]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/csiostor/csio_wr.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / csiostor / csio_wr.c
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
41
42 #include "csio_hw.h"
43 #include "csio_wr.h"
44 #include "csio_mb.h"
45 #include "csio_defs.h"
46
47 int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
48 static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
49
50 int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
51 static int csio_sge_timer_reg = 1;
52
53 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
54 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
55
56 static void
57 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
58 {
59 sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
60 reg * sizeof(uint32_t));
61 }
62
63 /* Free list buffer size */
64 static inline uint32_t
65 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
66 {
67 return sge->sge_fl_buf_size[buf->paddr & 0xF];
68 }
69
70 /* Size of the egress queue status page */
71 static inline uint32_t
72 csio_wr_qstat_pgsz(struct csio_hw *hw)
73 {
74 return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
75 }
76
77 /* Ring freelist doorbell */
78 static inline void
79 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
80 {
81 /*
82 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
83 * number of bytes in the freelist queue. This translates to atleast
84 * 8 freelist buffer pointers (since each pointer is 8 bytes).
85 */
86 if (flq->inc_idx >= 8) {
87 csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
88 PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
89 MYPF_REG(SGE_PF_KDOORBELL_A));
90 flq->inc_idx &= 7;
91 }
92 }
93
94 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
95 static void
96 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
97 {
98 csio_wr_reg32(hw, CIDXINC_V(0) |
99 INGRESSQID_V(iqid) |
100 TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
101 MYPF_REG(SGE_PF_GTS_A));
102 }
103
104 /*
105 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
106 * @hw: HW module.
107 * @flq: Freelist queue.
108 *
109 * Fill up freelist buffer entries with buffers of size specified
110 * in the size register.
111 *
112 */
113 static int
114 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
115 {
116 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
117 struct csio_sge *sge = &wrm->sge;
118 __be64 *d = (__be64 *)(flq->vstart);
119 struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
120 uint64_t paddr;
121 int sreg = flq->un.fl.sreg;
122 int n = flq->credits;
123
124 while (n--) {
125 buf->len = sge->sge_fl_buf_size[sreg];
126 buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
127 &buf->paddr);
128 if (!buf->vaddr) {
129 csio_err(hw, "Could only fill %d buffers!\n", n + 1);
130 return -ENOMEM;
131 }
132
133 paddr = buf->paddr | (sreg & 0xF);
134
135 *d++ = cpu_to_be64(paddr);
136 buf++;
137 }
138
139 return 0;
140 }
141
142 /*
143 * csio_wr_update_fl -
144 * @hw: HW module.
145 * @flq: Freelist queue.
146 *
147 *
148 */
149 static inline void
150 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
151 {
152
153 flq->inc_idx += n;
154 flq->pidx += n;
155 if (unlikely(flq->pidx >= flq->credits))
156 flq->pidx -= (uint16_t)flq->credits;
157
158 CSIO_INC_STATS(flq, n_flq_refill);
159 }
160
161 /*
162 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
163 * @hw: HW module
164 * @qsize: Size of the queue in bytes
165 * @wrsize: Since of WR in this queue, if fixed.
166 * @type: Type of queue (Ingress/Egress/Freelist)
167 * @owner: Module that owns this queue.
168 * @nflb: Number of freelist buffers for FL.
169 * @sreg: What is the FL buffer size register?
170 * @iq_int_handler: Ingress queue handler in INTx mode.
171 *
172 * This function allocates and sets up a queue for the caller
173 * of size qsize, aligned at the required boundary. This is subject to
174 * be free entries being available in the queue array. If one is found,
175 * it is initialized with the allocated queue, marked as being used (owner),
176 * and a handle returned to the caller in form of the queue's index
177 * into the q_arr array.
178 * If user has indicated a freelist (by specifying nflb > 0), create
179 * another queue (with its own index into q_arr) for the freelist. Allocate
180 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
181 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
182 * with its owning ingress queue.
183 */
184 int
185 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
186 uint16_t type, void *owner, uint32_t nflb, int sreg,
187 iq_handler_t iq_intx_handler)
188 {
189 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
190 struct csio_q *q, *flq;
191 int free_idx = wrm->free_qidx;
192 int ret_idx = free_idx;
193 uint32_t qsz;
194 int flq_idx;
195
196 if (free_idx >= wrm->num_q) {
197 csio_err(hw, "No more free queues.\n");
198 return -1;
199 }
200
201 switch (type) {
202 case CSIO_EGRESS:
203 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
204 break;
205 case CSIO_INGRESS:
206 switch (wrsize) {
207 case 16:
208 case 32:
209 case 64:
210 case 128:
211 break;
212 default:
213 csio_err(hw, "Invalid Ingress queue WR size:%d\n",
214 wrsize);
215 return -1;
216 }
217
218 /*
219 * Number of elements must be a multiple of 16
220 * So this includes status page size
221 */
222 qsz = ALIGN(qsize/wrsize, 16) * wrsize;
223
224 break;
225 case CSIO_FREELIST:
226 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
227 break;
228 default:
229 csio_err(hw, "Invalid queue type: 0x%x\n", type);
230 return -1;
231 }
232
233 q = wrm->q_arr[free_idx];
234
235 q->vstart = pci_zalloc_consistent(hw->pdev, qsz, &q->pstart);
236 if (!q->vstart) {
237 csio_err(hw,
238 "Failed to allocate DMA memory for "
239 "queue at id: %d size: %d\n", free_idx, qsize);
240 return -1;
241 }
242
243 q->type = type;
244 q->owner = owner;
245 q->pidx = q->cidx = q->inc_idx = 0;
246 q->size = qsz;
247 q->wr_sz = wrsize; /* If using fixed size WRs */
248
249 wrm->free_qidx++;
250
251 if (type == CSIO_INGRESS) {
252 /* Since queue area is set to zero */
253 q->un.iq.genbit = 1;
254
255 /*
256 * Ingress queue status page size is always the size of
257 * the ingress queue entry.
