]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/cxlflash/main.c
Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * process_cmd_err() - command error handler
39 * @cmd: AFU command that experienced the error.
40 * @scp: SCSI command associated with the AFU command in error.
41 *
42 * Translates error bits from AFU command to SCSI command results.
43 */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 struct sisl_ioarcb *ioarcb;
47 struct sisl_ioasa *ioasa;
48 u32 resid;
49
50 if (unlikely(!cmd))
51 return;
52
53 ioarcb = &(cmd->rcb);
54 ioasa = &(cmd->sa);
55
56 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
57 resid = ioasa->resid;
58 scsi_set_resid(scp, resid);
59 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
60 __func__, cmd, scp, resid);
61 }
62
63 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
64 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
65 __func__, cmd, scp);
66 scp->result = (DID_ERROR << 16);
67 }
68
69 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
70 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
71 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
72 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
73 ioasa->fc_extra);
74
75 if (ioasa->rc.scsi_rc) {
76 /* We have a SCSI status */
77 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
78 memcpy(scp->sense_buffer, ioasa->sense_data,
79 SISL_SENSE_DATA_LEN);
80 scp->result = ioasa->rc.scsi_rc;
81 } else
82 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
83 }
84
85 /*
86 * We encountered an error. Set scp->result based on nature
87 * of error.
88 */
89 if (ioasa->rc.fc_rc) {
90 /* We have an FC status */
91 switch (ioasa->rc.fc_rc) {
92 case SISL_FC_RC_LINKDOWN:
93 scp->result = (DID_REQUEUE << 16);
94 break;
95 case SISL_FC_RC_RESID:
96 /* This indicates an FCP resid underrun */
97 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
98 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
99 * then we will handle this error else where.
100 * If not then we must handle it here.
101 * This is probably an AFU bug.
102 */
103 scp->result = (DID_ERROR << 16);
104 }
105 break;
106 case SISL_FC_RC_RESIDERR:
107 /* Resid mismatch between adapter and device */
108 case SISL_FC_RC_TGTABORT:
109 case SISL_FC_RC_ABORTOK:
110 case SISL_FC_RC_ABORTFAIL:
111 case SISL_FC_RC_NOLOGI:
112 case SISL_FC_RC_ABORTPEND:
113 case SISL_FC_RC_WRABORTPEND:
114 case SISL_FC_RC_NOEXP:
115 case SISL_FC_RC_INUSE:
116 scp->result = (DID_ERROR << 16);
117 break;
118 }
119 }
120
121 if (ioasa->rc.afu_rc) {
122 /* We have an AFU error */
123 switch (ioasa->rc.afu_rc) {
124 case SISL_AFU_RC_NO_CHANNELS:
125 scp->result = (DID_NO_CONNECT << 16);
126 break;
127 case SISL_AFU_RC_DATA_DMA_ERR:
128 switch (ioasa->afu_extra) {
129 case SISL_AFU_DMA_ERR_PAGE_IN:
130 /* Retry */
131 scp->result = (DID_IMM_RETRY << 16);
132 break;
133 case SISL_AFU_DMA_ERR_INVALID_EA:
134 default:
135 scp->result = (DID_ERROR << 16);
136 }
137 break;
138 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
139 /* Retry */
140 scp->result = (DID_ALLOC_FAILURE << 16);
141 break;
142 default:
143 scp->result = (DID_ERROR << 16);
144 }
145 }
146 }
147
148 /**
149 * cmd_complete() - command completion handler
150 * @cmd: AFU command that has completed.
151 *
152 * Prepares and submits command that has either completed or timed out to
153 * the SCSI stack. Checks AFU command back into command pool for non-internal
154 * (cmd->scp populated) commands.
155 */
156 static void cmd_complete(struct afu_cmd *cmd)
157 {
158 struct scsi_cmnd *scp;
159 ulong lock_flags;
160 struct afu *afu = cmd->parent;
161 struct cxlflash_cfg *cfg = afu->parent;
162 bool cmd_is_tmf;
163
164 if (cmd->scp) {
165 scp = cmd->scp;
166 if (unlikely(cmd->sa.ioasc))
167 process_cmd_err(cmd, scp);
168 else
169 scp->result = (DID_OK << 16);
170
171 cmd_is_tmf = cmd->cmd_tmf;
172
173 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
174 "ioasc=%d\n", __func__, scp, scp->result,
175 cmd->sa.ioasc);
176
177 scsi_dma_unmap(scp);
178 scp->scsi_done(scp);
179
180 if (cmd_is_tmf) {
181 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
182 cfg->tmf_active = false;
183 wake_up_all_locked(&cfg->tmf_waitq);
184 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
185 }
186 } else
187 complete(&cmd->cevent);
188 }
189
190 /**
191 * context_reset_ioarrin() - reset command owner context via IOARRIN register
192 * @cmd: AFU command that timed out.
193 */
194 static void context_reset_ioarrin(struct afu_cmd *cmd)
195 {
196 int nretry = 0;
197 u64 rrin = 0x1;
198 struct afu *afu = cmd->parent;
199 struct cxlflash_cfg *cfg = afu->parent;
200 struct device *dev = &cfg->dev->dev;
201
202 pr_debug("%s: cmd=%p\n", __func__, cmd);
203
204 writeq_be(rrin, &afu->host_map->ioarrin);
205 do {
206 rrin = readq_be(&afu->host_map->ioarrin);
207 if (rrin != 0x1)
208 break;
209 /* Double delay each time */
210 udelay(1 << nretry);
211 } while (nretry++ < MC_ROOM_RETRY_CNT);
212
213 dev_dbg(dev, "%s: returning rrin=0x%016llX nretry=%d\n",
214 __func__, rrin, nretry);
215 }
216
217 /**
218 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
219 * @afu: AFU associated with the host.
220 * @cmd: AFU command to send.
221 *
222 * Return:
223 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
224 */
225 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
226 {
227 struct cxlflash_cfg *cfg = afu->parent;
228 struct device *dev = &cfg->dev->dev;
229 int rc = 0;
230 s64 room;
231 ulong lock_flags;
232
233 /*
234 * To avoid the performance penalty of MMIO, spread the update of
235 * 'room' over multiple commands.
236 */
237 spin_lock_irqsave(&afu->rrin_slock, lock_flags);
238 if (--afu->room < 0) {
239 room = readq_be(&afu->host_map->cmd_room);
240 if (room <= 0) {
241 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
242 "0x%02X, room=0x%016llX\n",
243 __func__, cmd->rcb.cdb[0], room);
244 afu->room = 0;
245 rc = SCSI_MLQUEUE_HOST_BUSY;
246 goto out;
247 }
248 afu->room = room - 1;
249 }
250
251 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
252 out:
253 spin_unlock_irqrestore(&afu->rrin_slock, lock_flags);
254 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
255 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
256 return rc;
257 }
258
259 /**
260 * wait_resp() - polls for a response or timeout to a sent AFU command
261 * @afu: AFU associated with the host.
262 * @cmd: AFU command that was sent.
263 *
264 * Return:
265 * 0 on success, -1 on timeout/error
266 */
267 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
268 {
269 int rc = 0;
270 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
271
272 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
273 if (!timeout) {
274 afu->context_reset(cmd);
275 rc = -1;
276 }
277
278 if (unlikely(cmd->sa.ioasc != 0)) {
279 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
280 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
281 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
282 cmd->sa.rc.fc_rc);
283 rc = -1;
284 }
285
286 return rc;
287 }
288
289 /**
290 * send_tmf() - sends a Task Management Function (TMF)
291 * @afu: AFU to checkout from.
292 * @scp: SCSI command from stack.
293 * @tmfcmd: TMF command to send.
294 *
295 * Return:
296 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
297 */
298 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
299 {
300 u32 port_sel = scp->device->channel + 1;
301 struct Scsi_Host *host = scp->device->host;
302 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
303 struct afu_cmd *cmd = sc_to_afucz(scp);
304 struct device *dev = &cfg->dev->dev;
305 ulong lock_flags;
306 int rc = 0;
307 ulong to;
308
309 /* When Task Management Function is active do not send another */
310 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
311 if (cfg->tmf_active)
312 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
313 !cfg->tmf_active,
314 cfg->tmf_slock);
315 cfg->tmf_active = true;
316 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
317
318 cmd->scp = scp;
319 cmd->parent = afu;
320 cmd->cmd_tmf = true;
321
322 cmd->rcb.ctx_id = afu->ctx_hndl;
323 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
324 cmd->rcb.port_sel = port_sel;
325 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
326 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
327 SISL_REQ_FLAGS_SUP_UNDERRUN |
328 SISL_REQ_FLAGS_TMF_CMD);
329 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
330
331 rc = afu->send_cmd(afu, cmd);
332 if (unlikely(rc)) {
333 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
334 cfg->tmf_active = false;
335 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
336 goto out;
337 }
338
339 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
340 to = msecs_to_jiffies(5000);
341 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
342 !cfg->tmf_active,
343 cfg->tmf_slock,
344 to);
345 if (!to) {
346 cfg->tmf_active = false;
347 dev_err(dev, "%s: TMF timed out!\n", __func__);
348 rc = -1;
349 }
350 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
351 out:
352 return rc;
353 }
354
355 static void afu_unmap(struct kref *ref)
356 {
357 struct afu *afu = container_of(ref, struct afu, mapcount);
358
359 if (likely(afu->afu_map)) {
360 cxl_psa_unmap((void __iomem *)afu->afu_map);
361 afu->afu_map = NULL;
362 }
363 }
364
365 /**
366 * cxlflash_driver_info() - information handler for this host driver
367 * @host: SCSI host associated with device.
