]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/esas2r/esas2r_ioctl.c
Merge tag 'iommu-v4.15-rc3' of git://github.com/awilliam/linux-vfio
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / esas2r / esas2r_ioctl.c
1 /*
2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4 *
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
6 * (mailto:linuxdrivers@attotech.com)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
28 *
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37 *
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
41 * USA.
42 */
43
44 #include "esas2r.h"
45
46 /*
47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware. In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
52 */
53
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61 struct esas2r_request *,
62 struct esas2r_sg_context *,
63 void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65 struct esas2r_request *, void *);
66
67 struct esas2r_buffered_ioctl {
68 struct esas2r_adapter *a;
69 void *ioctl;
70 u32 length;
71 u32 control_code;
72 u32 offset;
73 BUFFERED_IOCTL_CALLBACK
74 callback;
75 void *context;
76 BUFFERED_IOCTL_DONE_CALLBACK
77 done_callback;
78 void *done_context;
79
80 };
81
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83 struct esas2r_request *rq)
84 {
85 a->fm_api_command_done = 1;
86 wake_up_interruptible(&a->fm_api_waiter);
87 }
88
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91 {
92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93 int offset = sgc->cur_offset - a->save_offset;
94
95 (*addr) = a->firmware.phys + offset;
96 return a->firmware.orig_len - offset;
97 }
98
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100 {
101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102 int offset = sgc->cur_offset - a->save_offset;
103
104 (*addr) = a->firmware.header_buff_phys + offset;
105 return sizeof(struct esas2r_flash_img) - offset;
106 }
107
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110 {
111 struct esas2r_request *rq;
112
113 if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114 fi->status = FI_STAT_BUSY;
115 return;
116 }
117
118 rq = esas2r_alloc_request(a);
119 if (rq == NULL) {
120 fi->status = FI_STAT_BUSY;
121 goto free_sem;
122 }
123
124 if (fi == &a->firmware.header) {
125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126 (size_t)sizeof(
127 struct
128 esas2r_flash_img),
129 (dma_addr_t *)&a->
130 firmware.
131 header_buff_phys,
132 GFP_KERNEL);
133
134 if (a->firmware.header_buff == NULL) {
135 esas2r_debug("failed to allocate header buffer!");
136 fi->status = FI_STAT_BUSY;
137 goto free_req;
138 }
139
140 memcpy(a->firmware.header_buff, fi,
141 sizeof(struct esas2r_flash_img));
142 a->save_offset = a->firmware.header_buff;
143 a->fm_api_sgc.get_phys_addr =
144 (PGETPHYSADDR)get_physaddr_fm_api_header;
145 } else {
146 a->save_offset = (u8 *)fi;
147 a->fm_api_sgc.get_phys_addr =
148 (PGETPHYSADDR)get_physaddr_fm_api;
149 }
150
151 rq->comp_cb = complete_fm_api_req;
152 a->fm_api_command_done = 0;
153 a->fm_api_sgc.cur_offset = a->save_offset;
154
155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156 &a->fm_api_sgc))
157 goto all_done;
158
159 /* Now wait around for it to complete. */
160 while (!a->fm_api_command_done)
161 wait_event_interruptible(a->fm_api_waiter,
162 a->fm_api_command_done);
163 all_done:
164 if (fi == &a->firmware.header) {
165 memcpy(fi, a->firmware.header_buff,
166 sizeof(struct esas2r_flash_img));
167
168 dma_free_coherent(&a->pcid->dev,
169 (size_t)sizeof(struct esas2r_flash_img),
170 a->firmware.header_buff,
171 (dma_addr_t)a->firmware.header_buff_phys);
172 }
173 free_req:
174 esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176 mutex_unlock(&a->fm_api_mutex);
177 return;
178
179 }
180
181 static void complete_nvr_req(struct esas2r_adapter *a,
182 struct esas2r_request *rq)
183 {
184 a->nvram_command_done = 1;
185 wake_up_interruptible(&a->nvram_waiter);
186 }
187
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190 u64 *addr)
191 {
192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194 (*addr) = esas2r_buffered_ioctl_addr + offset;
195 return esas2r_buffered_ioctl_size - offset;
196 }
197
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199 struct esas2r_request *rq)
200 {
201 a->buffered_ioctl_done = 1;
202 wake_up_interruptible(&a->buffered_ioctl_waiter);
203 }
204
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206 {
207 struct esas2r_adapter *a = bi->a;
208 struct esas2r_request *rq;
209 struct esas2r_sg_context sgc;
210 u8 result = IOCTL_SUCCESS;
211
212 if (down_interruptible(&buffered_ioctl_semaphore))
213 return IOCTL_OUT_OF_RESOURCES;
214
215 /* allocate a buffer or use the existing buffer. */
216 if (esas2r_buffered_ioctl) {
217 if (esas2r_buffered_ioctl_size < bi->length) {
218 /* free the too-small buffer and get a new one */
219 dma_free_coherent(&a->pcid->dev,
220 (size_t)esas2r_buffered_ioctl_size,
221 esas2r_buffered_ioctl,
222 esas2r_buffered_ioctl_addr);
223
224 goto allocate_buffer;
225 }
226 } else {
227 allocate_buffer:
228 esas2r_buffered_ioctl_size = bi->length;
229 esas2r_buffered_ioctl_pcid = a->pcid;
230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231 (size_t)
232 esas2r_buffered_ioctl_size,
233 &
234 esas2r_buffered_ioctl_addr,
235 GFP_KERNEL);
236 }
237
238 if (!esas2r_buffered_ioctl) {
239 esas2r_log(ESAS2R_LOG_CRIT,
240 "could not allocate %d bytes of consistent memory "
241 "for a buffered ioctl!",
242 bi->length);
243
244 esas2r_debug("buffered ioctl alloc failure");
245 result = IOCTL_OUT_OF_RESOURCES;
246 goto exit_cleanly;
247 }
248
249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251 rq = esas2r_alloc_request(a);
252 if (rq == NULL) {
253 esas2r_log(ESAS2R_LOG_CRIT,
254 "could not allocate an internal request");
255
256 result = IOCTL_OUT_OF_RESOURCES;
257 esas2r_debug("buffered ioctl - no requests");
258 goto exit_cleanly;
259 }
260
261 a->buffered_ioctl_done = 0;
262 rq->comp_cb = complete_buffered_ioctl_req;
263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265 sgc.length = esas2r_buffered_ioctl_size;
266
267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268 /* completed immediately, no need to wait */
269 a->buffered_ioctl_done = 0;
270 goto free_andexit_cleanly;
271 }
272
273 /* now wait around for it to complete. */
274 while (!a->buffered_ioctl_done)
275 wait_event_interruptible(a->buffered_ioctl_waiter,
276 a->buffered_ioctl_done);
277
278 free_andexit_cleanly:
279 if (result == IOCTL_SUCCESS && bi->done_callback)
280 (*bi->done_callback)(a, rq, bi->done_context);
281
282 esas2r_free_request(a, rq);
283
284 exit_cleanly:
285 if (result == IOCTL_SUCCESS)
286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288 up(&buffered_ioctl_semaphore);
289 return result;
290 }
291
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294 struct esas2r_request *rq,
295 struct esas2r_sg_context *sgc, void *context)
296 {
297 struct atto_ioctl_smp *si =
298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303 if (!esas2r_build_sg_list(a, rq, sgc)) {
304 si->status = ATTO_STS_OUT_OF_RSRC;
305 return false;
306 }
307
308 esas2r_start_request(a, rq);
309 return true;
310 }
311
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313 {
314 struct esas2r_buffered_ioctl bi;
315
316 memset(&bi, 0, sizeof(bi));
317
318 bi.a = a;
319 bi.ioctl = si;
320 bi.length = sizeof(struct atto_ioctl_smp)
321 + le32_to_cpu(si->req_length)
322 + le32_to_cpu(si->rsp_length);
323 bi.offset = 0;
324 bi.callback = smp_ioctl_callback;
325 return handle_buffered_ioctl(&bi);
326 }
327
328
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331 struct esas2r_request *rq)
332 {
333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336 /* Now call the original completion callback. */
337 (*rq->aux_req_cb)(a, rq);
338 }
339
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342 union atto_ioctl_csmi *ci,
343 struct esas2r_request *rq,
344 struct esas2r_sg_context *sgc,
345 u32 ctrl_code,
346 u16 target_id)
347 {
348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350 if (test_bit(AF_DEGRADED_MODE, &a->flags))
351 return false;
352
353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356 ioctl->csmi.target_id = cpu_to_le16(target_id);
357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359 /*
360 * Always usurp the completion callback since the interrupt callback
361 * mechanism may be used.
