]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/dpt_i2o.c
Merge tag 'tilcdc-4.10-fixes' of https://github.com/jsarha/linux into drm-fixes
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / dpt_i2o.c
1 /***************************************************************************
2 dpti.c - description
3 -------------------
4 begin : Thu Sep 7 2000
5 copyright : (C) 2000 by Adaptec
6
7 July 30, 2001 First version being submitted
8 for inclusion in the kernel. V2.4
9
10 See Documentation/scsi/dpti.txt for history, notes, license info
11 and credits
12 ***************************************************************************/
13
14 /***************************************************************************
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 ***************************************************************************/
22 /***************************************************************************
23 * Sat Dec 20 2003 Go Taniguchi <go@turbolinux.co.jp>
24 - Support 2.6 kernel and DMA-mapping
25 - ioctl fix for raid tools
26 - use schedule_timeout in long long loop
27 **************************************************************************/
28
29 /*#define DEBUG 1 */
30 /*#define UARTDELAY 1 */
31
32 #include <linux/module.h>
33
34 MODULE_AUTHOR("Deanna Bonds, with _lots_ of help from Mark Salyzyn");
35 MODULE_DESCRIPTION("Adaptec I2O RAID Driver");
36
37 ////////////////////////////////////////////////////////////////
38
39 #include <linux/ioctl.h> /* For SCSI-Passthrough */
40 #include <linux/uaccess.h>
41
42 #include <linux/stat.h>
43 #include <linux/slab.h> /* for kmalloc() */
44 #include <linux/pci.h> /* for PCI support */
45 #include <linux/proc_fs.h>
46 #include <linux/blkdev.h>
47 #include <linux/delay.h> /* for udelay */
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h> /* for printk */
50 #include <linux/sched.h>
51 #include <linux/reboot.h>
52 #include <linux/spinlock.h>
53 #include <linux/dma-mapping.h>
54
55 #include <linux/timer.h>
56 #include <linux/string.h>
57 #include <linux/ioport.h>
58 #include <linux/mutex.h>
59
60 #include <asm/processor.h> /* for boot_cpu_data */
61 #include <asm/pgtable.h>
62 #include <asm/io.h> /* for virt_to_bus, etc. */
63
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_device.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_tcq.h>
69
70 #include "dpt/dptsig.h"
71 #include "dpti.h"
72
73 /*============================================================================
74 * Create a binary signature - this is read by dptsig
75 * Needed for our management apps
76 *============================================================================
77 */
78 static DEFINE_MUTEX(adpt_mutex);
79 static dpt_sig_S DPTI_sig = {
80 {'d', 'P', 't', 'S', 'i', 'G'}, SIG_VERSION,
81 #ifdef __i386__
82 PROC_INTEL, PROC_386 | PROC_486 | PROC_PENTIUM | PROC_SEXIUM,
83 #elif defined(__ia64__)
84 PROC_INTEL, PROC_IA64,
85 #elif defined(__sparc__)
86 PROC_ULTRASPARC, PROC_ULTRASPARC,
87 #elif defined(__alpha__)
88 PROC_ALPHA, PROC_ALPHA,
89 #else
90 (-1),(-1),
91 #endif
92 FT_HBADRVR, 0, OEM_DPT, OS_LINUX, CAP_OVERLAP, DEV_ALL,
93 ADF_ALL_SC5, 0, 0, DPT_VERSION, DPT_REVISION, DPT_SUBREVISION,
94 DPT_MONTH, DPT_DAY, DPT_YEAR, "Adaptec Linux I2O RAID Driver"
95 };
96
97
98
99
100 /*============================================================================
101 * Globals
102 *============================================================================
103 */
104
105 static DEFINE_MUTEX(adpt_configuration_lock);
106
107 static struct i2o_sys_tbl *sys_tbl;
108 static dma_addr_t sys_tbl_pa;
109 static int sys_tbl_ind;
110 static int sys_tbl_len;
111
112 static adpt_hba* hba_chain = NULL;
113 static int hba_count = 0;
114
115 static struct class *adpt_sysfs_class;
116
117 static long adpt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
118 #ifdef CONFIG_COMPAT
119 static long compat_adpt_ioctl(struct file *, unsigned int, unsigned long);
120 #endif
121
122 static const struct file_operations adpt_fops = {
123 .unlocked_ioctl = adpt_unlocked_ioctl,
124 .open = adpt_open,
125 .release = adpt_close,
126 #ifdef CONFIG_COMPAT
127 .compat_ioctl = compat_adpt_ioctl,
128 #endif
129 .llseek = noop_llseek,
130 };
131
132 /* Structures and definitions for synchronous message posting.
133 * See adpt_i2o_post_wait() for description
134 * */
135 struct adpt_i2o_post_wait_data
136 {
137 int status;
138 u32 id;
139 adpt_wait_queue_head_t *wq;
140 struct adpt_i2o_post_wait_data *next;
141 };
142
143 static struct adpt_i2o_post_wait_data *adpt_post_wait_queue = NULL;
144 static u32 adpt_post_wait_id = 0;
145 static DEFINE_SPINLOCK(adpt_post_wait_lock);
146
147
148 /*============================================================================
149 * Functions
150 *============================================================================
151 */
152
153 static inline int dpt_dma64(adpt_hba *pHba)
154 {
155 return (sizeof(dma_addr_t) > 4 && (pHba)->dma64);
156 }
157
158 static inline u32 dma_high(dma_addr_t addr)
159 {
160 return upper_32_bits(addr);
161 }
162
163 static inline u32 dma_low(dma_addr_t addr)
164 {
165 return (u32)addr;
166 }
167
168 static u8 adpt_read_blink_led(adpt_hba* host)
169 {
170 if (host->FwDebugBLEDflag_P) {
171 if( readb(host->FwDebugBLEDflag_P) == 0xbc ){
172 return readb(host->FwDebugBLEDvalue_P);
173 }
174 }
175 return 0;
176 }
177
178 /*============================================================================
179 * Scsi host template interface functions
180 *============================================================================
181 */
182
183 #ifdef MODULE
184 static struct pci_device_id dptids[] = {
185 { PCI_DPT_VENDOR_ID, PCI_DPT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
186 { PCI_DPT_VENDOR_ID, PCI_DPT_RAPTOR_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
187 { 0, }
188 };
189 #endif
190
191 MODULE_DEVICE_TABLE(pci,dptids);
192
193 static int adpt_detect(struct scsi_host_template* sht)
194 {
195 struct pci_dev *pDev = NULL;
196 adpt_hba *pHba;
197 adpt_hba *next;
198
199 PINFO("Detecting Adaptec I2O RAID controllers...\n");
200
201 /* search for all Adatpec I2O RAID cards */
202 while ((pDev = pci_get_device( PCI_DPT_VENDOR_ID, PCI_ANY_ID, pDev))) {
203 if(pDev->device == PCI_DPT_DEVICE_ID ||
204 pDev->device == PCI_DPT_RAPTOR_DEVICE_ID){
205 if(adpt_install_hba(sht, pDev) ){
206 PERROR("Could not Init an I2O RAID device\n");
207 PERROR("Will not try to detect others.\n");
208 return hba_count-1;
209 }
210 pci_dev_get(pDev);
211 }
212 }
213
214 /* In INIT state, Activate IOPs */
215 for (pHba = hba_chain; pHba; pHba = next) {
216 next = pHba->next;
217 // Activate does get status , init outbound, and get hrt
218 if (adpt_i2o_activate_hba(pHba) < 0) {
219 adpt_i2o_delete_hba(pHba);
220 }
221 }
222
223
224 /* Active IOPs in HOLD state */
225
226 rebuild_sys_tab:
227 if (hba_chain == NULL)
228 return 0;
229
230 /*
231 * If build_sys_table fails, we kill everything and bail
232 * as we can't init the IOPs w/o a system table
233 */
234 if (adpt_i2o_build_sys_table() < 0) {
235 adpt_i2o_sys_shutdown();
236 return 0;
237 }
238
239 PDEBUG("HBA's in HOLD state\n");
240
241 /* If IOP don't get online, we need to rebuild the System table */
242 for (pHba = hba_chain; pHba; pHba = pHba->next) {
243 if (adpt_i2o_online_hba(pHba) < 0) {
244 adpt_i2o_delete_hba(pHba);
245 goto rebuild_sys_tab;
246 }
247 }
248
249 /* Active IOPs now in OPERATIONAL state */
250 PDEBUG("HBA's in OPERATIONAL state\n");
251
252 printk("dpti: If you have a lot of devices this could take a few minutes.\n");
253 for (pHba = hba_chain; pHba; pHba = next) {
254 next = pHba->next;
255 printk(KERN_INFO"%s: Reading the hardware resource table.\n", pHba->name);
256 if (adpt_i2o_lct_get(pHba) < 0){
257 adpt_i2o_delete_hba(pHba);
258 continue;
259 }
260
261 if (adpt_i2o_parse_lct(pHba) < 0){
262 adpt_i2o_delete_hba(pHba);
263 continue;
264 }
265 adpt_inquiry(pHba);
266 }
267
268 adpt_sysfs_class = class_create(THIS_MODULE, "dpt_i2o");
269 if (IS_ERR(adpt_sysfs_class)) {
270 printk(KERN_WARNING"dpti: unable to create dpt_i2o class\n");
271 adpt_sysfs_class = NULL;
272 }
273
274 for (pHba = hba_chain; pHba; pHba = next) {
275 next = pHba->next;
276 if (adpt_scsi_host_alloc(pHba, sht) < 0){
277 adpt_i2o_delete_hba(pHba);
278 continue;
279 }
280 pHba->initialized = TRUE;
281 pHba->state &= ~DPTI_STATE_RESET;
282 if (adpt_sysfs_class) {
283 struct device *dev = device_create(adpt_sysfs_class,
284 NULL, MKDEV(DPTI_I2O_MAJOR, pHba->unit), NULL,
285 "dpti%d", pHba->unit);
286 if (IS_ERR(dev)) {
287 printk(KERN_WARNING"dpti%d: unable to "
288 "create device in dpt_i2o class\n",
289 pHba->unit);
290 }
291 }
292 }
293
294 // Register our control device node
295 // nodes will need to be created in /dev to access this
296 // the nodes can not be created from within the driver
297 if (hba_count && register_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER, &adpt_fops)) {
298 adpt_i2o_sys_shutdown();
299 return 0;
300 }
301 return hba_count;
302 }
303
304
305 /*
306 * scsi_unregister will be called AFTER we return.
307 */
308 static int adpt_release(struct Scsi_Host *host)
309 {
310 adpt_hba* pHba = (adpt_hba*) host->hostdata[0];
311 // adpt_i2o_quiesce_hba(pHba);
312 adpt_i2o_delete_hba(pHba);
313 scsi_unregister(host);
314 return 0;
315 }
316
317
318 static void adpt_inquiry(adpt_hba* pHba)
319 {
320 u32 msg[17];
321 u32 *mptr;
322 u32 *lenptr;
323 int direction;
324 int scsidir;
325 u32 len;
326 u32 reqlen;
327 u8* buf;
328 dma_addr_t addr;
329 u8 scb[16];
330 s32 rcode;
331
332 memset(msg, 0, sizeof(msg));
333 buf = dma_alloc_coherent(&pHba->pDev->dev, 80, &addr, GFP_KERNEL);
334 if(!buf){
335 printk(KERN_ERR"%s: Could not allocate buffer\n",pHba->name);
336 return;
337 }
338 memset((void*)buf, 0, 36);
339
340 len = 36;
341 direction = 0x00000000;
342 scsidir =0x40000000; // DATA IN (iop<--dev)
343
344 if (dpt_dma64(pHba))
345 reqlen = 17; // SINGLE SGE, 64 bit
346 else
347 reqlen = 14; // SINGLE SGE, 32 bit
348 /* Stick the headers on */
349 msg[0] = reqlen<<16 | SGL_OFFSET_12;
350 msg[1] = (0xff<<24|HOST_TID<<12|ADAPTER_TID);
351 msg[2] = 0;
352 msg[3] = 0;
353 // Adaptec/DPT Private stuff
354 msg[4] = I2O_CMD_SCSI_EXEC|DPT_ORGANIZATION_ID<<16;
355 msg[5] = ADAPTER_TID | 1<<16 /* Interpret*/;
356 /* Direction, disconnect ok | sense data | simple queue , CDBLen */
357 // I2O_SCB_FLAG_ENABLE_DISCONNECT |
358 // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |
359 // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE;
360 msg[6] = scsidir|0x20a00000| 6 /* cmd len*/;
361
362 mptr=msg+7;
363
364 memset(scb, 0, sizeof(scb));
365 // Write SCSI command into the message - always 16 byte block
366 scb[0] = INQUIRY;
367 scb[1] = 0;
368 scb[2] = 0;
369 scb[3] = 0;
370 scb[4] = 36;
371 scb[5] = 0;
372 // Don't care about the rest of scb
373
374 memcpy(mptr, scb, sizeof(scb));
375 mptr+=4;
376 lenptr=mptr++; /* Remember me - fill in when we know */
377
378 /* Now fill in the SGList and command */
379 *lenptr = len;
380 if (dpt_dma64(pHba)) {
381 *mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */
382 *mptr++ = 1 << PAGE_SHIFT;
383 *mptr++ = 0xD0000000|direction|len;
384 *mptr++ = dma_low(addr);
385 *mptr++ = dma_high(addr);
386 } else {
387 *mptr++ = 0xD0000000|direction|len;
388 *mptr++ = addr;
389 }
390
391 // Send it on it's way
392 rcode = adpt_i2o_post_wait(pHba, msg, reqlen<<2, 120);
393 if (rcode != 0) {
394 sprintf(pHba->detail, "Adaptec I2O RAID");
395 printk(KERN_INFO "%s: Inquiry Error (%d)\n",pHba->name,rcode);
396 if (rcode != -ETIME && rcode != -EINTR)
397 dma_free_coherent(&pHba->pDev->dev, 80, buf, addr);
398 } else {
399 memset(pHba->detail, 0, sizeof(pHba->detail));
400 memcpy(&(pHba->detail), "Vendor: Adaptec ", 16);
401 memcpy(&(pHba->detail[16]), " Model: ", 8);
402 memcpy(&(pHba->detail[24]), (u8*) &buf[16], 16);
403 memcpy(&(pHba->detail[40]), " FW: ", 4);
404 memcpy(&(pHba->detail[44]), (u8*) &buf[32], 4);
405 pHba->detail[48] = '\0'; /* precautionary */
406 dma_free_coherent(&pHba->pDev->dev, 80, buf, addr);
407 }
408 adpt_i2o_status_get(pHba);
409 return ;
410 }
411
412
413 static int adpt_slave_configure(struct scsi_device * device)
414 {
415 struct Scsi_Host *host = device->host;
416 adpt_hba* pHba;
417
418 pHba = (adpt_hba *) host->hostdata[0];
419
420 if (host->can_queue && device->tagged_supported) {
421 scsi_change_queue_depth(device,
422 host->can_queue - 1);
423 }
424 return 0;
425 }
426
427 static int adpt_queue_lck(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *))
428 {
429 adpt_hba* pHba = NULL;
430 struct adpt_device* pDev = NULL; /* dpt per device information */
431
432 cmd->scsi_done = done;
433 /*
434 * SCSI REQUEST_SENSE commands will be executed automatically by the
435 * Host Adapter for any errors, so they should not be executed
436 * explicitly unless the Sense Data is zero indicating that no error
437 * occurred.
438 */
439
440 if ((cmd->cmnd[0] == REQUEST_SENSE) && (cmd->sense_buffer[0] != 0)) {
441 cmd->result = (DID_OK << 16);
442 cmd->scsi_done(cmd);
443 return 0;
444 }
445
446 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
447 if (!pHba) {
448 return FAILED;
449 }
450
451 rmb();
452 if ((pHba->state) & DPTI_STATE_RESET)
453 return SCSI_MLQUEUE_HOST_BUSY;
454
455 // TODO if the cmd->device if offline then I may need to issue a bus rescan
456 // followed by a get_lct to see if the device is there anymore
457 if((pDev = (struct adpt_device*) (cmd->device->hostdata)) == NULL) {
458 /*
459 * First command request for this device. Set up a pointer
460 * to the device structure. This should be a TEST_UNIT_READY
461 * command from scan_scsis_single.
462 */
463 if ((pDev = adpt_find_device(pHba, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun)) == NULL) {
464 // TODO: if any luns are at this bus, scsi id then fake a TEST_UNIT_READY and INQUIRY response
465 // with type 7F (for all luns less than the max for this bus,id) so the lun scan will continue.
466 cmd->result = (DID_NO_CONNECT << 16);
467 cmd->scsi_done(cmd);
468 return 0;
469 }
470 cmd->device->hostdata = pDev;
471 }
472 pDev->pScsi_dev = cmd->device;
473
474 /*
475 * If we are being called from when the device is being reset,
476 * delay processing of the command until later.
