]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
f5c952c953f71d007bab8adeb05a744ac5ce88df
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * process_cmd_err() - command error handler
39 * @cmd: AFU command that experienced the error.
40 * @scp: SCSI command associated with the AFU command in error.
41 *
42 * Translates error bits from AFU command to SCSI command results.
43 */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 struct afu *afu = cmd->parent;
47 struct cxlflash_cfg *cfg = afu->parent;
48 struct device *dev = &cfg->dev->dev;
49 struct sisl_ioarcb *ioarcb;
50 struct sisl_ioasa *ioasa;
51 u32 resid;
52
53 if (unlikely(!cmd))
54 return;
55
56 ioarcb = &(cmd->rcb);
57 ioasa = &(cmd->sa);
58
59 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
60 resid = ioasa->resid;
61 scsi_set_resid(scp, resid);
62 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
63 __func__, cmd, scp, resid);
64 }
65
66 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
67 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
68 __func__, cmd, scp);
69 scp->result = (DID_ERROR << 16);
70 }
71
72 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
73 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
74 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
75 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
76
77 if (ioasa->rc.scsi_rc) {
78 /* We have a SCSI status */
79 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
80 memcpy(scp->sense_buffer, ioasa->sense_data,
81 SISL_SENSE_DATA_LEN);
82 scp->result = ioasa->rc.scsi_rc;
83 } else
84 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
85 }
86
87 /*
88 * We encountered an error. Set scp->result based on nature
89 * of error.
90 */
91 if (ioasa->rc.fc_rc) {
92 /* We have an FC status */
93 switch (ioasa->rc.fc_rc) {
94 case SISL_FC_RC_LINKDOWN:
95 scp->result = (DID_REQUEUE << 16);
96 break;
97 case SISL_FC_RC_RESID:
98 /* This indicates an FCP resid underrun */
99 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
100 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
101 * then we will handle this error else where.
102 * If not then we must handle it here.
103 * This is probably an AFU bug.
104 */
105 scp->result = (DID_ERROR << 16);
106 }
107 break;
108 case SISL_FC_RC_RESIDERR:
109 /* Resid mismatch between adapter and device */
110 case SISL_FC_RC_TGTABORT:
111 case SISL_FC_RC_ABORTOK:
112 case SISL_FC_RC_ABORTFAIL:
113 case SISL_FC_RC_NOLOGI:
114 case SISL_FC_RC_ABORTPEND:
115 case SISL_FC_RC_WRABORTPEND:
116 case SISL_FC_RC_NOEXP:
117 case SISL_FC_RC_INUSE:
118 scp->result = (DID_ERROR << 16);
119 break;
120 }
121 }
122
123 if (ioasa->rc.afu_rc) {
124 /* We have an AFU error */
125 switch (ioasa->rc.afu_rc) {
126 case SISL_AFU_RC_NO_CHANNELS:
127 scp->result = (DID_NO_CONNECT << 16);
128 break;
129 case SISL_AFU_RC_DATA_DMA_ERR:
130 switch (ioasa->afu_extra) {
131 case SISL_AFU_DMA_ERR_PAGE_IN:
132 /* Retry */
133 scp->result = (DID_IMM_RETRY << 16);
134 break;
135 case SISL_AFU_DMA_ERR_INVALID_EA:
136 default:
137 scp->result = (DID_ERROR << 16);
138 }
139 break;
140 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
141 /* Retry */
142 scp->result = (DID_ALLOC_FAILURE << 16);
143 break;
144 default:
145 scp->result = (DID_ERROR << 16);
146 }
147 }
148 }
149
150 /**
151 * cmd_complete() - command completion handler
152 * @cmd: AFU command that has completed.
153 *
154 * Prepares and submits command that has either completed or timed out to
155 * the SCSI stack. Checks AFU command back into command pool for non-internal
156 * (cmd->scp populated) commands.
157 */
158 static void cmd_complete(struct afu_cmd *cmd)
159 {
160 struct scsi_cmnd *scp;
161 ulong lock_flags;
162 struct afu *afu = cmd->parent;
163 struct cxlflash_cfg *cfg = afu->parent;
164 struct device *dev = &cfg->dev->dev;
165 bool cmd_is_tmf;
166
167 if (cmd->scp) {
168 scp = cmd->scp;
169 if (unlikely(cmd->sa.ioasc))
170 process_cmd_err(cmd, scp);
171 else
172 scp->result = (DID_OK << 16);
173
174 cmd_is_tmf = cmd->cmd_tmf;
175
176 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
177 __func__, scp, scp->result, cmd->sa.ioasc);
178
179 scp->scsi_done(scp);
180
181 if (cmd_is_tmf) {
182 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
183 cfg->tmf_active = false;
184 wake_up_all_locked(&cfg->tmf_waitq);
185 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
186 }
187 } else
188 complete(&cmd->cevent);
189 }
190
191 /**
192 * context_reset() - reset command owner context via specified register
193 * @cmd: AFU command that timed out.
194 * @reset_reg: MMIO register to perform reset.
195 */
196 static void context_reset(struct afu_cmd *cmd, __be64 __iomem *reset_reg)
197 {
198 int nretry = 0;
199 u64 rrin = 0x1;
200 struct afu *afu = cmd->parent;
201 struct cxlflash_cfg *cfg = afu->parent;
202 struct device *dev = &cfg->dev->dev;
203
204 dev_dbg(dev, "%s: cmd=%p\n", __func__, cmd);
205
206 writeq_be(rrin, reset_reg);
207 do {
208 rrin = readq_be(reset_reg);
209 if (rrin != 0x1)
210 break;
211 /* Double delay each time */
212 udelay(1 << nretry);
213 } while (nretry++ < MC_ROOM_RETRY_CNT);
214
215 dev_dbg(dev, "%s: returning rrin=%016llx nretry=%d\n",
216 __func__, rrin, nretry);
217 }
218
219 /**
220 * context_reset_ioarrin() - reset command owner context via IOARRIN register
221 * @cmd: AFU command that timed out.
222 */
223 static void context_reset_ioarrin(struct afu_cmd *cmd)
224 {
225 struct afu *afu = cmd->parent;
226
227 context_reset(cmd, &afu->host_map->ioarrin);
228 }
229
230 /**
231 * context_reset_sq() - reset command owner context w/ SQ Context Reset register
232 * @cmd: AFU command that timed out.
233 */
234 static void context_reset_sq(struct afu_cmd *cmd)
235 {
236 struct afu *afu = cmd->parent;
237
238 context_reset(cmd, &afu->host_map->sq_ctx_reset);
239 }
240
241 /**
242 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
243 * @afu: AFU associated with the host.
244 * @cmd: AFU command to send.
245 *
246 * Return:
247 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
248 */
249 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
250 {
251 struct cxlflash_cfg *cfg = afu->parent;
252 struct device *dev = &cfg->dev->dev;
253 int rc = 0;
254 s64 room;
255 ulong lock_flags;
256
257 /*
258 * To avoid the performance penalty of MMIO, spread the update of
259 * 'room' over multiple commands.
260 */
261 spin_lock_irqsave(&afu->rrin_slock, lock_flags);
262 if (--afu->room < 0) {
263 room = readq_be(&afu->host_map->cmd_room);
264 if (room <= 0) {
265 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
266 "0x%02X, room=0x%016llX\n",
267 __func__, cmd->rcb.cdb[0], room);
268 afu->room = 0;
269 rc = SCSI_MLQUEUE_HOST_BUSY;
270 goto out;
271 }
272 afu->room = room - 1;
273 }
274
275 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
276 out:
277 spin_unlock_irqrestore(&afu->rrin_slock, lock_flags);
278 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
279 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
280 return rc;
281 }
282
283 /**
284 * send_cmd_sq() - sends an AFU command via SQ ring
285 * @afu: AFU associated with the host.
286 * @cmd: AFU command to send.
287 *
288 * Return:
289 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
290 */
291 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
292 {
293 struct cxlflash_cfg *cfg = afu->parent;
294 struct device *dev = &cfg->dev->dev;
295 int rc = 0;
296 int newval;
297 ulong lock_flags;
298
299 newval = atomic_dec_if_positive(&afu->hsq_credits);
300 if (newval <= 0) {
301 rc = SCSI_MLQUEUE_HOST_BUSY;
302 goto out;
303 }
304
305 cmd->rcb.ioasa = &cmd->sa;
306
307 spin_lock_irqsave(&afu->hsq_slock, lock_flags);
308
309 *afu->hsq_curr = cmd->rcb;
310 if (afu->hsq_curr < afu->hsq_end)
311 afu->hsq_curr++;
312 else
313 afu->hsq_curr = afu->hsq_start;
314 writeq_be((u64)afu->hsq_curr, &afu->host_map->sq_tail);
315
316 spin_unlock_irqrestore(&afu->hsq_slock, lock_flags);
317 out:
318 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
319 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
320 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, afu->hsq_curr,
321 readq_be(&afu->host_map->sq_head),
322 readq_be(&afu->host_map->sq_tail));
323 return rc;
324 }
325
326 /**
327 * wait_resp() - polls for a response or timeout to a sent AFU command
328 * @afu: AFU associated with the host.
329 * @cmd: AFU command that was sent.
330 *
331 * Return:
332 * 0 on success, -1 on timeout/error
333 */
334 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
335 {
336 struct cxlflash_cfg *cfg = afu->parent;
337 struct device *dev = &cfg->dev->dev;
338 int rc = 0;
339 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
340
341 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
342 if (!timeout) {
343 afu->context_reset(cmd);
344 rc = -1;
345 }
346
347 if (unlikely(cmd->sa.ioasc != 0)) {
348 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
349 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
350 rc = -1;
351 }
352
353 return rc;
354 }
355
356 /**
357 * send_tmf() - sends a Task Management Function (TMF)
358 * @afu: AFU to checkout from.
359 * @scp: SCSI command from stack.
360 * @tmfcmd: TMF command to send.
