]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/scsi/cxlflash/main.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-eoan-kernel.git] / drivers / scsi / cxlflash / main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * CXL Flash Device Driver
4 *
5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7 *
8 * Copyright (C) 2015 IBM Corporation
9 */
10
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15
16 #include <asm/unaligned.h>
17
18 #include <scsi/scsi_cmnd.h>
19 #include <scsi/scsi_host.h>
20 #include <uapi/scsi/cxlflash_ioctl.h>
21
22 #include "main.h"
23 #include "sislite.h"
24 #include "common.h"
25
26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
29 MODULE_LICENSE("GPL");
30
31 static struct class *cxlflash_class;
32 static u32 cxlflash_major;
33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
34
35 /**
36 * process_cmd_err() - command error handler
37 * @cmd: AFU command that experienced the error.
38 * @scp: SCSI command associated with the AFU command in error.
39 *
40 * Translates error bits from AFU command to SCSI command results.
41 */
42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
43 {
44 struct afu *afu = cmd->parent;
45 struct cxlflash_cfg *cfg = afu->parent;
46 struct device *dev = &cfg->dev->dev;
47 struct sisl_ioarcb *ioarcb;
48 struct sisl_ioasa *ioasa;
49 u32 resid;
50
51 if (unlikely(!cmd))
52 return;
53
54 ioarcb = &(cmd->rcb);
55 ioasa = &(cmd->sa);
56
57 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
58 resid = ioasa->resid;
59 scsi_set_resid(scp, resid);
60 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
61 __func__, cmd, scp, resid);
62 }
63
64 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
65 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
66 __func__, cmd, scp);
67 scp->result = (DID_ERROR << 16);
68 }
69
70 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
71 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
72 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
73 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
74
75 if (ioasa->rc.scsi_rc) {
76 /* We have a SCSI status */
77 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
78 memcpy(scp->sense_buffer, ioasa->sense_data,
79 SISL_SENSE_DATA_LEN);
80 scp->result = ioasa->rc.scsi_rc;
81 } else
82 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
83 }
84
85 /*
86 * We encountered an error. Set scp->result based on nature
87 * of error.
88 */
89 if (ioasa->rc.fc_rc) {
90 /* We have an FC status */
91 switch (ioasa->rc.fc_rc) {
92 case SISL_FC_RC_LINKDOWN:
93 scp->result = (DID_REQUEUE << 16);
94 break;
95 case SISL_FC_RC_RESID:
96 /* This indicates an FCP resid underrun */
97 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
98 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
99 * then we will handle this error else where.
100 * If not then we must handle it here.
101 * This is probably an AFU bug.
102 */
103 scp->result = (DID_ERROR << 16);
104 }
105 break;
106 case SISL_FC_RC_RESIDERR:
107 /* Resid mismatch between adapter and device */
108 case SISL_FC_RC_TGTABORT:
109 case SISL_FC_RC_ABORTOK:
110 case SISL_FC_RC_ABORTFAIL:
111 case SISL_FC_RC_NOLOGI:
112 case SISL_FC_RC_ABORTPEND:
113 case SISL_FC_RC_WRABORTPEND:
114 case SISL_FC_RC_NOEXP:
115 case SISL_FC_RC_INUSE:
116 scp->result = (DID_ERROR << 16);
117 break;
118 }
119 }
120
121 if (ioasa->rc.afu_rc) {
122 /* We have an AFU error */
123 switch (ioasa->rc.afu_rc) {
124 case SISL_AFU_RC_NO_CHANNELS:
125 scp->result = (DID_NO_CONNECT << 16);
126 break;
127 case SISL_AFU_RC_DATA_DMA_ERR:
128 switch (ioasa->afu_extra) {
129 case SISL_AFU_DMA_ERR_PAGE_IN:
130 /* Retry */
131 scp->result = (DID_IMM_RETRY << 16);
132 break;
133 case SISL_AFU_DMA_ERR_INVALID_EA:
134 default:
135 scp->result = (DID_ERROR << 16);
136 }
137 break;
138 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
139 /* Retry */
140 scp->result = (DID_ALLOC_FAILURE << 16);
141 break;
142 default:
143 scp->result = (DID_ERROR << 16);
144 }
145 }
146 }
147
148 /**
149 * cmd_complete() - command completion handler
150 * @cmd: AFU command that has completed.
151 *
152 * For SCSI commands this routine prepares and submits commands that have
153 * either completed or timed out to the SCSI stack. For internal commands
154 * (TMF or AFU), this routine simply notifies the originator that the
155 * command has completed.
156 */
157 static void cmd_complete(struct afu_cmd *cmd)
158 {
159 struct scsi_cmnd *scp;
160 ulong lock_flags;
161 struct afu *afu = cmd->parent;
162 struct cxlflash_cfg *cfg = afu->parent;
163 struct device *dev = &cfg->dev->dev;
164 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
165
166 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
167 list_del(&cmd->list);
168 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
169
170 if (cmd->scp) {
171 scp = cmd->scp;
172 if (unlikely(cmd->sa.ioasc))
173 process_cmd_err(cmd, scp);
174 else
175 scp->result = (DID_OK << 16);
176
177 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
178 __func__, scp, scp->result, cmd->sa.ioasc);
179 scp->scsi_done(scp);
180 } else if (cmd->cmd_tmf) {
181 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
182 cfg->tmf_active = false;
183 wake_up_all_locked(&cfg->tmf_waitq);
184 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
185 } else
186 complete(&cmd->cevent);
187 }
188
189 /**
190 * flush_pending_cmds() - flush all pending commands on this hardware queue
191 * @hwq: Hardware queue to flush.
192 *
193 * The hardware send queue lock associated with this hardware queue must be
194 * held when calling this routine.
195 */
196 static void flush_pending_cmds(struct hwq *hwq)
197 {
198 struct cxlflash_cfg *cfg = hwq->afu->parent;
199 struct afu_cmd *cmd, *tmp;
200 struct scsi_cmnd *scp;
201 ulong lock_flags;
202
203 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
204 /* Bypass command when on a doneq, cmd_complete() will handle */
205 if (!list_empty(&cmd->queue))
206 continue;
207
208 list_del(&cmd->list);
209
210 if (cmd->scp) {
211 scp = cmd->scp;
212 scp->result = (DID_IMM_RETRY << 16);
213 scp->scsi_done(scp);
214 } else {
215 cmd->cmd_aborted = true;
216
217 if (cmd->cmd_tmf) {
218 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
219 cfg->tmf_active = false;
220 wake_up_all_locked(&cfg->tmf_waitq);
221 spin_unlock_irqrestore(&cfg->tmf_slock,
222 lock_flags);
223 } else
224 complete(&cmd->cevent);
225 }
226 }
227 }
228
229 /**
230 * context_reset() - reset context via specified register
231 * @hwq: Hardware queue owning the context to be reset.
232 * @reset_reg: MMIO register to perform reset.
233 *
234 * When the reset is successful, the SISLite specification guarantees that
235 * the AFU has aborted all currently pending I/O. Accordingly, these commands
236 * must be flushed.
237 *
238 * Return: 0 on success, -errno on failure
239 */
240 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
241 {
242 struct cxlflash_cfg *cfg = hwq->afu->parent;
243 struct device *dev = &cfg->dev->dev;
244 int rc = -ETIMEDOUT;
245 int nretry = 0;
246 u64 val = 0x1;
247 ulong lock_flags;
248
249 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
250
251 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
252
253 writeq_be(val, reset_reg);
254 do {
255 val = readq_be(reset_reg);
256 if ((val & 0x1) == 0x0) {
257 rc = 0;
258 break;
259 }
260
261 /* Double delay each time */
262 udelay(1 << nretry);
263 } while (nretry++ < MC_ROOM_RETRY_CNT);
264
265 if (!rc)
266 flush_pending_cmds(hwq);
267
268 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
269
270 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
271 __func__, rc, val, nretry);
272 return rc;
273 }
274
275 /**
276 * context_reset_ioarrin() - reset context via IOARRIN register
277 * @hwq: Hardware queue owning the context to be reset.
278 *
279 * Return: 0 on success, -errno on failure
280 */
281 static int context_reset_ioarrin(struct hwq *hwq)
282 {
283 return context_reset(hwq, &hwq->host_map->ioarrin);
284 }
285
286 /**
287 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
288 * @hwq: Hardware queue owning the context to be reset.
289 *
290 * Return: 0 on success, -errno on failure
291 */
292 static int context_reset_sq(struct hwq *hwq)
293 {
294 return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
295 }
296
297 /**
298 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
299 * @afu: AFU associated with the host.
300 * @cmd: AFU command to send.
301 *
302 * Return:
303 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
304 */
305 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
306 {
307 struct cxlflash_cfg *cfg = afu->parent;
308 struct device *dev = &cfg->dev->dev;
309 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
310 int rc = 0;
311 s64 room;
312 ulong lock_flags;
313
314 /*
315 * To avoid the performance penalty of MMIO, spread the update of
316 * 'room' over multiple commands.
317 */
318 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
319 if (--hwq->room < 0) {
320 room = readq_be(&hwq->host_map->cmd_room);
321 if (room <= 0) {
322 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
323 "0x%02X, room=0x%016llX\n",
324 __func__, cmd->rcb.cdb[0], room);
325 hwq->room = 0;
326 rc = SCSI_MLQUEUE_HOST_BUSY;
327 goto out;
328 }
329 hwq->room = room - 1;
330 }
331
332 list_add(&cmd->list, &hwq->pending_cmds);
333 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
334 out:
335 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
336 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
337 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
338 return rc;
339 }
340
341 /**
342 * send_cmd_sq() - sends an AFU command via SQ ring
343 * @afu: AFU associated with the host.
344 * @cmd: AFU command to send.
345 *
346 * Return:
347 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
348 */
349 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
350 {
351 struct cxlflash_cfg *cfg = afu->parent;
352 struct device *dev = &cfg->dev->dev;
353 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
354 int rc = 0;
355 int newval;
356 ulong lock_flags;
357
358 newval = atomic_dec_if_positive(&hwq->hsq_credits);
359 if (newval <= 0) {
360 rc = SCSI_MLQUEUE_HOST_BUSY;
361 goto out;
362 }
363
364 cmd->rcb.ioasa = &cmd->sa;
365
366 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
367
368 *hwq->hsq_curr = cmd->rcb;
369 if (hwq->hsq_curr < hwq->hsq_end)
370 hwq->hsq_curr++;
371 else
372 hwq->hsq_curr = hwq->hsq_start;
373
374 list_add(&cmd->list, &hwq->pending_cmds);
375 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
376
377 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
378 out:
379 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
380 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
381 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
382 readq_be(&hwq->host_map->sq_head),
383 readq_be(&hwq->host_map->sq_tail));
384 return rc;
385 }
386
387 /**
388 * wait_resp() - polls for a response or timeout to a sent AFU command
389 * @afu: AFU associated with the host.
390 * @cmd: AFU command that was sent.
391 *
392 * Return: 0 on success, -errno on failure
393 */
394 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
395 {
396 struct cxlflash_cfg *cfg = afu->parent;
397 struct device *dev = &cfg->dev->dev;
398 int rc = 0;
399 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
400
401 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
402 if (!timeout)
403 rc = -ETIMEDOUT;
404
405 if (cmd->cmd_aborted)
406 rc = -EAGAIN;
407
408 if (unlikely(cmd->sa.ioasc != 0)) {
409 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
410 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
411 rc = -EIO;
412 }
413
414 return rc;
415 }
416
417 /**
418 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
419 * @host: SCSI host associated with device.
420 * @scp: SCSI command to send.
421 * @afu: SCSI command to send.
422 *
423 * Hashes a command based upon the hardware queue mode.
424 *
425 * Return: Trusted index of target hardware queue
426 */
427 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
428 struct afu *afu)
429 {
430 u32 tag;
431 u32 hwq = 0;
432
433 if (afu->num_hwqs == 1)
434 return 0;
435
436 switch (afu->hwq_mode) {
437 case HWQ_MODE_RR:
438 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
439 break;
440 case HWQ_MODE_TAG:
441 tag = blk_mq_unique_tag(scp->request);
442 hwq = blk_mq_unique_tag_to_hwq(tag);
443 break;
444 case HWQ_MODE_CPU:
445 hwq = smp_processor_id() % afu->num_hwqs;
446 break;
447 default:
448 WARN_ON_ONCE(1);
449 }
450
451 return hwq;
452 }
453
454 /**
455 * send_tmf() - sends a Task Management Function (TMF)
456 * @cfg: Internal structure associated with the host.
457 * @sdev: SCSI device destined for TMF.
458 * @tmfcmd: TMF command to send.
459 *
460 * Return:
461 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
462 */
463 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
464 u64 tmfcmd)
465 {
466 struct afu *afu = cfg->afu;
467 struct afu_cmd *cmd = NULL;
468 struct device *dev = &cfg->dev->dev;
469 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
470 bool needs_deletion = false;
471 char *buf = NULL;
472 ulong lock_flags;
473 int rc = 0;
474 ulong to;
475
476 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
477 if (unlikely(!buf)) {
478 dev_err(dev, "%s: no memory for command\n", __func__);
479 rc = -ENOMEM;
480 goto out;
481 }
482
483 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
484 INIT_LIST_HEAD(&cmd->queue);
485
486 /* When Task Management Function is active do not send another */
487 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
488 if (cfg->tmf_active)
489 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
490 !cfg->tmf_active,
491 cfg->tmf_slock);
492 cfg->tmf_active = true;
493 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
494
495 cmd->parent = afu;
496 cmd->cmd_tmf = true;
497 cmd->hwq_index = hwq->index;
498
499 cmd->rcb.ctx_id = hwq->ctx_hndl;
500 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
501 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
502 cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
503 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
504 SISL_REQ_FLAGS_SUP_UNDERRUN |
505 SISL_REQ_FLAGS_TMF_CMD);
506 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
507
508 rc = afu->send_cmd(afu, cmd);
509 if (unlikely(rc)) {
510 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
511 cfg->tmf_active = false;
512 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
513 goto out;
514 }
515
516 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
517 to = msecs_to_jiffies(5000);
518 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
519 !cfg->tmf_active,
520 cfg->tmf_slock,
521 to);
522 if (!to) {
523 dev_err(dev, "%s: TMF timed out\n", __func__);
524 rc = -ETIMEDOUT;
525 needs_deletion = true;
526 } else if (cmd->cmd_aborted) {
527 dev_err(dev, "%s: TMF aborted\n", __func__);
528 rc = -EAGAIN;
529 } else if (cmd->sa.ioasc) {
530 dev_err(dev, "%s: TMF failed ioasc=%08x\n",
531 __func__, cmd->sa.ioasc);
532 rc = -EIO;
533 }
534 cfg->tmf_active = false;
535 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
536
537 if (needs_deletion) {
538 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
539 list_del(&cmd->list);
540 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
541 }
542 out:
543 kfree(buf);
544 return rc;
545 }
546
547 /**
548 * cxlflash_driver_info() - information handler for this host driver
549 * @host: SCSI host associated with device.