477 */
478 if (pDev->state & DPTI_DEV_RESET ) {
479 return FAILED;
480 }
481 return adpt_scsi_to_i2o(pHba, cmd, pDev);
482 }
483
484 static DEF_SCSI_QCMD(adpt_queue)
485
486 static int adpt_bios_param(struct scsi_device *sdev, struct block_device *dev,
487 sector_t capacity, int geom[])
488 {
489 int heads=-1;
490 int sectors=-1;
491 int cylinders=-1;
492
493 // *** First lets set the default geometry ****
494
495 // If the capacity is less than ox2000
496 if (capacity < 0x2000 ) { // floppy
497 heads = 18;
498 sectors = 2;
499 }
500 // else if between 0x2000 and 0x20000
501 else if (capacity < 0x20000) {
502 heads = 64;
503 sectors = 32;
504 }
505 // else if between 0x20000 and 0x40000
506 else if (capacity < 0x40000) {
507 heads = 65;
508 sectors = 63;
509 }
510 // else if between 0x4000 and 0x80000
511 else if (capacity < 0x80000) {
512 heads = 128;
513 sectors = 63;
514 }
515 // else if greater than 0x80000
516 else {
517 heads = 255;
518 sectors = 63;
519 }
520 cylinders = sector_div(capacity, heads * sectors);
521
522 // Special case if CDROM
523 if(sdev->type == 5) { // CDROM
524 heads = 252;
525 sectors = 63;
526 cylinders = 1111;
527 }
528
529 geom[0] = heads;
530 geom[1] = sectors;
531 geom[2] = cylinders;
532
533 PDEBUG("adpt_bios_param: exit\n");
534 return 0;
535 }
536
537
538 static const char *adpt_info(struct Scsi_Host *host)
539 {
540 adpt_hba* pHba;
541
542 pHba = (adpt_hba *) host->hostdata[0];
543 return (char *) (pHba->detail);
544 }
545
546 static int adpt_show_info(struct seq_file *m, struct Scsi_Host *host)
547 {
548 struct adpt_device* d;
549 int id;
550 int chan;
551 adpt_hba* pHba;
552 int unit;
553
554 // Find HBA (host bus adapter) we are looking for
555 mutex_lock(&adpt_configuration_lock);
556 for (pHba = hba_chain; pHba; pHba = pHba->next) {
557 if (pHba->host == host) {
558 break; /* found adapter */
559 }
560 }
561 mutex_unlock(&adpt_configuration_lock);
562 if (pHba == NULL) {
563 return 0;
564 }
565 host = pHba->host;
566
567 seq_printf(m, "Adaptec I2O RAID Driver Version: %s\n\n", DPT_I2O_VERSION);
568 seq_printf(m, "%s\n", pHba->detail);
569 seq_printf(m, "SCSI Host=scsi%d Control Node=/dev/%s irq=%d\n",
570 pHba->host->host_no, pHba->name, host->irq);
571 seq_printf(m, "\tpost fifo size = %d\n\treply fifo size = %d\n\tsg table size = %d\n\n",
572 host->can_queue, (int) pHba->reply_fifo_size , host->sg_tablesize);
573
574 seq_puts(m, "Devices:\n");
575 for(chan = 0; chan < MAX_CHANNEL; chan++) {
576 for(id = 0; id < MAX_ID; id++) {
577 d = pHba->channel[chan].device[id];
578 while(d) {
579 seq_printf(m,"\t%-24.24s", d->pScsi_dev->vendor);
580 seq_printf(m," Rev: %-8.8s\n", d->pScsi_dev->rev);
581
582 unit = d->pI2o_dev->lct_data.tid;
583 seq_printf(m, "\tTID=%d, (Channel=%d, Target=%d, Lun=%llu) (%s)\n\n",
584 unit, (int)d->scsi_channel, (int)d->scsi_id, d->scsi_lun,
585 scsi_device_online(d->pScsi_dev)? "online":"offline");
586 d = d->next_lun;
587 }
588 }
589 }
590 return 0;
591 }
592
593 /*
594 * Turn a struct scsi_cmnd * into a unique 32 bit 'context'.
595 */
596 static u32 adpt_cmd_to_context(struct scsi_cmnd *cmd)
597 {
598 return (u32)cmd->serial_number;
599 }
600
601 /*
602 * Go from a u32 'context' to a struct scsi_cmnd * .
603 * This could probably be made more efficient.
604 */
605 static struct scsi_cmnd *
606 adpt_cmd_from_context(adpt_hba * pHba, u32 context)
607 {
608 struct scsi_cmnd * cmd;
609 struct scsi_device * d;
610
611 if (context == 0)
612 return NULL;
613
614 spin_unlock(pHba->host->host_lock);
615 shost_for_each_device(d, pHba->host) {
616 unsigned long flags;
617 spin_lock_irqsave(&d->list_lock, flags);
618 list_for_each_entry(cmd, &d->cmd_list, list) {
619 if (((u32)cmd->serial_number == context)) {
620 spin_unlock_irqrestore(&d->list_lock, flags);
621 scsi_device_put(d);
622 spin_lock(pHba->host->host_lock);
623 return cmd;
624 }
625 }
626 spin_unlock_irqrestore(&d->list_lock, flags);
627 }
628 spin_lock(pHba->host->host_lock);
629
630 return NULL;
631 }
632
633 /*
634 * Turn a pointer to ioctl reply data into an u32 'context'
635 */
636 static u32 adpt_ioctl_to_context(adpt_hba * pHba, void *reply)
637 {
638 #if BITS_PER_LONG == 32
639 return (u32)(unsigned long)reply;
640 #else
641 ulong flags = 0;
642 u32 nr, i;
643
644 spin_lock_irqsave(pHba->host->host_lock, flags);
645 nr = ARRAY_SIZE(pHba->ioctl_reply_context);
646 for (i = 0; i < nr; i++) {
647 if (pHba->ioctl_reply_context[i] == NULL) {
648 pHba->ioctl_reply_context[i] = reply;
649 break;
650 }
651 }
652 spin_unlock_irqrestore(pHba->host->host_lock, flags);
653 if (i >= nr) {
654 printk(KERN_WARNING"%s: Too many outstanding "
655 "ioctl commands\n", pHba->name);
656 return (u32)-1;
657 }
658
659 return i;
660 #endif
661 }
662
663 /*
664 * Go from an u32 'context' to a pointer to ioctl reply data.
665 */
666 static void *adpt_ioctl_from_context(adpt_hba *pHba, u32 context)
667 {
668 #if BITS_PER_LONG == 32
669 return (void *)(unsigned long)context;
670 #else
671 void *p = pHba->ioctl_reply_context[context];
672 pHba->ioctl_reply_context[context] = NULL;
673
674 return p;
675 #endif
676 }
677
678 /*===========================================================================
679 * Error Handling routines
680 *===========================================================================
681 */
682
683 static int adpt_abort(struct scsi_cmnd * cmd)
684 {
685 adpt_hba* pHba = NULL; /* host bus adapter structure */
686 struct adpt_device* dptdevice; /* dpt per device information */
687 u32 msg[5];
688 int rcode;
689
690 if(cmd->serial_number == 0){
691 return FAILED;
692 }
693 pHba = (adpt_hba*) cmd->device->host->hostdata[0];
694 printk(KERN_INFO"%s: Trying to Abort\n",pHba->name);
695 if ((dptdevice = (void*) (cmd->device->hostdata)) == NULL) {
696 printk(KERN_ERR "%s: Unable to abort: No device in cmnd\n",pHba->name);
697 return FAILED;
698 }
699
700 memset(msg, 0, sizeof(msg));
701 msg[0] = FIVE_WORD_MSG_SIZE|SGL_OFFSET_0;
702 msg[1] = I2O_CMD_SCSI_ABORT<<24|HOST_TID<<12|dptdevice->tid;
703 msg[2] = 0;
704 msg[3]= 0;
705 msg[4] = adpt_cmd_to_context(cmd);
706 if (pHba->host)
707 spin_lock_irq(pHba->host->host_lock);
708 rcode = adpt_i2o_post_wait(pHba, msg, sizeof(msg), FOREVER);
709 if (pHba->host)
710 spin_unlock_irq(pHba->host->host_lock);
711 if (rcode != 0) {
712 if(rcode == -EOPNOTSUPP ){
713 printk(KERN_INFO"%s: Abort cmd not supported\n",pHba->name);
714 return FAILED;
715 }
716 printk(KERN_INFO"%s: Abort failed.\n",pHba->name);
717 return FAILED;
718 }
719 printk(KERN_INFO"%s: Abort complete.\n",pHba->name);
720 return SUCCESS;
721 }
722
723
724 #define I2O_DEVICE_RESET 0x27
725 // This is the same for BLK and SCSI devices
726 // NOTE this is wrong in the i2o.h definitions
727 // This is not currently supported by our adapter but we issue it anyway
728 static int adpt_device_reset(struct scsi_cmnd* cmd)
729 {
730 adpt_hba* pHba;
731 u32 msg[4];
732 u32 rcode;
733 int old_state;
734 struct adpt_device* d = cmd->device->hostdata;
735
736 pHba = (void*) cmd->device->host->hostdata[0];
737 printk(KERN_INFO"%s: Trying to reset device\n",pHba->name);
738 if (!d) {
739 printk(KERN_INFO"%s: Reset Device: Device Not found\n",pHba->name);
740 return FAILED;
741 }
742 memset(msg, 0, sizeof(msg));
743 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
744 msg[1] = (I2O_DEVICE_RESET<<24|HOST_TID<<12|d->tid);
745 msg[2] = 0;
746 msg[3] = 0;
747
748 if (pHba->host)
749 spin_lock_irq(pHba->host->host_lock);
750 old_state = d->state;
751 d->state |= DPTI_DEV_RESET;
752 rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER);
753 d->state = old_state;
754 if (pHba->host)
755 spin_unlock_irq(pHba->host->host_lock);
756 if (rcode != 0) {
757 if(rcode == -EOPNOTSUPP ){
758 printk(KERN_INFO"%s: Device reset not supported\n",pHba->name);
759 return FAILED;
760 }
761 printk(KERN_INFO"%s: Device reset failed\n",pHba->name);
762 return FAILED;
763 } else {
764 printk(KERN_INFO"%s: Device reset successful\n",pHba->name);
765 return SUCCESS;
766 }
767 }
768
769
770 #define I2O_HBA_BUS_RESET 0x87
771 // This version of bus reset is called by the eh_error handler
772 static int adpt_bus_reset(struct scsi_cmnd* cmd)
773 {
774 adpt_hba* pHba;
775 u32 msg[4];
776 u32 rcode;
777
778 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
779 memset(msg, 0, sizeof(msg));
780 printk(KERN_WARNING"%s: Bus reset: SCSI Bus %d: tid: %d\n",pHba->name, cmd->device->channel,pHba->channel[cmd->device->channel].tid );
781 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
782 msg[1] = (I2O_HBA_BUS_RESET<<24|HOST_TID<<12|pHba->channel[cmd->device->channel].tid);
783 msg[2] = 0;
784 msg[3] = 0;
785 if (pHba->host)
786 spin_lock_irq(pHba->host->host_lock);
787 rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER);
788 if (pHba->host)
789 spin_unlock_irq(pHba->host->host_lock);
790 if (rcode != 0) {
791 printk(KERN_WARNING"%s: Bus reset failed.\n",pHba->name);
792 return FAILED;
793 } else {
794 printk(KERN_WARNING"%s: Bus reset success.\n",pHba->name);
795 return SUCCESS;
796 }
797 }
798
799 // This version of reset is called by the eh_error_handler
800 static int __adpt_reset(struct scsi_cmnd* cmd)
801 {
802 adpt_hba* pHba;
803 int rcode;
804 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
805 printk(KERN_WARNING"%s: Hba Reset: scsi id %d: tid: %d\n",pHba->name,cmd->device->channel,pHba->channel[cmd->device->channel].tid );
806 rcode = adpt_hba_reset(pHba);
807 if(rcode == 0){
808 printk(KERN_WARNING"%s: HBA reset complete\n",pHba->name);
809 return SUCCESS;
810 } else {
811 printk(KERN_WARNING"%s: HBA reset failed (%x)\n",pHba->name, rcode);
812 return FAILED;
813 }
814 }
815
816 static int adpt_reset(struct scsi_cmnd* cmd)
817 {
818 int rc;
819
820 spin_lock_irq(cmd->device->host->host_lock);
821 rc = __adpt_reset(cmd);
822 spin_unlock_irq(cmd->device->host->host_lock);
823
824 return rc;
825 }
826
827 // This version of reset is called by the ioctls and indirectly from eh_error_handler via adpt_reset
828 static int adpt_hba_reset(adpt_hba* pHba)
829 {
830 int rcode;
831
832 pHba->state |= DPTI_STATE_RESET;
833
834 // Activate does get status , init outbound, and get hrt
835 if ((rcode=adpt_i2o_activate_hba(pHba)) < 0) {
836 printk(KERN_ERR "%s: Could not activate\n", pHba->name);
837 adpt_i2o_delete_hba(pHba);
838 return rcode;
839 }
840
841 if ((rcode=adpt_i2o_build_sys_table()) < 0) {
842 adpt_i2o_delete_hba(pHba);
843 return rcode;
844 }
845 PDEBUG("%s: in HOLD state\n",pHba->name);
846
847 if ((rcode=adpt_i2o_online_hba(pHba)) < 0) {
848 adpt_i2o_delete_hba(pHba);
849 return rcode;
850 }
851 PDEBUG("%s: in OPERATIONAL state\n",pHba->name);
852
853 if ((rcode=adpt_i2o_lct_get(pHba)) < 0){
854 adpt_i2o_delete_hba(pHba);
855 return rcode;
856 }
857
858 if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0){
859 adpt_i2o_delete_hba(pHba);
860 return rcode;
861 }
862 pHba->state &= ~DPTI_STATE_RESET;
863
864 adpt_fail_posted_scbs(pHba);
865 return 0; /* return success */
866 }
867
868 /*===========================================================================
869 *
870 *===========================================================================
871 */
872
873
874 static void adpt_i2o_sys_shutdown(void)
875 {
876 adpt_hba *pHba, *pNext;
877 struct adpt_i2o_post_wait_data *p1, *old;
878
879 printk(KERN_INFO"Shutting down Adaptec I2O controllers.\n");
880 printk(KERN_INFO" This could take a few minutes if there are many devices attached\n");
881 /* Delete all IOPs from the controller chain */
882 /* They should have already been released by the
883 * scsi-core
884 */
885 for (pHba = hba_chain; pHba; pHba = pNext) {
886 pNext = pHba->next;
887 adpt_i2o_delete_hba(pHba);
888 }
889
890 /* Remove any timedout entries from the wait queue. */
891 // spin_lock_irqsave(&adpt_post_wait_lock, flags);
892 /* Nothing should be outstanding at this point so just
893 * free them
894 */
895 for(p1 = adpt_post_wait_queue; p1;) {
896 old = p1;
897 p1 = p1->next;
898 kfree(old);
899 }
900 // spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
901 adpt_post_wait_queue = NULL;
902
903 printk(KERN_INFO "Adaptec I2O controllers down.\n");
904 }
905
906 static int adpt_install_hba(struct scsi_host_template* sht, struct pci_dev* pDev)
907 {
908
909 adpt_hba* pHba = NULL;
910 adpt_hba* p = NULL;
911 ulong base_addr0_phys = 0;
912 ulong base_addr1_phys = 0;
913 u32 hba_map0_area_size = 0;
914 u32 hba_map1_area_size = 0;
915 void __iomem *base_addr_virt = NULL;
916 void __iomem *msg_addr_virt = NULL;
917 int dma64 = 0;
918
919 int raptorFlag = FALSE;
920
921 if(pci_enable_device(pDev)) {
922 return -EINVAL;
923 }
924
925 if (pci_request_regions(pDev, "dpt_i2o")) {
926 PERROR("dpti: adpt_config_hba: pci request region failed\n");
927 return -EINVAL;
928 }
929
930 pci_set_master(pDev);
931
932 /*
933 * See if we should enable dma64 mode.
934 */
935 if (sizeof(dma_addr_t) > 4 &&
936 pci_set_dma_mask(pDev, DMA_BIT_MASK(64)) == 0) {
937 if (dma_get_required_mask(&pDev->dev) > DMA_BIT_MASK(32))
938 dma64 = 1;
939 }
940 if (!dma64 && pci_set_dma_mask(pDev, DMA_BIT_MASK(32)) != 0)
941 return -EINVAL;
942
943 /* adapter only supports message blocks below 4GB */
944 pci_set_consistent_dma_mask(pDev, DMA_BIT_MASK(32));
945
946 base_addr0_phys = pci_resource_start(pDev,0);
947 hba_map0_area_size = pci_resource_len(pDev,0);
948
949 // Check if standard PCI card or single BAR Raptor
950 if(pDev->device == PCI_DPT_DEVICE_ID){
951 if(pDev->subsystem_device >=0xc032 && pDev->subsystem_device <= 0xc03b){
952 // Raptor card with this device id needs 4M
953 hba_map0_area_size = 0x400000;
954 } else { // Not Raptor - it is a PCI card
955 if(hba_map0_area_size > 0x100000 ){
956 hba_map0_area_size = 0x100000;
957 }
958 }
959 } else {// Raptor split BAR config
960 // Use BAR1 in this configuration
961 base_addr1_phys = pci_resource_start(pDev,1);
962 hba_map1_area_size = pci_resource_len(pDev,1);
963 raptorFlag = TRUE;
964 }
965
966 #if BITS_PER_LONG == 64
967 /*
968 * The original Adaptec 64 bit driver has this comment here:
969 * "x86_64 machines need more optimal mappings"
970 *
971 * I assume some HBAs report ridiculously large mappings
972 * and we need to limit them on platforms with IOMMUs.