368 *
369 * Return: A string describing the device.
370 */
371 static const char *cxlflash_driver_info(struct Scsi_Host *host)
372 {
373 return CXLFLASH_ADAPTER_NAME;
374 }
375
376 /**
377 * cxlflash_queuecommand() - sends a mid-layer request
378 * @host: SCSI host associated with device.
379 * @scp: SCSI command to send.
380 *
381 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
382 */
383 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
384 {
385 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
386 struct afu *afu = cfg->afu;
387 struct device *dev = &cfg->dev->dev;
388 struct afu_cmd *cmd = sc_to_afucz(scp);
389 struct scatterlist *sg = scsi_sglist(scp);
390 u32 port_sel = scp->device->channel + 1;
391 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
392 ulong lock_flags;
393 int nseg = 0;
394 int rc = 0;
395 int kref_got = 0;
396
397 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
398 "cdb=(%08X-%08X-%08X-%08X)\n",
399 __func__, scp, host->host_no, scp->device->channel,
400 scp->device->id, scp->device->lun,
401 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
402 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
403 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
404 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
405
406 /*
407 * If a Task Management Function is active, wait for it to complete
408 * before continuing with regular commands.
409 */
410 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
411 if (cfg->tmf_active) {
412 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
413 rc = SCSI_MLQUEUE_HOST_BUSY;
414 goto out;
415 }
416 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
417
418 switch (cfg->state) {
419 case STATE_RESET:
420 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
421 rc = SCSI_MLQUEUE_HOST_BUSY;
422 goto out;
423 case STATE_FAILTERM:
424 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
425 scp->result = (DID_NO_CONNECT << 16);
426 scp->scsi_done(scp);
427 rc = 0;
428 goto out;
429 default:
430 break;
431 }
432
433 kref_get(&cfg->afu->mapcount);
434 kref_got = 1;
435
436 if (likely(sg)) {
437 nseg = scsi_dma_map(scp);
438 if (unlikely(nseg < 0)) {
439 dev_err(dev, "%s: Fail DMA map!\n", __func__);
440 rc = SCSI_MLQUEUE_HOST_BUSY;
441 goto out;
442 }
443
444 cmd->rcb.data_len = sg_dma_len(sg);
445 cmd->rcb.data_ea = sg_dma_address(sg);
446 }
447
448 cmd->scp = scp;
449 cmd->parent = afu;
450
451 cmd->rcb.ctx_id = afu->ctx_hndl;
452 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
453 cmd->rcb.port_sel = port_sel;
454 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
455
456 if (scp->sc_data_direction == DMA_TO_DEVICE)
457 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
458
459 cmd->rcb.req_flags = req_flags;
460 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
461
462 rc = afu->send_cmd(afu, cmd);
463 if (unlikely(rc))
464 scsi_dma_unmap(scp);
465 out:
466 if (kref_got)
467 kref_put(&afu->mapcount, afu_unmap);
468 pr_devel("%s: returning rc=%d\n", __func__, rc);
469 return rc;
470 }
471
472 /**
473 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
474 * @cfg: Internal structure associated with the host.
475 */
476 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
477 {
478 struct pci_dev *pdev = cfg->dev;
479
480 if (pci_channel_offline(pdev))
481 wait_event_timeout(cfg->reset_waitq,
482 !pci_channel_offline(pdev),
483 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
484 }
485
486 /**
487 * free_mem() - free memory associated with the AFU
488 * @cfg: Internal structure associated with the host.
489 */
490 static void free_mem(struct cxlflash_cfg *cfg)
491 {
492 struct afu *afu = cfg->afu;
493
494 if (cfg->afu) {
495 free_pages((ulong)afu, get_order(sizeof(struct afu)));
496 cfg->afu = NULL;
497 }
498 }
499
500 /**
501 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
502 * @cfg: Internal structure associated with the host.
503 *
504 * Safe to call with AFU in a partially allocated/initialized state.
505 *
506 * Waits for any active internal AFU commands to timeout and then unmaps
507 * the MMIO space.
508 */
509 static void stop_afu(struct cxlflash_cfg *cfg)
510 {
511 struct afu *afu = cfg->afu;
512
513 if (likely(afu)) {
514 while (atomic_read(&afu->cmds_active))
515 ssleep(1);
516 if (likely(afu->afu_map)) {
517 cxl_psa_unmap((void __iomem *)afu->afu_map);
518 afu->afu_map = NULL;
519 }
520 kref_put(&afu->mapcount, afu_unmap);
521 }
522 }
523
524 /**
525 * term_intr() - disables all AFU interrupts
526 * @cfg: Internal structure associated with the host.
527 * @level: Depth of allocation, where to begin waterfall tear down.
528 *
529 * Safe to call with AFU/MC in partially allocated/initialized state.
530 */
531 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
532 {
533 struct afu *afu = cfg->afu;
534 struct device *dev = &cfg->dev->dev;
535
536 if (!afu || !cfg->mcctx) {
537 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
538 return;
539 }
540
541 switch (level) {
542 case UNMAP_THREE:
543 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
544 case UNMAP_TWO:
545 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
546 case UNMAP_ONE:
547 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
548 case FREE_IRQ:
549 cxl_free_afu_irqs(cfg->mcctx);
550 /* fall through */
551 case UNDO_NOOP:
552 /* No action required */
553 break;
554 }
555 }
556
557 /**
558 * term_mc() - terminates the master context
559 * @cfg: Internal structure associated with the host.
560 * @level: Depth of allocation, where to begin waterfall tear down.
561 *
562 * Safe to call with AFU/MC in partially allocated/initialized state.
563 */
564 static void term_mc(struct cxlflash_cfg *cfg)
565 {
566 int rc = 0;
567 struct afu *afu = cfg->afu;
568 struct device *dev = &cfg->dev->dev;
569
570 if (!afu || !cfg->mcctx) {
571 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
572 return;
573 }
574
575 rc = cxl_stop_context(cfg->mcctx);
576 WARN_ON(rc);
577 cfg->mcctx = NULL;
578 }
579
580 /**
581 * term_afu() - terminates the AFU
582 * @cfg: Internal structure associated with the host.
583 *
584 * Safe to call with AFU/MC in partially allocated/initialized state.
585 */
586 static void term_afu(struct cxlflash_cfg *cfg)
587 {
588 /*
589 * Tear down is carefully orchestrated to ensure
590 * no interrupts can come in when the problem state
591 * area is unmapped.
592 *
593 * 1) Disable all AFU interrupts
594 * 2) Unmap the problem state area
595 * 3) Stop the master context
596 */
597 term_intr(cfg, UNMAP_THREE);
598 if (cfg->afu)
599 stop_afu(cfg);
600
601 term_mc(cfg);
602
603 pr_debug("%s: returning\n", __func__);
604 }
605
606 /**
607 * notify_shutdown() - notifies device of pending shutdown
608 * @cfg: Internal structure associated with the host.
609 * @wait: Whether to wait for shutdown processing to complete.
610 *
611 * This function will notify the AFU that the adapter is being shutdown
612 * and will wait for shutdown processing to complete if wait is true.
613 * This notification should flush pending I/Os to the device and halt
614 * further I/Os until the next AFU reset is issued and device restarted.
615 */
616 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
617 {
618 struct afu *afu = cfg->afu;
619 struct device *dev = &cfg->dev->dev;
620 struct sisl_global_map __iomem *global;
621 struct dev_dependent_vals *ddv;
622 u64 reg, status;
623 int i, retry_cnt = 0;
624
625 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
626 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
627 return;
628
629 if (!afu || !afu->afu_map) {
630 dev_dbg(dev, "%s: The problem state area is not mapped\n",
631 __func__);
632 return;
633 }
634
635 global = &afu->afu_map->global;
636
637 /* Notify AFU */
638 for (i = 0; i < NUM_FC_PORTS; i++) {
639 reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]);
640 reg |= SISL_FC_SHUTDOWN_NORMAL;
641 writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]);
642 }
643
644 if (!wait)
645 return;
646
647 /* Wait up to 1.5 seconds for shutdown processing to complete */
648 for (i = 0; i < NUM_FC_PORTS; i++) {
649 retry_cnt = 0;
650 while (true) {
651 status = readq_be(&global->fc_regs[i][FC_STATUS / 8]);
652 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
653 break;
654 if (++retry_cnt >= MC_RETRY_CNT) {
655 dev_dbg(dev, "%s: port %d shutdown processing "
656 "not yet completed\n", __func__, i);
657 break;
658 }
659 msleep(100 * retry_cnt);
660 }
661 }
662 }
663
664 /**
665 * cxlflash_remove() - PCI entry point to tear down host
666 * @pdev: PCI device associated with the host.
