 }
3569 break;
3570
3571 case CSIO_EVT_MBX:
3572 csio_mberr_worker(hw);
3573 break;
3574
3575 case CSIO_EVT_DEV_LOSS:
3576 memcpy(&rn, evt_msg->data, sizeof(rn));
3577 csio_rnode_devloss_handler(rn);
3578 break;
3579
3580 default:
3581 csio_warn(hw, "Unhandled event %x on evtq\n",
3582 evt_msg->type);
3583 CSIO_INC_STATS(hw, n_evt_unexp);
3584 break;
3585 }
3586 free_evt:
3587 csio_free_evt(hw, evt_msg);
3588 }
3589
3590 spin_lock_irq(&hw->lock);
3591 }
3592 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3593 spin_unlock_irq(&hw->lock);
3594 }
3595
3596 int
3597 csio_fwevtq_handler(struct csio_hw *hw)
3598 {
3599 int rv;
3600
3601 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3602 CSIO_INC_STATS(hw, n_int_stray);
3603 return -EINVAL;
3604 }
3605
3606 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3607 csio_process_fwevtq_entry, NULL);
3608 return rv;
3609 }
3610
3611 /****************************************************************************
3612 * Entry points
3613 ****************************************************************************/
3614
3615 /* Management module */
3616 /*
3617 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3618 * mgmt - mgmt module
3619 * @io_req - io request
3620 *
3621 * Return - 0:if given IO Req exists in active Q.
3622 * -EINVAL :if lookup fails.
3623 */
3624 int
3625 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3626 {
3627 struct list_head *tmp;
3628
3629 /* Lookup ioreq in the ACTIVEQ */
3630 list_for_each(tmp, &mgmtm->active_q) {
3631 if (io_req == (struct csio_ioreq *)tmp)
3632 return 0;
3633 }
3634 return -EINVAL;
3635 }
3636
3637 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3638
3639 /*
3640 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3641 * @data - Event data.
3642 *
3643 * Return - none.
3644 */
3645 static void
3646 csio_mgmt_tmo_handler(uintptr_t data)
3647 {
3648 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3649 struct list_head *tmp;
3650 struct csio_ioreq *io_req;
3651
3652 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3653
3654 spin_lock_irq(&mgmtm->hw->lock);
3655
3656 list_for_each(tmp, &mgmtm->active_q) {
3657 io_req = (struct csio_ioreq *) tmp;
3658 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3659
3660 if (!io_req->tmo) {
3661 /* Dequeue the request from retry Q. */
3662 tmp = csio_list_prev(tmp);
3663 list_del_init(&io_req->sm.sm_list);
3664 if (io_req->io_cbfn) {
3665 /* io_req will be freed by completion handler */
3666 io_req->wr_status = -ETIMEDOUT;
3667 io_req->io_cbfn(mgmtm->hw, io_req);
3668 } else {
3669 CSIO_DB_ASSERT(0);
3670 }
3671 }
3672 }
3673
3674 /* If retry queue is not empty, re-arm timer */
3675 if (!list_empty(&mgmtm->active_q))
3676 mod_timer(&mgmtm->mgmt_timer,
3677 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3678 spin_unlock_irq(&mgmtm->hw->lock);
3679 }
3680
3681 static void
3682 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3683 {
3684 struct csio_hw *hw = mgmtm->hw;
3685 struct csio_ioreq *io_req;
3686 struct list_head *tmp;
3687 uint32_t count;
3688
3689 count = 30;
3690 /* Wait for all outstanding req to complete gracefully */
3691 while ((!list_empty(&mgmtm->active_q)) && count--) {
3692 spin_unlock_irq(&hw->lock);
3693 msleep(2000);
3694 spin_lock_irq(&hw->lock);
3695 }
3696
3697 /* release outstanding req from ACTIVEQ */
3698 list_for_each(tmp, &mgmtm->active_q) {
3699 io_req = (struct csio_ioreq *) tmp;
3700 tmp = csio_list_prev(tmp);
3701 list_del_init(&io_req->sm.sm_list);
3702 mgmtm->stats.n_active--;
3703 if (io_req->io_cbfn) {
3704 /* io_req will be freed by completion handler */
3705 io_req->wr_status = -ETIMEDOUT;
3706 io_req->io_cbfn(mgmtm->hw, io_req);
3707 }
3708 }
3709 }
3710
3711 /*
3712 * csio_mgmt_init - Mgmt module init entry point
3713 * @mgmtsm - mgmt module
3714 * @hw - HW module
3715 *
3716 * Initialize mgmt timer, resource wait queue, active queue,
3717 * completion q. Allocate Egress and Ingress
3718 * WR queues and save off the queue index returned by the WR
3719 * module for future use. Allocate and save off mgmt reqs in the
3720 * mgmt_req_freelist for future use. Make sure their SM is initialized
3721 * to uninit state.
