]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/scsi/hpsa.c
Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-hirsute-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
61 */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
159 */
160 static struct board_type products[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access},
162 {0x40800E11, "Smart Array 5i", &SA5B_access},
163 {0x40820E11, "Smart Array 532", &SA5B_access},
164 {0x40830E11, "Smart Array 5312", &SA5B_access},
165 {0x409A0E11, "Smart Array 641", &SA5A_access},
166 {0x409B0E11, "Smart Array 642", &SA5A_access},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 {0x40910E11, "Smart Array 6i", &SA5A_access},
170 {0x3225103C, "Smart Array P600", &SA5A_access},
171 {0x3223103C, "Smart Array P800", &SA5A_access},
172 {0x3234103C, "Smart Array P400", &SA5A_access},
173 {0x3235103C, "Smart Array P400i", &SA5A_access},
174 {0x3211103C, "Smart Array E200i", &SA5A_access},
175 {0x3212103C, "Smart Array E200", &SA5A_access},
176 {0x3213103C, "Smart Array E200i", &SA5A_access},
177 {0x3214103C, "Smart Array E200i", &SA5A_access},
178 {0x3215103C, "Smart Array E200i", &SA5A_access},
179 {0x3237103C, "Smart Array E500", &SA5A_access},
180 {0x323D103C, "Smart Array P700m", &SA5A_access},
181 {0x3241103C, "Smart Array P212", &SA5_access},
182 {0x3243103C, "Smart Array P410", &SA5_access},
183 {0x3245103C, "Smart Array P410i", &SA5_access},
184 {0x3247103C, "Smart Array P411", &SA5_access},
185 {0x3249103C, "Smart Array P812", &SA5_access},
186 {0x324A103C, "Smart Array P712m", &SA5_access},
187 {0x324B103C, "Smart Array P711m", &SA5_access},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access},
190 {0x3351103C, "Smart Array P420", &SA5_access},
191 {0x3352103C, "Smart Array P421", &SA5_access},
192 {0x3353103C, "Smart Array P822", &SA5_access},
193 {0x3354103C, "Smart Array P420i", &SA5_access},
194 {0x3355103C, "Smart Array P220i", &SA5_access},
195 {0x3356103C, "Smart Array P721m", &SA5_access},
196 {0x1920103C, "Smart Array P430i", &SA5_access},
197 {0x1921103C, "Smart Array P830i", &SA5_access},
198 {0x1922103C, "Smart Array P430", &SA5_access},
199 {0x1923103C, "Smart Array P431", &SA5_access},
200 {0x1924103C, "Smart Array P830", &SA5_access},
201 {0x1925103C, "Smart Array P831", &SA5_access},
202 {0x1926103C, "Smart Array P731m", &SA5_access},
203 {0x1928103C, "Smart Array P230i", &SA5_access},
204 {0x1929103C, "Smart Array P530", &SA5_access},
205 {0x21BD103C, "Smart Array P244br", &SA5_access},
206 {0x21BE103C, "Smart Array P741m", &SA5_access},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access},
210 {0x21C2103C, "Smart Array P440", &SA5_access},
211 {0x21C3103C, "Smart Array P441", &SA5_access},
212 {0x21C4103C, "Smart Array", &SA5_access},
213 {0x21C5103C, "Smart Array P841", &SA5_access},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access},
215 {0x21C7103C, "Smart HBA H240", &SA5_access},
216 {0x21C8103C, "Smart HBA H241", &SA5_access},
217 {0x21C9103C, "Smart Array", &SA5_access},
218 {0x21CA103C, "Smart Array P246br", &SA5_access},
219 {0x21CB103C, "Smart Array P840", &SA5_access},
220 {0x21CC103C, "Smart Array", &SA5_access},
221 {0x21CD103C, "Smart Array", &SA5_access},
222 {0x21CE103C, "Smart HBA", &SA5_access},
223 {0x05809005, "SmartHBA-SA", &SA5_access},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 void __user *arg);
257
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260 void __user *arg);
261 #endif
262
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267 struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270 int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
274
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278 unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
285
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288 struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290 struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293 int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299 u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301 unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303 bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305 unsigned char lunaddr[],
306 int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308 int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323 struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325 unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328 struct hpsa_scsi_dev_t *dev,
329 unsigned char *scsi3addr);
330
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 {
333 unsigned long *priv = shost_priv(sdev->host);
334 return (struct ctlr_info *) *priv;
335 }
336
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 {
339 unsigned long *priv = shost_priv(sh);
340 return (struct ctlr_info *) *priv;
341 }
342
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 {
345 return c->scsi_cmd == SCSI_CMD_IDLE;
346 }
347
348 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350 u8 *sense_key, u8 *asc, u8 *ascq)
351 {
352 struct scsi_sense_hdr sshdr;
353 bool rc;
354
355 *sense_key = -1;
356 *asc = -1;
357 *ascq = -1;
358
359 if (sense_data_len < 1)
360 return;
361
362 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363 if (rc) {
364 *sense_key = sshdr.sense_key;
365 *asc = sshdr.asc;
366 *ascq = sshdr.ascq;
367 }
368 }
369
370 static int check_for_unit_attention(struct ctlr_info *h,
371 struct CommandList *c)
372 {
373 u8 sense_key, asc, ascq;
374 int sense_len;
375
376 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377 sense_len = sizeof(c->err_info->SenseInfo);
378 else
379 sense_len = c->err_info->SenseLen;
380
381 decode_sense_data(c->err_info->SenseInfo, sense_len,
382 &sense_key, &asc, &ascq);
383 if (sense_key != UNIT_ATTENTION || asc == 0xff)
384 return 0;
385
386 switch (asc) {
387 case STATE_CHANGED:
388 dev_warn(&h->pdev->dev,
389 "%s: a state change detected, command retried\n",
390 h->devname);
391 break;
392 case LUN_FAILED:
393 dev_warn(&h->pdev->dev,
394 "%s: LUN failure detected\n", h->devname);
395 break;
396 case REPORT_LUNS_CHANGED:
397 dev_warn(&h->pdev->dev,
398 "%s: report LUN data changed\n", h->devname);
399 /*
400 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401 * target (array) devices.
402 */
403 break;
404 case POWER_OR_RESET:
405 dev_warn(&h->pdev->dev,
406 "%s: a power on or device reset detected\n",
407 h->devname);
408 break;
409 case UNIT_ATTENTION_CLEARED:
410 dev_warn(&h->pdev->dev,
411 "%s: unit attention cleared by another initiator\n",
412 h->devname);
413 break;
414 default:
415 dev_warn(&h->pdev->dev,
416 "%s: unknown unit attention detected\n",
417 h->devname);
418 break;
419 }
420 return 1;
421 }
422
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
424 {
425 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428 return 0;
429 dev_warn(&h->pdev->dev, HPSA "device busy");
430 return 1;
431 }
432
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435 struct device_attribute *attr, char *buf)
436 {
437 int ld;
438 struct ctlr_info *h;
439 struct Scsi_Host *shost = class_to_shost(dev);
440
441 h = shost_to_hba(shost);
442 ld = lockup_detected(h);
443
444 return sprintf(buf, "ld=%d\n", ld);
445 }
446
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448 struct device_attribute *attr,
449 const char *buf, size_t count)
450 {
451 int status, len;
452 struct ctlr_info *h;
453 struct Scsi_Host *shost = class_to_shost(dev);
454 char tmpbuf[10];
455
456 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457 return -EACCES;
458 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459 strncpy(tmpbuf, buf, len);
460 tmpbuf[len] = '\0';
461 if (sscanf(tmpbuf, "%d", &status) != 1)
462 return -EINVAL;
463 h = shost_to_hba(shost);
464 h->acciopath_status = !!status;
465 dev_warn(&h->pdev->dev,
466 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
467 h->acciopath_status ? "enabled" : "disabled");
468 return count;
469 }
470
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
474 {
475 int debug_level, len;
476 struct ctlr_info *h;
477 struct Scsi_Host *shost = class_to_shost(dev);
478 char tmpbuf[10];
479
480 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481 return -EACCES;
482 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483 strncpy(tmpbuf, buf, len);
484 tmpbuf[len] = '\0';
485 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486 return -EINVAL;
487 if (debug_level < 0)
488 debug_level = 0;
489 h = shost_to_hba(shost);
490 h->raid_offload_debug = debug_level;
491 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492 h->raid_offload_debug);
493 return count;
494 }
495
496 static ssize_t host_store_rescan(struct device *dev,
497 struct device_attribute *attr,
498 const char *buf, size_t count)
499 {
500 struct ctlr_info *h;
501 struct Scsi_Host *shost = class_to_shost(dev);
502 h = shost_to_hba(shost);
503 hpsa_scan_start(h->scsi_host);
504 return count;
505 }
506
507 static ssize_t host_show_firmware_revision(struct device *dev,
508 struct device_attribute *attr, char *buf)
509 {
510 struct ctlr_info *h;
511 struct Scsi_Host *shost = class_to_shost(dev);
512 unsigned char *fwrev;
513
514 h = shost_to_hba(shost);
515 if (!h->hba_inquiry_data)
516 return 0;
517 fwrev = &h->hba_inquiry_data[32];
518 return snprintf(buf, 20, "%c%c%c%c\n",
519 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
520 }
521
522 static ssize_t host_show_commands_outstanding(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 struct Scsi_Host *shost = class_to_shost(dev);
526 struct ctlr_info *h = shost_to_hba(shost);
527
528 return snprintf(buf, 20, "%d\n",
529 atomic_read(&h->commands_outstanding));
530 }
531
532 static ssize_t host_show_transport_mode(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct ctlr_info *h;
536 struct Scsi_Host *shost = class_to_shost(dev);
537
538 h = shost_to_hba(shost);
539 return snprintf(buf, 20, "%s\n",
540 h->transMethod & CFGTBL_Trans_Performant ?
541 "performant" : "simple");
542 }
543
544 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
545 struct device_attribute *attr, char *buf)
546 {
547 struct ctlr_info *h;
548 struct Scsi_Host *shost = class_to_shost(dev);
549
550 h = shost_to_hba(shost);
551 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
552 (h->acciopath_status == 1) ? "enabled" : "disabled");
553 }
554
555 /* List of controllers which cannot be hard reset on kexec with reset_devices */
556 static u32 unresettable_controller[] = {
557 0x324a103C, /* Smart Array P712m */
558 0x324b103C, /* Smart Array P711m */
559 0x3223103C, /* Smart Array P800 */
560 0x3234103C, /* Smart Array P400 */
561 0x3235103C, /* Smart Array P400i */
562 0x3211103C, /* Smart Array E200i */
563 0x3212103C, /* Smart Array E200 */
564 0x3213103C, /* Smart Array E200i */
565 0x3214103C, /* Smart Array E200i */
566 0x3215103C, /* Smart Array E200i */
567 0x3237103C, /* Smart Array E500 */
568 0x323D103C, /* Smart Array P700m */
569 0x40800E11, /* Smart Array 5i */
570 0x409C0E11, /* Smart Array 6400 */
571 0x409D0E11, /* Smart Array 6400 EM */
572 0x40700E11, /* Smart Array 5300 */
573 0x40820E11, /* Smart Array 532 */
574 0x40830E11, /* Smart Array 5312 */
575 0x409A0E11, /* Smart Array 641 */
576 0x409B0E11, /* Smart Array 642 */
577 0x40910E11, /* Smart Array 6i */
578 };
579
580 /* List of controllers which cannot even be soft reset */
581 static u32 soft_unresettable_controller[] = {
582 0x40800E11, /* Smart Array 5i */
583 0x40700E11, /* Smart Array 5300 */
584 0x40820E11, /* Smart Array 532 */
585 0x40830E11, /* Smart Array 5312 */
586 0x409A0E11, /* Smart Array 641 */
587 0x409B0E11, /* Smart Array 642 */
588 0x40910E11, /* Smart Array 6i */
589 /* Exclude 640x boards. These are two pci devices in one slot
590 * which share a battery backed cache module. One controls the
591 * cache, the other accesses the cache through the one that controls
592 * it. If we reset the one controlling the cache, the other will
593 * likely not be happy. Just forbid resetting this conjoined mess.
594 * The 640x isn't really supported by hpsa anyway.
595 */
596 0x409C0E11, /* Smart Array 6400 */
597 0x409D0E11, /* Smart Array 6400 EM */
598 };
599
600 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
601 {
602 int i;
603
604 for (i = 0; i < nelems; i++)
605 if (a[i] == board_id)
606 return 1;
607 return 0;
608 }
609
610 static int ctlr_is_hard_resettable(u32 board_id)
611 {
612 return !board_id_in_array(unresettable_controller,
613 ARRAY_SIZE(unresettable_controller), board_id);
614 }
615
616 static int ctlr_is_soft_resettable(u32 board_id)
617 {
618 return !board_id_in_array(soft_unresettable_controller,
619 ARRAY_SIZE(soft_unresettable_controller), board_id);
620 }
621
622 static int ctlr_is_resettable(u32 board_id)
623 {
624 return ctlr_is_hard_resettable(board_id) ||
625 ctlr_is_soft_resettable(board_id);
626 }
627
628 static ssize_t host_show_resettable(struct device *dev,
629 struct device_attribute *attr, char *buf)
630 {
631 struct ctlr_info *h;
632 struct Scsi_Host *shost = class_to_shost(dev);
633
634 h = shost_to_hba(shost);
635 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
636 }
637
638 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
639 {
640 return (scsi3addr[3] & 0xC0) == 0x40;
641 }
642
643 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
644 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
645 };
646 #define HPSA_RAID_0 0
647 #define HPSA_RAID_4 1
648 #define HPSA_RAID_1 2 /* also used for RAID 10 */
649 #define HPSA_RAID_5 3 /* also used for RAID 50 */
650 #define HPSA_RAID_51 4
651 #define HPSA_RAID_6 5 /* also used for RAID 60 */
652 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
653 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
654 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
655
656 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
657 {
658 return !device->physical_device;
659 }
660
661 static ssize_t raid_level_show(struct device *dev,
662 struct device_attribute *attr, char *buf)
663 {
664 ssize_t l = 0;
665 unsigned char rlevel;
666 struct ctlr_info *h;
667 struct scsi_device *sdev;
668 struct hpsa_scsi_dev_t *hdev;
669 unsigned long flags;
670
671 sdev = to_scsi_device(dev);
672 h = sdev_to_hba(sdev);
673 spin_lock_irqsave(&h->lock, flags);
674 hdev = sdev->hostdata;
675 if (!hdev) {
676 spin_unlock_irqrestore(&h->lock, flags);
677 return -ENODEV;
678 }
679
680 /* Is this even a logical drive? */
681 if (!is_logical_device(hdev)) {
682 spin_unlock_irqrestore(&h->lock, flags);
683 l = snprintf(buf, PAGE_SIZE, "N/A\n");
684 return l;
685 }
686
687 rlevel = hdev->raid_level;
688 spin_unlock_irqrestore(&h->lock, flags);
689 if (rlevel > RAID_UNKNOWN)
690 rlevel = RAID_UNKNOWN;
691 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
692 return l;
693 }
694
695 static ssize_t lunid_show(struct device *dev,
696 struct device_attribute *attr, char *buf)
697 {
698 struct ctlr_info *h;
699 struct scsi_device *sdev;
700 struct hpsa_scsi_dev_t *hdev;
701 unsigned long flags;
702 unsigned char lunid[8];
703
704 sdev = to_scsi_device(dev);
705 h = sdev_to_hba(sdev);
706 spin_lock_irqsave(&h->lock, flags);
707 hdev = sdev->hostdata;
708 if (!hdev) {
709 spin_unlock_irqrestore(&h->lock, flags);
710 return -ENODEV;
711 }
712 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
713 spin_unlock_irqrestore(&h->lock, flags);
714 return snprintf(buf, 20, "0x%8phN\n", lunid);
715 }
716
717 static ssize_t unique_id_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
719 {
720 struct ctlr_info *h;
721 struct scsi_device *sdev;
722 struct hpsa_scsi_dev_t *hdev;
723 unsigned long flags;
724 unsigned char sn[16];
725
726 sdev = to_scsi_device(dev);
727 h = sdev_to_hba(sdev);
728 spin_lock_irqsave(&h->lock, flags);
729 hdev = sdev->hostdata;
730 if (!hdev) {
731 spin_unlock_irqrestore(&h->lock, flags);
732 return -ENODEV;
733 }
734 memcpy(sn, hdev->device_id, sizeof(sn));
735 spin_unlock_irqrestore(&h->lock, flags);
736 return snprintf(buf, 16 * 2 + 2,
737 "%02X%02X%02X%02X%02X%02X%02X%02X"
738 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
739 sn[0], sn[1], sn[2], sn[3],
740 sn[4], sn[5], sn[6], sn[7],
741 sn[8], sn[9], sn[10], sn[11],
742 sn[12], sn[13], sn[14], sn[15]);
743 }
744
745 static ssize_t sas_address_show(struct device *dev,
746 struct device_attribute *attr, char *buf)
747 {
748 struct ctlr_info *h;
749 struct scsi_device *sdev;
750 struct hpsa_scsi_dev_t *hdev;
751 unsigned long flags;
752 u64 sas_address;
753
754 sdev = to_scsi_device(dev);
755 h = sdev_to_hba(sdev);
756 spin_lock_irqsave(&h->lock, flags);
757 hdev = sdev->hostdata;
758 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
759 spin_unlock_irqrestore(&h->lock, flags);
760 return -ENODEV;
761 }
762 sas_address = hdev->sas_address;
763 spin_unlock_irqrestore(&h->lock, flags);
764
765 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
766 }
767
768 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
769 struct device_attribute *attr, char *buf)
770 {
771 struct ctlr_info *h;
772 struct scsi_device *sdev;
773 struct hpsa_scsi_dev_t *hdev;
774 unsigned long flags;
775 int offload_enabled;
776
777 sdev = to_scsi_device(dev);
778 h = sdev_to_hba(sdev);
779 spin_lock_irqsave(&h->lock, flags);
780 hdev = sdev->hostdata;
781 if (!hdev) {
782 spin_unlock_irqrestore(&h->lock, flags);
783 return -ENODEV;
784 }
785 offload_enabled = hdev->offload_enabled;
786 spin_unlock_irqrestore(&h->lock, flags);
787
788 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
789 return snprintf(buf, 20, "%d\n", offload_enabled);
790 else
791 return snprintf(buf, 40, "%s\n",
792 "Not applicable for a controller");
793 }
794
795 #define MAX_PATHS 8
796 static ssize_t path_info_show(struct device *dev,
797 struct device_attribute *attr, char *buf)
798 {
799 struct ctlr_info *h;
800 struct scsi_device *sdev;
801 struct hpsa_scsi_dev_t *hdev;
802 unsigned long flags;
803 int i;
804 int output_len = 0;
805 u8 box;
806 u8 bay;
807 u8 path_map_index = 0;
808 char *active;
809 unsigned char phys_connector[2];
810
811 sdev = to_scsi_device(dev);
812 h = sdev_to_hba(sdev);
813 spin_lock_irqsave(&h->devlock, flags);
814 hdev = sdev->hostdata;
815 if (!hdev) {
816 spin_unlock_irqrestore(&h->devlock, flags);
817 return -ENODEV;
818 }
819
820 bay = hdev->bay;
821 for (i = 0; i < MAX_PATHS; i++) {
822 path_map_index = 1<<i;
823 if (i == hdev->active_path_index)
824 active = "Active";
825 else if (hdev->path_map & path_map_index)
826 active = "Inactive";
827 else
828 continue;
829
830 output_len += scnprintf(buf + output_len,
831 PAGE_SIZE - output_len,
832 "[%d:%d:%d:%d] %20.20s ",
833 h->scsi_host->host_no,
834 hdev->bus, hdev->target, hdev->lun,
835 scsi_device_type(hdev->devtype));
836
837 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
838 output_len += scnprintf(buf + output_len,
839 PAGE_SIZE - output_len,
840 "%s\n", active);
841 continue;
842 }
843
844 box = hdev->box[i];
845 memcpy(&phys_connector, &hdev->phys_connector[i],
846 sizeof(phys_connector));
847 if (phys_connector[0] < '0')
848 phys_connector[0] = '0';
849 if (phys_connector[1] < '0')
850 phys_connector[1] = '0';
851 output_len += scnprintf(buf + output_len,
852 PAGE_SIZE - output_len,
853 "PORT: %.2s ",
854 phys_connector);
855 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
856 hdev->expose_device) {
857 if (box == 0 || box == 0xFF) {
858 output_len += scnprintf(buf + output_len,
859 PAGE_SIZE - output_len,
860 "BAY: %hhu %s\n",
861 bay, active);
862 } else {
863 output_len += scnprintf(buf + output_len,
864 PAGE_SIZE - output_len,
865 "BOX: %hhu BAY: %hhu %s\n",
866 box, bay, active);
867 }
868 } else if (box != 0 && box != 0xFF) {
869 output_len += scnprintf(buf + output_len,
870 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
871 box, active);
872 } else
873 output_len += scnprintf(buf + output_len,
874 PAGE_SIZE - output_len, "%s\n", active);
875 }
876
877 spin_unlock_irqrestore(&h->devlock, flags);
878 return output_len;
879 }
880
881 static ssize_t host_show_ctlr_num(struct device *dev,
882 struct device_attribute *attr, char *buf)
883 {
884 struct ctlr_info *h;
885 struct Scsi_Host *shost = class_to_shost(dev);
886
887 h = shost_to_hba(shost);
888 return snprintf(buf, 20, "%d\n", h->ctlr);
889 }
890
891 static ssize_t host_show_legacy_board(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct ctlr_info *h;
895 struct Scsi_Host *shost = class_to_shost(dev);
896
897 h = shost_to_hba(shost);
898 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
899 }
900
901 static DEVICE_ATTR_RO(raid_level);
902 static DEVICE_ATTR_RO(lunid);
903 static DEVICE_ATTR_RO(unique_id);
904 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
905 static DEVICE_ATTR_RO(sas_address);
906 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
907 host_show_hp_ssd_smart_path_enabled, NULL);
908 static DEVICE_ATTR_RO(path_info);
909 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
910 host_show_hp_ssd_smart_path_status,
911 host_store_hp_ssd_smart_path_status);
912 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
913 host_store_raid_offload_debug);
914 static DEVICE_ATTR(firmware_revision, S_IRUGO,
915 host_show_firmware_revision, NULL);
916 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
917 host_show_commands_outstanding, NULL);
918 static DEVICE_ATTR(transport_mode, S_IRUGO,
919 host_show_transport_mode, NULL);
920 static DEVICE_ATTR(resettable, S_IRUGO,
921 host_show_resettable, NULL);
922 static DEVICE_ATTR(lockup_detected, S_IRUGO,
923 host_show_lockup_detected, NULL);
924 static DEVICE_ATTR(ctlr_num, S_IRUGO,
925 host_show_ctlr_num, NULL);
926 static DEVICE_ATTR(legacy_board, S_IRUGO,
927 host_show_legacy_board, NULL);
928
929 static struct device_attribute *hpsa_sdev_attrs[] = {
930 &dev_attr_raid_level,
931 &dev_attr_lunid,
932 &dev_attr_unique_id,
933 &dev_attr_hp_ssd_smart_path_enabled,
934 &dev_attr_path_info,
935 &dev_attr_sas_address,
936 NULL,
937 };
938
939 static struct device_attribute *hpsa_shost_attrs[] = {
940 &dev_attr_rescan,
941 &dev_attr_firmware_revision,
942 &dev_attr_commands_outstanding,
943 &dev_attr_transport_mode,
944 &dev_attr_resettable,
945 &dev_attr_hp_ssd_smart_path_status,
946 &dev_attr_raid_offload_debug,
947 &dev_attr_lockup_detected,
948 &dev_attr_ctlr_num,
949 &dev_attr_legacy_board,
950 NULL,
951 };
952
953 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
954 HPSA_MAX_CONCURRENT_PASSTHRUS)
955
956 static struct scsi_host_template hpsa_driver_template = {
957 .module = THIS_MODULE,
958 .name = HPSA,
959 .proc_name = HPSA,
960 .queuecommand = hpsa_scsi_queue_command,
961 .scan_start = hpsa_scan_start,
962 .scan_finished = hpsa_scan_finished,
963 .change_queue_depth = hpsa_change_queue_depth,
964 .this_id = -1,
965 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
966 .ioctl = hpsa_ioctl,
967 .slave_alloc = hpsa_slave_alloc,
968 .slave_configure = hpsa_slave_configure,
969 .slave_destroy = hpsa_slave_destroy,
970 #ifdef CONFIG_COMPAT
971 .compat_ioctl = hpsa_compat_ioctl,
972 #endif
973 .sdev_attrs = hpsa_sdev_attrs,
974 .shost_attrs = hpsa_shost_attrs,
975 .max_sectors = 2048,
976 .no_write_same = 1,
977 };
978
979 static inline u32 next_command(struct ctlr_info *h, u8 q)
980 {
981 u32 a;
982 struct reply_queue_buffer *rq = &h->reply_queue[q];
983
984 if (h->transMethod & CFGTBL_Trans_io_accel1)
985 return h->access.command_completed(h, q);
986
987 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
988 return h->access.command_completed(h, q);
989
990 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
991 a = rq->head[rq->current_entry];
992 rq->current_entry++;
993 atomic_dec(&h->commands_outstanding);
994 } else {
995 a = FIFO_EMPTY;
996 }
997 /* Check for wraparound */
998 if (rq->current_entry == h->max_commands) {
999 rq->current_entry = 0;
1000 rq->wraparound ^= 1;
1001 }
1002 return a;
1003 }
1004
1005 /*
1006 * There are some special bits in the bus address of the
1007 * command that we have to set for the controller to know
1008 * how to process the command:
1009 *
1010 * Normal performant mode:
1011 * bit 0: 1 means performant mode, 0 means simple mode.
1012 * bits 1-3 = block fetch table entry
1013 * bits 4-6 = command type (== 0)
1014 *
1015 * ioaccel1 mode:
1016 * bit 0 = "performant mode" bit.
1017 * bits 1-3 = block fetch table entry
1018 * bits 4-6 = command type (== 110)
1019 * (command type is needed because ioaccel1 mode
1020 * commands are submitted through the same register as normal
1021 * mode commands, so this is how the controller knows whether
1022 * the command is normal mode or ioaccel1 mode.)
1023 *
1024 * ioaccel2 mode:
1025 * bit 0 = "performant mode" bit.
1026 * bits 1-4 = block fetch table entry (note extra bit)
1027 * bits 4-6 = not needed, because ioaccel2 mode has
1028 * a separate special register for submitting commands.
1029 */
1030
1031 /*
1032 * set_performant_mode: Modify the tag for cciss performant
1033 * set bit 0 for pull model, bits 3-1 for block fetch
1034 * register number
1035 */
1036 #define DEFAULT_REPLY_QUEUE (-1)
1037 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1038 int reply_queue)
1039 {
1040 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1041 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1042 if (unlikely(!h->msix_vectors))
1043 return;
1044 c->Header.ReplyQueue = reply_queue;
1045 }
1046 }
1047
1048 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1049 struct CommandList *c,
1050 int reply_queue)
1051 {
1052 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1053
1054 /*
1055 * Tell the controller to post the reply to the queue for this
1056 * processor. This seems to give the best I/O throughput.
1057 */
1058 cp->ReplyQueue = reply_queue;
1059 /*
1060 * Set the bits in the address sent down to include:
1061 * - performant mode bit (bit 0)
1062 * - pull count (bits 1-3)
1063 * - command type (bits 4-6)
1064 */
1065 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1066 IOACCEL1_BUSADDR_CMDTYPE;
1067 }
1068
1069 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1070 struct CommandList *c,
1071 int reply_queue)
1072 {
1073 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1074 &h->ioaccel2_cmd_pool[c->cmdindex];
1075
1076 /* Tell the controller to post the reply to the queue for this
1077 * processor. This seems to give the best I/O throughput.
1078 */
1079 cp->reply_queue = reply_queue;
1080 /* Set the bits in the address sent down to include:
1081 * - performant mode bit not used in ioaccel mode 2
1082 * - pull count (bits 0-3)
1083 * - command type isn't needed for ioaccel2
1084 */
1085 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1086 }
1087
1088 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1089 struct CommandList *c,
1090 int reply_queue)
1091 {
1092 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1093
1094 /*
1095 * Tell the controller to post the reply to the queue for this
1096 * processor. This seems to give the best I/O throughput.
1097 */
1098 cp->reply_queue = reply_queue;
1099 /*
1100 * Set the bits in the address sent down to include:
1101 * - performant mode bit not used in ioaccel mode 2
1102 * - pull count (bits 0-3)
1103 * - command type isn't needed for ioaccel2
1104 */
1105 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1106 }
1107
1108 static int is_firmware_flash_cmd(u8 *cdb)
1109 {
1110 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1111 }
1112
1113 /*
1114 * During firmware flash, the heartbeat register may not update as frequently
1115 * as it should. So we dial down lockup detection during firmware flash. and
1116 * dial it back up when firmware flash completes.