667 *
668 * Safe to use as a cleanup in partially allocated/initialized state.
669 */
670 static void cxlflash_remove(struct pci_dev *pdev)
671 {
672 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
673 ulong lock_flags;
674
675 if (!pci_is_enabled(pdev)) {
676 pr_debug("%s: Device is disabled\n", __func__);
677 return;
678 }
679
680 /* If a Task Management Function is active, wait for it to complete
681 * before continuing with remove.
682 */
683 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
684 if (cfg->tmf_active)
685 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
686 !cfg->tmf_active,
687 cfg->tmf_slock);
688 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
689
690 /* Notify AFU and wait for shutdown processing to complete */
691 notify_shutdown(cfg, true);
692
693 cfg->state = STATE_FAILTERM;
694 cxlflash_stop_term_user_contexts(cfg);
695
696 switch (cfg->init_state) {
697 case INIT_STATE_SCSI:
698 cxlflash_term_local_luns(cfg);
699 scsi_remove_host(cfg->host);
700 /* fall through */
701 case INIT_STATE_AFU:
702 cancel_work_sync(&cfg->work_q);
703 term_afu(cfg);
704 case INIT_STATE_PCI:
705 pci_disable_device(pdev);
706 case INIT_STATE_NONE:
707 free_mem(cfg);
708 scsi_host_put(cfg->host);
709 break;
710 }
711
712 pr_debug("%s: returning\n", __func__);
713 }
714
715 /**
716 * alloc_mem() - allocates the AFU and its command pool
717 * @cfg: Internal structure associated with the host.
718 *
719 * A partially allocated state remains on failure.
720 *
721 * Return:
722 * 0 on success
723 * -ENOMEM on failure to allocate memory
724 */
725 static int alloc_mem(struct cxlflash_cfg *cfg)
726 {
727 int rc = 0;
728 struct device *dev = &cfg->dev->dev;
729
730 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
731 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
732 get_order(sizeof(struct afu)));
733 if (unlikely(!cfg->afu)) {
734 dev_err(dev, "%s: cannot get %d free pages\n",
735 __func__, get_order(sizeof(struct afu)));
736 rc = -ENOMEM;
737 goto out;
738 }
739 cfg->afu->parent = cfg;
740 cfg->afu->afu_map = NULL;
741 out:
742 return rc;
743 }
744
745 /**
746 * init_pci() - initializes the host as a PCI device
747 * @cfg: Internal structure associated with the host.
748 *
749 * Return: 0 on success, -errno on failure
750 */
751 static int init_pci(struct cxlflash_cfg *cfg)
752 {
753 struct pci_dev *pdev = cfg->dev;
754 int rc = 0;
755
756 rc = pci_enable_device(pdev);
757 if (rc || pci_channel_offline(pdev)) {
758 if (pci_channel_offline(pdev)) {
759 cxlflash_wait_for_pci_err_recovery(cfg);
760 rc = pci_enable_device(pdev);
761 }
762
763 if (rc) {
764 dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
765 __func__);
766 cxlflash_wait_for_pci_err_recovery(cfg);
767 goto out;
768 }
769 }
770
771 out:
772 pr_debug("%s: returning rc=%d\n", __func__, rc);
773 return rc;
774 }
775
776 /**
777 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
778 * @cfg: Internal structure associated with the host.
779 *
780 * Return: 0 on success, -errno on failure
781 */
782 static int init_scsi(struct cxlflash_cfg *cfg)
783 {
784 struct pci_dev *pdev = cfg->dev;
785 int rc = 0;
786
787 rc = scsi_add_host(cfg->host, &pdev->dev);
788 if (rc) {
789 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
790 __func__, rc);
791 goto out;
792 }
793
794 scsi_scan_host(cfg->host);
795
796 out:
797 pr_debug("%s: returning rc=%d\n", __func__, rc);
798 return rc;
799 }
800
801 /**
802 * set_port_online() - transitions the specified host FC port to online state
803 * @fc_regs: Top of MMIO region defined for specified port.
804 *
805 * The provided MMIO region must be mapped prior to call. Online state means
806 * that the FC link layer has synced, completed the handshaking process, and
807 * is ready for login to start.
808 */
809 static void set_port_online(__be64 __iomem *fc_regs)
810 {
811 u64 cmdcfg;
812
813 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
814 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
815 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
816 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
817 }
818
819 /**
820 * set_port_offline() - transitions the specified host FC port to offline state
821 * @fc_regs: Top of MMIO region defined for specified port.
822 *
823 * The provided MMIO region must be mapped prior to call.
824 */
825 static void set_port_offline(__be64 __iomem *fc_regs)
826 {
827 u64 cmdcfg;
828
829 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
830 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
831 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
832 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
833 }
834
835 /**
836 * wait_port_online() - waits for the specified host FC port come online
837 * @fc_regs: Top of MMIO region defined for specified port.
838 * @delay_us: Number of microseconds to delay between reading port status.
839 * @nretry: Number of cycles to retry reading port status.
840 *
841 * The provided MMIO region must be mapped prior to call. This will timeout
842 * when the cable is not plugged in.
843 *
844 * Return:
845 * TRUE (1) when the specified port is online
846 * FALSE (0) when the specified port fails to come online after timeout
847 * -EINVAL when @delay_us is less than 1000
848 */
849 static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
850 {
851 u64 status;
852
853 if (delay_us < 1000) {
854 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
855 return -EINVAL;
856 }
857
858 do {
859 msleep(delay_us / 1000);
860 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
861 if (status == U64_MAX)
862 nretry /= 2;
863 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
864 nretry--);
865
866 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
867 }
868
869 /**
870 * wait_port_offline() - waits for the specified host FC port go offline
871 * @fc_regs: Top of MMIO region defined for specified port.
872 * @delay_us: Number of microseconds to delay between reading port status.
873 * @nretry: Number of cycles to retry reading port status.
874 *
875 * The provided MMIO region must be mapped prior to call.
876 *
877 * Return:
878 * TRUE (1) when the specified port is offline
879 * FALSE (0) when the specified port fails to go offline after timeout
880 * -EINVAL when @delay_us is less than 1000
881 */
882 static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
883 {
884 u64 status;
885
886 if (delay_us < 1000) {
887 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
888 return -EINVAL;
889 }
890
891 do {
892 msleep(delay_us / 1000);
893 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
894 if (status == U64_MAX)
895 nretry /= 2;
896 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
897 nretry--);
898
899 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
900 }
901
902 /**
903 * afu_set_wwpn() - configures the WWPN for the specified host FC port
904 * @afu: AFU associated with the host that owns the specified FC port.
905 * @port: Port number being configured.
906 * @fc_regs: Top of MMIO region defined for specified port.
907 * @wwpn: The world-wide-port-number previously discovered for port.
908 *
909 * The provided MMIO region must be mapped prior to call. As part of the
910 * sequence to configure the WWPN, the port is toggled offline and then back
911 * online. This toggling action can cause this routine to delay up to a few
912 * seconds. When configured to use the internal LUN feature of the AFU, a
913 * failure to come online is overridden.
914 */
915 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
916 u64 wwpn)
917 {
918 set_port_offline(fc_regs);
919 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
920 FC_PORT_STATUS_RETRY_CNT)) {
921 pr_debug("%s: wait on port %d to go offline timed out\n",
922 __func__, port);
923 }
924
925 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
926
927 set_port_online(fc_regs);
928 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
929 FC_PORT_STATUS_RETRY_CNT)) {
930 pr_debug("%s: wait on port %d to go online timed out\n",
931 __func__, port);
932 }
933 }
934
935 /**
936 * afu_link_reset() - resets the specified host FC port
937 * @afu: AFU associated with the host that owns the specified FC port.
938 * @port: Port number being configured.
939 * @fc_regs: Top of MMIO region defined for specified port.
940 *
941 * The provided MMIO region must be mapped prior to call. The sequence to
942 * reset the port involves toggling it offline and then back online. This
943 * action can cause this routine to delay up to a few seconds. An effort
944 * is made to maintain link with the device by switching to host to use
945 * the alternate port exclusively while the reset takes place.
946 * failure to come online is overridden.
947 */
948 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
949 {
950 u64 port_sel;
951
952 /* first switch the AFU to the other links, if any */
953 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
954 port_sel &= ~(1ULL << port);
955 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
956 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
957
958 set_port_offline(fc_regs);
959 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
960 FC_PORT_STATUS_RETRY_CNT))
961 pr_err("%s: wait on port %d to go offline timed out\n",
962 __func__, port);
963
964 set_port_online(fc_regs);
965 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
966 FC_PORT_STATUS_RETRY_CNT))
967 pr_err("%s: wait on port %d to go online timed out\n",
968 __func__, port);
969
970 /* switch back to include this port */
971 port_sel |= (1ULL << port);
972 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
973 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
974
975 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
976 }
977
978 /*
979 * Asynchronous interrupt information table
980 */
981 static const struct asyc_intr_info ainfo[] = {
982 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
983 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
984 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
985 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
986 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
987 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
988 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
989 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, 0},
990 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
991 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
992 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
993 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
994 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
995 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
996 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
997 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, 0},
998 {0x0, "", 0, 0} /* terminator */
999 };
1000
1001 /**
1002 * find_ainfo() - locates and returns asynchronous interrupt information
1003 * @status: Status code set by AFU on error.