361 *
362 * Return:
363 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
364 */
365 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
366 {
367 struct cxlflash_cfg *cfg = shost_priv(scp->device->host);
368 struct afu_cmd *cmd = sc_to_afucz(scp);
369 struct device *dev = &cfg->dev->dev;
370 ulong lock_flags;
371 int rc = 0;
372 ulong to;
373
374 /* When Task Management Function is active do not send another */
375 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
376 if (cfg->tmf_active)
377 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
378 !cfg->tmf_active,
379 cfg->tmf_slock);
380 cfg->tmf_active = true;
381 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
382
383 cmd->scp = scp;
384 cmd->parent = afu;
385 cmd->cmd_tmf = true;
386
387 cmd->rcb.ctx_id = afu->ctx_hndl;
388 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
389 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
390 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
391 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
392 SISL_REQ_FLAGS_SUP_UNDERRUN |
393 SISL_REQ_FLAGS_TMF_CMD);
394 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
395
396 rc = afu->send_cmd(afu, cmd);
397 if (unlikely(rc)) {
398 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
399 cfg->tmf_active = false;
400 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
401 goto out;
402 }
403
404 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
405 to = msecs_to_jiffies(5000);
406 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
407 !cfg->tmf_active,
408 cfg->tmf_slock,
409 to);
410 if (!to) {
411 cfg->tmf_active = false;
412 dev_err(dev, "%s: TMF timed out\n", __func__);
413 rc = -1;
414 }
415 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
416 out:
417 return rc;
418 }
419
420 /**
421 * cxlflash_driver_info() - information handler for this host driver
422 * @host: SCSI host associated with device.
423 *
424 * Return: A string describing the device.
425 */
426 static const char *cxlflash_driver_info(struct Scsi_Host *host)
427 {
428 return CXLFLASH_ADAPTER_NAME;
429 }
430
431 /**
432 * cxlflash_queuecommand() - sends a mid-layer request
433 * @host: SCSI host associated with device.
434 * @scp: SCSI command to send.
435 *
436 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
437 */
438 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
439 {
440 struct cxlflash_cfg *cfg = shost_priv(host);
441 struct afu *afu = cfg->afu;
442 struct device *dev = &cfg->dev->dev;
443 struct afu_cmd *cmd = sc_to_afucz(scp);
444 struct scatterlist *sg = scsi_sglist(scp);
445 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
446 ulong lock_flags;
447 int rc = 0;
448
449 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
450 "cdb=(%08x-%08x-%08x-%08x)\n",
451 __func__, scp, host->host_no, scp->device->channel,
452 scp->device->id, scp->device->lun,
453 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
454 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
455 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
456 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
457
458 /*
459 * If a Task Management Function is active, wait for it to complete
460 * before continuing with regular commands.
461 */
462 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
463 if (cfg->tmf_active) {
464 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
465 rc = SCSI_MLQUEUE_HOST_BUSY;
466 goto out;
467 }
468 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
469
470 switch (cfg->state) {
471 case STATE_PROBING:
472 case STATE_PROBED:
473 case STATE_RESET:
474 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
475 rc = SCSI_MLQUEUE_HOST_BUSY;
476 goto out;
477 case STATE_FAILTERM:
478 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
479 scp->result = (DID_NO_CONNECT << 16);
480 scp->scsi_done(scp);
481 rc = 0;
482 goto out;
483 default:
484 break;
485 }
486
487 if (likely(sg)) {
488 cmd->rcb.data_len = sg->length;
489 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
490 }
491
492 cmd->scp = scp;
493 cmd->parent = afu;
494
495 cmd->rcb.ctx_id = afu->ctx_hndl;
496 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
497 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
498 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
499
500 if (scp->sc_data_direction == DMA_TO_DEVICE)
501 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
502
503 cmd->rcb.req_flags = req_flags;
504 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
505
506 rc = afu->send_cmd(afu, cmd);
507 out:
508 return rc;
509 }
510
511 /**
512 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
513 * @cfg: Internal structure associated with the host.
514 */
515 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
516 {
517 struct pci_dev *pdev = cfg->dev;
518
519 if (pci_channel_offline(pdev))
520 wait_event_timeout(cfg->reset_waitq,
521 !pci_channel_offline(pdev),
522 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
523 }
524
525 /**
526 * free_mem() - free memory associated with the AFU
527 * @cfg: Internal structure associated with the host.
528 */
529 static void free_mem(struct cxlflash_cfg *cfg)
530 {
531 struct afu *afu = cfg->afu;
532
533 if (cfg->afu) {
534 free_pages((ulong)afu, get_order(sizeof(struct afu)));
535 cfg->afu = NULL;
536 }
537 }
538
539 /**
540 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
541 * @cfg: Internal structure associated with the host.
542 *
543 * Safe to call with AFU in a partially allocated/initialized state.
544 *
545 * Cancels scheduled worker threads, waits for any active internal AFU
546 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
547 */
548 static void stop_afu(struct cxlflash_cfg *cfg)
549 {
550 struct afu *afu = cfg->afu;
551
552 cancel_work_sync(&cfg->work_q);
553
554 if (likely(afu)) {
555 while (atomic_read(&afu->cmds_active))
556 ssleep(1);
557 if (afu_is_irqpoll_enabled(afu))
558 irq_poll_disable(&afu->irqpoll);
559 if (likely(afu->afu_map)) {
560 cxl_psa_unmap((void __iomem *)afu->afu_map);
561 afu->afu_map = NULL;
562 }
563 }
564 }
565
566 /**
567 * term_intr() - disables all AFU interrupts
568 * @cfg: Internal structure associated with the host.
569 * @level: Depth of allocation, where to begin waterfall tear down.
570 *
571 * Safe to call with AFU/MC in partially allocated/initialized state.
572 */
573 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
574 {
575 struct afu *afu = cfg->afu;
576 struct device *dev = &cfg->dev->dev;
577
578 if (!afu || !cfg->mcctx) {
579 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
580 return;
581 }
582
583 switch (level) {
584 case UNMAP_THREE:
585 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
586 case UNMAP_TWO:
587 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
588 case UNMAP_ONE:
589 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
590 case FREE_IRQ:
591 cxl_free_afu_irqs(cfg->mcctx);
592 /* fall through */
593 case UNDO_NOOP:
594 /* No action required */
595 break;
596 }
597 }
598
599 /**
600 * term_mc() - terminates the master context
601 * @cfg: Internal structure associated with the host.
602 * @level: Depth of allocation, where to begin waterfall tear down.
603 *
604 * Safe to call with AFU/MC in partially allocated/initialized state.
605 */
606 static void term_mc(struct cxlflash_cfg *cfg)
607 {
608 int rc = 0;
609 struct afu *afu = cfg->afu;
610 struct device *dev = &cfg->dev->dev;
611
612 if (!afu || !cfg->mcctx) {
613 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
614 return;
615 }
616
617 rc = cxl_stop_context(cfg->mcctx);
618 WARN_ON(rc);
619 cfg->mcctx = NULL;
620 }
621
622 /**
623 * term_afu() - terminates the AFU
624 * @cfg: Internal structure associated with the host.
625 *
626 * Safe to call with AFU/MC in partially allocated/initialized state.
627 */
628 static void term_afu(struct cxlflash_cfg *cfg)
629 {
630 struct device *dev = &cfg->dev->dev;
631
632 /*
633 * Tear down is carefully orchestrated to ensure
634 * no interrupts can come in when the problem state
635 * area is unmapped.
636 *
637 * 1) Disable all AFU interrupts
638 * 2) Unmap the problem state area
639 * 3) Stop the master context
640 */
641 term_intr(cfg, UNMAP_THREE);
642 if (cfg->afu)
643 stop_afu(cfg);
644
645 term_mc(cfg);
646
647 dev_dbg(dev, "%s: returning\n", __func__);
648 }
649
650 /**
651 * notify_shutdown() - notifies device of pending shutdown
652 * @cfg: Internal structure associated with the host.
653 * @wait: Whether to wait for shutdown processing to complete.
654 *
655 * This function will notify the AFU that the adapter is being shutdown
656 * and will wait for shutdown processing to complete if wait is true.
657 * This notification should flush pending I/Os to the device and halt
658 * further I/Os until the next AFU reset is issued and device restarted.
659 */
660 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
661 {
662 struct afu *afu = cfg->afu;
663 struct device *dev = &cfg->dev->dev;
664 struct dev_dependent_vals *ddv;
665 __be64 __iomem *fc_port_regs;
666 u64 reg, status;
667 int i, retry_cnt = 0;
668
669 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
670 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
671 return;
672
673 if (!afu || !afu->afu_map) {
674 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
675 return;
676 }
677
678 /* Notify AFU */
679 for (i = 0; i < cfg->num_fc_ports; i++) {
680 fc_port_regs = get_fc_port_regs(cfg, i);
681
682 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
683 reg |= SISL_FC_SHUTDOWN_NORMAL;
684 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
685 }
686
687 if (!wait)
688 return;
689
690 /* Wait up to 1.5 seconds for shutdown processing to complete */
691 for (i = 0; i < cfg->num_fc_ports; i++) {
692 fc_port_regs = get_fc_port_regs(cfg, i);
693 retry_cnt = 0;
694
695 while (true) {
696 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
697 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
698 break;
699 if (++retry_cnt >= MC_RETRY_CNT) {
700 dev_dbg(dev, "%s: port %d shutdown processing "
701 "not yet completed\n", __func__, i);
702 break;
703 }
704 msleep(100 * retry_cnt);
705 }
706 }
707 }
708
709 /**
710 * cxlflash_remove() - PCI entry point to tear down host
711 * @pdev: PCI device associated with the host.
712 *
713 * Safe to use as a cleanup in partially allocated/initialized state. Note that
714 * the reset_waitq is flushed as part of the stop/termination of user contexts.
715 */
716 static void cxlflash_remove(struct pci_dev *pdev)
717 {
718 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
719 struct device *dev = &pdev->dev;
720 ulong lock_flags;
721
722 if (!pci_is_enabled(pdev)) {
723 dev_dbg(dev, "%s: Device is disabled\n", __func__);
724 return;
725 }
726
727 /* If a Task Management Function is active, wait for it to complete
728 * before continuing with remove.
729 */
730 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
731 if (cfg->tmf_active)
732 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
733 !cfg->tmf_active,
734 cfg->tmf_slock);
735 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
736
737 /* Notify AFU and wait for shutdown processing to complete */
738 notify_shutdown(cfg, true);
739
740 cfg->state = STATE_FAILTERM;
741 cxlflash_stop_term_user_contexts(cfg);
742
743 switch (cfg->init_state) {
744 case INIT_STATE_SCSI:
745 cxlflash_term_local_luns(cfg);
746 scsi_remove_host(cfg->host);
747 case INIT_STATE_AFU:
748 term_afu(cfg);
749 case INIT_STATE_PCI:
750 pci_disable_device(pdev);
751 case INIT_STATE_NONE:
752 free_mem(cfg);
753 scsi_host_put(cfg->host);
754 break;
755 }
756
757 dev_dbg(dev, "%s: returning\n", __func__);
758 }
759
760 /**
761 * alloc_mem() - allocates the AFU and its command pool
762 * @cfg: Internal structure associated with the host.
763 *
764 * A partially allocated state remains on failure.