362 */
363 rq->aux_req_cx = ci;
364 rq->aux_req_cb = rq->comp_cb;
365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367 if (!esas2r_build_sg_list(a, rq, sgc))
368 return false;
369
370 esas2r_start_request(a, rq);
371 return true;
372 }
373
374 static bool check_lun(struct scsi_lun lun)
375 {
376 bool result;
377
378 result = ((lun.scsi_lun[7] == 0) &&
379 (lun.scsi_lun[6] == 0) &&
380 (lun.scsi_lun[5] == 0) &&
381 (lun.scsi_lun[4] == 0) &&
382 (lun.scsi_lun[3] == 0) &&
383 (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385 (lun.scsi_lun[0] == 0));
386
387 return result;
388 }
389
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391 struct esas2r_request *rq,
392 struct esas2r_sg_context *sgc, void *context)
393 {
394 struct atto_csmi *ci = (struct atto_csmi *)context;
395 union atto_ioctl_csmi *ioctl_csmi =
396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397 u8 path = 0;
398 u8 tid = 0;
399 u8 lun = 0;
400 u32 sts = CSMI_STS_SUCCESS;
401 struct esas2r_target *t;
402 unsigned long flags;
403
404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407 path = gda->path_id;
408 tid = gda->target_id;
409 lun = gda->lun;
410 } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413 path = tm->path_id;
414 tid = tm->target_id;
415 lun = tm->lun;
416 }
417
418 if (path > 0) {
419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420 CSMI_STS_INV_PARAM);
421 return false;
422 }
423
424 rq->target_id = tid;
425 rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427 switch (ci->control_code) {
428 case CSMI_CC_GET_DRVR_INFO:
429 {
430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432 strcpy(gdi->description, esas2r_get_model_name(a));
433 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435 break;
436 }
437
438 case CSMI_CC_GET_CNTLR_CFG:
439 {
440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442 gcc->base_io_addr = 0;
443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444 &gcc->base_memaddr_lo);
445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446 &gcc->base_memaddr_hi);
447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448 a->pcid->subsystem_vendor);
449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452 gcc->pci_addr.bus_num = a->pcid->bus->number;
453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464 gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468 | CSMI_CNTLRF_SATA_HBA;
469 else
470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471 | CSMI_CNTLRF_SATA_RAID;
472
473 gcc->rrom_major_rev = 0;
474 gcc->rrom_minor_rev = 0;
475 gcc->rrom_build_rev = 0;
476 gcc->rrom_release_rev = 0;
477 gcc->rrom_biosmajor_rev = 0;
478 gcc->rrom_biosminor_rev = 0;
479 gcc->rrom_biosbuild_rev = 0;
480 gcc->rrom_biosrelease_rev = 0;
481 break;
482 }
483
484 case CSMI_CC_GET_CNTLR_STS:
485 {
486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489 gcs->status = CSMI_CNTLR_STS_FAILED;
490 else
491 gcs->status = CSMI_CNTLR_STS_GOOD;
492
493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494 break;
495 }
496
497 case CSMI_CC_FW_DOWNLOAD:
498 case CSMI_CC_GET_RAID_INFO:
499 case CSMI_CC_GET_RAID_CFG:
500
501 sts = CSMI_STS_BAD_CTRL_CODE;
502 break;
503
504 case CSMI_CC_SMP_PASSTHRU:
505 case CSMI_CC_SSP_PASSTHRU:
506 case CSMI_CC_STP_PASSTHRU:
507 case CSMI_CC_GET_PHY_INFO:
508 case CSMI_CC_SET_PHY_INFO:
509 case CSMI_CC_GET_LINK_ERRORS:
510 case CSMI_CC_GET_SATA_SIG:
511 case CSMI_CC_GET_CONN_INFO:
512 case CSMI_CC_PHY_CTRL:
513
514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515 ci->control_code,
516 ESAS2R_TARG_ID_INV)) {
517 sts = CSMI_STS_FAILED;
518 break;
519 }
520
521 return true;
522
523 case CSMI_CC_GET_SCSI_ADDR:
524 {
525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527 struct scsi_lun lun;
528
529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531 if (!check_lun(lun)) {
532 sts = CSMI_STS_NO_SCSI_ADDR;
533 break;
534 }
535
536 /* make sure the device is present */
537 spin_lock_irqsave(&a->mem_lock, flags);
538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539 spin_unlock_irqrestore(&a->mem_lock, flags);
540
541 if (t == NULL) {
542 sts = CSMI_STS_NO_SCSI_ADDR;
543 break;
544 }
545
546 gsa->host_index = 0xFF;
547 gsa->lun = gsa->sas_lun[1];
548 rq->target_id = esas2r_targ_get_id(t, a);
549 break;
550 }
551
552 case CSMI_CC_GET_DEV_ADDR:
553 {
554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556 /* make sure the target is present */
557 t = a->targetdb + rq->target_id;
558
559 if (t >= a->targetdb_end
560 || t->target_state != TS_PRESENT
561 || t->sas_addr == 0) {
562 sts = CSMI_STS_NO_DEV_ADDR;
563 break;
564 }
565
566 /* fill in the result */
567 *(u64 *)gda->sas_addr = t->sas_addr;
568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570 break;
571 }
572
573 case CSMI_CC_TASK_MGT:
574
575 /* make sure the target is present */
576 t = a->targetdb + rq->target_id;
577
578 if (t >= a->targetdb_end
579 || t->target_state != TS_PRESENT
580 || !(t->flags & TF_PASS_THRU)) {
581 sts = CSMI_STS_NO_DEV_ADDR;
582 break;
583 }
584
585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586 ci->control_code,
587 t->phys_targ_id)) {
588 sts = CSMI_STS_FAILED;
589 break;
590 }
591
592 return true;
593
594 default:
595
596 sts = CSMI_STS_BAD_CTRL_CODE;
597 break;
598 }
599
600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602 return false;
603 }
604
605
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607 struct esas2r_request *rq, void *context)