1117 */
1118 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1119 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1120 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1121 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1122 struct CommandList *c)
1123 {
1124 if (!is_firmware_flash_cmd(c->Request.CDB))
1125 return;
1126 atomic_inc(&h->firmware_flash_in_progress);
1127 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1128 }
1129
1130 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1131 struct CommandList *c)
1132 {
1133 if (is_firmware_flash_cmd(c->Request.CDB) &&
1134 atomic_dec_and_test(&h->firmware_flash_in_progress))
1135 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1136 }
1137
1138 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1139 struct CommandList *c, int reply_queue)
1140 {
1141 dial_down_lockup_detection_during_fw_flash(h, c);
1142 atomic_inc(&h->commands_outstanding);
1143 if (c->device)
1144 atomic_inc(&c->device->commands_outstanding);
1145
1146 reply_queue = h->reply_map[raw_smp_processor_id()];
1147 switch (c->cmd_type) {
1148 case CMD_IOACCEL1:
1149 set_ioaccel1_performant_mode(h, c, reply_queue);
1150 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1151 break;
1152 case CMD_IOACCEL2:
1153 set_ioaccel2_performant_mode(h, c, reply_queue);
1154 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1155 break;
1156 case IOACCEL2_TMF:
1157 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1158 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1159 break;
1160 default:
1161 set_performant_mode(h, c, reply_queue);
1162 h->access.submit_command(h, c);
1163 }
1164 }
1165
1166 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1167 {
1168 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1169 }
1170
1171 static inline int is_hba_lunid(unsigned char scsi3addr[])
1172 {
1173 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1174 }
1175
1176 static inline int is_scsi_rev_5(struct ctlr_info *h)
1177 {
1178 if (!h->hba_inquiry_data)
1179 return 0;
1180 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1181 return 1;
1182 return 0;
1183 }
1184
1185 static int hpsa_find_target_lun(struct ctlr_info *h,
1186 unsigned char scsi3addr[], int bus, int *target, int *lun)
1187 {
1188 /* finds an unused bus, target, lun for a new physical device
1189 * assumes h->devlock is held
1190 */
1191 int i, found = 0;
1192 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1193
1194 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1195
1196 for (i = 0; i < h->ndevices; i++) {
1197 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1198 __set_bit(h->dev[i]->target, lun_taken);
1199 }
1200
1201 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1202 if (i < HPSA_MAX_DEVICES) {
1203 /* *bus = 1; */
1204 *target = i;
1205 *lun = 0;
1206 found = 1;
1207 }
1208 return !found;
1209 }
1210
1211 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1212 struct hpsa_scsi_dev_t *dev, char *description)
1213 {
1214 #define LABEL_SIZE 25
1215 char label[LABEL_SIZE];
1216
1217 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1218 return;
1219
1220 switch (dev->devtype) {
1221 case TYPE_RAID:
1222 snprintf(label, LABEL_SIZE, "controller");
1223 break;
1224 case TYPE_ENCLOSURE:
1225 snprintf(label, LABEL_SIZE, "enclosure");
1226 break;
1227 case TYPE_DISK:
1228 case TYPE_ZBC:
1229 if (dev->external)
1230 snprintf(label, LABEL_SIZE, "external");
1231 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1232 snprintf(label, LABEL_SIZE, "%s",
1233 raid_label[PHYSICAL_DRIVE]);
1234 else
1235 snprintf(label, LABEL_SIZE, "RAID-%s",
1236 dev->raid_level > RAID_UNKNOWN ? "?" :
1237 raid_label[dev->raid_level]);
1238 break;
1239 case TYPE_ROM:
1240 snprintf(label, LABEL_SIZE, "rom");
1241 break;
1242 case TYPE_TAPE:
1243 snprintf(label, LABEL_SIZE, "tape");
1244 break;
1245 case TYPE_MEDIUM_CHANGER:
1246 snprintf(label, LABEL_SIZE, "changer");
1247 break;
1248 default:
1249 snprintf(label, LABEL_SIZE, "UNKNOWN");
1250 break;
1251 }
1252
1253 dev_printk(level, &h->pdev->dev,
1254 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1256 description,
1257 scsi_device_type(dev->devtype),
1258 dev->vendor,
1259 dev->model,
1260 label,
1261 dev->offload_config ? '+' : '-',
1262 dev->offload_to_be_enabled ? '+' : '-',
1263 dev->expose_device);
1264 }
1265
1266 /* Add an entry into h->dev[] array. */
1267 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1268 struct hpsa_scsi_dev_t *device,
1269 struct hpsa_scsi_dev_t *added[], int *nadded)
1270 {
1271 /* assumes h->devlock is held */
1272 int n = h->ndevices;
1273 int i;
1274 unsigned char addr1[8], addr2[8];
1275 struct hpsa_scsi_dev_t *sd;
1276
1277 if (n >= HPSA_MAX_DEVICES) {
1278 dev_err(&h->pdev->dev, "too many devices, some will be "
1279 "inaccessible.\n");
1280 return -1;
1281 }
1282
1283 /* physical devices do not have lun or target assigned until now. */
1284 if (device->lun != -1)
1285 /* Logical device, lun is already assigned. */
1286 goto lun_assigned;
1287
1288 /* If this device a non-zero lun of a multi-lun device
1289 * byte 4 of the 8-byte LUN addr will contain the logical
1290 * unit no, zero otherwise.
1291 */
1292 if (device->scsi3addr[4] == 0) {
1293 /* This is not a non-zero lun of a multi-lun device */
1294 if (hpsa_find_target_lun(h, device->scsi3addr,
1295 device->bus, &device->target, &device->lun) != 0)
1296 return -1;
1297 goto lun_assigned;
1298 }
1299
1300 /* This is a non-zero lun of a multi-lun device.
1301 * Search through our list and find the device which
1302 * has the same 8 byte LUN address, excepting byte 4 and 5.
1303 * Assign the same bus and target for this new LUN.
1304 * Use the logical unit number from the firmware.
1305 */
1306 memcpy(addr1, device->scsi3addr, 8);
1307 addr1[4] = 0;
1308 addr1[5] = 0;
1309 for (i = 0; i < n; i++) {
1310 sd = h->dev[i];
1311 memcpy(addr2, sd->scsi3addr, 8);
1312 addr2[4] = 0;
1313 addr2[5] = 0;
1314 /* differ only in byte 4 and 5? */
1315 if (memcmp(addr1, addr2, 8) == 0) {
1316 device->bus = sd->bus;
1317 device->target = sd->target;
1318 device->lun = device->scsi3addr[4];
1319 break;
1320 }
1321 }
1322 if (device->lun == -1) {
1323 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1324 " suspect firmware bug or unsupported hardware "
1325 "configuration.\n");
1326 return -1;
1327 }
1328
1329 lun_assigned:
1330
1331 h->dev[n] = device;
1332 h->ndevices++;
1333 added[*nadded] = device;
1334 (*nadded)++;
1335 hpsa_show_dev_msg(KERN_INFO, h, device,
1336 device->expose_device ? "added" : "masked");
1337 return 0;
1338 }
1339
1340 /*
1341 * Called during a scan operation.
1342 *
1343 * Update an entry in h->dev[] array.
1344 */
1345 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1346 int entry, struct hpsa_scsi_dev_t *new_entry)
1347 {
1348 /* assumes h->devlock is held */
1349 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1350
1351 /* Raid level changed. */
1352 h->dev[entry]->raid_level = new_entry->raid_level;
1353
1354 /*
1355 * ioacccel_handle may have changed for a dual domain disk
1356 */
1357 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1358
1359 /* Raid offload parameters changed. Careful about the ordering. */
1360 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1361 /*
1362 * if drive is newly offload_enabled, we want to copy the
1363 * raid map data first. If previously offload_enabled and
1364 * offload_config were set, raid map data had better be
1365 * the same as it was before. If raid map data has changed
1366 * then it had better be the case that
1367 * h->dev[entry]->offload_enabled is currently 0.
1368 */
1369 h->dev[entry]->raid_map = new_entry->raid_map;
1370 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371 }
1372 if (new_entry->offload_to_be_enabled) {
1373 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1375 }
1376 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1377 h->dev[entry]->offload_config = new_entry->offload_config;
1378 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1379 h->dev[entry]->queue_depth = new_entry->queue_depth;
1380
1381 /*
1382 * We can turn off ioaccel offload now, but need to delay turning
1383 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1384 * can't do that until all the devices are updated.
1385 */
1386 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1387
1388 /*
1389 * turn ioaccel off immediately if told to do so.
1390 */
1391 if (!new_entry->offload_to_be_enabled)
1392 h->dev[entry]->offload_enabled = 0;
1393
1394 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1395 }
1396
1397 /* Replace an entry from h->dev[] array. */
1398 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1399 int entry, struct hpsa_scsi_dev_t *new_entry,
1400 struct hpsa_scsi_dev_t *added[], int *nadded,
1401 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1402 {
1403 /* assumes h->devlock is held */
1404 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405 removed[*nremoved] = h->dev[entry];
1406 (*nremoved)++;
1407
1408 /*
1409 * New physical devices won't have target/lun assigned yet
1410 * so we need to preserve the values in the slot we are replacing.
1411 */
1412 if (new_entry->target == -1) {
1413 new_entry->target = h->dev[entry]->target;
1414 new_entry->lun = h->dev[entry]->lun;
1415 }
1416
1417 h->dev[entry] = new_entry;
1418 added[*nadded] = new_entry;
1419 (*nadded)++;
1420
1421 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1422 }
1423
1424 /* Remove an entry from h->dev[] array. */
1425 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1426 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1427 {
1428 /* assumes h->devlock is held */
1429 int i;
1430 struct hpsa_scsi_dev_t *sd;
1431
1432 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1433
1434 sd = h->dev[entry];
1435 removed[*nremoved] = h->dev[entry];
1436 (*nremoved)++;
1437
1438 for (i = entry; i < h->ndevices-1; i++)
1439 h->dev[i] = h->dev[i+1];
1440 h->ndevices--;
1441 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1442 }
1443
1444 #define SCSI3ADDR_EQ(a, b) ( \
1445 (a)[7] == (b)[7] && \
1446 (a)[6] == (b)[6] && \
1447 (a)[5] == (b)[5] && \
1448 (a)[4] == (b)[4] && \
1449 (a)[3] == (b)[3] && \
1450 (a)[2] == (b)[2] && \
1451 (a)[1] == (b)[1] && \
1452 (a)[0] == (b)[0])
1453
1454 static void fixup_botched_add(struct ctlr_info *h,
1455 struct hpsa_scsi_dev_t *added)
1456 {
1457 /* called when scsi_add_device fails in order to re-adjust
1458 * h->dev[] to match the mid layer's view.
1459 */
1460 unsigned long flags;
1461 int i, j;
1462
1463 spin_lock_irqsave(&h->lock, flags);
1464 for (i = 0; i < h->ndevices; i++) {
1465 if (h->dev[i] == added) {
1466 for (j = i; j < h->ndevices-1; j++)
1467 h->dev[j] = h->dev[j+1];
1468 h->ndevices--;
1469 break;
1470 }
1471 }
1472 spin_unlock_irqrestore(&h->lock, flags);
1473 kfree(added);
1474 }
1475
1476 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1477 struct hpsa_scsi_dev_t *dev2)
1478 {
1479 /* we compare everything except lun and target as these
1480 * are not yet assigned. Compare parts likely
1481 * to differ first
1482 */
1483 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1484 sizeof(dev1->scsi3addr)) != 0)
1485 return 0;
1486 if (memcmp(dev1->device_id, dev2->device_id,
1487 sizeof(dev1->device_id)) != 0)
1488 return 0;
1489 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1490 return 0;
1491 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1492 return 0;
1493 if (dev1->devtype != dev2->devtype)
1494 return 0;
1495 if (dev1->bus != dev2->bus)
1496 return 0;
1497 return 1;
1498 }
1499
1500 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1501 struct hpsa_scsi_dev_t *dev2)
1502 {
1503 /* Device attributes that can change, but don't mean
1504 * that the device is a different device, nor that the OS
1505 * needs to be told anything about the change.
1506 */
1507 if (dev1->raid_level != dev2->raid_level)
1508 return 1;
1509 if (dev1->offload_config != dev2->offload_config)
1510 return 1;
1511 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1512 return 1;
1513 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1514 if (dev1->queue_depth != dev2->queue_depth)
1515 return 1;
1516 /*
1517 * This can happen for dual domain devices. An active
1518 * path change causes the ioaccel handle to change
1519 *
1520 * for example note the handle differences between p0 and p1
1521 * Device WWN ,WWN hash,Handle
1522 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1523 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1524 */
1525 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1526 return 1;
1527 return 0;
1528 }
1529
1530 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1531 * and return needle location in *index. If scsi3addr matches, but not
1532 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1533 * location in *index.
1534 * In the case of a minor device attribute change, such as RAID level, just
1535 * return DEVICE_UPDATED, along with the updated device's location in index.
1536 * If needle not found, return DEVICE_NOT_FOUND.
1537 */
1538 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1539 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1540 int *index)
1541 {
1542 int i;
1543 #define DEVICE_NOT_FOUND 0
1544 #define DEVICE_CHANGED 1
1545 #define DEVICE_SAME 2
1546 #define DEVICE_UPDATED 3
1547 if (needle == NULL)
1548 return DEVICE_NOT_FOUND;
1549
1550 for (i = 0; i < haystack_size; i++) {
1551 if (haystack[i] == NULL) /* previously removed. */
1552 continue;
1553 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1554 *index = i;
1555 if (device_is_the_same(needle, haystack[i])) {
1556 if (device_updated(needle, haystack[i]))
1557 return DEVICE_UPDATED;
1558 return DEVICE_SAME;
1559 } else {
1560 /* Keep offline devices offline */
1561 if (needle->volume_offline)
1562 return DEVICE_NOT_FOUND;
1563 return DEVICE_CHANGED;
1564 }
1565 }
1566 }
1567 *index = -1;
1568 return DEVICE_NOT_FOUND;
1569 }
1570
1571 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1572 unsigned char scsi3addr[])
1573 {
1574 struct offline_device_entry *device;
1575 unsigned long flags;
1576
1577 /* Check to see if device is already on the list */
1578 spin_lock_irqsave(&h->offline_device_lock, flags);
1579 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1580 if (memcmp(device->scsi3addr, scsi3addr,
1581 sizeof(device->scsi3addr)) == 0) {
1582 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1583 return;
1584 }
1585 }
1586 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587
1588 /* Device is not on the list, add it. */
1589 device = kmalloc(sizeof(*device), GFP_KERNEL);
1590 if (!device)
1591 return;
1592
1593 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1594 spin_lock_irqsave(&h->offline_device_lock, flags);
1595 list_add_tail(&device->offline_list, &h->offline_device_list);
1596 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 }
1598
1599 /* Print a message explaining various offline volume states */
1600 static void hpsa_show_volume_status(struct ctlr_info *h,
1601 struct hpsa_scsi_dev_t *sd)
1602 {
1603 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1604 dev_info(&h->pdev->dev,
1605 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1606 h->scsi_host->host_no,
1607 sd->bus, sd->target, sd->lun);
1608 switch (sd->volume_offline) {
1609 case HPSA_LV_OK:
1610 break;
1611 case HPSA_LV_UNDERGOING_ERASE:
1612 dev_info(&h->pdev->dev,
1613 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1614 h->scsi_host->host_no,
1615 sd->bus, sd->target, sd->lun);
1616 break;
1617 case HPSA_LV_NOT_AVAILABLE:
1618 dev_info(&h->pdev->dev,
1619 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1620 h->scsi_host->host_no,
1621 sd->bus, sd->target, sd->lun);
1622 break;
1623 case HPSA_LV_UNDERGOING_RPI:
1624 dev_info(&h->pdev->dev,
1625 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1626 h->scsi_host->host_no,
1627 sd->bus, sd->target, sd->lun);
1628 break;
1629 case HPSA_LV_PENDING_RPI:
1630 dev_info(&h->pdev->dev,
1631 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1632 h->scsi_host->host_no,
1633 sd->bus, sd->target, sd->lun);
1634 break;
1635 case HPSA_LV_ENCRYPTED_NO_KEY:
1636 dev_info(&h->pdev->dev,
1637 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1638 h->scsi_host->host_no,
1639 sd->bus, sd->target, sd->lun);
1640 break;
1641 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1642 dev_info(&h->pdev->dev,
1643 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1644 h->scsi_host->host_no,
1645 sd->bus, sd->target, sd->lun);
1646 break;
1647 case HPSA_LV_UNDERGOING_ENCRYPTION:
1648 dev_info(&h->pdev->dev,
1649 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1650 h->scsi_host->host_no,
1651 sd->bus, sd->target, sd->lun);
1652 break;
1653 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1654 dev_info(&h->pdev->dev,
1655 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1656 h->scsi_host->host_no,
1657 sd->bus, sd->target, sd->lun);
1658 break;
1659 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1660 dev_info(&h->pdev->dev,
1661 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1662 h->scsi_host->host_no,
1663 sd->bus, sd->target, sd->lun);
1664 break;
1665 case HPSA_LV_PENDING_ENCRYPTION:
1666 dev_info(&h->pdev->dev,
1667 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1668 h->scsi_host->host_no,
1669 sd->bus, sd->target, sd->lun);
1670 break;
1671 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1672 dev_info(&h->pdev->dev,
1673 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1674 h->scsi_host->host_no,
1675 sd->bus, sd->target, sd->lun);
1676 break;
1677 }
1678 }
1679
1680 /*
1681 * Figure the list of physical drive pointers for a logical drive with
1682 * raid offload configured.
1683 */
1684 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1685 struct hpsa_scsi_dev_t *dev[], int ndevices,
1686 struct hpsa_scsi_dev_t *logical_drive)
1687 {
1688 struct raid_map_data *map = &logical_drive->raid_map;
1689 struct raid_map_disk_data *dd = &map->data[0];
1690 int i, j;
1691 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1692 le16_to_cpu(map->metadata_disks_per_row);
1693 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1694 le16_to_cpu(map->layout_map_count) *
1695 total_disks_per_row;
1696 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1697 total_disks_per_row;
1698 int qdepth;
1699
1700 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1701 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1702
1703 logical_drive->nphysical_disks = nraid_map_entries;
1704
1705 qdepth = 0;
1706 for (i = 0; i < nraid_map_entries; i++) {
1707 logical_drive->phys_disk[i] = NULL;
1708 if (!logical_drive->offload_config)
1709 continue;
1710 for (j = 0; j < ndevices; j++) {
1711 if (dev[j] == NULL)
1712 continue;
1713 if (dev[j]->devtype != TYPE_DISK &&
1714 dev[j]->devtype != TYPE_ZBC)
1715 continue;
1716 if (is_logical_device(dev[j]))
1717 continue;
1718 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1719 continue;
1720
1721 logical_drive->phys_disk[i] = dev[j];
1722 if (i < nphys_disk)
1723 qdepth = min(h->nr_cmds, qdepth +
1724 logical_drive->phys_disk[i]->queue_depth);
1725 break;
1726 }
1727
1728 /*
1729 * This can happen if a physical drive is removed and
1730 * the logical drive is degraded. In that case, the RAID
1731 * map data will refer to a physical disk which isn't actually
1732 * present. And in that case offload_enabled should already
1733 * be 0, but we'll turn it off here just in case
1734 */
1735 if (!logical_drive->phys_disk[i]) {
1736 dev_warn(&h->pdev->dev,
1737 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1738 __func__,
1739 h->scsi_host->host_no, logical_drive->bus,
1740 logical_drive->target, logical_drive->lun);
1741 logical_drive->offload_enabled = 0;
1742 logical_drive->offload_to_be_enabled = 0;
1743 logical_drive->queue_depth = 8;
1744 }
1745 }
1746 if (nraid_map_entries)
1747 /*
1748 * This is correct for reads, too high for full stripe writes,
1749 * way too high for partial stripe writes
1750 */
1751 logical_drive->queue_depth = qdepth;
1752 else {
1753 if (logical_drive->external)
1754 logical_drive->queue_depth = EXTERNAL_QD;
1755 else
1756 logical_drive->queue_depth = h->nr_cmds;
1757 }
1758 }
1759
1760 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1761 struct hpsa_scsi_dev_t *dev[], int ndevices)
1762 {
1763 int i;
1764
1765 for (i = 0; i < ndevices; i++) {
1766 if (dev[i] == NULL)
1767 continue;
1768 if (dev[i]->devtype != TYPE_DISK &&
1769 dev[i]->devtype != TYPE_ZBC)
1770 continue;
1771 if (!is_logical_device(dev[i]))
1772 continue;
1773
1774 /*
1775 * If offload is currently enabled, the RAID map and
1776 * phys_disk[] assignment *better* not be changing
1777 * because we would be changing ioaccel phsy_disk[] pointers
1778 * on a ioaccel volume processing I/O requests.
1779 *
1780 * If an ioaccel volume status changed, initially because it was
1781 * re-configured and thus underwent a transformation, or
1782 * a drive failed, we would have received a state change
1783 * request and ioaccel should have been turned off. When the
1784 * transformation completes, we get another state change
1785 * request to turn ioaccel back on. In this case, we need
1786 * to update the ioaccel information.
1787 *
1788 * Thus: If it is not currently enabled, but will be after
1789 * the scan completes, make sure the ioaccel pointers
1790 * are up to date.
1791 */
1792
1793 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1794 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1795 }
1796 }
1797
1798 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1799 {
1800 int rc = 0;
1801
1802 if (!h->scsi_host)
1803 return 1;
1804
1805 if (is_logical_device(device)) /* RAID */
1806 rc = scsi_add_device(h->scsi_host, device->bus,
1807 device->target, device->lun);
1808 else /* HBA */
1809 rc = hpsa_add_sas_device(h->sas_host, device);
1810
1811 return rc;
1812 }
1813
1814 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1815 struct hpsa_scsi_dev_t *dev)
1816 {
1817 int i;
1818 int count = 0;
1819
1820 for (i = 0; i < h->nr_cmds; i++) {
1821 struct CommandList *c = h->cmd_pool + i;
1822 int refcount = atomic_inc_return(&c->refcount);
1823
1824 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1825 dev->scsi3addr)) {
1826 unsigned long flags;
1827
1828 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1829 if (!hpsa_is_cmd_idle(c))
1830 ++count;
1831 spin_unlock_irqrestore(&h->lock, flags);
1832 }
1833
1834 cmd_free(h, c);
1835 }
1836
1837 return count;
1838 }
1839
1840 #define NUM_WAIT 20
1841 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1842 struct hpsa_scsi_dev_t *device)
1843 {
1844 int cmds = 0;
1845 int waits = 0;
1846 int num_wait = NUM_WAIT;
1847
1848 if (device->external)
1849 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1850
1851 while (1) {
1852 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 if (cmds == 0)
1854 break;
1855 if (++waits > num_wait)
1856 break;
1857 msleep(1000);
1858 }
1859
1860 if (waits > num_wait) {
1861 dev_warn(&h->pdev->dev,
1862 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1863 __func__,
1864 h->scsi_host->host_no,
1865 device->bus, device->target, device->lun, cmds);
1866 }
1867 }
1868
1869 static void hpsa_remove_device(struct ctlr_info *h,
1870 struct hpsa_scsi_dev_t *device)
1871 {
1872 struct scsi_device *sdev = NULL;
1873
1874 if (!h->scsi_host)
1875 return;
1876
1877 /*
1878 * Allow for commands to drain
1879 */
1880 device->removed = 1;
1881 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1882
1883 if (is_logical_device(device)) { /* RAID */
1884 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1885 device->target, device->lun);
1886 if (sdev) {
1887 scsi_remove_device(sdev);
1888 scsi_device_put(sdev);
1889 } else {
1890 /*
1891 * We don't expect to get here. Future commands
1892 * to this device will get a selection timeout as
1893 * if the device were gone.
1894 */
1895 hpsa_show_dev_msg(KERN_WARNING, h, device,
1896 "didn't find device for removal.");
1897 }
1898 } else { /* HBA */
1899
1900 hpsa_remove_sas_device(device);
1901 }
1902 }
1903
1904 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1905 struct hpsa_scsi_dev_t *sd[], int nsds)
1906 {
1907 /* sd contains scsi3 addresses and devtypes, and inquiry
1908 * data. This function takes what's in sd to be the current
1909 * reality and updates h->dev[] to reflect that reality.
1910 */
1911 int i, entry, device_change, changes = 0;
1912 struct hpsa_scsi_dev_t *csd;
1913 unsigned long flags;
1914 struct hpsa_scsi_dev_t **added, **removed;
1915 int nadded, nremoved;
1916
1917 /*
1918 * A reset can cause a device status to change
1919 * re-schedule the scan to see what happened.
1920 */
1921 spin_lock_irqsave(&h->reset_lock, flags);
1922 if (h->reset_in_progress) {
1923 h->drv_req_rescan = 1;
1924 spin_unlock_irqrestore(&h->reset_lock, flags);
1925 return;
1926 }
1927 spin_unlock_irqrestore(&h->reset_lock, flags);
1928
1929 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1930 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1931
1932 if (!added || !removed) {
1933 dev_warn(&h->pdev->dev, "out of memory in "
1934 "adjust_hpsa_scsi_table\n");
1935 goto free_and_out;
1936 }
1937
1938 spin_lock_irqsave(&h->devlock, flags);
1939
1940 /* find any devices in h->dev[] that are not in
1941 * sd[] and remove them from h->dev[], and for any
1942 * devices which have changed, remove the old device
1943 * info and add the new device info.
1944 * If minor device attributes change, just update
1945 * the existing device structure.
1946 */
1947 i = 0;
1948 nremoved = 0;
1949 nadded = 0;
1950 while (i < h->ndevices) {
1951 csd = h->dev[i];
1952 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1953 if (device_change == DEVICE_NOT_FOUND) {
1954 changes++;
1955 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1956 continue; /* remove ^^^, hence i not incremented */
1957 } else if (device_change == DEVICE_CHANGED) {
1958 changes++;
1959 hpsa_scsi_replace_entry(h, i, sd[entry],
1960 added, &nadded, removed, &nremoved);
1961 /* Set it to NULL to prevent it from being freed
1962 * at the bottom of hpsa_update_scsi_devices()
1963 */
1964 sd[entry] = NULL;
1965 } else if (device_change == DEVICE_UPDATED) {
1966 hpsa_scsi_update_entry(h, i, sd[entry]);
1967 }
1968 i++;
1969 }
1970
1971 /* Now, make sure every device listed in sd[] is also
1972 * listed in h->dev[], adding them if they aren't found
1973 */
1974
1975 for (i = 0; i < nsds; i++) {
1976 if (!sd[i]) /* if already added above. */
1977 continue;
1978
1979 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1980 * as the SCSI mid-layer does not handle such devices well.
1981 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1982 * at 160Hz, and prevents the system from coming up.
1983 */
1984 if (sd[i]->volume_offline) {
1985 hpsa_show_volume_status(h, sd[i]);
1986 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1987 continue;
1988 }
1989
1990 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1991 h->ndevices, &entry);
1992 if (device_change == DEVICE_NOT_FOUND) {
1993 changes++;
1994 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1995 break;
1996 sd[i] = NULL; /* prevent from being freed later. */
1997 } else if (device_change == DEVICE_CHANGED) {
1998 /* should never happen... */
1999 changes++;
2000 dev_warn(&h->pdev->dev,
2001 "device unexpectedly changed.\n");
2002 /* but if it does happen, we just ignore that device */
2003 }
2004 }
2005 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2006
2007 /*
2008 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2009 * any logical drives that need it enabled.
2010 *
2011 * The raid map should be current by now.
2012 *
2013 * We are updating the device list used for I/O requests.
2014 */
2015 for (i = 0; i < h->ndevices; i++) {
2016 if (h->dev[i] == NULL)
2017 continue;
2018 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2019 }
2020
2021 spin_unlock_irqrestore(&h->devlock, flags);
2022
2023 /* Monitor devices which are in one of several NOT READY states to be
2024 * brought online later. This must be done without holding h->devlock,
2025 * so don't touch h->dev[]
2026 */
2027 for (i = 0; i < nsds; i++) {
2028 if (!sd[i]) /* if already added above. */
2029 continue;
2030 if (sd[i]->volume_offline)
2031 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2032 }
2033
2034 /* Don't notify scsi mid layer of any changes the first time through
2035 * (or if there are no changes) scsi_scan_host will do it later the
2036 * first time through.
2037 */
2038 if (!changes)
2039 goto free_and_out;
2040
2041 /* Notify scsi mid layer of any removed devices */
2042 for (i = 0; i < nremoved; i++) {
2043 if (removed[i] == NULL)
2044 continue;
2045 if (removed[i]->expose_device)
2046 hpsa_remove_device(h, removed[i]);
2047 kfree(removed[i]);
2048 removed[i] = NULL;
2049 }
2050
2051 /* Notify scsi mid layer of any added devices */
2052 for (i = 0; i < nadded; i++) {
2053 int rc = 0;
2054
2055 if (added[i] == NULL)
2056 continue;
2057 if (!(added[i]->expose_device))
2058 continue;
2059 rc = hpsa_add_device(h, added[i]);
2060 if (!rc)
2061 continue;
2062 dev_warn(&h->pdev->dev,
2063 "addition failed %d, device not added.", rc);
2064 /* now we have to remove it from h->dev,
2065 * since it didn't get added to scsi mid layer
2066 */
2067 fixup_botched_add(h, added[i]);
2068 h->drv_req_rescan = 1;
2069 }
2070
2071 free_and_out:
2072 kfree(added);
2073 kfree(removed);
2074 }
2075
2076 /*
2077 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2078 * Assume's h->devlock is held.
2079 */
2080 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2081 int bus, int target, int lun)
2082 {
2083 int i;
2084 struct hpsa_scsi_dev_t *sd;
2085
2086 for (i = 0; i < h->ndevices; i++) {
2087 sd = h->dev[i];
2088 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2089 return sd;
2090 }
2091 return NULL;
2092 }
2093
2094 static int hpsa_slave_alloc(struct scsi_device *sdev)
2095 {
2096 struct hpsa_scsi_dev_t *sd = NULL;
2097 unsigned long flags;
2098 struct ctlr_info *h;
2099
2100 h = sdev_to_hba(sdev);
2101 spin_lock_irqsave(&h->devlock, flags);
2102 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2103 struct scsi_target *starget;
2104 struct sas_rphy *rphy;
2105
2106 starget = scsi_target(sdev);
2107 rphy = target_to_rphy(starget);
2108 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2109 if (sd) {
2110 sd->target = sdev_id(sdev);
2111 sd->lun = sdev->lun;
2112 }
2113 }
2114 if (!sd)
2115 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2116 sdev_id(sdev), sdev->lun);
2117
2118 if (sd && sd->expose_device) {
2119 atomic_set(&sd->ioaccel_cmds_out, 0);
2120 sdev->hostdata = sd;
2121 } else
2122 sdev->hostdata = NULL;
2123 spin_unlock_irqrestore(&h->devlock, flags);
2124 return 0;
2125 }
2126
2127 /* configure scsi device based on internal per-device structure */
2128 static int hpsa_slave_configure(struct scsi_device *sdev)
2129 {
2130 struct hpsa_scsi_dev_t *sd;
2131 int queue_depth;
2132
2133 sd = sdev->hostdata;
2134 sdev->no_uld_attach = !sd || !sd->expose_device;
2135
2136 if (sd) {
2137 sd->was_removed = 0;
2138 if (sd->external) {
2139 queue_depth = EXTERNAL_QD;
2140 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2141 blk_queue_rq_timeout(sdev->request_queue,
2142 HPSA_EH_PTRAID_TIMEOUT);
2143 } else {
2144 queue_depth = sd->queue_depth != 0 ?