765 *
766 * Return:
767 * 0 on success
768 * -ENOMEM on failure to allocate memory
769 */
770 static int alloc_mem(struct cxlflash_cfg *cfg)
771 {
772 int rc = 0;
773 struct device *dev = &cfg->dev->dev;
774
775 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
776 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
777 get_order(sizeof(struct afu)));
778 if (unlikely(!cfg->afu)) {
779 dev_err(dev, "%s: cannot get %d free pages\n",
780 __func__, get_order(sizeof(struct afu)));
781 rc = -ENOMEM;
782 goto out;
783 }
784 cfg->afu->parent = cfg;
785 cfg->afu->afu_map = NULL;
786 out:
787 return rc;
788 }
789
790 /**
791 * init_pci() - initializes the host as a PCI device
792 * @cfg: Internal structure associated with the host.
793 *
794 * Return: 0 on success, -errno on failure
795 */
796 static int init_pci(struct cxlflash_cfg *cfg)
797 {
798 struct pci_dev *pdev = cfg->dev;
799 struct device *dev = &cfg->dev->dev;
800 int rc = 0;
801
802 rc = pci_enable_device(pdev);
803 if (rc || pci_channel_offline(pdev)) {
804 if (pci_channel_offline(pdev)) {
805 cxlflash_wait_for_pci_err_recovery(cfg);
806 rc = pci_enable_device(pdev);
807 }
808
809 if (rc) {
810 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
811 cxlflash_wait_for_pci_err_recovery(cfg);
812 goto out;
813 }
814 }
815
816 out:
817 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
818 return rc;
819 }
820
821 /**
822 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
823 * @cfg: Internal structure associated with the host.
824 *
825 * Return: 0 on success, -errno on failure
826 */
827 static int init_scsi(struct cxlflash_cfg *cfg)
828 {
829 struct pci_dev *pdev = cfg->dev;
830 struct device *dev = &cfg->dev->dev;
831 int rc = 0;
832
833 rc = scsi_add_host(cfg->host, &pdev->dev);
834 if (rc) {
835 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
836 goto out;
837 }
838
839 scsi_scan_host(cfg->host);
840
841 out:
842 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
843 return rc;
844 }
845
846 /**
847 * set_port_online() - transitions the specified host FC port to online state
848 * @fc_regs: Top of MMIO region defined for specified port.
849 *
850 * The provided MMIO region must be mapped prior to call. Online state means
851 * that the FC link layer has synced, completed the handshaking process, and
852 * is ready for login to start.
853 */
854 static void set_port_online(__be64 __iomem *fc_regs)
855 {
856 u64 cmdcfg;
857
858 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
859 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
860 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
861 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
862 }
863
864 /**
865 * set_port_offline() - transitions the specified host FC port to offline state
866 * @fc_regs: Top of MMIO region defined for specified port.
867 *
868 * The provided MMIO region must be mapped prior to call.
869 */
870 static void set_port_offline(__be64 __iomem *fc_regs)
871 {
872 u64 cmdcfg;
873
874 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
875 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
876 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
877 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
878 }
879
880 /**
881 * wait_port_online() - waits for the specified host FC port come online
882 * @fc_regs: Top of MMIO region defined for specified port.
883 * @delay_us: Number of microseconds to delay between reading port status.
884 * @nretry: Number of cycles to retry reading port status.
885 *
886 * The provided MMIO region must be mapped prior to call. This will timeout
887 * when the cable is not plugged in.
888 *
889 * Return:
890 * TRUE (1) when the specified port is online
891 * FALSE (0) when the specified port fails to come online after timeout
892 */
893 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
894 {
895 u64 status;
896
897 WARN_ON(delay_us < 1000);
898
899 do {
900 msleep(delay_us / 1000);
901 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
902 if (status == U64_MAX)
903 nretry /= 2;
904 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
905 nretry--);
906
907 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
908 }
909
910 /**
911 * wait_port_offline() - waits for the specified host FC port go offline
912 * @fc_regs: Top of MMIO region defined for specified port.
913 * @delay_us: Number of microseconds to delay between reading port status.
914 * @nretry: Number of cycles to retry reading port status.
915 *
916 * The provided MMIO region must be mapped prior to call.
917 *
918 * Return:
919 * TRUE (1) when the specified port is offline
920 * FALSE (0) when the specified port fails to go offline after timeout
921 */
922 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
923 {
924 u64 status;
925
926 WARN_ON(delay_us < 1000);
927
928 do {
929 msleep(delay_us / 1000);
930 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
931 if (status == U64_MAX)
932 nretry /= 2;
933 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
934 nretry--);
935
936 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
937 }
938
939 /**
940 * afu_set_wwpn() - configures the WWPN for the specified host FC port
941 * @afu: AFU associated with the host that owns the specified FC port.
942 * @port: Port number being configured.
943 * @fc_regs: Top of MMIO region defined for specified port.
944 * @wwpn: The world-wide-port-number previously discovered for port.
945 *
946 * The provided MMIO region must be mapped prior to call. As part of the
947 * sequence to configure the WWPN, the port is toggled offline and then back
948 * online. This toggling action can cause this routine to delay up to a few
949 * seconds. When configured to use the internal LUN feature of the AFU, a
950 * failure to come online is overridden.
951 */
952 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
953 u64 wwpn)
954 {
955 struct cxlflash_cfg *cfg = afu->parent;
956 struct device *dev = &cfg->dev->dev;
957
958 set_port_offline(fc_regs);
959 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
960 FC_PORT_STATUS_RETRY_CNT)) {
961 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
962 __func__, port);
963 }
964
965 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
966
967 set_port_online(fc_regs);
968 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
969 FC_PORT_STATUS_RETRY_CNT)) {
970 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
971 __func__, port);
972 }
973 }
974
975 /**
976 * afu_link_reset() - resets the specified host FC port
977 * @afu: AFU associated with the host that owns the specified FC port.
978 * @port: Port number being configured.
979 * @fc_regs: Top of MMIO region defined for specified port.
980 *
981 * The provided MMIO region must be mapped prior to call. The sequence to
982 * reset the port involves toggling it offline and then back online. This
983 * action can cause this routine to delay up to a few seconds. An effort
984 * is made to maintain link with the device by switching to host to use
985 * the alternate port exclusively while the reset takes place.
986 * failure to come online is overridden.
987 */
988 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
989 {
990 struct cxlflash_cfg *cfg = afu->parent;
991 struct device *dev = &cfg->dev->dev;
992 u64 port_sel;
993
994 /* first switch the AFU to the other links, if any */
995 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
996 port_sel &= ~(1ULL << port);
997 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
998 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
999
1000 set_port_offline(fc_regs);
1001 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1002 FC_PORT_STATUS_RETRY_CNT))
1003 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1004 __func__, port);
1005
1006 set_port_online(fc_regs);
1007 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1008 FC_PORT_STATUS_RETRY_CNT))
1009 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1010 __func__, port);
1011
1012 /* switch back to include this port */
1013 port_sel |= (1ULL << port);
1014 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1015 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1016
1017 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1018 }
1019
1020 /*
1021 * Asynchronous interrupt information table
1022 *
1023 * NOTE: The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1024 * as complex and complains because it is not wrapped with parentheses/braces.
1025 */
1026 #define ASTATUS_FC(_a, _b, _c, _d) \
1027 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1028
1029 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1030 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET), \
1031 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1032 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1033 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1034 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1035 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1036 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1037 ASTATUS_FC(_a, LINK_UP, "link up", 0)
1038
1039 static const struct asyc_intr_info ainfo[] = {
1040 BUILD_SISL_ASTATUS_FC_PORT(2),
1041 BUILD_SISL_ASTATUS_FC_PORT(3),
1042 BUILD_SISL_ASTATUS_FC_PORT(0),
1043 BUILD_SISL_ASTATUS_FC_PORT(1),
1044 { 0x0, "", 0, 0 }
1045 };
1046
1047 /**
1048 * find_ainfo() - locates and returns asynchronous interrupt information
1049 * @status: Status code set by AFU on error.
1050 *
1051 * Return: The located information or NULL when the status code is invalid.
1052 */
1053 static const struct asyc_intr_info *find_ainfo(u64 status)
1054 {
1055 const struct asyc_intr_info *info;
1056
1057 BUILD_BUG_ON(ainfo[ARRAY_SIZE(ainfo) - 1].status != 0);
1058
1059 for (info = &ainfo[0]; info->status; info++)
1060 if (info->status == status)
1061 return info;
1062
1063 return NULL;
1064 }
1065
1066 /**
1067 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1068 * @afu: AFU associated with the host.
1069 */
1070 static void afu_err_intr_init(struct afu *afu)
1071 {
1072 struct cxlflash_cfg *cfg = afu->parent;
1073 __be64 __iomem *fc_port_regs;
1074 int i;
1075 u64 reg;
1076
1077 /* global async interrupts: AFU clears afu_ctrl on context exit
1078 * if async interrupts were sent to that context. This prevents
1079 * the AFU form sending further async interrupts when
1080 * there is
1081 * nobody to receive them.
1082 */
1083
1084 /* mask all */
1085 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1086 /* set LISN# to send and point to master context */
1087 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1088
1089 if (afu->internal_lun)
1090 reg |= 1; /* Bit 63 indicates local lun */
1091 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1092 /* clear all */
1093 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1094 /* unmask bits that are of interest */
1095 /* note: afu can send an interrupt after this step */
1096 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1097 /* clear again in case a bit came on after previous clear but before */
1098 /* unmask */
1099 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1100
1101 /* Clear/Set internal lun bits */
1102 fc_port_regs = get_fc_port_regs(cfg, 0);
1103 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1104 reg &= SISL_FC_INTERNAL_MASK;
1105 if (afu->internal_lun)
1106 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1107 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1108
1109 /* now clear FC errors */
1110 for (i = 0; i < cfg->num_fc_ports; i++) {
1111 fc_port_regs = get_fc_port_regs(cfg, i);
1112
1113 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1114 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1115 }
1116
1117 /* sync interrupts for master's IOARRIN write */
1118 /* note that unlike asyncs, there can be no pending sync interrupts */
1119 /* at this time (this is a fresh context and master has not written */
1120 /* IOARRIN yet), so there is nothing to clear. */
1121
1122 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1123 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1124 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1125 }
1126
1127 /**
1128 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1129 * @irq: Interrupt number.
1130 * @data: Private data provided at interrupt registration, the AFU.
1131 *
1132 * Return: Always return IRQ_HANDLED.