550 *
551 * Return: A string describing the device.
552 */
553 static const char *cxlflash_driver_info(struct Scsi_Host *host)
554 {
555 return CXLFLASH_ADAPTER_NAME;
556 }
557
558 /**
559 * cxlflash_queuecommand() - sends a mid-layer request
560 * @host: SCSI host associated with device.
561 * @scp: SCSI command to send.
562 *
563 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
564 */
565 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
566 {
567 struct cxlflash_cfg *cfg = shost_priv(host);
568 struct afu *afu = cfg->afu;
569 struct device *dev = &cfg->dev->dev;
570 struct afu_cmd *cmd = sc_to_afuci(scp);
571 struct scatterlist *sg = scsi_sglist(scp);
572 int hwq_index = cmd_to_target_hwq(host, scp, afu);
573 struct hwq *hwq = get_hwq(afu, hwq_index);
574 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
575 ulong lock_flags;
576 int rc = 0;
577
578 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
579 "cdb=(%08x-%08x-%08x-%08x)\n",
580 __func__, scp, host->host_no, scp->device->channel,
581 scp->device->id, scp->device->lun,
582 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
583 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
584 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
585 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
586
587 /*
588 * If a Task Management Function is active, wait for it to complete
589 * before continuing with regular commands.
590 */
591 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
592 if (cfg->tmf_active) {
593 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
594 rc = SCSI_MLQUEUE_HOST_BUSY;
595 goto out;
596 }
597 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
598
599 switch (cfg->state) {
600 case STATE_PROBING:
601 case STATE_PROBED:
602 case STATE_RESET:
603 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
604 rc = SCSI_MLQUEUE_HOST_BUSY;
605 goto out;
606 case STATE_FAILTERM:
607 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
608 scp->result = (DID_NO_CONNECT << 16);
609 scp->scsi_done(scp);
610 rc = 0;
611 goto out;
612 default:
613 atomic_inc(&afu->cmds_active);
614 break;
615 }
616
617 if (likely(sg)) {
618 cmd->rcb.data_len = sg->length;
619 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
620 }
621
622 cmd->scp = scp;
623 cmd->parent = afu;
624 cmd->hwq_index = hwq_index;
625
626 cmd->sa.ioasc = 0;
627 cmd->rcb.ctx_id = hwq->ctx_hndl;
628 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
629 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
630 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
631
632 if (scp->sc_data_direction == DMA_TO_DEVICE)
633 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
634
635 cmd->rcb.req_flags = req_flags;
636 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
637
638 rc = afu->send_cmd(afu, cmd);
639 atomic_dec(&afu->cmds_active);
640 out:
641 return rc;
642 }
643
644 /**
645 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
646 * @cfg: Internal structure associated with the host.
647 */
648 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
649 {
650 struct pci_dev *pdev = cfg->dev;
651
652 if (pci_channel_offline(pdev))
653 wait_event_timeout(cfg->reset_waitq,
654 !pci_channel_offline(pdev),
655 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
656 }
657
658 /**
659 * free_mem() - free memory associated with the AFU
660 * @cfg: Internal structure associated with the host.
661 */
662 static void free_mem(struct cxlflash_cfg *cfg)
663 {
664 struct afu *afu = cfg->afu;
665
666 if (cfg->afu) {
667 free_pages((ulong)afu, get_order(sizeof(struct afu)));
668 cfg->afu = NULL;
669 }
670 }
671
672 /**
673 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
674 * @cfg: Internal structure associated with the host.
675 */
676 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
677 {
678 if (cfg->async_reset_cookie == 0)
679 return;
680
681 /* Wait until all async calls prior to this cookie have completed */
682 async_synchronize_cookie(cfg->async_reset_cookie + 1);
683 cfg->async_reset_cookie = 0;
684 }
685
686 /**
687 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
688 * @cfg: Internal structure associated with the host.
689 *
690 * Safe to call with AFU in a partially allocated/initialized state.
691 *
692 * Cancels scheduled worker threads, waits for any active internal AFU
693 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
694 */
695 static void stop_afu(struct cxlflash_cfg *cfg)
696 {
697 struct afu *afu = cfg->afu;
698 struct hwq *hwq;
699 int i;
700
701 cancel_work_sync(&cfg->work_q);
702 if (!current_is_async())
703 cxlflash_reset_sync(cfg);
704
705 if (likely(afu)) {
706 while (atomic_read(&afu->cmds_active))
707 ssleep(1);
708
709 if (afu_is_irqpoll_enabled(afu)) {
710 for (i = 0; i < afu->num_hwqs; i++) {
711 hwq = get_hwq(afu, i);
712
713 irq_poll_disable(&hwq->irqpoll);
714 }
715 }
716
717 if (likely(afu->afu_map)) {
718 cfg->ops->psa_unmap(afu->afu_map);
719 afu->afu_map = NULL;
720 }
721 }
722 }
723
724 /**
725 * term_intr() - disables all AFU interrupts
726 * @cfg: Internal structure associated with the host.
727 * @level: Depth of allocation, where to begin waterfall tear down.
728 * @index: Index of the hardware queue.
729 *
730 * Safe to call with AFU/MC in partially allocated/initialized state.
731 */
732 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
733 u32 index)
734 {
735 struct afu *afu = cfg->afu;
736 struct device *dev = &cfg->dev->dev;
737 struct hwq *hwq;
738
739 if (!afu) {
740 dev_err(dev, "%s: returning with NULL afu\n", __func__);
741 return;
742 }
743
744 hwq = get_hwq(afu, index);
745
746 if (!hwq->ctx_cookie) {
747 dev_err(dev, "%s: returning with NULL MC\n", __func__);
748 return;
749 }
750
751 switch (level) {
752 case UNMAP_THREE:
753 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
754 if (index == PRIMARY_HWQ)
755 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
756 case UNMAP_TWO:
757 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
758 case UNMAP_ONE:
759 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
760 case FREE_IRQ:
761 cfg->ops->free_afu_irqs(hwq->ctx_cookie);
762 /* fall through */
763 case UNDO_NOOP:
764 /* No action required */
765 break;
766 }
767 }
768
769 /**
770 * term_mc() - terminates the master context
771 * @cfg: Internal structure associated with the host.
772 * @index: Index of the hardware queue.
773 *
774 * Safe to call with AFU/MC in partially allocated/initialized state.
775 */
776 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
777 {
778 struct afu *afu = cfg->afu;
779 struct device *dev = &cfg->dev->dev;
780 struct hwq *hwq;
781 ulong lock_flags;
782
783 if (!afu) {
784 dev_err(dev, "%s: returning with NULL afu\n", __func__);
785 return;
786 }
787
788 hwq = get_hwq(afu, index);
789
790 if (!hwq->ctx_cookie) {
791 dev_err(dev, "%s: returning with NULL MC\n", __func__);
792 return;
793 }
794
795 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
796 if (index != PRIMARY_HWQ)
797 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
798 hwq->ctx_cookie = NULL;
799
800 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
801 hwq->hrrq_online = false;
802 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
803
804 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
805 flush_pending_cmds(hwq);
806 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
807 }
808
809 /**
810 * term_afu() - terminates the AFU
811 * @cfg: Internal structure associated with the host.
812 *
813 * Safe to call with AFU/MC in partially allocated/initialized state.
814 */
815 static void term_afu(struct cxlflash_cfg *cfg)
816 {
817 struct device *dev = &cfg->dev->dev;
818 int k;
819
820 /*
821 * Tear down is carefully orchestrated to ensure
822 * no interrupts can come in when the problem state
823 * area is unmapped.
824 *
825 * 1) Disable all AFU interrupts for each master
826 * 2) Unmap the problem state area
827 * 3) Stop each master context
828 */
829 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
830 term_intr(cfg, UNMAP_THREE, k);
831
832 stop_afu(cfg);
833
834 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
835 term_mc(cfg, k);
836
837 dev_dbg(dev, "%s: returning\n", __func__);
838 }
839
840 /**
841 * notify_shutdown() - notifies device of pending shutdown
842 * @cfg: Internal structure associated with the host.
843 * @wait: Whether to wait for shutdown processing to complete.
844 *
845 * This function will notify the AFU that the adapter is being shutdown
846 * and will wait for shutdown processing to complete if wait is true.
847 * This notification should flush pending I/Os to the device and halt
848 * further I/Os until the next AFU reset is issued and device restarted.
849 */
850 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
851 {
852 struct afu *afu = cfg->afu;
853 struct device *dev = &cfg->dev->dev;
854 struct dev_dependent_vals *ddv;
855 __be64 __iomem *fc_port_regs;
856 u64 reg, status;
857 int i, retry_cnt = 0;
858
859 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
860 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
861 return;
862
863 if (!afu || !afu->afu_map) {
864 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
865 return;
866 }
867
868 /* Notify AFU */
869 for (i = 0; i < cfg->num_fc_ports; i++) {
870 fc_port_regs = get_fc_port_regs(cfg, i);
871
872 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
873 reg |= SISL_FC_SHUTDOWN_NORMAL;
874 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
875 }
876
877 if (!wait)
878 return;
879
880 /* Wait up to 1.5 seconds for shutdown processing to complete */
881 for (i = 0; i < cfg->num_fc_ports; i++) {
882 fc_port_regs = get_fc_port_regs(cfg, i);
883 retry_cnt = 0;
884
885 while (true) {
886 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
887 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
888 break;
889 if (++retry_cnt >= MC_RETRY_CNT) {
890 dev_dbg(dev, "%s: port %d shutdown processing "
891 "not yet completed\n", __func__, i);
892 break;
893 }
894 msleep(100 * retry_cnt);
895 }
896 }
897 }
898
899 /**
900 * cxlflash_get_minor() - gets the first available minor number
901 *
902 * Return: Unique minor number that can be used to create the character device.
903 */
904 static int cxlflash_get_minor(void)
905 {
906 int minor;
907 long bit;
908
909 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
910 if (bit >= CXLFLASH_MAX_ADAPTERS)
911 return -1;
912
913 minor = bit & MINORMASK;
914 set_bit(minor, cxlflash_minor);
915 return minor;
916 }
917
918 /**
919 * cxlflash_put_minor() - releases the minor number
920 * @minor: Minor number that is no longer needed.
921 */
922 static void cxlflash_put_minor(int minor)
923 {
924 clear_bit(minor, cxlflash_minor);
925 }
926
927 /**
928 * cxlflash_release_chrdev() - release the character device for the host
929 * @cfg: Internal structure associated with the host.
930 */
931 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
932 {
933 device_unregister(cfg->chardev);
934 cfg->chardev = NULL;
935 cdev_del(&cfg->cdev);
936 cxlflash_put_minor(MINOR(cfg->cdev.dev));
937 }
938
939 /**
940 * cxlflash_remove() - PCI entry point to tear down host
941 * @pdev: PCI device associated with the host.
942 *
943 * Safe to use as a cleanup in partially allocated/initialized state. Note that
944 * the reset_waitq is flushed as part of the stop/termination of user contexts.
945 */
946 static void cxlflash_remove(struct pci_dev *pdev)
947 {
948 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
949 struct device *dev = &pdev->dev;
950 ulong lock_flags;
951
952 if (!pci_is_enabled(pdev)) {
953 dev_dbg(dev, "%s: Device is disabled\n", __func__);
954 return;
955 }
956
957 /* Yield to running recovery threads before continuing with remove */
958 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
959 cfg->state != STATE_PROBING);
960 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
961 if (cfg->tmf_active)
962 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
963 !cfg->tmf_active,
964 cfg->tmf_slock);
965 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
966
967 /* Notify AFU and wait for shutdown processing to complete */
968 notify_shutdown(cfg, true);
969
970 cfg->state = STATE_FAILTERM;
971 cxlflash_stop_term_user_contexts(cfg);
972
973 switch (cfg->init_state) {
974 case INIT_STATE_CDEV:
975 cxlflash_release_chrdev(cfg);
976 case INIT_STATE_SCSI:
977 cxlflash_term_local_luns(cfg);
978 scsi_remove_host(cfg->host);
979 case INIT_STATE_AFU:
980 term_afu(cfg);
981 case INIT_STATE_PCI:
982 cfg->ops->destroy_afu(cfg->afu_cookie);
983 pci_disable_device(pdev);
984 case INIT_STATE_NONE:
985 free_mem(cfg);
986 scsi_host_put(cfg->host);
987 break;
988 }
989
990 dev_dbg(dev, "%s: returning\n", __func__);
991 }
992
993 /**
994 * alloc_mem() - allocates the AFU and its command pool
995 * @cfg: Internal structure associated with the host.
996 *
997 * A partially allocated state remains on failure.
998 *
999 * Return:
1000 * 0 on success
1001 * -ENOMEM on failure to allocate memory
1002 */
1003 static int alloc_mem(struct cxlflash_cfg *cfg)
1004 {
1005 int rc = 0;
1006 struct device *dev = &cfg->dev->dev;
1007
1008 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1009 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1010 get_order(sizeof(struct afu)));
1011 if (unlikely(!cfg->afu)) {
1012 dev_err(dev, "%s: cannot get %d free pages\n",
1013 __func__, get_order(sizeof(struct afu)));
1014 rc = -ENOMEM;
1015 goto out;
1016 }
1017 cfg->afu->parent = cfg;
1018 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1019 cfg->afu->afu_map = NULL;
1020 out:
1021 return rc;
1022 }
1023
1024 /**
1025 * init_pci() - initializes the host as a PCI device
1026 * @cfg: Internal structure associated with the host.
1027 *
1028 * Return: 0 on success, -errno on failure
1029 */
1030 static int init_pci(struct cxlflash_cfg *cfg)
1031 {
1032 struct pci_dev *pdev = cfg->dev;
1033 struct device *dev = &cfg->dev->dev;
1034 int rc = 0;
1035
1036 rc = pci_enable_device(pdev);
1037 if (rc || pci_channel_offline(pdev)) {
1038 if (pci_channel_offline(pdev)) {
1039 cxlflash_wait_for_pci_err_recovery(cfg);
1040 rc = pci_enable_device(pdev);
1041 }
1042
1043 if (rc) {
1044 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1045 cxlflash_wait_for_pci_err_recovery(cfg);
1046 goto out;
1047 }
1048 }
1049
1050 out:
1051 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1052 return rc;
1053 }
1054
1055 /**
1056 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1057 * @cfg: Internal structure associated with the host.