2145 sd->queue_depth : sdev->host->can_queue;
2146 }
2147 } else
2148 queue_depth = sdev->host->can_queue;
2149
2150 scsi_change_queue_depth(sdev, queue_depth);
2151
2152 return 0;
2153 }
2154
2155 static void hpsa_slave_destroy(struct scsi_device *sdev)
2156 {
2157 struct hpsa_scsi_dev_t *hdev = NULL;
2158
2159 hdev = sdev->hostdata;
2160
2161 if (hdev)
2162 hdev->was_removed = 1;
2163 }
2164
2165 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167 int i;
2168
2169 if (!h->ioaccel2_cmd_sg_list)
2170 return;
2171 for (i = 0; i < h->nr_cmds; i++) {
2172 kfree(h->ioaccel2_cmd_sg_list[i]);
2173 h->ioaccel2_cmd_sg_list[i] = NULL;
2174 }
2175 kfree(h->ioaccel2_cmd_sg_list);
2176 h->ioaccel2_cmd_sg_list = NULL;
2177 }
2178
2179 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181 int i;
2182
2183 if (h->chainsize <= 0)
2184 return 0;
2185
2186 h->ioaccel2_cmd_sg_list =
2187 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2188 GFP_KERNEL);
2189 if (!h->ioaccel2_cmd_sg_list)
2190 return -ENOMEM;
2191 for (i = 0; i < h->nr_cmds; i++) {
2192 h->ioaccel2_cmd_sg_list[i] =
2193 kmalloc_array(h->maxsgentries,
2194 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2195 GFP_KERNEL);
2196 if (!h->ioaccel2_cmd_sg_list[i])
2197 goto clean;
2198 }
2199 return 0;
2200
2201 clean:
2202 hpsa_free_ioaccel2_sg_chain_blocks(h);
2203 return -ENOMEM;
2204 }
2205
2206 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208 int i;
2209
2210 if (!h->cmd_sg_list)
2211 return;
2212 for (i = 0; i < h->nr_cmds; i++) {
2213 kfree(h->cmd_sg_list[i]);
2214 h->cmd_sg_list[i] = NULL;
2215 }
2216 kfree(h->cmd_sg_list);
2217 h->cmd_sg_list = NULL;
2218 }
2219
2220 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222 int i;
2223
2224 if (h->chainsize <= 0)
2225 return 0;
2226
2227 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2228 GFP_KERNEL);
2229 if (!h->cmd_sg_list)
2230 return -ENOMEM;
2231
2232 for (i = 0; i < h->nr_cmds; i++) {
2233 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2234 sizeof(*h->cmd_sg_list[i]),
2235 GFP_KERNEL);
2236 if (!h->cmd_sg_list[i])
2237 goto clean;
2238
2239 }
2240 return 0;
2241
2242 clean:
2243 hpsa_free_sg_chain_blocks(h);
2244 return -ENOMEM;
2245 }
2246
2247 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2248 struct io_accel2_cmd *cp, struct CommandList *c)
2249 {
2250 struct ioaccel2_sg_element *chain_block;
2251 u64 temp64;
2252 u32 chain_size;
2253
2254 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2255 chain_size = le32_to_cpu(cp->sg[0].length);
2256 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2257 DMA_TO_DEVICE);
2258 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2259 /* prevent subsequent unmapping */
2260 cp->sg->address = 0;
2261 return -1;
2262 }
2263 cp->sg->address = cpu_to_le64(temp64);
2264 return 0;
2265 }
2266
2267 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2268 struct io_accel2_cmd *cp)
2269 {
2270 struct ioaccel2_sg_element *chain_sg;
2271 u64 temp64;
2272 u32 chain_size;
2273
2274 chain_sg = cp->sg;
2275 temp64 = le64_to_cpu(chain_sg->address);
2276 chain_size = le32_to_cpu(cp->sg[0].length);
2277 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2278 }
2279
2280 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2281 struct CommandList *c)
2282 {
2283 struct SGDescriptor *chain_sg, *chain_block;
2284 u64 temp64;
2285 u32 chain_len;
2286
2287 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2288 chain_block = h->cmd_sg_list[c->cmdindex];
2289 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2290 chain_len = sizeof(*chain_sg) *
2291 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2292 chain_sg->Len = cpu_to_le32(chain_len);
2293 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2294 DMA_TO_DEVICE);
2295 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2296 /* prevent subsequent unmapping */
2297 chain_sg->Addr = cpu_to_le64(0);
2298 return -1;
2299 }
2300 chain_sg->Addr = cpu_to_le64(temp64);
2301 return 0;
2302 }
2303
2304 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2305 struct CommandList *c)
2306 {
2307 struct SGDescriptor *chain_sg;
2308
2309 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2310 return;
2311
2312 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2313 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2314 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2315 }
2316
2317
2318 /* Decode the various types of errors on ioaccel2 path.
2319 * Return 1 for any error that should generate a RAID path retry.
2320 * Return 0 for errors that don't require a RAID path retry.
2321 */
2322 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2323 struct CommandList *c,
2324 struct scsi_cmnd *cmd,
2325 struct io_accel2_cmd *c2,
2326 struct hpsa_scsi_dev_t *dev)
2327 {
2328 int data_len;
2329 int retry = 0;
2330 u32 ioaccel2_resid = 0;
2331
2332 switch (c2->error_data.serv_response) {
2333 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2334 switch (c2->error_data.status) {
2335 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2336 if (cmd)
2337 cmd->result = 0;
2338 break;
2339 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2340 cmd->result |= SAM_STAT_CHECK_CONDITION;
2341 if (c2->error_data.data_present !=
2342 IOACCEL2_SENSE_DATA_PRESENT) {
2343 memset(cmd->sense_buffer, 0,
2344 SCSI_SENSE_BUFFERSIZE);
2345 break;
2346 }
2347 /* copy the sense data */
2348 data_len = c2->error_data.sense_data_len;
2349 if (data_len > SCSI_SENSE_BUFFERSIZE)
2350 data_len = SCSI_SENSE_BUFFERSIZE;
2351 if (data_len > sizeof(c2->error_data.sense_data_buff))
2352 data_len =
2353 sizeof(c2->error_data.sense_data_buff);
2354 memcpy(cmd->sense_buffer,
2355 c2->error_data.sense_data_buff, data_len);
2356 retry = 1;
2357 break;
2358 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2359 retry = 1;
2360 break;
2361 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2362 retry = 1;
2363 break;
2364 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2365 retry = 1;
2366 break;
2367 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2368 retry = 1;
2369 break;
2370 default:
2371 retry = 1;
2372 break;
2373 }
2374 break;
2375 case IOACCEL2_SERV_RESPONSE_FAILURE:
2376 switch (c2->error_data.status) {
2377 case IOACCEL2_STATUS_SR_IO_ERROR:
2378 case IOACCEL2_STATUS_SR_IO_ABORTED:
2379 case IOACCEL2_STATUS_SR_OVERRUN:
2380 retry = 1;
2381 break;
2382 case IOACCEL2_STATUS_SR_UNDERRUN:
2383 cmd->result = (DID_OK << 16); /* host byte */
2384 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2385 ioaccel2_resid = get_unaligned_le32(
2386 &c2->error_data.resid_cnt[0]);
2387 scsi_set_resid(cmd, ioaccel2_resid);
2388 break;
2389 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2390 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2391 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2392 /*
2393 * Did an HBA disk disappear? We will eventually
2394 * get a state change event from the controller but
2395 * in the meantime, we need to tell the OS that the
2396 * HBA disk is no longer there and stop I/O
2397 * from going down. This allows the potential re-insert
2398 * of the disk to get the same device node.
2399 */
2400 if (dev->physical_device && dev->expose_device) {
2401 cmd->result = DID_NO_CONNECT << 16;
2402 dev->removed = 1;
2403 h->drv_req_rescan = 1;
2404 dev_warn(&h->pdev->dev,
2405 "%s: device is gone!\n", __func__);
2406 } else
2407 /*
2408 * Retry by sending down the RAID path.
2409 * We will get an event from ctlr to
2410 * trigger rescan regardless.
2411 */
2412 retry = 1;
2413 break;
2414 default:
2415 retry = 1;
2416 }
2417 break;
2418 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2419 break;
2420 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2421 break;
2422 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2423 retry = 1;
2424 break;
2425 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2426 break;
2427 default:
2428 retry = 1;
2429 break;
2430 }
2431
2432 if (dev->in_reset)
2433 retry = 0;
2434
2435 return retry; /* retry on raid path? */
2436 }
2437
2438 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2439 struct CommandList *c)
2440 {
2441 struct hpsa_scsi_dev_t *dev = c->device;
2442
2443 /*
2444 * Reset c->scsi_cmd here so that the reset handler will know
2445 * this command has completed. Then, check to see if the handler is
2446 * waiting for this command, and, if so, wake it.
2447 */
2448 c->scsi_cmd = SCSI_CMD_IDLE;
2449 mb(); /* Declare command idle before checking for pending events. */
2450 if (dev) {
2451 atomic_dec(&dev->commands_outstanding);
2452 if (dev->in_reset &&
2453 atomic_read(&dev->commands_outstanding) <= 0)
2454 wake_up_all(&h->event_sync_wait_queue);
2455 }
2456 }
2457
2458 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2459 struct CommandList *c)
2460 {
2461 hpsa_cmd_resolve_events(h, c);
2462 cmd_tagged_free(h, c);
2463 }
2464
2465 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2466 struct CommandList *c, struct scsi_cmnd *cmd)
2467 {
2468 hpsa_cmd_resolve_and_free(h, c);
2469 if (cmd && cmd->scsi_done)
2470 cmd->scsi_done(cmd);
2471 }
2472
2473 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2474 {
2475 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2476 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2477 }
2478
2479 static void process_ioaccel2_completion(struct ctlr_info *h,
2480 struct CommandList *c, struct scsi_cmnd *cmd,
2481 struct hpsa_scsi_dev_t *dev)
2482 {
2483 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2484
2485 /* check for good status */
2486 if (likely(c2->error_data.serv_response == 0 &&
2487 c2->error_data.status == 0)) {
2488 cmd->result = 0;
2489 return hpsa_cmd_free_and_done(h, c, cmd);
2490 }
2491
2492 /*
2493 * Any RAID offload error results in retry which will use
2494 * the normal I/O path so the controller can handle whatever is
2495 * wrong.
2496 */
2497 if (is_logical_device(dev) &&
2498 c2->error_data.serv_response ==
2499 IOACCEL2_SERV_RESPONSE_FAILURE) {
2500 if (c2->error_data.status ==
2501 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2502 dev->offload_enabled = 0;
2503 dev->offload_to_be_enabled = 0;
2504 }
2505
2506 if (dev->in_reset) {
2507 cmd->result = DID_RESET << 16;
2508 return hpsa_cmd_free_and_done(h, c, cmd);
2509 }
2510
2511 return hpsa_retry_cmd(h, c);
2512 }
2513
2514 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2515 return hpsa_retry_cmd(h, c);
2516
2517 return hpsa_cmd_free_and_done(h, c, cmd);
2518 }
2519
2520 /* Returns 0 on success, < 0 otherwise. */
2521 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2522 struct CommandList *cp)
2523 {
2524 u8 tmf_status = cp->err_info->ScsiStatus;
2525
2526 switch (tmf_status) {
2527 case CISS_TMF_COMPLETE:
2528 /*
2529 * CISS_TMF_COMPLETE never happens, instead,
2530 * ei->CommandStatus == 0 for this case.
2531 */
2532 case CISS_TMF_SUCCESS:
2533 return 0;
2534 case CISS_TMF_INVALID_FRAME:
2535 case CISS_TMF_NOT_SUPPORTED:
2536 case CISS_TMF_FAILED:
2537 case CISS_TMF_WRONG_LUN:
2538 case CISS_TMF_OVERLAPPED_TAG:
2539 break;
2540 default:
2541 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2542 tmf_status);
2543 break;
2544 }
2545 return -tmf_status;
2546 }
2547
2548 static void complete_scsi_command(struct CommandList *cp)
2549 {
2550 struct scsi_cmnd *cmd;
2551 struct ctlr_info *h;
2552 struct ErrorInfo *ei;
2553 struct hpsa_scsi_dev_t *dev;
2554 struct io_accel2_cmd *c2;
2555
2556 u8 sense_key;
2557 u8 asc; /* additional sense code */
2558 u8 ascq; /* additional sense code qualifier */
2559 unsigned long sense_data_size;
2560
2561 ei = cp->err_info;
2562 cmd = cp->scsi_cmd;
2563 h = cp->h;
2564
2565 if (!cmd->device) {
2566 cmd->result = DID_NO_CONNECT << 16;
2567 return hpsa_cmd_free_and_done(h, cp, cmd);
2568 }
2569
2570 dev = cmd->device->hostdata;
2571 if (!dev) {
2572 cmd->result = DID_NO_CONNECT << 16;
2573 return hpsa_cmd_free_and_done(h, cp, cmd);
2574 }
2575 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2576
2577 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2578 if ((cp->cmd_type == CMD_SCSI) &&
2579 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2580 hpsa_unmap_sg_chain_block(h, cp);
2581
2582 if ((cp->cmd_type == CMD_IOACCEL2) &&
2583 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2584 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2585
2586 cmd->result = (DID_OK << 16); /* host byte */
2587 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2588
2589 /* SCSI command has already been cleaned up in SML */
2590 if (dev->was_removed) {
2591 hpsa_cmd_resolve_and_free(h, cp);
2592 return;
2593 }
2594
2595 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2596 if (dev->physical_device && dev->expose_device &&
2597 dev->removed) {
2598 cmd->result = DID_NO_CONNECT << 16;
2599 return hpsa_cmd_free_and_done(h, cp, cmd);
2600 }
2601 if (likely(cp->phys_disk != NULL))
2602 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2603 }
2604
2605 /*
2606 * We check for lockup status here as it may be set for
2607 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2608 * fail_all_oustanding_cmds()
2609 */
2610 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2611 /* DID_NO_CONNECT will prevent a retry */
2612 cmd->result = DID_NO_CONNECT << 16;
2613 return hpsa_cmd_free_and_done(h, cp, cmd);
2614 }
2615
2616 if (cp->cmd_type == CMD_IOACCEL2)
2617 return process_ioaccel2_completion(h, cp, cmd, dev);
2618
2619 scsi_set_resid(cmd, ei->ResidualCnt);
2620 if (ei->CommandStatus == 0)
2621 return hpsa_cmd_free_and_done(h, cp, cmd);
2622
2623 /* For I/O accelerator commands, copy over some fields to the normal
2624 * CISS header used below for error handling.
2625 */
2626 if (cp->cmd_type == CMD_IOACCEL1) {
2627 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2628 cp->Header.SGList = scsi_sg_count(cmd);
2629 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2630 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2631 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2632 cp->Header.tag = c->tag;
2633 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2634 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2635
2636 /* Any RAID offload error results in retry which will use
2637 * the normal I/O path so the controller can handle whatever's
2638 * wrong.
2639 */
2640 if (is_logical_device(dev)) {
2641 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2642 dev->offload_enabled = 0;
2643 return hpsa_retry_cmd(h, cp);
2644 }
2645 }
2646
2647 /* an error has occurred */
2648 switch (ei->CommandStatus) {
2649
2650 case CMD_TARGET_STATUS:
2651 cmd->result |= ei->ScsiStatus;
2652 /* copy the sense data */
2653 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2654 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2655 else
2656 sense_data_size = sizeof(ei->SenseInfo);
2657 if (ei->SenseLen < sense_data_size)
2658 sense_data_size = ei->SenseLen;
2659 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2660 if (ei->ScsiStatus)
2661 decode_sense_data(ei->SenseInfo, sense_data_size,
2662 &sense_key, &asc, &ascq);
2663 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2664 switch (sense_key) {
2665 case ABORTED_COMMAND:
2666 cmd->result |= DID_SOFT_ERROR << 16;
2667 break;
2668 case UNIT_ATTENTION:
2669 if (asc == 0x3F && ascq == 0x0E)
2670 h->drv_req_rescan = 1;
2671 break;
2672 case ILLEGAL_REQUEST:
2673 if (asc == 0x25 && ascq == 0x00) {
2674 dev->removed = 1;
2675 cmd->result = DID_NO_CONNECT << 16;
2676 }
2677 break;
2678 }
2679 break;
2680 }
2681 /* Problem was not a check condition
2682 * Pass it up to the upper layers...
2683 */
2684 if (ei->ScsiStatus) {
2685 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2686 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2687 "Returning result: 0x%x\n",
2688 cp, ei->ScsiStatus,
2689 sense_key, asc, ascq,
2690 cmd->result);
2691 } else { /* scsi status is zero??? How??? */
2692 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2693 "Returning no connection.\n", cp),
2694
2695 /* Ordinarily, this case should never happen,
2696 * but there is a bug in some released firmware
2697 * revisions that allows it to happen if, for
2698 * example, a 4100 backplane loses power and
2699 * the tape drive is in it. We assume that
2700 * it's a fatal error of some kind because we
2701 * can't show that it wasn't. We will make it
2702 * look like selection timeout since that is
2703 * the most common reason for this to occur,
2704 * and it's severe enough.
2705 */
2706
2707 cmd->result = DID_NO_CONNECT << 16;
2708 }
2709 break;
2710
2711 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2712 break;
2713 case CMD_DATA_OVERRUN:
2714 dev_warn(&h->pdev->dev,
2715 "CDB %16phN data overrun\n", cp->Request.CDB);
2716 break;
2717 case CMD_INVALID: {
2718 /* print_bytes(cp, sizeof(*cp), 1, 0);
2719 print_cmd(cp); */
2720 /* We get CMD_INVALID if you address a non-existent device
2721 * instead of a selection timeout (no response). You will
2722 * see this if you yank out a drive, then try to access it.
2723 * This is kind of a shame because it means that any other
2724 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2725 * missing target. */
2726 cmd->result = DID_NO_CONNECT << 16;
2727 }
2728 break;
2729 case CMD_PROTOCOL_ERR:
2730 cmd->result = DID_ERROR << 16;
2731 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2732 cp->Request.CDB);
2733 break;
2734 case CMD_HARDWARE_ERR:
2735 cmd->result = DID_ERROR << 16;
2736 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2737 cp->Request.CDB);
2738 break;
2739 case CMD_CONNECTION_LOST:
2740 cmd->result = DID_ERROR << 16;
2741 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2742 cp->Request.CDB);
2743 break;
2744 case CMD_ABORTED:
2745 cmd->result = DID_ABORT << 16;
2746 break;
2747 case CMD_ABORT_FAILED:
2748 cmd->result = DID_ERROR << 16;
2749 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2750 cp->Request.CDB);
2751 break;
2752 case CMD_UNSOLICITED_ABORT:
2753 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2754 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2755 cp->Request.CDB);
2756 break;
2757 case CMD_TIMEOUT:
2758 cmd->result = DID_TIME_OUT << 16;
2759 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2760 cp->Request.CDB);
2761 break;
2762 case CMD_UNABORTABLE:
2763 cmd->result = DID_ERROR << 16;
2764 dev_warn(&h->pdev->dev, "Command unabortable\n");
2765 break;
2766 case CMD_TMF_STATUS:
2767 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2768 cmd->result = DID_ERROR << 16;
2769 break;
2770 case CMD_IOACCEL_DISABLED:
2771 /* This only handles the direct pass-through case since RAID
2772 * offload is handled above. Just attempt a retry.
2773 */
2774 cmd->result = DID_SOFT_ERROR << 16;
2775 dev_warn(&h->pdev->dev,
2776 "cp %p had HP SSD Smart Path error\n", cp);
2777 break;
2778 default:
2779 cmd->result = DID_ERROR << 16;
2780 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2781 cp, ei->CommandStatus);
2782 }
2783
2784 return hpsa_cmd_free_and_done(h, cp, cmd);
2785 }
2786
2787 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2788 int sg_used, enum dma_data_direction data_direction)
2789 {
2790 int i;
2791
2792 for (i = 0; i < sg_used; i++)
2793 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2794 le32_to_cpu(c->SG[i].Len),
2795 data_direction);
2796 }
2797
2798 static int hpsa_map_one(struct pci_dev *pdev,
2799 struct CommandList *cp,
2800 unsigned char *buf,
2801 size_t buflen,
2802 enum dma_data_direction data_direction)
2803 {
2804 u64 addr64;
2805
2806 if (buflen == 0 || data_direction == DMA_NONE) {
2807 cp->Header.SGList = 0;
2808 cp->Header.SGTotal = cpu_to_le16(0);
2809 return 0;
2810 }
2811
2812 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2813 if (dma_mapping_error(&pdev->dev, addr64)) {
2814 /* Prevent subsequent unmap of something never mapped */
2815 cp->Header.SGList = 0;
2816 cp->Header.SGTotal = cpu_to_le16(0);
2817 return -1;
2818 }
2819 cp->SG[0].Addr = cpu_to_le64(addr64);
2820 cp->SG[0].Len = cpu_to_le32(buflen);
2821 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2822 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2823 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2824 return 0;
2825 }
2826
2827 #define NO_TIMEOUT ((unsigned long) -1)
2828 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2829 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2830 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2831 {
2832 DECLARE_COMPLETION_ONSTACK(wait);
2833
2834 c->waiting = &wait;
2835 __enqueue_cmd_and_start_io(h, c, reply_queue);
2836 if (timeout_msecs == NO_TIMEOUT) {
2837 /* TODO: get rid of this no-timeout thing */
2838 wait_for_completion_io(&wait);
2839 return IO_OK;
2840 }
2841 if (!wait_for_completion_io_timeout(&wait,
2842 msecs_to_jiffies(timeout_msecs))) {
2843 dev_warn(&h->pdev->dev, "Command timed out.\n");
2844 return -ETIMEDOUT;
2845 }
2846 return IO_OK;
2847 }
2848
2849 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2850 int reply_queue, unsigned long timeout_msecs)
2851 {
2852 if (unlikely(lockup_detected(h))) {
2853 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2854 return IO_OK;
2855 }
2856 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2857 }
2858
2859 static u32 lockup_detected(struct ctlr_info *h)
2860 {
2861 int cpu;
2862 u32 rc, *lockup_detected;
2863
2864 cpu = get_cpu();
2865 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2866 rc = *lockup_detected;
2867 put_cpu();
2868 return rc;
2869 }
2870
2871 #define MAX_DRIVER_CMD_RETRIES 25
2872 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2873 struct CommandList *c, enum dma_data_direction data_direction,
2874 unsigned long timeout_msecs)
2875 {
2876 int backoff_time = 10, retry_count = 0;
2877 int rc;
2878
2879 do {
2880 memset(c->err_info, 0, sizeof(*c->err_info));
2881 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2882 timeout_msecs);
2883 if (rc)
2884 break;
2885 retry_count++;
2886 if (retry_count > 3) {
2887 msleep(backoff_time);
2888 if (backoff_time < 1000)
2889 backoff_time *= 2;
2890 }
2891 } while ((check_for_unit_attention(h, c) ||
2892 check_for_busy(h, c)) &&
2893 retry_count <= MAX_DRIVER_CMD_RETRIES);
2894 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2895 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2896 rc = -EIO;
2897 return rc;
2898 }
2899
2900 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2901 struct CommandList *c)
2902 {
2903 const u8 *cdb = c->Request.CDB;
2904 const u8 *lun = c->Header.LUN.LunAddrBytes;
2905
2906 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2907 txt, lun, cdb);
2908 }
2909
2910 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2911 struct CommandList *cp)
2912 {
2913 const struct ErrorInfo *ei = cp->err_info;
2914 struct device *d = &cp->h->pdev->dev;
2915 u8 sense_key, asc, ascq;
2916 int sense_len;
2917
2918 switch (ei->CommandStatus) {
2919 case CMD_TARGET_STATUS:
2920 if (ei->SenseLen > sizeof(ei->SenseInfo))
2921 sense_len = sizeof(ei->SenseInfo);
2922 else
2923 sense_len = ei->SenseLen;
2924 decode_sense_data(ei->SenseInfo, sense_len,
2925 &sense_key, &asc, &ascq);
2926 hpsa_print_cmd(h, "SCSI status", cp);
2927 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2928 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2929 sense_key, asc, ascq);
2930 else
2931 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2932 if (ei->ScsiStatus == 0)
2933 dev_warn(d, "SCSI status is abnormally zero. "
2934 "(probably indicates selection timeout "
2935 "reported incorrectly due to a known "
2936 "firmware bug, circa July, 2001.)\n");
2937 break;
2938 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2939 break;
2940 case CMD_DATA_OVERRUN:
2941 hpsa_print_cmd(h, "overrun condition", cp);
2942 break;
2943 case CMD_INVALID: {
2944 /* controller unfortunately reports SCSI passthru's
2945 * to non-existent targets as invalid commands.
2946 */
2947 hpsa_print_cmd(h, "invalid command", cp);
2948 dev_warn(d, "probably means device no longer present\n");
2949 }
2950 break;
2951 case CMD_PROTOCOL_ERR:
2952 hpsa_print_cmd(h, "protocol error", cp);
2953 break;
2954 case CMD_HARDWARE_ERR:
2955 hpsa_print_cmd(h, "hardware error", cp);
2956 break;
2957 case CMD_CONNECTION_LOST:
2958 hpsa_print_cmd(h, "connection lost", cp);
2959 break;
2960 case CMD_ABORTED:
2961 hpsa_print_cmd(h, "aborted", cp);
2962 break;
2963 case CMD_ABORT_FAILED:
2964 hpsa_print_cmd(h, "abort failed", cp);
2965 break;
2966 case CMD_UNSOLICITED_ABORT:
2967 hpsa_print_cmd(h, "unsolicited abort", cp);
2968 break;
2969 case CMD_TIMEOUT:
2970 hpsa_print_cmd(h, "timed out", cp);
2971 break;
2972 case CMD_UNABORTABLE:
2973 hpsa_print_cmd(h, "unabortable", cp);
2974 break;
2975 case CMD_CTLR_LOCKUP:
2976 hpsa_print_cmd(h, "controller lockup detected", cp);
2977 break;
2978 default:
2979 hpsa_print_cmd(h, "unknown status", cp);
2980 dev_warn(d, "Unknown command status %x\n",
2981 ei->CommandStatus);
2982 }
2983 }
2984
2985 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2986 u8 page, u8 *buf, size_t bufsize)
2987 {
2988 int rc = IO_OK;
2989 struct CommandList *c;
2990 struct ErrorInfo *ei;
2991
2992 c = cmd_alloc(h);
2993 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2994 page, scsi3addr, TYPE_CMD)) {
2995 rc = -1;
2996 goto out;
2997 }
2998 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2999 NO_TIMEOUT);
3000 if (rc)
3001 goto out;
3002 ei = c->err_info;
3003 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3004 hpsa_scsi_interpret_error(h, c);
3005 rc = -1;
3006 }
3007 out:
3008 cmd_free(h, c);
3009 return rc;
3010 }
3011
3012 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3013 u8 *scsi3addr)
3014 {
3015 u8 *buf;
3016 u64 sa = 0;
3017 int rc = 0;
3018
3019 buf = kzalloc(1024, GFP_KERNEL);
3020 if (!buf)
3021 return 0;
3022
3023 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3024 buf, 1024);
3025
3026 if (rc)
3027 goto out;
3028
3029 sa = get_unaligned_be64(buf+12);
3030
3031 out:
3032 kfree(buf);
3033 return sa;
3034 }
3035
3036 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3037 u16 page, unsigned char *buf,
3038 unsigned char bufsize)
3039 {
3040 int rc = IO_OK;
3041 struct CommandList *c;
3042 struct ErrorInfo *ei;
3043
3044 c = cmd_alloc(h);
3045
3046 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3047 page, scsi3addr, TYPE_CMD)) {
3048 rc = -1;
3049 goto out;
3050 }
3051 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3052 NO_TIMEOUT);
3053 if (rc)
3054 goto out;
3055 ei = c->err_info;
3056 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3057 hpsa_scsi_interpret_error(h, c);
3058 rc = -1;
3059 }
3060 out:
3061 cmd_free(h, c);
3062 return rc;
3063 }
3064
3065 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3066 u8 reset_type, int reply_queue)
3067 {
3068 int rc = IO_OK;
3069 struct CommandList *c;
3070 struct ErrorInfo *ei;
3071
3072 c = cmd_alloc(h);
3073 c->device = dev;
3074
3075 /* fill_cmd can't fail here, no data buffer to map. */
3076 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3077 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3078 if (rc) {
3079 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3080 goto out;
3081 }
3082 /* no unmap needed here because no data xfer. */
3083
3084 ei = c->err_info;
3085 if (ei->CommandStatus != 0) {
3086 hpsa_scsi_interpret_error(h, c);
3087 rc = -1;
3088 }
3089 out:
3090 cmd_free(h, c);
3091 return rc;
3092 }
3093
3094 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3095 struct hpsa_scsi_dev_t *dev,
3096 unsigned char *scsi3addr)
3097 {
3098 int i;
3099 bool match = false;
3100 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3101 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3102
3103 if (hpsa_is_cmd_idle(c))
3104 return false;
3105
3106 switch (c->cmd_type) {
3107 case CMD_SCSI:
3108 case CMD_IOCTL_PEND:
3109 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3110 sizeof(c->Header.LUN.LunAddrBytes));
3111 break;
3112
3113 case CMD_IOACCEL1:
3114 case CMD_IOACCEL2:
3115 if (c->phys_disk == dev) {
3116 /* HBA mode match */
3117 match = true;
3118 } else {
3119 /* Possible RAID mode -- check each phys dev. */
3120 /* FIXME: Do we need to take out a lock here? If
3121 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3122 * instead. */
3123 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3124 /* FIXME: an alternate test might be
3125 *
3126 * match = dev->phys_disk[i]->ioaccel_handle
3127 * == c2->scsi_nexus; */
3128 match = dev->phys_disk[i] == c->phys_disk;
3129 }
3130 }
3131 break;
3132
3133 case IOACCEL2_TMF:
3134 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3135 match = dev->phys_disk[i]->ioaccel_handle ==
3136 le32_to_cpu(ac->it_nexus);
3137 }
3138 break;
3139
3140 case 0: /* The command is in the middle of being initialized. */
3141 match = false;
3142 break;
3143
3144 default:
3145 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3146 c->cmd_type);
3147 BUG();
3148 }
3149
3150 return match;
3151 }
3152
3153 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3154 u8 reset_type, int reply_queue)
3155 {
3156 int rc = 0;
3157
3158 /* We can really only handle one reset at a time */
3159 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3160 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3161 return -EINTR;
3162 }
3163
3164 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3165 if (!rc) {
3166 /* incremented by sending the reset request */
3167 atomic_dec(&dev->commands_outstanding);
3168 wait_event(h->event_sync_wait_queue,
3169 atomic_read(&dev->commands_outstanding) <= 0 ||
3170 lockup_detected(h));
3171 }
3172
3173 if (unlikely(lockup_detected(h))) {
3174 dev_warn(&h->pdev->dev,
3175 "Controller lockup detected during reset wait\n");
3176 rc = -ENODEV;
3177 }
3178
3179 if (!rc)
3180 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3181
3182 mutex_unlock(&h->reset_mutex);
3183 return rc;
3184 }
3185
3186 static void hpsa_get_raid_level(struct ctlr_info *h,
3187 unsigned char *scsi3addr, unsigned char *raid_level)
3188 {
3189 int rc;
3190 unsigned char *buf;
3191
3192 *raid_level = RAID_UNKNOWN;
3193 buf = kzalloc(64, GFP_KERNEL);
3194 if (!buf)
3195 return;
3196
3197 if (!hpsa_vpd_page_supported(h, scsi3addr,
3198 HPSA_VPD_LV_DEVICE_GEOMETRY))
3199 goto exit;
3200
3201 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203
3204 if (rc == 0)
3205 *raid_level = buf[8];
3206 if (*raid_level > RAID_UNKNOWN)
3207 *raid_level = RAID_UNKNOWN;
3208 exit:
3209 kfree(buf);
3210 return;
3211 }
3212
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216 struct raid_map_data *map_buff)
3217 {
3218 struct raid_map_disk_data *dd = &map_buff->data[0];
3219 int map, row, col;
3220 u16 map_cnt, row_cnt, disks_per_row;
3221
3222 if (rc != 0)
3223 return;
3224
3225 /* Show details only if debugging has been activated. */
3226 if (h->raid_offload_debug < 2)
3227 return;
3228
3229 dev_info(&h->pdev->dev, "structure_size = %u\n",
3230 le32_to_cpu(map_buff->structure_size));
3231 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232 le32_to_cpu(map_buff->volume_blk_size));
3233 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234 le64_to_cpu(map_buff->volume_blk_cnt));
3235 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236 map_buff->phys_blk_shift);
3237 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238 map_buff->parity_rotation_shift);
3239 dev_info(&h->pdev->dev, "strip_size = %u\n",
3240 le16_to_cpu(map_buff->strip_size));
3241 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242 le64_to_cpu(map_buff->disk_starting_blk));
3243 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244 le64_to_cpu(map_buff->disk_blk_cnt));
3245 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246 le16_to_cpu(map_buff->data_disks_per_row));
3247 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248 le16_to_cpu(map_buff->metadata_disks_per_row));
3249 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250 le16_to_cpu(map_buff->row_cnt));
3251 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252 le16_to_cpu(map_buff->layout_map_count));
3253 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254 le16_to_cpu(map_buff->flags));
3255 dev_info(&h->pdev->dev, "encryption = %s\n",
3256 le16_to_cpu(map_buff->flags) &
3257 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3258 dev_info(&h->pdev->dev, "dekindex = %u\n",
3259 le16_to_cpu(map_buff->dekindex));
3260 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261 for (map = 0; map < map_cnt; map++) {
3262 dev_info(&h->pdev->dev, "Map%u:\n", map);
3263 row_cnt = le16_to_cpu(map_buff->row_cnt);
3264 for (row = 0; row < row_cnt; row++) {
3265 dev_info(&h->pdev->dev, " Row%u:\n", row);
3266 disks_per_row =
3267 le16_to_cpu(map_buff->data_disks_per_row);
3268 for (col = 0; col < disks_per_row; col++, dd++)
3269 dev_info(&h->pdev->dev,
3270 " D%02u: h=0x%04x xor=%u,%u\n",
3271 col, dd->ioaccel_handle,
3272 dd->xor_mult[0], dd->xor_mult[1]);
3273 disks_per_row =
3274 le16_to_cpu(map_buff->metadata_disks_per_row);
3275 for (col = 0; col < disks_per_row; col++, dd++)
3276 dev_info(&h->pdev->dev,
3277 " M%02u: h=0x%04x xor=%u,%u\n",
3278 col, dd->ioaccel_handle,
3279 dd->xor_mult[0], dd->xor_mult[1]);
3280 }
3281 }
3282 }
3283 #else
3284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285 __attribute__((unused)) int rc,
3286 __attribute__((unused)) struct raid_map_data *map_buff)
3287 {
3288 }
3289 #endif
3290
3291 static int hpsa_get_raid_map(struct ctlr_info *h,
3292 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293 {
3294 int rc = 0;
3295 struct CommandList *c;
3296 struct ErrorInfo *ei;
3297
3298 c = cmd_alloc(h);
3299
3300 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301 sizeof(this_device->raid_map), 0,
3302 scsi3addr, TYPE_CMD)) {
3303 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304 cmd_free(h, c);
3305 return -1;
3306 }
3307 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3308 NO_TIMEOUT);
3309 if (rc)
3310 goto out;
3311 ei = c->err_info;
3312 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313 hpsa_scsi_interpret_error(h, c);
3314 rc = -1;
3315 goto out;
3316 }
3317 cmd_free(h, c);
3318
3319 /* @todo in the future, dynamically allocate RAID map memory */
3320 if (le32_to_cpu(this_device->raid_map.structure_size) >
3321 sizeof(this_device->raid_map)) {
3322 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323 rc = -1;
3324 }
3325 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326 return rc;
3327 out:
3328 cmd_free(h, c);
3329 return rc;
3330 }
3331
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333 unsigned char scsi3addr[], u16 bmic_device_index,
3334 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335 {
3336 int rc = IO_OK;
3337 struct CommandList *c;
3338 struct ErrorInfo *ei;
3339
3340 c = cmd_alloc(h);
3341
3342 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343 0, RAID_CTLR_LUNID, TYPE_CMD);
3344 if (rc)
3345 goto out;
3346
3347 c->Request.CDB[2] = bmic_device_index & 0xff;
3348 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349
3350 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3351 NO_TIMEOUT);
3352 if (rc)
3353 goto out;
3354 ei = c->err_info;
3355 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356 hpsa_scsi_interpret_error(h, c);
3357 rc = -1;
3358 }
3359 out:
3360 cmd_free(h, c);
3361 return rc;
3362 }
3363
3364 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365 struct bmic_identify_controller *buf, size_t bufsize)
3366 {
3367 int rc = IO_OK;
3368 struct CommandList *c;
3369 struct ErrorInfo *ei;
3370
3371 c = cmd_alloc(h);
3372
3373 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374 0, RAID_CTLR_LUNID, TYPE_CMD);
3375 if (rc)
3376 goto out;
3377
3378 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3379 NO_TIMEOUT);
3380 if (rc)
3381 goto out;
3382 ei = c->err_info;
3383 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384 hpsa_scsi_interpret_error(h, c);
3385 rc = -1;
3386 }
3387 out:
3388 cmd_free(h, c);
3389 return rc;
3390 }
3391
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393 unsigned char scsi3addr[], u16 bmic_device_index,
3394 struct bmic_identify_physical_device *buf, size_t bufsize)
3395 {
3396 int rc = IO_OK;
3397 struct CommandList *c;
3398 struct ErrorInfo *ei;
3399
3400 c = cmd_alloc(h);
3401 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402 0, RAID_CTLR_LUNID, TYPE_CMD);
3403 if (rc)
3404 goto out;
3405
3406 c->Request.CDB[2] = bmic_device_index & 0xff;
3407 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408
3409 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3410 NO_TIMEOUT);
3411 ei = c->err_info;
3412 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413 hpsa_scsi_interpret_error(h, c);
3414 rc = -1;
3415 }
3416 out:
3417 cmd_free(h, c);
3418
3419 return rc;
3420 }
3421
3422 /*
3423 * get enclosure information
3424 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426 * Uses id_physical_device to determine the box_index.