258 */
259 q->credits = (qsz - q->wr_sz) / q->wr_sz;
260 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
261 - q->wr_sz);
262
263 /* Allocate memory for FL if requested */
264 if (nflb > 0) {
265 flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
266 sizeof(__be64), CSIO_FREELIST,
267 owner, 0, sreg, NULL);
268 if (flq_idx == -1) {
269 csio_err(hw,
270 "Failed to allocate FL queue"
271 " for IQ idx:%d\n", free_idx);
272 return -1;
273 }
274
275 /* Associate the new FL with the Ingress quue */
276 q->un.iq.flq_idx = flq_idx;
277
278 flq = wrm->q_arr[q->un.iq.flq_idx];
279 flq->un.fl.bufs = kzalloc(flq->credits *
280 sizeof(struct csio_dma_buf),
281 GFP_KERNEL);
282 if (!flq->un.fl.bufs) {
283 csio_err(hw,
284 "Failed to allocate FL queue bufs"
285 " for IQ idx:%d\n", free_idx);
286 return -1;
287 }
288
289 flq->un.fl.packen = 0;
290 flq->un.fl.offset = 0;
291 flq->un.fl.sreg = sreg;
292
293 /* Fill up the free list buffers */
294 if (csio_wr_fill_fl(hw, flq))
295 return -1;
296
297 /*
298 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
299 * remains unpopulated,otherwise HW thinks
300 * FLQ is empty.
301 */
302 flq->pidx = flq->inc_idx = flq->credits - 8;
303 } else {
304 q->un.iq.flq_idx = -1;
305 }
306
307 /* Associate the IQ INTx handler. */
308 q->un.iq.iq_intx_handler = iq_intx_handler;
309
310 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
311
312 } else if (type == CSIO_EGRESS) {
313 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
314 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
315 - csio_wr_qstat_pgsz(hw));
316 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
317 } else { /* Freelist */
318 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
319 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
320 - csio_wr_qstat_pgsz(hw));
321 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
322 }
323
324 return ret_idx;
325 }
326
327 /*
328 * csio_wr_iq_create_rsp - Response handler for IQ creation.
329 * @hw: The HW module.
330 * @mbp: Mailbox.
331 * @iq_idx: Ingress queue that got created.
332 *
333 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
334 */
335 static int
336 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
337 {
338 struct csio_iq_params iqp;
339 enum fw_retval retval;
340 uint32_t iq_id;
341 int flq_idx;
342
343 memset(&iqp, 0, sizeof(struct csio_iq_params));
344
345 csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
346
347 if (retval != FW_SUCCESS) {
348 csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
349 mempool_free(mbp, hw->mb_mempool);
350 return -EINVAL;
351 }
352
353 csio_q_iqid(hw, iq_idx) = iqp.iqid;
354 csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
355 csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
356 csio_q_inc_idx(hw, iq_idx) = 0;
357
358 /* Actual iq-id. */
359 iq_id = iqp.iqid - hw->wrm.fw_iq_start;
360
361 /* Set the iq-id to iq map table. */
362 if (iq_id >= CSIO_MAX_IQ) {
363 csio_err(hw,
364 "Exceeding MAX_IQ(%d) supported!"
365 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
366 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
367 mempool_free(mbp, hw->mb_mempool);
368 return -EINVAL;
369 }
370 csio_q_set_intr_map(hw, iq_idx, iq_id);
371
372 /*
373 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
374 * ingress context of this queue. This will block interrupts to
375 * this queue until the next GTS write. Therefore, we do a
376 * 0-cidx increment GTS write for this queue just to clear the
377 * interrupt_sent bit. This will re-enable interrupts to this
378 * queue.
379 */
380 csio_wr_sge_intr_enable(hw, iqp.physiqid);
381
382 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
383 if (flq_idx != -1) {
384 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
385
386 csio_q_flid(hw, flq_idx) = iqp.fl0id;
387 csio_q_cidx(hw, flq_idx) = 0;
388 csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
389 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
390
391 /* Now update SGE about the buffers allocated during init */
392 csio_wr_ring_fldb(hw, flq);
393 }
394
395 mempool_free(mbp, hw->mb_mempool);
396
397 return 0;
398 }
399
400 /*
401 * csio_wr_iq_create - Configure an Ingress queue with FW.
402 * @hw: The HW module.
403 * @priv: Private data object.
404 * @iq_idx: Ingress queue index in the WR module.
405 * @vec: MSIX vector.
406 * @portid: PCIE Channel to be associated with this queue.
407 * @async: Is this a FW asynchronous message handling queue?
408 * @cbfn: Completion callback.
409 *
410 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
411 * with alloc/write bits set.