1058 *
1059 * Return: 0 on success, -errno on failure
1060 */
1061 static int init_scsi(struct cxlflash_cfg *cfg)
1062 {
1063 struct pci_dev *pdev = cfg->dev;
1064 struct device *dev = &cfg->dev->dev;
1065 int rc = 0;
1066
1067 rc = scsi_add_host(cfg->host, &pdev->dev);
1068 if (rc) {
1069 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1070 goto out;
1071 }
1072
1073 scsi_scan_host(cfg->host);
1074
1075 out:
1076 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1077 return rc;
1078 }
1079
1080 /**
1081 * set_port_online() - transitions the specified host FC port to online state
1082 * @fc_regs: Top of MMIO region defined for specified port.
1083 *
1084 * The provided MMIO region must be mapped prior to call. Online state means
1085 * that the FC link layer has synced, completed the handshaking process, and
1086 * is ready for login to start.
1087 */
1088 static void set_port_online(__be64 __iomem *fc_regs)
1089 {
1090 u64 cmdcfg;
1091
1092 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1093 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1094 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
1095 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1096 }
1097
1098 /**
1099 * set_port_offline() - transitions the specified host FC port to offline state
1100 * @fc_regs: Top of MMIO region defined for specified port.
1101 *
1102 * The provided MMIO region must be mapped prior to call.
1103 */
1104 static void set_port_offline(__be64 __iomem *fc_regs)
1105 {
1106 u64 cmdcfg;
1107
1108 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1109 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
1110 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
1111 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1112 }
1113
1114 /**
1115 * wait_port_online() - waits for the specified host FC port come online
1116 * @fc_regs: Top of MMIO region defined for specified port.
1117 * @delay_us: Number of microseconds to delay between reading port status.
1118 * @nretry: Number of cycles to retry reading port status.
1119 *
1120 * The provided MMIO region must be mapped prior to call. This will timeout
1121 * when the cable is not plugged in.
1122 *
1123 * Return:
1124 * TRUE (1) when the specified port is online
1125 * FALSE (0) when the specified port fails to come online after timeout
1126 */
1127 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1128 {
1129 u64 status;
1130
1131 WARN_ON(delay_us < 1000);
1132
1133 do {
1134 msleep(delay_us / 1000);
1135 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1136 if (status == U64_MAX)
1137 nretry /= 2;
1138 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1139 nretry--);
1140
1141 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1142 }
1143
1144 /**
1145 * wait_port_offline() - waits for the specified host FC port go offline
1146 * @fc_regs: Top of MMIO region defined for specified port.
1147 * @delay_us: Number of microseconds to delay between reading port status.
1148 * @nretry: Number of cycles to retry reading port status.
1149 *
1150 * The provided MMIO region must be mapped prior to call.
1151 *
1152 * Return:
1153 * TRUE (1) when the specified port is offline
1154 * FALSE (0) when the specified port fails to go offline after timeout
1155 */
1156 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1157 {
1158 u64 status;
1159
1160 WARN_ON(delay_us < 1000);
1161
1162 do {
1163 msleep(delay_us / 1000);
1164 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1165 if (status == U64_MAX)
1166 nretry /= 2;
1167 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1168 nretry--);
1169
1170 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1171 }
1172
1173 /**
1174 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1175 * @afu: AFU associated with the host that owns the specified FC port.
1176 * @port: Port number being configured.
1177 * @fc_regs: Top of MMIO region defined for specified port.
1178 * @wwpn: The world-wide-port-number previously discovered for port.
1179 *
1180 * The provided MMIO region must be mapped prior to call. As part of the
1181 * sequence to configure the WWPN, the port is toggled offline and then back
1182 * online. This toggling action can cause this routine to delay up to a few
1183 * seconds. When configured to use the internal LUN feature of the AFU, a
1184 * failure to come online is overridden.
1185 */
1186 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1187 u64 wwpn)
1188 {
1189 struct cxlflash_cfg *cfg = afu->parent;
1190 struct device *dev = &cfg->dev->dev;
1191
1192 set_port_offline(fc_regs);
1193 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1194 FC_PORT_STATUS_RETRY_CNT)) {
1195 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1196 __func__, port);
1197 }
1198
1199 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1200
1201 set_port_online(fc_regs);
1202 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1203 FC_PORT_STATUS_RETRY_CNT)) {
1204 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1205 __func__, port);
1206 }
1207 }
1208
1209 /**
1210 * afu_link_reset() - resets the specified host FC port
1211 * @afu: AFU associated with the host that owns the specified FC port.
1212 * @port: Port number being configured.
1213 * @fc_regs: Top of MMIO region defined for specified port.
1214 *
1215 * The provided MMIO region must be mapped prior to call. The sequence to
1216 * reset the port involves toggling it offline and then back online. This
1217 * action can cause this routine to delay up to a few seconds. An effort
1218 * is made to maintain link with the device by switching to host to use
1219 * the alternate port exclusively while the reset takes place.
1220 * failure to come online is overridden.
1221 */
1222 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1223 {
1224 struct cxlflash_cfg *cfg = afu->parent;
1225 struct device *dev = &cfg->dev->dev;
1226 u64 port_sel;
1227
1228 /* first switch the AFU to the other links, if any */
1229 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1230 port_sel &= ~(1ULL << port);
1231 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1232 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1233
1234 set_port_offline(fc_regs);
1235 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1236 FC_PORT_STATUS_RETRY_CNT))
1237 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1238 __func__, port);
1239
1240 set_port_online(fc_regs);
1241 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1242 FC_PORT_STATUS_RETRY_CNT))
1243 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1244 __func__, port);
1245
1246 /* switch back to include this port */
1247 port_sel |= (1ULL << port);
1248 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1249 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1250
1251 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1252 }
1253
1254 /**
1255 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1256 * @afu: AFU associated with the host.
1257 */
1258 static void afu_err_intr_init(struct afu *afu)
1259 {
1260 struct cxlflash_cfg *cfg = afu->parent;
1261 __be64 __iomem *fc_port_regs;
1262 int i;
1263 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1264 u64 reg;
1265
1266 /* global async interrupts: AFU clears afu_ctrl on context exit
1267 * if async interrupts were sent to that context. This prevents
1268 * the AFU form sending further async interrupts when
1269 * there is
1270 * nobody to receive them.
1271 */
1272
1273 /* mask all */
1274 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1275 /* set LISN# to send and point to primary master context */
1276 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1277
1278 if (afu->internal_lun)
1279 reg |= 1; /* Bit 63 indicates local lun */
1280 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1281 /* clear all */
1282 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1283 /* unmask bits that are of interest */
1284 /* note: afu can send an interrupt after this step */
1285 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1286 /* clear again in case a bit came on after previous clear but before */
1287 /* unmask */
1288 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1289
1290 /* Clear/Set internal lun bits */
1291 fc_port_regs = get_fc_port_regs(cfg, 0);
1292 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1293 reg &= SISL_FC_INTERNAL_MASK;
1294 if (afu->internal_lun)
1295 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1296 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1297
1298 /* now clear FC errors */
1299 for (i = 0; i < cfg->num_fc_ports; i++) {
1300 fc_port_regs = get_fc_port_regs(cfg, i);
1301
1302 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1303 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1304 }
1305
1306 /* sync interrupts for master's IOARRIN write */
1307 /* note that unlike asyncs, there can be no pending sync interrupts */
1308 /* at this time (this is a fresh context and master has not written */
1309 /* IOARRIN yet), so there is nothing to clear. */
1310
1311 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1312 for (i = 0; i < afu->num_hwqs; i++) {
1313 hwq = get_hwq(afu, i);
1314
1315 reg = readq_be(&hwq->host_map->ctx_ctrl);
1316 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1317 reg |= SISL_MSI_SYNC_ERROR;
1318 writeq_be(reg, &hwq->host_map->ctx_ctrl);
1319 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1320 }
1321 }
1322
1323 /**
1324 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1325 * @irq: Interrupt number.
1326 * @data: Private data provided at interrupt registration, the AFU.
1327 *
1328 * Return: Always return IRQ_HANDLED.
1329 */
1330 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1331 {
1332 struct hwq *hwq = (struct hwq *)data;
1333 struct cxlflash_cfg *cfg = hwq->afu->parent;
1334 struct device *dev = &cfg->dev->dev;
1335 u64 reg;
1336 u64 reg_unmasked;
1337
1338 reg = readq_be(&hwq->host_map->intr_status);
1339 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1340
1341 if (reg_unmasked == 0UL) {
1342 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1343 __func__, reg);
1344 goto cxlflash_sync_err_irq_exit;
1345 }
1346
1347 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1348 __func__, reg);
1349
1350 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1351
1352 cxlflash_sync_err_irq_exit:
1353 return IRQ_HANDLED;
1354 }
1355
1356 /**
1357 * process_hrrq() - process the read-response queue
1358 * @afu: AFU associated with the host.
1359 * @doneq: Queue of commands harvested from the RRQ.
1360 * @budget: Threshold of RRQ entries to process.
1361 *
1362 * This routine must be called holding the disabled RRQ spin lock.
1363 *
1364 * Return: The number of entries processed.
1365 */
1366 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1367 {
1368 struct afu *afu = hwq->afu;
1369 struct afu_cmd *cmd;
1370 struct sisl_ioasa *ioasa;
1371 struct sisl_ioarcb *ioarcb;
1372 bool toggle = hwq->toggle;
1373 int num_hrrq = 0;
1374 u64 entry,
1375 *hrrq_start = hwq->hrrq_start,
1376 *hrrq_end = hwq->hrrq_end,
1377 *hrrq_curr = hwq->hrrq_curr;
1378
1379 /* Process ready RRQ entries up to the specified budget (if any) */
1380 while (true) {
1381 entry = *hrrq_curr;
1382
1383 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1384 break;
1385
1386 entry &= ~SISL_RESP_HANDLE_T_BIT;
1387
1388 if (afu_is_sq_cmd_mode(afu)) {
1389 ioasa = (struct sisl_ioasa *)entry;
1390 cmd = container_of(ioasa, struct afu_cmd, sa);
1391 } else {
1392 ioarcb = (struct sisl_ioarcb *)entry;
1393 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1394 }
1395
1396 list_add_tail(&cmd->queue, doneq);
1397
1398 /* Advance to next entry or wrap and flip the toggle bit */
1399 if (hrrq_curr < hrrq_end)
1400 hrrq_curr++;
1401 else {
1402 hrrq_curr = hrrq_start;
1403 toggle ^= SISL_RESP_HANDLE_T_BIT;
1404 }
1405
1406 atomic_inc(&hwq->hsq_credits);
1407 num_hrrq++;
1408
1409 if (budget > 0 && num_hrrq >= budget)
1410 break;
1411 }
1412
1413 hwq->hrrq_curr = hrrq_curr;
1414 hwq->toggle = toggle;
1415
1416 return num_hrrq;
1417 }
1418
1419 /**
1420 * process_cmd_doneq() - process a queue of harvested RRQ commands
1421 * @doneq: Queue of completed commands.
1422 *
1423 * Note that upon return the queue can no longer be trusted.
1424 */
1425 static void process_cmd_doneq(struct list_head *doneq)
1426 {
1427 struct afu_cmd *cmd, *tmp;
1428
1429 WARN_ON(list_empty(doneq));
1430
1431 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1432 cmd_complete(cmd);
1433 }
1434
1435 /**
1436 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1437 * @irqpoll: IRQ poll structure associated with queue to poll.
1438 * @budget: Threshold of RRQ entries to process per poll.
1439 *
1440 * Return: The number of entries processed.
1441 */
1442 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1443 {
1444 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1445 unsigned long hrrq_flags;
1446 LIST_HEAD(doneq);
1447 int num_entries = 0;
1448
1449 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1450
1451 num_entries = process_hrrq(hwq, &doneq, budget);
1452 if (num_entries < budget)
1453 irq_poll_complete(irqpoll);
1454
1455 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1456
1457 process_cmd_doneq(&doneq);
1458 return num_entries;
1459 }
1460
1461 /**
1462 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1463 * @irq: Interrupt number.
1464 * @data: Private data provided at interrupt registration, the AFU.
1465 *
1466 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1467 */
1468 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1469 {
1470 struct hwq *hwq = (struct hwq *)data;
1471 struct afu *afu = hwq->afu;
1472 unsigned long hrrq_flags;
1473 LIST_HEAD(doneq);
1474 int num_entries = 0;
1475
1476 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1477
1478 /* Silently drop spurious interrupts when queue is not online */
1479 if (!hwq->hrrq_online) {
1480 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1481 return IRQ_HANDLED;
1482 }
1483
1484 if (afu_is_irqpoll_enabled(afu)) {
1485 irq_poll_sched(&hwq->irqpoll);
1486 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1487 return IRQ_HANDLED;
1488 }
1489
1490 num_entries = process_hrrq(hwq, &doneq, -1);
1491 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1492
1493 if (num_entries == 0)
1494 return IRQ_NONE;
1495
1496 process_cmd_doneq(&doneq);
1497 return IRQ_HANDLED;
1498 }
1499
1500 /*
1501 * Asynchronous interrupt information table
1502 *
1503 * NOTE:
1504 * - Order matters here as this array is indexed by bit position.
1505 *
1506 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1507 * as complex and complains due to a lack of parentheses/braces.
1508 */
1509 #define ASTATUS_FC(_a, _b, _c, _d) \
1510 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1511
1512 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1513 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1514 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1515 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1516 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1517 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1518 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1519 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1520 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1521
1522 static const struct asyc_intr_info ainfo[] = {
1523 BUILD_SISL_ASTATUS_FC_PORT(1),
1524 BUILD_SISL_ASTATUS_FC_PORT(0),
1525 BUILD_SISL_ASTATUS_FC_PORT(3),
1526 BUILD_SISL_ASTATUS_FC_PORT(2)
1527 };
1528
1529 /**
1530 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1531 * @irq: Interrupt number.
1532 * @data: Private data provided at interrupt registration, the AFU.
1533 *
1534 * Return: Always return IRQ_HANDLED.
1535 */
1536 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1537 {
1538 struct hwq *hwq = (struct hwq *)data;
1539 struct afu *afu = hwq->afu;
1540 struct cxlflash_cfg *cfg = afu->parent;
1541 struct device *dev = &cfg->dev->dev;
1542 const struct asyc_intr_info *info;
1543 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1544 __be64 __iomem *fc_port_regs;
1545 u64 reg_unmasked;
1546 u64 reg;
1547 u64 bit;
1548 u8 port;
1549
1550 reg = readq_be(&global->regs.aintr_status);
1551 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1552
1553 if (unlikely(reg_unmasked == 0)) {
1554 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1555 __func__, reg);
1556 goto out;
1557 }
1558
1559 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1560 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1561
1562 /* Check each bit that is on */
1563 for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1564 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1565 WARN_ON_ONCE(1);
1566 continue;
1567 }
1568
1569 info = &ainfo[bit];
1570 if (unlikely(info->status != 1ULL << bit)) {
1571 WARN_ON_ONCE(1);
1572 continue;
1573 }
1574
1575 port = info->port;
1576 fc_port_regs = get_fc_port_regs(cfg, port);
1577
1578 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1579 __func__, port, info->desc,
1580 readq_be(&fc_port_regs[FC_STATUS / 8]));
1581
1582 /*
1583 * Do link reset first, some OTHER errors will set FC_ERROR
1584 * again if cleared before or w/o a reset
1585 */
1586 if (info->action & LINK_RESET) {
1587 dev_err(dev, "%s: FC Port %d: resetting link\n",
1588 __func__, port);
1589 cfg->lr_state = LINK_RESET_REQUIRED;
1590 cfg->lr_port = port;
1591 schedule_work(&cfg->work_q);
1592 }
1593
1594 if (info->action & CLR_FC_ERROR) {
1595 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1596
1597 /*
1598 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1599 * should be the same and tracing one is sufficient.