1004 *
1005 * Return: The located information or NULL when the status code is invalid.
1006 */
1007 static const struct asyc_intr_info *find_ainfo(u64 status)
1008 {
1009 const struct asyc_intr_info *info;
1010
1011 for (info = &ainfo[0]; info->status; info++)
1012 if (info->status == status)
1013 return info;
1014
1015 return NULL;
1016 }
1017
1018 /**
1019 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1020 * @afu: AFU associated with the host.
1021 */
1022 static void afu_err_intr_init(struct afu *afu)
1023 {
1024 int i;
1025 u64 reg;
1026
1027 /* global async interrupts: AFU clears afu_ctrl on context exit
1028 * if async interrupts were sent to that context. This prevents
1029 * the AFU form sending further async interrupts when
1030 * there is
1031 * nobody to receive them.
1032 */
1033
1034 /* mask all */
1035 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1036 /* set LISN# to send and point to master context */
1037 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1038
1039 if (afu->internal_lun)
1040 reg |= 1; /* Bit 63 indicates local lun */
1041 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1042 /* clear all */
1043 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1044 /* unmask bits that are of interest */
1045 /* note: afu can send an interrupt after this step */
1046 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1047 /* clear again in case a bit came on after previous clear but before */
1048 /* unmask */
1049 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1050
1051 /* Clear/Set internal lun bits */
1052 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1053 reg &= SISL_FC_INTERNAL_MASK;
1054 if (afu->internal_lun)
1055 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1056 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1057
1058 /* now clear FC errors */
1059 for (i = 0; i < NUM_FC_PORTS; i++) {
1060 writeq_be(0xFFFFFFFFU,
1061 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1062 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1063 }
1064
1065 /* sync interrupts for master's IOARRIN write */
1066 /* note that unlike asyncs, there can be no pending sync interrupts */
1067 /* at this time (this is a fresh context and master has not written */
1068 /* IOARRIN yet), so there is nothing to clear. */
1069
1070 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1071 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1072 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1073 }
1074
1075 /**
1076 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1077 * @irq: Interrupt number.
1078 * @data: Private data provided at interrupt registration, the AFU.
1079 *
1080 * Return: Always return IRQ_HANDLED.
1081 */
1082 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1083 {
1084 struct afu *afu = (struct afu *)data;
1085 u64 reg;
1086 u64 reg_unmasked;
1087
1088 reg = readq_be(&afu->host_map->intr_status);
1089 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1090
1091 if (reg_unmasked == 0UL) {
1092 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1093 __func__, (u64)afu, reg);
1094 goto cxlflash_sync_err_irq_exit;
1095 }
1096
1097 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1098 __func__, (u64)afu, reg);
1099
1100 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1101
1102 cxlflash_sync_err_irq_exit:
1103 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1104 return IRQ_HANDLED;
1105 }
1106
1107 /**
1108 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1109 * @irq: Interrupt number.
1110 * @data: Private data provided at interrupt registration, the AFU.
1111 *
1112 * Return: Always return IRQ_HANDLED.
1113 */
1114 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1115 {
1116 struct afu *afu = (struct afu *)data;
1117 struct afu_cmd *cmd;
1118 bool toggle = afu->toggle;
1119 u64 entry,
1120 *hrrq_start = afu->hrrq_start,
1121 *hrrq_end = afu->hrrq_end,
1122 *hrrq_curr = afu->hrrq_curr;
1123
1124 /* Process however many RRQ entries that are ready */
1125 while (true) {
1126 entry = *hrrq_curr;
1127
1128 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1129 break;
1130
1131 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1132 cmd_complete(cmd);
1133
1134 /* Advance to next entry or wrap and flip the toggle bit */
1135 if (hrrq_curr < hrrq_end)
1136 hrrq_curr++;
1137 else {
1138 hrrq_curr = hrrq_start;
1139 toggle ^= SISL_RESP_HANDLE_T_BIT;
1140 }
1141 }
1142
1143 afu->hrrq_curr = hrrq_curr;
1144 afu->toggle = toggle;
1145
1146 return IRQ_HANDLED;
1147 }
1148
1149 /**
1150 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1151 * @irq: Interrupt number.
1152 * @data: Private data provided at interrupt registration, the AFU.
1153 *
1154 * Return: Always return IRQ_HANDLED.
1155 */
1156 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1157 {
1158 struct afu *afu = (struct afu *)data;
1159 struct cxlflash_cfg *cfg = afu->parent;
1160 struct device *dev = &cfg->dev->dev;
1161 u64 reg_unmasked;
1162 const struct asyc_intr_info *info;
1163 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1164 u64 reg;
1165 u8 port;
1166 int i;
1167
1168 reg = readq_be(&global->regs.aintr_status);
1169 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1170
1171 if (reg_unmasked == 0) {
1172 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1173 __func__, reg);
1174 goto out;
1175 }
1176
1177 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1178 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1179
1180 /* Check each bit that is on */
1181 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1182 info = find_ainfo(1ULL << i);
1183 if (((reg_unmasked & 0x1) == 0) || !info)
1184 continue;
1185
1186 port = info->port;
1187
1188 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1189 __func__, port, info->desc,
1190 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1191
1192 /*
1193 * Do link reset first, some OTHER errors will set FC_ERROR
1194 * again if cleared before or w/o a reset
1195 */
1196 if (info->action & LINK_RESET) {
1197 dev_err(dev, "%s: FC Port %d: resetting link\n",
1198 __func__, port);
1199 cfg->lr_state = LINK_RESET_REQUIRED;
1200 cfg->lr_port = port;
1201 kref_get(&cfg->afu->mapcount);
1202 schedule_work(&cfg->work_q);
1203 }
1204
1205 if (info->action & CLR_FC_ERROR) {
1206 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1207
1208 /*
1209 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1210 * should be the same and tracing one is sufficient.
1211 */
1212
1213 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1214 __func__, port, reg);
1215
1216 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1217 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1218 }
1219
1220 if (info->action & SCAN_HOST) {
1221 atomic_inc(&cfg->scan_host_needed);
1222 kref_get(&cfg->afu->mapcount);
1223 schedule_work(&cfg->work_q);
1224 }
1225 }
1226
1227 out:
1228 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
1229 return IRQ_HANDLED;
1230 }
1231
1232 /**
1233 * start_context() - starts the master context
1234 * @cfg: Internal structure associated with the host.
1235 *
1236 * Return: A success or failure value from CXL services.
1237 */
1238 static int start_context(struct cxlflash_cfg *cfg)
1239 {
1240 int rc = 0;
1241
1242 rc = cxl_start_context(cfg->mcctx,
1243 cfg->afu->work.work_element_descriptor,
1244 NULL);
1245
1246 pr_debug("%s: returning rc=%d\n", __func__, rc);
1247 return rc;
1248 }
1249
1250 /**
1251 * read_vpd() - obtains the WWPNs from VPD
1252 * @cfg: Internal structure associated with the host.
1253 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1254 *
1255 * Return: 0 on success, -errno on failure
1256 */
1257 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1258 {
1259 struct pci_dev *dev = cfg->dev;
1260 int rc = 0;
1261 int ro_start, ro_size, i, j, k;
1262 ssize_t vpd_size;
1263 char vpd_data[CXLFLASH_VPD_LEN];
1264 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1265 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1266
1267 /* Get the VPD data from the device */
1268 vpd_size = cxl_read_adapter_vpd(dev, vpd_data, sizeof(vpd_data));
1269 if (unlikely(vpd_size <= 0)) {
1270 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
1271 __func__, vpd_size);
1272 rc = -ENODEV;
1273 goto out;
1274 }
1275
1276 /* Get the read only section offset */
1277 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1278 PCI_VPD_LRDT_RO_DATA);
1279 if (unlikely(ro_start < 0)) {
1280 dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1281 __func__);
1282 rc = -ENODEV;
1283 goto out;
1284 }
1285
1286 /* Get the read only section size, cap when extends beyond read VPD */
1287 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1288 j = ro_size;
1289 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1290 if (unlikely((i + j) > vpd_size)) {
1291 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1292 __func__, (i + j), vpd_size);
1293 ro_size = vpd_size - i;
1294 }
1295
1296 /*
1297 * Find the offset of the WWPN tag within the read only
1298 * VPD data and validate the found field (partials are
1299 * no good to us). Convert the ASCII data to an integer
1300 * value. Note that we must copy to a temporary buffer
1301 * because the conversion service requires that the ASCII
1302 * string be terminated.