973 */
974 if (raptorFlag == TRUE) {
975 if (hba_map0_area_size > 128)
976 hba_map0_area_size = 128;
977 if (hba_map1_area_size > 524288)
978 hba_map1_area_size = 524288;
979 } else {
980 if (hba_map0_area_size > 524288)
981 hba_map0_area_size = 524288;
982 }
983 #endif
984
985 base_addr_virt = ioremap(base_addr0_phys,hba_map0_area_size);
986 if (!base_addr_virt) {
987 pci_release_regions(pDev);
988 PERROR("dpti: adpt_config_hba: io remap failed\n");
989 return -EINVAL;
990 }
991
992 if(raptorFlag == TRUE) {
993 msg_addr_virt = ioremap(base_addr1_phys, hba_map1_area_size );
994 if (!msg_addr_virt) {
995 PERROR("dpti: adpt_config_hba: io remap failed on BAR1\n");
996 iounmap(base_addr_virt);
997 pci_release_regions(pDev);
998 return -EINVAL;
999 }
1000 } else {
1001 msg_addr_virt = base_addr_virt;
1002 }
1003
1004 // Allocate and zero the data structure
1005 pHba = kzalloc(sizeof(adpt_hba), GFP_KERNEL);
1006 if (!pHba) {
1007 if (msg_addr_virt != base_addr_virt)
1008 iounmap(msg_addr_virt);
1009 iounmap(base_addr_virt);
1010 pci_release_regions(pDev);
1011 return -ENOMEM;
1012 }
1013
1014 mutex_lock(&adpt_configuration_lock);
1015
1016 if(hba_chain != NULL){
1017 for(p = hba_chain; p->next; p = p->next);
1018 p->next = pHba;
1019 } else {
1020 hba_chain = pHba;
1021 }
1022 pHba->next = NULL;
1023 pHba->unit = hba_count;
1024 sprintf(pHba->name, "dpti%d", hba_count);
1025 hba_count++;
1026
1027 mutex_unlock(&adpt_configuration_lock);
1028
1029 pHba->pDev = pDev;
1030 pHba->base_addr_phys = base_addr0_phys;
1031
1032 // Set up the Virtual Base Address of the I2O Device
1033 pHba->base_addr_virt = base_addr_virt;
1034 pHba->msg_addr_virt = msg_addr_virt;
1035 pHba->irq_mask = base_addr_virt+0x30;
1036 pHba->post_port = base_addr_virt+0x40;
1037 pHba->reply_port = base_addr_virt+0x44;
1038
1039 pHba->hrt = NULL;
1040 pHba->lct = NULL;
1041 pHba->lct_size = 0;
1042 pHba->status_block = NULL;
1043 pHba->post_count = 0;
1044 pHba->state = DPTI_STATE_RESET;
1045 pHba->pDev = pDev;
1046 pHba->devices = NULL;
1047 pHba->dma64 = dma64;
1048
1049 // Initializing the spinlocks
1050 spin_lock_init(&pHba->state_lock);
1051 spin_lock_init(&adpt_post_wait_lock);
1052
1053 if(raptorFlag == 0){
1054 printk(KERN_INFO "Adaptec I2O RAID controller"
1055 " %d at %p size=%x irq=%d%s\n",
1056 hba_count-1, base_addr_virt,
1057 hba_map0_area_size, pDev->irq,
1058 dma64 ? " (64-bit DMA)" : "");
1059 } else {
1060 printk(KERN_INFO"Adaptec I2O RAID controller %d irq=%d%s\n",
1061 hba_count-1, pDev->irq,
1062 dma64 ? " (64-bit DMA)" : "");
1063 printk(KERN_INFO" BAR0 %p - size= %x\n",base_addr_virt,hba_map0_area_size);
1064 printk(KERN_INFO" BAR1 %p - size= %x\n",msg_addr_virt,hba_map1_area_size);
1065 }
1066
1067 if (request_irq (pDev->irq, adpt_isr, IRQF_SHARED, pHba->name, pHba)) {
1068 printk(KERN_ERR"%s: Couldn't register IRQ %d\n", pHba->name, pDev->irq);
1069 adpt_i2o_delete_hba(pHba);
1070 return -EINVAL;
1071 }
1072
1073 return 0;
1074 }
1075
1076
1077 static void adpt_i2o_delete_hba(adpt_hba* pHba)
1078 {
1079 adpt_hba* p1;
1080 adpt_hba* p2;
1081 struct i2o_device* d;
1082 struct i2o_device* next;
1083 int i;
1084 int j;
1085 struct adpt_device* pDev;
1086 struct adpt_device* pNext;
1087
1088
1089 mutex_lock(&adpt_configuration_lock);
1090 // scsi_unregister calls our adpt_release which
1091 // does a quiese
1092 if(pHba->host){
1093 free_irq(pHba->host->irq, pHba);
1094 }
1095 p2 = NULL;
1096 for( p1 = hba_chain; p1; p2 = p1,p1=p1->next){
1097 if(p1 == pHba) {
1098 if(p2) {
1099 p2->next = p1->next;
1100 } else {
1101 hba_chain = p1->next;
1102 }
1103 break;
1104 }
1105 }
1106
1107 hba_count--;
1108 mutex_unlock(&adpt_configuration_lock);
1109
1110 iounmap(pHba->base_addr_virt);
1111 pci_release_regions(pHba->pDev);
1112 if(pHba->msg_addr_virt != pHba->base_addr_virt){
1113 iounmap(pHba->msg_addr_virt);
1114 }
1115 if(pHba->FwDebugBuffer_P)
1116 iounmap(pHba->FwDebugBuffer_P);
1117 if(pHba->hrt) {
1118 dma_free_coherent(&pHba->pDev->dev,
1119 pHba->hrt->num_entries * pHba->hrt->entry_len << 2,
1120 pHba->hrt, pHba->hrt_pa);
1121 }
1122 if(pHba->lct) {
1123 dma_free_coherent(&pHba->pDev->dev, pHba->lct_size,
1124 pHba->lct, pHba->lct_pa);
1125 }
1126 if(pHba->status_block) {
1127 dma_free_coherent(&pHba->pDev->dev, sizeof(i2o_status_block),
1128 pHba->status_block, pHba->status_block_pa);
1129 }
1130 if(pHba->reply_pool) {
1131 dma_free_coherent(&pHba->pDev->dev,
1132 pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4,
1133 pHba->reply_pool, pHba->reply_pool_pa);
1134 }
1135
1136 for(d = pHba->devices; d ; d = next){
1137 next = d->next;
1138 kfree(d);
1139 }
1140 for(i = 0 ; i < pHba->top_scsi_channel ; i++){
1141 for(j = 0; j < MAX_ID; j++){
1142 if(pHba->channel[i].device[j] != NULL){
1143 for(pDev = pHba->channel[i].device[j]; pDev; pDev = pNext){
1144 pNext = pDev->next_lun;
1145 kfree(pDev);
1146 }
1147 }
1148 }
1149 }
1150 pci_dev_put(pHba->pDev);
1151 if (adpt_sysfs_class)
1152 device_destroy(adpt_sysfs_class,
1153 MKDEV(DPTI_I2O_MAJOR, pHba->unit));
1154 kfree(pHba);
1155
1156 if(hba_count <= 0){
1157 unregister_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER);
1158 if (adpt_sysfs_class) {
1159 class_destroy(adpt_sysfs_class);
1160 adpt_sysfs_class = NULL;
1161 }
1162 }
1163 }
1164
1165 static struct adpt_device* adpt_find_device(adpt_hba* pHba, u32 chan, u32 id, u64 lun)
1166 {
1167 struct adpt_device* d;
1168
1169 if(chan < 0 || chan >= MAX_CHANNEL)
1170 return NULL;
1171
1172 if( pHba->channel[chan].device == NULL){
1173 printk(KERN_DEBUG"Adaptec I2O RAID: Trying to find device before they are allocated\n");
1174 return NULL;
1175 }
1176
1177 d = pHba->channel[chan].device[id];
1178 if(!d || d->tid == 0) {
1179 return NULL;
1180 }
1181
1182 /* If it is the only lun at that address then this should match*/
1183 if(d->scsi_lun == lun){
1184 return d;
1185 }
1186
1187 /* else we need to look through all the luns */
1188 for(d=d->next_lun ; d ; d = d->next_lun){
1189 if(d->scsi_lun == lun){
1190 return d;
1191 }
1192 }
1193 return NULL;
1194 }
1195
1196
1197 static int adpt_i2o_post_wait(adpt_hba* pHba, u32* msg, int len, int timeout)
1198 {
1199 // I used my own version of the WAIT_QUEUE_HEAD
1200 // to handle some version differences
1201 // When embedded in the kernel this could go back to the vanilla one
1202 ADPT_DECLARE_WAIT_QUEUE_HEAD(adpt_wq_i2o_post);
1203 int status = 0;
1204 ulong flags = 0;
1205 struct adpt_i2o_post_wait_data *p1, *p2;
1206 struct adpt_i2o_post_wait_data *wait_data =
1207 kmalloc(sizeof(struct adpt_i2o_post_wait_data), GFP_ATOMIC);
1208 DECLARE_WAITQUEUE(wait, current);
1209
1210 if (!wait_data)
1211 return -ENOMEM;
1212
1213 /*
1214 * The spin locking is needed to keep anyone from playing
1215 * with the queue pointers and id while we do the same
1216 */
1217 spin_lock_irqsave(&adpt_post_wait_lock, flags);
1218 // TODO we need a MORE unique way of getting ids
1219 // to support async LCT get
1220 wait_data->next = adpt_post_wait_queue;
1221 adpt_post_wait_queue = wait_data;
1222 adpt_post_wait_id++;
1223 adpt_post_wait_id &= 0x7fff;
1224 wait_data->id = adpt_post_wait_id;
1225 spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
1226
1227 wait_data->wq = &adpt_wq_i2o_post;
1228 wait_data->status = -ETIMEDOUT;
1229
1230 add_wait_queue(&adpt_wq_i2o_post, &wait);
1231
1232 msg[2] |= 0x80000000 | ((u32)wait_data->id);
1233 timeout *= HZ;
1234 if((status = adpt_i2o_post_this(pHba, msg, len)) == 0){
1235 set_current_state(TASK_INTERRUPTIBLE);
1236 if(pHba->host)
1237 spin_unlock_irq(pHba->host->host_lock);
1238 if (!timeout)
1239 schedule();
1240 else{
1241 timeout = schedule_timeout(timeout);
1242 if (timeout == 0) {
1243 // I/O issued, but cannot get result in
1244 // specified time. Freeing resorces is
1245 // dangerous.
1246 status = -ETIME;
1247 }
1248 }
1249 if(pHba->host)
1250 spin_lock_irq(pHba->host->host_lock);
1251 }
1252 remove_wait_queue(&adpt_wq_i2o_post, &wait);
1253
1254 if(status == -ETIMEDOUT){
1255 printk(KERN_INFO"dpti%d: POST WAIT TIMEOUT\n",pHba->unit);
1256 // We will have to free the wait_data memory during shutdown
1257 return status;
1258 }
1259
1260 /* Remove the entry from the queue. */
1261 p2 = NULL;
1262 spin_lock_irqsave(&adpt_post_wait_lock, flags);
1263 for(p1 = adpt_post_wait_queue; p1; p2 = p1, p1 = p1->next) {
1264 if(p1 == wait_data) {
1265 if(p1->status == I2O_DETAIL_STATUS_UNSUPPORTED_FUNCTION ) {
1266 status = -EOPNOTSUPP;
1267 }
1268 if(p2) {
1269 p2->next = p1->next;
1270 } else {
1271 adpt_post_wait_queue = p1->next;
1272 }
1273 break;
1274 }
1275 }
1276 spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
1277
1278 kfree(wait_data);
1279
1280 return status;
1281 }
1282
1283
1284 static s32 adpt_i2o_post_this(adpt_hba* pHba, u32* data, int len)
1285 {
1286
1287 u32 m = EMPTY_QUEUE;
1288 u32 __iomem *msg;
1289 ulong timeout = jiffies + 30*HZ;
1290 do {
1291 rmb();
1292 m = readl(pHba->post_port);
1293 if (m != EMPTY_QUEUE) {
1294 break;
1295 }
1296 if(time_after(jiffies,timeout)){
1297 printk(KERN_WARNING"dpti%d: Timeout waiting for message frame!\n", pHba->unit);
1298 return -ETIMEDOUT;
1299 }
1300 schedule_timeout_uninterruptible(1);
1301 } while(m == EMPTY_QUEUE);
1302
1303 msg = pHba->msg_addr_virt + m;
1304 memcpy_toio(msg, data, len);
1305 wmb();
1306
1307 //post message
1308 writel(m, pHba->post_port);
1309 wmb();
1310
1311 return 0;
1312 }
1313
1314
1315 static void adpt_i2o_post_wait_complete(u32 context, int status)
1316 {
1317 struct adpt_i2o_post_wait_data *p1 = NULL;
1318 /*
1319 * We need to search through the adpt_post_wait
1320 * queue to see if the given message is still
1321 * outstanding. If not, it means that the IOP
1322 * took longer to respond to the message than we
1323 * had allowed and timer has already expired.
1324 * Not much we can do about that except log
1325 * it for debug purposes, increase timeout, and recompile
1326 *
1327 * Lock needed to keep anyone from moving queue pointers
1328 * around while we're looking through them.
1329 */
1330
1331 context &= 0x7fff;
1332
1333 spin_lock(&adpt_post_wait_lock);
1334 for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) {
1335 if(p1->id == context) {
1336 p1->status = status;
1337 spin_unlock(&adpt_post_wait_lock);
1338 wake_up_interruptible(p1->wq);
1339 return;
1340 }
1341 }
1342 spin_unlock(&adpt_post_wait_lock);
1343 // If this happens we lose commands that probably really completed
1344 printk(KERN_DEBUG"dpti: Could Not find task %d in wait queue\n",context);
1345 printk(KERN_DEBUG" Tasks in wait queue:\n");
1346 for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) {
1347 printk(KERN_DEBUG" %d\n",p1->id);
1348 }
1349 return;
1350 }
1351
1352 static s32 adpt_i2o_reset_hba(adpt_hba* pHba)
1353 {
1354 u32 msg[8];
1355 u8* status;
1356 dma_addr_t addr;
1357 u32 m = EMPTY_QUEUE ;
1358 ulong timeout = jiffies + (TMOUT_IOPRESET*HZ);
1359
1360 if(pHba->initialized == FALSE) { // First time reset should be quick
1361 timeout = jiffies + (25*HZ);
1362 } else {
1363 adpt_i2o_quiesce_hba(pHba);
1364 }
1365
1366 do {
1367 rmb();
1368 m = readl(pHba->post_port);
1369 if (m != EMPTY_QUEUE) {
1370 break;
1371 }
1372 if(time_after(jiffies,timeout)){
1373 printk(KERN_WARNING"Timeout waiting for message!\n");
1374 return -ETIMEDOUT;
1375 }
1376 schedule_timeout_uninterruptible(1);
1377 } while (m == EMPTY_QUEUE);
1378
1379 status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL);
1380 if(status == NULL) {
1381 adpt_send_nop(pHba, m);
1382 printk(KERN_ERR"IOP reset failed - no free memory.\n");
1383 return -ENOMEM;
1384 }
1385 memset(status,0,4);
1386
1387 msg[0]=EIGHT_WORD_MSG_SIZE|SGL_OFFSET_0;
1388 msg[1]=I2O_CMD_ADAPTER_RESET<<24|HOST_TID<<12|ADAPTER_TID;
1389 msg[2]=0;
1390 msg[3]=0;
1391 msg[4]=0;
1392 msg[5]=0;
1393 msg[6]=dma_low(addr);
1394 msg[7]=dma_high(addr);
1395
1396 memcpy_toio(pHba->msg_addr_virt+m, msg, sizeof(msg));
1397 wmb();
1398 writel(m, pHba->post_port);
1399 wmb();
1400
1401 while(*status == 0){
1402 if(time_after(jiffies,timeout)){
1403 printk(KERN_WARNING"%s: IOP Reset Timeout\n",pHba->name);
1404 /* We lose 4 bytes of "status" here, but we cannot
1405 free these because controller may awake and corrupt
1406 those bytes at any time */
1407 /* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */
1408 return -ETIMEDOUT;
1409 }
1410 rmb();
1411 schedule_timeout_uninterruptible(1);
1412 }
1413
1414 if(*status == 0x01 /*I2O_EXEC_IOP_RESET_IN_PROGRESS*/) {
1415 PDEBUG("%s: Reset in progress...\n", pHba->name);
1416 // Here we wait for message frame to become available
1417 // indicated that reset has finished
1418 do {
1419 rmb();
1420 m = readl(pHba->post_port);
1421 if (m != EMPTY_QUEUE) {
1422 break;
1423 }
1424 if(time_after(jiffies,timeout)){
1425 printk(KERN_ERR "%s:Timeout waiting for IOP Reset.\n",pHba->name);
1426 /* We lose 4 bytes of "status" here, but we
1427 cannot free these because controller may
1428 awake and corrupt those bytes at any time */
1429 /* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */
1430 return -ETIMEDOUT;
1431 }
1432 schedule_timeout_uninterruptible(1);
1433 } while (m == EMPTY_QUEUE);
1434 // Flush the offset
1435 adpt_send_nop(pHba, m);
1436 }
1437 adpt_i2o_status_get(pHba);
1438 if(*status == 0x02 ||
1439 pHba->status_block->iop_state != ADAPTER_STATE_RESET) {
1440 printk(KERN_WARNING"%s: Reset reject, trying to clear\n",
1441 pHba->name);
1442 } else {
1443 PDEBUG("%s: Reset completed.\n", pHba->name);
1444 }
1445
1446 dma_free_coherent(&pHba->pDev->dev, 4, status, addr);
1447 #ifdef UARTDELAY
1448 // This delay is to allow someone attached to the card through the debug UART to
1449 // set up the dump levels that they want before the rest of the initialization sequence
1450 adpt_delay(20000);
1451 #endif
1452 return 0;
1453 }
1454
1455
1456 static int adpt_i2o_parse_lct(adpt_hba* pHba)
1457 {
1458 int i;
1459 int max;
1460 int tid;
1461 struct i2o_device *d;
1462 i2o_lct *lct = pHba->lct;
1463 u8 bus_no = 0;
1464 s16 scsi_id;
1465 u64 scsi_lun;
1466 u32 buf[10]; // larger than 7, or 8 ...