1600 */
1601
1602 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1603 __func__, port, reg);
1604
1605 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1606 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1607 }
1608
1609 if (info->action & SCAN_HOST) {
1610 atomic_inc(&cfg->scan_host_needed);
1611 schedule_work(&cfg->work_q);
1612 }
1613 }
1614
1615 out:
1616 return IRQ_HANDLED;
1617 }
1618
1619 /**
1620 * read_vpd() - obtains the WWPNs from VPD
1621 * @cfg: Internal structure associated with the host.
1622 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1623 *
1624 * Return: 0 on success, -errno on failure
1625 */
1626 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1627 {
1628 struct device *dev = &cfg->dev->dev;
1629 struct pci_dev *pdev = cfg->dev;
1630 int rc = 0;
1631 int ro_start, ro_size, i, j, k;
1632 ssize_t vpd_size;
1633 char vpd_data[CXLFLASH_VPD_LEN];
1634 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1635 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1636 cfg->dev_id->driver_data;
1637 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1638 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1639
1640 /* Get the VPD data from the device */
1641 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1642 if (unlikely(vpd_size <= 0)) {
1643 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1644 __func__, vpd_size);
1645 rc = -ENODEV;
1646 goto out;
1647 }
1648
1649 /* Get the read only section offset */
1650 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1651 PCI_VPD_LRDT_RO_DATA);
1652 if (unlikely(ro_start < 0)) {
1653 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1654 rc = -ENODEV;
1655 goto out;
1656 }
1657
1658 /* Get the read only section size, cap when extends beyond read VPD */
1659 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1660 j = ro_size;
1661 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1662 if (unlikely((i + j) > vpd_size)) {
1663 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1664 __func__, (i + j), vpd_size);
1665 ro_size = vpd_size - i;
1666 }
1667
1668 /*
1669 * Find the offset of the WWPN tag within the read only
1670 * VPD data and validate the found field (partials are
1671 * no good to us). Convert the ASCII data to an integer
1672 * value. Note that we must copy to a temporary buffer
1673 * because the conversion service requires that the ASCII
1674 * string be terminated.
1675 *
1676 * Allow for WWPN not being found for all devices, setting
1677 * the returned WWPN to zero when not found. Notify with a
1678 * log error for cards that should have had WWPN keywords
1679 * in the VPD - cards requiring WWPN will not have their
1680 * ports programmed and operate in an undefined state.
1681 */
1682 for (k = 0; k < cfg->num_fc_ports; k++) {
1683 j = ro_size;
1684 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1685
1686 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1687 if (i < 0) {
1688 if (wwpn_vpd_required)
1689 dev_err(dev, "%s: Port %d WWPN not found\n",
1690 __func__, k);
1691 wwpn[k] = 0ULL;
1692 continue;
1693 }
1694
1695 j = pci_vpd_info_field_size(&vpd_data[i]);
1696 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1697 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1698 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1699 __func__, k);
1700 rc = -ENODEV;
1701 goto out;
1702 }
1703
1704 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1705 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1706 if (unlikely(rc)) {
1707 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1708 __func__, k);
1709 rc = -ENODEV;
1710 goto out;
1711 }
1712
1713 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1714 }
1715
1716 out:
1717 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1718 return rc;
1719 }
1720
1721 /**
1722 * init_pcr() - initialize the provisioning and control registers
1723 * @cfg: Internal structure associated with the host.
1724 *
1725 * Also sets up fast access to the mapped registers and initializes AFU
1726 * command fields that never change.
1727 */
1728 static void init_pcr(struct cxlflash_cfg *cfg)
1729 {
1730 struct afu *afu = cfg->afu;
1731 struct sisl_ctrl_map __iomem *ctrl_map;
1732 struct hwq *hwq;
1733 void *cookie;
1734 int i;
1735
1736 for (i = 0; i < MAX_CONTEXT; i++) {
1737 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1738 /* Disrupt any clients that could be running */
1739 /* e.g. clients that survived a master restart */
1740 writeq_be(0, &ctrl_map->rht_start);
1741 writeq_be(0, &ctrl_map->rht_cnt_id);
1742 writeq_be(0, &ctrl_map->ctx_cap);
1743 }
1744
1745 /* Copy frequently used fields into hwq */
1746 for (i = 0; i < afu->num_hwqs; i++) {
1747 hwq = get_hwq(afu, i);
1748 cookie = hwq->ctx_cookie;
1749
1750 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1751 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1752 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1753
1754 /* Program the Endian Control for the master context */
1755 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1756 }
1757 }
1758
1759 /**
1760 * init_global() - initialize AFU global registers
1761 * @cfg: Internal structure associated with the host.
1762 */
1763 static int init_global(struct cxlflash_cfg *cfg)
1764 {
1765 struct afu *afu = cfg->afu;
1766 struct device *dev = &cfg->dev->dev;
1767 struct hwq *hwq;
1768 struct sisl_host_map __iomem *hmap;
1769 __be64 __iomem *fc_port_regs;
1770 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1771 int i = 0, num_ports = 0;
1772 int rc = 0;
1773 int j;
1774 void *ctx;
1775 u64 reg;
1776
1777 rc = read_vpd(cfg, &wwpn[0]);
1778 if (rc) {
1779 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1780 goto out;
1781 }
1782
1783 /* Set up RRQ and SQ in HWQ for master issued cmds */
1784 for (i = 0; i < afu->num_hwqs; i++) {
1785 hwq = get_hwq(afu, i);
1786 hmap = hwq->host_map;
1787
1788 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1789 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1790 hwq->hrrq_online = true;
1791
1792 if (afu_is_sq_cmd_mode(afu)) {
1793 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1794 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1795 }
1796 }
1797
1798 /* AFU configuration */
1799 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1800 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1801 /* enable all auto retry options and control endianness */
1802 /* leave others at default: */
1803 /* CTX_CAP write protected, mbox_r does not clear on read and */
1804 /* checker on if dual afu */
1805 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1806
1807 /* Global port select: select either port */
1808 if (afu->internal_lun) {
1809 /* Only use port 0 */
1810 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1811 num_ports = 0;
1812 } else {
1813 writeq_be(PORT_MASK(cfg->num_fc_ports),
1814 &afu->afu_map->global.regs.afu_port_sel);
1815 num_ports = cfg->num_fc_ports;
1816 }
1817
1818 for (i = 0; i < num_ports; i++) {
1819 fc_port_regs = get_fc_port_regs(cfg, i);
1820
1821 /* Unmask all errors (but they are still masked at AFU) */
1822 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1823 /* Clear CRC error cnt & set a threshold */
1824 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1825 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1826
1827 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1828 if (wwpn[i] != 0)
1829 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1830 /* Programming WWPN back to back causes additional
1831 * offline/online transitions and a PLOGI
1832 */
1833 msleep(100);
1834 }
1835
1836 if (afu_is_ocxl_lisn(afu)) {
1837 /* Set up the LISN effective address for each master */
1838 for (i = 0; i < afu->num_hwqs; i++) {
1839 hwq = get_hwq(afu, i);
1840 ctx = hwq->ctx_cookie;
1841
1842 for (j = 0; j < hwq->num_irqs; j++) {
1843 reg = cfg->ops->get_irq_objhndl(ctx, j);
1844 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1845 }
1846
1847 reg = hwq->ctx_hndl;
1848 writeq_be(SISL_LISN_PASID(reg, reg),
1849 &hwq->ctrl_map->lisn_pasid[0]);
1850 writeq_be(SISL_LISN_PASID(0UL, reg),
1851 &hwq->ctrl_map->lisn_pasid[1]);
1852 }
1853 }
1854
1855 /* Set up master's own CTX_CAP to allow real mode, host translation */
1856 /* tables, afu cmds and read/write GSCSI cmds. */
1857 /* First, unlock ctx_cap write by reading mbox */
1858 for (i = 0; i < afu->num_hwqs; i++) {
1859 hwq = get_hwq(afu, i);
1860
1861 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1862 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1863 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1864 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1865 &hwq->ctrl_map->ctx_cap);
1866 }
1867
1868 /*
1869 * Determine write-same unmap support for host by evaluating the unmap
1870 * sector support bit of the context control register associated with
1871 * the primary hardware queue. Note that while this status is reflected
1872 * in a context register, the outcome can be assumed to be host-wide.
1873 */
1874 hwq = get_hwq(afu, PRIMARY_HWQ);
1875 reg = readq_be(&hwq->host_map->ctx_ctrl);
1876 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1877 cfg->ws_unmap = true;
1878
1879 /* Initialize heartbeat */
1880 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1881 out:
1882 return rc;
1883 }
1884
1885 /**
1886 * start_afu() - initializes and starts the AFU
1887 * @cfg: Internal structure associated with the host.
1888 */
1889 static int start_afu(struct cxlflash_cfg *cfg)
1890 {
1891 struct afu *afu = cfg->afu;
1892 struct device *dev = &cfg->dev->dev;
1893 struct hwq *hwq;
1894 int rc = 0;
1895 int i;
1896
1897 init_pcr(cfg);
1898
1899 /* Initialize each HWQ */
1900 for (i = 0; i < afu->num_hwqs; i++) {
1901 hwq = get_hwq(afu, i);
1902
1903 /* After an AFU reset, RRQ entries are stale, clear them */
1904 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1905
1906 /* Initialize RRQ pointers */
1907 hwq->hrrq_start = &hwq->rrq_entry[0];
1908 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1909 hwq->hrrq_curr = hwq->hrrq_start;
1910 hwq->toggle = 1;
1911
1912 /* Initialize spin locks */
1913 spin_lock_init(&hwq->hrrq_slock);
1914 spin_lock_init(&hwq->hsq_slock);
1915
1916 /* Initialize SQ */
1917 if (afu_is_sq_cmd_mode(afu)) {
1918 memset(&hwq->sq, 0, sizeof(hwq->sq));
1919 hwq->hsq_start = &hwq->sq[0];
1920 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1921 hwq->hsq_curr = hwq->hsq_start;
1922
1923 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1924 }
1925
1926 /* Initialize IRQ poll */
1927 if (afu_is_irqpoll_enabled(afu))
1928 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1929 cxlflash_irqpoll);
1930
1931 }
1932
1933 rc = init_global(cfg);
1934
1935 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1936 return rc;
1937 }
1938
1939 /**
1940 * init_intr() - setup interrupt handlers for the master context
1941 * @cfg: Internal structure associated with the host.
1942 * @hwq: Hardware queue to initialize.
1943 *
1944 * Return: 0 on success, -errno on failure
1945 */
1946 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1947 struct hwq *hwq)
1948 {
1949 struct device *dev = &cfg->dev->dev;
1950 void *ctx = hwq->ctx_cookie;
1951 int rc = 0;
1952 enum undo_level level = UNDO_NOOP;
1953 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1954 int num_irqs = hwq->num_irqs;
1955
1956 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1957 if (unlikely(rc)) {
1958 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1959 __func__, rc);
1960 level = UNDO_NOOP;
1961 goto out;
1962 }
1963
1964 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1965 "SISL_MSI_SYNC_ERROR");
1966 if (unlikely(rc <= 0)) {
1967 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1968 level = FREE_IRQ;
1969 goto out;
1970 }
1971
1972 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1973 "SISL_MSI_RRQ_UPDATED");
1974 if (unlikely(rc <= 0)) {
1975 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1976 level = UNMAP_ONE;
1977 goto out;
1978 }
1979
1980 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1981 if (!is_primary_hwq)
1982 goto out;
1983
1984 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1985 "SISL_MSI_ASYNC_ERROR");
1986 if (unlikely(rc <= 0)) {
1987 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1988 level = UNMAP_TWO;
1989 goto out;
1990 }
1991 out:
1992 return level;
1993 }
1994
1995 /**
1996 * init_mc() - create and register as the master context
1997 * @cfg: Internal structure associated with the host.
1998 * index: HWQ Index of the master context.
1999 *
2000 * Return: 0 on success, -errno on failure
2001 */
2002 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
2003 {
2004 void *ctx;
2005 struct device *dev = &cfg->dev->dev;
2006 struct hwq *hwq = get_hwq(cfg->afu, index);
2007 int rc = 0;
2008 int num_irqs;
2009 enum undo_level level;
2010
2011 hwq->afu = cfg->afu;
2012 hwq->index = index;
2013 INIT_LIST_HEAD(&hwq->pending_cmds);
2014
2015 if (index == PRIMARY_HWQ) {
2016 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
2017 num_irqs = 3;
2018 } else {
2019 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
2020 num_irqs = 2;
2021 }
2022 if (IS_ERR_OR_NULL(ctx)) {
2023 rc = -ENOMEM;
2024 goto err1;
2025 }
2026
2027 WARN_ON(hwq->ctx_cookie);
2028 hwq->ctx_cookie = ctx;
2029 hwq->num_irqs = num_irqs;
2030
2031 /* Set it up as a master with the CXL */
2032 cfg->ops->set_master(ctx);
2033
2034 /* Reset AFU when initializing primary context */
2035 if (index == PRIMARY_HWQ) {
2036 rc = cfg->ops->afu_reset(ctx);
2037 if (unlikely(rc)) {
2038 dev_err(dev, "%s: AFU reset failed rc=%d\n",
2039 __func__, rc);
2040 goto err1;
2041 }
2042 }
2043
2044 level = init_intr(cfg, hwq);
2045 if (unlikely(level)) {
2046 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2047 goto err2;
2048 }
2049
2050 /* Finally, activate the context by starting it */
2051 rc = cfg->ops->start_context(hwq->ctx_cookie);
2052 if (unlikely(rc)) {
2053 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2054 level = UNMAP_THREE;
2055 goto err2;
2056 }
2057
2058 out:
2059 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2060 return rc;
2061 err2:
2062 term_intr(cfg, level, index);
2063 if (index != PRIMARY_HWQ)
2064 cfg->ops->release_context(ctx);
2065 err1:
2066 hwq->ctx_cookie = NULL;
2067 goto out;
2068 }
2069
2070 /**
2071 * get_num_afu_ports() - determines and configures the number of AFU ports
2072 * @cfg: Internal structure associated with the host.