1303 */
1304 for (k = 0; k < NUM_FC_PORTS; k++) {
1305 j = ro_size;
1306 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1307
1308 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1309 if (unlikely(i < 0)) {
1310 dev_err(&dev->dev, "%s: Port %d WWPN not found "
1311 "in VPD\n", __func__, k);
1312 rc = -ENODEV;
1313 goto out;
1314 }
1315
1316 j = pci_vpd_info_field_size(&vpd_data[i]);
1317 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1318 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1319 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1320 "VPD corrupt\n",
1321 __func__, k);
1322 rc = -ENODEV;
1323 goto out;
1324 }
1325
1326 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1327 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1328 if (unlikely(rc)) {
1329 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1330 "to integer\n", __func__, k);
1331 rc = -ENODEV;
1332 goto out;
1333 }
1334 }
1335
1336 out:
1337 pr_debug("%s: returning rc=%d\n", __func__, rc);
1338 return rc;
1339 }
1340
1341 /**
1342 * init_pcr() - initialize the provisioning and control registers
1343 * @cfg: Internal structure associated with the host.
1344 *
1345 * Also sets up fast access to the mapped registers and initializes AFU
1346 * command fields that never change.
1347 */
1348 static void init_pcr(struct cxlflash_cfg *cfg)
1349 {
1350 struct afu *afu = cfg->afu;
1351 struct sisl_ctrl_map __iomem *ctrl_map;
1352 int i;
1353
1354 for (i = 0; i < MAX_CONTEXT; i++) {
1355 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1356 /* Disrupt any clients that could be running */
1357 /* e.g. clients that survived a master restart */
1358 writeq_be(0, &ctrl_map->rht_start);
1359 writeq_be(0, &ctrl_map->rht_cnt_id);
1360 writeq_be(0, &ctrl_map->ctx_cap);
1361 }
1362
1363 /* Copy frequently used fields into afu */
1364 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1365 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1366 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1367
1368 /* Program the Endian Control for the master context */
1369 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1370 }
1371
1372 /**
1373 * init_global() - initialize AFU global registers
1374 * @cfg: Internal structure associated with the host.
1375 */
1376 static int init_global(struct cxlflash_cfg *cfg)
1377 {
1378 struct afu *afu = cfg->afu;
1379 struct device *dev = &cfg->dev->dev;
1380 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1381 int i = 0, num_ports = 0;
1382 int rc = 0;
1383 u64 reg;
1384
1385 rc = read_vpd(cfg, &wwpn[0]);
1386 if (rc) {
1387 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1388 goto out;
1389 }
1390
1391 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1392
1393 /* Set up RRQ in AFU for master issued cmds */
1394 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1395 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1396
1397 /* AFU configuration */
1398 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1399 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1400 /* enable all auto retry options and control endianness */
1401 /* leave others at default: */
1402 /* CTX_CAP write protected, mbox_r does not clear on read and */
1403 /* checker on if dual afu */
1404 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1405
1406 /* Global port select: select either port */
1407 if (afu->internal_lun) {
1408 /* Only use port 0 */
1409 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1410 num_ports = NUM_FC_PORTS - 1;
1411 } else {
1412 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1413 num_ports = NUM_FC_PORTS;
1414 }
1415
1416 for (i = 0; i < num_ports; i++) {
1417 /* Unmask all errors (but they are still masked at AFU) */
1418 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1419 /* Clear CRC error cnt & set a threshold */
1420 (void)readq_be(&afu->afu_map->global.
1421 fc_regs[i][FC_CNT_CRCERR / 8]);
1422 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1423 [FC_CRC_THRESH / 8]);
1424
1425 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1426 if (wwpn[i] != 0)
1427 afu_set_wwpn(afu, i,
1428 &afu->afu_map->global.fc_regs[i][0],
1429 wwpn[i]);
1430 /* Programming WWPN back to back causes additional
1431 * offline/online transitions and a PLOGI
1432 */
1433 msleep(100);
1434 }
1435
1436 /* Set up master's own CTX_CAP to allow real mode, host translation */
1437 /* tables, afu cmds and read/write GSCSI cmds. */
1438 /* First, unlock ctx_cap write by reading mbox */
1439 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1440 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1441 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1442 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1443 &afu->ctrl_map->ctx_cap);
1444 /* Initialize heartbeat */
1445 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1446
1447 out:
1448 return rc;
1449 }
1450
1451 /**
1452 * start_afu() - initializes and starts the AFU
1453 * @cfg: Internal structure associated with the host.
1454 */
1455 static int start_afu(struct cxlflash_cfg *cfg)
1456 {
1457 struct afu *afu = cfg->afu;
1458 int rc = 0;
1459
1460 init_pcr(cfg);
1461
1462 /* After an AFU reset, RRQ entries are stale, clear them */
1463 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1464
1465 /* Initialize RRQ pointers */
1466 afu->hrrq_start = &afu->rrq_entry[0];
1467 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1468 afu->hrrq_curr = afu->hrrq_start;
1469 afu->toggle = 1;
1470
1471 rc = init_global(cfg);
1472
1473 pr_debug("%s: returning rc=%d\n", __func__, rc);
1474 return rc;
1475 }
1476
1477 /**
1478 * init_intr() - setup interrupt handlers for the master context
1479 * @cfg: Internal structure associated with the host.
1480 *
1481 * Return: 0 on success, -errno on failure
1482 */
1483 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1484 struct cxl_context *ctx)
1485 {
1486 struct afu *afu = cfg->afu;
1487 struct device *dev = &cfg->dev->dev;
1488 int rc = 0;
1489 enum undo_level level = UNDO_NOOP;
1490
1491 rc = cxl_allocate_afu_irqs(ctx, 3);
1492 if (unlikely(rc)) {
1493 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1494 __func__, rc);
1495 level = UNDO_NOOP;
1496 goto out;
1497 }
1498
1499 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1500 "SISL_MSI_SYNC_ERROR");
1501 if (unlikely(rc <= 0)) {
1502 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1503 __func__);
1504 level = FREE_IRQ;
1505 goto out;
1506 }
1507
1508 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1509 "SISL_MSI_RRQ_UPDATED");
1510 if (unlikely(rc <= 0)) {
1511 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1512 __func__);
1513 level = UNMAP_ONE;
1514 goto out;
1515 }
1516
1517 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1518 "SISL_MSI_ASYNC_ERROR");
1519 if (unlikely(rc <= 0)) {
1520 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1521 __func__);
1522 level = UNMAP_TWO;
1523 goto out;
1524 }
1525 out:
1526 return level;
1527 }
1528
1529 /**
1530 * init_mc() - create and register as the master context
1531 * @cfg: Internal structure associated with the host.
1532 *
1533 * Return: 0 on success, -errno on failure
1534 */
1535 static int init_mc(struct cxlflash_cfg *cfg)
1536 {
1537 struct cxl_context *ctx;
1538 struct device *dev = &cfg->dev->dev;
1539 int rc = 0;
1540 enum undo_level level;
1541
1542 ctx = cxl_get_context(cfg->dev);
1543 if (unlikely(!ctx)) {
1544 rc = -ENOMEM;
1545 goto ret;
1546 }
1547 cfg->mcctx = ctx;
1548
1549 /* Set it up as a master with the CXL */
1550 cxl_set_master(ctx);
1551
1552 /* During initialization reset the AFU to start from a clean slate */
1553 rc = cxl_afu_reset(cfg->mcctx);
1554 if (unlikely(rc)) {
1555 dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1556 __func__, rc);
1557 goto ret;
1558 }
1559
1560 level = init_intr(cfg, ctx);
1561 if (unlikely(level)) {
1562 dev_err(dev, "%s: setting up interrupts failed rc=%d\n",
1563 __func__, rc);
1564 goto out;
1565 }
1566
1567 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1568 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1569 * element (pe) that is embedded in the context (ctx)
1570 */
1571 rc = start_context(cfg);
1572 if (unlikely(rc)) {
1573 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1574 level = UNMAP_THREE;
1575 goto out;
1576 }
1577 ret:
1578 pr_debug("%s: returning rc=%d\n", __func__, rc);
1579 return rc;
1580 out:
1581 term_intr(cfg, level);
1582 goto ret;
1583 }
1584
1585 /**
1586 * init_afu() - setup as master context and start AFU
1587 * @cfg: Internal structure associated with the host.
1588 *
1589 * This routine is a higher level of control for configuring the
1590 * AFU on probe and reset paths.