1467 struct adpt_device* pDev;
1468
1469 if (lct == NULL) {
1470 printk(KERN_ERR "%s: LCT is empty???\n",pHba->name);
1471 return -1;
1472 }
1473
1474 max = lct->table_size;
1475 max -= 3;
1476 max /= 9;
1477
1478 for(i=0;i<max;i++) {
1479 if( lct->lct_entry[i].user_tid != 0xfff){
1480 /*
1481 * If we have hidden devices, we need to inform the upper layers about
1482 * the possible maximum id reference to handle device access when
1483 * an array is disassembled. This code has no other purpose but to
1484 * allow us future access to devices that are currently hidden
1485 * behind arrays, hotspares or have not been configured (JBOD mode).
1486 */
1487 if( lct->lct_entry[i].class_id != I2O_CLASS_RANDOM_BLOCK_STORAGE &&
1488 lct->lct_entry[i].class_id != I2O_CLASS_SCSI_PERIPHERAL &&
1489 lct->lct_entry[i].class_id != I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
1490 continue;
1491 }
1492 tid = lct->lct_entry[i].tid;
1493 // I2O_DPT_DEVICE_INFO_GROUP_NO;
1494 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) {
1495 continue;
1496 }
1497 bus_no = buf[0]>>16;
1498 scsi_id = buf[1];
1499 scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]);
1500 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1501 printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no);
1502 continue;
1503 }
1504 if (scsi_id >= MAX_ID){
1505 printk(KERN_WARNING"%s: SCSI ID %d out of range \n", pHba->name, bus_no);
1506 continue;
1507 }
1508 if(bus_no > pHba->top_scsi_channel){
1509 pHba->top_scsi_channel = bus_no;
1510 }
1511 if(scsi_id > pHba->top_scsi_id){
1512 pHba->top_scsi_id = scsi_id;
1513 }
1514 if(scsi_lun > pHba->top_scsi_lun){
1515 pHba->top_scsi_lun = scsi_lun;
1516 }
1517 continue;
1518 }
1519 d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
1520 if(d==NULL)
1521 {
1522 printk(KERN_CRIT"%s: Out of memory for I2O device data.\n",pHba->name);
1523 return -ENOMEM;
1524 }
1525
1526 d->controller = pHba;
1527 d->next = NULL;
1528
1529 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
1530
1531 d->flags = 0;
1532 tid = d->lct_data.tid;
1533 adpt_i2o_report_hba_unit(pHba, d);
1534 adpt_i2o_install_device(pHba, d);
1535 }
1536 bus_no = 0;
1537 for(d = pHba->devices; d ; d = d->next) {
1538 if(d->lct_data.class_id == I2O_CLASS_BUS_ADAPTER_PORT ||
1539 d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PORT){
1540 tid = d->lct_data.tid;
1541 // TODO get the bus_no from hrt-but for now they are in order
1542 //bus_no =
1543 if(bus_no > pHba->top_scsi_channel){
1544 pHba->top_scsi_channel = bus_no;
1545 }
1546 pHba->channel[bus_no].type = d->lct_data.class_id;
1547 pHba->channel[bus_no].tid = tid;
1548 if(adpt_i2o_query_scalar(pHba, tid, 0x0200, -1, buf, 28)>=0)
1549 {
1550 pHba->channel[bus_no].scsi_id = buf[1];
1551 PDEBUG("Bus %d - SCSI ID %d.\n", bus_no, buf[1]);
1552 }
1553 // TODO remove - this is just until we get from hrt
1554 bus_no++;
1555 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1556 printk(KERN_WARNING"%s: Channel number %d out of range - LCT\n", pHba->name, bus_no);
1557 break;
1558 }
1559 }
1560 }
1561
1562 // Setup adpt_device table
1563 for(d = pHba->devices; d ; d = d->next) {
1564 if(d->lct_data.class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE ||
1565 d->lct_data.class_id == I2O_CLASS_SCSI_PERIPHERAL ||
1566 d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
1567
1568 tid = d->lct_data.tid;
1569 scsi_id = -1;
1570 // I2O_DPT_DEVICE_INFO_GROUP_NO;
1571 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)>=0) {
1572 bus_no = buf[0]>>16;
1573 scsi_id = buf[1];
1574 scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]);
1575 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1576 continue;
1577 }
1578 if (scsi_id >= MAX_ID) {
1579 continue;
1580 }
1581 if( pHba->channel[bus_no].device[scsi_id] == NULL){
1582 pDev = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
1583 if(pDev == NULL) {
1584 return -ENOMEM;
1585 }
1586 pHba->channel[bus_no].device[scsi_id] = pDev;
1587 } else {
1588 for( pDev = pHba->channel[bus_no].device[scsi_id];
1589 pDev->next_lun; pDev = pDev->next_lun){
1590 }
1591 pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
1592 if(pDev->next_lun == NULL) {
1593 return -ENOMEM;
1594 }
1595 pDev = pDev->next_lun;
1596 }
1597 pDev->tid = tid;
1598 pDev->scsi_channel = bus_no;
1599 pDev->scsi_id = scsi_id;
1600 pDev->scsi_lun = scsi_lun;
1601 pDev->pI2o_dev = d;
1602 d->owner = pDev;
1603 pDev->type = (buf[0])&0xff;
1604 pDev->flags = (buf[0]>>8)&0xff;
1605 if(scsi_id > pHba->top_scsi_id){
1606 pHba->top_scsi_id = scsi_id;
1607 }
1608 if(scsi_lun > pHba->top_scsi_lun){
1609 pHba->top_scsi_lun = scsi_lun;
1610 }
1611 }
1612 if(scsi_id == -1){
1613 printk(KERN_WARNING"Could not find SCSI ID for %s\n",
1614 d->lct_data.identity_tag);
1615 }
1616 }
1617 }
1618 return 0;
1619 }
1620
1621
1622 /*
1623 * Each I2O controller has a chain of devices on it - these match
1624 * the useful parts of the LCT of the board.
1625 */
1626
1627 static int adpt_i2o_install_device(adpt_hba* pHba, struct i2o_device *d)
1628 {
1629 mutex_lock(&adpt_configuration_lock);
1630 d->controller=pHba;
1631 d->owner=NULL;
1632 d->next=pHba->devices;
1633 d->prev=NULL;
1634 if (pHba->devices != NULL){
1635 pHba->devices->prev=d;
1636 }
1637 pHba->devices=d;
1638 *d->dev_name = 0;
1639
1640 mutex_unlock(&adpt_configuration_lock);
1641 return 0;
1642 }
1643
1644 static int adpt_open(struct inode *inode, struct file *file)
1645 {
1646 int minor;
1647 adpt_hba* pHba;
1648
1649 mutex_lock(&adpt_mutex);
1650 //TODO check for root access
1651 //
1652 minor = iminor(inode);
1653 if (minor >= hba_count) {
1654 mutex_unlock(&adpt_mutex);
1655 return -ENXIO;
1656 }
1657 mutex_lock(&adpt_configuration_lock);
1658 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1659 if (pHba->unit == minor) {
1660 break; /* found adapter */
1661 }
1662 }
1663 if (pHba == NULL) {
1664 mutex_unlock(&adpt_configuration_lock);
1665 mutex_unlock(&adpt_mutex);
1666 return -ENXIO;
1667 }
1668
1669 // if(pHba->in_use){
1670 // mutex_unlock(&adpt_configuration_lock);
1671 // return -EBUSY;
1672 // }
1673
1674 pHba->in_use = 1;
1675 mutex_unlock(&adpt_configuration_lock);
1676 mutex_unlock(&adpt_mutex);
1677
1678 return 0;
1679 }
1680
1681 static int adpt_close(struct inode *inode, struct file *file)
1682 {
1683 int minor;
1684 adpt_hba* pHba;
1685
1686 minor = iminor(inode);
1687 if (minor >= hba_count) {
1688 return -ENXIO;
1689 }
1690 mutex_lock(&adpt_configuration_lock);
1691 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1692 if (pHba->unit == minor) {
1693 break; /* found adapter */
1694 }
1695 }
1696 mutex_unlock(&adpt_configuration_lock);
1697 if (pHba == NULL) {
1698 return -ENXIO;
1699 }
1700
1701 pHba->in_use = 0;
1702
1703 return 0;
1704 }
1705
1706
1707 static int adpt_i2o_passthru(adpt_hba* pHba, u32 __user *arg)
1708 {
1709 u32 msg[MAX_MESSAGE_SIZE];
1710 u32* reply = NULL;
1711 u32 size = 0;
1712 u32 reply_size = 0;
1713 u32 __user *user_msg = arg;
1714 u32 __user * user_reply = NULL;
1715 void *sg_list[pHba->sg_tablesize];
1716 u32 sg_offset = 0;
1717 u32 sg_count = 0;
1718 int sg_index = 0;
1719 u32 i = 0;
1720 u32 rcode = 0;
1721 void *p = NULL;
1722 dma_addr_t addr;
1723 ulong flags = 0;
1724
1725 memset(&msg, 0, MAX_MESSAGE_SIZE*4);
1726 // get user msg size in u32s
1727 if(get_user(size, &user_msg[0])){
1728 return -EFAULT;
1729 }
1730 size = size>>16;
1731
1732 user_reply = &user_msg[size];
1733 if(size > MAX_MESSAGE_SIZE){
1734 return -EFAULT;
1735 }
1736 size *= 4; // Convert to bytes
1737
1738 /* Copy in the user's I2O command */
1739 if(copy_from_user(msg, user_msg, size)) {
1740 return -EFAULT;
1741 }
1742 get_user(reply_size, &user_reply[0]);
1743 reply_size = reply_size>>16;
1744 if(reply_size > REPLY_FRAME_SIZE){
1745 reply_size = REPLY_FRAME_SIZE;
1746 }
1747 reply_size *= 4;
1748 reply = kzalloc(REPLY_FRAME_SIZE*4, GFP_KERNEL);
1749 if(reply == NULL) {
1750 printk(KERN_WARNING"%s: Could not allocate reply buffer\n",pHba->name);
1751 return -ENOMEM;
1752 }
1753 sg_offset = (msg[0]>>4)&0xf;
1754 msg[2] = 0x40000000; // IOCTL context
1755 msg[3] = adpt_ioctl_to_context(pHba, reply);
1756 if (msg[3] == (u32)-1) {
1757 kfree(reply);
1758 return -EBUSY;
1759 }
1760
1761 memset(sg_list,0, sizeof(sg_list[0])*pHba->sg_tablesize);
1762 if(sg_offset) {
1763 // TODO add 64 bit API
1764 struct sg_simple_element *sg = (struct sg_simple_element*) (msg+sg_offset);
1765 sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element);
1766 if (sg_count > pHba->sg_tablesize){
1767 printk(KERN_DEBUG"%s:IOCTL SG List too large (%u)\n", pHba->name,sg_count);
1768 kfree (reply);
1769 return -EINVAL;
1770 }
1771
1772 for(i = 0; i < sg_count; i++) {
1773 int sg_size;
1774
1775 if (!(sg[i].flag_count & 0x10000000 /*I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT*/)) {
1776 printk(KERN_DEBUG"%s:Bad SG element %d - not simple (%x)\n",pHba->name,i, sg[i].flag_count);
1777 rcode = -EINVAL;
1778 goto cleanup;
1779 }
1780 sg_size = sg[i].flag_count & 0xffffff;
1781 /* Allocate memory for the transfer */
1782 p = dma_alloc_coherent(&pHba->pDev->dev, sg_size, &addr, GFP_KERNEL);
1783 if(!p) {
1784 printk(KERN_DEBUG"%s: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
1785 pHba->name,sg_size,i,sg_count);
1786 rcode = -ENOMEM;
1787 goto cleanup;
1788 }
1789 sg_list[sg_index++] = p; // sglist indexed with input frame, not our internal frame.
1790 /* Copy in the user's SG buffer if necessary */
1791 if(sg[i].flag_count & 0x04000000 /*I2O_SGL_FLAGS_DIR*/) {
1792 // sg_simple_element API is 32 bit
1793 if (copy_from_user(p,(void __user *)(ulong)sg[i].addr_bus, sg_size)) {
1794 printk(KERN_DEBUG"%s: Could not copy SG buf %d FROM user\n",pHba->name,i);
1795 rcode = -EFAULT;
1796 goto cleanup;
1797 }
1798 }
1799 /* sg_simple_element API is 32 bit, but addr < 4GB */
1800 sg[i].addr_bus = addr;
1801 }
1802 }
1803
1804 do {
1805 /*
1806 * Stop any new commands from enterring the
1807 * controller while processing the ioctl
1808 */
1809 if (pHba->host) {
1810 scsi_block_requests(pHba->host);
1811 spin_lock_irqsave(pHba->host->host_lock, flags);
1812 }
1813 rcode = adpt_i2o_post_wait(pHba, msg, size, FOREVER);
1814 if (rcode != 0)
1815 printk("adpt_i2o_passthru: post wait failed %d %p\n",
1816 rcode, reply);
1817 if (pHba->host) {
1818 spin_unlock_irqrestore(pHba->host->host_lock, flags);
1819 scsi_unblock_requests(pHba->host);
1820 }
1821 } while (rcode == -ETIMEDOUT);
1822
1823 if(rcode){
1824 goto cleanup;
1825 }
1826
1827 if(sg_offset) {
1828 /* Copy back the Scatter Gather buffers back to user space */
1829 u32 j;
1830 // TODO add 64 bit API
1831 struct sg_simple_element* sg;
1832 int sg_size;
1833
1834 // re-acquire the original message to handle correctly the sg copy operation
1835 memset(&msg, 0, MAX_MESSAGE_SIZE*4);
1836 // get user msg size in u32s
1837 if(get_user(size, &user_msg[0])){
1838 rcode = -EFAULT;
1839 goto cleanup;
1840 }
1841 size = size>>16;
1842 size *= 4;
1843 if (size > MAX_MESSAGE_SIZE) {
1844 rcode = -EINVAL;
1845 goto cleanup;
1846 }
1847 /* Copy in the user's I2O command */
1848 if (copy_from_user (msg, user_msg, size)) {
1849 rcode = -EFAULT;
1850 goto cleanup;
1851 }
1852 sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element);
1853
1854 // TODO add 64 bit API
1855 sg = (struct sg_simple_element*)(msg + sg_offset);
1856 for (j = 0; j < sg_count; j++) {
1857 /* Copy out the SG list to user's buffer if necessary */
1858 if(! (sg[j].flag_count & 0x4000000 /*I2O_SGL_FLAGS_DIR*/)) {
1859 sg_size = sg[j].flag_count & 0xffffff;
1860 // sg_simple_element API is 32 bit
1861 if (copy_to_user((void __user *)(ulong)sg[j].addr_bus,sg_list[j], sg_size)) {
1862 printk(KERN_WARNING"%s: Could not copy %p TO user %x\n",pHba->name, sg_list[j], sg[j].addr_bus);
1863 rcode = -EFAULT;
1864 goto cleanup;
1865 }
1866 }
1867 }
1868 }
1869
1870 /* Copy back the reply to user space */
1871 if (reply_size) {
1872 // we wrote our own values for context - now restore the user supplied ones
1873 if(copy_from_user(reply+2, user_msg+2, sizeof(u32)*2)) {
1874 printk(KERN_WARNING"%s: Could not copy message context FROM user\n",pHba->name);
1875 rcode = -EFAULT;
1876 }
1877 if(copy_to_user(user_reply, reply, reply_size)) {
1878 printk(KERN_WARNING"%s: Could not copy reply TO user\n",pHba->name);
1879 rcode = -EFAULT;
1880 }
1881 }
1882
1883
1884 cleanup:
1885 if (rcode != -ETIME && rcode != -EINTR) {
1886 struct sg_simple_element *sg =
1887 (struct sg_simple_element*) (msg +sg_offset);
1888 kfree (reply);
1889 while(sg_index) {
1890 if(sg_list[--sg_index]) {
1891 dma_free_coherent(&pHba->pDev->dev,
1892 sg[sg_index].flag_count & 0xffffff,
1893 sg_list[sg_index],
1894 sg[sg_index].addr_bus);
1895 }
1896 }
1897 }
1898 return rcode;
1899 }
1900
1901 #if defined __ia64__
1902 static void adpt_ia64_info(sysInfo_S* si)
1903 {
1904 // This is all the info we need for now
1905 // We will add more info as our new
1906 // managmenent utility requires it
1907 si->processorType = PROC_IA64;
1908 }
1909 #endif
1910
1911 #if defined __sparc__
1912 static void adpt_sparc_info(sysInfo_S* si)
1913 {
1914 // This is all the info we need for now
1915 // We will add more info as our new
1916 // managmenent utility requires it
1917 si->processorType = PROC_ULTRASPARC;
1918 }
1919 #endif
1920 #if defined __alpha__
1921 static void adpt_alpha_info(sysInfo_S* si)
1922 {
1923 // This is all the info we need for now
1924 // We will add more info as our new
1925 // managmenent utility requires it
1926 si->processorType = PROC_ALPHA;
1927 }
1928 #endif
1929
1930 #if defined __i386__
1931
1932 #include <uapi/asm/vm86.h>
1933
1934 static void adpt_i386_info(sysInfo_S* si)
1935 {
1936 // This is all the info we need for now
1937 // We will add more info as our new
1938 // managmenent utility requires it
1939 switch (boot_cpu_data.x86) {
1940 case CPU_386:
1941 si->processorType = PROC_386;
1942 break;
1943 case CPU_486:
1944 si->processorType = PROC_486;
1945 break;
1946 case CPU_586:
1947 si->processorType = PROC_PENTIUM;
1948 break;
1949 default: // Just in case
1950 si->processorType = PROC_PENTIUM;
1951 break;
1952 }
1953 }
1954 #endif
1955
1956 /*
1957 * This routine returns information about the system. This does not effect
1958 * any logic and if the info is wrong - it doesn't matter.