1133 */
1134 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1135 {
1136 struct afu *afu = (struct afu *)data;
1137 struct cxlflash_cfg *cfg = afu->parent;
1138 struct device *dev = &cfg->dev->dev;
1139 u64 reg;
1140 u64 reg_unmasked;
1141
1142 reg = readq_be(&afu->host_map->intr_status);
1143 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1144
1145 if (reg_unmasked == 0UL) {
1146 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1147 __func__, reg);
1148 goto cxlflash_sync_err_irq_exit;
1149 }
1150
1151 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1152 __func__, reg);
1153
1154 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1155
1156 cxlflash_sync_err_irq_exit:
1157 return IRQ_HANDLED;
1158 }
1159
1160 /**
1161 * process_hrrq() - process the read-response queue
1162 * @afu: AFU associated with the host.
1163 * @doneq: Queue of commands harvested from the RRQ.
1164 * @budget: Threshold of RRQ entries to process.
1165 *
1166 * This routine must be called holding the disabled RRQ spin lock.
1167 *
1168 * Return: The number of entries processed.
1169 */
1170 static int process_hrrq(struct afu *afu, struct list_head *doneq, int budget)
1171 {
1172 struct afu_cmd *cmd;
1173 struct sisl_ioasa *ioasa;
1174 struct sisl_ioarcb *ioarcb;
1175 bool toggle = afu->toggle;
1176 int num_hrrq = 0;
1177 u64 entry,
1178 *hrrq_start = afu->hrrq_start,
1179 *hrrq_end = afu->hrrq_end,
1180 *hrrq_curr = afu->hrrq_curr;
1181
1182 /* Process ready RRQ entries up to the specified budget (if any) */
1183 while (true) {
1184 entry = *hrrq_curr;
1185
1186 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1187 break;
1188
1189 entry &= ~SISL_RESP_HANDLE_T_BIT;
1190
1191 if (afu_is_sq_cmd_mode(afu)) {
1192 ioasa = (struct sisl_ioasa *)entry;
1193 cmd = container_of(ioasa, struct afu_cmd, sa);
1194 } else {
1195 ioarcb = (struct sisl_ioarcb *)entry;
1196 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1197 }
1198
1199 list_add_tail(&cmd->queue, doneq);
1200
1201 /* Advance to next entry or wrap and flip the toggle bit */
1202 if (hrrq_curr < hrrq_end)
1203 hrrq_curr++;
1204 else {
1205 hrrq_curr = hrrq_start;
1206 toggle ^= SISL_RESP_HANDLE_T_BIT;
1207 }
1208
1209 atomic_inc(&afu->hsq_credits);
1210 num_hrrq++;
1211
1212 if (budget > 0 && num_hrrq >= budget)
1213 break;
1214 }
1215
1216 afu->hrrq_curr = hrrq_curr;
1217 afu->toggle = toggle;
1218
1219 return num_hrrq;
1220 }
1221
1222 /**
1223 * process_cmd_doneq() - process a queue of harvested RRQ commands
1224 * @doneq: Queue of completed commands.
1225 *
1226 * Note that upon return the queue can no longer be trusted.
1227 */
1228 static void process_cmd_doneq(struct list_head *doneq)
1229 {
1230 struct afu_cmd *cmd, *tmp;
1231
1232 WARN_ON(list_empty(doneq));
1233
1234 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1235 cmd_complete(cmd);
1236 }
1237
1238 /**
1239 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1240 * @irqpoll: IRQ poll structure associated with queue to poll.
1241 * @budget: Threshold of RRQ entries to process per poll.
1242 *
1243 * Return: The number of entries processed.
1244 */
1245 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1246 {
1247 struct afu *afu = container_of(irqpoll, struct afu, irqpoll);
1248 unsigned long hrrq_flags;
1249 LIST_HEAD(doneq);
1250 int num_entries = 0;
1251
1252 spin_lock_irqsave(&afu->hrrq_slock, hrrq_flags);
1253
1254 num_entries = process_hrrq(afu, &doneq, budget);
1255 if (num_entries < budget)
1256 irq_poll_complete(irqpoll);
1257
1258 spin_unlock_irqrestore(&afu->hrrq_slock, hrrq_flags);
1259
1260 process_cmd_doneq(&doneq);
1261 return num_entries;
1262 }
1263
1264 /**
1265 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1266 * @irq: Interrupt number.
1267 * @data: Private data provided at interrupt registration, the AFU.
1268 *
1269 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1270 */
1271 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1272 {
1273 struct afu *afu = (struct afu *)data;
1274 unsigned long hrrq_flags;
1275 LIST_HEAD(doneq);
1276 int num_entries = 0;
1277
1278 spin_lock_irqsave(&afu->hrrq_slock, hrrq_flags);
1279
1280 if (afu_is_irqpoll_enabled(afu)) {
1281 irq_poll_sched(&afu->irqpoll);
1282 spin_unlock_irqrestore(&afu->hrrq_slock, hrrq_flags);
1283 return IRQ_HANDLED;
1284 }
1285
1286 num_entries = process_hrrq(afu, &doneq, -1);
1287 spin_unlock_irqrestore(&afu->hrrq_slock, hrrq_flags);
1288
1289 if (num_entries == 0)
1290 return IRQ_NONE;
1291
1292 process_cmd_doneq(&doneq);
1293 return IRQ_HANDLED;
1294 }
1295
1296 /**
1297 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1298 * @irq: Interrupt number.
1299 * @data: Private data provided at interrupt registration, the AFU.
1300 *
1301 * Return: Always return IRQ_HANDLED.
1302 */
1303 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1304 {
1305 struct afu *afu = (struct afu *)data;
1306 struct cxlflash_cfg *cfg = afu->parent;
1307 struct device *dev = &cfg->dev->dev;
1308 u64 reg_unmasked;
1309 const struct asyc_intr_info *info;
1310 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1311 __be64 __iomem *fc_port_regs;
1312 u64 reg;
1313 u8 port;
1314 int i;
1315
1316 reg = readq_be(&global->regs.aintr_status);
1317 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1318
1319 if (reg_unmasked == 0) {
1320 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1321 __func__, reg);
1322 goto out;
1323 }
1324
1325 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1326 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1327
1328 /* Check each bit that is on */
1329 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1330 info = find_ainfo(1ULL << i);
1331 if (((reg_unmasked & 0x1) == 0) || !info)
1332 continue;
1333
1334 port = info->port;
1335 fc_port_regs = get_fc_port_regs(cfg, port);
1336
1337 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1338 __func__, port, info->desc,
1339 readq_be(&fc_port_regs[FC_STATUS / 8]));
1340
1341 /*
1342 * Do link reset first, some OTHER errors will set FC_ERROR
1343 * again if cleared before or w/o a reset
1344 */
1345 if (info->action & LINK_RESET) {
1346 dev_err(dev, "%s: FC Port %d: resetting link\n",
1347 __func__, port);
1348 cfg->lr_state = LINK_RESET_REQUIRED;
1349 cfg->lr_port = port;
1350 schedule_work(&cfg->work_q);
1351 }
1352
1353 if (info->action & CLR_FC_ERROR) {
1354 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1355
1356 /*
1357 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1358 * should be the same and tracing one is sufficient.
1359 */
1360
1361 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1362 __func__, port, reg);
1363
1364 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1365 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1366 }
1367
1368 if (info->action & SCAN_HOST) {
1369 atomic_inc(&cfg->scan_host_needed);
1370 schedule_work(&cfg->work_q);
1371 }
1372 }
1373
1374 out:
1375 return IRQ_HANDLED;
1376 }
1377
1378 /**
1379 * start_context() - starts the master context
1380 * @cfg: Internal structure associated with the host.
1381 *
1382 * Return: A success or failure value from CXL services.
1383 */
1384 static int start_context(struct cxlflash_cfg *cfg)
1385 {
1386 struct device *dev = &cfg->dev->dev;
1387 int rc = 0;
1388
1389 rc = cxl_start_context(cfg->mcctx,
1390 cfg->afu->work.work_element_descriptor,
1391 NULL);
1392
1393 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1394 return rc;
1395 }
1396
1397 /**
1398 * read_vpd() - obtains the WWPNs from VPD
1399 * @cfg: Internal structure associated with the host.
1400 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1401 *
1402 * Return: 0 on success, -errno on failure
1403 */
1404 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1405 {
1406 struct device *dev = &cfg->dev->dev;
1407 struct pci_dev *pdev = cfg->dev;
1408 int rc = 0;
1409 int ro_start, ro_size, i, j, k;
1410 ssize_t vpd_size;
1411 char vpd_data[CXLFLASH_VPD_LEN];
1412 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1413 char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1414
1415 /* Get the VPD data from the device */
1416 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1417 if (unlikely(vpd_size <= 0)) {
1418 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1419 __func__, vpd_size);
1420 rc = -ENODEV;
1421 goto out;
1422 }
1423
1424 /* Get the read only section offset */
1425 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1426 PCI_VPD_LRDT_RO_DATA);
1427 if (unlikely(ro_start < 0)) {
1428 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1429 rc = -ENODEV;
1430 goto out;
1431 }
1432
1433 /* Get the read only section size, cap when extends beyond read VPD */
1434 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1435 j = ro_size;
1436 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1437 if (unlikely((i + j) > vpd_size)) {
1438 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1439 __func__, (i + j), vpd_size);
1440 ro_size = vpd_size - i;
1441 }
1442
1443 /*
1444 * Find the offset of the WWPN tag within the read only
1445 * VPD data and validate the found field (partials are
1446 * no good to us). Convert the ASCII data to an integer
1447 * value. Note that we must copy to a temporary buffer
1448 * because the conversion service requires that the ASCII
1449 * string be terminated.
1450 */
1451 for (k = 0; k < cfg->num_fc_ports; k++) {
1452 j = ro_size;
1453 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1454
1455 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1456 if (unlikely(i < 0)) {
1457 dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1458 __func__, k);
1459 rc = -ENODEV;
1460 goto out;
1461 }
1462
1463 j = pci_vpd_info_field_size(&vpd_data[i]);
1464 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1465 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1466 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1467 __func__, k);
1468 rc = -ENODEV;
1469 goto out;
1470 }
1471
1472 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1473 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1474 if (unlikely(rc)) {
1475 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1476 __func__, k);
1477 rc = -ENODEV;
1478 goto out;
1479 }
1480
1481 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1482 }
1483
1484 out:
1485 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1486 return rc;
1487 }
1488
1489 /**
1490 * init_pcr() - initialize the provisioning and control registers
1491 * @cfg: Internal structure associated with the host.
1492 *
1493 * Also sets up fast access to the mapped registers and initializes AFU
1494 * command fields that never change.