1591 *
1592 * Return: 0 on success, -errno on failure
1593 */
1594 static int init_afu(struct cxlflash_cfg *cfg)
1595 {
1596 u64 reg;
1597 int rc = 0;
1598 struct afu *afu = cfg->afu;
1599 struct device *dev = &cfg->dev->dev;
1600
1601 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1602
1603 rc = init_mc(cfg);
1604 if (rc) {
1605 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1606 __func__, rc);
1607 goto out;
1608 }
1609
1610 /* Map the entire MMIO space of the AFU */
1611 afu->afu_map = cxl_psa_map(cfg->mcctx);
1612 if (!afu->afu_map) {
1613 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
1614 rc = -ENOMEM;
1615 goto err1;
1616 }
1617 kref_init(&afu->mapcount);
1618
1619 /* No byte reverse on reading afu_version or string will be backwards */
1620 reg = readq(&afu->afu_map->global.regs.afu_version);
1621 memcpy(afu->version, &reg, sizeof(reg));
1622 afu->interface_version =
1623 readq_be(&afu->afu_map->global.regs.interface_version);
1624 if ((afu->interface_version + 1) == 0) {
1625 pr_err("Back level AFU, please upgrade. AFU version %s "
1626 "interface version 0x%llx\n", afu->version,
1627 afu->interface_version);
1628 rc = -EINVAL;
1629 goto err2;
1630 }
1631
1632 afu->send_cmd = send_cmd_ioarrin;
1633 afu->context_reset = context_reset_ioarrin;
1634
1635 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
1636 afu->version, afu->interface_version);
1637
1638 rc = start_afu(cfg);
1639 if (rc) {
1640 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1641 __func__, rc);
1642 goto err2;
1643 }
1644
1645 afu_err_intr_init(cfg->afu);
1646 spin_lock_init(&afu->rrin_slock);
1647 afu->room = readq_be(&afu->host_map->cmd_room);
1648
1649 /* Restore the LUN mappings */
1650 cxlflash_restore_luntable(cfg);
1651 out:
1652 pr_debug("%s: returning rc=%d\n", __func__, rc);
1653 return rc;
1654
1655 err2:
1656 kref_put(&afu->mapcount, afu_unmap);
1657 err1:
1658 term_intr(cfg, UNMAP_THREE);
1659 term_mc(cfg);
1660 goto out;
1661 }
1662
1663 /**
1664 * cxlflash_afu_sync() - builds and sends an AFU sync command
1665 * @afu: AFU associated with the host.
1666 * @ctx_hndl_u: Identifies context requesting sync.
1667 * @res_hndl_u: Identifies resource requesting sync.
1668 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1669 *
1670 * The AFU can only take 1 sync command at a time. This routine enforces this
1671 * limitation by using a mutex to provide exclusive access to the AFU during
1672 * the sync. This design point requires calling threads to not be on interrupt
1673 * context due to the possibility of sleeping during concurrent sync operations.
1674 *
1675 * AFU sync operations are only necessary and allowed when the device is
1676 * operating normally. When not operating normally, sync requests can occur as
1677 * part of cleaning up resources associated with an adapter prior to removal.
1678 * In this scenario, these requests are simply ignored (safe due to the AFU
1679 * going away).
1680 *
1681 * Return:
1682 * 0 on success
1683 * -1 on failure
1684 */
1685 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1686 res_hndl_t res_hndl_u, u8 mode)
1687 {
1688 struct cxlflash_cfg *cfg = afu->parent;
1689 struct device *dev = &cfg->dev->dev;
1690 struct afu_cmd *cmd = NULL;
1691 char *buf = NULL;
1692 int rc = 0;
1693 static DEFINE_MUTEX(sync_active);
1694
1695 if (cfg->state != STATE_NORMAL) {
1696 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1697 return 0;
1698 }
1699
1700 mutex_lock(&sync_active);
1701 atomic_inc(&afu->cmds_active);
1702 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
1703 if (unlikely(!buf)) {
1704 dev_err(dev, "%s: no memory for command\n", __func__);
1705 rc = -1;
1706 goto out;
1707 }
1708
1709 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
1710 init_completion(&cmd->cevent);
1711 cmd->parent = afu;
1712
1713 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1714
1715 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1716 cmd->rcb.ctx_id = afu->ctx_hndl;
1717 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
1718 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1719
1720 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1721 cmd->rcb.cdb[1] = mode;
1722
1723 /* The cdb is aligned, no unaligned accessors required */
1724 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1725 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1726
1727 rc = afu->send_cmd(afu, cmd);
1728 if (unlikely(rc))
1729 goto out;
1730
1731 rc = wait_resp(afu, cmd);
1732 if (unlikely(rc))
1733 rc = -1;
1734 out:
1735 atomic_dec(&afu->cmds_active);
1736 mutex_unlock(&sync_active);
1737 kfree(buf);
1738 pr_debug("%s: returning rc=%d\n", __func__, rc);
1739 return rc;
1740 }
1741
1742 /**
1743 * afu_reset() - resets the AFU
1744 * @cfg: Internal structure associated with the host.
1745 *
1746 * Return: 0 on success, -errno on failure
1747 */
1748 static int afu_reset(struct cxlflash_cfg *cfg)
1749 {
1750 int rc = 0;
1751 /* Stop the context before the reset. Since the context is
1752 * no longer available restart it after the reset is complete
1753 */
1754
1755 term_afu(cfg);
1756
1757 rc = init_afu(cfg);
1758
1759 pr_debug("%s: returning rc=%d\n", __func__, rc);
1760 return rc;
1761 }
1762
1763 /**
1764 * drain_ioctls() - wait until all currently executing ioctls have completed
1765 * @cfg: Internal structure associated with the host.
1766 *
1767 * Obtain write access to read/write semaphore that wraps ioctl
1768 * handling to 'drain' ioctls currently executing.
1769 */
1770 static void drain_ioctls(struct cxlflash_cfg *cfg)
1771 {
1772 down_write(&cfg->ioctl_rwsem);
1773 up_write(&cfg->ioctl_rwsem);
1774 }
1775
1776 /**
1777 * cxlflash_eh_device_reset_handler() - reset a single LUN
1778 * @scp: SCSI command to send.
1779 *
1780 * Return:
1781 * SUCCESS as defined in scsi/scsi.h
1782 * FAILED as defined in scsi/scsi.h
1783 */
1784 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1785 {
1786 int rc = SUCCESS;
1787 struct Scsi_Host *host = scp->device->host;
1788 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1789 struct afu *afu = cfg->afu;
1790 int rcr = 0;
1791
1792 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1793 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1794 host->host_no, scp->device->channel,
1795 scp->device->id, scp->device->lun,
1796 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1797 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1798 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1799 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1800
1801 retry:
1802 switch (cfg->state) {
1803 case STATE_NORMAL:
1804 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1805 if (unlikely(rcr))
1806 rc = FAILED;
1807 break;
1808 case STATE_RESET:
1809 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1810 goto retry;
1811 default:
1812 rc = FAILED;
1813 break;
1814 }
1815
1816 pr_debug("%s: returning rc=%d\n", __func__, rc);
1817 return rc;
1818 }
1819
1820 /**
1821 * cxlflash_eh_host_reset_handler() - reset the host adapter
1822 * @scp: SCSI command from stack identifying host.
1823 *
1824 * Following a reset, the state is evaluated again in case an EEH occurred
1825 * during the reset. In such a scenario, the host reset will either yield
1826 * until the EEH recovery is complete or return success or failure based
1827 * upon the current device state.
1828 *
1829 * Return:
1830 * SUCCESS as defined in scsi/scsi.h
1831 * FAILED as defined in scsi/scsi.h
1832 */
1833 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1834 {
1835 int rc = SUCCESS;
1836 int rcr = 0;
1837 struct Scsi_Host *host = scp->device->host;
1838 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1839
1840 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1841 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1842 host->host_no, scp->device->channel,
1843 scp->device->id, scp->device->lun,
1844 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1845 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1846 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1847 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1848
1849 switch (cfg->state) {
1850 case STATE_NORMAL:
1851 cfg->state = STATE_RESET;
1852 drain_ioctls(cfg);
1853 cxlflash_mark_contexts_error(cfg);
1854 rcr = afu_reset(cfg);
1855 if (rcr) {
1856 rc = FAILED;
1857 cfg->state = STATE_FAILTERM;
1858 } else
1859 cfg->state = STATE_NORMAL;
1860 wake_up_all(&cfg->reset_waitq);
1861 ssleep(1);
1862 /* fall through */
1863 case STATE_RESET:
1864 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1865 if (cfg->state == STATE_NORMAL)
1866 break;
1867 /* fall through */
1868 default:
1869 rc = FAILED;
1870 break;
1871 }
1872
1873 pr_debug("%s: returning rc=%d\n", __func__, rc);
1874 return rc;
1875 }
1876
1877 /**
1878 * cxlflash_change_queue_depth() - change the queue depth for the device
1879 * @sdev: SCSI device destined for queue depth change.
1880 * @qdepth: Requested queue depth value to set.
1881 *
1882 * The requested queue depth is capped to the maximum supported value.
1883 *
1884 * Return: The actual queue depth set.
1885 */
1886 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
1887 {
1888
1889 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
1890 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
1891
1892 scsi_change_queue_depth(sdev, qdepth);
1893 return sdev->queue_depth;
1894 }
1895
1896 /**
1897 * cxlflash_show_port_status() - queries and presents the current port status
1898 * @port: Desired port for status reporting.
1899 * @afu: AFU owning the specified port.
1900 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
1901 *
1902 * Return: The size of the ASCII string returned in @buf.
1903 */
1904 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
1905 {
1906 char *disp_status;
1907 u64 status;
1908 __be64 __iomem *fc_regs;
1909
1910 if (port >= NUM_FC_PORTS)
1911 return 0;
1912
1913 fc_regs = &afu->afu_map->global.fc_regs[port][0];
1914 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1915 status &= FC_MTIP_STATUS_MASK;
1916
1917 if (status == FC_MTIP_STATUS_ONLINE)
1918 disp_status = "online";
1919 else if (status == FC_MTIP_STATUS_OFFLINE)
1920 disp_status = "offline";
1921 else
1922 disp_status = "unknown";
1923
1924 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
1925 }
1926
1927 /**
1928 * port0_show() - queries and presents the current status of port 0
1929 * @dev: Generic device associated with the host owning the port.