608 {
609 struct atto_csmi *ci = (struct atto_csmi *)context;
610 union atto_ioctl_csmi *ioctl_csmi =
611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613 switch (ci->control_code) {
614 case CSMI_CC_GET_DRVR_INFO:
615 {
616 struct atto_csmi_get_driver_info *gdi =
617 &ioctl_csmi->drvr_info;
618
619 strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621 gdi->major_rev = ESAS2R_MAJOR_REV;
622 gdi->minor_rev = ESAS2R_MINOR_REV;
623 gdi->build_rev = 0;
624 gdi->release_rev = 0;
625 break;
626 }
627
628 case CSMI_CC_GET_SCSI_ADDR:
629 {
630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633 CSMI_STS_SUCCESS) {
634 gsa->target_id = rq->target_id;
635 gsa->path_id = 0;
636 }
637
638 break;
639 }
640 }
641
642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643 }
644
645
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647 {
648 struct esas2r_buffered_ioctl bi;
649
650 memset(&bi, 0, sizeof(bi));
651
652 bi.a = a;
653 bi.ioctl = &ci->data;
654 bi.length = sizeof(union atto_ioctl_csmi);
655 bi.offset = 0;
656 bi.callback = csmi_ioctl_callback;
657 bi.context = ci;
658 bi.done_callback = csmi_ioctl_done_callback;
659 bi.done_context = ci;
660
661 return handle_buffered_ioctl(&bi);
662 }
663
664 /* ATTO HBA ioctl support */
665
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668 struct atto_ioctl *hi,
669 struct esas2r_request *rq,
670 struct esas2r_sg_context *sgc)
671 {
672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676 if (!esas2r_build_sg_list(a, rq, sgc)) {
677 hi->status = ATTO_STS_OUT_OF_RSRC;
678
679 return false;
680 }
681
682 esas2r_start_request(a, rq);
683
684 return true;
685 }
686
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688 struct esas2r_request *rq)
689 {
690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692 u8 sts = ATTO_SPT_RS_FAILED;
693
694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695 spt->sense_length = rq->sense_len;
696 spt->residual_length =
697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699 switch (rq->req_stat) {
700 case RS_SUCCESS:
701 case RS_SCSI_ERROR:
702 sts = ATTO_SPT_RS_SUCCESS;
703 break;
704 case RS_UNDERRUN:
705 sts = ATTO_SPT_RS_UNDERRUN;
706 break;
707 case RS_OVERRUN:
708 sts = ATTO_SPT_RS_OVERRUN;
709 break;
710 case RS_SEL:
711 case RS_SEL2:
712 sts = ATTO_SPT_RS_NO_DEVICE;
713 break;
714 case RS_NO_LUN:
715 sts = ATTO_SPT_RS_NO_LUN;
716 break;
717 case RS_TIMEOUT:
718 sts = ATTO_SPT_RS_TIMEOUT;
719 break;
720 case RS_DEGRADED:
721 sts = ATTO_SPT_RS_DEGRADED;
722 break;
723 case RS_BUSY:
724 sts = ATTO_SPT_RS_BUSY;
725 break;
726 case RS_ABORTED:
727 sts = ATTO_SPT_RS_ABORTED;
728 break;
729 case RS_RESET:
730 sts = ATTO_SPT_RS_BUS_RESET;
731 break;
732 }
733
734 spt->req_status = sts;
735
736 /* Update the target ID to the next one present. */
737 spt->target_id =
738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740 /* Done, call the completion callback. */
741 (*rq->aux_req_cb)(a, rq);
742 }
743
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745 struct esas2r_request *rq,
746 struct esas2r_sg_context *sgc,
747 void *context)
748 {
749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751 hi->status = ATTO_STS_SUCCESS;
752
753 switch (hi->function) {
754 case ATTO_FUNC_GET_ADAP_INFO:
755 {
756 u8 *class_code = (u8 *)&a->pcid->class;
757
758 struct atto_hba_get_adapter_info *gai =
759 &hi->data.get_adap_info;
760 int pcie_cap_reg;
761
762 if (hi->flags & HBAF_TUNNEL) {
763 hi->status = ATTO_STS_UNSUPPORTED;
764 break;
765 }
766
767 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
768 hi->status = ATTO_STS_INV_VERSION;
769 hi->version = ATTO_VER_GET_ADAP_INFO0;
770 break;
771 }
772
773 memset(gai, 0, sizeof(*gai));
774
775 gai->pci.vendor_id = a->pcid->vendor;
776 gai->pci.device_id = a->pcid->device;
777 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
778 gai->pci.ss_device_id = a->pcid->subsystem_device;
779 gai->pci.class_code[0] = class_code[0];
780 gai->pci.class_code[1] = class_code[1];
781 gai->pci.class_code[2] = class_code[2];
782 gai->pci.rev_id = a->pcid->revision;
783 gai->pci.bus_num = a->pcid->bus->number;
784 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
785 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
786
787 pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
788 if (pcie_cap_reg) {
789 u16 stat;
790 u32 caps;
791
792 pci_read_config_word(a->pcid,
793 pcie_cap_reg + PCI_EXP_LNKSTA,
794 &stat);
795 pci_read_config_dword(a->pcid,
796 pcie_cap_reg + PCI_EXP_LNKCAP,
797 &caps);
798
799 gai->pci.link_speed_curr =
800 (u8)(stat & PCI_EXP_LNKSTA_CLS);
801 gai->pci.link_speed_max =
802 (u8)(caps & PCI_EXP_LNKCAP_SLS);
803 gai->pci.link_width_curr =
804 (u8)((stat & PCI_EXP_LNKSTA_NLW)
805 >> PCI_EXP_LNKSTA_NLW_SHIFT);
806 gai->pci.link_width_max =
807 (u8)((caps & PCI_EXP_LNKCAP_MLW)
808 >> 4);
809 }
810
811 gai->pci.msi_vector_cnt = 1;
812
813 if (a->pcid->msix_enabled)
814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
815 else if (a->pcid->msi_enabled)
816 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
817 else
818 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
819
820 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
821
822 if (test_bit(AF2_THUNDERLINK, &a->flags2))
823 gai->adap_type = ATTO_GAI_AT_TLSASHBA;
824
825 if (test_bit(AF_DEGRADED_MODE, &a->flags))