1495 */
1496 static void init_pcr(struct cxlflash_cfg *cfg)
1497 {
1498 struct afu *afu = cfg->afu;
1499 struct sisl_ctrl_map __iomem *ctrl_map;
1500 int i;
1501
1502 for (i = 0; i < MAX_CONTEXT; i++) {
1503 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1504 /* Disrupt any clients that could be running */
1505 /* e.g. clients that survived a master restart */
1506 writeq_be(0, &ctrl_map->rht_start);
1507 writeq_be(0, &ctrl_map->rht_cnt_id);
1508 writeq_be(0, &ctrl_map->ctx_cap);
1509 }
1510
1511 /* Copy frequently used fields into afu */
1512 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1513 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1514 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1515
1516 /* Program the Endian Control for the master context */
1517 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1518 }
1519
1520 /**
1521 * init_global() - initialize AFU global registers
1522 * @cfg: Internal structure associated with the host.
1523 */
1524 static int init_global(struct cxlflash_cfg *cfg)
1525 {
1526 struct afu *afu = cfg->afu;
1527 struct device *dev = &cfg->dev->dev;
1528 __be64 __iomem *fc_port_regs;
1529 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1530 int i = 0, num_ports = 0;
1531 int rc = 0;
1532 u64 reg;
1533
1534 rc = read_vpd(cfg, &wwpn[0]);
1535 if (rc) {
1536 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1537 goto out;
1538 }
1539
1540 /* Set up RRQ and SQ in AFU for master issued cmds */
1541 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1542 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1543
1544 if (afu_is_sq_cmd_mode(afu)) {
1545 writeq_be((u64)afu->hsq_start, &afu->host_map->sq_start);
1546 writeq_be((u64)afu->hsq_end, &afu->host_map->sq_end);
1547 }
1548
1549 /* AFU configuration */
1550 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1551 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1552 /* enable all auto retry options and control endianness */
1553 /* leave others at default: */
1554 /* CTX_CAP write protected, mbox_r does not clear on read and */
1555 /* checker on if dual afu */
1556 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1557
1558 /* Global port select: select either port */
1559 if (afu->internal_lun) {
1560 /* Only use port 0 */
1561 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1562 num_ports = 0;
1563 } else {
1564 writeq_be(PORT_MASK(cfg->num_fc_ports),
1565 &afu->afu_map->global.regs.afu_port_sel);
1566 num_ports = cfg->num_fc_ports;
1567 }
1568
1569 for (i = 0; i < num_ports; i++) {
1570 fc_port_regs = get_fc_port_regs(cfg, i);
1571
1572 /* Unmask all errors (but they are still masked at AFU) */
1573 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1574 /* Clear CRC error cnt & set a threshold */
1575 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1576 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1577
1578 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1579 if (wwpn[i] != 0)
1580 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1581 /* Programming WWPN back to back causes additional
1582 * offline/online transitions and a PLOGI
1583 */
1584 msleep(100);
1585 }
1586
1587 /* Set up master's own CTX_CAP to allow real mode, host translation */
1588 /* tables, afu cmds and read/write GSCSI cmds. */
1589 /* First, unlock ctx_cap write by reading mbox */
1590 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1591 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1592 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1593 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1594 &afu->ctrl_map->ctx_cap);
1595 /* Initialize heartbeat */
1596 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1597 out:
1598 return rc;
1599 }
1600
1601 /**
1602 * start_afu() - initializes and starts the AFU
1603 * @cfg: Internal structure associated with the host.
1604 */
1605 static int start_afu(struct cxlflash_cfg *cfg)
1606 {
1607 struct afu *afu = cfg->afu;
1608 struct device *dev = &cfg->dev->dev;
1609 int rc = 0;
1610
1611 init_pcr(cfg);
1612
1613 /* Initialize RRQ */
1614 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1615 afu->hrrq_start = &afu->rrq_entry[0];
1616 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1617 afu->hrrq_curr = afu->hrrq_start;
1618 afu->toggle = 1;
1619 spin_lock_init(&afu->hrrq_slock);
1620
1621 /* Initialize SQ */
1622 if (afu_is_sq_cmd_mode(afu)) {
1623 memset(&afu->sq, 0, sizeof(afu->sq));
1624 afu->hsq_start = &afu->sq[0];
1625 afu->hsq_end = &afu->sq[NUM_SQ_ENTRY - 1];
1626 afu->hsq_curr = afu->hsq_start;
1627
1628 spin_lock_init(&afu->hsq_slock);
1629 atomic_set(&afu->hsq_credits, NUM_SQ_ENTRY - 1);
1630 }
1631
1632 /* Initialize IRQ poll */
1633 if (afu_is_irqpoll_enabled(afu))
1634 irq_poll_init(&afu->irqpoll, afu->irqpoll_weight,
1635 cxlflash_irqpoll);
1636
1637 rc = init_global(cfg);
1638
1639 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1640 return rc;
1641 }
1642
1643 /**
1644 * init_intr() - setup interrupt handlers for the master context
1645 * @cfg: Internal structure associated with the host.
1646 *
1647 * Return: 0 on success, -errno on failure
1648 */
1649 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1650 struct cxl_context *ctx)
1651 {
1652 struct afu *afu = cfg->afu;
1653 struct device *dev = &cfg->dev->dev;
1654 int rc = 0;
1655 enum undo_level level = UNDO_NOOP;
1656
1657 rc = cxl_allocate_afu_irqs(ctx, 3);
1658 if (unlikely(rc)) {
1659 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1660 __func__, rc);
1661 level = UNDO_NOOP;
1662 goto out;
1663 }
1664
1665 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1666 "SISL_MSI_SYNC_ERROR");
1667 if (unlikely(rc <= 0)) {
1668 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1669 level = FREE_IRQ;
1670 goto out;
1671 }
1672
1673 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1674 "SISL_MSI_RRQ_UPDATED");
1675 if (unlikely(rc <= 0)) {
1676 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1677 level = UNMAP_ONE;
1678 goto out;
1679 }
1680
1681 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1682 "SISL_MSI_ASYNC_ERROR");
1683 if (unlikely(rc <= 0)) {
1684 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1685 level = UNMAP_TWO;
1686 goto out;
1687 }
1688 out:
1689 return level;
1690 }
1691
1692 /**
1693 * init_mc() - create and register as the master context
1694 * @cfg: Internal structure associated with the host.
1695 *
1696 * Return: 0 on success, -errno on failure
1697 */
1698 static int init_mc(struct cxlflash_cfg *cfg)
1699 {
1700 struct cxl_context *ctx;
1701 struct device *dev = &cfg->dev->dev;
1702 int rc = 0;
1703 enum undo_level level;
1704
1705 ctx = cxl_get_context(cfg->dev);
1706 if (unlikely(!ctx)) {
1707 rc = -ENOMEM;
1708 goto ret;
1709 }
1710 cfg->mcctx = ctx;
1711
1712 /* Set it up as a master with the CXL */
1713 cxl_set_master(ctx);
1714
1715 /* During initialization reset the AFU to start from a clean slate */
1716 rc = cxl_afu_reset(cfg->mcctx);
1717 if (unlikely(rc)) {
1718 dev_err(dev, "%s: AFU reset failed rc=%d\n", __func__, rc);
1719 goto ret;
1720 }
1721
1722 level = init_intr(cfg, ctx);
1723 if (unlikely(level)) {
1724 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1725 goto out;
1726 }
1727
1728 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1729 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1730 * element (pe) that is embedded in the context (ctx)
1731 */
1732 rc = start_context(cfg);
1733 if (unlikely(rc)) {
1734 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1735 level = UNMAP_THREE;
1736 goto out;
1737 }
1738 ret:
1739 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1740 return rc;
1741 out:
1742 term_intr(cfg, level);
1743 goto ret;
1744 }
1745
1746 /**
1747 * get_num_afu_ports() - determines and configures the number of AFU ports
1748 * @cfg: Internal structure associated with the host.
1749 *
1750 * This routine determines the number of AFU ports by converting the global
1751 * port selection mask. The converted value is only valid following an AFU
1752 * reset (explicit or power-on). This routine must be invoked shortly after
1753 * mapping as other routines are dependent on the number of ports during the
1754 * initialization sequence.
1755 *
1756 * To support legacy AFUs that might not have reflected an initial global
1757 * port mask (value read is 0), default to the number of ports originally
1758 * supported by the cxlflash driver (2) before hardware with other port
1759 * offerings was introduced.
1760 */
1761 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
1762 {
1763 struct afu *afu = cfg->afu;
1764 struct device *dev = &cfg->dev->dev;
1765 u64 port_mask;
1766 int num_fc_ports = LEGACY_FC_PORTS;
1767
1768 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1769 if (port_mask != 0ULL)
1770 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
1771
1772 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
1773 __func__, port_mask, num_fc_ports);
1774
1775 cfg->num_fc_ports = num_fc_ports;
1776 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
1777 }
1778
1779 /**
1780 * init_afu() - setup as master context and start AFU
1781 * @cfg: Internal structure associated with the host.
1782 *
1783 * This routine is a higher level of control for configuring the
1784 * AFU on probe and reset paths.
1785 *
1786 * Return: 0 on success, -errno on failure
1787 */
1788 static int init_afu(struct cxlflash_cfg *cfg)
1789 {
1790 u64 reg;
1791 int rc = 0;
1792 struct afu *afu = cfg->afu;
1793 struct device *dev = &cfg->dev->dev;
1794
1795 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1796
1797 rc = init_mc(cfg);
1798 if (rc) {
1799 dev_err(dev, "%s: init_mc failed rc=%d\n",
1800 __func__, rc);
1801 goto out;
1802 }
1803
1804 /* Map the entire MMIO space of the AFU */
1805 afu->afu_map = cxl_psa_map(cfg->mcctx);
1806 if (!afu->afu_map) {
1807 dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
1808 rc = -ENOMEM;
1809 goto err1;
1810 }
1811
1812 /* No byte reverse on reading afu_version or string will be backwards */
1813 reg = readq(&afu->afu_map->global.regs.afu_version);
1814 memcpy(afu->version, &reg, sizeof(reg));
1815 afu->interface_version =
1816 readq_be(&afu->afu_map->global.regs.interface_version);
1817 if ((afu->interface_version + 1) == 0) {
1818 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
1819 "interface version %016llx\n", afu->version,
1820 afu->interface_version);
1821 rc = -EINVAL;
1822 goto err1;
1823 }
1824
1825 if (afu_is_sq_cmd_mode(afu)) {
1826 afu->send_cmd = send_cmd_sq;
1827 afu->context_reset = context_reset_sq;
1828 } else {
1829 afu->send_cmd = send_cmd_ioarrin;
1830 afu->context_reset = context_reset_ioarrin;
1831 }
1832
1833 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
1834 afu->version, afu->interface_version);
1835
1836 get_num_afu_ports(cfg);
1837
1838 rc = start_afu(cfg);
1839 if (rc) {
1840 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
1841 goto err1;
1842 }
1843
1844 afu_err_intr_init(cfg->afu);
1845 spin_lock_init(&afu->rrin_slock);
1846 afu->room = readq_be(&afu->host_map->cmd_room);
1847
1848 /* Restore the LUN mappings */
1849 cxlflash_restore_luntable(cfg);
1850 out:
1851 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1852 return rc;
1853
1854 err1:
1855 term_intr(cfg, UNMAP_THREE);
1856 term_mc(cfg);
1857 goto out;
1858 }
1859
1860 /**
1861 * cxlflash_afu_sync() - builds and sends an AFU sync command
1862 * @afu: AFU associated with the host.