1930 * @attr: Device attribute representing the port.
1931 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
1932 *
1933 * Return: The size of the ASCII string returned in @buf.
1934 */
1935 static ssize_t port0_show(struct device *dev,
1936 struct device_attribute *attr,
1937 char *buf)
1938 {
1939 struct Scsi_Host *shost = class_to_shost(dev);
1940 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
1941 struct afu *afu = cfg->afu;
1942
1943 return cxlflash_show_port_status(0, afu, buf);
1944 }
1945
1946 /**
1947 * port1_show() - queries and presents the current status of port 1
1948 * @dev: Generic device associated with the host owning the port.
1949 * @attr: Device attribute representing the port.
1950 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
1951 *
1952 * Return: The size of the ASCII string returned in @buf.
1953 */
1954 static ssize_t port1_show(struct device *dev,
1955 struct device_attribute *attr,
1956 char *buf)
1957 {
1958 struct Scsi_Host *shost = class_to_shost(dev);
1959 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
1960 struct afu *afu = cfg->afu;
1961
1962 return cxlflash_show_port_status(1, afu, buf);
1963 }
1964
1965 /**
1966 * lun_mode_show() - presents the current LUN mode of the host
1967 * @dev: Generic device associated with the host.
1968 * @attr: Device attribute representing the LUN mode.
1969 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
1970 *
1971 * Return: The size of the ASCII string returned in @buf.
1972 */
1973 static ssize_t lun_mode_show(struct device *dev,
1974 struct device_attribute *attr, char *buf)
1975 {
1976 struct Scsi_Host *shost = class_to_shost(dev);
1977 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
1978 struct afu *afu = cfg->afu;
1979
1980 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
1981 }
1982
1983 /**
1984 * lun_mode_store() - sets the LUN mode of the host
1985 * @dev: Generic device associated with the host.
1986 * @attr: Device attribute representing the LUN mode.
1987 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
1988 * @count: Length of data resizing in @buf.
1989 *
1990 * The CXL Flash AFU supports a dummy LUN mode where the external
1991 * links and storage are not required. Space on the FPGA is used
1992 * to create 1 or 2 small LUNs which are presented to the system
1993 * as if they were a normal storage device. This feature is useful
1994 * during development and also provides manufacturing with a way
1995 * to test the AFU without an actual device.
1996 *
1997 * 0 = external LUN[s] (default)
1998 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
1999 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2000 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2001 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2002 *
2003 * Return: The size of the ASCII string returned in @buf.
2004 */
2005 static ssize_t lun_mode_store(struct device *dev,
2006 struct device_attribute *attr,
2007 const char *buf, size_t count)
2008 {
2009 struct Scsi_Host *shost = class_to_shost(dev);
2010 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2011 struct afu *afu = cfg->afu;
2012 int rc;
2013 u32 lun_mode;
2014
2015 rc = kstrtouint(buf, 10, &lun_mode);
2016 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2017 afu->internal_lun = lun_mode;
2018
2019 /*
2020 * When configured for internal LUN, there is only one channel,
2021 * channel number 0, else there will be 2 (default).
2022 */
2023 if (afu->internal_lun)
2024 shost->max_channel = 0;
2025 else
2026 shost->max_channel = NUM_FC_PORTS - 1;
2027
2028 afu_reset(cfg);
2029 scsi_scan_host(cfg->host);
2030 }
2031
2032 return count;
2033 }
2034
2035 /**
2036 * ioctl_version_show() - presents the current ioctl version of the host
2037 * @dev: Generic device associated with the host.
2038 * @attr: Device attribute representing the ioctl version.
2039 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2040 *
2041 * Return: The size of the ASCII string returned in @buf.
2042 */
2043 static ssize_t ioctl_version_show(struct device *dev,
2044 struct device_attribute *attr, char *buf)
2045 {
2046 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2047 }
2048
2049 /**
2050 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2051 * @port: Desired port for status reporting.
2052 * @afu: AFU owning the specified port.
2053 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2054 *
2055 * Return: The size of the ASCII string returned in @buf.
2056 */
2057 static ssize_t cxlflash_show_port_lun_table(u32 port,
2058 struct afu *afu,
2059 char *buf)
2060 {
2061 int i;
2062 ssize_t bytes = 0;
2063 __be64 __iomem *fc_port;
2064
2065 if (port >= NUM_FC_PORTS)
2066 return 0;
2067
2068 fc_port = &afu->afu_map->global.fc_port[port][0];
2069
2070 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2071 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2072 "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2073 return bytes;
2074 }
2075
2076 /**
2077 * port0_lun_table_show() - presents the current LUN table of port 0
2078 * @dev: Generic device associated with the host owning the port.
2079 * @attr: Device attribute representing the port.
2080 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2081 *
2082 * Return: The size of the ASCII string returned in @buf.
2083 */
2084 static ssize_t port0_lun_table_show(struct device *dev,
2085 struct device_attribute *attr,
2086 char *buf)
2087 {
2088 struct Scsi_Host *shost = class_to_shost(dev);
2089 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2090 struct afu *afu = cfg->afu;
2091
2092 return cxlflash_show_port_lun_table(0, afu, buf);
2093 }
2094
2095 /**
2096 * port1_lun_table_show() - presents the current LUN table of port 1
2097 * @dev: Generic device associated with the host owning the port.
2098 * @attr: Device attribute representing the port.
2099 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2100 *
2101 * Return: The size of the ASCII string returned in @buf.
2102 */
2103 static ssize_t port1_lun_table_show(struct device *dev,
2104 struct device_attribute *attr,
2105 char *buf)
2106 {
2107 struct Scsi_Host *shost = class_to_shost(dev);
2108 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2109 struct afu *afu = cfg->afu;
2110
2111 return cxlflash_show_port_lun_table(1, afu, buf);
2112 }
2113
2114 /**
2115 * mode_show() - presents the current mode of the device
2116 * @dev: Generic device associated with the device.
2117 * @attr: Device attribute representing the device mode.
2118 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2119 *
2120 * Return: The size of the ASCII string returned in @buf.
2121 */
2122 static ssize_t mode_show(struct device *dev,
2123 struct device_attribute *attr, char *buf)
2124 {
2125 struct scsi_device *sdev = to_scsi_device(dev);
2126
2127 return scnprintf(buf, PAGE_SIZE, "%s\n",
2128 sdev->hostdata ? "superpipe" : "legacy");
2129 }
2130
2131 /*
2132 * Host attributes
2133 */
2134 static DEVICE_ATTR_RO(port0);
2135 static DEVICE_ATTR_RO(port1);
2136 static DEVICE_ATTR_RW(lun_mode);
2137 static DEVICE_ATTR_RO(ioctl_version);
2138 static DEVICE_ATTR_RO(port0_lun_table);
2139 static DEVICE_ATTR_RO(port1_lun_table);
2140
2141 static struct device_attribute *cxlflash_host_attrs[] = {
2142 &dev_attr_port0,
2143 &dev_attr_port1,
2144 &dev_attr_lun_mode,
2145 &dev_attr_ioctl_version,
2146 &dev_attr_port0_lun_table,
2147 &dev_attr_port1_lun_table,
2148 NULL
2149 };
2150
2151 /*
2152 * Device attributes
2153 */
2154 static DEVICE_ATTR_RO(mode);
2155
2156 static struct device_attribute *cxlflash_dev_attrs[] = {
2157 &dev_attr_mode,
2158 NULL
2159 };
2160
2161 /*
2162 * Host template
2163 */
2164 static struct scsi_host_template driver_template = {
2165 .module = THIS_MODULE,
2166 .name = CXLFLASH_ADAPTER_NAME,
2167 .info = cxlflash_driver_info,
2168 .ioctl = cxlflash_ioctl,
2169 .proc_name = CXLFLASH_NAME,
2170 .queuecommand = cxlflash_queuecommand,
2171 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2172 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2173 .change_queue_depth = cxlflash_change_queue_depth,
2174 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2175 .can_queue = CXLFLASH_MAX_CMDS,
2176 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2177 .this_id = -1,
2178 .sg_tablesize = 1, /* No scatter gather support */
2179 .max_sectors = CXLFLASH_MAX_SECTORS,
2180 .use_clustering = ENABLE_CLUSTERING,
2181 .shost_attrs = cxlflash_host_attrs,
2182 .sdev_attrs = cxlflash_dev_attrs,
2183 };
2184
2185 /*
2186 * Device dependent values
2187 */
2188 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2189 0ULL };
2190 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2191 CXLFLASH_NOTIFY_SHUTDOWN };
2192
2193 /*
2194 * PCI device binding table
2195 */
2196 static struct pci_device_id cxlflash_pci_table[] = {
2197 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2199 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2201 {}
2202 };
2203
2204 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2205
2206 /**
2207 * cxlflash_worker_thread() - work thread handler for the AFU
2208 * @work: Work structure contained within cxlflash associated with host.