3722 * Returns: 0 - on success
3723 * -ENOMEM - on error.
3724 */
3725 static int
3726 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3727 {
3728 struct timer_list *timer = &mgmtm->mgmt_timer;
3729
3730 init_timer(timer);
3731 timer->function = csio_mgmt_tmo_handler;
3732 timer->data = (unsigned long)mgmtm;
3733
3734 INIT_LIST_HEAD(&mgmtm->active_q);
3735 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3736
3737 mgmtm->hw = hw;
3738 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3739
3740 return 0;
3741 }
3742
3743 /*
3744 * csio_mgmtm_exit - MGMT module exit entry point
3745 * @mgmtsm - mgmt module
3746 *
3747 * This function called during MGMT module uninit.
3748 * Stop timers, free ioreqs allocated.
3749 * Returns: None
3750 *
3751 */
3752 static void
3753 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3754 {
3755 del_timer_sync(&mgmtm->mgmt_timer);
3756 }
3757
3758
3759 /**
3760 * csio_hw_start - Kicks off the HW State machine
3761 * @hw: Pointer to HW module.
3762 *
3763 * It is assumed that the initialization is a synchronous operation.
3764 * So when we return afer posting the event, the HW SM should be in
3765 * the ready state, if there were no errors during init.
3766 */
3767 int
3768 csio_hw_start(struct csio_hw *hw)
3769 {
3770 spin_lock_irq(&hw->lock);
3771 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3772 spin_unlock_irq(&hw->lock);
3773
3774 if (csio_is_hw_ready(hw))
3775 return 0;
3776 else
3777 return -EINVAL;
3778 }
3779
3780 int
3781 csio_hw_stop(struct csio_hw *hw)
3782 {
3783 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3784
3785 if (csio_is_hw_removing(hw))
3786 return 0;
3787 else
3788 return -EINVAL;
3789 }
3790
3791 /* Max reset retries */
3792 #define CSIO_MAX_RESET_RETRIES 3
3793
3794 /**
3795 * csio_hw_reset - Reset the hardware
3796 * @hw: HW module.
3797 *
3798 * Caller should hold lock across this function.
3799 */
3800 int
3801 csio_hw_reset(struct csio_hw *hw)
3802 {
3803 if (!csio_is_hw_master(hw))
3804 return -EPERM;
3805
3806 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3807 csio_dbg(hw, "Max hw reset attempts reached..");
3808 return -EINVAL;
3809 }
3810
3811 hw->rst_retries++;
3812 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3813
3814 if (csio_is_hw_ready(hw)) {
3815 hw->rst_retries = 0;
3816 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3817 return 0;
3818 } else
3819 return -EINVAL;
3820 }
3821
3822 /*
3823 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3824 * @hw: HW module.
3825 */
3826 static void
3827 csio_hw_get_device_id(struct csio_hw *hw)
3828 {
3829 /* Is the adapter device id cached already ?*/
3830 if (csio_is_dev_id_cached(hw))
3831 return;
3832
3833 /* Get the PCI vendor & device id */
3834 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3835 &hw->params.pci.vendor_id);
3836 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3837 &hw->params.pci.device_id);
3838
3839 csio_dev_id_cached(hw);
3840 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3841
3842 } /* csio_hw_get_device_id */
3843
3844 /*
3845 * csio_hw_set_description - Set the model, description of the hw.
3846 * @hw: HW module.