826 gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
827
828 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
829 ATTO_GAI_AF_DEVADDR_SUPP;
830
831 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
832 || a->pcid->subsystem_device == ATTO_ESAS_R608
833 || a->pcid->subsystem_device == ATTO_ESAS_R644
834 || a->pcid->subsystem_device == ATTO_TSSC_3808E)
835 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
836
837 gai->num_ports = ESAS2R_NUM_PHYS;
838 gai->num_phys = ESAS2R_NUM_PHYS;
839
840 strcpy(gai->firmware_rev, a->fw_rev);
841 strcpy(gai->flash_rev, a->flash_rev);
842 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
843 strcpy(gai->model_name, esas2r_get_model_name(a));
844
845 gai->num_targets = ESAS2R_MAX_TARGETS;
846
847 gai->num_busses = 1;
848 gai->num_targsper_bus = gai->num_targets;
849 gai->num_lunsper_targ = 256;
850
851 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
852 || a->pcid->subsystem_device == ATTO_ESAS_R60F)
853 gai->num_connectors = 4;
854 else
855 gai->num_connectors = 2;
856
857 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
858
859 gai->num_targets_backend = a->num_targets_backend;
860
861 gai->tunnel_flags = a->ioctl_tunnel
862 & (ATTO_GAI_TF_MEM_RW
863 | ATTO_GAI_TF_TRACE
864 | ATTO_GAI_TF_SCSI_PASS_THRU
865 | ATTO_GAI_TF_GET_DEV_ADDR
866 | ATTO_GAI_TF_PHY_CTRL
867 | ATTO_GAI_TF_CONN_CTRL
868 | ATTO_GAI_TF_GET_DEV_INFO);
869 break;
870 }
871
872 case ATTO_FUNC_GET_ADAP_ADDR:
873 {
874 struct atto_hba_get_adapter_address *gaa =
875 &hi->data.get_adap_addr;
876
877 if (hi->flags & HBAF_TUNNEL) {
878 hi->status = ATTO_STS_UNSUPPORTED;
879 break;
880 }
881
882 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
883 hi->status = ATTO_STS_INV_VERSION;
884 hi->version = ATTO_VER_GET_ADAP_ADDR0;
885 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
886 || gaa->addr_type == ATTO_GAA_AT_NODE) {
887 if (gaa->addr_type == ATTO_GAA_AT_PORT
888 && gaa->port_id >= ESAS2R_NUM_PHYS) {
889 hi->status = ATTO_STS_NOT_APPL;
890 } else {
891 memcpy((u64 *)gaa->address,
892 &a->nvram->sas_addr[0], sizeof(u64));
893 gaa->addr_len = sizeof(u64);
894 }
895 } else {
896 hi->status = ATTO_STS_INV_PARAM;
897 }
898
899 break;
900 }
901
902 case ATTO_FUNC_MEM_RW:
903 {
904 if (hi->flags & HBAF_TUNNEL) {
905 if (hba_ioctl_tunnel(a, hi, rq, sgc))
906 return true;
907
908 break;
909 }
910
911 hi->status = ATTO_STS_UNSUPPORTED;
912
913 break;
914 }
915
916 case ATTO_FUNC_TRACE:
917 {
918 struct atto_hba_trace *trc = &hi->data.trace;
919
920 if (hi->flags & HBAF_TUNNEL) {
921 if (hba_ioctl_tunnel(a, hi, rq, sgc))
922 return true;
923
924 break;
925 }
926
927 if (hi->version > ATTO_VER_TRACE1) {
928 hi->status = ATTO_STS_INV_VERSION;
929 hi->version = ATTO_VER_TRACE1;
930 break;
931 }
932
933 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
934 && hi->version >= ATTO_VER_TRACE1) {
935 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
936 u32 len = hi->data_length;
937 u32 offset = trc->current_offset;
938 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
939
940 /* Size is zero if a core dump isn't present */
941 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
942 total_len = 0;
943
944 if (len > total_len)
945 len = total_len;
946
947 if (offset >= total_len
948 || offset + len > total_len
949 || len == 0) {
950 hi->status = ATTO_STS_INV_PARAM;
951 break;
952 }
953
954 memcpy(trc + 1,
955 a->fw_coredump_buff + offset,
956 len);
957
958 hi->data_length = len;
959 } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
960 memset(a->fw_coredump_buff, 0,
961 ESAS2R_FWCOREDUMP_SZ);
962
963 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
964 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
965 hi->status = ATTO_STS_UNSUPPORTED;
966 break;
967 }
968
969 /* Always return all the info we can. */
970 trc->trace_mask = 0;
971 trc->current_offset = 0;
972 trc->total_length = ESAS2R_FWCOREDUMP_SZ;
973
974 /* Return zero length buffer if core dump not present */
975 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
976 trc->total_length = 0;
977 } else {
978 hi->status = ATTO_STS_UNSUPPORTED;
979 }
980
981 break;
982 }
983
984 case ATTO_FUNC_SCSI_PASS_THRU:
985 {
986 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
987 struct scsi_lun lun;
988
989 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
990
991 if (hi->flags & HBAF_TUNNEL) {
992 if (hba_ioctl_tunnel(a, hi, rq, sgc))
993 return true;
994
995 break;
996 }
997
998 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
999 hi->status = ATTO_STS_INV_VERSION;
1000 hi->version = ATTO_VER_SCSI_PASS_THRU0;
1001 break;
1002 }
1003
1004 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1005 hi->status = ATTO_STS_INV_PARAM;
1006 break;
1007 }
1008
1009 esas2r_sgc_init(sgc, a, rq, NULL);
1010
1011 sgc->length = hi->data_length;
1012 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1013 + sizeof(struct atto_hba_scsi_pass_thru);
1014
1015 /* Finish request initialization */
1016 rq->target_id = (u16)spt->target_id;
1017 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1018 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1019 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1020 rq->sense_len = spt->sense_length;
1021 rq->sense_buf = (u8 *)spt->sense_data;
1022 /* NOTE: we ignore spt->timeout */
1023
1024 /*
1025 * always usurp the completion callback since the interrupt
1026 * callback mechanism may be used.