2073 *
2074 * This routine determines the number of AFU ports by converting the global
2075 * port selection mask. The converted value is only valid following an AFU
2076 * reset (explicit or power-on). This routine must be invoked shortly after
2077 * mapping as other routines are dependent on the number of ports during the
2078 * initialization sequence.
2079 *
2080 * To support legacy AFUs that might not have reflected an initial global
2081 * port mask (value read is 0), default to the number of ports originally
2082 * supported by the cxlflash driver (2) before hardware with other port
2083 * offerings was introduced.
2084 */
2085 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2086 {
2087 struct afu *afu = cfg->afu;
2088 struct device *dev = &cfg->dev->dev;
2089 u64 port_mask;
2090 int num_fc_ports = LEGACY_FC_PORTS;
2091
2092 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2093 if (port_mask != 0ULL)
2094 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2095
2096 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2097 __func__, port_mask, num_fc_ports);
2098
2099 cfg->num_fc_ports = num_fc_ports;
2100 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2101 }
2102
2103 /**
2104 * init_afu() - setup as master context and start AFU
2105 * @cfg: Internal structure associated with the host.
2106 *
2107 * This routine is a higher level of control for configuring the
2108 * AFU on probe and reset paths.
2109 *
2110 * Return: 0 on success, -errno on failure
2111 */
2112 static int init_afu(struct cxlflash_cfg *cfg)
2113 {
2114 u64 reg;
2115 int rc = 0;
2116 struct afu *afu = cfg->afu;
2117 struct device *dev = &cfg->dev->dev;
2118 struct hwq *hwq;
2119 int i;
2120
2121 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2122
2123 mutex_init(&afu->sync_active);
2124 afu->num_hwqs = afu->desired_hwqs;
2125 for (i = 0; i < afu->num_hwqs; i++) {
2126 rc = init_mc(cfg, i);
2127 if (rc) {
2128 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2129 __func__, rc, i);
2130 goto err1;
2131 }
2132 }
2133
2134 /* Map the entire MMIO space of the AFU using the first context */
2135 hwq = get_hwq(afu, PRIMARY_HWQ);
2136 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2137 if (!afu->afu_map) {
2138 dev_err(dev, "%s: psa_map failed\n", __func__);
2139 rc = -ENOMEM;
2140 goto err1;
2141 }
2142
2143 /* No byte reverse on reading afu_version or string will be backwards */
2144 reg = readq(&afu->afu_map->global.regs.afu_version);
2145 memcpy(afu->version, &reg, sizeof(reg));
2146 afu->interface_version =
2147 readq_be(&afu->afu_map->global.regs.interface_version);
2148 if ((afu->interface_version + 1) == 0) {
2149 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2150 "interface version %016llx\n", afu->version,
2151 afu->interface_version);
2152 rc = -EINVAL;
2153 goto err1;
2154 }
2155
2156 if (afu_is_sq_cmd_mode(afu)) {
2157 afu->send_cmd = send_cmd_sq;
2158 afu->context_reset = context_reset_sq;
2159 } else {
2160 afu->send_cmd = send_cmd_ioarrin;
2161 afu->context_reset = context_reset_ioarrin;
2162 }
2163
2164 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2165 afu->version, afu->interface_version);
2166
2167 get_num_afu_ports(cfg);
2168
2169 rc = start_afu(cfg);
2170 if (rc) {
2171 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2172 goto err1;
2173 }
2174
2175 afu_err_intr_init(cfg->afu);
2176 for (i = 0; i < afu->num_hwqs; i++) {
2177 hwq = get_hwq(afu, i);
2178
2179 hwq->room = readq_be(&hwq->host_map->cmd_room);
2180 }
2181
2182 /* Restore the LUN mappings */
2183 cxlflash_restore_luntable(cfg);
2184 out:
2185 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2186 return rc;
2187
2188 err1:
2189 for (i = afu->num_hwqs - 1; i >= 0; i--) {
2190 term_intr(cfg, UNMAP_THREE, i);
2191 term_mc(cfg, i);
2192 }
2193 goto out;
2194 }
2195
2196 /**
2197 * afu_reset() - resets the AFU
2198 * @cfg: Internal structure associated with the host.
2199 *
2200 * Return: 0 on success, -errno on failure
2201 */
2202 static int afu_reset(struct cxlflash_cfg *cfg)
2203 {
2204 struct device *dev = &cfg->dev->dev;
2205 int rc = 0;
2206
2207 /* Stop the context before the reset. Since the context is
2208 * no longer available restart it after the reset is complete
2209 */
2210 term_afu(cfg);
2211
2212 rc = init_afu(cfg);
2213
2214 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2215 return rc;
2216 }
2217
2218 /**
2219 * drain_ioctls() - wait until all currently executing ioctls have completed
2220 * @cfg: Internal structure associated with the host.
2221 *
2222 * Obtain write access to read/write semaphore that wraps ioctl
2223 * handling to 'drain' ioctls currently executing.
2224 */
2225 static void drain_ioctls(struct cxlflash_cfg *cfg)
2226 {
2227 down_write(&cfg->ioctl_rwsem);
2228 up_write(&cfg->ioctl_rwsem);
2229 }
2230
2231 /**
2232 * cxlflash_async_reset_host() - asynchronous host reset handler
2233 * @data: Private data provided while scheduling reset.
2234 * @cookie: Cookie that can be used for checkpointing.
2235 */
2236 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2237 {
2238 struct cxlflash_cfg *cfg = data;
2239 struct device *dev = &cfg->dev->dev;
2240 int rc = 0;
2241
2242 if (cfg->state != STATE_RESET) {
2243 dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2244 __func__, cfg->state);
2245 goto out;
2246 }
2247
2248 drain_ioctls(cfg);
2249 cxlflash_mark_contexts_error(cfg);
2250 rc = afu_reset(cfg);
2251 if (rc)
2252 cfg->state = STATE_FAILTERM;
2253 else
2254 cfg->state = STATE_NORMAL;
2255 wake_up_all(&cfg->reset_waitq);
2256
2257 out:
2258 scsi_unblock_requests(cfg->host);
2259 }
2260
2261 /**
2262 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2263 * @cfg: Internal structure associated with the host.
2264 */
2265 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2266 {
2267 struct device *dev = &cfg->dev->dev;
2268
2269 if (cfg->state != STATE_NORMAL) {
2270 dev_dbg(dev, "%s: Not performing reset state=%d\n",
2271 __func__, cfg->state);
2272 return;
2273 }
2274
2275 cfg->state = STATE_RESET;
2276 scsi_block_requests(cfg->host);
2277 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2278 cfg);
2279 }
2280
2281 /**
2282 * send_afu_cmd() - builds and sends an internal AFU command
2283 * @afu: AFU associated with the host.
2284 * @rcb: Pre-populated IOARCB describing command to send.
2285 *
2286 * The AFU can only take one internal AFU command at a time. This limitation is
2287 * enforced by using a mutex to provide exclusive access to the AFU during the
2288 * operation. This design point requires calling threads to not be on interrupt
2289 * context due to the possibility of sleeping during concurrent AFU operations.
2290 *
2291 * The command status is optionally passed back to the caller when the caller
2292 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2293 *
2294 * Return:
2295 * 0 on success, -errno on failure
2296 */
2297 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2298 {
2299 struct cxlflash_cfg *cfg = afu->parent;
2300 struct device *dev = &cfg->dev->dev;
2301 struct afu_cmd *cmd = NULL;
2302 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2303 ulong lock_flags;
2304 char *buf = NULL;
2305 int rc = 0;
2306 int nretry = 0;
2307
2308 if (cfg->state != STATE_NORMAL) {
2309 dev_dbg(dev, "%s: Sync not required state=%u\n",
2310 __func__, cfg->state);
2311 return 0;
2312 }
2313
2314 mutex_lock(&afu->sync_active);
2315 atomic_inc(&afu->cmds_active);
2316 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2317 if (unlikely(!buf)) {
2318 dev_err(dev, "%s: no memory for command\n", __func__);
2319 rc = -ENOMEM;
2320 goto out;
2321 }
2322
2323 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2324
2325 retry:
2326 memset(cmd, 0, sizeof(*cmd));
2327 memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2328 INIT_LIST_HEAD(&cmd->queue);
2329 init_completion(&cmd->cevent);
2330 cmd->parent = afu;
2331 cmd->hwq_index = hwq->index;
2332 cmd->rcb.ctx_id = hwq->ctx_hndl;
2333
2334 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2335 __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2336
2337 rc = afu->send_cmd(afu, cmd);
2338 if (unlikely(rc)) {
2339 rc = -ENOBUFS;
2340 goto out;
2341 }
2342
2343 rc = wait_resp(afu, cmd);
2344 switch (rc) {
2345 case -ETIMEDOUT:
2346 rc = afu->context_reset(hwq);
2347 if (rc) {
2348 /* Delete the command from pending_cmds list */
2349 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2350 list_del(&cmd->list);
2351 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2352
2353 cxlflash_schedule_async_reset(cfg);
2354 break;
2355 }
2356 /* fall through to retry */
2357 case -EAGAIN:
2358 if (++nretry < 2)
2359 goto retry;
2360 /* fall through to exit */
2361 default:
2362 break;
2363 }
2364
2365 if (rcb->ioasa)
2366 *rcb->ioasa = cmd->sa;
2367 out:
2368 atomic_dec(&afu->cmds_active);
2369 mutex_unlock(&afu->sync_active);
2370 kfree(buf);
2371 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2372 return rc;
2373 }
2374
2375 /**
2376 * cxlflash_afu_sync() - builds and sends an AFU sync command
2377 * @afu: AFU associated with the host.
2378 * @ctx: Identifies context requesting sync.
2379 * @res: Identifies resource requesting sync.
2380 * @mode: Type of sync to issue (lightweight, heavyweight, global).
2381 *
2382 * AFU sync operations are only necessary and allowed when the device is
2383 * operating normally. When not operating normally, sync requests can occur as
2384 * part of cleaning up resources associated with an adapter prior to removal.
2385 * In this scenario, these requests are simply ignored (safe due to the AFU
2386 * going away).
2387 *
2388 * Return:
2389 * 0 on success, -errno on failure
2390 */
2391 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2392 {
2393 struct cxlflash_cfg *cfg = afu->parent;
2394 struct device *dev = &cfg->dev->dev;
2395 struct sisl_ioarcb rcb = { 0 };
2396
2397 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2398 __func__, afu, ctx, res, mode);
2399
2400 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2401 rcb.msi = SISL_MSI_RRQ_UPDATED;
2402 rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2403
2404 rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2405 rcb.cdb[1] = mode;
2406 put_unaligned_be16(ctx, &rcb.cdb[2]);
2407 put_unaligned_be32(res, &rcb.cdb[4]);
2408
2409 return send_afu_cmd(afu, &rcb);
2410 }
2411
2412 /**
2413 * cxlflash_eh_abort_handler() - abort a SCSI command
2414 * @scp: SCSI command to abort.
2415 *
2416 * CXL Flash devices do not support a single command abort. Reset the context
2417 * as per SISLite specification. Flush any pending commands in the hardware
2418 * queue before the reset.
2419 *
2420 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2421 */
2422 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2423 {
2424 int rc = FAILED;
2425 struct Scsi_Host *host = scp->device->host;
2426 struct cxlflash_cfg *cfg = shost_priv(host);
2427 struct afu_cmd *cmd = sc_to_afuc(scp);
2428 struct device *dev = &cfg->dev->dev;
2429 struct afu *afu = cfg->afu;
2430 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2431
2432 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2433 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2434 scp->device->channel, scp->device->id, scp->device->lun,
2435 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2436 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2437 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2438 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2439
2440 /* When the state is not normal, another reset/reload is in progress.
2441 * Return failed and the mid-layer will invoke host reset handler.
2442 */
2443 if (cfg->state != STATE_NORMAL) {
2444 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2445 __func__, cfg->state);
2446 goto out;
2447 }
2448
2449 rc = afu->context_reset(hwq);
2450 if (unlikely(rc))
2451 goto out;
2452
2453 rc = SUCCESS;
2454
2455 out:
2456 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2457 return rc;
2458 }
2459
2460 /**
2461 * cxlflash_eh_device_reset_handler() - reset a single LUN
2462 * @scp: SCSI command to send.
2463 *
2464 * Return:
2465 * SUCCESS as defined in scsi/scsi.h
2466 * FAILED as defined in scsi/scsi.h
2467 */
2468 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2469 {
2470 int rc = SUCCESS;
2471 struct scsi_device *sdev = scp->device;
2472 struct Scsi_Host *host = sdev->host;
2473 struct cxlflash_cfg *cfg = shost_priv(host);
2474 struct device *dev = &cfg->dev->dev;
2475 int rcr = 0;
2476
2477 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2478 host->host_no, sdev->channel, sdev->id, sdev->lun);
2479 retry:
2480 switch (cfg->state) {
2481 case STATE_NORMAL:
2482 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2483 if (unlikely(rcr))
2484 rc = FAILED;
2485 break;
2486 case STATE_RESET:
2487 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2488 goto retry;
2489 default:
2490 rc = FAILED;
2491 break;
2492 }
2493
2494 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2495 return rc;
2496 }
2497
2498 /**
2499 * cxlflash_eh_host_reset_handler() - reset the host adapter
2500 * @scp: SCSI command from stack identifying host.
2501 *
2502 * Following a reset, the state is evaluated again in case an EEH occurred
2503 * during the reset. In such a scenario, the host reset will either yield
2504 * until the EEH recovery is complete or return success or failure based
2505 * upon the current device state.
2506 *
2507 * Return:
2508 * SUCCESS as defined in scsi/scsi.h
2509 * FAILED as defined in scsi/scsi.h
2510 */
2511 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2512 {
2513 int rc = SUCCESS;
2514 int rcr = 0;
2515 struct Scsi_Host *host = scp->device->host;
2516 struct cxlflash_cfg *cfg = shost_priv(host);
2517 struct device *dev = &cfg->dev->dev;
2518
2519 dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2520
2521 switch (cfg->state) {
2522 case STATE_NORMAL:
2523 cfg->state = STATE_RESET;
2524 drain_ioctls(cfg);
2525 cxlflash_mark_contexts_error(cfg);
2526 rcr = afu_reset(cfg);
2527 if (rcr) {
2528 rc = FAILED;
2529 cfg->state = STATE_FAILTERM;
2530 } else
2531 cfg->state = STATE_NORMAL;
2532 wake_up_all(&cfg->reset_waitq);
2533 ssleep(1);
2534 /* fall through */
2535 case STATE_RESET:
2536 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2537 if (cfg->state == STATE_NORMAL)
2538 break;
2539 /* fall through */
2540 default:
2541 rc = FAILED;
2542 break;
2543 }
2544
2545 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2546 return rc;
2547 }
2548
2549 /**
2550 * cxlflash_change_queue_depth() - change the queue depth for the device
2551 * @sdev: SCSI device destined for queue depth change.