3847 * @ven_id: PCI Vendor ID
3848 * @dev_id: PCI Device ID
3849 */
3850 static void
3851 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3852 {
3853 uint32_t adap_type, prot_type;
3854
3855 if (ven_id == CSIO_VENDOR_ID) {
3856 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3857 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3858
3859 if (prot_type == CSIO_T5_FCOE_ASIC) {
3860 memcpy(hw->hw_ver,
3861 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3862 memcpy(hw->model_desc,
3863 csio_t5_fcoe_adapters[adap_type].description,
3864 32);
3865 } else {
3866 char tempName[32] = "Chelsio FCoE Controller";
3867 memcpy(hw->model_desc, tempName, 32);
3868 }
3869 }
3870 } /* csio_hw_set_description */
3871
3872 /**
3873 * csio_hw_init - Initialize HW module.
3874 * @hw: Pointer to HW module.
3875 *
3876 * Initialize the members of the HW module.
3877 */
3878 int
3879 csio_hw_init(struct csio_hw *hw)
3880 {
3881 int rv = -EINVAL;
3882 uint32_t i;
3883 uint16_t ven_id, dev_id;
3884 struct csio_evt_msg *evt_entry;
3885
3886 INIT_LIST_HEAD(&hw->sm.sm_list);
3887 csio_init_state(&hw->sm, csio_hws_uninit);
3888 spin_lock_init(&hw->lock);
3889 INIT_LIST_HEAD(&hw->sln_head);
3890
3891 /* Get the PCI vendor & device id */
3892 csio_hw_get_device_id(hw);
3893
3894 strcpy(hw->name, CSIO_HW_NAME);
3895
3896 /* Initialize the HW chip ops T5 specific ops */
3897 hw->chip_ops = &t5_ops;
3898
3899 /* Set the model & its description */
3900
3901 ven_id = hw->params.pci.vendor_id;
3902 dev_id = hw->params.pci.device_id;
3903
3904 csio_hw_set_description(hw, ven_id, dev_id);
3905
3906 /* Initialize default log level */
3907 hw->params.log_level = (uint32_t) csio_dbg_level;
3908
3909 csio_set_fwevt_intr_idx(hw, -1);
3910 csio_set_nondata_intr_idx(hw, -1);
3911
3912 /* Init all the modules: Mailbox, WorkRequest and Transport */
3913 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3914 goto err;
3915
3916 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3917 if (rv)
3918 goto err_mbm_exit;
3919
3920 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3921 if (rv)
3922 goto err_wrm_exit;
3923
3924 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3925 if (rv)
3926 goto err_scsim_exit;
3927 /* Pre-allocate evtq and initialize them */
3928 INIT_LIST_HEAD(&hw->evt_active_q);
3929 INIT_LIST_HEAD(&hw->evt_free_q);
3930 for (i = 0; i < csio_evtq_sz; i++) {
3931
3932 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3933 if (!evt_entry) {
3934 rv = -ENOMEM;
3935 csio_err(hw, "Failed to initialize eventq");
3936 goto err_evtq_cleanup;
3937 }
3938
3939 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3940 CSIO_INC_STATS(hw, n_evt_freeq);
3941 }
3942
3943 hw->dev_num = dev_num;
3944 dev_num++;
3945
3946 return 0;
3947
3948 err_evtq_cleanup:
3949 csio_evtq_cleanup(hw);
3950 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3951 err_scsim_exit:
3952 csio_scsim_exit(csio_hw_to_scsim(hw));
3953 err_wrm_exit:
3954 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3955 err_mbm_exit:
3956 csio_mbm_exit(csio_hw_to_mbm(hw));
3957 err:
3958 return rv;
3959 }
3960
3961 /**
3962 * csio_hw_exit - Un-initialize HW module.
3963 * @hw: Pointer to HW module.
3964 *
3965 */
3966 void
3967 csio_hw_exit(struct csio_hw *hw)
3968 {
3969 csio_evtq_cleanup(hw);
3970 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3971 csio_scsim_exit(csio_hw_to_scsim(hw));
3972 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3973 csio_mbm_exit(csio_hw_to_mbm(hw));
3974 }