1027 */
1028
1029 rq->aux_req_cx = hi;
1030 rq->aux_req_cb = rq->comp_cb;
1031 rq->comp_cb = scsi_passthru_comp_cb;
1032
1033 if (spt->flags & ATTO_SPTF_DATA_IN) {
1034 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1035 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1036 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1037 } else {
1038 if (sgc->length) {
1039 hi->status = ATTO_STS_INV_PARAM;
1040 break;
1041 }
1042 }
1043
1044 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1045 rq->vrq->scsi.flags |=
1046 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1047 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1048 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1049
1050
1051 if (!esas2r_build_sg_list(a, rq, sgc)) {
1052 hi->status = ATTO_STS_OUT_OF_RSRC;
1053 break;
1054 }
1055
1056 esas2r_start_request(a, rq);
1057
1058 return true;
1059 }
1060
1061 case ATTO_FUNC_GET_DEV_ADDR:
1062 {
1063 struct atto_hba_get_device_address *gda =
1064 &hi->data.get_dev_addr;
1065 struct esas2r_target *t;
1066
1067 if (hi->flags & HBAF_TUNNEL) {
1068 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069 return true;
1070
1071 break;
1072 }
1073
1074 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1075 hi->status = ATTO_STS_INV_VERSION;
1076 hi->version = ATTO_VER_GET_DEV_ADDR0;
1077 break;
1078 }
1079
1080 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1081 hi->status = ATTO_STS_INV_PARAM;
1082 break;
1083 }
1084
1085 t = a->targetdb + (u16)gda->target_id;
1086
1087 if (t->target_state != TS_PRESENT) {
1088 hi->status = ATTO_STS_FAILED;
1089 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1090 if (t->sas_addr == 0) {
1091 hi->status = ATTO_STS_UNSUPPORTED;
1092 } else {
1093 *(u64 *)gda->address = t->sas_addr;
1094
1095 gda->addr_len = sizeof(u64);
1096 }
1097 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1098 hi->status = ATTO_STS_NOT_APPL;
1099 } else {
1100 hi->status = ATTO_STS_INV_PARAM;
1101 }
1102
1103 /* update the target ID to the next one present. */
1104
1105 gda->target_id =
1106 esas2r_targ_db_find_next_present(a,
1107 (u16)gda->target_id);
1108 break;
1109 }
1110
1111 case ATTO_FUNC_PHY_CTRL:
1112 case ATTO_FUNC_CONN_CTRL:
1113 {
1114 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115 return true;
1116
1117 break;
1118 }
1119
1120 case ATTO_FUNC_ADAP_CTRL:
1121 {
1122 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1123
1124 if (hi->flags & HBAF_TUNNEL) {
1125 hi->status = ATTO_STS_UNSUPPORTED;
1126 break;
1127 }
1128
1129 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1130 hi->status = ATTO_STS_INV_VERSION;
1131 hi->version = ATTO_VER_ADAP_CTRL0;
1132 break;
1133 }
1134
1135 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1136 esas2r_reset_adapter(a);
1137 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1138 hi->status = ATTO_STS_UNSUPPORTED;
1139 break;
1140 }
1141
1142 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1143 ac->adap_state = ATTO_AC_AS_RST_SCHED;
1144 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1145 ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1146 else if (test_bit(AF_DISC_PENDING, &a->flags))
1147 ac->adap_state = ATTO_AC_AS_RST_DISC;
1148 else if (test_bit(AF_DISABLED, &a->flags))
1149 ac->adap_state = ATTO_AC_AS_DISABLED;
1150 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1151 ac->adap_state = ATTO_AC_AS_DEGRADED;
1152 else
1153 ac->adap_state = ATTO_AC_AS_OK;
1154
1155 break;
1156 }
1157
1158 case ATTO_FUNC_GET_DEV_INFO:
1159 {
1160 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1161 struct esas2r_target *t;
1162
1163 if (hi->flags & HBAF_TUNNEL) {
1164 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165 return true;
1166
1167 break;
1168 }
1169
1170 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1171 hi->status = ATTO_STS_INV_VERSION;
1172 hi->version = ATTO_VER_GET_DEV_INFO0;
1173 break;
1174 }
1175
1176 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1177 hi->status = ATTO_STS_INV_PARAM;
1178 break;
1179 }
1180
1181 t = a->targetdb + (u16)gdi->target_id;
1182
1183 /* update the target ID to the next one present. */
1184
1185 gdi->target_id =
1186 esas2r_targ_db_find_next_present(a,
1187 (u16)gdi->target_id);
1188
1189 if (t->target_state != TS_PRESENT) {
1190 hi->status = ATTO_STS_FAILED;
1191 break;
1192 }
1193
1194 hi->status = ATTO_STS_UNSUPPORTED;
1195 break;
1196 }
1197
1198 default:
1199
1200 hi->status = ATTO_STS_INV_FUNC;
1201 break;
1202 }
1203
1204 return false;
1205 }
1206
1207 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1208 struct esas2r_request *rq, void *context)
1209 {
1210 struct atto_ioctl *ioctl_hba =
1211 (struct atto_ioctl *)esas2r_buffered_ioctl;
1212
1213 esas2r_debug("hba_ioctl_done_callback %d", a->index);
1214
1215 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1216 struct atto_hba_get_adapter_info *gai =
1217 &ioctl_hba->data.get_adap_info;
1218
1219 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1220
1221 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1222 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1223
1224 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1225 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1226
1227 gai->num_busses = 1;
1228 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1229 gai->num_lunsper_targ = 1;
1230 }
1231 }
1232
1233 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1234 struct atto_ioctl *ioctl_hba)
1235 {
1236 struct esas2r_buffered_ioctl bi;
1237
1238 memset(&bi, 0, sizeof(bi));
1239
1240 bi.a = a;
1241 bi.ioctl = ioctl_hba;
1242 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1243 bi.callback = hba_ioctl_callback;
1244 bi.context = NULL;
1245 bi.done_callback = hba_ioctl_done_callback;
1246 bi.done_context = NULL;
1247 bi.offset = 0;
1248
1249 return handle_buffered_ioctl(&bi);
1250 }
1251
1252
1253 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1254 struct esas2r_sas_nvram *data)
1255 {
1256 int result = 0;
1257
1258 a->nvram_command_done = 0;
1259 rq->comp_cb = complete_nvr_req;
1260
1261 if (esas2r_nvram_write(a, rq, data)) {
1262 /* now wait around for it to complete. */
1263 while (!a->nvram_command_done)
1264 wait_event_interruptible(a->nvram_waiter,
1265 a->nvram_command_done);
1266 ;
1267
1268 /* done, check the status. */
1269 if (rq->req_stat == RS_SUCCESS)
1270 result = 1;
1271 }
1272 return result;
1273 }
1274
1275
1276 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1277 int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg)
1278 {
1279 struct atto_express_ioctl *ioctl = NULL;
1280 struct esas2r_adapter *a;
1281 struct esas2r_request *rq;
1282 u16 code;
1283 int err;
1284
1285 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1286
1287 if ((arg == NULL)
1288 || (cmd < EXPRESS_IOCTL_MIN)
1289 || (cmd > EXPRESS_IOCTL_MAX))
1290 return -ENOTSUPP;
1291
1292 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1293 if (IS_ERR(ioctl)) {
1294 esas2r_log(ESAS2R_LOG_WARN,
1295 "ioctl_handler access_ok failed for cmd %d, "
1296 "address %p", cmd,
1297 arg);
1298 return PTR_ERR(ioctl);
1299 }
1300
1301 /* verify the signature */
1302
1303 if (memcmp(ioctl->header.signature,
1304 EXPRESS_IOCTL_SIGNATURE,
1305 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1306 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1307 kfree(ioctl);
1308
1309 return -ENOTSUPP;
1310 }
1311
1312 /* assume success */
1313
1314 ioctl->header.return_code = IOCTL_SUCCESS;
1315 err = 0;
1316
1317 /*
1318 * handle EXPRESS_IOCTL_GET_CHANNELS
1319 * without paying attention to channel
1320 */
1321
1322 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1323 int i = 0, k = 0;
1324
1325 ioctl->data.chanlist.num_channels = 0;
1326
1327 while (i < MAX_ADAPTERS) {
1328 if (esas2r_adapters[i]) {
1329 ioctl->data.chanlist.num_channels++;
1330 ioctl->data.chanlist.channel[k] = i;
1331 k++;
1332 }
1333 i++;
1334 }
1335
1336 goto ioctl_done;
1337 }
1338
1339 /* get the channel */
1340
1341 if (ioctl->header.channel == 0xFF) {
1342 a = (struct esas2r_adapter *)hostdata;
1343 } else {
1344 if (ioctl->header.channel >= MAX_ADAPTERS ||
1345 esas2r_adapters[ioctl->header.channel] == NULL) {
1346 ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1347 esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1348 kfree(ioctl);
1349
1350 return -ENOTSUPP;
1351 }
1352 a = esas2r_adapters[ioctl->header.channel];
1353 }
1354
1355 switch (cmd) {
1356 case EXPRESS_IOCTL_RW_FIRMWARE:
1357
1358 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1359 err = esas2r_write_fw(a,
1360 (char *)ioctl->data.fwrw.image,
1361 0,
1362 sizeof(struct
1363 atto_express_ioctl));
1364
1365 if (err >= 0) {
1366 err = esas2r_read_fw(a,
1367 (char *)ioctl->data.fwrw.