2552 * @qdepth: Requested queue depth value to set.
2553 *
2554 * The requested queue depth is capped to the maximum supported value.
2555 *
2556 * Return: The actual queue depth set.
2557 */
2558 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2559 {
2560
2561 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2562 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2563
2564 scsi_change_queue_depth(sdev, qdepth);
2565 return sdev->queue_depth;
2566 }
2567
2568 /**
2569 * cxlflash_show_port_status() - queries and presents the current port status
2570 * @port: Desired port for status reporting.
2571 * @cfg: Internal structure associated with the host.
2572 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2573 *
2574 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2575 */
2576 static ssize_t cxlflash_show_port_status(u32 port,
2577 struct cxlflash_cfg *cfg,
2578 char *buf)
2579 {
2580 struct device *dev = &cfg->dev->dev;
2581 char *disp_status;
2582 u64 status;
2583 __be64 __iomem *fc_port_regs;
2584
2585 WARN_ON(port >= MAX_FC_PORTS);
2586
2587 if (port >= cfg->num_fc_ports) {
2588 dev_info(dev, "%s: Port %d not supported on this card.\n",
2589 __func__, port);
2590 return -EINVAL;
2591 }
2592
2593 fc_port_regs = get_fc_port_regs(cfg, port);
2594 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2595 status &= FC_MTIP_STATUS_MASK;
2596
2597 if (status == FC_MTIP_STATUS_ONLINE)
2598 disp_status = "online";
2599 else if (status == FC_MTIP_STATUS_OFFLINE)
2600 disp_status = "offline";
2601 else
2602 disp_status = "unknown";
2603
2604 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2605 }
2606
2607 /**
2608 * port0_show() - queries and presents the current status of port 0
2609 * @dev: Generic device associated with the host owning the port.
2610 * @attr: Device attribute representing the port.
2611 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2612 *
2613 * Return: The size of the ASCII string returned in @buf.
2614 */
2615 static ssize_t port0_show(struct device *dev,
2616 struct device_attribute *attr,
2617 char *buf)
2618 {
2619 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2620
2621 return cxlflash_show_port_status(0, cfg, buf);
2622 }
2623
2624 /**
2625 * port1_show() - queries and presents the current status of port 1
2626 * @dev: Generic device associated with the host owning the port.
2627 * @attr: Device attribute representing the port.
2628 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2629 *
2630 * Return: The size of the ASCII string returned in @buf.
2631 */
2632 static ssize_t port1_show(struct device *dev,
2633 struct device_attribute *attr,
2634 char *buf)
2635 {
2636 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2637
2638 return cxlflash_show_port_status(1, cfg, buf);
2639 }
2640
2641 /**
2642 * port2_show() - queries and presents the current status of port 2
2643 * @dev: Generic device associated with the host owning the port.
2644 * @attr: Device attribute representing the port.
2645 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2646 *
2647 * Return: The size of the ASCII string returned in @buf.
2648 */
2649 static ssize_t port2_show(struct device *dev,
2650 struct device_attribute *attr,
2651 char *buf)
2652 {
2653 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2654
2655 return cxlflash_show_port_status(2, cfg, buf);
2656 }
2657
2658 /**
2659 * port3_show() - queries and presents the current status of port 3
2660 * @dev: Generic device associated with the host owning the port.
2661 * @attr: Device attribute representing the port.
2662 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2663 *
2664 * Return: The size of the ASCII string returned in @buf.
2665 */
2666 static ssize_t port3_show(struct device *dev,
2667 struct device_attribute *attr,
2668 char *buf)
2669 {
2670 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2671
2672 return cxlflash_show_port_status(3, cfg, buf);
2673 }
2674
2675 /**
2676 * lun_mode_show() - presents the current LUN mode of the host
2677 * @dev: Generic device associated with the host.
2678 * @attr: Device attribute representing the LUN mode.
2679 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2680 *
2681 * Return: The size of the ASCII string returned in @buf.
2682 */
2683 static ssize_t lun_mode_show(struct device *dev,
2684 struct device_attribute *attr, char *buf)
2685 {
2686 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2687 struct afu *afu = cfg->afu;
2688
2689 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2690 }
2691
2692 /**
2693 * lun_mode_store() - sets the LUN mode of the host
2694 * @dev: Generic device associated with the host.
2695 * @attr: Device attribute representing the LUN mode.
2696 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2697 * @count: Length of data resizing in @buf.
2698 *
2699 * The CXL Flash AFU supports a dummy LUN mode where the external
2700 * links and storage are not required. Space on the FPGA is used
2701 * to create 1 or 2 small LUNs which are presented to the system
2702 * as if they were a normal storage device. This feature is useful
2703 * during development and also provides manufacturing with a way
2704 * to test the AFU without an actual device.
2705 *
2706 * 0 = external LUN[s] (default)
2707 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2708 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2709 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2710 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2711 *
2712 * Return: The size of the ASCII string returned in @buf.
2713 */
2714 static ssize_t lun_mode_store(struct device *dev,
2715 struct device_attribute *attr,
2716 const char *buf, size_t count)
2717 {
2718 struct Scsi_Host *shost = class_to_shost(dev);
2719 struct cxlflash_cfg *cfg = shost_priv(shost);
2720 struct afu *afu = cfg->afu;
2721 int rc;
2722 u32 lun_mode;
2723
2724 rc = kstrtouint(buf, 10, &lun_mode);
2725 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2726 afu->internal_lun = lun_mode;
2727
2728 /*
2729 * When configured for internal LUN, there is only one channel,
2730 * channel number 0, else there will be one less than the number
2731 * of fc ports for this card.
2732 */
2733 if (afu->internal_lun)
2734 shost->max_channel = 0;
2735 else
2736 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2737
2738 afu_reset(cfg);
2739 scsi_scan_host(cfg->host);
2740 }
2741
2742 return count;
2743 }
2744
2745 /**
2746 * ioctl_version_show() - presents the current ioctl version of the host
2747 * @dev: Generic device associated with the host.
2748 * @attr: Device attribute representing the ioctl version.
2749 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2750 *
2751 * Return: The size of the ASCII string returned in @buf.
2752 */
2753 static ssize_t ioctl_version_show(struct device *dev,
2754 struct device_attribute *attr, char *buf)
2755 {
2756 ssize_t bytes = 0;
2757
2758 bytes = scnprintf(buf, PAGE_SIZE,
2759 "disk: %u\n", DK_CXLFLASH_VERSION_0);
2760 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2761 "host: %u\n", HT_CXLFLASH_VERSION_0);
2762
2763 return bytes;
2764 }
2765
2766 /**
2767 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2768 * @port: Desired port for status reporting.
2769 * @cfg: Internal structure associated with the host.
2770 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2771 *
2772 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2773 */
2774 static ssize_t cxlflash_show_port_lun_table(u32 port,
2775 struct cxlflash_cfg *cfg,
2776 char *buf)
2777 {
2778 struct device *dev = &cfg->dev->dev;
2779 __be64 __iomem *fc_port_luns;
2780 int i;
2781 ssize_t bytes = 0;
2782
2783 WARN_ON(port >= MAX_FC_PORTS);
2784
2785 if (port >= cfg->num_fc_ports) {
2786 dev_info(dev, "%s: Port %d not supported on this card.\n",
2787 __func__, port);
2788 return -EINVAL;
2789 }
2790
2791 fc_port_luns = get_fc_port_luns(cfg, port);
2792
2793 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2794 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2795 "%03d: %016llx\n",
2796 i, readq_be(&fc_port_luns[i]));
2797 return bytes;
2798 }
2799
2800 /**
2801 * port0_lun_table_show() - presents the current LUN table of port 0
2802 * @dev: Generic device associated with the host owning the port.
2803 * @attr: Device attribute representing the port.
2804 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2805 *
2806 * Return: The size of the ASCII string returned in @buf.
2807 */
2808 static ssize_t port0_lun_table_show(struct device *dev,
2809 struct device_attribute *attr,
2810 char *buf)
2811 {
2812 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2813
2814 return cxlflash_show_port_lun_table(0, cfg, buf);
2815 }
2816
2817 /**
2818 * port1_lun_table_show() - presents the current LUN table of port 1
2819 * @dev: Generic device associated with the host owning the port.
2820 * @attr: Device attribute representing the port.
2821 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2822 *
2823 * Return: The size of the ASCII string returned in @buf.
2824 */
2825 static ssize_t port1_lun_table_show(struct device *dev,
2826 struct device_attribute *attr,
2827 char *buf)
2828 {
2829 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2830
2831 return cxlflash_show_port_lun_table(1, cfg, buf);
2832 }
2833
2834 /**
2835 * port2_lun_table_show() - presents the current LUN table of port 2
2836 * @dev: Generic device associated with the host owning the port.
2837 * @attr: Device attribute representing the port.
2838 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2839 *
2840 * Return: The size of the ASCII string returned in @buf.
2841 */
2842 static ssize_t port2_lun_table_show(struct device *dev,
2843 struct device_attribute *attr,
2844 char *buf)
2845 {
2846 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2847
2848 return cxlflash_show_port_lun_table(2, cfg, buf);
2849 }
2850
2851 /**
2852 * port3_lun_table_show() - presents the current LUN table of port 3
2853 * @dev: Generic device associated with the host owning the port.
2854 * @attr: Device attribute representing the port.
2855 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2856 *
2857 * Return: The size of the ASCII string returned in @buf.
2858 */
2859 static ssize_t port3_lun_table_show(struct device *dev,
2860 struct device_attribute *attr,
2861 char *buf)
2862 {
2863 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2864
2865 return cxlflash_show_port_lun_table(3, cfg, buf);
2866 }
2867
2868 /**
2869 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2870 * @dev: Generic device associated with the host.
2871 * @attr: Device attribute representing the IRQ poll weight.
2872 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2873 * weight in ASCII.
2874 *
2875 * An IRQ poll weight of 0 indicates polling is disabled.
2876 *
2877 * Return: The size of the ASCII string returned in @buf.
2878 */
2879 static ssize_t irqpoll_weight_show(struct device *dev,
2880 struct device_attribute *attr, char *buf)
2881 {
2882 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2883 struct afu *afu = cfg->afu;
2884
2885 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2886 }
2887
2888 /**
2889 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2890 * @dev: Generic device associated with the host.
2891 * @attr: Device attribute representing the IRQ poll weight.
2892 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2893 * weight in ASCII.
2894 * @count: Length of data resizing in @buf.
2895 *
2896 * An IRQ poll weight of 0 indicates polling is disabled.
2897 *
2898 * Return: The size of the ASCII string returned in @buf.
2899 */
2900 static ssize_t irqpoll_weight_store(struct device *dev,
2901 struct device_attribute *attr,
2902 const char *buf, size_t count)
2903 {
2904 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2905 struct device *cfgdev = &cfg->dev->dev;
2906 struct afu *afu = cfg->afu;
2907 struct hwq *hwq;
2908 u32 weight;
2909 int rc, i;
2910
2911 rc = kstrtouint(buf, 10, &weight);
2912 if (rc)
2913 return -EINVAL;
2914
2915 if (weight > 256) {
2916 dev_info(cfgdev,
2917 "Invalid IRQ poll weight. It must be 256 or less.\n");
2918 return -EINVAL;
2919 }
2920
2921 if (weight == afu->irqpoll_weight) {
2922 dev_info(cfgdev,
2923 "Current IRQ poll weight has the same weight.\n");
2924 return -EINVAL;
2925 }
2926
2927 if (afu_is_irqpoll_enabled(afu)) {
2928 for (i = 0; i < afu->num_hwqs; i++) {
2929 hwq = get_hwq(afu, i);
2930
2931 irq_poll_disable(&hwq->irqpoll);
2932 }
2933 }
2934
2935 afu->irqpoll_weight = weight;
2936
2937 if (weight > 0) {
2938 for (i = 0; i < afu->num_hwqs; i++) {
2939 hwq = get_hwq(afu, i);
2940
2941 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2942 }
2943 }
2944
2945 return count;
2946 }
2947
2948 /**
2949 * num_hwqs_show() - presents the number of hardware queues for the host
2950 * @dev: Generic device associated with the host.
2951 * @attr: Device attribute representing the number of hardware queues.
2952 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware
2953 * queues in ASCII.
2954 *
2955 * Return: The size of the ASCII string returned in @buf.
2956 */
2957 static ssize_t num_hwqs_show(struct device *dev,
2958 struct device_attribute *attr, char *buf)
2959 {
2960 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2961 struct afu *afu = cfg->afu;
2962
2963 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2964 }
2965
2966 /**
2967 * num_hwqs_store() - sets the number of hardware queues for the host
2968 * @dev: Generic device associated with the host.
2969 * @attr: Device attribute representing the number of hardware queues.
2970 * @buf: Buffer of length PAGE_SIZE containing the number of hardware
2971 * queues in ASCII.
2972 * @count: Length of data resizing in @buf.
2973 *
2974 * n > 0: num_hwqs = n
2975 * n = 0: num_hwqs = num_online_cpus()
2976 * n < 0: num_online_cpus() / abs(n)
2977 *
2978 * Return: The size of the ASCII string returned in @buf.
2979 */
2980 static ssize_t num_hwqs_store(struct device *dev,
2981 struct device_attribute *attr,
2982 const char *buf, size_t count)
2983 {
2984 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2985 struct afu *afu = cfg->afu;
2986 int rc;
2987 int nhwqs, num_hwqs;
2988
2989 rc = kstrtoint(buf, 10, &nhwqs);
2990 if (rc)
2991 return -EINVAL;
2992
2993 if (nhwqs >= 1)
2994 num_hwqs = nhwqs;
2995 else if (nhwqs == 0)
2996 num_hwqs = num_online_cpus();
2997 else
2998 num_hwqs = num_online_cpus() / abs(nhwqs);
2999
3000 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
3001 WARN_ON_ONCE(afu->desired_hwqs == 0);
3002
3003 retry:
3004 switch (cfg->state) {
3005 case STATE_NORMAL:
3006 cfg->state = STATE_RESET;
3007 drain_ioctls(cfg);
3008 cxlflash_mark_contexts_error(cfg);
3009 rc = afu_reset(cfg);
3010 if (rc)
3011 cfg->state = STATE_FAILTERM;
3012 else
3013 cfg->state = STATE_NORMAL;
3014 wake_up_all(&cfg->reset_waitq);
3015 break;
3016 case STATE_RESET:
3017 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
3018 if (cfg->state == STATE_NORMAL)
3019 goto retry;
3020 default:
3021 /* Ideally should not happen */
3022 dev_err(dev, "%s: Device is not ready, state=%d\n",
3023 __func__, cfg->state);
3024 break;
3025 }
3026
3027 return count;
3028 }
3029
3030 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3031
3032 /**
3033 * hwq_mode_show() - presents the HWQ steering mode for the host
3034 * @dev: Generic device associated with the host.