1863 * @ctx_hndl_u: Identifies context requesting sync.
1864 * @res_hndl_u: Identifies resource requesting sync.
1865 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1866 *
1867 * The AFU can only take 1 sync command at a time. This routine enforces this
1868 * limitation by using a mutex to provide exclusive access to the AFU during
1869 * the sync. This design point requires calling threads to not be on interrupt
1870 * context due to the possibility of sleeping during concurrent sync operations.
1871 *
1872 * AFU sync operations are only necessary and allowed when the device is
1873 * operating normally. When not operating normally, sync requests can occur as
1874 * part of cleaning up resources associated with an adapter prior to removal.
1875 * In this scenario, these requests are simply ignored (safe due to the AFU
1876 * going away).
1877 *
1878 * Return:
1879 * 0 on success
1880 * -1 on failure
1881 */
1882 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1883 res_hndl_t res_hndl_u, u8 mode)
1884 {
1885 struct cxlflash_cfg *cfg = afu->parent;
1886 struct device *dev = &cfg->dev->dev;
1887 struct afu_cmd *cmd = NULL;
1888 char *buf = NULL;
1889 int rc = 0;
1890 static DEFINE_MUTEX(sync_active);
1891
1892 if (cfg->state != STATE_NORMAL) {
1893 dev_dbg(dev, "%s: Sync not required state=%u\n",
1894 __func__, cfg->state);
1895 return 0;
1896 }
1897
1898 mutex_lock(&sync_active);
1899 atomic_inc(&afu->cmds_active);
1900 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
1901 if (unlikely(!buf)) {
1902 dev_err(dev, "%s: no memory for command\n", __func__);
1903 rc = -1;
1904 goto out;
1905 }
1906
1907 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
1908 init_completion(&cmd->cevent);
1909 cmd->parent = afu;
1910
1911 dev_dbg(dev, "%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1912
1913 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1914 cmd->rcb.ctx_id = afu->ctx_hndl;
1915 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
1916 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1917
1918 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1919 cmd->rcb.cdb[1] = mode;
1920
1921 /* The cdb is aligned, no unaligned accessors required */
1922 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1923 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1924
1925 rc = afu->send_cmd(afu, cmd);
1926 if (unlikely(rc))
1927 goto out;
1928
1929 rc = wait_resp(afu, cmd);
1930 if (unlikely(rc))
1931 rc = -1;
1932 out:
1933 atomic_dec(&afu->cmds_active);
1934 mutex_unlock(&sync_active);
1935 kfree(buf);
1936 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1937 return rc;
1938 }
1939
1940 /**
1941 * afu_reset() - resets the AFU
1942 * @cfg: Internal structure associated with the host.
1943 *
1944 * Return: 0 on success, -errno on failure
1945 */
1946 static int afu_reset(struct cxlflash_cfg *cfg)
1947 {
1948 struct device *dev = &cfg->dev->dev;
1949 int rc = 0;
1950
1951 /* Stop the context before the reset. Since the context is
1952 * no longer available restart it after the reset is complete
1953 */
1954 term_afu(cfg);
1955
1956 rc = init_afu(cfg);
1957
1958 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1959 return rc;
1960 }
1961
1962 /**
1963 * drain_ioctls() - wait until all currently executing ioctls have completed
1964 * @cfg: Internal structure associated with the host.
1965 *
1966 * Obtain write access to read/write semaphore that wraps ioctl
1967 * handling to 'drain' ioctls currently executing.
1968 */
1969 static void drain_ioctls(struct cxlflash_cfg *cfg)
1970 {
1971 down_write(&cfg->ioctl_rwsem);
1972 up_write(&cfg->ioctl_rwsem);
1973 }
1974
1975 /**
1976 * cxlflash_eh_device_reset_handler() - reset a single LUN
1977 * @scp: SCSI command to send.
1978 *
1979 * Return:
1980 * SUCCESS as defined in scsi/scsi.h
1981 * FAILED as defined in scsi/scsi.h
1982 */
1983 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1984 {
1985 int rc = SUCCESS;
1986 struct Scsi_Host *host = scp->device->host;
1987 struct cxlflash_cfg *cfg = shost_priv(host);
1988 struct device *dev = &cfg->dev->dev;
1989 struct afu *afu = cfg->afu;
1990 int rcr = 0;
1991
1992 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
1993 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
1994 scp->device->channel, scp->device->id, scp->device->lun,
1995 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1996 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1997 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1998 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1999
2000 retry:
2001 switch (cfg->state) {
2002 case STATE_NORMAL:
2003 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
2004 if (unlikely(rcr))
2005 rc = FAILED;
2006 break;
2007 case STATE_RESET:
2008 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2009 goto retry;
2010 default:
2011 rc = FAILED;
2012 break;
2013 }
2014
2015 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2016 return rc;
2017 }
2018
2019 /**
2020 * cxlflash_eh_host_reset_handler() - reset the host adapter
2021 * @scp: SCSI command from stack identifying host.
2022 *
2023 * Following a reset, the state is evaluated again in case an EEH occurred
2024 * during the reset. In such a scenario, the host reset will either yield
2025 * until the EEH recovery is complete or return success or failure based
2026 * upon the current device state.
2027 *
2028 * Return:
2029 * SUCCESS as defined in scsi/scsi.h
2030 * FAILED as defined in scsi/scsi.h
2031 */
2032 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2033 {
2034 int rc = SUCCESS;
2035 int rcr = 0;
2036 struct Scsi_Host *host = scp->device->host;
2037 struct cxlflash_cfg *cfg = shost_priv(host);
2038 struct device *dev = &cfg->dev->dev;
2039
2040 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2041 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2042 scp->device->channel, scp->device->id, scp->device->lun,
2043 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2044 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2045 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2046 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2047
2048 switch (cfg->state) {
2049 case STATE_NORMAL:
2050 cfg->state = STATE_RESET;
2051 drain_ioctls(cfg);
2052 cxlflash_mark_contexts_error(cfg);
2053 rcr = afu_reset(cfg);
2054 if (rcr) {
2055 rc = FAILED;
2056 cfg->state = STATE_FAILTERM;
2057 } else
2058 cfg->state = STATE_NORMAL;
2059 wake_up_all(&cfg->reset_waitq);
2060 ssleep(1);
2061 /* fall through */
2062 case STATE_RESET:
2063 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2064 if (cfg->state == STATE_NORMAL)
2065 break;
2066 /* fall through */
2067 default:
2068 rc = FAILED;
2069 break;
2070 }
2071
2072 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2073 return rc;
2074 }
2075
2076 /**
2077 * cxlflash_change_queue_depth() - change the queue depth for the device
2078 * @sdev: SCSI device destined for queue depth change.
2079 * @qdepth: Requested queue depth value to set.
2080 *
2081 * The requested queue depth is capped to the maximum supported value.
2082 *
2083 * Return: The actual queue depth set.
2084 */
2085 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2086 {
2087
2088 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2089 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2090
2091 scsi_change_queue_depth(sdev, qdepth);
2092 return sdev->queue_depth;
2093 }
2094
2095 /**
2096 * cxlflash_show_port_status() - queries and presents the current port status
2097 * @port: Desired port for status reporting.
2098 * @cfg: Internal structure associated with the host.
2099 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2100 *
2101 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2102 */
2103 static ssize_t cxlflash_show_port_status(u32 port,
2104 struct cxlflash_cfg *cfg,
2105 char *buf)
2106 {
2107 struct device *dev = &cfg->dev->dev;
2108 char *disp_status;
2109 u64 status;
2110 __be64 __iomem *fc_port_regs;
2111
2112 WARN_ON(port >= MAX_FC_PORTS);
2113
2114 if (port >= cfg->num_fc_ports) {
2115 dev_info(dev, "%s: Port %d not supported on this card.\n",
2116 __func__, port);
2117 return -EINVAL;
2118 }
2119
2120 fc_port_regs = get_fc_port_regs(cfg, port);
2121 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2122 status &= FC_MTIP_STATUS_MASK;
2123
2124 if (status == FC_MTIP_STATUS_ONLINE)
2125 disp_status = "online";
2126 else if (status == FC_MTIP_STATUS_OFFLINE)
2127 disp_status = "offline";
2128 else
2129 disp_status = "unknown";
2130
2131 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2132 }
2133
2134 /**
2135 * port0_show() - queries and presents the current status of port 0
2136 * @dev: Generic device associated with the host owning the port.
2137 * @attr: Device attribute representing the port.
2138 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2139 *
2140 * Return: The size of the ASCII string returned in @buf.
2141 */
2142 static ssize_t port0_show(struct device *dev,
2143 struct device_attribute *attr,
2144 char *buf)
2145 {
2146 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2147
2148 return cxlflash_show_port_status(0, cfg, buf);
2149 }
2150
2151 /**
2152 * port1_show() - queries and presents the current status of port 1
2153 * @dev: Generic device associated with the host owning the port.
2154 * @attr: Device attribute representing the port.
2155 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2156 *
2157 * Return: The size of the ASCII string returned in @buf.
2158 */
2159 static ssize_t port1_show(struct device *dev,
2160 struct device_attribute *attr,
2161 char *buf)
2162 {
2163 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2164
2165 return cxlflash_show_port_status(1, cfg, buf);
2166 }
2167
2168 /**
2169 * port2_show() - queries and presents the current status of port 2
2170 * @dev: Generic device associated with the host owning the port.
2171 * @attr: Device attribute representing the port.
2172 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2173 *
2174 * Return: The size of the ASCII string returned in @buf.
2175 */
2176 static ssize_t port2_show(struct device *dev,
2177 struct device_attribute *attr,
2178 char *buf)
2179 {
2180 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2181
2182 return cxlflash_show_port_status(2, cfg, buf);
2183 }
2184
2185 /**
2186 * port3_show() - queries and presents the current status of port 3
2187 * @dev: Generic device associated with the host owning the port.
2188 * @attr: Device attribute representing the port.
2189 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2190 *
2191 * Return: The size of the ASCII string returned in @buf.