1368 image,
1369 0,
1370 sizeof(struct
1371 atto_express_ioctl));
1372 }
1373 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1374 err = esas2r_write_fs(a,
1375 (char *)ioctl->data.fwrw.image,
1376 0,
1377 sizeof(struct
1378 atto_express_ioctl));
1379
1380 if (err >= 0) {
1381 err = esas2r_read_fs(a,
1382 (char *)ioctl->data.fwrw.
1383 image,
1384 0,
1385 sizeof(struct
1386 atto_express_ioctl));
1387 }
1388 } else {
1389 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1390 }
1391
1392 break;
1393
1394 case EXPRESS_IOCTL_READ_PARAMS:
1395
1396 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1397 sizeof(struct esas2r_sas_nvram));
1398 ioctl->data.prw.code = 1;
1399 break;
1400
1401 case EXPRESS_IOCTL_WRITE_PARAMS:
1402
1403 rq = esas2r_alloc_request(a);
1404 if (rq == NULL) {
1405 kfree(ioctl);
1406 esas2r_log(ESAS2R_LOG_WARN,
1407 "could not allocate an internal request");
1408 return -ENOMEM;
1409 }
1410
1411 code = esas2r_write_params(a, rq,
1412 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1413 ioctl->data.prw.code = code;
1414
1415 esas2r_free_request(a, rq);
1416
1417 break;
1418
1419 case EXPRESS_IOCTL_DEFAULT_PARAMS:
1420
1421 esas2r_nvram_get_defaults(a,
1422 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1423 ioctl->data.prw.code = 1;
1424 break;
1425
1426 case EXPRESS_IOCTL_CHAN_INFO:
1427
1428 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1429 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1430 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1431 ioctl->data.chaninfo.device_id = a->pcid->device;
1432 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1433 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1434 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1435 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1436 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1437 ioctl->data.chaninfo.core_rev = 0;
1438 ioctl->data.chaninfo.host_no = a->host->host_no;
1439 ioctl->data.chaninfo.hbaapi_rev = 0;
1440 break;
1441
1442 case EXPRESS_IOCTL_SMP:
1443 ioctl->header.return_code = handle_smp_ioctl(a,
1444 &ioctl->data.
1445 ioctl_smp);
1446 break;
1447
1448 case EXPRESS_CSMI:
1449 ioctl->header.return_code =
1450 handle_csmi_ioctl(a, &ioctl->data.csmi);
1451 break;
1452
1453 case EXPRESS_IOCTL_HBA:
1454 ioctl->header.return_code = handle_hba_ioctl(a,
1455 &ioctl->data.
1456 ioctl_hba);
1457 break;
1458
1459 case EXPRESS_IOCTL_VDA:
1460 err = esas2r_write_vda(a,
1461 (char *)&ioctl->data.ioctl_vda,
1462 0,
1463 sizeof(struct atto_ioctl_vda) +
1464 ioctl->data.ioctl_vda.data_length);
1465
1466 if (err >= 0) {
1467 err = esas2r_read_vda(a,
1468 (char *)&ioctl->data.ioctl_vda,
1469 0,
1470 sizeof(struct atto_ioctl_vda) +
1471 ioctl->data.ioctl_vda.data_length);
1472 }
1473
1474
1475
1476
1477 break;
1478
1479 case EXPRESS_IOCTL_GET_MOD_INFO:
1480
1481 ioctl->data.modinfo.adapter = a;
1482 ioctl->data.modinfo.pci_dev = a->pcid;
1483 ioctl->data.modinfo.scsi_host = a->host;
1484 ioctl->data.modinfo.host_no = a->host->host_no;
1485
1486 break;
1487
1488 default:
1489 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1490 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1491 }
1492
1493 ioctl_done:
1494
1495 if (err < 0) {
1496 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err,
1497 cmd);
1498
1499 switch (err) {
1500 case -ENOMEM:
1501 case -EBUSY:
1502 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1503 break;
1504
1505 case -ENOSYS:
1506 case -EINVAL:
1507 ioctl->header.return_code = IOCTL_INVALID_PARAM;
1508 break;
1509
1510 default:
1511 ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1512 break;
1513 }
1514
1515 }
1516
1517 /* Always copy the buffer back, if only to pick up the status */
1518 err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1519 if (err != 0) {
1520 esas2r_log(ESAS2R_LOG_WARN,
1521 "ioctl_handler copy_to_user didn't copy "
1522 "everything (err %d, cmd %d)", err,
1523 cmd);
1524 kfree(ioctl);
1525
1526 return -EFAULT;
1527 }
1528
1529 kfree(ioctl);
1530
1531 return 0;
1532 }
1533
1534 int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg)
1535 {
1536 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1537 }
1538
1539 static void free_fw_buffers(struct esas2r_adapter *a)
1540 {
1541 if (a->firmware.data) {
1542 dma_free_coherent(&a->pcid->dev,
1543 (size_t)a->firmware.orig_len,
1544 a->firmware.data,
1545 (dma_addr_t)a->firmware.phys);
1546
1547 a->firmware.data = NULL;
1548 }
1549 }
1550
1551 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1552 {
1553 free_fw_buffers(a);
1554
1555 a->firmware.orig_len = length;
1556
1557 a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1558 (size_t)length,
1559 (dma_addr_t *)&a->firmware.
1560 phys,
1561 GFP_KERNEL);
1562
1563 if (!a->firmware.data) {
1564 esas2r_debug("buffer alloc failed!");
1565 return 0;
1566 }
1567
1568 return 1;
1569 }
1570
1571 /* Handle a call to read firmware. */
1572 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1573 {
1574 esas2r_trace_enter();
1575 /* if the cached header is a status, simply copy it over and return. */
1576 if (a->firmware.state == FW_STATUS_ST) {
1577 int size = min_t(int, count, sizeof(a->firmware.header));
1578 esas2r_trace_exit();
1579 memcpy(buf, &a->firmware.header, size);
1580 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1581 return size;
1582 }
1583
1584 /*
1585 * if the cached header is a command, do it if at
1586 * offset 0, otherwise copy the pieces.