1959 */
1960
1961 /* Get all the info we can not get from kernel services */
1962 static int adpt_system_info(void __user *buffer)
1963 {
1964 sysInfo_S si;
1965
1966 memset(&si, 0, sizeof(si));
1967
1968 si.osType = OS_LINUX;
1969 si.osMajorVersion = 0;
1970 si.osMinorVersion = 0;
1971 si.osRevision = 0;
1972 si.busType = SI_PCI_BUS;
1973 si.processorFamily = DPTI_sig.dsProcessorFamily;
1974
1975 #if defined __i386__
1976 adpt_i386_info(&si);
1977 #elif defined (__ia64__)
1978 adpt_ia64_info(&si);
1979 #elif defined(__sparc__)
1980 adpt_sparc_info(&si);
1981 #elif defined (__alpha__)
1982 adpt_alpha_info(&si);
1983 #else
1984 si.processorType = 0xff ;
1985 #endif
1986 if (copy_to_user(buffer, &si, sizeof(si))){
1987 printk(KERN_WARNING"dpti: Could not copy buffer TO user\n");
1988 return -EFAULT;
1989 }
1990
1991 return 0;
1992 }
1993
1994 static int adpt_ioctl(struct inode *inode, struct file *file, uint cmd, ulong arg)
1995 {
1996 int minor;
1997 int error = 0;
1998 adpt_hba* pHba;
1999 ulong flags = 0;
2000 void __user *argp = (void __user *)arg;
2001
2002 minor = iminor(inode);
2003 if (minor >= DPTI_MAX_HBA){
2004 return -ENXIO;
2005 }
2006 mutex_lock(&adpt_configuration_lock);
2007 for (pHba = hba_chain; pHba; pHba = pHba->next) {
2008 if (pHba->unit == minor) {
2009 break; /* found adapter */
2010 }
2011 }
2012 mutex_unlock(&adpt_configuration_lock);
2013 if(pHba == NULL){
2014 return -ENXIO;
2015 }
2016
2017 while((volatile u32) pHba->state & DPTI_STATE_RESET )
2018 schedule_timeout_uninterruptible(2);
2019
2020 switch (cmd) {
2021 // TODO: handle 3 cases
2022 case DPT_SIGNATURE:
2023 if (copy_to_user(argp, &DPTI_sig, sizeof(DPTI_sig))) {
2024 return -EFAULT;
2025 }
2026 break;
2027 case I2OUSRCMD:
2028 return adpt_i2o_passthru(pHba, argp);
2029
2030 case DPT_CTRLINFO:{
2031 drvrHBAinfo_S HbaInfo;
2032
2033 #define FLG_OSD_PCI_VALID 0x0001
2034 #define FLG_OSD_DMA 0x0002
2035 #define FLG_OSD_I2O 0x0004
2036 memset(&HbaInfo, 0, sizeof(HbaInfo));
2037 HbaInfo.drvrHBAnum = pHba->unit;
2038 HbaInfo.baseAddr = (ulong) pHba->base_addr_phys;
2039 HbaInfo.blinkState = adpt_read_blink_led(pHba);
2040 HbaInfo.pciBusNum = pHba->pDev->bus->number;
2041 HbaInfo.pciDeviceNum=PCI_SLOT(pHba->pDev->devfn);
2042 HbaInfo.Interrupt = pHba->pDev->irq;
2043 HbaInfo.hbaFlags = FLG_OSD_PCI_VALID | FLG_OSD_DMA | FLG_OSD_I2O;
2044 if(copy_to_user(argp, &HbaInfo, sizeof(HbaInfo))){
2045 printk(KERN_WARNING"%s: Could not copy HbaInfo TO user\n",pHba->name);
2046 return -EFAULT;
2047 }
2048 break;
2049 }
2050 case DPT_SYSINFO:
2051 return adpt_system_info(argp);
2052 case DPT_BLINKLED:{
2053 u32 value;
2054 value = (u32)adpt_read_blink_led(pHba);
2055 if (copy_to_user(argp, &value, sizeof(value))) {
2056 return -EFAULT;
2057 }
2058 break;
2059 }
2060 case I2ORESETCMD:
2061 if(pHba->host)
2062 spin_lock_irqsave(pHba->host->host_lock, flags);
2063 adpt_hba_reset(pHba);
2064 if(pHba->host)
2065 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2066 break;
2067 case I2ORESCANCMD:
2068 adpt_rescan(pHba);
2069 break;
2070 default:
2071 return -EINVAL;
2072 }
2073
2074 return error;
2075 }
2076
2077 static long adpt_unlocked_ioctl(struct file *file, uint cmd, ulong arg)
2078 {
2079 struct inode *inode;
2080 long ret;
2081
2082 inode = file_inode(file);
2083
2084 mutex_lock(&adpt_mutex);
2085 ret = adpt_ioctl(inode, file, cmd, arg);
2086 mutex_unlock(&adpt_mutex);
2087
2088 return ret;
2089 }
2090
2091 #ifdef CONFIG_COMPAT
2092 static long compat_adpt_ioctl(struct file *file,
2093 unsigned int cmd, unsigned long arg)
2094 {
2095 struct inode *inode;
2096 long ret;
2097
2098 inode = file_inode(file);
2099
2100 mutex_lock(&adpt_mutex);
2101
2102 switch(cmd) {
2103 case DPT_SIGNATURE:
2104 case I2OUSRCMD:
2105 case DPT_CTRLINFO:
2106 case DPT_SYSINFO:
2107 case DPT_BLINKLED:
2108 case I2ORESETCMD:
2109 case I2ORESCANCMD:
2110 case (DPT_TARGET_BUSY & 0xFFFF):
2111 case DPT_TARGET_BUSY:
2112 ret = adpt_ioctl(inode, file, cmd, arg);
2113 break;
2114 default:
2115 ret = -ENOIOCTLCMD;
2116 }
2117
2118 mutex_unlock(&adpt_mutex);
2119
2120 return ret;
2121 }
2122 #endif
2123
2124 static irqreturn_t adpt_isr(int irq, void *dev_id)
2125 {
2126 struct scsi_cmnd* cmd;
2127 adpt_hba* pHba = dev_id;
2128 u32 m;
2129 void __iomem *reply;
2130 u32 status=0;
2131 u32 context;
2132 ulong flags = 0;
2133 int handled = 0;
2134
2135 if (pHba == NULL){
2136 printk(KERN_WARNING"adpt_isr: NULL dev_id\n");
2137 return IRQ_NONE;
2138 }
2139 if(pHba->host)
2140 spin_lock_irqsave(pHba->host->host_lock, flags);
2141
2142 while( readl(pHba->irq_mask) & I2O_INTERRUPT_PENDING_B) {
2143 m = readl(pHba->reply_port);
2144 if(m == EMPTY_QUEUE){
2145 // Try twice then give up
2146 rmb();
2147 m = readl(pHba->reply_port);
2148 if(m == EMPTY_QUEUE){
2149 // This really should not happen
2150 printk(KERN_ERR"dpti: Could not get reply frame\n");
2151 goto out;
2152 }
2153 }
2154 if (pHba->reply_pool_pa <= m &&
2155 m < pHba->reply_pool_pa +
2156 (pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4)) {
2157 reply = (u8 *)pHba->reply_pool +
2158 (m - pHba->reply_pool_pa);
2159 } else {
2160 /* Ick, we should *never* be here */
2161 printk(KERN_ERR "dpti: reply frame not from pool\n");
2162 reply = (u8 *)bus_to_virt(m);
2163 }
2164
2165 if (readl(reply) & MSG_FAIL) {
2166 u32 old_m = readl(reply+28);
2167 void __iomem *msg;
2168 u32 old_context;
2169 PDEBUG("%s: Failed message\n",pHba->name);
2170 if(old_m >= 0x100000){
2171 printk(KERN_ERR"%s: Bad preserved MFA (%x)- dropping frame\n",pHba->name,old_m);
2172 writel(m,pHba->reply_port);
2173 continue;
2174 }
2175 // Transaction context is 0 in failed reply frame
2176 msg = pHba->msg_addr_virt + old_m;
2177 old_context = readl(msg+12);
2178 writel(old_context, reply+12);
2179 adpt_send_nop(pHba, old_m);
2180 }
2181 context = readl(reply+8);
2182 if(context & 0x40000000){ // IOCTL
2183 void *p = adpt_ioctl_from_context(pHba, readl(reply+12));
2184 if( p != NULL) {
2185 memcpy_fromio(p, reply, REPLY_FRAME_SIZE * 4);
2186 }
2187 // All IOCTLs will also be post wait
2188 }
2189 if(context & 0x80000000){ // Post wait message
2190 status = readl(reply+16);
2191 if(status >> 24){
2192 status &= 0xffff; /* Get detail status */
2193 } else {
2194 status = I2O_POST_WAIT_OK;
2195 }
2196 if(!(context & 0x40000000)) {
2197 cmd = adpt_cmd_from_context(pHba,
2198 readl(reply+12));
2199 if(cmd != NULL) {
2200 printk(KERN_WARNING"%s: Apparent SCSI cmd in Post Wait Context - cmd=%p context=%x\n", pHba->name, cmd, context);
2201 }
2202 }
2203 adpt_i2o_post_wait_complete(context, status);
2204 } else { // SCSI message
2205 cmd = adpt_cmd_from_context (pHba, readl(reply+12));
2206 if(cmd != NULL){
2207 scsi_dma_unmap(cmd);
2208 if(cmd->serial_number != 0) { // If not timedout
2209 adpt_i2o_to_scsi(reply, cmd);
2210 }
2211 }
2212 }
2213 writel(m, pHba->reply_port);
2214 wmb();
2215 rmb();
2216 }
2217 handled = 1;
2218 out: if(pHba->host)
2219 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2220 return IRQ_RETVAL(handled);
2221 }
2222
2223 static s32 adpt_scsi_to_i2o(adpt_hba* pHba, struct scsi_cmnd* cmd, struct adpt_device* d)
2224 {
2225 int i;
2226 u32 msg[MAX_MESSAGE_SIZE];
2227 u32* mptr;
2228 u32* lptr;
2229 u32 *lenptr;
2230 int direction;
2231 int scsidir;
2232 int nseg;
2233 u32 len;
2234 u32 reqlen;
2235 s32 rcode;
2236 dma_addr_t addr;
2237
2238 memset(msg, 0 , sizeof(msg));
2239 len = scsi_bufflen(cmd);
2240 direction = 0x00000000;
2241
2242 scsidir = 0x00000000; // DATA NO XFER
2243 if(len) {
2244 /*
2245 * Set SCBFlags to indicate if data is being transferred
2246 * in or out, or no data transfer
2247 * Note: Do not have to verify index is less than 0 since
2248 * cmd->cmnd[0] is an unsigned char
2249 */
2250 switch(cmd->sc_data_direction){
2251 case DMA_FROM_DEVICE:
2252 scsidir =0x40000000; // DATA IN (iop<--dev)
2253 break;
2254 case DMA_TO_DEVICE:
2255 direction=0x04000000; // SGL OUT
2256 scsidir =0x80000000; // DATA OUT (iop-->dev)
2257 break;
2258 case DMA_NONE:
2259 break;
2260 case DMA_BIDIRECTIONAL:
2261 scsidir =0x40000000; // DATA IN (iop<--dev)
2262 // Assume In - and continue;
2263 break;
2264 default:
2265 printk(KERN_WARNING"%s: scsi opcode 0x%x not supported.\n",
2266 pHba->name, cmd->cmnd[0]);
2267 cmd->result = (DID_OK <<16) | (INITIATOR_ERROR << 8);
2268 cmd->scsi_done(cmd);
2269 return 0;
2270 }
2271 }
2272 // msg[0] is set later
2273 // I2O_CMD_SCSI_EXEC
2274 msg[1] = ((0xff<<24)|(HOST_TID<<12)|d->tid);
2275 msg[2] = 0;
2276 msg[3] = adpt_cmd_to_context(cmd); /* Want SCSI control block back */
2277 // Our cards use the transaction context as the tag for queueing
2278 // Adaptec/DPT Private stuff
2279 msg[4] = I2O_CMD_SCSI_EXEC|(DPT_ORGANIZATION_ID<<16);
2280 msg[5] = d->tid;
2281 /* Direction, disconnect ok | sense data | simple queue , CDBLen */
2282 // I2O_SCB_FLAG_ENABLE_DISCONNECT |
2283 // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |
2284 // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE;
2285 msg[6] = scsidir|0x20a00000|cmd->cmd_len;
2286
2287 mptr=msg+7;
2288
2289 // Write SCSI command into the message - always 16 byte block
2290 memset(mptr, 0, 16);
2291 memcpy(mptr, cmd->cmnd, cmd->cmd_len);
2292 mptr+=4;
2293 lenptr=mptr++; /* Remember me - fill in when we know */
2294 if (dpt_dma64(pHba)) {
2295 reqlen = 16; // SINGLE SGE
2296 *mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */
2297 *mptr++ = 1 << PAGE_SHIFT;
2298 } else {
2299 reqlen = 14; // SINGLE SGE
2300 }
2301 /* Now fill in the SGList and command */
2302
2303 nseg = scsi_dma_map(cmd);
2304 BUG_ON(nseg < 0);
2305 if (nseg) {
2306 struct scatterlist *sg;
2307
2308 len = 0;
2309 scsi_for_each_sg(cmd, sg, nseg, i) {
2310 lptr = mptr;
2311 *mptr++ = direction|0x10000000|sg_dma_len(sg);
2312 len+=sg_dma_len(sg);
2313 addr = sg_dma_address(sg);
2314 *mptr++ = dma_low(addr);
2315 if (dpt_dma64(pHba))
2316 *mptr++ = dma_high(addr);
2317 /* Make this an end of list */
2318 if (i == nseg - 1)
2319 *lptr = direction|0xD0000000|sg_dma_len(sg);
2320 }
2321 reqlen = mptr - msg;
2322 *lenptr = len;
2323
2324 if(cmd->underflow && len != cmd->underflow){
2325 printk(KERN_WARNING"Cmd len %08X Cmd underflow %08X\n",
2326 len, cmd->underflow);
2327 }
2328 } else {
2329 *lenptr = len = 0;
2330 reqlen = 12;
2331 }
2332
2333 /* Stick the headers on */
2334 msg[0] = reqlen<<16 | ((reqlen > 12) ? SGL_OFFSET_12 : SGL_OFFSET_0);
2335
2336 // Send it on it's way
2337 rcode = adpt_i2o_post_this(pHba, msg, reqlen<<2);
2338 if (rcode == 0) {
2339 return 0;
2340 }
2341 return rcode;
2342 }
2343
2344
2345 static s32 adpt_scsi_host_alloc(adpt_hba* pHba, struct scsi_host_template *sht)
2346 {
2347 struct Scsi_Host *host;
2348
2349 host = scsi_host_alloc(sht, sizeof(adpt_hba*));
2350 if (host == NULL) {
2351 printk("%s: scsi_host_alloc returned NULL\n", pHba->name);
2352 return -1;
2353 }
2354 host->hostdata[0] = (unsigned long)pHba;
2355 pHba->host = host;
2356
2357 host->irq = pHba->pDev->irq;
2358 /* no IO ports, so don't have to set host->io_port and
2359 * host->n_io_port
2360 */