412 */
413 int
414 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
415 uint32_t vec, uint8_t portid, bool async,
416 void (*cbfn) (struct csio_hw *, struct csio_mb *))
417 {
418 struct csio_mb *mbp;
419 struct csio_iq_params iqp;
420 int flq_idx;
421
422 memset(&iqp, 0, sizeof(struct csio_iq_params));
423 csio_q_portid(hw, iq_idx) = portid;
424
425 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
426 if (!mbp) {
427 csio_err(hw, "IQ command out of memory!\n");
428 return -ENOMEM;
429 }
430
431 switch (hw->intr_mode) {
432 case CSIO_IM_INTX:
433 case CSIO_IM_MSI:
434 /* For interrupt forwarding queue only */
435 if (hw->intr_iq_idx == iq_idx)
436 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
437 else
438 iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
439 iqp.iqandstindex =
440 csio_q_physiqid(hw, hw->intr_iq_idx);
441 break;
442 case CSIO_IM_MSIX:
443 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
444 iqp.iqandstindex = (uint16_t)vec;
445 break;
446 case CSIO_IM_NONE:
447 mempool_free(mbp, hw->mb_mempool);
448 return -EINVAL;
449 }
450
451 /* Pass in the ingress queue cmd parameters */
452 iqp.pfn = hw->pfn;
453 iqp.vfn = 0;
454 iqp.iq_start = 1;
455 iqp.viid = 0;
456 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
457 iqp.iqasynch = async;
458 if (csio_intr_coalesce_cnt)
459 iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
460 else
461 iqp.iqanus = X_UPDATESCHEDULING_TIMER;
462 iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
463 iqp.iqpciech = portid;
464 iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
465
466 switch (csio_q_wr_sz(hw, iq_idx)) {
467 case 16:
468 iqp.iqesize = 0; break;
469 case 32:
470 iqp.iqesize = 1; break;
471 case 64:
472 iqp.iqesize = 2; break;
473 case 128:
474 iqp.iqesize = 3; break;
475 }
476
477 iqp.iqsize = csio_q_size(hw, iq_idx) /
478 csio_q_wr_sz(hw, iq_idx);
479 iqp.iqaddr = csio_q_pstart(hw, iq_idx);
480
481 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
482 if (flq_idx != -1) {
483 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
484 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
485
486 iqp.fl0paden = 1;
487 iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
488 iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
489 iqp.fl0fbmax = ((chip == CHELSIO_T5) ?
490 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
491 iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
492 iqp.fl0addr = csio_q_pstart(hw, flq_idx);
493 }
494
495 csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
496
497 if (csio_mb_issue(hw, mbp)) {
498 csio_err(hw, "Issue of IQ cmd failed!\n");
499 mempool_free(mbp, hw->mb_mempool);
500 return -EINVAL;
501 }
502
503 if (cbfn != NULL)
504 return 0;
505
506 return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
507 }
508
509 /*
510 * csio_wr_eq_create_rsp - Response handler for EQ creation.
511 * @hw: The HW module.
512 * @mbp: Mailbox.
513 * @eq_idx: Egress queue that got created.
514 *
515 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
516 */
517 static int
518 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
519 {
520 struct csio_eq_params eqp;
521 enum fw_retval retval;
522
523 memset(&eqp, 0, sizeof(struct csio_eq_params));
524
525 csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
526
527 if (retval != FW_SUCCESS) {
528 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
529 mempool_free(mbp, hw->mb_mempool);
530 return -EINVAL;
531 }
532
533 csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
534 csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
535 csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
536 csio_q_inc_idx(hw, eq_idx) = 0;
537
538 mempool_free(mbp, hw->mb_mempool);
539
540 return 0;
541 }
542
543 /*
544 * csio_wr_eq_create - Configure an Egress queue with FW.
545 * @hw: HW module.
546 * @priv: Private data.
547 * @eq_idx: Egress queue index in the WR module.
548 * @iq_idx: Associated ingress queue index.
549 * @cbfn: Completion callback.
550 *
551 * This API configures a offload egress queue with FW by issuing a
552 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
553 */
554 int
555 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
556 int iq_idx, uint8_t portid,
557 void (*cbfn) (struct csio_hw *, struct csio_mb *))
558 {
559 struct csio_mb *mbp;
560 struct csio_eq_params eqp;
561
562 memset(&eqp, 0, sizeof(struct csio_eq_params));
563
564 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
565 if (!mbp) {
566 csio_err(hw, "EQ command out of memory!\n");
567 return -ENOMEM;
568 }
569
570 eqp.pfn = hw->pfn;
571 eqp.vfn = 0;
572 eqp.eqstart = 1;
573 eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
574 eqp.iqid = csio_q_iqid(hw, iq_idx);
575 eqp.fbmin = X_FETCHBURSTMIN_64B;
576 eqp.fbmax = X_FETCHBURSTMAX_512B;
577 eqp.cidxfthresh = 0;
578 eqp.pciechn = portid;
579 eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
580 eqp.eqaddr = csio_q_pstart(hw, eq_idx);
581
582 csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
583 &eqp, cbfn);
584
585 if (csio_mb_issue(hw, mbp)) {
586 csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
587 mempool_free(mbp, hw->mb_mempool);
588 return -EINVAL;
589 }
590
591 if (cbfn != NULL)
592 return 0;
593
594 return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
595 }
596
597 /*
598 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
599 * @hw: The HW module.
600 * @mbp: Mailbox.
601 * @iq_idx: Ingress queue that was freed.
602 *
603 * Handle FW_IQ_CMD (free) mailbox completion.
604 */
605 static int
606 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
607 {
608 enum fw_retval retval = csio_mb_fw_retval(mbp);
609 int rv = 0;
610
611 if (retval != FW_SUCCESS)
612 rv = -EINVAL;
613
614 mempool_free(mbp, hw->mb_mempool);
615
616 return rv;
617 }
618
619 /*
620 * csio_wr_iq_destroy - Free an ingress queue.
621 * @hw: The HW module.
622 * @priv: Private data object.
623 * @iq_idx: Ingress queue index to destroy
624 * @cbfn: Completion callback.
625 *
626 * This API frees an ingress queue by issuing the FW_IQ_CMD
627 * with the free bit set.
628 */
629 static int
630 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
631 void (*cbfn)(struct csio_hw *, struct csio_mb *))
632 {
633 int rv = 0;
634 struct csio_mb *mbp;
635 struct csio_iq_params iqp;
636 int flq_idx;
637
638 memset(&iqp, 0, sizeof(struct csio_iq_params));
639
640 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
641 if (!mbp)
642 return -ENOMEM;
643
644 iqp.pfn = hw->pfn;
645 iqp.vfn = 0;
646 iqp.iqid = csio_q_iqid(hw, iq_idx);
647 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
648
649 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
650 if (flq_idx != -1)
651 iqp.fl0id = csio_q_flid(hw, flq_idx);
652 else
653 iqp.fl0id = 0xFFFF;
654
655 iqp.fl1id = 0xFFFF;
656
657 csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
658
659 rv = csio_mb_issue(hw, mbp);
660 if (rv != 0) {
661 mempool_free(mbp, hw->mb_mempool);
662 return rv;
663 }
664
665 if (cbfn != NULL)
666 return 0;
667
668 return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
669 }
670
671 /*
672 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
673 * @hw: The HW module.