3427 */
3428 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429 unsigned char *scsi3addr,
3430 struct ReportExtendedLUNdata *rlep, int rle_index,
3431 struct hpsa_scsi_dev_t *encl_dev)
3432 {
3433 int rc = -1;
3434 struct CommandList *c = NULL;
3435 struct ErrorInfo *ei = NULL;
3436 struct bmic_sense_storage_box_params *bssbp = NULL;
3437 struct bmic_identify_physical_device *id_phys = NULL;
3438 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439 u16 bmic_device_index = 0;
3440
3441 encl_dev->eli =
3442 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3443
3444 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3445
3446 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447 rc = IO_OK;
3448 goto out;
3449 }
3450
3451 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452 rc = IO_OK;
3453 goto out;
3454 }
3455
3456 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457 if (!bssbp)
3458 goto out;
3459
3460 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461 if (!id_phys)
3462 goto out;
3463
3464 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465 id_phys, sizeof(*id_phys));
3466 if (rc) {
3467 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468 __func__, encl_dev->external, bmic_device_index);
3469 goto out;
3470 }
3471
3472 c = cmd_alloc(h);
3473
3474 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476
3477 if (rc)
3478 goto out;
3479
3480 if (id_phys->phys_connector[1] == 'E')
3481 c->Request.CDB[5] = id_phys->box_index;
3482 else
3483 c->Request.CDB[5] = 0;
3484
3485 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3486 NO_TIMEOUT);
3487 if (rc)
3488 goto out;
3489
3490 ei = c->err_info;
3491 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492 rc = -1;
3493 goto out;
3494 }
3495
3496 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499
3500 rc = IO_OK;
3501 out:
3502 kfree(bssbp);
3503 kfree(id_phys);
3504
3505 if (c)
3506 cmd_free(h, c);
3507
3508 if (rc != IO_OK)
3509 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510 "Error, could not get enclosure information");
3511 }
3512
3513 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514 unsigned char *scsi3addr)
3515 {
3516 struct ReportExtendedLUNdata *physdev;
3517 u32 nphysicals;
3518 u64 sa = 0;
3519 int i;
3520
3521 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522 if (!physdev)
3523 return 0;
3524
3525 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527 kfree(physdev);
3528 return 0;
3529 }
3530 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531
3532 for (i = 0; i < nphysicals; i++)
3533 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535 break;
3536 }
3537
3538 kfree(physdev);
3539
3540 return sa;
3541 }
3542
3543 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544 struct hpsa_scsi_dev_t *dev)
3545 {
3546 int rc;
3547 u64 sa = 0;
3548
3549 if (is_hba_lunid(scsi3addr)) {
3550 struct bmic_sense_subsystem_info *ssi;
3551
3552 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553 if (!ssi)
3554 return;
3555
3556 rc = hpsa_bmic_sense_subsystem_information(h,
3557 scsi3addr, 0, ssi, sizeof(*ssi));
3558 if (rc == 0) {
3559 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560 h->sas_address = sa;
3561 }
3562
3563 kfree(ssi);
3564 } else
3565 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566
3567 dev->sas_address = sa;
3568 }
3569
3570 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571 struct ReportExtendedLUNdata *physdev)
3572 {
3573 u32 nphysicals;
3574 int i;
3575
3576 if (h->discovery_polling)
3577 return;
3578
3579 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580
3581 for (i = 0; i < nphysicals; i++) {
3582 if (physdev->LUN[i].device_type ==
3583 BMIC_DEVICE_TYPE_CONTROLLER
3584 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3585 dev_info(&h->pdev->dev,
3586 "External controller present, activate discovery polling and disable rld caching\n");
3587 hpsa_disable_rld_caching(h);
3588 h->discovery_polling = 1;
3589 break;
3590 }
3591 }
3592 }
3593
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596 unsigned char scsi3addr[], u8 page)
3597 {
3598 int rc;
3599 int i;
3600 int pages;
3601 unsigned char *buf, bufsize;
3602
3603 buf = kzalloc(256, GFP_KERNEL);
3604 if (!buf)
3605 return false;
3606
3607 /* Get the size of the page list first */
3608 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610 buf, HPSA_VPD_HEADER_SZ);
3611 if (rc != 0)
3612 goto exit_unsupported;
3613 pages = buf[3];
3614 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615 bufsize = pages + HPSA_VPD_HEADER_SZ;
3616 else
3617 bufsize = 255;
3618
3619 /* Get the whole VPD page list */
3620 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622 buf, bufsize);
3623 if (rc != 0)
3624 goto exit_unsupported;
3625
3626 pages = buf[3];
3627 for (i = 1; i <= pages; i++)
3628 if (buf[3 + i] == page)
3629 goto exit_supported;
3630 exit_unsupported:
3631 kfree(buf);
3632 return false;
3633 exit_supported:
3634 kfree(buf);
3635 return true;
3636 }
3637
3638 /*
3639 * Called during a scan operation.
3640 * Sets ioaccel status on the new device list, not the existing device list
3641 *
3642 * The device list used during I/O will be updated later in
3643 * adjust_hpsa_scsi_table.
3644 */
3645 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647 {
3648 int rc;
3649 unsigned char *buf;
3650 u8 ioaccel_status;
3651
3652 this_device->offload_config = 0;
3653 this_device->offload_enabled = 0;
3654 this_device->offload_to_be_enabled = 0;
3655
3656 buf = kzalloc(64, GFP_KERNEL);
3657 if (!buf)
3658 return;
3659 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660 goto out;
3661 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663 if (rc != 0)
3664 goto out;
3665
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670 this_device->offload_config =
3671 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672 if (this_device->offload_config) {
3673 this_device->offload_to_be_enabled =
3674 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676 this_device->offload_to_be_enabled = 0;
3677 }
3678
3679 out:
3680 kfree(buf);
3681 return;
3682 }
3683
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686 unsigned char *device_id, int index, int buflen)
3687 {
3688 int rc;
3689 unsigned char *buf;
3690
3691 /* Does controller have VPD for device id? */
3692 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693 return 1; /* not supported */
3694
3695 buf = kzalloc(64, GFP_KERNEL);
3696 if (!buf)
3697 return -ENOMEM;
3698
3699 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701 if (rc == 0) {
3702 if (buflen > 16)
3703 buflen = 16;
3704 memcpy(device_id, &buf[8], buflen);
3705 }
3706
3707 kfree(buf);
3708
3709 return rc; /*0 - got id, otherwise, didn't */
3710 }
3711
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713 void *buf, int bufsize,
3714 int extended_response)
3715 {
3716 int rc = IO_OK;
3717 struct CommandList *c;
3718 unsigned char scsi3addr[8];
3719 struct ErrorInfo *ei;
3720
3721 c = cmd_alloc(h);
3722
3723 /* address the controller */
3724 memset(scsi3addr, 0, sizeof(scsi3addr));
3725 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727 rc = -EAGAIN;
3728 goto out;
3729 }
3730 if (extended_response)
3731 c->Request.CDB[1] = extended_response;
3732 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3733 NO_TIMEOUT);
3734 if (rc)
3735 goto out;
3736 ei = c->err_info;
3737 if (ei->CommandStatus != 0 &&
3738 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739 hpsa_scsi_interpret_error(h, c);
3740 rc = -EIO;
3741 } else {
3742 struct ReportLUNdata *rld = buf;
3743
3744 if (rld->extended_response_flag != extended_response) {
3745 if (!h->legacy_board) {
3746 dev_err(&h->pdev->dev,
3747 "report luns requested format %u, got %u\n",
3748 extended_response,
3749 rld->extended_response_flag);
3750 rc = -EINVAL;
3751 } else
3752 rc = -EOPNOTSUPP;
3753 }
3754 }
3755 out:
3756 cmd_free(h, c);
3757 return rc;
3758 }
3759
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761 struct ReportExtendedLUNdata *buf, int bufsize)
3762 {
3763 int rc;
3764 struct ReportLUNdata *lbuf;
3765
3766 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767 HPSA_REPORT_PHYS_EXTENDED);
3768 if (!rc || rc != -EOPNOTSUPP)
3769 return rc;
3770
3771 /* REPORT PHYS EXTENDED is not supported */
3772 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773 if (!lbuf)
3774 return -ENOMEM;
3775
3776 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777 if (!rc) {
3778 int i;
3779 u32 nphys;
3780
3781 /* Copy ReportLUNdata header */
3782 memcpy(buf, lbuf, 8);
3783 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784 for (i = 0; i < nphys; i++)
3785 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786 }
3787 kfree(lbuf);
3788 return rc;
3789 }
3790
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792 struct ReportLUNdata *buf, int bufsize)
3793 {
3794 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795 }
3796
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798 int bus, int target, int lun)
3799 {
3800 device->bus = bus;
3801 device->target = target;
3802 device->lun = lun;
3803 }
3804
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info *h,
3807 unsigned char scsi3addr[])
3808 {
3809 int rc;
3810 int status;
3811 int size;
3812 unsigned char *buf;
3813
3814 buf = kzalloc(64, GFP_KERNEL);
3815 if (!buf)
3816 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817
3818 /* Does controller have VPD for logical volume status? */
3819 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820 goto exit_failed;
3821
3822 /* Get the size of the VPD return buffer */
3823 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824 buf, HPSA_VPD_HEADER_SZ);
3825 if (rc != 0)
3826 goto exit_failed;
3827 size = buf[3];
3828
3829 /* Now get the whole VPD buffer */
3830 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831 buf, size + HPSA_VPD_HEADER_SZ);
3832 if (rc != 0)
3833 goto exit_failed;
3834 status = buf[4]; /* status byte */
3835
3836 kfree(buf);
3837 return status;
3838 exit_failed:
3839 kfree(buf);
3840 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 }
3842
3843 /* Determine offline status of a volume.
3844 * Return either:
3845 * 0 (not offline)
3846 * 0xff (offline for unknown reasons)
3847 * # (integer code indicating one of several NOT READY states
3848 * describing why a volume is to be kept offline)
3849 */
3850 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851 unsigned char scsi3addr[])
3852 {
3853 struct CommandList *c;
3854 unsigned char *sense;
3855 u8 sense_key, asc, ascq;
3856 int sense_len;
3857 int rc, ldstat = 0;
3858 u16 cmd_status;
3859 u8 scsi_status;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863
3864 c = cmd_alloc(h);
3865
3866 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868 NO_TIMEOUT);
3869 if (rc) {
3870 cmd_free(h, c);
3871 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872 }
3873 sense = c->err_info->SenseInfo;
3874 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875 sense_len = sizeof(c->err_info->SenseInfo);
3876 else
3877 sense_len = c->err_info->SenseLen;
3878 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879 cmd_status = c->err_info->CommandStatus;
3880 scsi_status = c->err_info->ScsiStatus;
3881 cmd_free(h, c);
3882
3883 /* Determine the reason for not ready state */
3884 ldstat = hpsa_get_volume_status(h, scsi3addr);
3885
3886 /* Keep volume offline in certain cases: */
3887 switch (ldstat) {
3888 case HPSA_LV_FAILED:
3889 case HPSA_LV_UNDERGOING_ERASE:
3890 case HPSA_LV_NOT_AVAILABLE:
3891 case HPSA_LV_UNDERGOING_RPI:
3892 case HPSA_LV_PENDING_RPI:
3893 case HPSA_LV_ENCRYPTED_NO_KEY:
3894 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895 case HPSA_LV_UNDERGOING_ENCRYPTION:
3896 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898 return ldstat;
3899 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900 /* If VPD status page isn't available,
3901 * use ASC/ASCQ to determine state
3902 */
3903 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905 return ldstat;
3906 break;
3907 default:
3908 break;
3909 }
3910 return HPSA_LV_OK;
3911 }
3912
3913 static int hpsa_update_device_info(struct ctlr_info *h,
3914 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915 unsigned char *is_OBDR_device)
3916 {
3917
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922
3923 unsigned char *inq_buff;
3924 unsigned char *obdr_sig;
3925 int rc = 0;
3926
3927 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928 if (!inq_buff) {
3929 rc = -ENOMEM;
3930 goto bail_out;
3931 }
3932
3933 /* Do an inquiry to the device to see what it is. */
3934 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936 dev_err(&h->pdev->dev,
3937 "%s: inquiry failed, device will be skipped.\n",
3938 __func__);
3939 rc = HPSA_INQUIRY_FAILED;
3940 goto bail_out;
3941 }
3942
3943 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945
3946 this_device->devtype = (inq_buff[0] & 0x1f);
3947 memcpy(this_device->scsi3addr, scsi3addr, 8);
3948 memcpy(this_device->vendor, &inq_buff[8],
3949 sizeof(this_device->vendor));
3950 memcpy(this_device->model, &inq_buff[16],
3951 sizeof(this_device->model));
3952 this_device->rev = inq_buff[2];
3953 memset(this_device->device_id, 0,
3954 sizeof(this_device->device_id));
3955 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956 sizeof(this_device->device_id)) < 0) {
3957 dev_err(&h->pdev->dev,
3958 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3959 h->ctlr, __func__,
3960 h->scsi_host->host_no,
3961 this_device->bus, this_device->target,
3962 this_device->lun,
3963 scsi_device_type(this_device->devtype),
3964 this_device->model);
3965 rc = HPSA_LV_FAILED;
3966 goto bail_out;
3967 }
3968
3969 if ((this_device->devtype == TYPE_DISK ||
3970 this_device->devtype == TYPE_ZBC) &&
3971 is_logical_dev_addr_mode(scsi3addr)) {
3972 unsigned char volume_offline;
3973
3974 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3975 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3976 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3977 volume_offline = hpsa_volume_offline(h, scsi3addr);
3978 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3979 h->legacy_board) {
3980 /*
3981 * Legacy boards might not support volume status
3982 */
3983 dev_info(&h->pdev->dev,
3984 "C0:T%d:L%d Volume status not available, assuming online.\n",
3985 this_device->target, this_device->lun);
3986 volume_offline = 0;
3987 }
3988 this_device->volume_offline = volume_offline;
3989 if (volume_offline == HPSA_LV_FAILED) {
3990 rc = HPSA_LV_FAILED;
3991 dev_err(&h->pdev->dev,
3992 "%s: LV failed, device will be skipped.\n",
3993 __func__);
3994 goto bail_out;
3995 }
3996 } else {
3997 this_device->raid_level = RAID_UNKNOWN;
3998 this_device->offload_config = 0;
3999 this_device->offload_enabled = 0;
4000 this_device->offload_to_be_enabled = 0;
4001 this_device->hba_ioaccel_enabled = 0;
4002 this_device->volume_offline = 0;
4003 this_device->queue_depth = h->nr_cmds;
4004 }
4005
4006 if (this_device->external)
4007 this_device->queue_depth = EXTERNAL_QD;
4008
4009 if (is_OBDR_device) {
4010 /* See if this is a One-Button-Disaster-Recovery device
4011 * by looking for "$DR-10" at offset 43 in inquiry data.
4012 */
4013 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4014 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4015 strncmp(obdr_sig, OBDR_TAPE_SIG,
4016 OBDR_SIG_LEN) == 0);
4017 }
4018 kfree(inq_buff);
4019 return 0;
4020
4021 bail_out:
4022 kfree(inq_buff);
4023 return rc;
4024 }
4025
4026 /*
4027 * Helper function to assign bus, target, lun mapping of devices.
4028 * Logical drive target and lun are assigned at this time, but
4029 * physical device lun and target assignment are deferred (assigned
4030 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4031 */
4032 static void figure_bus_target_lun(struct ctlr_info *h,
4033 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4034 {
4035 u32 lunid = get_unaligned_le32(lunaddrbytes);
4036
4037 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4038 /* physical device, target and lun filled in later */
4039 if (is_hba_lunid(lunaddrbytes)) {
4040 int bus = HPSA_HBA_BUS;
4041
4042 if (!device->rev)
4043 bus = HPSA_LEGACY_HBA_BUS;
4044 hpsa_set_bus_target_lun(device,
4045 bus, 0, lunid & 0x3fff);
4046 } else
4047 /* defer target, lun assignment for physical devices */
4048 hpsa_set_bus_target_lun(device,
4049 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4050 return;
4051 }
4052 /* It's a logical device */
4053 if (device->external) {
4054 hpsa_set_bus_target_lun(device,
4055 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4056 lunid & 0x00ff);
4057 return;
4058 }
4059 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4060 0, lunid & 0x3fff);
4061 }
4062
4063 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4064 int i, int nphysicals, int nlocal_logicals)
4065 {
4066 /* In report logicals, local logicals are listed first,
4067 * then any externals.
4068 */
4069 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4070
4071 if (i == raid_ctlr_position)
4072 return 0;
4073
4074 if (i < logicals_start)
4075 return 0;
4076
4077 /* i is in logicals range, but still within local logicals */
4078 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4079 return 0;
4080
4081 return 1; /* it's an external lun */
4082 }
4083
4084 /*
4085 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4086 * logdev. The number of luns in physdev and logdev are returned in
4087 * *nphysicals and *nlogicals, respectively.
4088 * Returns 0 on success, -1 otherwise.
4089 */
4090 static int hpsa_gather_lun_info(struct ctlr_info *h,
4091 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4092 struct ReportLUNdata *logdev, u32 *nlogicals)
4093 {
4094 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4095 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4096 return -1;
4097 }
4098 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4099 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4100 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4101 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4102 *nphysicals = HPSA_MAX_PHYS_LUN;
4103 }
4104 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4105 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4106 return -1;
4107 }
4108 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4109 /* Reject Logicals in excess of our max capability. */
4110 if (*nlogicals > HPSA_MAX_LUN) {
4111 dev_warn(&h->pdev->dev,
4112 "maximum logical LUNs (%d) exceeded. "
4113 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4114 *nlogicals - HPSA_MAX_LUN);
4115 *nlogicals = HPSA_MAX_LUN;
4116 }
4117 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4118 dev_warn(&h->pdev->dev,
4119 "maximum logical + physical LUNs (%d) exceeded. "
4120 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4121 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4122 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4123 }
4124 return 0;
4125 }
4126
4127 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4128 int i, int nphysicals, int nlogicals,
4129 struct ReportExtendedLUNdata *physdev_list,
4130 struct ReportLUNdata *logdev_list)
4131 {
4132 /* Helper function, figure out where the LUN ID info is coming from
4133 * given index i, lists of physical and logical devices, where in
4134 * the list the raid controller is supposed to appear (first or last)
4135 */
4136
4137 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4138 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4139
4140 if (i == raid_ctlr_position)
4141 return RAID_CTLR_LUNID;
4142
4143 if (i < logicals_start)
4144 return &physdev_list->LUN[i -
4145 (raid_ctlr_position == 0)].lunid[0];
4146
4147 if (i < last_device)
4148 return &logdev_list->LUN[i - nphysicals -
4149 (raid_ctlr_position == 0)][0];
4150 BUG();
4151 return NULL;
4152 }
4153
4154 /* get physical drive ioaccel handle and queue depth */
4155 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4156 struct hpsa_scsi_dev_t *dev,
4157 struct ReportExtendedLUNdata *rlep, int rle_index,
4158 struct bmic_identify_physical_device *id_phys)
4159 {
4160 int rc;
4161 struct ext_report_lun_entry *rle;
4162
4163 rle = &rlep->LUN[rle_index];
4164
4165 dev->ioaccel_handle = rle->ioaccel_handle;
4166 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4167 dev->hba_ioaccel_enabled = 1;
4168 memset(id_phys, 0, sizeof(*id_phys));
4169 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4170 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4171 sizeof(*id_phys));
4172 if (!rc)
4173 /* Reserve space for FW operations */
4174 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4175 #define DRIVE_QUEUE_DEPTH 7
4176 dev->queue_depth =
4177 le16_to_cpu(id_phys->current_queue_depth_limit) -
4178 DRIVE_CMDS_RESERVED_FOR_FW;
4179 else
4180 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4181 }
4182
4183 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4184 struct ReportExtendedLUNdata *rlep, int rle_index,
4185 struct bmic_identify_physical_device *id_phys)
4186 {
4187 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4188
4189 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4190 this_device->hba_ioaccel_enabled = 1;
4191
4192 memcpy(&this_device->active_path_index,
4193 &id_phys->active_path_number,
4194 sizeof(this_device->active_path_index));
4195 memcpy(&this_device->path_map,
4196 &id_phys->redundant_path_present_map,
4197 sizeof(this_device->path_map));
4198 memcpy(&this_device->box,
4199 &id_phys->alternate_paths_phys_box_on_port,
4200 sizeof(this_device->box));
4201 memcpy(&this_device->phys_connector,
4202 &id_phys->alternate_paths_phys_connector,
4203 sizeof(this_device->phys_connector));
4204 memcpy(&this_device->bay,
4205 &id_phys->phys_bay_in_box,
4206 sizeof(this_device->bay));
4207 }
4208
4209 /* get number of local logical disks. */
4210 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4211 struct bmic_identify_controller *id_ctlr,
4212 u32 *nlocals)
4213 {
4214 int rc;
4215
4216 if (!id_ctlr) {
4217 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4218 __func__);
4219 return -ENOMEM;
4220 }
4221 memset(id_ctlr, 0, sizeof(*id_ctlr));
4222 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4223 if (!rc)
4224 if (id_ctlr->configured_logical_drive_count < 255)
4225 *nlocals = id_ctlr->configured_logical_drive_count;
4226 else
4227 *nlocals = le16_to_cpu(
4228 id_ctlr->extended_logical_unit_count);
4229 else
4230 *nlocals = -1;
4231 return rc;
4232 }
4233
4234 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4235 {
4236 struct bmic_identify_physical_device *id_phys;
4237 bool is_spare = false;
4238 int rc;
4239
4240 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4241 if (!id_phys)
4242 return false;
4243
4244 rc = hpsa_bmic_id_physical_device(h,
4245 lunaddrbytes,
4246 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4247 id_phys, sizeof(*id_phys));
4248 if (rc == 0)
4249 is_spare = (id_phys->more_flags >> 6) & 0x01;
4250
4251 kfree(id_phys);
4252 return is_spare;
4253 }
4254
4255 #define RPL_DEV_FLAG_NON_DISK 0x1
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4258
4259 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4260
4261 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4262 struct ext_report_lun_entry *rle)
4263 {
4264 u8 device_flags;
4265 u8 device_type;
4266
4267 if (!MASKED_DEVICE(lunaddrbytes))
4268 return false;
4269
4270 device_flags = rle->device_flags;
4271 device_type = rle->device_type;
4272
4273 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4274 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4275 return false;
4276 return true;
4277 }
4278
4279 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4280 return false;
4281
4282 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4283 return false;
4284
4285 /*
4286 * Spares may be spun down, we do not want to
4287 * do an Inquiry to a RAID set spare drive as
4288 * that would have them spun up, that is a
4289 * performance hit because I/O to the RAID device
4290 * stops while the spin up occurs which can take
4291 * over 50 seconds.
4292 */
4293 if (hpsa_is_disk_spare(h, lunaddrbytes))
4294 return true;
4295
4296 return false;
4297 }
4298
4299 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4300 {
4301 /* the idea here is we could get notified
4302 * that some devices have changed, so we do a report
4303 * physical luns and report logical luns cmd, and adjust
4304 * our list of devices accordingly.
4305 *
4306 * The scsi3addr's of devices won't change so long as the
4307 * adapter is not reset. That means we can rescan and
4308 * tell which devices we already know about, vs. new
4309 * devices, vs. disappearing devices.
4310 */
4311 struct ReportExtendedLUNdata *physdev_list = NULL;
4312 struct ReportLUNdata *logdev_list = NULL;
4313 struct bmic_identify_physical_device *id_phys = NULL;
4314 struct bmic_identify_controller *id_ctlr = NULL;
4315 u32 nphysicals = 0;
4316 u32 nlogicals = 0;
4317 u32 nlocal_logicals = 0;
4318 u32 ndev_allocated = 0;
4319 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4320 int ncurrent = 0;
4321 int i, n_ext_target_devs, ndevs_to_allocate;
4322 int raid_ctlr_position;
4323 bool physical_device;
4324 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4325
4326 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4327 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4328 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4329 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4330 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4331 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4332
4333 if (!currentsd || !physdev_list || !logdev_list ||
4334 !tmpdevice || !id_phys || !id_ctlr) {
4335 dev_err(&h->pdev->dev, "out of memory\n");
4336 goto out;
4337 }
4338 memset(lunzerobits, 0, sizeof(lunzerobits));
4339
4340 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4341
4342 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4343 logdev_list, &nlogicals)) {
4344 h->drv_req_rescan = 1;
4345 goto out;
4346 }
4347
4348 /* Set number of local logicals (non PTRAID) */
4349 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4350 dev_warn(&h->pdev->dev,
4351 "%s: Can't determine number of local logical devices.\n",
4352 __func__);
4353 }
4354
4355 /* We might see up to the maximum number of logical and physical disks
4356 * plus external target devices, and a device for the local RAID
4357 * controller.
4358 */
4359 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4360
4361 hpsa_ext_ctrl_present(h, physdev_list);
4362
4363 /* Allocate the per device structures */
4364 for (i = 0; i < ndevs_to_allocate; i++) {
4365 if (i >= HPSA_MAX_DEVICES) {
4366 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4367 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4368 ndevs_to_allocate - HPSA_MAX_DEVICES);
4369 break;
4370 }
4371
4372 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4373 if (!currentsd[i]) {
4374 h->drv_req_rescan = 1;
4375 goto out;
4376 }
4377 ndev_allocated++;
4378 }
4379
4380 if (is_scsi_rev_5(h))
4381 raid_ctlr_position = 0;
4382 else
4383 raid_ctlr_position = nphysicals + nlogicals;
4384
4385 /* adjust our table of devices */
4386 n_ext_target_devs = 0;
4387 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4388 u8 *lunaddrbytes, is_OBDR = 0;
4389 int rc = 0;
4390 int phys_dev_index = i - (raid_ctlr_position == 0);
4391 bool skip_device = false;
4392
4393 memset(tmpdevice, 0, sizeof(*tmpdevice));
4394
4395 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4396
4397 /* Figure out where the LUN ID info is coming from */
4398 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4399 i, nphysicals, nlogicals, physdev_list, logdev_list);
4400
4401 /* Determine if this is a lun from an external target array */
4402 tmpdevice->external =
4403 figure_external_status(h, raid_ctlr_position, i,
4404 nphysicals, nlocal_logicals);
4405
4406 /*
4407 * Skip over some devices such as a spare.