2192 */
2193 static ssize_t port3_show(struct device *dev,
2194 struct device_attribute *attr,
2195 char *buf)
2196 {
2197 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2198
2199 return cxlflash_show_port_status(3, cfg, buf);
2200 }
2201
2202 /**
2203 * lun_mode_show() - presents the current LUN mode of the host
2204 * @dev: Generic device associated with the host.
2205 * @attr: Device attribute representing the LUN mode.
2206 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2207 *
2208 * Return: The size of the ASCII string returned in @buf.
2209 */
2210 static ssize_t lun_mode_show(struct device *dev,
2211 struct device_attribute *attr, char *buf)
2212 {
2213 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2214 struct afu *afu = cfg->afu;
2215
2216 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2217 }
2218
2219 /**
2220 * lun_mode_store() - sets the LUN mode of the host
2221 * @dev: Generic device associated with the host.
2222 * @attr: Device attribute representing the LUN mode.
2223 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2224 * @count: Length of data resizing in @buf.
2225 *
2226 * The CXL Flash AFU supports a dummy LUN mode where the external
2227 * links and storage are not required. Space on the FPGA is used
2228 * to create 1 or 2 small LUNs which are presented to the system
2229 * as if they were a normal storage device. This feature is useful
2230 * during development and also provides manufacturing with a way
2231 * to test the AFU without an actual device.
2232 *
2233 * 0 = external LUN[s] (default)
2234 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2235 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2236 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2237 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2238 *
2239 * Return: The size of the ASCII string returned in @buf.
2240 */
2241 static ssize_t lun_mode_store(struct device *dev,
2242 struct device_attribute *attr,
2243 const char *buf, size_t count)
2244 {
2245 struct Scsi_Host *shost = class_to_shost(dev);
2246 struct cxlflash_cfg *cfg = shost_priv(shost);
2247 struct afu *afu = cfg->afu;
2248 int rc;
2249 u32 lun_mode;
2250
2251 rc = kstrtouint(buf, 10, &lun_mode);
2252 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2253 afu->internal_lun = lun_mode;
2254
2255 /*
2256 * When configured for internal LUN, there is only one channel,
2257 * channel number 0, else there will be one less than the number
2258 * of fc ports for this card.
2259 */
2260 if (afu->internal_lun)
2261 shost->max_channel = 0;
2262 else
2263 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2264
2265 afu_reset(cfg);
2266 scsi_scan_host(cfg->host);
2267 }
2268
2269 return count;
2270 }
2271
2272 /**
2273 * ioctl_version_show() - presents the current ioctl version of the host
2274 * @dev: Generic device associated with the host.
2275 * @attr: Device attribute representing the ioctl version.
2276 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2277 *
2278 * Return: The size of the ASCII string returned in @buf.
2279 */
2280 static ssize_t ioctl_version_show(struct device *dev,
2281 struct device_attribute *attr, char *buf)
2282 {
2283 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2284 }
2285
2286 /**
2287 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2288 * @port: Desired port for status reporting.
2289 * @cfg: Internal structure associated with the host.
2290 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2291 *
2292 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2293 */
2294 static ssize_t cxlflash_show_port_lun_table(u32 port,
2295 struct cxlflash_cfg *cfg,
2296 char *buf)
2297 {
2298 struct device *dev = &cfg->dev->dev;
2299 __be64 __iomem *fc_port_luns;
2300 int i;
2301 ssize_t bytes = 0;
2302
2303 WARN_ON(port >= MAX_FC_PORTS);
2304
2305 if (port >= cfg->num_fc_ports) {
2306 dev_info(dev, "%s: Port %d not supported on this card.\n",
2307 __func__, port);
2308 return -EINVAL;
2309 }
2310
2311 fc_port_luns = get_fc_port_luns(cfg, port);
2312
2313 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2314 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2315 "%03d: %016llx\n",
2316 i, readq_be(&fc_port_luns[i]));
2317 return bytes;
2318 }
2319
2320 /**
2321 * port0_lun_table_show() - presents the current LUN table of port 0
2322 * @dev: Generic device associated with the host owning the port.
2323 * @attr: Device attribute representing the port.
2324 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2325 *
2326 * Return: The size of the ASCII string returned in @buf.
2327 */
2328 static ssize_t port0_lun_table_show(struct device *dev,
2329 struct device_attribute *attr,
2330 char *buf)
2331 {
2332 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2333
2334 return cxlflash_show_port_lun_table(0, cfg, buf);
2335 }
2336
2337 /**
2338 * port1_lun_table_show() - presents the current LUN table of port 1
2339 * @dev: Generic device associated with the host owning the port.
2340 * @attr: Device attribute representing the port.
2341 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2342 *
2343 * Return: The size of the ASCII string returned in @buf.
2344 */
2345 static ssize_t port1_lun_table_show(struct device *dev,
2346 struct device_attribute *attr,
2347 char *buf)
2348 {
2349 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2350
2351 return cxlflash_show_port_lun_table(1, cfg, buf);
2352 }
2353
2354 /**
2355 * port2_lun_table_show() - presents the current LUN table of port 2
2356 * @dev: Generic device associated with the host owning the port.
2357 * @attr: Device attribute representing the port.
2358 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2359 *
2360 * Return: The size of the ASCII string returned in @buf.
2361 */
2362 static ssize_t port2_lun_table_show(struct device *dev,
2363 struct device_attribute *attr,
2364 char *buf)
2365 {
2366 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2367
2368 return cxlflash_show_port_lun_table(2, cfg, buf);
2369 }
2370
2371 /**
2372 * port3_lun_table_show() - presents the current LUN table of port 3
2373 * @dev: Generic device associated with the host owning the port.
2374 * @attr: Device attribute representing the port.
2375 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2376 *
2377 * Return: The size of the ASCII string returned in @buf.
2378 */
2379 static ssize_t port3_lun_table_show(struct device *dev,
2380 struct device_attribute *attr,
2381 char *buf)
2382 {
2383 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2384
2385 return cxlflash_show_port_lun_table(3, cfg, buf);
2386 }
2387
2388 /**
2389 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2390 * @dev: Generic device associated with the host.
2391 * @attr: Device attribute representing the IRQ poll weight.
2392 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2393 * weight in ASCII.
2394 *
2395 * An IRQ poll weight of 0 indicates polling is disabled.
2396 *
2397 * Return: The size of the ASCII string returned in @buf.
2398 */
2399 static ssize_t irqpoll_weight_show(struct device *dev,
2400 struct device_attribute *attr, char *buf)
2401 {
2402 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2403 struct afu *afu = cfg->afu;
2404
2405 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2406 }
2407
2408 /**
2409 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2410 * @dev: Generic device associated with the host.
2411 * @attr: Device attribute representing the IRQ poll weight.
2412 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2413 * weight in ASCII.
2414 * @count: Length of data resizing in @buf.
2415 *
2416 * An IRQ poll weight of 0 indicates polling is disabled.
2417 *
2418 * Return: The size of the ASCII string returned in @buf.
2419 */
2420 static ssize_t irqpoll_weight_store(struct device *dev,
2421 struct device_attribute *attr,
2422 const char *buf, size_t count)
2423 {
2424 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2425 struct device *cfgdev = &cfg->dev->dev;
2426 struct afu *afu = cfg->afu;
2427 u32 weight;
2428 int rc;
2429
2430 rc = kstrtouint(buf, 10, &weight);
2431 if (rc)
2432 return -EINVAL;
2433
2434 if (weight > 256) {
2435 dev_info(cfgdev,
2436 "Invalid IRQ poll weight. It must be 256 or less.\n");
2437 return -EINVAL;
2438 }
2439
2440 if (weight == afu->irqpoll_weight) {
2441 dev_info(cfgdev,
2442 "Current IRQ poll weight has the same weight.\n");
2443 return -EINVAL;
2444 }
2445
2446 if (afu_is_irqpoll_enabled(afu))
2447 irq_poll_disable(&afu->irqpoll);
2448
2449 afu->irqpoll_weight = weight;
2450
2451 if (weight > 0)
2452 irq_poll_init(&afu->irqpoll, weight, cxlflash_irqpoll);
2453
2454 return count;
2455 }
2456
2457 /**
2458 * mode_show() - presents the current mode of the device
2459 * @dev: Generic device associated with the device.
2460 * @attr: Device attribute representing the device mode.
2461 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2462 *
2463 * Return: The size of the ASCII string returned in @buf.
2464 */
2465 static ssize_t mode_show(struct device *dev,
2466 struct device_attribute *attr, char *buf)
2467 {
2468 struct scsi_device *sdev = to_scsi_device(dev);
2469
2470 return scnprintf(buf, PAGE_SIZE, "%s\n",
2471 sdev->hostdata ? "superpipe" : "legacy");
2472 }
2473
2474 /*
2475 * Host attributes
2476 */
2477 static DEVICE_ATTR_RO(port0);
2478 static DEVICE_ATTR_RO(port1);
2479 static DEVICE_ATTR_RO(port2);
2480 static DEVICE_ATTR_RO(port3);
2481 static DEVICE_ATTR_RW(lun_mode);
2482 static DEVICE_ATTR_RO(ioctl_version);
2483 static DEVICE_ATTR_RO(port0_lun_table);
2484 static DEVICE_ATTR_RO(port1_lun_table);
2485 static DEVICE_ATTR_RO(port2_lun_table);
2486 static DEVICE_ATTR_RO(port3_lun_table);
2487 static DEVICE_ATTR_RW(irqpoll_weight);
2488
2489 static struct device_attribute *cxlflash_host_attrs[] = {
2490 &dev_attr_port0,
2491 &dev_attr_port1,
2492 &dev_attr_port2,
2493 &dev_attr_port3,
2494 &dev_attr_lun_mode,
2495 &dev_attr_ioctl_version,
2496 &dev_attr_port0_lun_table,
2497 &dev_attr_port1_lun_table,
2498 &dev_attr_port2_lun_table,
2499 &dev_attr_port3_lun_table,
2500 &dev_attr_irqpoll_weight,
2501 NULL
2502 };
2503
2504 /*
2505 * Device attributes
2506 */
2507 static DEVICE_ATTR_RO(mode);
2508
2509 static struct device_attribute *cxlflash_dev_attrs[] = {
2510 &dev_attr_mode,
2511 NULL
2512 };
2513
2514 /*
2515 * Host template
2516 */
2517 static struct scsi_host_template driver_template = {
2518 .module = THIS_MODULE,
2519 .name = CXLFLASH_ADAPTER_NAME,
2520 .info = cxlflash_driver_info,
2521 .ioctl = cxlflash_ioctl,
2522 .proc_name = CXLFLASH_NAME,
2523 .queuecommand = cxlflash_queuecommand,
2524 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2525 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2526 .change_queue_depth = cxlflash_change_queue_depth,
2527 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2528 .can_queue = CXLFLASH_MAX_CMDS,
2529 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2530 .this_id = -1,
2531 .sg_tablesize = 1, /* No scatter gather support */
2532 .max_sectors = CXLFLASH_MAX_SECTORS,
2533 .use_clustering = ENABLE_CLUSTERING,
2534 .shost_attrs = cxlflash_host_attrs,
2535 .sdev_attrs = cxlflash_dev_attrs,
2536 };
2537
2538 /*
2539 * Device dependent values
2540 */
2541 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2542 0ULL };
2543 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2544 CXLFLASH_NOTIFY_SHUTDOWN };
2545 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
2546 CXLFLASH_NOTIFY_SHUTDOWN };
2547
2548 /*
2549 * PCI device binding table
2550 */
2551 static struct pci_device_id cxlflash_pci_table[] = {
2552 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2553 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2554 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2555 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2556 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
2557 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
2558 {}
2559 };
2560
2561 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2562
2563 /**
2564 * cxlflash_worker_thread() - work thread handler for the AFU
2565 * @work: Work structure contained within cxlflash associated with host.