674 * @mbp: Mailbox.
675 * @eq_idx: Egress queue that was freed.
676 *
677 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
678 */
679 static int
680 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
681 {
682 enum fw_retval retval = csio_mb_fw_retval(mbp);
683 int rv = 0;
684
685 if (retval != FW_SUCCESS)
686 rv = -EINVAL;
687
688 mempool_free(mbp, hw->mb_mempool);
689
690 return rv;
691 }
692
693 /*
694 * csio_wr_eq_destroy - Free an Egress queue.
695 * @hw: The HW module.
696 * @priv: Private data object.
697 * @eq_idx: Egress queue index to destroy
698 * @cbfn: Completion callback.
699 *
700 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
701 * with the free bit set.
702 */
703 static int
704 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
705 void (*cbfn) (struct csio_hw *, struct csio_mb *))
706 {
707 int rv = 0;
708 struct csio_mb *mbp;
709 struct csio_eq_params eqp;
710
711 memset(&eqp, 0, sizeof(struct csio_eq_params));
712
713 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
714 if (!mbp)
715 return -ENOMEM;
716
717 eqp.pfn = hw->pfn;
718 eqp.vfn = 0;
719 eqp.eqid = csio_q_eqid(hw, eq_idx);
720
721 csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
722
723 rv = csio_mb_issue(hw, mbp);
724 if (rv != 0) {
725 mempool_free(mbp, hw->mb_mempool);
726 return rv;
727 }
728
729 if (cbfn != NULL)
730 return 0;
731
732 return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
733 }
734
735 /*
736 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
737 * @hw: HW module
738 * @qidx: Egress queue index
739 *
740 * Cleanup the Egress queue status page.
741 */
742 static void
743 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
744 {
745 struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
746 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
747
748 memset(stp, 0, sizeof(*stp));
749 }
750
751 /*
752 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
753 * @hw: HW module
754 * @qidx: Ingress queue index
755 *
756 * Cleanup the footer entries in the given ingress queue,
757 * set to 1 the internal copy of genbit.
758 */
759 static void
760 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
761 {
762 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
763 struct csio_q *q = wrm->q_arr[qidx];
764 void *wr;
765 struct csio_iqwr_footer *ftr;
766 uint32_t i = 0;
767
768 /* set to 1 since we are just about zero out genbit */
769 q->un.iq.genbit = 1;
770
771 for (i = 0; i < q->credits; i++) {
772 /* Get the WR */
773 wr = (void *)((uintptr_t)q->vstart +
774 (i * q->wr_sz));
775 /* Get the footer */
776 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
777 (q->wr_sz - sizeof(*ftr)));
778 /* Zero out footer */
779 memset(ftr, 0, sizeof(*ftr));
780 }
781 }
782
783 int
784 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
785 {
786 int i, flq_idx;
787 struct csio_q *q;
788 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
789 int rv;
790
791 for (i = 0; i < wrm->free_qidx; i++) {
792 q = wrm->q_arr[i];
793
794 switch (q->type) {
795 case CSIO_EGRESS:
796 if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
797 csio_wr_cleanup_eq_stpg(hw, i);
798 if (!cmd) {
799 csio_q_eqid(hw, i) = CSIO_MAX_QID;
800 continue;
801 }
802
803 rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
804 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
805 cmd = false;
806
807 csio_q_eqid(hw, i) = CSIO_MAX_QID;
808 }
809 case CSIO_INGRESS:
810 if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
811 csio_wr_cleanup_iq_ftr(hw, i);
812 if (!cmd) {
813 csio_q_iqid(hw, i) = CSIO_MAX_QID;
814 flq_idx = csio_q_iq_flq_idx(hw, i);
815 if (flq_idx != -1)
816 csio_q_flid(hw, flq_idx) =
817 CSIO_MAX_QID;
818 continue;
819 }
820
821 rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
822 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
823 cmd = false;
824
825 csio_q_iqid(hw, i) = CSIO_MAX_QID;
826 flq_idx = csio_q_iq_flq_idx(hw, i);
827 if (flq_idx != -1)
828 csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
829 }
830 default:
831 break;
832 }
833 }
834
835 hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
836
837 return 0;
838 }
839
840 /*
841 * csio_wr_get - Get requested size of WR entry/entries from queue.
842 * @hw: HW module.
843 * @qidx: Index of queue.
844 * @size: Cumulative size of Work request(s).
845 * @wrp: Work request pair.
846 *
847 * If requested credits are available, return the start address of the
848 * work request in the work request pair. Set pidx accordingly and
849 * return.
850 *
851 * NOTE about WR pair:
852 * ==================
853 * A WR can start towards the end of a queue, and then continue at the
854 * beginning, since the queue is considered to be circular. This will
855 * require a pair of address/size to be passed back to the caller -
856 * hence Work request pair format.
857 */
858 int
859 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
860 struct csio_wr_pair *wrp)
861 {
862 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
863 struct csio_q *q = wrm->q_arr[qidx];
864 void *cwr = (void *)((uintptr_t)(q->vstart) +
865 (q->pidx * CSIO_QCREDIT_SZ));
866 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
867 uint16_t cidx = q->cidx = ntohs(stp->cidx);
868 uint16_t pidx = q->pidx;
869 uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
870 int req_credits = req_sz / CSIO_QCREDIT_SZ;
871 int credits;
872
873 CSIO_DB_ASSERT(q->owner != NULL);
874 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
875 CSIO_DB_ASSERT(cidx <= q->credits);
876
877 /* Calculate credits */
878 if (pidx > cidx) {
879 credits = q->credits - (pidx - cidx) - 1;
880 } else if (cidx > pidx) {
881 credits = cidx - pidx - 1;
882 } else {
883 /* cidx == pidx, empty queue */
884 credits = q->credits;
885 CSIO_INC_STATS(q, n_qempty);
886 }
887
888 /*
889 * Check if we have enough credits.