4408 */
4409 if (!tmpdevice->external && physical_device) {
4410 skip_device = hpsa_skip_device(h, lunaddrbytes,
4411 &physdev_list->LUN[phys_dev_index]);
4412 if (skip_device)
4413 continue;
4414 }
4415
4416 /* Get device type, vendor, model, device id, raid_map */
4417 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4418 &is_OBDR);
4419 if (rc == -ENOMEM) {
4420 dev_warn(&h->pdev->dev,
4421 "Out of memory, rescan deferred.\n");
4422 h->drv_req_rescan = 1;
4423 goto out;
4424 }
4425 if (rc) {
4426 h->drv_req_rescan = 1;
4427 continue;
4428 }
4429
4430 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4431 this_device = currentsd[ncurrent];
4432
4433 *this_device = *tmpdevice;
4434 this_device->physical_device = physical_device;
4435
4436 /*
4437 * Expose all devices except for physical devices that
4438 * are masked.
4439 */
4440 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4441 this_device->expose_device = 0;
4442 else
4443 this_device->expose_device = 1;
4444
4445
4446 /*
4447 * Get the SAS address for physical devices that are exposed.
4448 */
4449 if (this_device->physical_device && this_device->expose_device)
4450 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4451
4452 switch (this_device->devtype) {
4453 case TYPE_ROM:
4454 /* We don't *really* support actual CD-ROM devices,
4455 * just "One Button Disaster Recovery" tape drive
4456 * which temporarily pretends to be a CD-ROM drive.
4457 * So we check that the device is really an OBDR tape
4458 * device by checking for "$DR-10" in bytes 43-48 of
4459 * the inquiry data.
4460 */
4461 if (is_OBDR)
4462 ncurrent++;
4463 break;
4464 case TYPE_DISK:
4465 case TYPE_ZBC:
4466 if (this_device->physical_device) {
4467 /* The disk is in HBA mode. */
4468 /* Never use RAID mapper in HBA mode. */
4469 this_device->offload_enabled = 0;
4470 hpsa_get_ioaccel_drive_info(h, this_device,
4471 physdev_list, phys_dev_index, id_phys);
4472 hpsa_get_path_info(this_device,
4473 physdev_list, phys_dev_index, id_phys);
4474 }
4475 ncurrent++;
4476 break;
4477 case TYPE_TAPE:
4478 case TYPE_MEDIUM_CHANGER:
4479 ncurrent++;
4480 break;
4481 case TYPE_ENCLOSURE:
4482 if (!this_device->external)
4483 hpsa_get_enclosure_info(h, lunaddrbytes,
4484 physdev_list, phys_dev_index,
4485 this_device);
4486 ncurrent++;
4487 break;
4488 case TYPE_RAID:
4489 /* Only present the Smartarray HBA as a RAID controller.
4490 * If it's a RAID controller other than the HBA itself
4491 * (an external RAID controller, MSA500 or similar)
4492 * don't present it.
4493 */
4494 if (!is_hba_lunid(lunaddrbytes))
4495 break;
4496 ncurrent++;
4497 break;
4498 default:
4499 break;
4500 }
4501 if (ncurrent >= HPSA_MAX_DEVICES)
4502 break;
4503 }
4504
4505 if (h->sas_host == NULL) {
4506 int rc = 0;
4507
4508 rc = hpsa_add_sas_host(h);
4509 if (rc) {
4510 dev_warn(&h->pdev->dev,
4511 "Could not add sas host %d\n", rc);
4512 goto out;
4513 }
4514 }
4515
4516 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4517 out:
4518 kfree(tmpdevice);
4519 for (i = 0; i < ndev_allocated; i++)
4520 kfree(currentsd[i]);
4521 kfree(currentsd);
4522 kfree(physdev_list);
4523 kfree(logdev_list);
4524 kfree(id_ctlr);
4525 kfree(id_phys);
4526 }
4527
4528 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4529 struct scatterlist *sg)
4530 {
4531 u64 addr64 = (u64) sg_dma_address(sg);
4532 unsigned int len = sg_dma_len(sg);
4533
4534 desc->Addr = cpu_to_le64(addr64);
4535 desc->Len = cpu_to_le32(len);
4536 desc->Ext = 0;
4537 }
4538
4539 /*
4540 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4541 * dma mapping and fills in the scatter gather entries of the
4542 * hpsa command, cp.
4543 */
4544 static int hpsa_scatter_gather(struct ctlr_info *h,
4545 struct CommandList *cp,
4546 struct scsi_cmnd *cmd)
4547 {
4548 struct scatterlist *sg;
4549 int use_sg, i, sg_limit, chained, last_sg;
4550 struct SGDescriptor *curr_sg;
4551
4552 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4553
4554 use_sg = scsi_dma_map(cmd);
4555 if (use_sg < 0)
4556 return use_sg;
4557
4558 if (!use_sg)
4559 goto sglist_finished;
4560
4561 /*
4562 * If the number of entries is greater than the max for a single list,
4563 * then we have a chained list; we will set up all but one entry in the
4564 * first list (the last entry is saved for link information);
4565 * otherwise, we don't have a chained list and we'll set up at each of
4566 * the entries in the one list.
4567 */
4568 curr_sg = cp->SG;
4569 chained = use_sg > h->max_cmd_sg_entries;
4570 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4571 last_sg = scsi_sg_count(cmd) - 1;
4572 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4573 hpsa_set_sg_descriptor(curr_sg, sg);
4574 curr_sg++;
4575 }
4576
4577 if (chained) {
4578 /*
4579 * Continue with the chained list. Set curr_sg to the chained
4580 * list. Modify the limit to the total count less the entries
4581 * we've already set up. Resume the scan at the list entry
4582 * where the previous loop left off.
4583 */
4584 curr_sg = h->cmd_sg_list[cp->cmdindex];
4585 sg_limit = use_sg - sg_limit;
4586 for_each_sg(sg, sg, sg_limit, i) {
4587 hpsa_set_sg_descriptor(curr_sg, sg);
4588 curr_sg++;
4589 }
4590 }
4591
4592 /* Back the pointer up to the last entry and mark it as "last". */
4593 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4594
4595 if (use_sg + chained > h->maxSG)
4596 h->maxSG = use_sg + chained;
4597
4598 if (chained) {
4599 cp->Header.SGList = h->max_cmd_sg_entries;
4600 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4601 if (hpsa_map_sg_chain_block(h, cp)) {
4602 scsi_dma_unmap(cmd);
4603 return -1;
4604 }
4605 return 0;
4606 }
4607
4608 sglist_finished:
4609
4610 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4611 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4612 return 0;
4613 }
4614
4615 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4616 u8 *cdb, int cdb_len,
4617 const char *func)
4618 {
4619 dev_warn(&h->pdev->dev,
4620 "%s: Blocking zero-length request: CDB:%*phN\n",
4621 func, cdb_len, cdb);
4622 }
4623
4624 #define IO_ACCEL_INELIGIBLE 1
4625 /* zero-length transfers trigger hardware errors. */
4626 static bool is_zero_length_transfer(u8 *cdb)
4627 {
4628 u32 block_cnt;
4629
4630 /* Block zero-length transfer sizes on certain commands. */
4631 switch (cdb[0]) {
4632 case READ_10:
4633 case WRITE_10:
4634 case VERIFY: /* 0x2F */
4635 case WRITE_VERIFY: /* 0x2E */
4636 block_cnt = get_unaligned_be16(&cdb[7]);
4637 break;
4638 case READ_12:
4639 case WRITE_12:
4640 case VERIFY_12: /* 0xAF */
4641 case WRITE_VERIFY_12: /* 0xAE */
4642 block_cnt = get_unaligned_be32(&cdb[6]);
4643 break;
4644 case READ_16:
4645 case WRITE_16:
4646 case VERIFY_16: /* 0x8F */
4647 block_cnt = get_unaligned_be32(&cdb[10]);
4648 break;
4649 default:
4650 return false;
4651 }
4652
4653 return block_cnt == 0;
4654 }
4655
4656 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4657 {
4658 int is_write = 0;
4659 u32 block;
4660 u32 block_cnt;
4661
4662 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4663 switch (cdb[0]) {
4664 case WRITE_6:
4665 case WRITE_12:
4666 is_write = 1;
4667 /* fall through */
4668 case READ_6:
4669 case READ_12:
4670 if (*cdb_len == 6) {
4671 block = (((cdb[1] & 0x1F) << 16) |
4672 (cdb[2] << 8) |
4673 cdb[3]);
4674 block_cnt = cdb[4];
4675 if (block_cnt == 0)
4676 block_cnt = 256;
4677 } else {
4678 BUG_ON(*cdb_len != 12);
4679 block = get_unaligned_be32(&cdb[2]);
4680 block_cnt = get_unaligned_be32(&cdb[6]);
4681 }
4682 if (block_cnt > 0xffff)
4683 return IO_ACCEL_INELIGIBLE;
4684
4685 cdb[0] = is_write ? WRITE_10 : READ_10;
4686 cdb[1] = 0;
4687 cdb[2] = (u8) (block >> 24);
4688 cdb[3] = (u8) (block >> 16);
4689 cdb[4] = (u8) (block >> 8);
4690 cdb[5] = (u8) (block);
4691 cdb[6] = 0;
4692 cdb[7] = (u8) (block_cnt >> 8);
4693 cdb[8] = (u8) (block_cnt);
4694 cdb[9] = 0;
4695 *cdb_len = 10;
4696 break;
4697 }
4698 return 0;
4699 }
4700
4701 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4702 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4703 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4704 {
4705 struct scsi_cmnd *cmd = c->scsi_cmd;
4706 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4707 unsigned int len;
4708 unsigned int total_len = 0;
4709 struct scatterlist *sg;
4710 u64 addr64;
4711 int use_sg, i;
4712 struct SGDescriptor *curr_sg;
4713 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4714
4715 /* TODO: implement chaining support */
4716 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4717 atomic_dec(&phys_disk->ioaccel_cmds_out);
4718 return IO_ACCEL_INELIGIBLE;
4719 }
4720
4721 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4722
4723 if (is_zero_length_transfer(cdb)) {
4724 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4725 atomic_dec(&phys_disk->ioaccel_cmds_out);
4726 return IO_ACCEL_INELIGIBLE;
4727 }
4728
4729 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4730 atomic_dec(&phys_disk->ioaccel_cmds_out);
4731 return IO_ACCEL_INELIGIBLE;
4732 }
4733
4734 c->cmd_type = CMD_IOACCEL1;
4735
4736 /* Adjust the DMA address to point to the accelerated command buffer */
4737 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4738 (c->cmdindex * sizeof(*cp));
4739 BUG_ON(c->busaddr & 0x0000007F);
4740
4741 use_sg = scsi_dma_map(cmd);
4742 if (use_sg < 0) {
4743 atomic_dec(&phys_disk->ioaccel_cmds_out);
4744 return use_sg;
4745 }
4746
4747 if (use_sg) {
4748 curr_sg = cp->SG;
4749 scsi_for_each_sg(cmd, sg, use_sg, i) {
4750 addr64 = (u64) sg_dma_address(sg);
4751 len = sg_dma_len(sg);
4752 total_len += len;
4753 curr_sg->Addr = cpu_to_le64(addr64);
4754 curr_sg->Len = cpu_to_le32(len);
4755 curr_sg->Ext = cpu_to_le32(0);
4756 curr_sg++;
4757 }
4758 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4759
4760 switch (cmd->sc_data_direction) {
4761 case DMA_TO_DEVICE:
4762 control |= IOACCEL1_CONTROL_DATA_OUT;
4763 break;
4764 case DMA_FROM_DEVICE:
4765 control |= IOACCEL1_CONTROL_DATA_IN;
4766 break;
4767 case DMA_NONE:
4768 control |= IOACCEL1_CONTROL_NODATAXFER;
4769 break;
4770 default:
4771 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4772 cmd->sc_data_direction);
4773 BUG();
4774 break;
4775 }
4776 } else {
4777 control |= IOACCEL1_CONTROL_NODATAXFER;
4778 }
4779
4780 c->Header.SGList = use_sg;
4781 /* Fill out the command structure to submit */
4782 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4783 cp->transfer_len = cpu_to_le32(total_len);
4784 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4785 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4786 cp->control = cpu_to_le32(control);
4787 memcpy(cp->CDB, cdb, cdb_len);
4788 memcpy(cp->CISS_LUN, scsi3addr, 8);
4789 /* Tag was already set at init time. */
4790 enqueue_cmd_and_start_io(h, c);
4791 return 0;
4792 }
4793
4794 /*
4795 * Queue a command directly to a device behind the controller using the
4796 * I/O accelerator path.
4797 */
4798 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4799 struct CommandList *c)
4800 {
4801 struct scsi_cmnd *cmd = c->scsi_cmd;
4802 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4803
4804 if (!dev)
4805 return -1;
4806
4807 c->phys_disk = dev;
4808
4809 if (dev->in_reset)
4810 return -1;
4811
4812 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4813 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4814 }
4815
4816 /*
4817 * Set encryption parameters for the ioaccel2 request
4818 */
4819 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4820 struct CommandList *c, struct io_accel2_cmd *cp)
4821 {
4822 struct scsi_cmnd *cmd = c->scsi_cmd;
4823 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4824 struct raid_map_data *map = &dev->raid_map;
4825 u64 first_block;
4826
4827 /* Are we doing encryption on this device */
4828 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4829 return;
4830 /* Set the data encryption key index. */
4831 cp->dekindex = map->dekindex;
4832
4833 /* Set the encryption enable flag, encoded into direction field. */
4834 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4835
4836 /* Set encryption tweak values based on logical block address
4837 * If block size is 512, tweak value is LBA.
4838 * For other block sizes, tweak is (LBA * block size)/ 512)
4839 */
4840 switch (cmd->cmnd[0]) {
4841 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4842 case READ_6:
4843 case WRITE_6:
4844 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4845 (cmd->cmnd[2] << 8) |
4846 cmd->cmnd[3]);
4847 break;
4848 case WRITE_10:
4849 case READ_10:
4850 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4851 case WRITE_12:
4852 case READ_12:
4853 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4854 break;
4855 case WRITE_16:
4856 case READ_16:
4857 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4858 break;
4859 default:
4860 dev_err(&h->pdev->dev,
4861 "ERROR: %s: size (0x%x) not supported for encryption\n",
4862 __func__, cmd->cmnd[0]);
4863 BUG();
4864 break;
4865 }
4866
4867 if (le32_to_cpu(map->volume_blk_size) != 512)
4868 first_block = first_block *
4869 le32_to_cpu(map->volume_blk_size)/512;
4870
4871 cp->tweak_lower = cpu_to_le32(first_block);
4872 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4873 }
4874
4875 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4876 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4877 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4878 {
4879 struct scsi_cmnd *cmd = c->scsi_cmd;
4880 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4881 struct ioaccel2_sg_element *curr_sg;
4882 int use_sg, i;
4883 struct scatterlist *sg;
4884 u64 addr64;
4885 u32 len;
4886 u32 total_len = 0;
4887
4888 if (!cmd->device)
4889 return -1;
4890
4891 if (!cmd->device->hostdata)
4892 return -1;
4893
4894 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4895
4896 if (is_zero_length_transfer(cdb)) {
4897 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4898 atomic_dec(&phys_disk->ioaccel_cmds_out);
4899 return IO_ACCEL_INELIGIBLE;
4900 }
4901
4902 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4903 atomic_dec(&phys_disk->ioaccel_cmds_out);
4904 return IO_ACCEL_INELIGIBLE;
4905 }
4906
4907 c->cmd_type = CMD_IOACCEL2;
4908 /* Adjust the DMA address to point to the accelerated command buffer */
4909 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4910 (c->cmdindex * sizeof(*cp));
4911 BUG_ON(c->busaddr & 0x0000007F);
4912
4913 memset(cp, 0, sizeof(*cp));
4914 cp->IU_type = IOACCEL2_IU_TYPE;
4915
4916 use_sg = scsi_dma_map(cmd);
4917 if (use_sg < 0) {
4918 atomic_dec(&phys_disk->ioaccel_cmds_out);
4919 return use_sg;
4920 }
4921
4922 if (use_sg) {
4923 curr_sg = cp->sg;
4924 if (use_sg > h->ioaccel_maxsg) {
4925 addr64 = le64_to_cpu(
4926 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4927 curr_sg->address = cpu_to_le64(addr64);
4928 curr_sg->length = 0;
4929 curr_sg->reserved[0] = 0;
4930 curr_sg->reserved[1] = 0;
4931 curr_sg->reserved[2] = 0;
4932 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4933
4934 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4935 }
4936 scsi_for_each_sg(cmd, sg, use_sg, i) {
4937 addr64 = (u64) sg_dma_address(sg);
4938 len = sg_dma_len(sg);
4939 total_len += len;
4940 curr_sg->address = cpu_to_le64(addr64);
4941 curr_sg->length = cpu_to_le32(len);
4942 curr_sg->reserved[0] = 0;
4943 curr_sg->reserved[1] = 0;
4944 curr_sg->reserved[2] = 0;
4945 curr_sg->chain_indicator = 0;
4946 curr_sg++;
4947 }
4948
4949 /*
4950 * Set the last s/g element bit
4951 */
4952 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4953
4954 switch (cmd->sc_data_direction) {
4955 case DMA_TO_DEVICE:
4956 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4957 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4958 break;
4959 case DMA_FROM_DEVICE:
4960 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4961 cp->direction |= IOACCEL2_DIR_DATA_IN;
4962 break;
4963 case DMA_NONE:
4964 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965 cp->direction |= IOACCEL2_DIR_NO_DATA;
4966 break;
4967 default:
4968 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4969 cmd->sc_data_direction);
4970 BUG();
4971 break;
4972 }
4973 } else {
4974 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975 cp->direction |= IOACCEL2_DIR_NO_DATA;
4976 }
4977
4978 /* Set encryption parameters, if necessary */
4979 set_encrypt_ioaccel2(h, c, cp);
4980
4981 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4982 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4983 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4984
4985 cp->data_len = cpu_to_le32(total_len);
4986 cp->err_ptr = cpu_to_le64(c->busaddr +
4987 offsetof(struct io_accel2_cmd, error_data));
4988 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4989
4990 /* fill in sg elements */
4991 if (use_sg > h->ioaccel_maxsg) {
4992 cp->sg_count = 1;
4993 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4994 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4995 atomic_dec(&phys_disk->ioaccel_cmds_out);
4996 scsi_dma_unmap(cmd);
4997 return -1;
4998 }
4999 } else
5000 cp->sg_count = (u8) use_sg;
5001
5002 if (phys_disk->in_reset) {
5003 cmd->result = DID_RESET << 16;
5004 return -1;
5005 }
5006
5007 enqueue_cmd_and_start_io(h, c);
5008 return 0;
5009 }
5010
5011 /*
5012 * Queue a command to the correct I/O accelerator path.
5013 */
5014 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5015 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5016 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5017 {
5018 if (!c->scsi_cmd->device)
5019 return -1;
5020
5021 if (!c->scsi_cmd->device->hostdata)
5022 return -1;
5023
5024 if (phys_disk->in_reset)
5025 return -1;
5026
5027 /* Try to honor the device's queue depth */
5028 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5029 phys_disk->queue_depth) {
5030 atomic_dec(&phys_disk->ioaccel_cmds_out);
5031 return IO_ACCEL_INELIGIBLE;
5032 }
5033 if (h->transMethod & CFGTBL_Trans_io_accel1)
5034 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5035 cdb, cdb_len, scsi3addr,
5036 phys_disk);
5037 else
5038 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5039 cdb, cdb_len, scsi3addr,
5040 phys_disk);
5041 }
5042
5043 static void raid_map_helper(struct raid_map_data *map,
5044 int offload_to_mirror, u32 *map_index, u32 *current_group)
5045 {
5046 if (offload_to_mirror == 0) {
5047 /* use physical disk in the first mirrored group. */
5048 *map_index %= le16_to_cpu(map->data_disks_per_row);
5049 return;
5050 }
5051 do {
5052 /* determine mirror group that *map_index indicates */
5053 *current_group = *map_index /
5054 le16_to_cpu(map->data_disks_per_row);
5055 if (offload_to_mirror == *current_group)
5056 continue;
5057 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5058 /* select map index from next group */
5059 *map_index += le16_to_cpu(map->data_disks_per_row);
5060 (*current_group)++;
5061 } else {
5062 /* select map index from first group */
5063 *map_index %= le16_to_cpu(map->data_disks_per_row);
5064 *current_group = 0;
5065 }
5066 } while (offload_to_mirror != *current_group);
5067 }
5068
5069 /*
5070 * Attempt to perform offload RAID mapping for a logical volume I/O.
5071 */
5072 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5073 struct CommandList *c)
5074 {
5075 struct scsi_cmnd *cmd = c->scsi_cmd;
5076 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5077 struct raid_map_data *map = &dev->raid_map;
5078 struct raid_map_disk_data *dd = &map->data[0];
5079 int is_write = 0;
5080 u32 map_index;
5081 u64 first_block, last_block;
5082 u32 block_cnt;
5083 u32 blocks_per_row;
5084 u64 first_row, last_row;
5085 u32 first_row_offset, last_row_offset;
5086 u32 first_column, last_column;
5087 u64 r0_first_row, r0_last_row;
5088 u32 r5or6_blocks_per_row;
5089 u64 r5or6_first_row, r5or6_last_row;
5090 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5091 u32 r5or6_first_column, r5or6_last_column;
5092 u32 total_disks_per_row;
5093 u32 stripesize;
5094 u32 first_group, last_group, current_group;
5095 u32 map_row;
5096 u32 disk_handle;
5097 u64 disk_block;
5098 u32 disk_block_cnt;
5099 u8 cdb[16];
5100 u8 cdb_len;
5101 u16 strip_size;
5102 #if BITS_PER_LONG == 32
5103 u64 tmpdiv;
5104 #endif
5105 int offload_to_mirror;
5106
5107 if (!dev)
5108 return -1;
5109
5110 if (dev->in_reset)
5111 return -1;
5112
5113 /* check for valid opcode, get LBA and block count */
5114 switch (cmd->cmnd[0]) {
5115 case WRITE_6:
5116 is_write = 1;
5117 /* fall through */
5118 case READ_6:
5119 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120 (cmd->cmnd[2] << 8) |
5121 cmd->cmnd[3]);
5122 block_cnt = cmd->cmnd[4];
5123 if (block_cnt == 0)
5124 block_cnt = 256;
5125 break;
5126 case WRITE_10:
5127 is_write = 1;
5128 /* fall through */
5129 case READ_10:
5130 first_block =
5131 (((u64) cmd->cmnd[2]) << 24) |
5132 (((u64) cmd->cmnd[3]) << 16) |
5133 (((u64) cmd->cmnd[4]) << 8) |
5134 cmd->cmnd[5];
5135 block_cnt =
5136 (((u32) cmd->cmnd[7]) << 8) |
5137 cmd->cmnd[8];
5138 break;
5139 case WRITE_12:
5140 is_write = 1;
5141 /* fall through */
5142 case READ_12:
5143 first_block =
5144 (((u64) cmd->cmnd[2]) << 24) |
5145 (((u64) cmd->cmnd[3]) << 16) |
5146 (((u64) cmd->cmnd[4]) << 8) |
5147 cmd->cmnd[5];
5148 block_cnt =
5149 (((u32) cmd->cmnd[6]) << 24) |
5150 (((u32) cmd->cmnd[7]) << 16) |
5151 (((u32) cmd->cmnd[8]) << 8) |
5152 cmd->cmnd[9];
5153 break;
5154 case WRITE_16:
5155 is_write = 1;
5156 /* fall through */
5157 case READ_16:
5158 first_block =
5159 (((u64) cmd->cmnd[2]) << 56) |
5160 (((u64) cmd->cmnd[3]) << 48) |
5161 (((u64) cmd->cmnd[4]) << 40) |
5162 (((u64) cmd->cmnd[5]) << 32) |
5163 (((u64) cmd->cmnd[6]) << 24) |
5164 (((u64) cmd->cmnd[7]) << 16) |
5165 (((u64) cmd->cmnd[8]) << 8) |
5166 cmd->cmnd[9];
5167 block_cnt =
5168 (((u32) cmd->cmnd[10]) << 24) |
5169 (((u32) cmd->cmnd[11]) << 16) |
5170 (((u32) cmd->cmnd[12]) << 8) |
5171 cmd->cmnd[13];
5172 break;
5173 default:
5174 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175 }
5176 last_block = first_block + block_cnt - 1;
5177
5178 /* check for write to non-RAID-0 */
5179 if (is_write && dev->raid_level != 0)
5180 return IO_ACCEL_INELIGIBLE;
5181
5182 /* check for invalid block or wraparound */
5183 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184 last_block < first_block)
5185 return IO_ACCEL_INELIGIBLE;
5186
5187 /* calculate stripe information for the request */
5188 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189 le16_to_cpu(map->strip_size);
5190 strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192 tmpdiv = first_block;
5193 (void) do_div(tmpdiv, blocks_per_row);
5194 first_row = tmpdiv;
5195 tmpdiv = last_block;
5196 (void) do_div(tmpdiv, blocks_per_row);
5197 last_row = tmpdiv;
5198 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200 tmpdiv = first_row_offset;
5201 (void) do_div(tmpdiv, strip_size);
5202 first_column = tmpdiv;
5203 tmpdiv = last_row_offset;
5204 (void) do_div(tmpdiv, strip_size);
5205 last_column = tmpdiv;
5206 #else
5207 first_row = first_block / blocks_per_row;
5208 last_row = last_block / blocks_per_row;
5209 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211 first_column = first_row_offset / strip_size;
5212 last_column = last_row_offset / strip_size;
5213 #endif
5214
5215 /* if this isn't a single row/column then give to the controller */
5216 if ((first_row != last_row) || (first_column != last_column))
5217 return IO_ACCEL_INELIGIBLE;
5218
5219 /* proceeding with driver mapping */
5220 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221 le16_to_cpu(map->metadata_disks_per_row);
5222 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223 le16_to_cpu(map->row_cnt);
5224 map_index = (map_row * total_disks_per_row) + first_column;
5225
5226 switch (dev->raid_level) {
5227 case HPSA_RAID_0:
5228 break; /* nothing special to do */
5229 case HPSA_RAID_1:
5230 /* Handles load balance across RAID 1 members.
5231 * (2-drive R1 and R10 with even # of drives.)
5232 * Appropriate for SSDs, not optimal for HDDs
5233 */
5234 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235 if (dev->offload_to_mirror)
5236 map_index += le16_to_cpu(map->data_disks_per_row);
5237 dev->offload_to_mirror = !dev->offload_to_mirror;
5238 break;
5239 case HPSA_RAID_ADM:
5240 /* Handles N-way mirrors (R1-ADM)
5241 * and R10 with # of drives divisible by 3.)
5242 */
5243 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244
5245 offload_to_mirror = dev->offload_to_mirror;
5246 raid_map_helper(map, offload_to_mirror,
5247 &map_index, &current_group);
5248 /* set mirror group to use next time */
5249 offload_to_mirror =
5250 (offload_to_mirror >=
5251 le16_to_cpu(map->layout_map_count) - 1)
5252 ? 0 : offload_to_mirror + 1;
5253 dev->offload_to_mirror = offload_to_mirror;
5254 /* Avoid direct use of dev->offload_to_mirror within this
5255 * function since multiple threads might simultaneously
5256 * increment it beyond the range of dev->layout_map_count -1.
5257 */
5258 break;
5259 case HPSA_RAID_5:
5260 case HPSA_RAID_6:
5261 if (le16_to_cpu(map->layout_map_count) <= 1)
5262 break;
5263
5264 /* Verify first and last block are in same RAID group */
5265 r5or6_blocks_per_row =
5266 le16_to_cpu(map->strip_size) *
5267 le16_to_cpu(map->data_disks_per_row);
5268 BUG_ON(r5or6_blocks_per_row == 0);
5269 stripesize = r5or6_blocks_per_row *
5270 le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272 tmpdiv = first_block;
5273 first_group = do_div(tmpdiv, stripesize);
5274 tmpdiv = first_group;
5275 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5276 first_group = tmpdiv;
5277 tmpdiv = last_block;
5278 last_group = do_div(tmpdiv, stripesize);
5279 tmpdiv = last_group;
5280 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5281 last_group = tmpdiv;
5282 #else
5283 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286 if (first_group != last_group)
5287 return IO_ACCEL_INELIGIBLE;
5288
5289 /* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291 tmpdiv = first_block;
5292 (void) do_div(tmpdiv, stripesize);
5293 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294 tmpdiv = last_block;
5295 (void) do_div(tmpdiv, stripesize);
5296 r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298 first_row = r5or6_first_row = r0_first_row =
5299 first_block / stripesize;
5300 r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302 if (r5or6_first_row != r5or6_last_row)
5303 return IO_ACCEL_INELIGIBLE;
5304
5305
5306 /* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308 tmpdiv = first_block;
5309 first_row_offset = do_div(tmpdiv, stripesize);
5310 tmpdiv = first_row_offset;
5311 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312 r5or6_first_row_offset = first_row_offset;
5313 tmpdiv = last_block;
5314 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315 tmpdiv = r5or6_last_row_offset;
5316 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317 tmpdiv = r5or6_first_row_offset;
5318 (void) do_div(tmpdiv, map->strip_size);
5319 first_column = r5or6_first_column = tmpdiv;
5320 tmpdiv = r5or6_last_row_offset;
5321 (void) do_div(tmpdiv, map->strip_size);
5322 r5or6_last_column = tmpdiv;
5323 #else
5324 first_row_offset = r5or6_first_row_offset =
5325 (u32)((first_block % stripesize) %
5326 r5or6_blocks_per_row);
5327
5328 r5or6_last_row_offset =
5329 (u32)((last_block % stripesize) %
5330 r5or6_blocks_per_row);
5331
5332 first_column = r5or6_first_column =
5333 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334 r5or6_last_column =
5335 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337 if (r5or6_first_column != r5or6_last_column)
5338 return IO_ACCEL_INELIGIBLE;
5339
5340 /* Request is eligible */
5341 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342 le16_to_cpu(map->row_cnt);
5343
5344 map_index = (first_group *
5345 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346 (map_row * total_disks_per_row) + first_column;
5347 break;
5348 default:
5349 return IO_ACCEL_INELIGIBLE;
5350 }
5351
5352 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353 return IO_ACCEL_INELIGIBLE;
5354
5355 c->phys_disk = dev->phys_disk[map_index];
5356 if (!c->phys_disk)
5357 return IO_ACCEL_INELIGIBLE;
5358
5359 disk_handle = dd[map_index].ioaccel_handle;
5360 disk_block = le64_to_cpu(map->disk_starting_blk) +
5361 first_row * le16_to_cpu(map->strip_size) +
5362 (first_row_offset - first_column *
5363 le16_to_cpu(map->strip_size));
5364 disk_block_cnt = block_cnt;
5365
5366 /* handle differing logical/physical block sizes */
5367 if (map->phys_blk_shift) {
5368 disk_block <<= map->phys_blk_shift;
5369 disk_block_cnt <<= map->phys_blk_shift;
5370 }
5371 BUG_ON(disk_block_cnt > 0xffff);
5372
5373 /* build the new CDB for the physical disk I/O */
5374 if (disk_block > 0xffffffff) {
5375 cdb[0] = is_write ? WRITE_16 : READ_16;
5376 cdb[1] = 0;
5377 cdb[2] = (u8) (disk_block >> 56);
5378 cdb[3] = (u8) (disk_block >> 48);
5379 cdb[4] = (u8) (disk_block >> 40);
5380 cdb[5] = (u8) (disk_block >> 32);
5381 cdb[6] = (u8) (disk_block >> 24);
5382 cdb[7] = (u8) (disk_block >> 16);
5383 cdb[8] = (u8) (disk_block >> 8);
5384 cdb[9] = (u8) (disk_block);
5385 cdb[10] = (u8) (disk_block_cnt >> 24);
5386 cdb[11] = (u8) (disk_block_cnt >> 16);
5387 cdb[12] = (u8) (disk_block_cnt >> 8);
5388 cdb[13] = (u8) (disk_block_cnt);
5389 cdb[14] = 0;
5390 cdb[15] = 0;
5391 cdb_len = 16;
5392 } else {
5393 cdb[0] = is_write ? WRITE_10 : READ_10;
5394 cdb[1] = 0;
5395 cdb[2] = (u8) (disk_block >> 24);
5396 cdb[3] = (u8) (disk_block >> 16);
5397 cdb[4] = (u8) (disk_block >> 8);
5398 cdb[5] = (u8) (disk_block);
5399 cdb[6] = 0;
5400 cdb[7] = (u8) (disk_block_cnt >> 8);
5401 cdb[8] = (u8) (disk_block_cnt);
5402 cdb[9] = 0;
5403 cdb_len = 10;
5404 }
5405 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406 dev->scsi3addr,
5407 dev->phys_disk[map_index]);
5408 }
5409
5410 /*
5411 * Submit commands down the "normal" RAID stack path
5412 * All callers to hpsa_ciss_submit must check lockup_detected
5413 * beforehand, before (opt.) and after calling cmd_alloc
5414 */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416 struct CommandList *c, struct scsi_cmnd *cmd,
5417 struct hpsa_scsi_dev_t *dev)
5418 {
5419 cmd->host_scribble = (unsigned char *) c;
5420 c->cmd_type = CMD_SCSI;
5421 c->scsi_cmd = cmd;
5422 c->Header.ReplyQueue = 0; /* unused in simple mode */
5423 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5424 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425
5426 /* Fill in the request block... */
5427
5428 c->Request.Timeout = 0;
5429 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430 c->Request.CDBLen = cmd->cmd_len;
5431 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432 switch (cmd->sc_data_direction) {
5433 case DMA_TO_DEVICE:
5434 c->Request.type_attr_dir =
5435 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436 break;
5437 case DMA_FROM_DEVICE:
5438 c->Request.type_attr_dir =
5439 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440 break;
5441 case DMA_NONE:
5442 c->Request.type_attr_dir =
5443 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444 break;
5445 case DMA_BIDIRECTIONAL:
5446 /* This can happen if a buggy application does a scsi passthru
5447 * and sets both inlen and outlen to non-zero. ( see
5448 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449 */
5450
5451 c->Request.type_attr_dir =
5452 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453 /* This is technically wrong, and hpsa controllers should
5454 * reject it with CMD_INVALID, which is the most correct
5455 * response, but non-fibre backends appear to let it
5456 * slide by, and give the same results as if this field
5457 * were set correctly. Either way is acceptable for
5458 * our purposes here.