2566 *
2567 * Handles the following events:
2568 * - Link reset which cannot be performed on interrupt context due to
2569 * blocking up to a few seconds
2570 * - Rescan the host
2571 */
2572 static void cxlflash_worker_thread(struct work_struct *work)
2573 {
2574 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2575 work_q);
2576 struct afu *afu = cfg->afu;
2577 struct device *dev = &cfg->dev->dev;
2578 __be64 __iomem *fc_port_regs;
2579 int port;
2580 ulong lock_flags;
2581
2582 /* Avoid MMIO if the device has failed */
2583
2584 if (cfg->state != STATE_NORMAL)
2585 return;
2586
2587 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2588
2589 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2590 port = cfg->lr_port;
2591 if (port < 0)
2592 dev_err(dev, "%s: invalid port index %d\n",
2593 __func__, port);
2594 else {
2595 spin_unlock_irqrestore(cfg->host->host_lock,
2596 lock_flags);
2597
2598 /* The reset can block... */
2599 fc_port_regs = get_fc_port_regs(cfg, port);
2600 afu_link_reset(afu, port, fc_port_regs);
2601 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2602 }
2603
2604 cfg->lr_state = LINK_RESET_COMPLETE;
2605 }
2606
2607 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2608
2609 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2610 scsi_scan_host(cfg->host);
2611 }
2612
2613 /**
2614 * cxlflash_probe() - PCI entry point to add host
2615 * @pdev: PCI device associated with the host.
2616 * @dev_id: PCI device id associated with device.
2617 *
2618 * The device will initially start out in a 'probing' state and
2619 * transition to the 'normal' state at the end of a successful
2620 * probe. Should an EEH event occur during probe, the notification
2621 * thread (error_detected()) will wait until the probe handler
2622 * is nearly complete. At that time, the device will be moved to
2623 * a 'probed' state and the EEH thread woken up to drive the slot
2624 * reset and recovery (device moves to 'normal' state). Meanwhile,
2625 * the probe will be allowed to exit successfully.
2626 *
2627 * Return: 0 on success, -errno on failure
2628 */
2629 static int cxlflash_probe(struct pci_dev *pdev,
2630 const struct pci_device_id *dev_id)
2631 {
2632 struct Scsi_Host *host;
2633 struct cxlflash_cfg *cfg = NULL;
2634 struct device *dev = &pdev->dev;
2635 struct dev_dependent_vals *ddv;
2636 int rc = 0;
2637 int k;
2638
2639 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2640 __func__, pdev->irq);
2641
2642 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2643 driver_template.max_sectors = ddv->max_sectors;
2644
2645 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2646 if (!host) {
2647 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
2648 rc = -ENOMEM;
2649 goto out;
2650 }
2651
2652 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2653 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2654 host->unique_id = host->host_no;
2655 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2656
2657 cfg = shost_priv(host);
2658 cfg->host = host;
2659 rc = alloc_mem(cfg);
2660 if (rc) {
2661 dev_err(dev, "%s: alloc_mem failed\n", __func__);
2662 rc = -ENOMEM;
2663 scsi_host_put(cfg->host);
2664 goto out;
2665 }
2666
2667 cfg->init_state = INIT_STATE_NONE;
2668 cfg->dev = pdev;
2669 cfg->cxl_fops = cxlflash_cxl_fops;
2670
2671 /*
2672 * Promoted LUNs move to the top of the LUN table. The rest stay on
2673 * the bottom half. The bottom half grows from the end (index = 255),
2674 * whereas the top half grows from the beginning (index = 0).
2675 *
2676 * Initialize the last LUN index for all possible ports.
2677 */
2678 cfg->promote_lun_index = 0;
2679
2680 for (k = 0; k < MAX_FC_PORTS; k++)
2681 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
2682
2683 cfg->dev_id = (struct pci_device_id *)dev_id;
2684
2685 init_waitqueue_head(&cfg->tmf_waitq);
2686 init_waitqueue_head(&cfg->reset_waitq);
2687
2688 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2689 cfg->lr_state = LINK_RESET_INVALID;
2690 cfg->lr_port = -1;
2691 spin_lock_init(&cfg->tmf_slock);
2692 mutex_init(&cfg->ctx_tbl_list_mutex);
2693 mutex_init(&cfg->ctx_recovery_mutex);
2694 init_rwsem(&cfg->ioctl_rwsem);
2695 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2696 INIT_LIST_HEAD(&cfg->lluns);
2697
2698 pci_set_drvdata(pdev, cfg);
2699
2700 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2701
2702 rc = init_pci(cfg);
2703 if (rc) {
2704 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
2705 goto out_remove;
2706 }
2707 cfg->init_state = INIT_STATE_PCI;
2708
2709 rc = init_afu(cfg);
2710 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
2711 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
2712 goto out_remove;
2713 }
2714 cfg->init_state = INIT_STATE_AFU;
2715
2716 rc = init_scsi(cfg);
2717 if (rc) {
2718 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
2719 goto out_remove;
2720 }
2721 cfg->init_state = INIT_STATE_SCSI;
2722
2723 if (wq_has_sleeper(&cfg->reset_waitq)) {
2724 cfg->state = STATE_PROBED;
2725 wake_up_all(&cfg->reset_waitq);
2726 } else
2727 cfg->state = STATE_NORMAL;
2728 out:
2729 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2730 return rc;
2731
2732 out_remove:
2733 cxlflash_remove(pdev);
2734 goto out;
2735 }
2736
2737 /**
2738 * cxlflash_pci_error_detected() - called when a PCI error is detected
2739 * @pdev: PCI device struct.
2740 * @state: PCI channel state.
2741 *
2742 * When an EEH occurs during an active reset, wait until the reset is
2743 * complete and then take action based upon the device state.
2744 *
2745 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2746 */
2747 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2748 pci_channel_state_t state)
2749 {
2750 int rc = 0;
2751 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2752 struct device *dev = &cfg->dev->dev;
2753
2754 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2755
2756 switch (state) {
2757 case pci_channel_io_frozen:
2758 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
2759 cfg->state != STATE_PROBING);
2760 if (cfg->state == STATE_FAILTERM)
2761 return PCI_ERS_RESULT_DISCONNECT;
2762
2763 cfg->state = STATE_RESET;
2764 scsi_block_requests(cfg->host);
2765 drain_ioctls(cfg);
2766 rc = cxlflash_mark_contexts_error(cfg);
2767 if (unlikely(rc))
2768 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
2769 __func__, rc);
2770 term_afu(cfg);
2771 return PCI_ERS_RESULT_NEED_RESET;
2772 case pci_channel_io_perm_failure:
2773 cfg->state = STATE_FAILTERM;
2774 wake_up_all(&cfg->reset_waitq);
2775 scsi_unblock_requests(cfg->host);
2776 return PCI_ERS_RESULT_DISCONNECT;
2777 default:
2778 break;
2779 }
2780 return PCI_ERS_RESULT_NEED_RESET;
2781 }
2782
2783 /**
2784 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2785 * @pdev: PCI device struct.
2786 *
2787 * This routine is called by the pci error recovery code after the PCI
2788 * slot has been reset, just before we should resume normal operations.
2789 *
2790 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2791 */
2792 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2793 {
2794 int rc = 0;
2795 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2796 struct device *dev = &cfg->dev->dev;
2797
2798 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2799
2800 rc = init_afu(cfg);
2801 if (unlikely(rc)) {
2802 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
2803 return PCI_ERS_RESULT_DISCONNECT;
2804 }
2805
2806 return PCI_ERS_RESULT_RECOVERED;
2807 }
2808
2809 /**
2810 * cxlflash_pci_resume() - called when normal operation can resume
2811 * @pdev: PCI device struct
2812 */
2813 static void cxlflash_pci_resume(struct pci_dev *pdev)
2814 {
2815 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2816 struct device *dev = &cfg->dev->dev;
2817
2818 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2819
2820 cfg->state = STATE_NORMAL;
2821 wake_up_all(&cfg->reset_waitq);
2822 scsi_unblock_requests(cfg->host);
2823 }
2824
2825 static const struct pci_error_handlers cxlflash_err_handler = {
2826 .error_detected = cxlflash_pci_error_detected,
2827 .slot_reset = cxlflash_pci_slot_reset,
2828 .resume = cxlflash_pci_resume,
2829 };
2830
2831 /*
2832 * PCI device structure
2833 */
2834 static struct pci_driver cxlflash_driver = {
2835 .name = CXLFLASH_NAME,
2836 .id_table = cxlflash_pci_table,
2837 .probe = cxlflash_probe,
2838 .remove = cxlflash_remove,
2839 .shutdown = cxlflash_remove,
2840 .err_handler = &cxlflash_err_handler,
2841 };
2842
2843 /**
2844 * init_cxlflash() - module entry point
2845 *
2846 * Return: 0 on success, -errno on failure
2847 */
2848 static int __init init_cxlflash(void)
2849 {
2850 check_sizes();
2851 cxlflash_list_init();
2852
2853 return pci_register_driver(&cxlflash_driver);
2854 }
2855
2856 /**
2857 * exit_cxlflash() - module exit point
2858 */
2859 static void __exit exit_cxlflash(void)
2860 {
2861 cxlflash_term_global_luns();
2862 cxlflash_free_errpage();
2863
2864 pci_unregister_driver(&cxlflash_driver);
2865 }
2866
2867 module_init(init_cxlflash);
2868 module_exit(exit_cxlflash);