890 * credits = 1 implies queue is full.
891 */
892 if (!credits || (req_credits > credits)) {
893 CSIO_INC_STATS(q, n_qfull);
894 return -EBUSY;
895 }
896
897 /*
898 * If we are here, we have enough credits to satisfy the
899 * request. Check if we are near the end of q, and if WR spills over.
900 * If it does, use the first addr/size to cover the queue until
901 * the end. Fit the remainder portion of the request at the top
902 * of queue and return it in the second addr/len. Set pidx
903 * accordingly.
904 */
905 if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
906 wrp->addr1 = cwr;
907 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
908 wrp->addr2 = q->vstart;
909 wrp->size2 = req_sz - wrp->size1;
910 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
911 CSIO_QCREDIT_SZ);
912 CSIO_INC_STATS(q, n_qwrap);
913 CSIO_INC_STATS(q, n_eq_wr_split);
914 } else {
915 wrp->addr1 = cwr;
916 wrp->size1 = req_sz;
917 wrp->addr2 = NULL;
918 wrp->size2 = 0;
919 q->pidx += (uint16_t)req_credits;
920
921 /* We are the end of queue, roll back pidx to top of queue */
922 if (unlikely(q->pidx == q->credits)) {
923 q->pidx = 0;
924 CSIO_INC_STATS(q, n_qwrap);
925 }
926 }
927
928 q->inc_idx = (uint16_t)req_credits;
929
930 CSIO_INC_STATS(q, n_tot_reqs);
931
932 return 0;
933 }
934
935 /*
936 * csio_wr_copy_to_wrp - Copies given data into WR.
937 * @data_buf - Data buffer
938 * @wrp - Work request pair.
939 * @wr_off - Work request offset.
940 * @data_len - Data length.
941 *
942 * Copies the given data in Work Request. Work request pair(wrp) specifies
943 * address information of Work request.
944 * Returns: none
945 */
946 void
947 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
948 uint32_t wr_off, uint32_t data_len)
949 {
950 uint32_t nbytes;
951
952 /* Number of space available in buffer addr1 of WRP */
953 nbytes = ((wrp->size1 - wr_off) >= data_len) ?
954 data_len : (wrp->size1 - wr_off);
955
956 memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
957 data_len -= nbytes;
958
959 /* Write the remaining data from the begining of circular buffer */
960 if (data_len) {
961 CSIO_DB_ASSERT(data_len <= wrp->size2);
962 CSIO_DB_ASSERT(wrp->addr2 != NULL);
963 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
964 }
965 }
966
967 /*
968 * csio_wr_issue - Notify chip of Work request.
969 * @hw: HW module.
970 * @qidx: Index of queue.
971 * @prio: 0: Low priority, 1: High priority
972 *
973 * Rings the SGE Doorbell by writing the current producer index of the passed
974 * in queue into the register.
975 *
976 */
977 int
978 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
979 {
980 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
981 struct csio_q *q = wrm->q_arr[qidx];
982
983 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
984
985 wmb();
986 /* Ring SGE Doorbell writing q->pidx into it */
987 csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
988 PIDX_T5_V(q->inc_idx) | DBTYPE_F,
989 MYPF_REG(SGE_PF_KDOORBELL_A));
990 q->inc_idx = 0;
991
992 return 0;
993 }
994
995 static inline uint32_t
996 csio_wr_avail_qcredits(struct csio_q *q)
997 {
998 if (q->pidx > q->cidx)
999 return q->pidx - q->cidx;
1000 else if (q->cidx > q->pidx)
1001 return q->credits - (q->cidx - q->pidx);
1002 else
1003 return 0; /* cidx == pidx, empty queue */
1004 }
1005
1006 /*
1007 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1008 * @hw: HW module.
1009 * @flq: The freelist queue.
1010 *
1011 * Invalidate the driver's version of a freelist buffer entry,
1012 * without freeing the associated the DMA memory. The entry
1013 * to be invalidated is picked up from the current Free list
1014 * queue cidx.
1015 *
1016 */
1017 static inline void
1018 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1019 {
1020 flq->cidx++;
1021 if (flq->cidx == flq->credits) {
1022 flq->cidx = 0;
1023 CSIO_INC_STATS(flq, n_qwrap);
1024 }
1025 }
1026
1027 /*
1028 * csio_wr_process_fl - Process a freelist completion.
1029 * @hw: HW module.
1030 * @q: The ingress queue attached to the Freelist.
1031 * @wr: The freelist completion WR in the ingress queue.
1032 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1033 * @iq_handler: Caller's handler for this completion.