5459 */
5460
5461 break;
5462
5463 default:
5464 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465 cmd->sc_data_direction);
5466 BUG();
5467 break;
5468 }
5469
5470 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471 hpsa_cmd_resolve_and_free(h, c);
5472 return SCSI_MLQUEUE_HOST_BUSY;
5473 }
5474
5475 if (dev->in_reset) {
5476 hpsa_cmd_resolve_and_free(h, c);
5477 return SCSI_MLQUEUE_HOST_BUSY;
5478 }
5479
5480 c->device = dev;
5481
5482 enqueue_cmd_and_start_io(h, c);
5483 /* the cmd'll come back via intr handler in complete_scsi_command() */
5484 return 0;
5485 }
5486
5487 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5488 struct CommandList *c)
5489 {
5490 dma_addr_t cmd_dma_handle, err_dma_handle;
5491
5492 /* Zero out all of commandlist except the last field, refcount */
5493 memset(c, 0, offsetof(struct CommandList, refcount));
5494 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5495 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5496 c->err_info = h->errinfo_pool + index;
5497 memset(c->err_info, 0, sizeof(*c->err_info));
5498 err_dma_handle = h->errinfo_pool_dhandle
5499 + index * sizeof(*c->err_info);
5500 c->cmdindex = index;
5501 c->busaddr = (u32) cmd_dma_handle;
5502 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5503 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5504 c->h = h;
5505 c->scsi_cmd = SCSI_CMD_IDLE;
5506 }
5507
5508 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5509 {
5510 int i;
5511
5512 for (i = 0; i < h->nr_cmds; i++) {
5513 struct CommandList *c = h->cmd_pool + i;
5514
5515 hpsa_cmd_init(h, i, c);
5516 atomic_set(&c->refcount, 0);
5517 }
5518 }
5519
5520 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5521 struct CommandList *c)
5522 {
5523 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5524
5525 BUG_ON(c->cmdindex != index);
5526
5527 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5528 memset(c->err_info, 0, sizeof(*c->err_info));
5529 c->busaddr = (u32) cmd_dma_handle;
5530 }
5531
5532 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5533 struct CommandList *c, struct scsi_cmnd *cmd)
5534 {
5535 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5536 int rc = IO_ACCEL_INELIGIBLE;
5537
5538 if (!dev)
5539 return SCSI_MLQUEUE_HOST_BUSY;
5540
5541 if (dev->in_reset)
5542 return SCSI_MLQUEUE_HOST_BUSY;
5543
5544 if (hpsa_simple_mode)
5545 return IO_ACCEL_INELIGIBLE;
5546
5547 cmd->host_scribble = (unsigned char *) c;
5548
5549 if (dev->offload_enabled) {
5550 hpsa_cmd_init(h, c->cmdindex, c);
5551 c->cmd_type = CMD_SCSI;
5552 c->scsi_cmd = cmd;
5553 c->device = dev;
5554 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5555 if (rc < 0) /* scsi_dma_map failed. */
5556 rc = SCSI_MLQUEUE_HOST_BUSY;
5557 } else if (dev->hba_ioaccel_enabled) {
5558 hpsa_cmd_init(h, c->cmdindex, c);
5559 c->cmd_type = CMD_SCSI;
5560 c->scsi_cmd = cmd;
5561 c->device = dev;
5562 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5563 if (rc < 0) /* scsi_dma_map failed. */
5564 rc = SCSI_MLQUEUE_HOST_BUSY;
5565 }
5566 return rc;
5567 }
5568
5569 static void hpsa_command_resubmit_worker(struct work_struct *work)
5570 {
5571 struct scsi_cmnd *cmd;
5572 struct hpsa_scsi_dev_t *dev;
5573 struct CommandList *c = container_of(work, struct CommandList, work);
5574
5575 cmd = c->scsi_cmd;
5576 dev = cmd->device->hostdata;
5577 if (!dev) {
5578 cmd->result = DID_NO_CONNECT << 16;
5579 return hpsa_cmd_free_and_done(c->h, c, cmd);
5580 }
5581
5582 if (dev->in_reset) {
5583 cmd->result = DID_RESET << 16;
5584 return hpsa_cmd_free_and_done(c->h, c, cmd);
5585 }
5586
5587 if (c->cmd_type == CMD_IOACCEL2) {
5588 struct ctlr_info *h = c->h;
5589 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5590 int rc;
5591
5592 if (c2->error_data.serv_response ==
5593 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5594 rc = hpsa_ioaccel_submit(h, c, cmd);
5595 if (rc == 0)
5596 return;
5597 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5598 /*
5599 * If we get here, it means dma mapping failed.
5600 * Try again via scsi mid layer, which will
5601 * then get SCSI_MLQUEUE_HOST_BUSY.
5602 */
5603 cmd->result = DID_IMM_RETRY << 16;
5604 return hpsa_cmd_free_and_done(h, c, cmd);
5605 }
5606 /* else, fall thru and resubmit down CISS path */
5607 }
5608 }
5609 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5610 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5611 /*
5612 * If we get here, it means dma mapping failed. Try
5613 * again via scsi mid layer, which will then get
5614 * SCSI_MLQUEUE_HOST_BUSY.
5615 *
5616 * hpsa_ciss_submit will have already freed c
5617 * if it encountered a dma mapping failure.
5618 */
5619 cmd->result = DID_IMM_RETRY << 16;
5620 cmd->scsi_done(cmd);
5621 }
5622 }
5623
5624 /* Running in struct Scsi_Host->host_lock less mode */
5625 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5626 {
5627 struct ctlr_info *h;
5628 struct hpsa_scsi_dev_t *dev;
5629 struct CommandList *c;
5630 int rc = 0;
5631
5632 /* Get the ptr to our adapter structure out of cmd->host. */
5633 h = sdev_to_hba(cmd->device);
5634
5635 BUG_ON(cmd->request->tag < 0);
5636
5637 dev = cmd->device->hostdata;
5638 if (!dev) {
5639 cmd->result = DID_NO_CONNECT << 16;
5640 cmd->scsi_done(cmd);
5641 return 0;
5642 }
5643
5644 if (dev->removed) {
5645 cmd->result = DID_NO_CONNECT << 16;
5646 cmd->scsi_done(cmd);
5647 return 0;
5648 }
5649
5650 if (unlikely(lockup_detected(h))) {
5651 cmd->result = DID_NO_CONNECT << 16;
5652 cmd->scsi_done(cmd);
5653 return 0;
5654 }
5655
5656 if (dev->in_reset)
5657 return SCSI_MLQUEUE_DEVICE_BUSY;
5658
5659 c = cmd_tagged_alloc(h, cmd);
5660 if (c == NULL)
5661 return SCSI_MLQUEUE_DEVICE_BUSY;
5662
5663 /*
5664 * This is necessary because the SML doesn't zero out this field during
5665 * error recovery.
5666 */
5667 cmd->result = 0;
5668
5669 /*
5670 * Call alternate submit routine for I/O accelerated commands.
5671 * Retries always go down the normal I/O path.
5672 */
5673 if (likely(cmd->retries == 0 &&
5674 !blk_rq_is_passthrough(cmd->request) &&
5675 h->acciopath_status)) {
5676 rc = hpsa_ioaccel_submit(h, c, cmd);
5677 if (rc == 0)
5678 return 0;
5679 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5680 hpsa_cmd_resolve_and_free(h, c);
5681 return SCSI_MLQUEUE_HOST_BUSY;
5682 }
5683 }
5684 return hpsa_ciss_submit(h, c, cmd, dev);
5685 }
5686
5687 static void hpsa_scan_complete(struct ctlr_info *h)
5688 {
5689 unsigned long flags;
5690
5691 spin_lock_irqsave(&h->scan_lock, flags);
5692 h->scan_finished = 1;
5693 wake_up(&h->scan_wait_queue);
5694 spin_unlock_irqrestore(&h->scan_lock, flags);
5695 }
5696
5697 static void hpsa_scan_start(struct Scsi_Host *sh)
5698 {
5699 struct ctlr_info *h = shost_to_hba(sh);
5700 unsigned long flags;
5701
5702 /*
5703 * Don't let rescans be initiated on a controller known to be locked
5704 * up. If the controller locks up *during* a rescan, that thread is
5705 * probably hosed, but at least we can prevent new rescan threads from
5706 * piling up on a locked up controller.
5707 */
5708 if (unlikely(lockup_detected(h)))
5709 return hpsa_scan_complete(h);
5710
5711 /*
5712 * If a scan is already waiting to run, no need to add another
5713 */
5714 spin_lock_irqsave(&h->scan_lock, flags);
5715 if (h->scan_waiting) {
5716 spin_unlock_irqrestore(&h->scan_lock, flags);
5717 return;
5718 }
5719
5720 spin_unlock_irqrestore(&h->scan_lock, flags);
5721
5722 /* wait until any scan already in progress is finished. */
5723 while (1) {
5724 spin_lock_irqsave(&h->scan_lock, flags);
5725 if (h->scan_finished)
5726 break;
5727 h->scan_waiting = 1;
5728 spin_unlock_irqrestore(&h->scan_lock, flags);
5729 wait_event(h->scan_wait_queue, h->scan_finished);
5730 /* Note: We don't need to worry about a race between this
5731 * thread and driver unload because the midlayer will
5732 * have incremented the reference count, so unload won't
5733 * happen if we're in here.
5734 */
5735 }
5736 h->scan_finished = 0; /* mark scan as in progress */
5737 h->scan_waiting = 0;
5738 spin_unlock_irqrestore(&h->scan_lock, flags);
5739
5740 if (unlikely(lockup_detected(h)))
5741 return hpsa_scan_complete(h);
5742
5743 /*
5744 * Do the scan after a reset completion
5745 */
5746 spin_lock_irqsave(&h->reset_lock, flags);
5747 if (h->reset_in_progress) {
5748 h->drv_req_rescan = 1;
5749 spin_unlock_irqrestore(&h->reset_lock, flags);
5750 hpsa_scan_complete(h);
5751 return;
5752 }
5753 spin_unlock_irqrestore(&h->reset_lock, flags);
5754
5755 hpsa_update_scsi_devices(h);
5756
5757 hpsa_scan_complete(h);
5758 }
5759
5760 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5761 {
5762 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5763
5764 if (!logical_drive)
5765 return -ENODEV;
5766
5767 if (qdepth < 1)
5768 qdepth = 1;
5769 else if (qdepth > logical_drive->queue_depth)
5770 qdepth = logical_drive->queue_depth;
5771
5772 return scsi_change_queue_depth(sdev, qdepth);
5773 }
5774
5775 static int hpsa_scan_finished(struct Scsi_Host *sh,
5776 unsigned long elapsed_time)
5777 {
5778 struct ctlr_info *h = shost_to_hba(sh);
5779 unsigned long flags;
5780 int finished;
5781
5782 spin_lock_irqsave(&h->scan_lock, flags);
5783 finished = h->scan_finished;
5784 spin_unlock_irqrestore(&h->scan_lock, flags);
5785 return finished;
5786 }
5787
5788 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5789 {
5790 struct Scsi_Host *sh;
5791
5792 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5793 if (sh == NULL) {
5794 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5795 return -ENOMEM;
5796 }
5797
5798 sh->io_port = 0;
5799 sh->n_io_port = 0;
5800 sh->this_id = -1;
5801 sh->max_channel = 3;
5802 sh->max_cmd_len = MAX_COMMAND_SIZE;
5803 sh->max_lun = HPSA_MAX_LUN;
5804 sh->max_id = HPSA_MAX_LUN;
5805 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5806 sh->cmd_per_lun = sh->can_queue;
5807 sh->sg_tablesize = h->maxsgentries;
5808 sh->transportt = hpsa_sas_transport_template;
5809 sh->hostdata[0] = (unsigned long) h;
5810 sh->irq = pci_irq_vector(h->pdev, 0);
5811 sh->unique_id = sh->irq;
5812
5813 h->scsi_host = sh;
5814 return 0;
5815 }
5816
5817 static int hpsa_scsi_add_host(struct ctlr_info *h)
5818 {
5819 int rv;
5820
5821 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5822 if (rv) {
5823 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5824 return rv;
5825 }
5826 scsi_scan_host(h->scsi_host);
5827 return 0;
5828 }
5829
5830 /*
5831 * The block layer has already gone to the trouble of picking out a unique,
5832 * small-integer tag for this request. We use an offset from that value as
5833 * an index to select our command block. (The offset allows us to reserve the
5834 * low-numbered entries for our own uses.)
5835 */
5836 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5837 {
5838 int idx = scmd->request->tag;
5839
5840 if (idx < 0)
5841 return idx;
5842
5843 /* Offset to leave space for internal cmds. */
5844 return idx += HPSA_NRESERVED_CMDS;
5845 }
5846
5847 /*
5848 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5849 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5850 */
5851 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5852 struct CommandList *c, unsigned char lunaddr[],
5853 int reply_queue)
5854 {
5855 int rc;
5856
5857 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5858 (void) fill_cmd(c, TEST_UNIT_READY, h,
5859 NULL, 0, 0, lunaddr, TYPE_CMD);
5860 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5861 if (rc)
5862 return rc;
5863 /* no unmap needed here because no data xfer. */
5864
5865 /* Check if the unit is already ready. */
5866 if (c->err_info->CommandStatus == CMD_SUCCESS)
5867 return 0;
5868
5869 /*
5870 * The first command sent after reset will receive "unit attention" to
5871 * indicate that the LUN has been reset...this is actually what we're
5872 * looking for (but, success is good too).
5873 */
5874 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5875 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5876 (c->err_info->SenseInfo[2] == NO_SENSE ||
5877 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5878 return 0;
5879
5880 return 1;
5881 }
5882
5883 /*
5884 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5885 * returns zero when the unit is ready, and non-zero when giving up.
5886 */
5887 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5888 struct CommandList *c,
5889 unsigned char lunaddr[], int reply_queue)
5890 {
5891 int rc;
5892 int count = 0;
5893 int waittime = 1; /* seconds */
5894
5895 /* Send test unit ready until device ready, or give up. */
5896 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5897
5898 /*
5899 * Wait for a bit. do this first, because if we send
5900 * the TUR right away, the reset will just abort it.
5901 */
5902 msleep(1000 * waittime);
5903
5904 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5905 if (!rc)
5906 break;
5907
5908 /* Increase wait time with each try, up to a point. */
5909 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5910 waittime *= 2;
5911
5912 dev_warn(&h->pdev->dev,
5913 "waiting %d secs for device to become ready.\n",
5914 waittime);
5915 }
5916
5917 return rc;
5918 }
5919
5920 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5921 unsigned char lunaddr[],
5922 int reply_queue)
5923 {
5924 int first_queue;
5925 int last_queue;
5926 int rq;
5927 int rc = 0;
5928 struct CommandList *c;
5929
5930 c = cmd_alloc(h);
5931
5932 /*
5933 * If no specific reply queue was requested, then send the TUR
5934 * repeatedly, requesting a reply on each reply queue; otherwise execute
5935 * the loop exactly once using only the specified queue.
5936 */
5937 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5938 first_queue = 0;
5939 last_queue = h->nreply_queues - 1;
5940 } else {
5941 first_queue = reply_queue;
5942 last_queue = reply_queue;
5943 }
5944
5945 for (rq = first_queue; rq <= last_queue; rq++) {
5946 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5947 if (rc)
5948 break;
5949 }
5950
5951 if (rc)
5952 dev_warn(&h->pdev->dev, "giving up on device.\n");
5953 else
5954 dev_warn(&h->pdev->dev, "device is ready.\n");
5955
5956 cmd_free(h, c);
5957 return rc;
5958 }
5959
5960 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5961 * complaining. Doing a host- or bus-reset can't do anything good here.
5962 */
5963 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5964 {
5965 int rc = SUCCESS;
5966 int i;
5967 struct ctlr_info *h;
5968 struct hpsa_scsi_dev_t *dev = NULL;
5969 u8 reset_type;
5970 char msg[48];
5971 unsigned long flags;
5972
5973 /* find the controller to which the command to be aborted was sent */
5974 h = sdev_to_hba(scsicmd->device);
5975 if (h == NULL) /* paranoia */
5976 return FAILED;
5977
5978 spin_lock_irqsave(&h->reset_lock, flags);
5979 h->reset_in_progress = 1;
5980 spin_unlock_irqrestore(&h->reset_lock, flags);
5981
5982 if (lockup_detected(h)) {
5983 rc = FAILED;
5984 goto return_reset_status;
5985 }
5986
5987 dev = scsicmd->device->hostdata;
5988 if (!dev) {
5989 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5990 rc = FAILED;
5991 goto return_reset_status;
5992 }
5993
5994 if (dev->devtype == TYPE_ENCLOSURE) {
5995 rc = SUCCESS;
5996 goto return_reset_status;
5997 }
5998
5999 /* if controller locked up, we can guarantee command won't complete */
6000 if (lockup_detected(h)) {
6001 snprintf(msg, sizeof(msg),
6002 "cmd %d RESET FAILED, lockup detected",
6003 hpsa_get_cmd_index(scsicmd));
6004 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6005 rc = FAILED;
6006 goto return_reset_status;
6007 }
6008
6009 /* this reset request might be the result of a lockup; check */
6010 if (detect_controller_lockup(h)) {
6011 snprintf(msg, sizeof(msg),
6012 "cmd %d RESET FAILED, new lockup detected",
6013 hpsa_get_cmd_index(scsicmd));
6014 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6015 rc = FAILED;
6016 goto return_reset_status;
6017 }
6018
6019 /* Do not attempt on controller */
6020 if (is_hba_lunid(dev->scsi3addr)) {
6021 rc = SUCCESS;
6022 goto return_reset_status;
6023 }
6024
6025 if (is_logical_dev_addr_mode(dev->scsi3addr))
6026 reset_type = HPSA_DEVICE_RESET_MSG;
6027 else
6028 reset_type = HPSA_PHYS_TARGET_RESET;
6029
6030 sprintf(msg, "resetting %s",
6031 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6032 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6033
6034 /*
6035 * wait to see if any commands will complete before sending reset
6036 */
6037 dev->in_reset = true; /* block any new cmds from OS for this device */
6038 for (i = 0; i < 10; i++) {
6039 if (atomic_read(&dev->commands_outstanding) > 0)
6040 msleep(1000);
6041 else
6042 break;
6043 }
6044
6045 /* send a reset to the SCSI LUN which the command was sent to */
6046 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6047 if (rc == 0)
6048 rc = SUCCESS;
6049 else
6050 rc = FAILED;
6051
6052 sprintf(msg, "reset %s %s",
6053 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6054 rc == SUCCESS ? "completed successfully" : "failed");
6055 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6056
6057 return_reset_status:
6058 spin_lock_irqsave(&h->reset_lock, flags);
6059 h->reset_in_progress = 0;
6060 if (dev)
6061 dev->in_reset = false;
6062 spin_unlock_irqrestore(&h->reset_lock, flags);
6063 return rc;
6064 }
6065
6066 /*
6067 * For operations with an associated SCSI command, a command block is allocated
6068 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6069 * block request tag as an index into a table of entries. cmd_tagged_free() is
6070 * the complement, although cmd_free() may be called instead.
6071 */
6072 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6073 struct scsi_cmnd *scmd)
6074 {
6075 int idx = hpsa_get_cmd_index(scmd);
6076 struct CommandList *c = h->cmd_pool + idx;
6077
6078 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6079 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6080 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6081 /* The index value comes from the block layer, so if it's out of
6082 * bounds, it's probably not our bug.
6083 */
6084 BUG();
6085 }
6086
6087 if (unlikely(!hpsa_is_cmd_idle(c))) {
6088 /*
6089 * We expect that the SCSI layer will hand us a unique tag
6090 * value. Thus, there should never be a collision here between
6091 * two requests...because if the selected command isn't idle
6092 * then someone is going to be very disappointed.
6093 */
6094 if (idx != h->last_collision_tag) { /* Print once per tag */
6095 dev_warn(&h->pdev->dev,
6096 "%s: tag collision (tag=%d)\n", __func__, idx);
6097 if (scmd)
6098 scsi_print_command(scmd);
6099 h->last_collision_tag = idx;
6100 }
6101 return NULL;
6102 }
6103
6104 atomic_inc(&c->refcount);
6105
6106 hpsa_cmd_partial_init(h, idx, c);
6107 return c;
6108 }
6109
6110 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6111 {
6112 /*
6113 * Release our reference to the block. We don't need to do anything
6114 * else to free it, because it is accessed by index.
6115 */
6116 (void)atomic_dec(&c->refcount);
6117 }
6118
6119 /*
6120 * For operations that cannot sleep, a command block is allocated at init,
6121 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6122 * which ones are free or in use. Lock must be held when calling this.
6123 * cmd_free() is the complement.
6124 * This function never gives up and returns NULL. If it hangs,
6125 * another thread must call cmd_free() to free some tags.
6126 */
6127
6128 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6129 {
6130 struct CommandList *c;
6131 int refcount, i;
6132 int offset = 0;
6133
6134 /*
6135 * There is some *extremely* small but non-zero chance that that
6136 * multiple threads could get in here, and one thread could
6137 * be scanning through the list of bits looking for a free
6138 * one, but the free ones are always behind him, and other
6139 * threads sneak in behind him and eat them before he can
6140 * get to them, so that while there is always a free one, a
6141 * very unlucky thread might be starved anyway, never able to
6142 * beat the other threads. In reality, this happens so
6143 * infrequently as to be indistinguishable from never.
6144 *
6145 * Note that we start allocating commands before the SCSI host structure
6146 * is initialized. Since the search starts at bit zero, this
6147 * all works, since we have at least one command structure available;
6148 * however, it means that the structures with the low indexes have to be
6149 * reserved for driver-initiated requests, while requests from the block
6150 * layer will use the higher indexes.
6151 */
6152
6153 for (;;) {
6154 i = find_next_zero_bit(h->cmd_pool_bits,
6155 HPSA_NRESERVED_CMDS,
6156 offset);
6157 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6158 offset = 0;
6159 continue;
6160 }
6161 c = h->cmd_pool + i;
6162 refcount = atomic_inc_return(&c->refcount);
6163 if (unlikely(refcount > 1)) {
6164 cmd_free(h, c); /* already in use */
6165 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6166 continue;
6167 }
6168 set_bit(i & (BITS_PER_LONG - 1),
6169 h->cmd_pool_bits + (i / BITS_PER_LONG));
6170 break; /* it's ours now. */
6171 }
6172 hpsa_cmd_partial_init(h, i, c);
6173 c->device = NULL;
6174 return c;
6175 }
6176
6177 /*
6178 * This is the complementary operation to cmd_alloc(). Note, however, in some
6179 * corner cases it may also be used to free blocks allocated by
6180 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6181 * the clear-bit is harmless.