2209 *
2210 * Handles the following events:
2211 * - Link reset which cannot be performed on interrupt context due to
2212 * blocking up to a few seconds
2213 * - Rescan the host
2214 */
2215 static void cxlflash_worker_thread(struct work_struct *work)
2216 {
2217 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2218 work_q);
2219 struct afu *afu = cfg->afu;
2220 struct device *dev = &cfg->dev->dev;
2221 int port;
2222 ulong lock_flags;
2223
2224 /* Avoid MMIO if the device has failed */
2225
2226 if (cfg->state != STATE_NORMAL)
2227 return;
2228
2229 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2230
2231 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2232 port = cfg->lr_port;
2233 if (port < 0)
2234 dev_err(dev, "%s: invalid port index %d\n",
2235 __func__, port);
2236 else {
2237 spin_unlock_irqrestore(cfg->host->host_lock,
2238 lock_flags);
2239
2240 /* The reset can block... */
2241 afu_link_reset(afu, port,
2242 &afu->afu_map->global.fc_regs[port][0]);
2243 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2244 }
2245
2246 cfg->lr_state = LINK_RESET_COMPLETE;
2247 }
2248
2249 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2250
2251 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2252 scsi_scan_host(cfg->host);
2253 kref_put(&afu->mapcount, afu_unmap);
2254 }
2255
2256 /**
2257 * cxlflash_probe() - PCI entry point to add host
2258 * @pdev: PCI device associated with the host.
2259 * @dev_id: PCI device id associated with device.
2260 *
2261 * Return: 0 on success, -errno on failure
2262 */
2263 static int cxlflash_probe(struct pci_dev *pdev,
2264 const struct pci_device_id *dev_id)
2265 {
2266 struct Scsi_Host *host;
2267 struct cxlflash_cfg *cfg = NULL;
2268 struct dev_dependent_vals *ddv;
2269 int rc = 0;
2270
2271 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2272 __func__, pdev->irq);
2273
2274 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2275 driver_template.max_sectors = ddv->max_sectors;
2276
2277 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2278 if (!host) {
2279 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2280 __func__);
2281 rc = -ENOMEM;
2282 goto out;
2283 }
2284
2285 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2286 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2287 host->max_channel = NUM_FC_PORTS - 1;
2288 host->unique_id = host->host_no;
2289 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2290
2291 cfg = (struct cxlflash_cfg *)host->hostdata;
2292 cfg->host = host;
2293 rc = alloc_mem(cfg);
2294 if (rc) {
2295 dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
2296 __func__);
2297 rc = -ENOMEM;
2298 scsi_host_put(cfg->host);
2299 goto out;
2300 }
2301
2302 cfg->init_state = INIT_STATE_NONE;
2303 cfg->dev = pdev;
2304 cfg->cxl_fops = cxlflash_cxl_fops;
2305
2306 /*
2307 * The promoted LUNs move to the top of the LUN table. The rest stay
2308 * on the bottom half. The bottom half grows from the end
2309 * (index = 255), whereas the top half grows from the beginning
2310 * (index = 0).
2311 */
2312 cfg->promote_lun_index = 0;
2313 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2314 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2315
2316 cfg->dev_id = (struct pci_device_id *)dev_id;
2317
2318 init_waitqueue_head(&cfg->tmf_waitq);
2319 init_waitqueue_head(&cfg->reset_waitq);
2320
2321 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2322 cfg->lr_state = LINK_RESET_INVALID;
2323 cfg->lr_port = -1;
2324 spin_lock_init(&cfg->tmf_slock);
2325 mutex_init(&cfg->ctx_tbl_list_mutex);
2326 mutex_init(&cfg->ctx_recovery_mutex);
2327 init_rwsem(&cfg->ioctl_rwsem);
2328 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2329 INIT_LIST_HEAD(&cfg->lluns);
2330
2331 pci_set_drvdata(pdev, cfg);
2332
2333 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2334
2335 rc = init_pci(cfg);
2336 if (rc) {
2337 dev_err(&pdev->dev, "%s: call to init_pci "
2338 "failed rc=%d!\n", __func__, rc);
2339 goto out_remove;
2340 }
2341 cfg->init_state = INIT_STATE_PCI;
2342
2343 rc = init_afu(cfg);
2344 if (rc) {
2345 dev_err(&pdev->dev, "%s: call to init_afu "
2346 "failed rc=%d!\n", __func__, rc);
2347 goto out_remove;
2348 }
2349 cfg->init_state = INIT_STATE_AFU;
2350
2351 rc = init_scsi(cfg);
2352 if (rc) {
2353 dev_err(&pdev->dev, "%s: call to init_scsi "
2354 "failed rc=%d!\n", __func__, rc);
2355 goto out_remove;
2356 }
2357 cfg->init_state = INIT_STATE_SCSI;
2358
2359 out:
2360 pr_debug("%s: returning rc=%d\n", __func__, rc);
2361 return rc;
2362
2363 out_remove:
2364 cxlflash_remove(pdev);
2365 goto out;
2366 }
2367
2368 /**
2369 * cxlflash_pci_error_detected() - called when a PCI error is detected
2370 * @pdev: PCI device struct.
2371 * @state: PCI channel state.
2372 *
2373 * When an EEH occurs during an active reset, wait until the reset is
2374 * complete and then take action based upon the device state.
2375 *
2376 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2377 */
2378 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2379 pci_channel_state_t state)
2380 {
2381 int rc = 0;
2382 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2383 struct device *dev = &cfg->dev->dev;
2384
2385 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2386
2387 switch (state) {
2388 case pci_channel_io_frozen:
2389 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2390 if (cfg->state == STATE_FAILTERM)
2391 return PCI_ERS_RESULT_DISCONNECT;
2392
2393 cfg->state = STATE_RESET;
2394 scsi_block_requests(cfg->host);
2395 drain_ioctls(cfg);
2396 rc = cxlflash_mark_contexts_error(cfg);
2397 if (unlikely(rc))
2398 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2399 __func__, rc);
2400 term_afu(cfg);
2401 return PCI_ERS_RESULT_NEED_RESET;
2402 case pci_channel_io_perm_failure:
2403 cfg->state = STATE_FAILTERM;
2404 wake_up_all(&cfg->reset_waitq);
2405 scsi_unblock_requests(cfg->host);
2406 return PCI_ERS_RESULT_DISCONNECT;
2407 default:
2408 break;
2409 }
2410 return PCI_ERS_RESULT_NEED_RESET;
2411 }
2412
2413 /**
2414 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2415 * @pdev: PCI device struct.
2416 *
2417 * This routine is called by the pci error recovery code after the PCI
2418 * slot has been reset, just before we should resume normal operations.
2419 *
2420 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2421 */
2422 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2423 {
2424 int rc = 0;
2425 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2426 struct device *dev = &cfg->dev->dev;
2427
2428 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2429
2430 rc = init_afu(cfg);
2431 if (unlikely(rc)) {
2432 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2433 return PCI_ERS_RESULT_DISCONNECT;
2434 }
2435
2436 return PCI_ERS_RESULT_RECOVERED;
2437 }
2438
2439 /**
2440 * cxlflash_pci_resume() - called when normal operation can resume
2441 * @pdev: PCI device struct
2442 */
2443 static void cxlflash_pci_resume(struct pci_dev *pdev)
2444 {
2445 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2446 struct device *dev = &cfg->dev->dev;
2447
2448 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2449
2450 cfg->state = STATE_NORMAL;
2451 wake_up_all(&cfg->reset_waitq);
2452 scsi_unblock_requests(cfg->host);
2453 }
2454
2455 static const struct pci_error_handlers cxlflash_err_handler = {
2456 .error_detected = cxlflash_pci_error_detected,
2457 .slot_reset = cxlflash_pci_slot_reset,
2458 .resume = cxlflash_pci_resume,
2459 };
2460
2461 /*
2462 * PCI device structure
2463 */
2464 static struct pci_driver cxlflash_driver = {
2465 .name = CXLFLASH_NAME,
2466 .id_table = cxlflash_pci_table,
2467 .probe = cxlflash_probe,
2468 .remove = cxlflash_remove,
2469 .shutdown = cxlflash_remove,
2470 .err_handler = &cxlflash_err_handler,
2471 };
2472
2473 /**
2474 * init_cxlflash() - module entry point
2475 *
2476 * Return: 0 on success, -errno on failure
2477 */
2478 static int __init init_cxlflash(void)
2479 {
2480 pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME);
2481
2482 cxlflash_list_init();
2483
2484 return pci_register_driver(&cxlflash_driver);
2485 }
2486
2487 /**
2488 * exit_cxlflash() - module exit point
2489 */
2490 static void __exit exit_cxlflash(void)
2491 {
2492 cxlflash_term_global_luns();
2493 cxlflash_free_errpage();
2494
2495 pci_unregister_driver(&cxlflash_driver);
2496 }
2497
2498 module_init(init_cxlflash);
2499 module_exit(exit_cxlflash);