1034 * @priv: Private pointer of caller
1035 *
1036 */
1037 static inline void
1038 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1039 void *wr, uint32_t len_to_qid,
1040 void (*iq_handler)(struct csio_hw *, void *,
1041 uint32_t, struct csio_fl_dma_buf *,
1042 void *),
1043 void *priv)
1044 {
1045 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1046 struct csio_sge *sge = &wrm->sge;
1047 struct csio_fl_dma_buf flb;
1048 struct csio_dma_buf *buf, *fbuf;
1049 uint32_t bufsz, len, lastlen = 0;
1050 int n;
1051 struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1052
1053 CSIO_DB_ASSERT(flq != NULL);
1054
1055 len = len_to_qid;
1056
1057 if (len & IQWRF_NEWBUF) {
1058 if (flq->un.fl.offset > 0) {
1059 csio_wr_inval_flq_buf(hw, flq);
1060 flq->un.fl.offset = 0;
1061 }
1062 len = IQWRF_LEN_GET(len);
1063 }
1064
1065 CSIO_DB_ASSERT(len != 0);
1066
1067 flb.totlen = len;
1068
1069 /* Consume all freelist buffers used for len bytes */
1070 for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1071 buf = &flq->un.fl.bufs[flq->cidx];
1072 bufsz = csio_wr_fl_bufsz(sge, buf);
1073
1074 fbuf->paddr = buf->paddr;
1075 fbuf->vaddr = buf->vaddr;
1076
1077 flb.offset = flq->un.fl.offset;
1078 lastlen = min(bufsz, len);
1079 fbuf->len = lastlen;
1080
1081 len -= lastlen;
1082 if (!len)
1083 break;
1084 csio_wr_inval_flq_buf(hw, flq);
1085 }
1086
1087 flb.defer_free = flq->un.fl.packen ? 0 : 1;
1088
1089 iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1090 &flb, priv);
1091
1092 if (flq->un.fl.packen)
1093 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1094 else
1095 csio_wr_inval_flq_buf(hw, flq);
1096
1097 }
1098
1099 /*
1100 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1101 * @q: Ingress quueue.
1102 * @ftr: Ingress queue WR SGE footer.
1103 *
1104 * The entry is new if our generation bit matches the corresponding
1105 * bit in the footer of the current WR.
1106 */
1107 static inline bool
1108 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1109 {
1110 return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1111 }
1112
1113 /*
1114 * csio_wr_process_iq - Process elements in Ingress queue.
1115 * @hw: HW pointer
1116 * @qidx: Index of queue
1117 * @iq_handler: Handler for this queue
1118 * @priv: Caller's private pointer
1119 *
1120 * This routine walks through every entry of the ingress queue, calling
1121 * the provided iq_handler with the entry, until the generation bit
1122 * flips.
1123 */
1124 int
1125 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1126 void (*iq_handler)(struct csio_hw *, void *,
1127 uint32_t, struct csio_fl_dma_buf *,
1128 void *),
1129 void *priv)
1130 {
1131 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1132 void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1133 struct csio_iqwr_footer *ftr;
1134 uint32_t wr_type, fw_qid, qid;
1135 struct csio_q *q_completed;
1136 struct csio_q *flq = csio_iq_has_fl(q) ?
1137 wrm->q_arr[q->un.iq.flq_idx] : NULL;
1138 int rv = 0;
1139
1140 /* Get the footer */
1141 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1142 (q->wr_sz - sizeof(*ftr)));
1143
1144 /*
1145 * When q wrapped around last time, driver should have inverted
1146 * ic.genbit as well.
1147 */
1148 while (csio_is_new_iqwr(q, ftr)) {
1149
1150 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1151 (uintptr_t)q->vwrap);
1152 rmb();
1153 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1154
1155 switch (wr_type) {
1156 case X_RSPD_TYPE_CPL:
1157 /* Subtract footer from WR len */
1158 iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1159 break;
1160 case X_RSPD_TYPE_FLBUF:
1161 csio_wr_process_fl(hw, q, wr,
1162 ntohl(ftr->pldbuflen_qid),
1163 iq_handler, priv);
1164 break;
1165 case X_RSPD_TYPE_INTR:
1166 fw_qid = ntohl(ftr->pldbuflen_qid);
1167 qid = fw_qid - wrm->fw_iq_start;
1168 q_completed = hw->wrm.intr_map[qid];
1169
1170 if (unlikely(qid ==
1171 csio_q_physiqid(hw, hw->intr_iq_idx))) {
1172 /*
1173 * We are already in the Forward Interrupt
1174 * Interrupt Queue Service! Do-not service
1175 * again!
1176 *
1177 */
1178 } else {
1179 CSIO_DB_ASSERT(q_completed);
1180 CSIO_DB_ASSERT(
1181 q_completed->un.iq.iq_intx_handler);
1182
1183 /* Call the queue handler. */
1184 q_completed->un.iq.iq_intx_handler(hw, NULL,
1185 0, NULL, (void *)q_completed);
1186 }
1187 break;
1188 default:
1189 csio_warn(hw, "Unknown resp type 0x%x received\n",
1190 wr_type);
1191 CSIO_INC_STATS(q, n_rsp_unknown);
1192 break;
1193 }
1194
1195 /*
1196 * Ingress *always* has fixed size WR entries. Therefore,
1197 * there should always be complete WRs towards the end of
1198 * queue.
1199 */
1200 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1201
1202 /* Roll over to start of queue */
1203 q->cidx = 0;
1204 wr = q->vstart;
1205
1206 /* Toggle genbit */
1207 q->un.iq.genbit ^= 0x1;
1208
1209 CSIO_INC_STATS(q, n_qwrap);
1210 } else {
1211 q->cidx++;
1212 wr = (void *)((uintptr_t)(q->vstart) +
1213 (q->cidx * q->wr_sz));
1214 }
1215
1216 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1217 (q->wr_sz - sizeof(*ftr)));
1218 q->inc_idx++;
1219
1220 } /* while (q->un.iq.genbit == hdr->genbit) */
1221
1222 /*
1223 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1224 * especially in msix mode. With INTx, this may be a common occurence.
1225 */
1226 if (unlikely(!q->inc_idx)) {
1227 CSIO_INC_STATS(q, n_stray_comp);
1228 rv = -EINVAL;
1229 goto restart;
1230 }
1231
1232 /* Replenish free list buffers if pending falls below low water mark */
1233 if (flq) {
1234 uint32_t avail = csio_wr_avail_qcredits(flq);
1235 if (avail <= 16) {
1236 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1237 * remains unpopulated otherwise HW thinks
1238 * FLQ is empty.