6182 */
6183 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6184 {
6185 if (atomic_dec_and_test(&c->refcount)) {
6186 int i;
6187
6188 i = c - h->cmd_pool;
6189 clear_bit(i & (BITS_PER_LONG - 1),
6190 h->cmd_pool_bits + (i / BITS_PER_LONG));
6191 }
6192 }
6193
6194 #ifdef CONFIG_COMPAT
6195
6196 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6197 void __user *arg)
6198 {
6199 IOCTL32_Command_struct __user *arg32 =
6200 (IOCTL32_Command_struct __user *) arg;
6201 IOCTL_Command_struct arg64;
6202 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6203 int err;
6204 u32 cp;
6205
6206 memset(&arg64, 0, sizeof(arg64));
6207 err = 0;
6208 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6209 sizeof(arg64.LUN_info));
6210 err |= copy_from_user(&arg64.Request, &arg32->Request,
6211 sizeof(arg64.Request));
6212 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6213 sizeof(arg64.error_info));
6214 err |= get_user(arg64.buf_size, &arg32->buf_size);
6215 err |= get_user(cp, &arg32->buf);
6216 arg64.buf = compat_ptr(cp);
6217 err |= copy_to_user(p, &arg64, sizeof(arg64));
6218
6219 if (err)
6220 return -EFAULT;
6221
6222 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6223 if (err)
6224 return err;
6225 err |= copy_in_user(&arg32->error_info, &p->error_info,
6226 sizeof(arg32->error_info));
6227 if (err)
6228 return -EFAULT;
6229 return err;
6230 }
6231
6232 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6233 unsigned int cmd, void __user *arg)
6234 {
6235 BIG_IOCTL32_Command_struct __user *arg32 =
6236 (BIG_IOCTL32_Command_struct __user *) arg;
6237 BIG_IOCTL_Command_struct arg64;
6238 BIG_IOCTL_Command_struct __user *p =
6239 compat_alloc_user_space(sizeof(arg64));
6240 int err;
6241 u32 cp;
6242
6243 memset(&arg64, 0, sizeof(arg64));
6244 err = 0;
6245 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6246 sizeof(arg64.LUN_info));
6247 err |= copy_from_user(&arg64.Request, &arg32->Request,
6248 sizeof(arg64.Request));
6249 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6250 sizeof(arg64.error_info));
6251 err |= get_user(arg64.buf_size, &arg32->buf_size);
6252 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6253 err |= get_user(cp, &arg32->buf);
6254 arg64.buf = compat_ptr(cp);
6255 err |= copy_to_user(p, &arg64, sizeof(arg64));
6256
6257 if (err)
6258 return -EFAULT;
6259
6260 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6261 if (err)
6262 return err;
6263 err |= copy_in_user(&arg32->error_info, &p->error_info,
6264 sizeof(arg32->error_info));
6265 if (err)
6266 return -EFAULT;
6267 return err;
6268 }
6269
6270 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6271 void __user *arg)
6272 {
6273 switch (cmd) {
6274 case CCISS_GETPCIINFO:
6275 case CCISS_GETINTINFO:
6276 case CCISS_SETINTINFO:
6277 case CCISS_GETNODENAME:
6278 case CCISS_SETNODENAME:
6279 case CCISS_GETHEARTBEAT:
6280 case CCISS_GETBUSTYPES:
6281 case CCISS_GETFIRMVER:
6282 case CCISS_GETDRIVVER:
6283 case CCISS_REVALIDVOLS:
6284 case CCISS_DEREGDISK:
6285 case CCISS_REGNEWDISK:
6286 case CCISS_REGNEWD:
6287 case CCISS_RESCANDISK:
6288 case CCISS_GETLUNINFO:
6289 return hpsa_ioctl(dev, cmd, arg);
6290
6291 case CCISS_PASSTHRU32:
6292 return hpsa_ioctl32_passthru(dev, cmd, arg);
6293 case CCISS_BIG_PASSTHRU32:
6294 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6295
6296 default:
6297 return -ENOIOCTLCMD;
6298 }
6299 }
6300 #endif
6301
6302 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6303 {
6304 struct hpsa_pci_info pciinfo;
6305
6306 if (!argp)
6307 return -EINVAL;
6308 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6309 pciinfo.bus = h->pdev->bus->number;
6310 pciinfo.dev_fn = h->pdev->devfn;
6311 pciinfo.board_id = h->board_id;
6312 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6313 return -EFAULT;
6314 return 0;
6315 }
6316
6317 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6318 {
6319 DriverVer_type DriverVer;
6320 unsigned char vmaj, vmin, vsubmin;
6321 int rc;
6322
6323 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6324 &vmaj, &vmin, &vsubmin);
6325 if (rc != 3) {
6326 dev_info(&h->pdev->dev, "driver version string '%s' "
6327 "unrecognized.", HPSA_DRIVER_VERSION);
6328 vmaj = 0;
6329 vmin = 0;
6330 vsubmin = 0;
6331 }
6332 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6333 if (!argp)
6334 return -EINVAL;
6335 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6336 return -EFAULT;
6337 return 0;
6338 }
6339
6340 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6341 {
6342 IOCTL_Command_struct iocommand;
6343 struct CommandList *c;
6344 char *buff = NULL;
6345 u64 temp64;
6346 int rc = 0;
6347
6348 if (!argp)
6349 return -EINVAL;
6350 if (!capable(CAP_SYS_RAWIO))
6351 return -EPERM;
6352 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6353 return -EFAULT;
6354 if ((iocommand.buf_size < 1) &&
6355 (iocommand.Request.Type.Direction != XFER_NONE)) {
6356 return -EINVAL;
6357 }
6358 if (iocommand.buf_size > 0) {
6359 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6360 if (buff == NULL)
6361 return -ENOMEM;
6362 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6363 /* Copy the data into the buffer we created */
6364 if (copy_from_user(buff, iocommand.buf,
6365 iocommand.buf_size)) {
6366 rc = -EFAULT;
6367 goto out_kfree;
6368 }
6369 } else {
6370 memset(buff, 0, iocommand.buf_size);
6371 }
6372 }
6373 c = cmd_alloc(h);
6374
6375 /* Fill in the command type */
6376 c->cmd_type = CMD_IOCTL_PEND;
6377 c->scsi_cmd = SCSI_CMD_BUSY;
6378 /* Fill in Command Header */
6379 c->Header.ReplyQueue = 0; /* unused in simple mode */
6380 if (iocommand.buf_size > 0) { /* buffer to fill */
6381 c->Header.SGList = 1;
6382 c->Header.SGTotal = cpu_to_le16(1);
6383 } else { /* no buffers to fill */
6384 c->Header.SGList = 0;
6385 c->Header.SGTotal = cpu_to_le16(0);
6386 }
6387 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6388
6389 /* Fill in Request block */
6390 memcpy(&c->Request, &iocommand.Request,
6391 sizeof(c->Request));
6392
6393 /* Fill in the scatter gather information */
6394 if (iocommand.buf_size > 0) {
6395 temp64 = dma_map_single(&h->pdev->dev, buff,
6396 iocommand.buf_size, DMA_BIDIRECTIONAL);
6397 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6398 c->SG[0].Addr = cpu_to_le64(0);
6399 c->SG[0].Len = cpu_to_le32(0);
6400 rc = -ENOMEM;
6401 goto out;
6402 }
6403 c->SG[0].Addr = cpu_to_le64(temp64);
6404 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6405 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6406 }
6407 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6408 NO_TIMEOUT);
6409 if (iocommand.buf_size > 0)
6410 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6411 check_ioctl_unit_attention(h, c);
6412 if (rc) {
6413 rc = -EIO;
6414 goto out;
6415 }
6416
6417 /* Copy the error information out */
6418 memcpy(&iocommand.error_info, c->err_info,
6419 sizeof(iocommand.error_info));
6420 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6421 rc = -EFAULT;
6422 goto out;
6423 }
6424 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6425 iocommand.buf_size > 0) {
6426 /* Copy the data out of the buffer we created */
6427 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6428 rc = -EFAULT;
6429 goto out;
6430 }
6431 }
6432 out:
6433 cmd_free(h, c);
6434 out_kfree:
6435 kfree(buff);
6436 return rc;
6437 }
6438
6439 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6440 {
6441 BIG_IOCTL_Command_struct *ioc;
6442 struct CommandList *c;
6443 unsigned char **buff = NULL;
6444 int *buff_size = NULL;
6445 u64 temp64;
6446 BYTE sg_used = 0;
6447 int status = 0;
6448 u32 left;
6449 u32 sz;
6450 BYTE __user *data_ptr;
6451
6452 if (!argp)
6453 return -EINVAL;
6454 if (!capable(CAP_SYS_RAWIO))
6455 return -EPERM;
6456 ioc = vmemdup_user(argp, sizeof(*ioc));
6457 if (IS_ERR(ioc)) {
6458 status = PTR_ERR(ioc);
6459 goto cleanup1;
6460 }
6461 if ((ioc->buf_size < 1) &&
6462 (ioc->Request.Type.Direction != XFER_NONE)) {
6463 status = -EINVAL;
6464 goto cleanup1;
6465 }
6466 /* Check kmalloc limits using all SGs */
6467 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6468 status = -EINVAL;
6469 goto cleanup1;
6470 }
6471 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6472 status = -EINVAL;
6473 goto cleanup1;
6474 }
6475 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6476 if (!buff) {
6477 status = -ENOMEM;
6478 goto cleanup1;
6479 }
6480 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6481 if (!buff_size) {
6482 status = -ENOMEM;
6483 goto cleanup1;
6484 }
6485 left = ioc->buf_size;
6486 data_ptr = ioc->buf;
6487 while (left) {
6488 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6489 buff_size[sg_used] = sz;
6490 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6491 if (buff[sg_used] == NULL) {
6492 status = -ENOMEM;
6493 goto cleanup1;
6494 }
6495 if (ioc->Request.Type.Direction & XFER_WRITE) {
6496 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6497 status = -EFAULT;
6498 goto cleanup1;
6499 }
6500 } else
6501 memset(buff[sg_used], 0, sz);
6502 left -= sz;
6503 data_ptr += sz;
6504 sg_used++;
6505 }
6506 c = cmd_alloc(h);
6507
6508 c->cmd_type = CMD_IOCTL_PEND;
6509 c->scsi_cmd = SCSI_CMD_BUSY;
6510 c->Header.ReplyQueue = 0;
6511 c->Header.SGList = (u8) sg_used;
6512 c->Header.SGTotal = cpu_to_le16(sg_used);
6513 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6514 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6515 if (ioc->buf_size > 0) {
6516 int i;
6517 for (i = 0; i < sg_used; i++) {
6518 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6519 buff_size[i], DMA_BIDIRECTIONAL);
6520 if (dma_mapping_error(&h->pdev->dev,
6521 (dma_addr_t) temp64)) {
6522 c->SG[i].Addr = cpu_to_le64(0);
6523 c->SG[i].Len = cpu_to_le32(0);
6524 hpsa_pci_unmap(h->pdev, c, i,
6525 DMA_BIDIRECTIONAL);
6526 status = -ENOMEM;
6527 goto cleanup0;
6528 }
6529 c->SG[i].Addr = cpu_to_le64(temp64);
6530 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6531 c->SG[i].Ext = cpu_to_le32(0);
6532 }
6533 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6534 }
6535 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6536 NO_TIMEOUT);
6537 if (sg_used)
6538 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6539 check_ioctl_unit_attention(h, c);
6540 if (status) {
6541 status = -EIO;
6542 goto cleanup0;
6543 }
6544
6545 /* Copy the error information out */
6546 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6547 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6548 status = -EFAULT;
6549 goto cleanup0;
6550 }
6551 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6552 int i;
6553
6554 /* Copy the data out of the buffer we created */
6555 BYTE __user *ptr = ioc->buf;
6556 for (i = 0; i < sg_used; i++) {
6557 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6558 status = -EFAULT;
6559 goto cleanup0;
6560 }
6561 ptr += buff_size[i];
6562 }
6563 }
6564 status = 0;
6565 cleanup0:
6566 cmd_free(h, c);
6567 cleanup1:
6568 if (buff) {
6569 int i;
6570
6571 for (i = 0; i < sg_used; i++)
6572 kfree(buff[i]);
6573 kfree(buff);
6574 }
6575 kfree(buff_size);
6576 kvfree(ioc);
6577 return status;
6578 }
6579
6580 static void check_ioctl_unit_attention(struct ctlr_info *h,
6581 struct CommandList *c)
6582 {
6583 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6584 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6585 (void) check_for_unit_attention(h, c);
6586 }
6587
6588 /*
6589 * ioctl
6590 */
6591 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6592 void __user *arg)
6593 {
6594 struct ctlr_info *h;
6595 void __user *argp = (void __user *)arg;
6596 int rc;
6597
6598 h = sdev_to_hba(dev);
6599
6600 switch (cmd) {
6601 case CCISS_DEREGDISK:
6602 case CCISS_REGNEWDISK:
6603 case CCISS_REGNEWD:
6604 hpsa_scan_start(h->scsi_host);
6605 return 0;
6606 case CCISS_GETPCIINFO:
6607 return hpsa_getpciinfo_ioctl(h, argp);
6608 case CCISS_GETDRIVVER:
6609 return hpsa_getdrivver_ioctl(h, argp);
6610 case CCISS_PASSTHRU:
6611 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6612 return -EAGAIN;
6613 rc = hpsa_passthru_ioctl(h, argp);
6614 atomic_inc(&h->passthru_cmds_avail);
6615 return rc;
6616 case CCISS_BIG_PASSTHRU:
6617 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6618 return -EAGAIN;
6619 rc = hpsa_big_passthru_ioctl(h, argp);
6620 atomic_inc(&h->passthru_cmds_avail);
6621 return rc;
6622 default:
6623 return -ENOTTY;
6624 }
6625 }
6626
6627 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6628 {
6629 struct CommandList *c;
6630
6631 c = cmd_alloc(h);
6632
6633 /* fill_cmd can't fail here, no data buffer to map */
6634 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6635 RAID_CTLR_LUNID, TYPE_MSG);
6636 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6637 c->waiting = NULL;
6638 enqueue_cmd_and_start_io(h, c);
6639 /* Don't wait for completion, the reset won't complete. Don't free
6640 * the command either. This is the last command we will send before
6641 * re-initializing everything, so it doesn't matter and won't leak.
6642 */
6643 return;
6644 }
6645
6646 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6647 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6648 int cmd_type)
6649 {
6650 enum dma_data_direction dir = DMA_NONE;
6651
6652 c->cmd_type = CMD_IOCTL_PEND;
6653 c->scsi_cmd = SCSI_CMD_BUSY;
6654 c->Header.ReplyQueue = 0;
6655 if (buff != NULL && size > 0) {
6656 c->Header.SGList = 1;
6657 c->Header.SGTotal = cpu_to_le16(1);
6658 } else {
6659 c->Header.SGList = 0;
6660 c->Header.SGTotal = cpu_to_le16(0);
6661 }
6662 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6663
6664 if (cmd_type == TYPE_CMD) {
6665 switch (cmd) {
6666 case HPSA_INQUIRY:
6667 /* are we trying to read a vital product page */
6668 if (page_code & VPD_PAGE) {
6669 c->Request.CDB[1] = 0x01;
6670 c->Request.CDB[2] = (page_code & 0xff);
6671 }
6672 c->Request.CDBLen = 6;
6673 c->Request.type_attr_dir =
6674 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6675 c->Request.Timeout = 0;
6676 c->Request.CDB[0] = HPSA_INQUIRY;
6677 c->Request.CDB[4] = size & 0xFF;
6678 break;
6679 case RECEIVE_DIAGNOSTIC:
6680 c->Request.CDBLen = 6;
6681 c->Request.type_attr_dir =
6682 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6683 c->Request.Timeout = 0;
6684 c->Request.CDB[0] = cmd;
6685 c->Request.CDB[1] = 1;
6686 c->Request.CDB[2] = 1;
6687 c->Request.CDB[3] = (size >> 8) & 0xFF;
6688 c->Request.CDB[4] = size & 0xFF;
6689 break;
6690 case HPSA_REPORT_LOG:
6691 case HPSA_REPORT_PHYS:
6692 /* Talking to controller so It's a physical command
6693 mode = 00 target = 0. Nothing to write.
6694 */
6695 c->Request.CDBLen = 12;
6696 c->Request.type_attr_dir =
6697 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698 c->Request.Timeout = 0;
6699 c->Request.CDB[0] = cmd;
6700 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6701 c->Request.CDB[7] = (size >> 16) & 0xFF;
6702 c->Request.CDB[8] = (size >> 8) & 0xFF;
6703 c->Request.CDB[9] = size & 0xFF;
6704 break;
6705 case BMIC_SENSE_DIAG_OPTIONS:
6706 c->Request.CDBLen = 16;
6707 c->Request.type_attr_dir =
6708 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709 c->Request.Timeout = 0;
6710 /* Spec says this should be BMIC_WRITE */
6711 c->Request.CDB[0] = BMIC_READ;
6712 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6713 break;
6714 case BMIC_SET_DIAG_OPTIONS:
6715 c->Request.CDBLen = 16;
6716 c->Request.type_attr_dir =
6717 TYPE_ATTR_DIR(cmd_type,
6718 ATTR_SIMPLE, XFER_WRITE);
6719 c->Request.Timeout = 0;
6720 c->Request.CDB[0] = BMIC_WRITE;
6721 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6722 break;
6723 case HPSA_CACHE_FLUSH:
6724 c->Request.CDBLen = 12;
6725 c->Request.type_attr_dir =
6726 TYPE_ATTR_DIR(cmd_type,
6727 ATTR_SIMPLE, XFER_WRITE);
6728 c->Request.Timeout = 0;
6729 c->Request.CDB[0] = BMIC_WRITE;
6730 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6731 c->Request.CDB[7] = (size >> 8) & 0xFF;
6732 c->Request.CDB[8] = size & 0xFF;
6733 break;
6734 case TEST_UNIT_READY:
6735 c->Request.CDBLen = 6;
6736 c->Request.type_attr_dir =
6737 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6738 c->Request.Timeout = 0;
6739 break;
6740 case HPSA_GET_RAID_MAP:
6741 c->Request.CDBLen = 12;
6742 c->Request.type_attr_dir =
6743 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6744 c->Request.Timeout = 0;
6745 c->Request.CDB[0] = HPSA_CISS_READ;
6746 c->Request.CDB[1] = cmd;
6747 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6748 c->Request.CDB[7] = (size >> 16) & 0xFF;
6749 c->Request.CDB[8] = (size >> 8) & 0xFF;
6750 c->Request.CDB[9] = size & 0xFF;
6751 break;
6752 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6753 c->Request.CDBLen = 10;
6754 c->Request.type_attr_dir =
6755 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6756 c->Request.Timeout = 0;
6757 c->Request.CDB[0] = BMIC_READ;
6758 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6759 c->Request.CDB[7] = (size >> 16) & 0xFF;
6760 c->Request.CDB[8] = (size >> 8) & 0xFF;
6761 break;
6762 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6763 c->Request.CDBLen = 10;
6764 c->Request.type_attr_dir =
6765 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6766 c->Request.Timeout = 0;
6767 c->Request.CDB[0] = BMIC_READ;
6768 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6769 c->Request.CDB[7] = (size >> 16) & 0xFF;
6770 c->Request.CDB[8] = (size >> 8) & 0XFF;
6771 break;
6772 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6773 c->Request.CDBLen = 10;
6774 c->Request.type_attr_dir =
6775 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6776 c->Request.Timeout = 0;
6777 c->Request.CDB[0] = BMIC_READ;
6778 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6779 c->Request.CDB[7] = (size >> 16) & 0xFF;
6780 c->Request.CDB[8] = (size >> 8) & 0XFF;
6781 break;
6782 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6783 c->Request.CDBLen = 10;
6784 c->Request.type_attr_dir =
6785 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6786 c->Request.Timeout = 0;
6787 c->Request.CDB[0] = BMIC_READ;
6788 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6789 c->Request.CDB[7] = (size >> 16) & 0xFF;
6790 c->Request.CDB[8] = (size >> 8) & 0XFF;
6791 break;
6792 case BMIC_IDENTIFY_CONTROLLER:
6793 c->Request.CDBLen = 10;
6794 c->Request.type_attr_dir =
6795 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796 c->Request.Timeout = 0;
6797 c->Request.CDB[0] = BMIC_READ;
6798 c->Request.CDB[1] = 0;
6799 c->Request.CDB[2] = 0;
6800 c->Request.CDB[3] = 0;
6801 c->Request.CDB[4] = 0;
6802 c->Request.CDB[5] = 0;
6803 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6804 c->Request.CDB[7] = (size >> 16) & 0xFF;
6805 c->Request.CDB[8] = (size >> 8) & 0XFF;
6806 c->Request.CDB[9] = 0;
6807 break;
6808 default:
6809 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6810 BUG();
6811 }
6812 } else if (cmd_type == TYPE_MSG) {
6813 switch (cmd) {
6814
6815 case HPSA_PHYS_TARGET_RESET:
6816 c->Request.CDBLen = 16;
6817 c->Request.type_attr_dir =
6818 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6819 c->Request.Timeout = 0; /* Don't time out */
6820 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6821 c->Request.CDB[0] = HPSA_RESET;
6822 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6823 /* Physical target reset needs no control bytes 4-7*/
6824 c->Request.CDB[4] = 0x00;
6825 c->Request.CDB[5] = 0x00;
6826 c->Request.CDB[6] = 0x00;
6827 c->Request.CDB[7] = 0x00;
6828 break;
6829 case HPSA_DEVICE_RESET_MSG:
6830 c->Request.CDBLen = 16;
6831 c->Request.type_attr_dir =
6832 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6833 c->Request.Timeout = 0; /* Don't time out */
6834 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6835 c->Request.CDB[0] = cmd;
6836 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6837 /* If bytes 4-7 are zero, it means reset the */
6838 /* LunID device */
6839 c->Request.CDB[4] = 0x00;
6840 c->Request.CDB[5] = 0x00;
6841 c->Request.CDB[6] = 0x00;
6842 c->Request.CDB[7] = 0x00;
6843 break;
6844 default:
6845 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6846 cmd);
6847 BUG();
6848 }
6849 } else {
6850 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6851 BUG();
6852 }
6853
6854 switch (GET_DIR(c->Request.type_attr_dir)) {
6855 case XFER_READ:
6856 dir = DMA_FROM_DEVICE;
6857 break;
6858 case XFER_WRITE:
6859 dir = DMA_TO_DEVICE;
6860 break;
6861 case XFER_NONE:
6862 dir = DMA_NONE;
6863 break;
6864 default:
6865 dir = DMA_BIDIRECTIONAL;
6866 }
6867 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6868 return -1;
6869 return 0;
6870 }
6871
6872 /*
6873 * Map (physical) PCI mem into (virtual) kernel space
6874 */
6875 static void __iomem *remap_pci_mem(ulong base, ulong size)
6876 {
6877 ulong page_base = ((ulong) base) & PAGE_MASK;
6878 ulong page_offs = ((ulong) base) - page_base;
6879 void __iomem *page_remapped = ioremap_nocache(page_base,
6880 page_offs + size);
6881
6882 return page_remapped ? (page_remapped + page_offs) : NULL;
6883 }
6884
6885 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6886 {
6887 return h->access.command_completed(h, q);
6888 }
6889
6890 static inline bool interrupt_pending(struct ctlr_info *h)
6891 {
6892 return h->access.intr_pending(h);
6893 }
6894
6895 static inline long interrupt_not_for_us(struct ctlr_info *h)
6896 {
6897 return (h->access.intr_pending(h) == 0) ||
6898 (h->interrupts_enabled == 0);
6899 }
6900
6901 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6902 u32 raw_tag)
6903 {
6904 if (unlikely(tag_index >= h->nr_cmds)) {
6905 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6906 return 1;
6907 }
6908 return 0;
6909 }
6910
6911 static inline void finish_cmd(struct CommandList *c)
6912 {
6913 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6914 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6915 || c->cmd_type == CMD_IOACCEL2))
6916 complete_scsi_command(c);
6917 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6918 complete(c->waiting);
6919 }
6920
6921 /* process completion of an indexed ("direct lookup") command */
6922 static inline void process_indexed_cmd(struct ctlr_info *h,
6923 u32 raw_tag)
6924 {
6925 u32 tag_index;
6926 struct CommandList *c;
6927
6928 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6929 if (!bad_tag(h, tag_index, raw_tag)) {
6930 c = h->cmd_pool + tag_index;
6931 finish_cmd(c);
6932 }
6933 }
6934
6935 /* Some controllers, like p400, will give us one interrupt
6936 * after a soft reset, even if we turned interrupts off.
6937 * Only need to check for this in the hpsa_xxx_discard_completions
6938 * functions.
6939 */
6940 static int ignore_bogus_interrupt(struct ctlr_info *h)
6941 {
6942 if (likely(!reset_devices))
6943 return 0;
6944
6945 if (likely(h->interrupts_enabled))
6946 return 0;
6947
6948 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6949 "(known firmware bug.) Ignoring.\n");
6950
6951 return 1;
6952 }
6953
6954 /*
6955 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6956 * Relies on (h-q[x] == x) being true for x such that
6957 * 0 <= x < MAX_REPLY_QUEUES.
6958 */
6959 static struct ctlr_info *queue_to_hba(u8 *queue)
6960 {
6961 return container_of((queue - *queue), struct ctlr_info, q[0]);
6962 }
6963
6964 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6965 {
6966 struct ctlr_info *h = queue_to_hba(queue);
6967 u8 q = *(u8 *) queue;
6968 u32 raw_tag;
6969
6970 if (ignore_bogus_interrupt(h))
6971 return IRQ_NONE;
6972
6973 if (interrupt_not_for_us(h))
6974 return IRQ_NONE;
6975 h->last_intr_timestamp = get_jiffies_64();
6976 while (interrupt_pending(h)) {
6977 raw_tag = get_next_completion(h, q);
6978 while (raw_tag != FIFO_EMPTY)
6979 raw_tag = next_command(h, q);
6980 }
6981 return IRQ_HANDLED;
6982 }
6983
6984 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6985 {
6986 struct ctlr_info *h = queue_to_hba(queue);
6987 u32 raw_tag;
6988 u8 q = *(u8 *) queue;
6989
6990 if (ignore_bogus_interrupt(h))
6991 return IRQ_NONE;
6992
6993 h->last_intr_timestamp = get_jiffies_64();
6994 raw_tag = get_next_completion(h, q);
6995 while (raw_tag != FIFO_EMPTY)
6996 raw_tag = next_command(h, q);
6997 return IRQ_HANDLED;
6998 }
6999
7000 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7001 {
7002 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7003 u32 raw_tag;
7004 u8 q = *(u8 *) queue;
7005
7006 if (interrupt_not_for_us(h))
7007 return IRQ_NONE;
7008 h->last_intr_timestamp = get_jiffies_64();
7009 while (interrupt_pending(h)) {
7010 raw_tag = get_next_completion(h, q);
7011 while (raw_tag != FIFO_EMPTY) {
7012 process_indexed_cmd(h, raw_tag);
7013 raw_tag = next_command(h, q);
7014 }
7015 }
7016 return IRQ_HANDLED;
7017 }
7018
7019 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7020 {
7021 struct ctlr_info *h = queue_to_hba(queue);
7022 u32 raw_tag;
7023 u8 q = *(u8 *) queue;
7024
7025 h->last_intr_timestamp = get_jiffies_64();
7026 raw_tag = get_next_completion(h, q);
7027 while (raw_tag != FIFO_EMPTY) {
7028 process_indexed_cmd(h, raw_tag);
7029 raw_tag = next_command(h, q);
7030 }
7031 return IRQ_HANDLED;
7032 }
7033
7034 /* Send a message CDB to the firmware. Careful, this only works
7035 * in simple mode, not performant mode due to the tag lookup.
7036 * We only ever use this immediately after a controller reset.
7037 */
7038 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7039 unsigned char type)
7040 {
7041 struct Command {
7042 struct CommandListHeader CommandHeader;
7043 struct RequestBlock Request;
7044 struct ErrDescriptor ErrorDescriptor;
7045 };
7046 struct Command *cmd;
7047 static const size_t cmd_sz = sizeof(*cmd) +
7048 sizeof(cmd->ErrorDescriptor);
7049 dma_addr_t paddr64;
7050 __le32 paddr32;
7051 u32 tag;
7052 void __iomem *vaddr;
7053 int i, err;
7054
7055 vaddr = pci_ioremap_bar(pdev, 0);
7056 if (vaddr == NULL)
7057 return -ENOMEM;
7058
7059 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7060 * CCISS commands, so they must be allocated from the lower 4GiB of
7061 * memory.
7062 */
7063 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7064 if (err) {
7065 iounmap(vaddr);
7066 return err;
7067 }
7068
7069 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7070 if (cmd == NULL) {
7071 iounmap(vaddr);
7072 return -ENOMEM;
7073 }
7074
7075 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7076 * although there's no guarantee, we assume that the address is at
7077 * least 4-byte aligned (most likely, it's page-aligned).
7078 */
7079 paddr32 = cpu_to_le32(paddr64);
7080
7081 cmd->CommandHeader.ReplyQueue = 0;
7082 cmd->CommandHeader.SGList = 0;
7083 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7084 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7085 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7086
7087 cmd->Request.CDBLen = 16;
7088 cmd->Request.type_attr_dir =
7089 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7090 cmd->Request.Timeout = 0; /* Don't time out */
7091 cmd->Request.CDB[0] = opcode;
7092 cmd->Request.CDB[1] = type;
7093 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7094 cmd->ErrorDescriptor.Addr =
7095 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7096 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7097
7098 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7099
7100 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7101 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7102 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7103 break;
7104 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7105 }
7106
7107 iounmap(vaddr);
7108
7109 /* we leak the DMA buffer here ... no choice since the controller could
7110 * still complete the command.
7111 */
7112 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7113 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7114 opcode, type);
7115 return -ETIMEDOUT;
7116 }
7117
7118 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7119
7120 if (tag & HPSA_ERROR_BIT) {
7121 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7122 opcode, type);
7123 return -EIO;
7124 }
7125
7126 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7127 opcode, type);
7128 return 0;
7129 }
7130
7131 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7132
7133 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7134 void __iomem *vaddr, u32 use_doorbell)
7135 {
7136
7137 if (use_doorbell) {
7138 /* For everything after the P600, the PCI power state method
7139 * of resetting the controller doesn't work, so we have this
7140 * other way using the doorbell register.
7141 */
7142 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7143 writel(use_doorbell, vaddr + SA5_DOORBELL);
7144
7145 /* PMC hardware guys tell us we need a 10 second delay after
7146 * doorbell reset and before any attempt to talk to the board
7147 * at all to ensure that this actually works and doesn't fall
7148 * over in some weird corner cases.
7149 */
7150 msleep(10000);
7151 } else { /* Try to do it the PCI power state way */
7152
7153 /* Quoting from the Open CISS Specification: "The Power
7154 * Management Control/Status Register (CSR) controls the power
7155 * state of the device. The normal operating state is D0,
7156 * CSR=00h. The software off state is D3, CSR=03h. To reset
7157 * the controller, place the interface device in D3 then to D0,
7158 * this causes a secondary PCI reset which will reset the
7159 * controller." */
7160
7161 int rc = 0;
7162
7163 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7164
7165 /* enter the D3hot power management state */
7166 rc = pci_set_power_state(pdev, PCI_D3hot);
7167 if (rc)
7168 return rc;
7169
7170 msleep(500);
7171
7172 /* enter the D0 power management state */
7173 rc = pci_set_power_state(pdev, PCI_D0);
7174 if (rc)
7175 return rc;
7176
7177 /*
7178 * The P600 requires a small delay when changing states.
7179 * Otherwise we may think the board did not reset and we bail.
7180 * This for kdump only and is particular to the P600.
7181 */
7182 msleep(500);
7183 }
7184 return 0;
7185 }
7186
7187 static void init_driver_version(char *driver_version, int len)
7188 {
7189 memset(driver_version, 0, len);
7190 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7191 }
7192
7193 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7194 {
7195 char *driver_version;
7196 int i, size = sizeof(cfgtable->driver_version);
7197
7198 driver_version = kmalloc(size, GFP_KERNEL);
7199 if (!driver_version)
7200 return -ENOMEM;
7201
7202 init_driver_version(driver_version, size);
7203 for (i = 0; i < size; i++)
7204 writeb(driver_version[i], &cfgtable->driver_version[i]);
7205 kfree(driver_version);
7206 return 0;
7207 }
7208
7209 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7210 unsigned char *driver_ver)
7211 {
7212 int i;
7213
7214 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7215 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7216 }
7217
7218 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7219 {
7220
7221 char *driver_ver, *old_driver_ver;
7222 int rc, size = sizeof(cfgtable->driver_version);
7223
7224 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7225 if (!old_driver_ver)
7226 return -ENOMEM;
7227 driver_ver = old_driver_ver + size;
7228
7229 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7230 * should have been changed, otherwise we know the reset failed.
7231 */
7232 init_driver_version(old_driver_ver, size);
7233 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7234 rc = !memcmp(driver_ver, old_driver_ver, size);
7235 kfree(old_driver_ver);
7236 return rc;
7237 }
7238 /* This does a hard reset of the controller using PCI power management
7239 * states or the using the doorbell register.
7240 */
7241 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7242 {
7243 u64 cfg_offset;
7244 u32 cfg_base_addr;
7245 u64 cfg_base_addr_index;
7246 void __iomem *vaddr;
7247 unsigned long paddr;
7248 u32 misc_fw_support;
7249 int rc;
7250 struct CfgTable __iomem *cfgtable;
7251 u32 use_doorbell;
7252 u16 command_register;
7253
7254 /* For controllers as old as the P600, this is very nearly
7255 * the same thing as
7256 *
7257 * pci_save_state(pci_dev);
7258 * pci_set_power_state(pci_dev, PCI_D3hot);
7259 * pci_set_power_state(pci_dev, PCI_D0);
7260 * pci_restore_state(pci_dev);
7261 *
7262 * For controllers newer than the P600, the pci power state
7263 * method of resetting doesn't work so we have another way
7264 * using the doorbell register.
7265 */
7266
7267 if (!ctlr_is_resettable(board_id)) {
7268 dev_warn(&pdev->dev, "Controller not resettable\n");
7269 return -ENODEV;
7270 }
7271
7272 /* if controller is soft- but not hard resettable... */
7273 if (!ctlr_is_hard_resettable(board_id))
7274 return -ENOTSUPP; /* try soft reset later. */
7275
7276 /* Save the PCI command register */
7277 pci_read_config_word(pdev, 4, &command_register);
7278 pci_save_state(pdev);
7279
7280 /* find the first memory BAR, so we can find the cfg table */
7281 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7282 if (rc)
7283 return rc;
7284 vaddr = remap_pci_mem(paddr, 0x250);
7285 if (!vaddr)
7286 return -ENOMEM;
7287
7288 /* find cfgtable in order to check if reset via doorbell is supported */
7289 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7290 &cfg_base_addr_index, &cfg_offset);
7291 if (rc)
7292 goto unmap_vaddr;
7293 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7294 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7295 if (!cfgtable) {
7296 rc = -ENOMEM;
7297 goto unmap_vaddr;
7298 }
7299 rc = write_driver_ver_to_cfgtable(cfgtable);
7300 if (rc)
7301 goto unmap_cfgtable;
7302
7303 /* If reset via doorbell register is supported, use that.
7304 * There are two such methods. Favor the newest method.