2361 host->io_port = 0;
2362 host->n_io_port = 0;
2363 /* see comments in scsi_host.h */
2364 host->max_id = 16;
2365 host->max_lun = 256;
2366 host->max_channel = pHba->top_scsi_channel + 1;
2367 host->cmd_per_lun = 1;
2368 host->unique_id = (u32)sys_tbl_pa + pHba->unit;
2369 host->sg_tablesize = pHba->sg_tablesize;
2370 host->can_queue = pHba->post_fifo_size;
2371 host->use_cmd_list = 1;
2372
2373 return 0;
2374 }
2375
2376
2377 static s32 adpt_i2o_to_scsi(void __iomem *reply, struct scsi_cmnd* cmd)
2378 {
2379 adpt_hba* pHba;
2380 u32 hba_status;
2381 u32 dev_status;
2382 u32 reply_flags = readl(reply) & 0xff00; // Leave it shifted up 8 bits
2383 // I know this would look cleaner if I just read bytes
2384 // but the model I have been using for all the rest of the
2385 // io is in 4 byte words - so I keep that model
2386 u16 detailed_status = readl(reply+16) &0xffff;
2387 dev_status = (detailed_status & 0xff);
2388 hba_status = detailed_status >> 8;
2389
2390 // calculate resid for sg
2391 scsi_set_resid(cmd, scsi_bufflen(cmd) - readl(reply+20));
2392
2393 pHba = (adpt_hba*) cmd->device->host->hostdata[0];
2394
2395 cmd->sense_buffer[0] = '\0'; // initialize sense valid flag to false
2396
2397 if(!(reply_flags & MSG_FAIL)) {
2398 switch(detailed_status & I2O_SCSI_DSC_MASK) {
2399 case I2O_SCSI_DSC_SUCCESS:
2400 cmd->result = (DID_OK << 16);
2401 // handle underflow
2402 if (readl(reply+20) < cmd->underflow) {
2403 cmd->result = (DID_ERROR <<16);
2404 printk(KERN_WARNING"%s: SCSI CMD underflow\n",pHba->name);
2405 }
2406 break;
2407 case I2O_SCSI_DSC_REQUEST_ABORTED:
2408 cmd->result = (DID_ABORT << 16);
2409 break;
2410 case I2O_SCSI_DSC_PATH_INVALID:
2411 case I2O_SCSI_DSC_DEVICE_NOT_PRESENT:
2412 case I2O_SCSI_DSC_SELECTION_TIMEOUT:
2413 case I2O_SCSI_DSC_COMMAND_TIMEOUT:
2414 case I2O_SCSI_DSC_NO_ADAPTER:
2415 case I2O_SCSI_DSC_RESOURCE_UNAVAILABLE:
2416 printk(KERN_WARNING"%s: SCSI Timeout-Device (%d,%d,%llu) hba status=0x%x, dev status=0x%x, cmd=0x%x\n",
2417 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun, hba_status, dev_status, cmd->cmnd[0]);
2418 cmd->result = (DID_TIME_OUT << 16);
2419 break;
2420 case I2O_SCSI_DSC_ADAPTER_BUSY:
2421 case I2O_SCSI_DSC_BUS_BUSY:
2422 cmd->result = (DID_BUS_BUSY << 16);
2423 break;
2424 case I2O_SCSI_DSC_SCSI_BUS_RESET:
2425 case I2O_SCSI_DSC_BDR_MESSAGE_SENT:
2426 cmd->result = (DID_RESET << 16);
2427 break;
2428 case I2O_SCSI_DSC_PARITY_ERROR_FAILURE:
2429 printk(KERN_WARNING"%s: SCSI CMD parity error\n",pHba->name);
2430 cmd->result = (DID_PARITY << 16);
2431 break;
2432 case I2O_SCSI_DSC_UNABLE_TO_ABORT:
2433 case I2O_SCSI_DSC_COMPLETE_WITH_ERROR:
2434 case I2O_SCSI_DSC_UNABLE_TO_TERMINATE:
2435 case I2O_SCSI_DSC_MR_MESSAGE_RECEIVED:
2436 case I2O_SCSI_DSC_AUTOSENSE_FAILED:
2437 case I2O_SCSI_DSC_DATA_OVERRUN:
2438 case I2O_SCSI_DSC_UNEXPECTED_BUS_FREE:
2439 case I2O_SCSI_DSC_SEQUENCE_FAILURE:
2440 case I2O_SCSI_DSC_REQUEST_LENGTH_ERROR:
2441 case I2O_SCSI_DSC_PROVIDE_FAILURE:
2442 case I2O_SCSI_DSC_REQUEST_TERMINATED:
2443 case I2O_SCSI_DSC_IDE_MESSAGE_SENT:
2444 case I2O_SCSI_DSC_UNACKNOWLEDGED_EVENT:
2445 case I2O_SCSI_DSC_MESSAGE_RECEIVED:
2446 case I2O_SCSI_DSC_INVALID_CDB:
2447 case I2O_SCSI_DSC_LUN_INVALID:
2448 case I2O_SCSI_DSC_SCSI_TID_INVALID:
2449 case I2O_SCSI_DSC_FUNCTION_UNAVAILABLE:
2450 case I2O_SCSI_DSC_NO_NEXUS:
2451 case I2O_SCSI_DSC_CDB_RECEIVED:
2452 case I2O_SCSI_DSC_LUN_ALREADY_ENABLED:
2453 case I2O_SCSI_DSC_QUEUE_FROZEN:
2454 case I2O_SCSI_DSC_REQUEST_INVALID:
2455 default:
2456 printk(KERN_WARNING"%s: SCSI error %0x-Device(%d,%d,%llu) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n",
2457 pHba->name, detailed_status & I2O_SCSI_DSC_MASK, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun,
2458 hba_status, dev_status, cmd->cmnd[0]);
2459 cmd->result = (DID_ERROR << 16);
2460 break;
2461 }
2462
2463 // copy over the request sense data if it was a check
2464 // condition status
2465 if (dev_status == SAM_STAT_CHECK_CONDITION) {
2466 u32 len = min(SCSI_SENSE_BUFFERSIZE, 40);
2467 // Copy over the sense data
2468 memcpy_fromio(cmd->sense_buffer, (reply+28) , len);
2469 if(cmd->sense_buffer[0] == 0x70 /* class 7 */ &&
2470 cmd->sense_buffer[2] == DATA_PROTECT ){
2471 /* This is to handle an array failed */
2472 cmd->result = (DID_TIME_OUT << 16);
2473 printk(KERN_WARNING"%s: SCSI Data Protect-Device (%d,%d,%llu) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n",
2474 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun,
2475 hba_status, dev_status, cmd->cmnd[0]);
2476
2477 }
2478 }
2479 } else {
2480 /* In this condtion we could not talk to the tid
2481 * the card rejected it. We should signal a retry
2482 * for a limitted number of retries.
2483 */
2484 cmd->result = (DID_TIME_OUT << 16);
2485 printk(KERN_WARNING"%s: I2O MSG_FAIL - Device (%d,%d,%llu) tid=%d, cmd=0x%x\n",
2486 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, cmd->device->lun,
2487 ((struct adpt_device*)(cmd->device->hostdata))->tid, cmd->cmnd[0]);
2488 }
2489
2490 cmd->result |= (dev_status);
2491
2492 if(cmd->scsi_done != NULL){
2493 cmd->scsi_done(cmd);
2494 }
2495 return cmd->result;
2496 }
2497
2498
2499 static s32 adpt_rescan(adpt_hba* pHba)
2500 {
2501 s32 rcode;
2502 ulong flags = 0;
2503
2504 if(pHba->host)
2505 spin_lock_irqsave(pHba->host->host_lock, flags);
2506 if ((rcode=adpt_i2o_lct_get(pHba)) < 0)
2507 goto out;
2508 if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0)
2509 goto out;
2510 rcode = 0;
2511 out: if(pHba->host)
2512 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2513 return rcode;
2514 }
2515
2516
2517 static s32 adpt_i2o_reparse_lct(adpt_hba* pHba)
2518 {
2519 int i;
2520 int max;
2521 int tid;
2522 struct i2o_device *d;
2523 i2o_lct *lct = pHba->lct;
2524 u8 bus_no = 0;
2525 s16 scsi_id;
2526 u64 scsi_lun;
2527 u32 buf[10]; // at least 8 u32's
2528 struct adpt_device* pDev = NULL;
2529 struct i2o_device* pI2o_dev = NULL;
2530
2531 if (lct == NULL) {
2532 printk(KERN_ERR "%s: LCT is empty???\n",pHba->name);
2533 return -1;
2534 }
2535
2536 max = lct->table_size;
2537 max -= 3;
2538 max /= 9;
2539
2540 // Mark each drive as unscanned
2541 for (d = pHba->devices; d; d = d->next) {
2542 pDev =(struct adpt_device*) d->owner;
2543 if(!pDev){
2544 continue;
2545 }
2546 pDev->state |= DPTI_DEV_UNSCANNED;
2547 }
2548
2549 printk(KERN_INFO "%s: LCT has %d entries.\n", pHba->name,max);
2550
2551 for(i=0;i<max;i++) {
2552 if( lct->lct_entry[i].user_tid != 0xfff){
2553 continue;
2554 }
2555
2556 if( lct->lct_entry[i].class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE ||
2557 lct->lct_entry[i].class_id == I2O_CLASS_SCSI_PERIPHERAL ||
2558 lct->lct_entry[i].class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
2559 tid = lct->lct_entry[i].tid;
2560 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) {
2561 printk(KERN_ERR"%s: Could not query device\n",pHba->name);
2562 continue;
2563 }
2564 bus_no = buf[0]>>16;
2565 if (bus_no >= MAX_CHANNEL) { /* Something wrong skip it */
2566 printk(KERN_WARNING
2567 "%s: Channel number %d out of range\n",
2568 pHba->name, bus_no);
2569 continue;
2570 }
2571
2572 scsi_id = buf[1];
2573 scsi_lun = scsilun_to_int((struct scsi_lun *)&buf[2]);
2574 pDev = pHba->channel[bus_no].device[scsi_id];
2575 /* da lun */
2576 while(pDev) {
2577 if(pDev->scsi_lun == scsi_lun) {
2578 break;
2579 }
2580 pDev = pDev->next_lun;
2581 }
2582 if(!pDev ) { // Something new add it
2583 d = kmalloc(sizeof(struct i2o_device),
2584 GFP_ATOMIC);
2585 if(d==NULL)
2586 {
2587 printk(KERN_CRIT "Out of memory for I2O device data.\n");
2588 return -ENOMEM;
2589 }
2590
2591 d->controller = pHba;
2592 d->next = NULL;
2593
2594 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
2595
2596 d->flags = 0;
2597 adpt_i2o_report_hba_unit(pHba, d);
2598 adpt_i2o_install_device(pHba, d);
2599
2600 pDev = pHba->channel[bus_no].device[scsi_id];
2601 if( pDev == NULL){
2602 pDev =
2603 kzalloc(sizeof(struct adpt_device),
2604 GFP_ATOMIC);
2605 if(pDev == NULL) {
2606 return -ENOMEM;
2607 }
2608 pHba->channel[bus_no].device[scsi_id] = pDev;
2609 } else {
2610 while (pDev->next_lun) {
2611 pDev = pDev->next_lun;
2612 }
2613 pDev = pDev->next_lun =
2614 kzalloc(sizeof(struct adpt_device),
2615 GFP_ATOMIC);
2616 if(pDev == NULL) {
2617 return -ENOMEM;
2618 }
2619 }
2620 pDev->tid = d->lct_data.tid;
2621 pDev->scsi_channel = bus_no;
2622 pDev->scsi_id = scsi_id;
2623 pDev->scsi_lun = scsi_lun;
2624 pDev->pI2o_dev = d;
2625 d->owner = pDev;
2626 pDev->type = (buf[0])&0xff;
2627 pDev->flags = (buf[0]>>8)&0xff;
2628 // Too late, SCSI system has made up it's mind, but what the hey ...
2629 if(scsi_id > pHba->top_scsi_id){
2630 pHba->top_scsi_id = scsi_id;
2631 }
2632 if(scsi_lun > pHba->top_scsi_lun){
2633 pHba->top_scsi_lun = scsi_lun;
2634 }
2635 continue;
2636 } // end of new i2o device
2637
2638 // We found an old device - check it
2639 while(pDev) {
2640 if(pDev->scsi_lun == scsi_lun) {
2641 if(!scsi_device_online(pDev->pScsi_dev)) {
2642 printk(KERN_WARNING"%s: Setting device (%d,%d,%llu) back online\n",
2643 pHba->name,bus_no,scsi_id,scsi_lun);
2644 if (pDev->pScsi_dev) {
2645 scsi_device_set_state(pDev->pScsi_dev, SDEV_RUNNING);
2646 }
2647 }
2648 d = pDev->pI2o_dev;
2649 if(d->lct_data.tid != tid) { // something changed
2650 pDev->tid = tid;
2651 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
2652 if (pDev->pScsi_dev) {
2653 pDev->pScsi_dev->changed = TRUE;
2654 pDev->pScsi_dev->removable = TRUE;
2655 }
2656 }
2657 // Found it - mark it scanned
2658 pDev->state = DPTI_DEV_ONLINE;
2659 break;
2660 }
2661 pDev = pDev->next_lun;
2662 }
2663 }
2664 }
2665 for (pI2o_dev = pHba->devices; pI2o_dev; pI2o_dev = pI2o_dev->next) {
2666 pDev =(struct adpt_device*) pI2o_dev->owner;
2667 if(!pDev){
2668 continue;
2669 }
2670 // Drive offline drives that previously existed but could not be found
2671 // in the LCT table
2672 if (pDev->state & DPTI_DEV_UNSCANNED){
2673 pDev->state = DPTI_DEV_OFFLINE;
2674 printk(KERN_WARNING"%s: Device (%d,%d,%llu) offline\n",pHba->name,pDev->scsi_channel,pDev->scsi_id,pDev->scsi_lun);
2675 if (pDev->pScsi_dev) {
2676 scsi_device_set_state(pDev->pScsi_dev, SDEV_OFFLINE);
2677 }
2678 }
2679 }
2680 return 0;
2681 }
2682
2683 static void adpt_fail_posted_scbs(adpt_hba* pHba)
2684 {
2685 struct scsi_cmnd* cmd = NULL;
2686 struct scsi_device* d = NULL;
2687
2688 shost_for_each_device(d, pHba->host) {
2689 unsigned long flags;
2690 spin_lock_irqsave(&d->list_lock, flags);
2691 list_for_each_entry(cmd, &d->cmd_list, list) {
2692 if(cmd->serial_number == 0){
2693 continue;
2694 }
2695 cmd->result = (DID_OK << 16) | (QUEUE_FULL <<1);
2696 cmd->scsi_done(cmd);
2697 }
2698 spin_unlock_irqrestore(&d->list_lock, flags);
2699 }
2700 }
2701
2702
2703 /*============================================================================
2704 * Routines from i2o subsystem
2705 *============================================================================
2706 */
2707
2708
2709
2710 /*
2711 * Bring an I2O controller into HOLD state. See the spec.