1239 */
1240 csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1241 csio_wr_ring_fldb(hw, flq);
1242 }
1243 }
1244
1245 restart:
1246 /* Now inform SGE about our incremental index value */
1247 csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) |
1248 INGRESSQID_V(q->un.iq.physiqid) |
1249 TIMERREG_V(csio_sge_timer_reg),
1250 MYPF_REG(SGE_PF_GTS_A));
1251 q->stats.n_tot_rsps += q->inc_idx;
1252
1253 q->inc_idx = 0;
1254
1255 return rv;
1256 }
1257
1258 int
1259 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1260 void (*iq_handler)(struct csio_hw *, void *,
1261 uint32_t, struct csio_fl_dma_buf *,
1262 void *),
1263 void *priv)
1264 {
1265 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1266 struct csio_q *iq = wrm->q_arr[qidx];
1267
1268 return csio_wr_process_iq(hw, iq, iq_handler, priv);
1269 }
1270
1271 static int
1272 csio_closest_timer(struct csio_sge *s, int time)
1273 {
1274 int i, delta, match = 0, min_delta = INT_MAX;
1275
1276 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1277 delta = time - s->timer_val[i];
1278 if (delta < 0)
1279 delta = -delta;
1280 if (delta < min_delta) {
1281 min_delta = delta;
1282 match = i;
1283 }
1284 }
1285 return match;
1286 }
1287
1288 static int
1289 csio_closest_thresh(struct csio_sge *s, int cnt)
1290 {
1291 int i, delta, match = 0, min_delta = INT_MAX;
1292
1293 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1294 delta = cnt - s->counter_val[i];
1295 if (delta < 0)
1296 delta = -delta;
1297 if (delta < min_delta) {
1298 min_delta = delta;
1299 match = i;
1300 }
1301 }
1302 return match;
1303 }
1304
1305 static void
1306 csio_wr_fixup_host_params(struct csio_hw *hw)
1307 {
1308 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1309 struct csio_sge *sge = &wrm->sge;
1310 uint32_t clsz = L1_CACHE_BYTES;
1311 uint32_t s_hps = PAGE_SHIFT - 10;
1312 uint32_t ingpad = 0;
1313 uint32_t stat_len = clsz > 64 ? 128 : 64;
1314
1315 csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1316 HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1317 HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1318 HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1319 SGE_HOST_PAGE_SIZE_A);
1320
1321 sge->csio_fl_align = clsz < 32 ? 32 : clsz;
1322 ingpad = ilog2(sge->csio_fl_align) - 5;
1323
1324 csio_set_reg_field(hw, SGE_CONTROL_A,
1325 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1326 EGRSTATUSPAGESIZE_F,
1327 INGPADBOUNDARY_V(ingpad) |
1328 EGRSTATUSPAGESIZE_V(stat_len != 64));
1329
1330 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1331 csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1332
1333 /*
1334 * If using hard params, the following will get set correctly
1335 * in csio_wr_set_sge().
1336 */
1337 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1338 csio_wr_reg32(hw,
1339 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1340 sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1341 SGE_FL_BUFFER_SIZE2_A);
1342 csio_wr_reg32(hw,
1343 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1344 sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1345 SGE_FL_BUFFER_SIZE3_A);
1346 }
1347
1348 csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1349
1350 /* default value of rx_dma_offset of the NIC driver */
1351 csio_set_reg_field(hw, SGE_CONTROL_A,
1352 PKTSHIFT_V(PKTSHIFT_M),
1353 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1354
1355 csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1356 CSUM_HAS_PSEUDO_HDR_F, 0);
1357 }
1358
1359 static void
1360 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1361 {
1362 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1363 struct csio_sge *sge = &wrm->sge;
1364
1365 csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1366 if (csio_intr_coalesce_cnt) {
1367 csio_sge_thresh_reg = 0;
1368 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1369 return;
1370 }
1371
1372 csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1373 }
1374
1375 /*
1376 * csio_wr_get_sge - Get SGE register values.
1377 * @hw: HW module.
1378 *
1379 * Used by non-master functions and by master-functions relying on config file.
1380 */
1381 static void
1382 csio_wr_get_sge(struct csio_hw *hw)
1383 {
1384 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1385 struct csio_sge *sge = &wrm->sge;
1386 uint32_t ingpad;
1387 int i;
1388 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1389 u32 ingress_rx_threshold;
1390
1391 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1392
1393 ingpad = INGPADBOUNDARY_G(sge->sge_control);
1394
1395 switch (ingpad) {
1396 case X_INGPCIEBOUNDARY_32B:
1397 sge->csio_fl_align = 32; break;
1398 case X_INGPCIEBOUNDARY_64B:
1399 sge->csio_fl_align = 64; break;
1400 case X_INGPCIEBOUNDARY_128B:
1401 sge->csio_fl_align = 128; break;
1402 case X_INGPCIEBOUNDARY_256B:
1403 sge->csio_fl_align = 256; break;
1404 case X_INGPCIEBOUNDARY_512B:
1405 sge->csio_fl_align = 512; break;
1406 case X_INGPCIEBOUNDARY_1024B:
1407 sge->csio_fl_align = 1024; break;
1408 case X_INGPCIEBOUNDARY_2048B:
1409 sge->csio_fl_align = 2048; break;
1410 case X_INGPCIEBOUNDARY_4096B:
1411 sge->csio_fl_align = 4096; break;
1412 }
1413
1414 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1415 csio_get_flbuf_size(hw, sge, i);
1416
1417 timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1418 timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1419 timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1420
1421 sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1422 TIMERVALUE0_G(timer_value_0_and_1));
1423 sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1424 TIMERVALUE1_G(timer_value_0_and_1));
1425 sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1426 TIMERVALUE2_G(timer_value_2_and_3));
1427 sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1428 TIMERVALUE3_G(timer_value_2_and_3));
1429 sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1430 TIMERVALUE4_G(timer_value_4_and_5));
1431 sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1432 TIMERVALUE5_G(timer_value_4_and_5));
1433
1434 ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1435 sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1436 sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1437 sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1438 sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1439
1440 csio_init_intr_coalesce_parms(hw);
1441 }
1442
1443 /*
1444 * csio_wr_set_sge - Initialize SGE registers
1445 * @hw: HW module.