1587 */
1588
1589 if (a->firmware.state == FW_COMMAND_ST) {
1590 u32 length = a->firmware.header.length;
1591 esas2r_trace_exit();
1592
1593 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1594 length,
1595 off);
1596
1597 if (off == 0) {
1598 if (a->firmware.header.action == FI_ACT_UP) {
1599 if (!allocate_fw_buffers(a, length))
1600 return -ENOMEM;
1601
1602
1603 /* copy header over */
1604
1605 memcpy(a->firmware.data,
1606 &a->firmware.header,
1607 sizeof(a->firmware.header));
1608
1609 do_fm_api(a,
1610 (struct esas2r_flash_img *)a->firmware.data);
1611 } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1612 int size =
1613 min((int)count,
1614 (int)sizeof(a->firmware.header));
1615 do_fm_api(a, &a->firmware.header);
1616 memcpy(buf, &a->firmware.header, size);
1617 esas2r_debug("FI_ACT_UPSZ size %d", size);
1618 return size;
1619 } else {
1620 esas2r_debug("invalid action %d",
1621 a->firmware.header.action);
1622 return -ENOSYS;
1623 }
1624 }
1625
1626 if (count + off > length)
1627 count = length - off;
1628
1629 if (count < 0)
1630 return 0;
1631
1632 if (!a->firmware.data) {
1633 esas2r_debug(
1634 "read: nonzero offset but no buffer available!");
1635 return -ENOMEM;
1636 }
1637
1638 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1639 count,
1640 length);
1641
1642 memcpy(buf, &a->firmware.data[off], count);
1643
1644 /* when done, release the buffer */
1645
1646 if (length <= off + count) {
1647 esas2r_debug("esas2r_read_fw: freeing buffer!");
1648
1649 free_fw_buffers(a);
1650 }
1651
1652 return count;
1653 }
1654
1655 esas2r_trace_exit();
1656 esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1657 a->firmware.state);
1658
1659 return -EINVAL;
1660 }
1661
1662 /* Handle a call to write firmware. */
1663 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1664 int count)
1665 {
1666 u32 length;
1667
1668 if (off == 0) {
1669 struct esas2r_flash_img *header =
1670 (struct esas2r_flash_img *)buf;
1671
1672 /* assume version 0 flash image */
1673
1674 int min_size = sizeof(struct esas2r_flash_img_v0);
1675
1676 a->firmware.state = FW_INVALID_ST;
1677
1678 /* validate the version field first */
1679
1680 if (count < 4
1681 || header->fi_version > FI_VERSION_1) {
1682 esas2r_debug(
1683 "esas2r_write_fw: short header or invalid version");
1684 return -EINVAL;
1685 }
1686
1687 /* See if its a version 1 flash image */
1688
1689 if (header->fi_version == FI_VERSION_1)
1690 min_size = sizeof(struct esas2r_flash_img);
1691
1692 /* If this is the start, the header must be full and valid. */
1693 if (count < min_size) {
1694 esas2r_debug("esas2r_write_fw: short header, aborting");
1695 return -EINVAL;
1696 }
1697
1698 /* Make sure the size is reasonable. */
1699 length = header->length;
1700
1701 if (length > 1024 * 1024) {
1702 esas2r_debug(
1703 "esas2r_write_fw: hosed, length %d fi_version %d",
1704 length, header->fi_version);
1705 return -EINVAL;
1706 }
1707
1708 /*
1709 * If this is a write command, allocate memory because
1710 * we have to cache everything. otherwise, just cache
1711 * the header, because the read op will do the command.
1712 */
1713
1714 if (header->action == FI_ACT_DOWN) {
1715 if (!allocate_fw_buffers(a, length))
1716 return -ENOMEM;
1717
1718 /*
1719 * Store the command, so there is context on subsequent
1720 * calls.
1721 */
1722 memcpy(&a->firmware.header,
1723 buf,
1724 sizeof(*header));
1725 } else if (header->action == FI_ACT_UP
1726 || header->action == FI_ACT_UPSZ) {
1727 /* Save the command, result will be picked up on read */
1728 memcpy(&a->firmware.header,
1729 buf,
1730 sizeof(*header));
1731
1732 a->firmware.state = FW_COMMAND_ST;
1733
1734 esas2r_debug(
1735 "esas2r_write_fw: COMMAND, count %d, action %d ",
1736 count, header->action);
1737
1738 /*
1739 * Pretend we took the whole buffer,
1740 * so we don't get bothered again.
1741 */
1742
1743 return count;
1744 } else {
1745 esas2r_debug("esas2r_write_fw: invalid action %d ",
1746 a->firmware.header.action);
1747 return -ENOSYS;
1748 }
1749 } else {
1750 length = a->firmware.header.length;
1751 }
1752
1753 /*
1754 * We only get here on a download command, regardless of offset.
1755 * the chunks written by the system need to be cached, and when
1756 * the final one arrives, issue the fmapi command.
1757 */
1758
1759 if (off + count > length)
1760 count = length - off;
1761
1762 if (count > 0) {
1763 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1764 count,
1765 length);
1766
1767 /*
1768 * On a full upload, the system tries sending the whole buffer.
1769 * there's nothing to do with it, so just drop it here, before
1770 * trying to copy over into unallocated memory!
1771 */
1772 if (a->firmware.header.action == FI_ACT_UP)
1773 return count;
1774
1775 if (!a->firmware.data) {
1776 esas2r_debug(
1777 "write: nonzero offset but no buffer available!");
1778 return -ENOMEM;
1779 }
1780
1781 memcpy(&a->firmware.data[off], buf, count);
1782
1783 if (length == off + count) {
1784 do_fm_api(a,
1785 (struct esas2r_flash_img *)a->firmware.data);
1786
1787 /*
1788 * Now copy the header result to be picked up by the
1789 * next read
1790 */
1791 memcpy(&a->firmware.header,
1792 a->firmware.data,
1793 sizeof(a->firmware.header));
1794
1795 a->firmware.state = FW_STATUS_ST;
1796
1797 esas2r_debug("write completed");
1798
1799 /*
1800 * Since the system has the data buffered, the only way
1801 * this can leak is if a root user writes a program
1802 * that writes a shorter buffer than it claims, and the
1803 * copyin fails.
1804 */
1805 free_fw_buffers(a);
1806 }
1807 }
1808
1809 return count;
1810 }
1811
1812 /* Callback for the completion of a VDA request. */
1813 static void vda_complete_req(struct esas2r_adapter *a,
1814 struct esas2r_request *rq)
1815 {
1816 a->vda_command_done = 1;
1817 wake_up_interruptible(&a->vda_waiter);
1818 }
1819
1820 /* Scatter/gather callback for VDA requests */
1821 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1822 {
1823 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1824 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1825
1826 (*addr) = a->ppvda_buffer + offset;
1827 return VDA_MAX_BUFFER_SIZE - offset;
1828 }
1829
1830 /* Handle a call to read a VDA command. */
1831 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1832 {
1833 if (!a->vda_buffer)
1834 return -ENOMEM;
1835
1836 if (off == 0) {
1837 struct esas2r_request *rq;
1838 struct atto_ioctl_vda *vi =
1839 (struct atto_ioctl_vda *)a->vda_buffer;
1840 struct esas2r_sg_context sgc;
1841 bool wait_for_completion;
1842
1843 /*
1844 * Presumeably, someone has already written to the vda_buffer,
1845 * and now they are reading the node the response, so now we
1846 * will actually issue the request to the chip and reply.