2712 */
2713 static int adpt_i2o_activate_hba(adpt_hba* pHba)
2714 {
2715 int rcode;
2716
2717 if(pHba->initialized ) {
2718 if (adpt_i2o_status_get(pHba) < 0) {
2719 if((rcode = adpt_i2o_reset_hba(pHba)) != 0){
2720 printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name);
2721 return rcode;
2722 }
2723 if (adpt_i2o_status_get(pHba) < 0) {
2724 printk(KERN_INFO "HBA not responding.\n");
2725 return -1;
2726 }
2727 }
2728
2729 if(pHba->status_block->iop_state == ADAPTER_STATE_FAULTED) {
2730 printk(KERN_CRIT "%s: hardware fault\n", pHba->name);
2731 return -1;
2732 }
2733
2734 if (pHba->status_block->iop_state == ADAPTER_STATE_READY ||
2735 pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL ||
2736 pHba->status_block->iop_state == ADAPTER_STATE_HOLD ||
2737 pHba->status_block->iop_state == ADAPTER_STATE_FAILED) {
2738 adpt_i2o_reset_hba(pHba);
2739 if (adpt_i2o_status_get(pHba) < 0 || pHba->status_block->iop_state != ADAPTER_STATE_RESET) {
2740 printk(KERN_ERR "%s: Failed to initialize.\n", pHba->name);
2741 return -1;
2742 }
2743 }
2744 } else {
2745 if((rcode = adpt_i2o_reset_hba(pHba)) != 0){
2746 printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name);
2747 return rcode;
2748 }
2749
2750 }
2751
2752 if (adpt_i2o_init_outbound_q(pHba) < 0) {
2753 return -1;
2754 }
2755
2756 /* In HOLD state */
2757
2758 if (adpt_i2o_hrt_get(pHba) < 0) {
2759 return -1;
2760 }
2761
2762 return 0;
2763 }
2764
2765 /*
2766 * Bring a controller online into OPERATIONAL state.
2767 */
2768
2769 static int adpt_i2o_online_hba(adpt_hba* pHba)
2770 {
2771 if (adpt_i2o_systab_send(pHba) < 0) {
2772 adpt_i2o_delete_hba(pHba);
2773 return -1;
2774 }
2775 /* In READY state */
2776
2777 if (adpt_i2o_enable_hba(pHba) < 0) {
2778 adpt_i2o_delete_hba(pHba);
2779 return -1;
2780 }
2781
2782 /* In OPERATIONAL state */
2783 return 0;
2784 }
2785
2786 static s32 adpt_send_nop(adpt_hba*pHba,u32 m)
2787 {
2788 u32 __iomem *msg;
2789 ulong timeout = jiffies + 5*HZ;
2790
2791 while(m == EMPTY_QUEUE){
2792 rmb();
2793 m = readl(pHba->post_port);
2794 if(m != EMPTY_QUEUE){
2795 break;
2796 }
2797 if(time_after(jiffies,timeout)){
2798 printk(KERN_ERR "%s: Timeout waiting for message frame!\n",pHba->name);
2799 return 2;
2800 }
2801 schedule_timeout_uninterruptible(1);
2802 }
2803 msg = (u32 __iomem *)(pHba->msg_addr_virt + m);
2804 writel( THREE_WORD_MSG_SIZE | SGL_OFFSET_0,&msg[0]);
2805 writel( I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | 0,&msg[1]);
2806 writel( 0,&msg[2]);
2807 wmb();
2808
2809 writel(m, pHba->post_port);
2810 wmb();
2811 return 0;
2812 }
2813
2814 static s32 adpt_i2o_init_outbound_q(adpt_hba* pHba)
2815 {
2816 u8 *status;
2817 dma_addr_t addr;
2818 u32 __iomem *msg = NULL;
2819 int i;
2820 ulong timeout = jiffies + TMOUT_INITOUTBOUND*HZ;
2821 u32 m;
2822
2823 do {
2824 rmb();
2825 m = readl(pHba->post_port);
2826 if (m != EMPTY_QUEUE) {
2827 break;
2828 }
2829
2830 if(time_after(jiffies,timeout)){
2831 printk(KERN_WARNING"%s: Timeout waiting for message frame\n",pHba->name);
2832 return -ETIMEDOUT;
2833 }
2834 schedule_timeout_uninterruptible(1);
2835 } while(m == EMPTY_QUEUE);
2836
2837 msg=(u32 __iomem *)(pHba->msg_addr_virt+m);
2838
2839 status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL);
2840 if (!status) {
2841 adpt_send_nop(pHba, m);
2842 printk(KERN_WARNING"%s: IOP reset failed - no free memory.\n",
2843 pHba->name);
2844 return -ENOMEM;
2845 }
2846 memset(status, 0, 4);
2847
2848 writel(EIGHT_WORD_MSG_SIZE| SGL_OFFSET_6, &msg[0]);
2849 writel(I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID, &msg[1]);
2850 writel(0, &msg[2]);
2851 writel(0x0106, &msg[3]); /* Transaction context */
2852 writel(4096, &msg[4]); /* Host page frame size */
2853 writel((REPLY_FRAME_SIZE)<<16|0x80, &msg[5]); /* Outbound msg frame size and Initcode */
2854 writel(0xD0000004, &msg[6]); /* Simple SG LE, EOB */
2855 writel((u32)addr, &msg[7]);
2856
2857 writel(m, pHba->post_port);
2858 wmb();
2859
2860 // Wait for the reply status to come back
2861 do {
2862 if (*status) {
2863 if (*status != 0x01 /*I2O_EXEC_OUTBOUND_INIT_IN_PROGRESS*/) {
2864 break;
2865 }
2866 }
2867 rmb();
2868 if(time_after(jiffies,timeout)){
2869 printk(KERN_WARNING"%s: Timeout Initializing\n",pHba->name);
2870 /* We lose 4 bytes of "status" here, but we
2871 cannot free these because controller may
2872 awake and corrupt those bytes at any time */
2873 /* dma_free_coherent(&pHba->pDev->dev, 4, status, addr); */
2874 return -ETIMEDOUT;
2875 }
2876 schedule_timeout_uninterruptible(1);
2877 } while (1);
2878
2879 // If the command was successful, fill the fifo with our reply
2880 // message packets
2881 if(*status != 0x04 /*I2O_EXEC_OUTBOUND_INIT_COMPLETE*/) {
2882 dma_free_coherent(&pHba->pDev->dev, 4, status, addr);
2883 return -2;
2884 }
2885 dma_free_coherent(&pHba->pDev->dev, 4, status, addr);
2886
2887 if(pHba->reply_pool != NULL) {
2888 dma_free_coherent(&pHba->pDev->dev,
2889 pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4,
2890 pHba->reply_pool, pHba->reply_pool_pa);
2891 }
2892
2893 pHba->reply_pool = dma_alloc_coherent(&pHba->pDev->dev,
2894 pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4,
2895 &pHba->reply_pool_pa, GFP_KERNEL);
2896 if (!pHba->reply_pool) {
2897 printk(KERN_ERR "%s: Could not allocate reply pool\n", pHba->name);
2898 return -ENOMEM;
2899 }
2900 memset(pHba->reply_pool, 0 , pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4);
2901
2902 for(i = 0; i < pHba->reply_fifo_size; i++) {
2903 writel(pHba->reply_pool_pa + (i * REPLY_FRAME_SIZE * 4),
2904 pHba->reply_port);
2905 wmb();
2906 }
2907 adpt_i2o_status_get(pHba);
2908 return 0;
2909 }
2910
2911
2912 /*
2913 * I2O System Table. Contains information about
2914 * all the IOPs in the system. Used to inform IOPs
2915 * about each other's existence.
2916 *
2917 * sys_tbl_ver is the CurrentChangeIndicator that is
2918 * used by IOPs to track changes.
2919 */
2920
2921
2922
2923 static s32 adpt_i2o_status_get(adpt_hba* pHba)
2924 {
2925 ulong timeout;
2926 u32 m;
2927 u32 __iomem *msg;
2928 u8 *status_block=NULL;
2929
2930 if(pHba->status_block == NULL) {
2931 pHba->status_block = dma_alloc_coherent(&pHba->pDev->dev,
2932 sizeof(i2o_status_block),
2933 &pHba->status_block_pa, GFP_KERNEL);
2934 if(pHba->status_block == NULL) {
2935 printk(KERN_ERR
2936 "dpti%d: Get Status Block failed; Out of memory. \n",
2937 pHba->unit);
2938 return -ENOMEM;
2939 }
2940 }
2941 memset(pHba->status_block, 0, sizeof(i2o_status_block));
2942 status_block = (u8*)(pHba->status_block);
2943 timeout = jiffies+TMOUT_GETSTATUS*HZ;
2944 do {
2945 rmb();
2946 m = readl(pHba->post_port);
2947 if (m != EMPTY_QUEUE) {
2948 break;
2949 }
2950 if(time_after(jiffies,timeout)){
2951 printk(KERN_ERR "%s: Timeout waiting for message !\n",
2952 pHba->name);
2953 return -ETIMEDOUT;
2954 }
2955 schedule_timeout_uninterruptible(1);
2956 } while(m==EMPTY_QUEUE);
2957
2958
2959 msg=(u32 __iomem *)(pHba->msg_addr_virt+m);
2960
2961 writel(NINE_WORD_MSG_SIZE|SGL_OFFSET_0, &msg[0]);
2962 writel(I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID, &msg[1]);
2963 writel(1, &msg[2]);
2964 writel(0, &msg[3]);
2965 writel(0, &msg[4]);
2966 writel(0, &msg[5]);
2967 writel( dma_low(pHba->status_block_pa), &msg[6]);
2968 writel( dma_high(pHba->status_block_pa), &msg[7]);
2969 writel(sizeof(i2o_status_block), &msg[8]); // 88 bytes
2970
2971 //post message
2972 writel(m, pHba->post_port);
2973 wmb();
2974
2975 while(status_block[87]!=0xff){
2976 if(time_after(jiffies,timeout)){
2977 printk(KERN_ERR"dpti%d: Get status timeout.\n",
2978 pHba->unit);
2979 return -ETIMEDOUT;
2980 }
2981 rmb();
2982 schedule_timeout_uninterruptible(1);
2983 }
2984
2985 // Set up our number of outbound and inbound messages
2986 pHba->post_fifo_size = pHba->status_block->max_inbound_frames;
2987 if (pHba->post_fifo_size > MAX_TO_IOP_MESSAGES) {
2988 pHba->post_fifo_size = MAX_TO_IOP_MESSAGES;
2989 }
2990
2991 pHba->reply_fifo_size = pHba->status_block->max_outbound_frames;
2992 if (pHba->reply_fifo_size > MAX_FROM_IOP_MESSAGES) {
2993 pHba->reply_fifo_size = MAX_FROM_IOP_MESSAGES;
2994 }
2995
2996 // Calculate the Scatter Gather list size
2997 if (dpt_dma64(pHba)) {
2998 pHba->sg_tablesize
2999 = ((pHba->status_block->inbound_frame_size * 4
3000 - 14 * sizeof(u32))
3001 / (sizeof(struct sg_simple_element) + sizeof(u32)));
3002 } else {
3003 pHba->sg_tablesize
3004 = ((pHba->status_block->inbound_frame_size * 4
3005 - 12 * sizeof(u32))
3006 / sizeof(struct sg_simple_element));
3007 }
3008 if (pHba->sg_tablesize > SG_LIST_ELEMENTS) {
3009 pHba->sg_tablesize = SG_LIST_ELEMENTS;
3010 }
3011
3012
3013 #ifdef DEBUG
3014 printk("dpti%d: State = ",pHba->unit);
3015 switch(pHba->status_block->iop_state) {
3016 case 0x01:
3017 printk("INIT\n");
3018 break;
3019 case 0x02:
3020 printk("RESET\n");
3021 break;
3022 case 0x04:
3023 printk("HOLD\n");
3024 break;
3025 case 0x05:
3026 printk("READY\n");
3027 break;
3028 case 0x08:
3029 printk("OPERATIONAL\n");
3030 break;
3031 case 0x10:
3032 printk("FAILED\n");
3033 break;
3034 case 0x11:
3035 printk("FAULTED\n");
3036 break;
3037 default:
3038 printk("%x (unknown!!)\n",pHba->status_block->iop_state);
3039 }
3040 #endif
3041 return 0;
3042 }
3043
3044 /*
3045 * Get the IOP's Logical Configuration Table
3046 */
3047 static int adpt_i2o_lct_get(adpt_hba* pHba)
3048 {
3049 u32 msg[8];
3050 int ret;
3051 u32 buf[16];
3052
3053 if ((pHba->lct_size == 0) || (pHba->lct == NULL)){
3054 pHba->lct_size = pHba->status_block->expected_lct_size;
3055 }
3056 do {
3057 if (pHba->lct == NULL) {
3058 pHba->lct = dma_alloc_coherent(&pHba->pDev->dev,
3059 pHba->lct_size, &pHba->lct_pa,
3060 GFP_ATOMIC);
3061 if(pHba->lct == NULL) {
3062 printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n",
3063 pHba->name);
3064 return -ENOMEM;
3065 }
3066 }
3067 memset(pHba->lct, 0, pHba->lct_size);
3068
3069 msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6;
3070 msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID;
3071 msg[2] = 0;
3072 msg[3] = 0;
3073 msg[4] = 0xFFFFFFFF; /* All devices */
3074 msg[5] = 0x00000000; /* Report now */
3075 msg[6] = 0xD0000000|pHba->lct_size;
3076 msg[7] = (u32)pHba->lct_pa;
3077
3078 if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 360))) {
3079 printk(KERN_ERR "%s: LCT Get failed (status=%#10x.\n",
3080 pHba->name, ret);
3081 printk(KERN_ERR"Adaptec: Error Reading Hardware.\n");
3082 return ret;
3083 }
3084
3085 if ((pHba->lct->table_size << 2) > pHba->lct_size) {
3086 pHba->lct_size = pHba->lct->table_size << 2;
3087 dma_free_coherent(&pHba->pDev->dev, pHba->lct_size,
3088 pHba->lct, pHba->lct_pa);
3089 pHba->lct = NULL;
3090 }
3091 } while (pHba->lct == NULL);
3092
3093 PDEBUG("%s: Hardware resource table read.\n", pHba->name);
3094
3095
3096 // I2O_DPT_EXEC_IOP_BUFFERS_GROUP_NO;
3097 if(adpt_i2o_query_scalar(pHba, 0 , 0x8000, -1, buf, sizeof(buf))>=0) {
3098 pHba->FwDebugBufferSize = buf[1];
3099 pHba->FwDebugBuffer_P = ioremap(pHba->base_addr_phys + buf[0],
3100 pHba->FwDebugBufferSize);
3101 if (pHba->FwDebugBuffer_P) {
3102 pHba->FwDebugFlags_P = pHba->FwDebugBuffer_P +
3103 FW_DEBUG_FLAGS_OFFSET;
3104 pHba->FwDebugBLEDvalue_P = pHba->FwDebugBuffer_P +
3105 FW_DEBUG_BLED_OFFSET;
3106 pHba->FwDebugBLEDflag_P = pHba->FwDebugBLEDvalue_P + 1;
3107 pHba->FwDebugStrLength_P = pHba->FwDebugBuffer_P +
3108 FW_DEBUG_STR_LENGTH_OFFSET;
3109 pHba->FwDebugBuffer_P += buf[2];
3110 pHba->FwDebugFlags = 0;
3111 }
3112 }
3113
3114 return 0;
3115 }
3116
3117 static int adpt_i2o_build_sys_table(void)
3118 {
3119 adpt_hba* pHba = hba_chain;
3120 int count = 0;
3121
3122 if (sys_tbl)
3123 dma_free_coherent(&pHba->pDev->dev, sys_tbl_len,
3124 sys_tbl, sys_tbl_pa);
3125
3126 sys_tbl_len = sizeof(struct i2o_sys_tbl) + // Header + IOPs
3127 (hba_count) * sizeof(struct i2o_sys_tbl_entry);
3128
3129 sys_tbl = dma_alloc_coherent(&pHba->pDev->dev,
3130 sys_tbl_len, &sys_tbl_pa, GFP_KERNEL);
3131 if (!sys_tbl) {
3132 printk(KERN_WARNING "SysTab Set failed. Out of memory.\n");
3133 return -ENOMEM;
3134 }
3135 memset(sys_tbl, 0, sys_tbl_len);
3136
3137 sys_tbl->num_entries = hba_count;
3138 sys_tbl->version = I2OVERSION;
3139 sys_tbl->change_ind = sys_tbl_ind++;
3140
3141 for(pHba = hba_chain; pHba; pHba = pHba->next) {
3142 u64 addr;
3143 // Get updated Status Block so we have the latest information
3144 if (adpt_i2o_status_get(pHba)) {
3145 sys_tbl->num_entries--;
3146 continue; // try next one
3147 }
3148
3149 sys_tbl->iops[count].org_id = pHba->status_block->org_id;
3150 sys_tbl->iops[count].iop_id = pHba->unit + 2;
3151 sys_tbl->iops[count].seg_num = 0;
3152 sys_tbl->iops[count].i2o_version = pHba->status_block->i2o_version;
3153 sys_tbl->iops[count].iop_state = pHba->status_block->iop_state;
3154 sys_tbl->iops[count].msg_type = pHba->status_block->msg_type;
3155 sys_tbl->iops[count].frame_size = pHba->status_block->inbound_frame_size;
3156 sys_tbl->iops[count].last_changed = sys_tbl_ind - 1; // ??