1446 *
1447 * Used by Master function to initialize SGE registers in the absence
1448 * of a config file.
1449 */
1450 static void
1451 csio_wr_set_sge(struct csio_hw *hw)
1452 {
1453 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1454 struct csio_sge *sge = &wrm->sge;
1455 int i;
1456
1457 /*
1458 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1459 * Queue and Packet Date to the Free List.
1460 */
1461 csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1462
1463 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1464
1465 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1466
1467 /*
1468 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1469 * and generate an interrupt when this occurs so we can recover.
1470 */
1471 csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1472 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1473 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1474 csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1475 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1476 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1477
1478 csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1479 ENABLE_DROP_F);
1480
1481 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1482
1483 CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1484 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1485 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1486 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1487 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1488 CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1489 CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1490 CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1491 CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1492 CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1493
1494 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1495 csio_get_flbuf_size(hw, sge, i);
1496
1497 /* Initialize interrupt coalescing attributes */
1498 sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1499 sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1500 sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1501 sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1502 sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1503 sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1504
1505 sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1506 sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1507 sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1508 sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1509
1510 csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1511 THRESHOLD_1_V(sge->counter_val[1]) |
1512 THRESHOLD_2_V(sge->counter_val[2]) |
1513 THRESHOLD_3_V(sge->counter_val[3]),
1514 SGE_INGRESS_RX_THRESHOLD_A);
1515
1516 csio_wr_reg32(hw,
1517 TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1518 TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1519 SGE_TIMER_VALUE_0_AND_1_A);
1520
1521 csio_wr_reg32(hw,
1522 TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1523 TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1524 SGE_TIMER_VALUE_2_AND_3_A);
1525
1526 csio_wr_reg32(hw,
1527 TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1528 TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1529 SGE_TIMER_VALUE_4_AND_5_A);
1530
1531 csio_init_intr_coalesce_parms(hw);
1532 }
1533
1534 void
1535 csio_wr_sge_init(struct csio_hw *hw)
1536 {
1537 /*
1538 * If we are master and chip is not initialized:
1539 * - If we plan to use the config file, we need to fixup some
1540 * host specific registers, and read the rest of the SGE
1541 * configuration.
1542 * - If we dont plan to use the config file, we need to initialize
1543 * SGE entirely, including fixing the host specific registers.
1544 * If we are master and chip is initialized, just read and work off of
1545 * the already initialized SGE values.
1546 * If we arent the master, we are only allowed to read and work off of
1547 * the already initialized SGE values.
1548 *
1549 * Therefore, before calling this function, we assume that the master-
1550 * ship of the card, state and whether to use config file or not, have
1551 * already been decided.
1552 */
1553 if (csio_is_hw_master(hw)) {
1554 if (hw->fw_state != CSIO_DEV_STATE_INIT)
1555 csio_wr_fixup_host_params(hw);
1556
1557 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1558 csio_wr_get_sge(hw);
1559 else
1560 csio_wr_set_sge(hw);
1561 } else
1562 csio_wr_get_sge(hw);
1563 }
1564
1565 /*
1566 * csio_wrm_init - Initialize Work request module.
1567 * @wrm: WR module
1568 * @hw: HW pointer
1569 *
1570 * Allocates memory for an array of queue pointers starting at q_arr.
1571 */
1572 int
1573 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1574 {
1575 int i;
1576
1577 if (!wrm->num_q) {
1578 csio_err(hw, "Num queues is not set\n");
1579 return -EINVAL;
1580 }
1581
1582 wrm->q_arr = kzalloc(sizeof(struct csio_q *) * wrm->num_q, GFP_KERNEL);
1583 if (!wrm->q_arr)
1584 goto err;
1585
1586 for (i = 0; i < wrm->num_q; i++) {
1587 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1588 if (!wrm->q_arr[i]) {
1589 while (--i >= 0)
1590 kfree(wrm->q_arr[i]);
1591 goto err_free_arr;
1592 }
1593 }
1594 wrm->free_qidx = 0;
1595
1596 return 0;
1597
1598 err_free_arr:
1599 kfree(wrm->q_arr);
1600 err:
1601 return -ENOMEM;
1602 }
1603
1604 /*
1605 * csio_wrm_exit - Initialize Work request module.
1606 * @wrm: WR module
1607 * @hw: HW module
1608 *
1609 * Uninitialize WR module. Free q_arr and pointers in it.
1610 * We have the additional job of freeing the DMA memory associated
1611 * with the queues.
1612 */
1613 void
1614 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1615 {
1616 int i;
1617 uint32_t j;
1618 struct csio_q *q;
1619 struct csio_dma_buf *buf;
1620
1621 for (i = 0; i < wrm->num_q; i++) {
1622 q = wrm->q_arr[i];
1623
1624 if (wrm->free_qidx && (i < wrm->free_qidx)) {
1625 if (q->type == CSIO_FREELIST) {
1626 if (!q->un.fl.bufs)
1627 continue;
1628 for (j = 0; j < q->credits; j++) {
1629 buf = &q->un.fl.bufs[j];
1630 if (!buf->vaddr)
1631 continue;
1632 pci_free_consistent(hw->pdev, buf->len,
1633 buf->vaddr,
1634 buf->paddr);
1635 }
1636 kfree(q->un.fl.bufs);
1637 }
1638 pci_free_consistent(hw->pdev, q->size,
1639 q->vstart, q->pstart);
1640 }
1641 kfree(q);
1642 }
1643
1644 hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1645
1646 kfree(wrm->q_arr);
1647 }