1847 */
1848
1849 /* allocate a request */
1850 rq = esas2r_alloc_request(a);
1851 if (rq == NULL) {
1852 esas2r_debug("esas2r_read_vda: out of requestss");
1853 return -EBUSY;
1854 }
1855
1856 rq->comp_cb = vda_complete_req;
1857
1858 sgc.first_req = rq;
1859 sgc.adapter = a;
1860 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1861 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1862
1863 a->vda_command_done = 0;
1864
1865 wait_for_completion =
1866 esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1867
1868 if (wait_for_completion) {
1869 /* now wait around for it to complete. */
1870
1871 while (!a->vda_command_done)
1872 wait_event_interruptible(a->vda_waiter,
1873 a->vda_command_done);
1874 }
1875
1876 esas2r_free_request(a, (struct esas2r_request *)rq);
1877 }
1878
1879 if (off > VDA_MAX_BUFFER_SIZE)
1880 return 0;
1881
1882 if (count + off > VDA_MAX_BUFFER_SIZE)
1883 count = VDA_MAX_BUFFER_SIZE - off;
1884
1885 if (count < 0)
1886 return 0;
1887
1888 memcpy(buf, a->vda_buffer + off, count);
1889
1890 return count;
1891 }
1892
1893 /* Handle a call to write a VDA command. */
1894 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1895 int count)
1896 {
1897 /*
1898 * allocate memory for it, if not already done. once allocated,
1899 * we will keep it around until the driver is unloaded.
1900 */
1901
1902 if (!a->vda_buffer) {
1903 dma_addr_t dma_addr;
1904 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1905 (size_t)
1906 VDA_MAX_BUFFER_SIZE,
1907 &dma_addr,
1908 GFP_KERNEL);
1909
1910 a->ppvda_buffer = dma_addr;
1911 }
1912
1913 if (!a->vda_buffer)
1914 return -ENOMEM;
1915
1916 if (off > VDA_MAX_BUFFER_SIZE)
1917 return 0;
1918
1919 if (count + off > VDA_MAX_BUFFER_SIZE)
1920 count = VDA_MAX_BUFFER_SIZE - off;
1921
1922 if (count < 1)
1923 return 0;
1924
1925 memcpy(a->vda_buffer + off, buf, count);
1926
1927 return count;
1928 }
1929
1930 /* Callback for the completion of an FS_API request.*/
1931 static void fs_api_complete_req(struct esas2r_adapter *a,
1932 struct esas2r_request *rq)
1933 {
1934 a->fs_api_command_done = 1;
1935
1936 wake_up_interruptible(&a->fs_api_waiter);
1937 }
1938
1939 /* Scatter/gather callback for VDA requests */
1940 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1941 {
1942 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1943 struct esas2r_ioctl_fs *fs =
1944 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1945 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1946
1947 (*addr) = a->ppfs_api_buffer + offset;
1948
1949 return a->fs_api_buffer_size - offset;
1950 }
1951
1952 /* Handle a call to read firmware via FS_API. */
1953 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1954 {
1955 if (!a->fs_api_buffer)
1956 return -ENOMEM;
1957
1958 if (off == 0) {
1959 struct esas2r_request *rq;
1960 struct esas2r_sg_context sgc;
1961 struct esas2r_ioctl_fs *fs =
1962 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1963
1964 /* If another flash request is already in progress, return. */
1965 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1966 busy:
1967 fs->status = ATTO_STS_OUT_OF_RSRC;
1968 return -EBUSY;
1969 }
1970
1971 /*
1972 * Presumeably, someone has already written to the
1973 * fs_api_buffer, and now they are reading the node the
1974 * response, so now we will actually issue the request to the
1975 * chip and reply. Allocate a request
1976 */
1977
1978 rq = esas2r_alloc_request(a);
1979 if (rq == NULL) {
1980 esas2r_debug("esas2r_read_fs: out of requests");
1981 mutex_unlock(&a->fs_api_mutex);
1982 goto busy;
1983 }
1984
1985 rq->comp_cb = fs_api_complete_req;
1986
1987 /* Set up the SGCONTEXT for to build the s/g table */
1988
1989 sgc.cur_offset = fs->data;
1990 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1991
1992 a->fs_api_command_done = 0;
1993
1994 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1995 if (fs->status == ATTO_STS_OUT_OF_RSRC)
1996 count = -EBUSY;
1997
1998 goto dont_wait;
1999 }
2000
2001 /* Now wait around for it to complete. */
2002
2003 while (!a->fs_api_command_done)
2004 wait_event_interruptible(a->fs_api_waiter,
2005 a->fs_api_command_done);
2006 ;
2007 dont_wait:
2008 /* Free the request and keep going */
2009 mutex_unlock(&a->fs_api_mutex);
2010 esas2r_free_request(a, (struct esas2r_request *)rq);
2011
2012 /* Pick up possible error code from above */
2013 if (count < 0)
2014 return count;
2015 }
2016
2017 if (off > a->fs_api_buffer_size)
2018 return 0;
2019
2020 if (count + off > a->fs_api_buffer_size)
2021 count = a->fs_api_buffer_size - off;
2022
2023 if (count < 0)
2024 return 0;
2025
2026 memcpy(buf, a->fs_api_buffer + off, count);
2027
2028 return count;
2029 }
2030
2031 /* Handle a call to write firmware via FS_API. */
2032 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2033 int count)
2034 {
2035 if (off == 0) {
2036 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2037 u32 length = fs->command.length + offsetof(
2038 struct esas2r_ioctl_fs,
2039 data);
2040
2041 /*
2042 * Special case, for BEGIN commands, the length field
2043 * is lying to us, so just get enough for the header.
2044 */
2045
2046 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2047 length = offsetof(struct esas2r_ioctl_fs, data);
2048
2049 /*
2050 * Beginning a command. We assume we'll get at least
2051 * enough in the first write so we can look at the
2052 * header and see how much we need to alloc.
2053 */
2054
2055 if (count < offsetof(struct esas2r_ioctl_fs, data))
2056 return -EINVAL;
2057
2058 /* Allocate a buffer or use the existing buffer. */
2059 if (a->fs_api_buffer) {
2060 if (a->fs_api_buffer_size < length) {
2061 /* Free too-small buffer and get a new one */
2062 dma_free_coherent(&a->pcid->dev,
2063 (size_t)a->fs_api_buffer_size,
2064 a->fs_api_buffer,
2065 (dma_addr_t)a->ppfs_api_buffer);
2066
2067 goto re_allocate_buffer;
2068 }
2069 } else {
2070 re_allocate_buffer:
2071 a->fs_api_buffer_size = length;
2072
2073 a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2074 &a->pcid->dev,
2075 (size_t)a->fs_api_buffer_size,
2076 (dma_addr_t *)&a->ppfs_api_buffer,
2077 GFP_KERNEL);
2078 }
2079 }
2080
2081 if (!a->fs_api_buffer)
2082 return -ENOMEM;
2083
2084 if (off > a->fs_api_buffer_size)
2085 return 0;
2086
2087 if (count + off > a->fs_api_buffer_size)
2088 count = a->fs_api_buffer_size - off;
2089
2090 if (count < 1)
2091 return 0;
2092
2093 memcpy(a->fs_api_buffer + off, buf, count);
2094
2095 return count;
2096 }