3035 * @attr: Device attribute representing the HWQ steering mode.
3036 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
3037 * as a character string.
3038 *
3039 * Return: The size of the ASCII string returned in @buf.
3040 */
3041 static ssize_t hwq_mode_show(struct device *dev,
3042 struct device_attribute *attr, char *buf)
3043 {
3044 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3045 struct afu *afu = cfg->afu;
3046
3047 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3048 }
3049
3050 /**
3051 * hwq_mode_store() - sets the HWQ steering mode for the host
3052 * @dev: Generic device associated with the host.
3053 * @attr: Device attribute representing the HWQ steering mode.
3054 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
3055 * as a character string.
3056 * @count: Length of data resizing in @buf.
3057 *
3058 * rr = Round-Robin
3059 * tag = Block MQ Tagging
3060 * cpu = CPU Affinity
3061 *
3062 * Return: The size of the ASCII string returned in @buf.
3063 */
3064 static ssize_t hwq_mode_store(struct device *dev,
3065 struct device_attribute *attr,
3066 const char *buf, size_t count)
3067 {
3068 struct Scsi_Host *shost = class_to_shost(dev);
3069 struct cxlflash_cfg *cfg = shost_priv(shost);
3070 struct device *cfgdev = &cfg->dev->dev;
3071 struct afu *afu = cfg->afu;
3072 int i;
3073 u32 mode = MAX_HWQ_MODE;
3074
3075 for (i = 0; i < MAX_HWQ_MODE; i++) {
3076 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3077 mode = i;
3078 break;
3079 }
3080 }
3081
3082 if (mode >= MAX_HWQ_MODE) {
3083 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3084 return -EINVAL;
3085 }
3086
3087 afu->hwq_mode = mode;
3088
3089 return count;
3090 }
3091
3092 /**
3093 * mode_show() - presents the current mode of the device
3094 * @dev: Generic device associated with the device.
3095 * @attr: Device attribute representing the device mode.
3096 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3097 *
3098 * Return: The size of the ASCII string returned in @buf.
3099 */
3100 static ssize_t mode_show(struct device *dev,
3101 struct device_attribute *attr, char *buf)
3102 {
3103 struct scsi_device *sdev = to_scsi_device(dev);
3104
3105 return scnprintf(buf, PAGE_SIZE, "%s\n",
3106 sdev->hostdata ? "superpipe" : "legacy");
3107 }
3108
3109 /*
3110 * Host attributes
3111 */
3112 static DEVICE_ATTR_RO(port0);
3113 static DEVICE_ATTR_RO(port1);
3114 static DEVICE_ATTR_RO(port2);
3115 static DEVICE_ATTR_RO(port3);
3116 static DEVICE_ATTR_RW(lun_mode);
3117 static DEVICE_ATTR_RO(ioctl_version);
3118 static DEVICE_ATTR_RO(port0_lun_table);
3119 static DEVICE_ATTR_RO(port1_lun_table);
3120 static DEVICE_ATTR_RO(port2_lun_table);
3121 static DEVICE_ATTR_RO(port3_lun_table);
3122 static DEVICE_ATTR_RW(irqpoll_weight);
3123 static DEVICE_ATTR_RW(num_hwqs);
3124 static DEVICE_ATTR_RW(hwq_mode);
3125
3126 static struct device_attribute *cxlflash_host_attrs[] = {
3127 &dev_attr_port0,
3128 &dev_attr_port1,
3129 &dev_attr_port2,
3130 &dev_attr_port3,
3131 &dev_attr_lun_mode,
3132 &dev_attr_ioctl_version,
3133 &dev_attr_port0_lun_table,
3134 &dev_attr_port1_lun_table,
3135 &dev_attr_port2_lun_table,
3136 &dev_attr_port3_lun_table,
3137 &dev_attr_irqpoll_weight,
3138 &dev_attr_num_hwqs,
3139 &dev_attr_hwq_mode,
3140 NULL
3141 };
3142
3143 /*
3144 * Device attributes
3145 */
3146 static DEVICE_ATTR_RO(mode);
3147
3148 static struct device_attribute *cxlflash_dev_attrs[] = {
3149 &dev_attr_mode,
3150 NULL
3151 };
3152
3153 /*
3154 * Host template
3155 */
3156 static struct scsi_host_template driver_template = {
3157 .module = THIS_MODULE,
3158 .name = CXLFLASH_ADAPTER_NAME,
3159 .info = cxlflash_driver_info,
3160 .ioctl = cxlflash_ioctl,
3161 .proc_name = CXLFLASH_NAME,
3162 .queuecommand = cxlflash_queuecommand,
3163 .eh_abort_handler = cxlflash_eh_abort_handler,
3164 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3165 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3166 .change_queue_depth = cxlflash_change_queue_depth,
3167 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3168 .can_queue = CXLFLASH_MAX_CMDS,
3169 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3170 .this_id = -1,
3171 .sg_tablesize = 1, /* No scatter gather support */
3172 .max_sectors = CXLFLASH_MAX_SECTORS,
3173 .shost_attrs = cxlflash_host_attrs,
3174 .sdev_attrs = cxlflash_dev_attrs,
3175 };
3176
3177 /*
3178 * Device dependent values
3179 */
3180 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3181 CXLFLASH_WWPN_VPD_REQUIRED };
3182 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3183 CXLFLASH_NOTIFY_SHUTDOWN };
3184 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3185 (CXLFLASH_NOTIFY_SHUTDOWN |
3186 CXLFLASH_OCXL_DEV) };
3187
3188 /*
3189 * PCI device binding table
3190 */
3191 static struct pci_device_id cxlflash_pci_table[] = {
3192 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3193 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3194 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3195 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3196 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3197 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3198 {}
3199 };
3200
3201 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3202
3203 /**
3204 * cxlflash_worker_thread() - work thread handler for the AFU
3205 * @work: Work structure contained within cxlflash associated with host.
3206 *
3207 * Handles the following events:
3208 * - Link reset which cannot be performed on interrupt context due to
3209 * blocking up to a few seconds
3210 * - Rescan the host
3211 */
3212 static void cxlflash_worker_thread(struct work_struct *work)
3213 {
3214 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3215 work_q);
3216 struct afu *afu = cfg->afu;
3217 struct device *dev = &cfg->dev->dev;
3218 __be64 __iomem *fc_port_regs;
3219 int port;
3220 ulong lock_flags;
3221
3222 /* Avoid MMIO if the device has failed */
3223
3224 if (cfg->state != STATE_NORMAL)
3225 return;
3226
3227 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3228
3229 if (cfg->lr_state == LINK_RESET_REQUIRED) {
3230 port = cfg->lr_port;
3231 if (port < 0)
3232 dev_err(dev, "%s: invalid port index %d\n",
3233 __func__, port);
3234 else {
3235 spin_unlock_irqrestore(cfg->host->host_lock,
3236 lock_flags);
3237
3238 /* The reset can block... */
3239 fc_port_regs = get_fc_port_regs(cfg, port);
3240 afu_link_reset(afu, port, fc_port_regs);
3241 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3242 }
3243
3244 cfg->lr_state = LINK_RESET_COMPLETE;
3245 }
3246
3247 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3248
3249 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3250 scsi_scan_host(cfg->host);
3251 }
3252
3253 /**
3254 * cxlflash_chr_open() - character device open handler
3255 * @inode: Device inode associated with this character device.
3256 * @file: File pointer for this device.
3257 *
3258 * Only users with admin privileges are allowed to open the character device.
3259 *
3260 * Return: 0 on success, -errno on failure
3261 */
3262 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3263 {
3264 struct cxlflash_cfg *cfg;
3265
3266 if (!capable(CAP_SYS_ADMIN))
3267 return -EACCES;
3268
3269 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3270 file->private_data = cfg;
3271
3272 return 0;
3273 }
3274
3275 /**
3276 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3277 * @cmd: The host ioctl command to decode.
3278 *
3279 * Return: A string identifying the decoded host ioctl.
3280 */
3281 static char *decode_hioctl(unsigned int cmd)
3282 {
3283 switch (cmd) {
3284 case HT_CXLFLASH_LUN_PROVISION:
3285 return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3286 }
3287
3288 return "UNKNOWN";
3289 }
3290
3291 /**
3292 * cxlflash_lun_provision() - host LUN provisioning handler
3293 * @cfg: Internal structure associated with the host.
3294 * @arg: Kernel copy of userspace ioctl data structure.
3295 *
3296 * Return: 0 on success, -errno on failure
3297 */
3298 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3299 struct ht_cxlflash_lun_provision *lunprov)
3300 {
3301 struct afu *afu = cfg->afu;
3302 struct device *dev = &cfg->dev->dev;
3303 struct sisl_ioarcb rcb;
3304 struct sisl_ioasa asa;
3305 __be64 __iomem *fc_port_regs;
3306 u16 port = lunprov->port;
3307 u16 scmd = lunprov->hdr.subcmd;
3308 u16 type;
3309 u64 reg;
3310 u64 size;
3311 u64 lun_id;
3312 int rc = 0;
3313
3314 if (!afu_is_lun_provision(afu)) {
3315 rc = -ENOTSUPP;
3316 goto out;
3317 }
3318
3319 if (port >= cfg->num_fc_ports) {
3320 rc = -EINVAL;
3321 goto out;
3322 }
3323
3324 switch (scmd) {
3325 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3326 type = SISL_AFU_LUN_PROVISION_CREATE;
3327 size = lunprov->size;
3328 lun_id = 0;
3329 break;
3330 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3331 type = SISL_AFU_LUN_PROVISION_DELETE;
3332 size = 0;
3333 lun_id = lunprov->lun_id;
3334 break;
3335 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3336 fc_port_regs = get_fc_port_regs(cfg, port);
3337
3338 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3339 lunprov->max_num_luns = reg;
3340 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3341 lunprov->cur_num_luns = reg;
3342 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3343 lunprov->max_cap_port = reg;
3344 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3345 lunprov->cur_cap_port = reg;
3346
3347 goto out;
3348 default:
3349 rc = -EINVAL;
3350 goto out;
3351 }
3352
3353 memset(&rcb, 0, sizeof(rcb));
3354 memset(&asa, 0, sizeof(asa));
3355 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3356 rcb.lun_id = lun_id;
3357 rcb.msi = SISL_MSI_RRQ_UPDATED;
3358 rcb.timeout = MC_LUN_PROV_TIMEOUT;
3359 rcb.ioasa = &asa;
3360
3361 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3362 rcb.cdb[1] = type;
3363 rcb.cdb[2] = port;
3364 put_unaligned_be64(size, &rcb.cdb[8]);
3365
3366 rc = send_afu_cmd(afu, &rcb);
3367 if (rc) {
3368 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3369 __func__, rc, asa.ioasc, asa.afu_extra);
3370 goto out;
3371 }
3372
3373 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3374 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3375 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3376 }
3377 out:
3378 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3379 return rc;
3380 }
3381
3382 /**
3383 * cxlflash_afu_debug() - host AFU debug handler
3384 * @cfg: Internal structure associated with the host.
3385 * @arg: Kernel copy of userspace ioctl data structure.
3386 *
3387 * For debug requests requiring a data buffer, always provide an aligned
3388 * (cache line) buffer to the AFU to appease any alignment requirements.
3389 *
3390 * Return: 0 on success, -errno on failure
3391 */
3392 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3393 struct ht_cxlflash_afu_debug *afu_dbg)
3394 {
3395 struct afu *afu = cfg->afu;
3396 struct device *dev = &cfg->dev->dev;
3397 struct sisl_ioarcb rcb;
3398 struct sisl_ioasa asa;
3399 char *buf = NULL;
3400 char *kbuf = NULL;
3401 void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3402 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3403 u32 ulen = afu_dbg->data_len;
3404 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3405 int rc = 0;
3406
3407 if (!afu_is_afu_debug(afu)) {
3408 rc = -ENOTSUPP;
3409 goto out;
3410 }
3411
3412 if (ulen) {
3413 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3414
3415 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3416 rc = -EINVAL;
3417 goto out;
3418 }
3419
3420 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3421 if (unlikely(!buf)) {
3422 rc = -ENOMEM;
3423 goto out;
3424 }
3425
3426 kbuf = PTR_ALIGN(buf, cache_line_size());
3427
3428 if (is_write) {
3429 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3430
3431 if (copy_from_user(kbuf, ubuf, ulen)) {
3432 rc = -EFAULT;
3433 goto out;
3434 }
3435 }
3436 }
3437
3438 memset(&rcb, 0, sizeof(rcb));
3439 memset(&asa, 0, sizeof(asa));
3440
3441 rcb.req_flags = req_flags;
3442 rcb.msi = SISL_MSI_RRQ_UPDATED;
3443 rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3444 rcb.ioasa = &asa;
3445
3446 if (ulen) {
3447 rcb.data_len = ulen;
3448 rcb.data_ea = (uintptr_t)kbuf;
3449 }
3450
3451 rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3452 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3453 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3454
3455 rc = send_afu_cmd(afu, &rcb);
3456 if (rc) {
3457 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3458 __func__, rc, asa.ioasc, asa.afu_extra);
3459 goto out;
3460 }
3461
3462 if (ulen && !is_write) {
3463 if (copy_to_user(ubuf, kbuf, ulen))
3464 rc = -EFAULT;
3465 }
3466 out:
3467 kfree(buf);
3468 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3469 return rc;
3470 }
3471
3472 /**
3473 * cxlflash_chr_ioctl() - character device IOCTL handler
3474 * @file: File pointer for this device.
3475 * @cmd: IOCTL command.
3476 * @arg: Userspace ioctl data structure.
3477 *
3478 * A read/write semaphore is used to implement a 'drain' of currently
3479 * running ioctls. The read semaphore is taken at the beginning of each
3480 * ioctl thread and released upon concluding execution. Additionally the
3481 * semaphore should be released and then reacquired in any ioctl execution
3482 * path which will wait for an event to occur that is outside the scope of
3483 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3484 * a thread simply needs to acquire the write semaphore.