3157 sys_tbl->iops[count].iop_capabilities = pHba->status_block->iop_capabilities;
3158 addr = pHba->base_addr_phys + 0x40;
3159 sys_tbl->iops[count].inbound_low = dma_low(addr);
3160 sys_tbl->iops[count].inbound_high = dma_high(addr);
3161
3162 count++;
3163 }
3164
3165 #ifdef DEBUG
3166 {
3167 u32 *table = (u32*)sys_tbl;
3168 printk(KERN_DEBUG"sys_tbl_len=%d in 32bit words\n",(sys_tbl_len >>2));
3169 for(count = 0; count < (sys_tbl_len >>2); count++) {
3170 printk(KERN_INFO "sys_tbl[%d] = %0#10x\n",
3171 count, table[count]);
3172 }
3173 }
3174 #endif
3175
3176 return 0;
3177 }
3178
3179
3180 /*
3181 * Dump the information block associated with a given unit (TID)
3182 */
3183
3184 static void adpt_i2o_report_hba_unit(adpt_hba* pHba, struct i2o_device *d)
3185 {
3186 char buf[64];
3187 int unit = d->lct_data.tid;
3188
3189 printk(KERN_INFO "TID %3.3d ", unit);
3190
3191 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 3, buf, 16)>=0)
3192 {
3193 buf[16]=0;
3194 printk(" Vendor: %-12.12s", buf);
3195 }
3196 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 4, buf, 16)>=0)
3197 {
3198 buf[16]=0;
3199 printk(" Device: %-12.12s", buf);
3200 }
3201 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 6, buf, 8)>=0)
3202 {
3203 buf[8]=0;
3204 printk(" Rev: %-12.12s\n", buf);
3205 }
3206 #ifdef DEBUG
3207 printk(KERN_INFO "\tClass: %.21s\n", adpt_i2o_get_class_name(d->lct_data.class_id));
3208 printk(KERN_INFO "\tSubclass: 0x%04X\n", d->lct_data.sub_class);
3209 printk(KERN_INFO "\tFlags: ");
3210
3211 if(d->lct_data.device_flags&(1<<0))
3212 printk("C"); // ConfigDialog requested
3213 if(d->lct_data.device_flags&(1<<1))
3214 printk("U"); // Multi-user capable
3215 if(!(d->lct_data.device_flags&(1<<4)))
3216 printk("P"); // Peer service enabled!
3217 if(!(d->lct_data.device_flags&(1<<5)))
3218 printk("M"); // Mgmt service enabled!
3219 printk("\n");
3220 #endif
3221 }
3222
3223 #ifdef DEBUG
3224 /*
3225 * Do i2o class name lookup
3226 */
3227 static const char *adpt_i2o_get_class_name(int class)
3228 {
3229 int idx = 16;
3230 static char *i2o_class_name[] = {
3231 "Executive",
3232 "Device Driver Module",
3233 "Block Device",
3234 "Tape Device",
3235 "LAN Interface",
3236 "WAN Interface",
3237 "Fibre Channel Port",
3238 "Fibre Channel Device",
3239 "SCSI Device",
3240 "ATE Port",
3241 "ATE Device",
3242 "Floppy Controller",
3243 "Floppy Device",
3244 "Secondary Bus Port",
3245 "Peer Transport Agent",
3246 "Peer Transport",
3247 "Unknown"
3248 };
3249
3250 switch(class&0xFFF) {
3251 case I2O_CLASS_EXECUTIVE:
3252 idx = 0; break;
3253 case I2O_CLASS_DDM:
3254 idx = 1; break;
3255 case I2O_CLASS_RANDOM_BLOCK_STORAGE:
3256 idx = 2; break;
3257 case I2O_CLASS_SEQUENTIAL_STORAGE:
3258 idx = 3; break;
3259 case I2O_CLASS_LAN:
3260 idx = 4; break;
3261 case I2O_CLASS_WAN:
3262 idx = 5; break;
3263 case I2O_CLASS_FIBRE_CHANNEL_PORT:
3264 idx = 6; break;
3265 case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL:
3266 idx = 7; break;
3267 case I2O_CLASS_SCSI_PERIPHERAL:
3268 idx = 8; break;
3269 case I2O_CLASS_ATE_PORT:
3270 idx = 9; break;
3271 case I2O_CLASS_ATE_PERIPHERAL:
3272 idx = 10; break;
3273 case I2O_CLASS_FLOPPY_CONTROLLER:
3274 idx = 11; break;
3275 case I2O_CLASS_FLOPPY_DEVICE:
3276 idx = 12; break;
3277 case I2O_CLASS_BUS_ADAPTER_PORT:
3278 idx = 13; break;
3279 case I2O_CLASS_PEER_TRANSPORT_AGENT:
3280 idx = 14; break;
3281 case I2O_CLASS_PEER_TRANSPORT:
3282 idx = 15; break;
3283 }
3284 return i2o_class_name[idx];
3285 }
3286 #endif
3287
3288
3289 static s32 adpt_i2o_hrt_get(adpt_hba* pHba)
3290 {
3291 u32 msg[6];
3292 int ret, size = sizeof(i2o_hrt);
3293
3294 do {
3295 if (pHba->hrt == NULL) {
3296 pHba->hrt = dma_alloc_coherent(&pHba->pDev->dev,
3297 size, &pHba->hrt_pa, GFP_KERNEL);
3298 if (pHba->hrt == NULL) {
3299 printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", pHba->name);
3300 return -ENOMEM;
3301 }
3302 }
3303
3304 msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4;
3305 msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID;
3306 msg[2]= 0;
3307 msg[3]= 0;
3308 msg[4]= (0xD0000000 | size); /* Simple transaction */
3309 msg[5]= (u32)pHba->hrt_pa; /* Dump it here */
3310
3311 if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg),20))) {
3312 printk(KERN_ERR "%s: Unable to get HRT (status=%#10x)\n", pHba->name, ret);
3313 return ret;
3314 }
3315
3316 if (pHba->hrt->num_entries * pHba->hrt->entry_len << 2 > size) {
3317 int newsize = pHba->hrt->num_entries * pHba->hrt->entry_len << 2;
3318 dma_free_coherent(&pHba->pDev->dev, size,
3319 pHba->hrt, pHba->hrt_pa);
3320 size = newsize;
3321 pHba->hrt = NULL;
3322 }
3323 } while(pHba->hrt == NULL);
3324 return 0;
3325 }
3326
3327 /*
3328 * Query one scalar group value or a whole scalar group.
3329 */
3330 static int adpt_i2o_query_scalar(adpt_hba* pHba, int tid,
3331 int group, int field, void *buf, int buflen)
3332 {
3333 u16 opblk[] = { 1, 0, I2O_PARAMS_FIELD_GET, group, 1, field };
3334 u8 *opblk_va;
3335 dma_addr_t opblk_pa;
3336 u8 *resblk_va;
3337 dma_addr_t resblk_pa;
3338
3339 int size;
3340
3341 /* 8 bytes for header */
3342 resblk_va = dma_alloc_coherent(&pHba->pDev->dev,
3343 sizeof(u8) * (8 + buflen), &resblk_pa, GFP_KERNEL);
3344 if (resblk_va == NULL) {
3345 printk(KERN_CRIT "%s: query scalar failed; Out of memory.\n", pHba->name);
3346 return -ENOMEM;
3347 }
3348
3349 opblk_va = dma_alloc_coherent(&pHba->pDev->dev,
3350 sizeof(opblk), &opblk_pa, GFP_KERNEL);
3351 if (opblk_va == NULL) {
3352 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3353 resblk_va, resblk_pa);
3354 printk(KERN_CRIT "%s: query operation failed; Out of memory.\n",
3355 pHba->name);
3356 return -ENOMEM;
3357 }
3358 if (field == -1) /* whole group */
3359 opblk[4] = -1;
3360
3361 memcpy(opblk_va, opblk, sizeof(opblk));
3362 size = adpt_i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET, pHba, tid,
3363 opblk_va, opblk_pa, sizeof(opblk),
3364 resblk_va, resblk_pa, sizeof(u8)*(8+buflen));
3365 dma_free_coherent(&pHba->pDev->dev, sizeof(opblk), opblk_va, opblk_pa);
3366 if (size == -ETIME) {
3367 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3368 resblk_va, resblk_pa);
3369 printk(KERN_WARNING "%s: issue params failed; Timed out.\n", pHba->name);
3370 return -ETIME;
3371 } else if (size == -EINTR) {
3372 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3373 resblk_va, resblk_pa);
3374 printk(KERN_WARNING "%s: issue params failed; Interrupted.\n", pHba->name);
3375 return -EINTR;
3376 }
3377
3378 memcpy(buf, resblk_va+8, buflen); /* cut off header */
3379
3380 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3381 resblk_va, resblk_pa);
3382 if (size < 0)
3383 return size;
3384
3385 return buflen;
3386 }
3387
3388
3389 /* Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET
3390 *
3391 * This function can be used for all UtilParamsGet/Set operations.
3392 * The OperationBlock is given in opblk-buffer,
3393 * and results are returned in resblk-buffer.
3394 * Note that the minimum sized resblk is 8 bytes and contains
3395 * ResultCount, ErrorInfoSize, BlockStatus and BlockSize.
3396 */
3397 static int adpt_i2o_issue_params(int cmd, adpt_hba* pHba, int tid,
3398 void *opblk_va, dma_addr_t opblk_pa, int oplen,
3399 void *resblk_va, dma_addr_t resblk_pa, int reslen)
3400 {
3401 u32 msg[9];
3402 u32 *res = (u32 *)resblk_va;
3403 int wait_status;
3404
3405 msg[0] = NINE_WORD_MSG_SIZE | SGL_OFFSET_5;
3406 msg[1] = cmd << 24 | HOST_TID << 12 | tid;
3407 msg[2] = 0;
3408 msg[3] = 0;
3409 msg[4] = 0;
3410 msg[5] = 0x54000000 | oplen; /* OperationBlock */
3411 msg[6] = (u32)opblk_pa;
3412 msg[7] = 0xD0000000 | reslen; /* ResultBlock */
3413 msg[8] = (u32)resblk_pa;
3414
3415 if ((wait_status = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 20))) {
3416 printk("adpt_i2o_issue_params: post_wait failed (%p)\n", resblk_va);
3417 return wait_status; /* -DetailedStatus */
3418 }
3419
3420 if (res[1]&0x00FF0000) { /* BlockStatus != SUCCESS */
3421 printk(KERN_WARNING "%s: %s - Error:\n ErrorInfoSize = 0x%02x, "
3422 "BlockStatus = 0x%02x, BlockSize = 0x%04x\n",
3423 pHba->name,
3424 (cmd == I2O_CMD_UTIL_PARAMS_SET) ? "PARAMS_SET"
3425 : "PARAMS_GET",
3426 res[1]>>24, (res[1]>>16)&0xFF, res[1]&0xFFFF);
3427 return -((res[1] >> 16) & 0xFF); /* -BlockStatus */
3428 }
3429
3430 return 4 + ((res[1] & 0x0000FFFF) << 2); /* bytes used in resblk */
3431 }
3432
3433
3434 static s32 adpt_i2o_quiesce_hba(adpt_hba* pHba)
3435 {
3436 u32 msg[4];
3437 int ret;
3438
3439 adpt_i2o_status_get(pHba);
3440
3441 /* SysQuiesce discarded if IOP not in READY or OPERATIONAL state */
3442
3443 if((pHba->status_block->iop_state != ADAPTER_STATE_READY) &&
3444 (pHba->status_block->iop_state != ADAPTER_STATE_OPERATIONAL)){
3445 return 0;
3446 }
3447
3448 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
3449 msg[1] = I2O_CMD_SYS_QUIESCE<<24|HOST_TID<<12|ADAPTER_TID;
3450 msg[2] = 0;
3451 msg[3] = 0;
3452
3453 if((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) {
3454 printk(KERN_INFO"dpti%d: Unable to quiesce (status=%#x).\n",
3455 pHba->unit, -ret);
3456 } else {
3457 printk(KERN_INFO"dpti%d: Quiesced.\n",pHba->unit);
3458 }
3459
3460 adpt_i2o_status_get(pHba);
3461 return ret;
3462 }
3463
3464
3465 /*
3466 * Enable IOP. Allows the IOP to resume external operations.
3467 */
3468 static int adpt_i2o_enable_hba(adpt_hba* pHba)
3469 {
3470 u32 msg[4];
3471 int ret;
3472
3473 adpt_i2o_status_get(pHba);
3474 if(!pHba->status_block){
3475 return -ENOMEM;
3476 }
3477 /* Enable only allowed on READY state */
3478 if(pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL)
3479 return 0;
3480
3481 if(pHba->status_block->iop_state != ADAPTER_STATE_READY)
3482 return -EINVAL;
3483
3484 msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
3485 msg[1]=I2O_CMD_SYS_ENABLE<<24|HOST_TID<<12|ADAPTER_TID;
3486 msg[2]= 0;
3487 msg[3]= 0;
3488
3489 if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) {
3490 printk(KERN_WARNING"%s: Could not enable (status=%#10x).\n",
3491 pHba->name, ret);
3492 } else {
3493 PDEBUG("%s: Enabled.\n", pHba->name);
3494 }
3495
3496 adpt_i2o_status_get(pHba);
3497 return ret;
3498 }
3499
3500
3501 static int adpt_i2o_systab_send(adpt_hba* pHba)
3502 {
3503 u32 msg[12];
3504 int ret;
3505
3506 msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6;
3507 msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID;
3508 msg[2] = 0;
3509 msg[3] = 0;
3510 msg[4] = (0<<16) | ((pHba->unit+2) << 12); /* Host 0 IOP ID (unit + 2) */
3511 msg[5] = 0; /* Segment 0 */
3512
3513 /*
3514 * Provide three SGL-elements:
3515 * System table (SysTab), Private memory space declaration and
3516 * Private i/o space declaration
3517 */
3518 msg[6] = 0x54000000 | sys_tbl_len;
3519 msg[7] = (u32)sys_tbl_pa;
3520 msg[8] = 0x54000000 | 0;
3521 msg[9] = 0;
3522 msg[10] = 0xD4000000 | 0;
3523 msg[11] = 0;
3524
3525 if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 120))) {
3526 printk(KERN_INFO "%s: Unable to set SysTab (status=%#10x).\n",
3527 pHba->name, ret);
3528 }
3529 #ifdef DEBUG
3530 else {
3531 PINFO("%s: SysTab set.\n", pHba->name);
3532 }
3533 #endif
3534
3535 return ret;
3536 }
3537
3538
3539 /*============================================================================
3540 *
3541 *============================================================================
3542 */
3543
3544
3545 #ifdef UARTDELAY
3546
3547 static static void adpt_delay(int millisec)
3548 {
3549 int i;
3550 for (i = 0; i < millisec; i++) {
3551 udelay(1000); /* delay for one millisecond */
3552 }
3553 }
3554
3555 #endif
3556
3557 static struct scsi_host_template driver_template = {
3558 .module = THIS_MODULE,
3559 .name = "dpt_i2o",
3560 .proc_name = "dpt_i2o",
3561 .show_info = adpt_show_info,
3562 .info = adpt_info,
3563 .queuecommand = adpt_queue,
3564 .eh_abort_handler = adpt_abort,
3565 .eh_device_reset_handler = adpt_device_reset,
3566 .eh_bus_reset_handler = adpt_bus_reset,
3567 .eh_host_reset_handler = adpt_reset,
3568 .bios_param = adpt_bios_param,
3569 .slave_configure = adpt_slave_configure,
3570 .can_queue = MAX_TO_IOP_MESSAGES,
3571 .this_id = 7,
3572 .use_clustering = ENABLE_CLUSTERING,
3573 };
3574
3575 static int __init adpt_init(void)
3576 {
3577 int error;
3578 adpt_hba *pHba, *next;
3579
3580 printk("Loading Adaptec I2O RAID: Version " DPT_I2O_VERSION "\n");
3581
3582 error = adpt_detect(&driver_template);
3583 if (error < 0)
3584 return error;
3585 if (hba_chain == NULL)
3586 return -ENODEV;
3587
3588 for (pHba = hba_chain; pHba; pHba = pHba->next) {
3589 error = scsi_add_host(pHba->host, &pHba->pDev->dev);
3590 if (error)
3591 goto fail;
3592 scsi_scan_host(pHba->host);
3593 }
3594 return 0;
3595 fail:
3596 for (pHba = hba_chain; pHba; pHba = next) {
3597 next = pHba->next;
3598 scsi_remove_host(pHba->host);
3599 }
3600 return error;
3601 }
3602
3603 static void __exit adpt_exit(void)
3604 {
3605 adpt_hba *pHba, *next;
3606
3607 for (pHba = hba_chain; pHba; pHba = pHba->next)
3608 scsi_remove_host(pHba->host);
3609 for (pHba = hba_chain; pHba; pHba = next) {
3610 next = pHba->next;
3611 adpt_release(pHba->host);
3612 }
3613 }
3614
3615 module_init(adpt_init);
3616 module_exit(adpt_exit);
3617
3618 MODULE_LICENSE("GPL");