3485 *
3486 * Return: 0 on success, -errno on failure
3487 */
3488 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3489 unsigned long arg)
3490 {
3491 typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3492
3493 struct cxlflash_cfg *cfg = file->private_data;
3494 struct device *dev = &cfg->dev->dev;
3495 char buf[sizeof(union cxlflash_ht_ioctls)];
3496 void __user *uarg = (void __user *)arg;
3497 struct ht_cxlflash_hdr *hdr;
3498 size_t size = 0;
3499 bool known_ioctl = false;
3500 int idx = 0;
3501 int rc = 0;
3502 hioctl do_ioctl = NULL;
3503
3504 static const struct {
3505 size_t size;
3506 hioctl ioctl;
3507 } ioctl_tbl[] = { /* NOTE: order matters here */
3508 { sizeof(struct ht_cxlflash_lun_provision),
3509 (hioctl)cxlflash_lun_provision },
3510 { sizeof(struct ht_cxlflash_afu_debug),
3511 (hioctl)cxlflash_afu_debug },
3512 };
3513
3514 /* Hold read semaphore so we can drain if needed */
3515 down_read(&cfg->ioctl_rwsem);
3516
3517 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3518 __func__, cmd, idx, sizeof(ioctl_tbl));
3519
3520 switch (cmd) {
3521 case HT_CXLFLASH_LUN_PROVISION:
3522 case HT_CXLFLASH_AFU_DEBUG:
3523 known_ioctl = true;
3524 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3525 size = ioctl_tbl[idx].size;
3526 do_ioctl = ioctl_tbl[idx].ioctl;
3527
3528 if (likely(do_ioctl))
3529 break;
3530
3531 /* fall through */
3532 default:
3533 rc = -EINVAL;
3534 goto out;
3535 }
3536
3537 if (unlikely(copy_from_user(&buf, uarg, size))) {
3538 dev_err(dev, "%s: copy_from_user() fail "
3539 "size=%lu cmd=%d (%s) uarg=%p\n",
3540 __func__, size, cmd, decode_hioctl(cmd), uarg);
3541 rc = -EFAULT;
3542 goto out;
3543 }
3544
3545 hdr = (struct ht_cxlflash_hdr *)&buf;
3546 if (hdr->version != HT_CXLFLASH_VERSION_0) {
3547 dev_dbg(dev, "%s: Version %u not supported for %s\n",
3548 __func__, hdr->version, decode_hioctl(cmd));
3549 rc = -EINVAL;
3550 goto out;
3551 }
3552
3553 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3554 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3555 rc = -EINVAL;
3556 goto out;
3557 }
3558
3559 rc = do_ioctl(cfg, (void *)&buf);
3560 if (likely(!rc))
3561 if (unlikely(copy_to_user(uarg, &buf, size))) {
3562 dev_err(dev, "%s: copy_to_user() fail "
3563 "size=%lu cmd=%d (%s) uarg=%p\n",
3564 __func__, size, cmd, decode_hioctl(cmd), uarg);
3565 rc = -EFAULT;
3566 }
3567
3568 /* fall through to exit */
3569
3570 out:
3571 up_read(&cfg->ioctl_rwsem);
3572 if (unlikely(rc && known_ioctl))
3573 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3574 __func__, decode_hioctl(cmd), cmd, rc);
3575 else
3576 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3577 __func__, decode_hioctl(cmd), cmd, rc);
3578 return rc;
3579 }
3580
3581 /*
3582 * Character device file operations
3583 */
3584 static const struct file_operations cxlflash_chr_fops = {
3585 .owner = THIS_MODULE,
3586 .open = cxlflash_chr_open,
3587 .unlocked_ioctl = cxlflash_chr_ioctl,
3588 .compat_ioctl = cxlflash_chr_ioctl,
3589 };
3590
3591 /**
3592 * init_chrdev() - initialize the character device for the host
3593 * @cfg: Internal structure associated with the host.
3594 *
3595 * Return: 0 on success, -errno on failure
3596 */
3597 static int init_chrdev(struct cxlflash_cfg *cfg)
3598 {
3599 struct device *dev = &cfg->dev->dev;
3600 struct device *char_dev;
3601 dev_t devno;
3602 int minor;
3603 int rc = 0;
3604
3605 minor = cxlflash_get_minor();
3606 if (unlikely(minor < 0)) {
3607 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3608 rc = -ENOSPC;
3609 goto out;
3610 }
3611
3612 devno = MKDEV(cxlflash_major, minor);
3613 cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3614
3615 rc = cdev_add(&cfg->cdev, devno, 1);
3616 if (rc) {
3617 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3618 goto err1;
3619 }
3620
3621 char_dev = device_create(cxlflash_class, NULL, devno,
3622 NULL, "cxlflash%d", minor);
3623 if (IS_ERR(char_dev)) {
3624 rc = PTR_ERR(char_dev);
3625 dev_err(dev, "%s: device_create failed rc=%d\n",
3626 __func__, rc);
3627 goto err2;
3628 }
3629
3630 cfg->chardev = char_dev;
3631 out:
3632 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3633 return rc;
3634 err2:
3635 cdev_del(&cfg->cdev);
3636 err1:
3637 cxlflash_put_minor(minor);
3638 goto out;
3639 }
3640
3641 /**
3642 * cxlflash_probe() - PCI entry point to add host
3643 * @pdev: PCI device associated with the host.
3644 * @dev_id: PCI device id associated with device.
3645 *
3646 * The device will initially start out in a 'probing' state and
3647 * transition to the 'normal' state at the end of a successful
3648 * probe. Should an EEH event occur during probe, the notification
3649 * thread (error_detected()) will wait until the probe handler
3650 * is nearly complete. At that time, the device will be moved to
3651 * a 'probed' state and the EEH thread woken up to drive the slot
3652 * reset and recovery (device moves to 'normal' state). Meanwhile,
3653 * the probe will be allowed to exit successfully.
3654 *
3655 * Return: 0 on success, -errno on failure
3656 */
3657 static int cxlflash_probe(struct pci_dev *pdev,
3658 const struct pci_device_id *dev_id)
3659 {
3660 struct Scsi_Host *host;
3661 struct cxlflash_cfg *cfg = NULL;
3662 struct device *dev = &pdev->dev;
3663 struct dev_dependent_vals *ddv;
3664 int rc = 0;
3665 int k;
3666
3667 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3668 __func__, pdev->irq);
3669
3670 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3671 driver_template.max_sectors = ddv->max_sectors;
3672
3673 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3674 if (!host) {
3675 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3676 rc = -ENOMEM;
3677 goto out;
3678 }
3679
3680 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3681 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3682 host->unique_id = host->host_no;
3683 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3684
3685 cfg = shost_priv(host);
3686 cfg->state = STATE_PROBING;
3687 cfg->host = host;
3688 rc = alloc_mem(cfg);
3689 if (rc) {
3690 dev_err(dev, "%s: alloc_mem failed\n", __func__);
3691 rc = -ENOMEM;
3692 scsi_host_put(cfg->host);
3693 goto out;
3694 }
3695
3696 cfg->init_state = INIT_STATE_NONE;
3697 cfg->dev = pdev;
3698 cfg->cxl_fops = cxlflash_cxl_fops;
3699 cfg->ops = cxlflash_assign_ops(ddv);
3700 WARN_ON_ONCE(!cfg->ops);
3701
3702 /*
3703 * Promoted LUNs move to the top of the LUN table. The rest stay on
3704 * the bottom half. The bottom half grows from the end (index = 255),
3705 * whereas the top half grows from the beginning (index = 0).
3706 *
3707 * Initialize the last LUN index for all possible ports.
3708 */
3709 cfg->promote_lun_index = 0;
3710
3711 for (k = 0; k < MAX_FC_PORTS; k++)
3712 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3713
3714 cfg->dev_id = (struct pci_device_id *)dev_id;
3715
3716 init_waitqueue_head(&cfg->tmf_waitq);
3717 init_waitqueue_head(&cfg->reset_waitq);
3718
3719 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3720 cfg->lr_state = LINK_RESET_INVALID;
3721 cfg->lr_port = -1;
3722 spin_lock_init(&cfg->tmf_slock);
3723 mutex_init(&cfg->ctx_tbl_list_mutex);
3724 mutex_init(&cfg->ctx_recovery_mutex);
3725 init_rwsem(&cfg->ioctl_rwsem);
3726 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3727 INIT_LIST_HEAD(&cfg->lluns);
3728
3729 pci_set_drvdata(pdev, cfg);
3730
3731 rc = init_pci(cfg);
3732 if (rc) {
3733 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3734 goto out_remove;
3735 }
3736 cfg->init_state = INIT_STATE_PCI;
3737
3738 cfg->afu_cookie = cfg->ops->create_afu(pdev);
3739 if (unlikely(!cfg->afu_cookie)) {
3740 dev_err(dev, "%s: create_afu failed\n", __func__);
3741 goto out_remove;
3742 }
3743
3744 rc = init_afu(cfg);
3745 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3746 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3747 goto out_remove;
3748 }
3749 cfg->init_state = INIT_STATE_AFU;
3750
3751 rc = init_scsi(cfg);
3752 if (rc) {
3753 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3754 goto out_remove;
3755 }
3756 cfg->init_state = INIT_STATE_SCSI;
3757
3758 rc = init_chrdev(cfg);
3759 if (rc) {
3760 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3761 goto out_remove;
3762 }
3763 cfg->init_state = INIT_STATE_CDEV;
3764
3765 if (wq_has_sleeper(&cfg->reset_waitq)) {
3766 cfg->state = STATE_PROBED;
3767 wake_up_all(&cfg->reset_waitq);
3768 } else
3769 cfg->state = STATE_NORMAL;
3770 out:
3771 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3772 return rc;
3773
3774 out_remove:
3775 cfg->state = STATE_PROBED;
3776 cxlflash_remove(pdev);
3777 goto out;
3778 }
3779
3780 /**
3781 * cxlflash_pci_error_detected() - called when a PCI error is detected
3782 * @pdev: PCI device struct.
3783 * @state: PCI channel state.
3784 *
3785 * When an EEH occurs during an active reset, wait until the reset is
3786 * complete and then take action based upon the device state.
3787 *
3788 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3789 */
3790 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3791 pci_channel_state_t state)
3792 {
3793 int rc = 0;
3794 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3795 struct device *dev = &cfg->dev->dev;
3796
3797 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3798
3799 switch (state) {
3800 case pci_channel_io_frozen:
3801 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3802 cfg->state != STATE_PROBING);
3803 if (cfg->state == STATE_FAILTERM)
3804 return PCI_ERS_RESULT_DISCONNECT;
3805
3806 cfg->state = STATE_RESET;
3807 scsi_block_requests(cfg->host);
3808 drain_ioctls(cfg);
3809 rc = cxlflash_mark_contexts_error(cfg);
3810 if (unlikely(rc))
3811 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3812 __func__, rc);
3813 term_afu(cfg);
3814 return PCI_ERS_RESULT_NEED_RESET;
3815 case pci_channel_io_perm_failure:
3816 cfg->state = STATE_FAILTERM;
3817 wake_up_all(&cfg->reset_waitq);
3818 scsi_unblock_requests(cfg->host);
3819 return PCI_ERS_RESULT_DISCONNECT;
3820 default:
3821 break;
3822 }
3823 return PCI_ERS_RESULT_NEED_RESET;
3824 }
3825
3826 /**
3827 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3828 * @pdev: PCI device struct.
3829 *
3830 * This routine is called by the pci error recovery code after the PCI
3831 * slot has been reset, just before we should resume normal operations.
3832 *
3833 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3834 */
3835 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3836 {
3837 int rc = 0;
3838 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3839 struct device *dev = &cfg->dev->dev;
3840
3841 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3842
3843 rc = init_afu(cfg);
3844 if (unlikely(rc)) {
3845 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3846 return PCI_ERS_RESULT_DISCONNECT;
3847 }
3848
3849 return PCI_ERS_RESULT_RECOVERED;
3850 }
3851
3852 /**
3853 * cxlflash_pci_resume() - called when normal operation can resume
3854 * @pdev: PCI device struct
3855 */
3856 static void cxlflash_pci_resume(struct pci_dev *pdev)
3857 {
3858 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3859 struct device *dev = &cfg->dev->dev;
3860
3861 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3862
3863 cfg->state = STATE_NORMAL;
3864 wake_up_all(&cfg->reset_waitq);
3865 scsi_unblock_requests(cfg->host);
3866 }
3867
3868 /**
3869 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3870 * @dev: Character device.
3871 * @mode: Mode that can be used to verify access.
3872 *
3873 * Return: Allocated string describing the devtmpfs structure.
3874 */
3875 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3876 {
3877 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3878 }
3879
3880 /**
3881 * cxlflash_class_init() - create character device class
3882 *
3883 * Return: 0 on success, -errno on failure
3884 */
3885 static int cxlflash_class_init(void)
3886 {
3887 dev_t devno;
3888 int rc = 0;
3889
3890 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3891 if (unlikely(rc)) {
3892 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3893 goto out;
3894 }
3895
3896 cxlflash_major = MAJOR(devno);
3897
3898 cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3899 if (IS_ERR(cxlflash_class)) {
3900 rc = PTR_ERR(cxlflash_class);
3901 pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3902 goto err;
3903 }
3904
3905 cxlflash_class->devnode = cxlflash_devnode;
3906 out:
3907 pr_debug("%s: returning rc=%d\n", __func__, rc);
3908 return rc;
3909 err:
3910 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3911 goto out;
3912 }
3913
3914 /**
3915 * cxlflash_class_exit() - destroy character device class
3916 */
3917 static void cxlflash_class_exit(void)
3918 {
3919 dev_t devno = MKDEV(cxlflash_major, 0);
3920
3921 class_destroy(cxlflash_class);
3922 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3923 }
3924
3925 static const struct pci_error_handlers cxlflash_err_handler = {
3926 .error_detected = cxlflash_pci_error_detected,
3927 .slot_reset = cxlflash_pci_slot_reset,
3928 .resume = cxlflash_pci_resume,
3929 };
3930
3931 /*
3932 * PCI device structure
3933 */
3934 static struct pci_driver cxlflash_driver = {
3935 .name = CXLFLASH_NAME,
3936 .id_table = cxlflash_pci_table,
3937 .probe = cxlflash_probe,
3938 .remove = cxlflash_remove,
3939 .shutdown = cxlflash_remove,
3940 .err_handler = &cxlflash_err_handler,
3941 };
3942
3943 /**
3944 * init_cxlflash() - module entry point
3945 *
3946 * Return: 0 on success, -errno on failure
3947 */
3948 static int __init init_cxlflash(void)
3949 {
3950 int rc;
3951
3952 check_sizes();
3953 cxlflash_list_init();
3954 rc = cxlflash_class_init();
3955 if (unlikely(rc))
3956 goto out;
3957
3958 rc = pci_register_driver(&cxlflash_driver);
3959 if (unlikely(rc))
3960 goto err;
3961 out:
3962 pr_debug("%s: returning rc=%d\n", __func__, rc);
3963 return rc;
3964 err:
3965 cxlflash_class_exit();
3966 goto out;
3967 }
3968
3969 /**
3970 * exit_cxlflash() - module exit point
3971 */
3972 static void __exit exit_cxlflash(void)
3973 {
3974 cxlflash_term_global_luns();
3975 cxlflash_free_errpage();
3976
3977 pci_unregister_driver(&cxlflash_driver);
3978 cxlflash_class_exit();
3979 }
3980
3981 module_init(init_cxlflash);
3982 module_exit(exit_cxlflash);