7305 */
7306 misc_fw_support = readl(&cfgtable->misc_fw_support);
7307 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7308 if (use_doorbell) {
7309 use_doorbell = DOORBELL_CTLR_RESET2;
7310 } else {
7311 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7312 if (use_doorbell) {
7313 dev_warn(&pdev->dev,
7314 "Soft reset not supported. Firmware update is required.\n");
7315 rc = -ENOTSUPP; /* try soft reset */
7316 goto unmap_cfgtable;
7317 }
7318 }
7319
7320 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7321 if (rc)
7322 goto unmap_cfgtable;
7323
7324 pci_restore_state(pdev);
7325 pci_write_config_word(pdev, 4, command_register);
7326
7327 /* Some devices (notably the HP Smart Array 5i Controller)
7328 need a little pause here */
7329 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7330
7331 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7332 if (rc) {
7333 dev_warn(&pdev->dev,
7334 "Failed waiting for board to become ready after hard reset\n");
7335 goto unmap_cfgtable;
7336 }
7337
7338 rc = controller_reset_failed(vaddr);
7339 if (rc < 0)
7340 goto unmap_cfgtable;
7341 if (rc) {
7342 dev_warn(&pdev->dev, "Unable to successfully reset "
7343 "controller. Will try soft reset.\n");
7344 rc = -ENOTSUPP;
7345 } else {
7346 dev_info(&pdev->dev, "board ready after hard reset.\n");
7347 }
7348
7349 unmap_cfgtable:
7350 iounmap(cfgtable);
7351
7352 unmap_vaddr:
7353 iounmap(vaddr);
7354 return rc;
7355 }
7356
7357 /*
7358 * We cannot read the structure directly, for portability we must use
7359 * the io functions.
7360 * This is for debug only.
7361 */
7362 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7363 {
7364 #ifdef HPSA_DEBUG
7365 int i;
7366 char temp_name[17];
7367
7368 dev_info(dev, "Controller Configuration information\n");
7369 dev_info(dev, "------------------------------------\n");
7370 for (i = 0; i < 4; i++)
7371 temp_name[i] = readb(&(tb->Signature[i]));
7372 temp_name[4] = '\0';
7373 dev_info(dev, " Signature = %s\n", temp_name);
7374 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7375 dev_info(dev, " Transport methods supported = 0x%x\n",
7376 readl(&(tb->TransportSupport)));
7377 dev_info(dev, " Transport methods active = 0x%x\n",
7378 readl(&(tb->TransportActive)));
7379 dev_info(dev, " Requested transport Method = 0x%x\n",
7380 readl(&(tb->HostWrite.TransportRequest)));
7381 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7382 readl(&(tb->HostWrite.CoalIntDelay)));
7383 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7384 readl(&(tb->HostWrite.CoalIntCount)));
7385 dev_info(dev, " Max outstanding commands = %d\n",
7386 readl(&(tb->CmdsOutMax)));
7387 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7388 for (i = 0; i < 16; i++)
7389 temp_name[i] = readb(&(tb->ServerName[i]));
7390 temp_name[16] = '\0';
7391 dev_info(dev, " Server Name = %s\n", temp_name);
7392 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7393 readl(&(tb->HeartBeat)));
7394 #endif /* HPSA_DEBUG */
7395 }
7396
7397 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7398 {
7399 int i, offset, mem_type, bar_type;
7400
7401 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7402 return 0;
7403 offset = 0;
7404 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7405 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7406 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7407 offset += 4;
7408 else {
7409 mem_type = pci_resource_flags(pdev, i) &
7410 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7411 switch (mem_type) {
7412 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7413 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7414 offset += 4; /* 32 bit */
7415 break;
7416 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7417 offset += 8;
7418 break;
7419 default: /* reserved in PCI 2.2 */
7420 dev_warn(&pdev->dev,
7421 "base address is invalid\n");
7422 return -1;
7423 break;
7424 }
7425 }
7426 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7427 return i + 1;
7428 }
7429 return -1;
7430 }
7431
7432 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7433 {
7434 pci_free_irq_vectors(h->pdev);
7435 h->msix_vectors = 0;
7436 }
7437
7438 static void hpsa_setup_reply_map(struct ctlr_info *h)
7439 {
7440 const struct cpumask *mask;
7441 unsigned int queue, cpu;
7442
7443 for (queue = 0; queue < h->msix_vectors; queue++) {
7444 mask = pci_irq_get_affinity(h->pdev, queue);
7445 if (!mask)
7446 goto fallback;
7447
7448 for_each_cpu(cpu, mask)
7449 h->reply_map[cpu] = queue;
7450 }
7451 return;
7452
7453 fallback:
7454 for_each_possible_cpu(cpu)
7455 h->reply_map[cpu] = 0;
7456 }
7457
7458 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7459 * controllers that are capable. If not, we use legacy INTx mode.
7460 */
7461 static int hpsa_interrupt_mode(struct ctlr_info *h)
7462 {
7463 unsigned int flags = PCI_IRQ_LEGACY;
7464 int ret;
7465
7466 /* Some boards advertise MSI but don't really support it */
7467 switch (h->board_id) {
7468 case 0x40700E11:
7469 case 0x40800E11:
7470 case 0x40820E11:
7471 case 0x40830E11:
7472 break;
7473 default:
7474 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7475 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7476 if (ret > 0) {
7477 h->msix_vectors = ret;
7478 return 0;
7479 }
7480
7481 flags |= PCI_IRQ_MSI;
7482 break;
7483 }
7484
7485 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7486 if (ret < 0)
7487 return ret;
7488 return 0;
7489 }
7490
7491 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7492 bool *legacy_board)
7493 {
7494 int i;
7495 u32 subsystem_vendor_id, subsystem_device_id;
7496
7497 subsystem_vendor_id = pdev->subsystem_vendor;
7498 subsystem_device_id = pdev->subsystem_device;
7499 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7500 subsystem_vendor_id;
7501
7502 if (legacy_board)
7503 *legacy_board = false;
7504 for (i = 0; i < ARRAY_SIZE(products); i++)
7505 if (*board_id == products[i].board_id) {
7506 if (products[i].access != &SA5A_access &&
7507 products[i].access != &SA5B_access)
7508 return i;
7509 dev_warn(&pdev->dev,
7510 "legacy board ID: 0x%08x\n",
7511 *board_id);
7512 if (legacy_board)
7513 *legacy_board = true;
7514 return i;
7515 }
7516
7517 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7518 if (legacy_board)
7519 *legacy_board = true;
7520 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7521 }
7522
7523 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7524 unsigned long *memory_bar)
7525 {
7526 int i;
7527
7528 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7529 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7530 /* addressing mode bits already removed */
7531 *memory_bar = pci_resource_start(pdev, i);
7532 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7533 *memory_bar);
7534 return 0;
7535 }
7536 dev_warn(&pdev->dev, "no memory BAR found\n");
7537 return -ENODEV;
7538 }
7539
7540 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7541 int wait_for_ready)
7542 {
7543 int i, iterations;
7544 u32 scratchpad;
7545 if (wait_for_ready)
7546 iterations = HPSA_BOARD_READY_ITERATIONS;
7547 else
7548 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7549
7550 for (i = 0; i < iterations; i++) {
7551 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7552 if (wait_for_ready) {
7553 if (scratchpad == HPSA_FIRMWARE_READY)
7554 return 0;
7555 } else {
7556 if (scratchpad != HPSA_FIRMWARE_READY)
7557 return 0;
7558 }
7559 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7560 }
7561 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7562 return -ENODEV;
7563 }
7564
7565 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7566 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7567 u64 *cfg_offset)
7568 {
7569 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7570 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7571 *cfg_base_addr &= (u32) 0x0000ffff;
7572 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7573 if (*cfg_base_addr_index == -1) {
7574 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7575 return -ENODEV;
7576 }
7577 return 0;
7578 }
7579
7580 static void hpsa_free_cfgtables(struct ctlr_info *h)
7581 {
7582 if (h->transtable) {
7583 iounmap(h->transtable);
7584 h->transtable = NULL;
7585 }
7586 if (h->cfgtable) {
7587 iounmap(h->cfgtable);
7588 h->cfgtable = NULL;
7589 }
7590 }
7591
7592 /* Find and map CISS config table and transfer table
7593 + * several items must be unmapped (freed) later
7594 + * */
7595 static int hpsa_find_cfgtables(struct ctlr_info *h)
7596 {
7597 u64 cfg_offset;
7598 u32 cfg_base_addr;
7599 u64 cfg_base_addr_index;
7600 u32 trans_offset;
7601 int rc;
7602
7603 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7604 &cfg_base_addr_index, &cfg_offset);
7605 if (rc)
7606 return rc;
7607 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7608 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7609 if (!h->cfgtable) {
7610 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7611 return -ENOMEM;
7612 }
7613 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7614 if (rc)
7615 return rc;
7616 /* Find performant mode table. */
7617 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7618 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7619 cfg_base_addr_index)+cfg_offset+trans_offset,
7620 sizeof(*h->transtable));
7621 if (!h->transtable) {
7622 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7623 hpsa_free_cfgtables(h);
7624 return -ENOMEM;
7625 }
7626 return 0;
7627 }
7628
7629 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7630 {
7631 #define MIN_MAX_COMMANDS 16
7632 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7633
7634 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7635
7636 /* Limit commands in memory limited kdump scenario. */
7637 if (reset_devices && h->max_commands > 32)
7638 h->max_commands = 32;
7639
7640 if (h->max_commands < MIN_MAX_COMMANDS) {
7641 dev_warn(&h->pdev->dev,
7642 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7643 h->max_commands,
7644 MIN_MAX_COMMANDS);
7645 h->max_commands = MIN_MAX_COMMANDS;
7646 }
7647 }
7648
7649 /* If the controller reports that the total max sg entries is greater than 512,
7650 * then we know that chained SG blocks work. (Original smart arrays did not
7651 * support chained SG blocks and would return zero for max sg entries.)
7652 */
7653 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7654 {
7655 return h->maxsgentries > 512;
7656 }
7657
7658 /* Interrogate the hardware for some limits:
7659 * max commands, max SG elements without chaining, and with chaining,
7660 * SG chain block size, etc.
7661 */
7662 static void hpsa_find_board_params(struct ctlr_info *h)
7663 {
7664 hpsa_get_max_perf_mode_cmds(h);
7665 h->nr_cmds = h->max_commands;
7666 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7667 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7668 if (hpsa_supports_chained_sg_blocks(h)) {
7669 /* Limit in-command s/g elements to 32 save dma'able memory. */
7670 h->max_cmd_sg_entries = 32;
7671 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7672 h->maxsgentries--; /* save one for chain pointer */
7673 } else {
7674 /*
7675 * Original smart arrays supported at most 31 s/g entries
7676 * embedded inline in the command (trying to use more
7677 * would lock up the controller)
7678 */
7679 h->max_cmd_sg_entries = 31;
7680 h->maxsgentries = 31; /* default to traditional values */
7681 h->chainsize = 0;
7682 }
7683
7684 /* Find out what task management functions are supported and cache */
7685 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7686 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7687 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7688 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7689 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7690 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7691 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7692 }
7693
7694 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7695 {
7696 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7697 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7698 return false;
7699 }
7700 return true;
7701 }
7702
7703 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7704 {
7705 u32 driver_support;
7706
7707 driver_support = readl(&(h->cfgtable->driver_support));
7708 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7709 #ifdef CONFIG_X86
7710 driver_support |= ENABLE_SCSI_PREFETCH;
7711 #endif
7712 driver_support |= ENABLE_UNIT_ATTN;
7713 writel(driver_support, &(h->cfgtable->driver_support));
7714 }
7715
7716 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7717 * in a prefetch beyond physical memory.
7718 */
7719 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7720 {
7721 u32 dma_prefetch;
7722
7723 if (h->board_id != 0x3225103C)
7724 return;
7725 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7726 dma_prefetch |= 0x8000;
7727 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7728 }
7729
7730 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7731 {
7732 int i;
7733 u32 doorbell_value;
7734 unsigned long flags;
7735 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7736 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7737 spin_lock_irqsave(&h->lock, flags);
7738 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7739 spin_unlock_irqrestore(&h->lock, flags);
7740 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7741 goto done;
7742 /* delay and try again */
7743 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7744 }
7745 return -ENODEV;
7746 done:
7747 return 0;
7748 }
7749
7750 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7751 {
7752 int i;
7753 u32 doorbell_value;
7754 unsigned long flags;
7755
7756 /* under certain very rare conditions, this can take awhile.
7757 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7758 * as we enter this code.)
7759 */
7760 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7761 if (h->remove_in_progress)
7762 goto done;
7763 spin_lock_irqsave(&h->lock, flags);
7764 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7765 spin_unlock_irqrestore(&h->lock, flags);
7766 if (!(doorbell_value & CFGTBL_ChangeReq))
7767 goto done;
7768 /* delay and try again */
7769 msleep(MODE_CHANGE_WAIT_INTERVAL);
7770 }
7771 return -ENODEV;
7772 done:
7773 return 0;
7774 }
7775
7776 /* return -ENODEV or other reason on error, 0 on success */
7777 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7778 {
7779 u32 trans_support;
7780
7781 trans_support = readl(&(h->cfgtable->TransportSupport));
7782 if (!(trans_support & SIMPLE_MODE))
7783 return -ENOTSUPP;
7784
7785 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7786
7787 /* Update the field, and then ring the doorbell */
7788 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7789 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7790 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7791 if (hpsa_wait_for_mode_change_ack(h))
7792 goto error;
7793 print_cfg_table(&h->pdev->dev, h->cfgtable);
7794 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7795 goto error;
7796 h->transMethod = CFGTBL_Trans_Simple;
7797 return 0;
7798 error:
7799 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7800 return -ENODEV;
7801 }
7802
7803 /* free items allocated or mapped by hpsa_pci_init */
7804 static void hpsa_free_pci_init(struct ctlr_info *h)
7805 {
7806 hpsa_free_cfgtables(h); /* pci_init 4 */
7807 iounmap(h->vaddr); /* pci_init 3 */
7808 h->vaddr = NULL;
7809 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7810 /*
7811 * call pci_disable_device before pci_release_regions per
7812 * Documentation/driver-api/pci/pci.rst
7813 */
7814 pci_disable_device(h->pdev); /* pci_init 1 */
7815 pci_release_regions(h->pdev); /* pci_init 2 */
7816 }
7817
7818 /* several items must be freed later */
7819 static int hpsa_pci_init(struct ctlr_info *h)
7820 {
7821 int prod_index, err;
7822 bool legacy_board;
7823
7824 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7825 if (prod_index < 0)
7826 return prod_index;
7827 h->product_name = products[prod_index].product_name;
7828 h->access = *(products[prod_index].access);
7829 h->legacy_board = legacy_board;
7830 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7831 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7832
7833 err = pci_enable_device(h->pdev);
7834 if (err) {
7835 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7836 pci_disable_device(h->pdev);
7837 return err;
7838 }
7839
7840 err = pci_request_regions(h->pdev, HPSA);
7841 if (err) {
7842 dev_err(&h->pdev->dev,
7843 "failed to obtain PCI resources\n");
7844 pci_disable_device(h->pdev);
7845 return err;
7846 }
7847
7848 pci_set_master(h->pdev);
7849
7850 err = hpsa_interrupt_mode(h);
7851 if (err)
7852 goto clean1;
7853
7854 /* setup mapping between CPU and reply queue */
7855 hpsa_setup_reply_map(h);
7856
7857 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7858 if (err)
7859 goto clean2; /* intmode+region, pci */
7860 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7861 if (!h->vaddr) {
7862 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7863 err = -ENOMEM;
7864 goto clean2; /* intmode+region, pci */
7865 }
7866 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7867 if (err)
7868 goto clean3; /* vaddr, intmode+region, pci */
7869 err = hpsa_find_cfgtables(h);
7870 if (err)
7871 goto clean3; /* vaddr, intmode+region, pci */
7872 hpsa_find_board_params(h);
7873
7874 if (!hpsa_CISS_signature_present(h)) {
7875 err = -ENODEV;
7876 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7877 }
7878 hpsa_set_driver_support_bits(h);
7879 hpsa_p600_dma_prefetch_quirk(h);
7880 err = hpsa_enter_simple_mode(h);
7881 if (err)
7882 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7883 return 0;
7884
7885 clean4: /* cfgtables, vaddr, intmode+region, pci */
7886 hpsa_free_cfgtables(h);
7887 clean3: /* vaddr, intmode+region, pci */
7888 iounmap(h->vaddr);
7889 h->vaddr = NULL;
7890 clean2: /* intmode+region, pci */
7891 hpsa_disable_interrupt_mode(h);
7892 clean1:
7893 /*
7894 * call pci_disable_device before pci_release_regions per
7895 * Documentation/driver-api/pci/pci.rst
7896 */
7897 pci_disable_device(h->pdev);
7898 pci_release_regions(h->pdev);
7899 return err;
7900 }
7901
7902 static void hpsa_hba_inquiry(struct ctlr_info *h)
7903 {
7904 int rc;
7905
7906 #define HBA_INQUIRY_BYTE_COUNT 64
7907 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7908 if (!h->hba_inquiry_data)
7909 return;
7910 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7911 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7912 if (rc != 0) {
7913 kfree(h->hba_inquiry_data);
7914 h->hba_inquiry_data = NULL;
7915 }
7916 }
7917
7918 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7919 {
7920 int rc, i;
7921 void __iomem *vaddr;
7922
7923 if (!reset_devices)
7924 return 0;
7925
7926 /* kdump kernel is loading, we don't know in which state is
7927 * the pci interface. The dev->enable_cnt is equal zero
7928 * so we call enable+disable, wait a while and switch it on.
7929 */
7930 rc = pci_enable_device(pdev);
7931 if (rc) {
7932 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7933 return -ENODEV;
7934 }
7935 pci_disable_device(pdev);
7936 msleep(260); /* a randomly chosen number */
7937 rc = pci_enable_device(pdev);
7938 if (rc) {
7939 dev_warn(&pdev->dev, "failed to enable device.\n");
7940 return -ENODEV;
7941 }
7942
7943 pci_set_master(pdev);
7944
7945 vaddr = pci_ioremap_bar(pdev, 0);
7946 if (vaddr == NULL) {
7947 rc = -ENOMEM;
7948 goto out_disable;
7949 }
7950 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7951 iounmap(vaddr);
7952
7953 /* Reset the controller with a PCI power-cycle or via doorbell */
7954 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7955
7956 /* -ENOTSUPP here means we cannot reset the controller
7957 * but it's already (and still) up and running in
7958 * "performant mode". Or, it might be 640x, which can't reset
7959 * due to concerns about shared bbwc between 6402/6404 pair.
7960 */
7961 if (rc)
7962 goto out_disable;
7963
7964 /* Now try to get the controller to respond to a no-op */
7965 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7966 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7967 if (hpsa_noop(pdev) == 0)
7968 break;
7969 else
7970 dev_warn(&pdev->dev, "no-op failed%s\n",
7971 (i < 11 ? "; re-trying" : ""));
7972 }
7973
7974 out_disable:
7975
7976 pci_disable_device(pdev);
7977 return rc;
7978 }
7979
7980 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7981 {
7982 kfree(h->cmd_pool_bits);
7983 h->cmd_pool_bits = NULL;
7984 if (h->cmd_pool) {
7985 dma_free_coherent(&h->pdev->dev,
7986 h->nr_cmds * sizeof(struct CommandList),
7987 h->cmd_pool,
7988 h->cmd_pool_dhandle);
7989 h->cmd_pool = NULL;
7990 h->cmd_pool_dhandle = 0;
7991 }
7992 if (h->errinfo_pool) {
7993 dma_free_coherent(&h->pdev->dev,
7994 h->nr_cmds * sizeof(struct ErrorInfo),
7995 h->errinfo_pool,
7996 h->errinfo_pool_dhandle);
7997 h->errinfo_pool = NULL;
7998 h->errinfo_pool_dhandle = 0;
7999 }
8000 }
8001
8002 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8003 {
8004 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8005 sizeof(unsigned long),
8006 GFP_KERNEL);
8007 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8008 h->nr_cmds * sizeof(*h->cmd_pool),
8009 &h->cmd_pool_dhandle, GFP_KERNEL);
8010 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8011 h->nr_cmds * sizeof(*h->errinfo_pool),
8012 &h->errinfo_pool_dhandle, GFP_KERNEL);
8013 if ((h->cmd_pool_bits == NULL)
8014 || (h->cmd_pool == NULL)
8015 || (h->errinfo_pool == NULL)) {
8016 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8017 goto clean_up;
8018 }
8019 hpsa_preinitialize_commands(h);
8020 return 0;
8021 clean_up:
8022 hpsa_free_cmd_pool(h);
8023 return -ENOMEM;
8024 }
8025
8026 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8027 static void hpsa_free_irqs(struct ctlr_info *h)
8028 {
8029 int i;
8030 int irq_vector = 0;
8031
8032 if (hpsa_simple_mode)
8033 irq_vector = h->intr_mode;
8034
8035 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8036 /* Single reply queue, only one irq to free */
8037 free_irq(pci_irq_vector(h->pdev, irq_vector),
8038 &h->q[h->intr_mode]);
8039 h->q[h->intr_mode] = 0;
8040 return;
8041 }
8042
8043 for (i = 0; i < h->msix_vectors; i++) {
8044 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8045 h->q[i] = 0;
8046 }
8047 for (; i < MAX_REPLY_QUEUES; i++)
8048 h->q[i] = 0;
8049 }
8050
8051 /* returns 0 on success; cleans up and returns -Enn on error */
8052 static int hpsa_request_irqs(struct ctlr_info *h,
8053 irqreturn_t (*msixhandler)(int, void *),
8054 irqreturn_t (*intxhandler)(int, void *))
8055 {
8056 int rc, i;
8057 int irq_vector = 0;
8058
8059 if (hpsa_simple_mode)
8060 irq_vector = h->intr_mode;
8061
8062 /*
8063 * initialize h->q[x] = x so that interrupt handlers know which
8064 * queue to process.
8065 */
8066 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8067 h->q[i] = (u8) i;
8068
8069 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8070 /* If performant mode and MSI-X, use multiple reply queues */
8071 for (i = 0; i < h->msix_vectors; i++) {
8072 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8073 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8074 0, h->intrname[i],
8075 &h->q[i]);
8076 if (rc) {
8077 int j;
8078
8079 dev_err(&h->pdev->dev,
8080 "failed to get irq %d for %s\n",
8081 pci_irq_vector(h->pdev, i), h->devname);
8082 for (j = 0; j < i; j++) {
8083 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8084 h->q[j] = 0;
8085 }
8086 for (; j < MAX_REPLY_QUEUES; j++)
8087 h->q[j] = 0;
8088 return rc;
8089 }
8090 }
8091 } else {
8092 /* Use single reply pool */
8093 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8094 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8095 h->msix_vectors ? "x" : "");
8096 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8097 msixhandler, 0,
8098 h->intrname[0],
8099 &h->q[h->intr_mode]);
8100 } else {
8101 sprintf(h->intrname[h->intr_mode],
8102 "%s-intx", h->devname);
8103 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8104 intxhandler, IRQF_SHARED,
8105 h->intrname[0],
8106 &h->q[h->intr_mode]);
8107 }
8108 }
8109 if (rc) {
8110 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8111 pci_irq_vector(h->pdev, irq_vector), h->devname);
8112 hpsa_free_irqs(h);
8113 return -ENODEV;
8114 }
8115 return 0;
8116 }
8117
8118 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8119 {
8120 int rc;
8121 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8122
8123 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8124 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8125 if (rc) {
8126 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8127 return rc;
8128 }
8129
8130 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8131 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8132 if (rc) {
8133 dev_warn(&h->pdev->dev, "Board failed to become ready "
8134 "after soft reset.\n");
8135 return rc;
8136 }
8137
8138 return 0;
8139 }
8140
8141 static void hpsa_free_reply_queues(struct ctlr_info *h)
8142 {
8143 int i;
8144
8145 for (i = 0; i < h->nreply_queues; i++) {
8146 if (!h->reply_queue[i].head)
8147 continue;
8148 dma_free_coherent(&h->pdev->dev,
8149 h->reply_queue_size,
8150 h->reply_queue[i].head,
8151 h->reply_queue[i].busaddr);
8152 h->reply_queue[i].head = NULL;
8153 h->reply_queue[i].busaddr = 0;
8154 }
8155 h->reply_queue_size = 0;
8156 }
8157
8158 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8159 {
8160 hpsa_free_performant_mode(h); /* init_one 7 */
8161 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8162 hpsa_free_cmd_pool(h); /* init_one 5 */
8163 hpsa_free_irqs(h); /* init_one 4 */
8164 scsi_host_put(h->scsi_host); /* init_one 3 */
8165 h->scsi_host = NULL; /* init_one 3 */
8166 hpsa_free_pci_init(h); /* init_one 2_5 */
8167 free_percpu(h->lockup_detected); /* init_one 2 */
8168 h->lockup_detected = NULL; /* init_one 2 */
8169 if (h->resubmit_wq) {
8170 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8171 h->resubmit_wq = NULL;
8172 }
8173 if (h->rescan_ctlr_wq) {
8174 destroy_workqueue(h->rescan_ctlr_wq);
8175 h->rescan_ctlr_wq = NULL;
8176 }
8177 if (h->monitor_ctlr_wq) {
8178 destroy_workqueue(h->monitor_ctlr_wq);
8179 h->monitor_ctlr_wq = NULL;
8180 }
8181
8182 kfree(h); /* init_one 1 */
8183 }
8184
8185 /* Called when controller lockup detected. */
8186 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8187 {
8188 int i, refcount;
8189 struct CommandList *c;
8190 int failcount = 0;
8191
8192 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8193 for (i = 0; i < h->nr_cmds; i++) {
8194 c = h->cmd_pool + i;
8195 refcount = atomic_inc_return(&c->refcount);
8196 if (refcount > 1) {
8197 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8198 finish_cmd(c);
8199 atomic_dec(&h->commands_outstanding);
8200 failcount++;
8201 }
8202 cmd_free(h, c);
8203 }
8204 dev_warn(&h->pdev->dev,
8205 "failed %d commands in fail_all\n", failcount);
8206 }
8207
8208 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8209 {
8210 int cpu;
8211
8212 for_each_online_cpu(cpu) {
8213 u32 *lockup_detected;
8214 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8215 *lockup_detected = value;
8216 }
8217 wmb(); /* be sure the per-cpu variables are out to memory */
8218 }
8219
8220 static void controller_lockup_detected(struct ctlr_info *h)
8221 {
8222 unsigned long flags;
8223 u32 lockup_detected;
8224
8225 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8226 spin_lock_irqsave(&h->lock, flags);
8227 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8228 if (!lockup_detected) {
8229 /* no heartbeat, but controller gave us a zero. */
8230 dev_warn(&h->pdev->dev,
8231 "lockup detected after %d but scratchpad register is zero\n",
8232 h->heartbeat_sample_interval / HZ);
8233 lockup_detected = 0xffffffff;
8234 }
8235 set_lockup_detected_for_all_cpus(h, lockup_detected);
8236 spin_unlock_irqrestore(&h->lock, flags);
8237 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8238 lockup_detected, h->heartbeat_sample_interval / HZ);
8239 if (lockup_detected == 0xffff0000) {
8240 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8241 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8242 }
8243 pci_disable_device(h->pdev);
8244 fail_all_outstanding_cmds(h);
8245 }
8246
8247 static int detect_controller_lockup(struct ctlr_info *h)
8248 {
8249 u64 now;
8250 u32 heartbeat;
8251 unsigned long flags;
8252
8253 now = get_jiffies_64();
8254 /* If we've received an interrupt recently, we're ok. */
8255 if (time_after64(h->last_intr_timestamp +
8256 (h->heartbeat_sample_interval), now))
8257 return false;
8258
8259 /*
8260 * If we've already checked the heartbeat recently, we're ok.
8261 * This could happen if someone sends us a signal. We
8262 * otherwise don't care about signals in this thread.
8263 */
8264 if (time_after64(h->last_heartbeat_timestamp +
8265 (h->heartbeat_sample_interval), now))
8266 return false;
8267
8268 /* If heartbeat has not changed since we last looked, we're not ok. */
8269 spin_lock_irqsave(&h->lock, flags);
8270 heartbeat = readl(&h->cfgtable->HeartBeat);
8271 spin_unlock_irqrestore(&h->lock, flags);
8272 if (h->last_heartbeat == heartbeat) {
8273 controller_lockup_detected(h);
8274 return true;
8275 }
8276
8277 /* We're ok. */
8278 h->last_heartbeat = heartbeat;
8279 h->last_heartbeat_timestamp = now;
8280 return false;
8281 }
8282
8283 /*
8284 * Set ioaccel status for all ioaccel volumes.
8285 *
8286 * Called from monitor controller worker (hpsa_event_monitor_worker)
8287 *
8288 * A Volume (or Volumes that comprise an Array set may be undergoing a
8289 * transformation, so we will be turning off ioaccel for all volumes that
8290 * make up the Array.
8291 */
8292 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8293 {
8294 int rc;
8295 int i;
8296 u8 ioaccel_status;
8297 unsigned char *buf;
8298 struct hpsa_scsi_dev_t *device;
8299
8300 if (!h)
8301 return;
8302
8303 buf = kmalloc(64, GFP_KERNEL);
8304 if (!buf)
8305 return;
8306
8307 /*
8308 * Run through current device list used during I/O requests.
8309 */
8310 for (i = 0; i < h->ndevices; i++) {
8311 device = h->dev[i];
8312
8313 if (!device)
8314 continue;
8315 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8316 HPSA_VPD_LV_IOACCEL_STATUS))
8317 continue;
8318
8319 memset(buf, 0, 64);
8320
8321 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8322 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8323 buf, 64);
8324 if (rc != 0)
8325 continue;
8326
8327 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8328 device->offload_config =
8329 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8330 if (device->offload_config)
8331 device->offload_to_be_enabled =
8332 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8333
8334 /*
8335 * Immediately turn off ioaccel for any volume the
8336 * controller tells us to. Some of the reasons could be:
8337 * transformation - change to the LVs of an Array.
8338 * degraded volume - component failure
8339 *
8340 * If ioaccel is to be re-enabled, re-enable later during the
8341 * scan operation so the driver can get a fresh raidmap
8342 * before turning ioaccel back on.
8343 *
8344 */
8345 if (!device->offload_to_be_enabled)
8346 device->offload_enabled = 0;
8347 }
8348
8349 kfree(buf);
8350 }
8351
8352 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8353 {
8354 char *event_type;
8355
8356 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8357 return;
8358
8359 /* Ask the controller to clear the events we're handling. */
8360 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8361 | CFGTBL_Trans_io_accel2)) &&
8362 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8363 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8364
8365 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8366 event_type = "state change";
8367 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8368 event_type = "configuration change";
8369 /* Stop sending new RAID offload reqs via the IO accelerator */
8370 scsi_block_requests(h->scsi_host);
8371 hpsa_set_ioaccel_status(h);
8372 hpsa_drain_accel_commands(h);
8373 /* Set 'accelerator path config change' bit */
8374 dev_warn(&h->pdev->dev,
8375 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8376 h->events, event_type);
8377 writel(h->events, &(h->cfgtable->clear_event_notify));
8378 /* Set the "clear event notify field update" bit 6 */
8379 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8380 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8381 hpsa_wait_for_clear_event_notify_ack(h);
8382 scsi_unblock_requests(h->scsi_host);
8383 } else {
8384 /* Acknowledge controller notification events. */
8385 writel(h->events, &(h->cfgtable->clear_event_notify));
8386 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8387 hpsa_wait_for_clear_event_notify_ack(h);
8388 }
8389 return;
8390 }
8391
8392 /* Check a register on the controller to see if there are configuration
8393 * changes (added/changed/removed logical drives, etc.) which mean that
8394 * we should rescan the controller for devices.
8395 * Also check flag for driver-initiated rescan.
8396 */
8397 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8398 {
8399 if (h->drv_req_rescan) {
8400 h->drv_req_rescan = 0;
8401 return 1;
8402 }
8403
8404 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8405 return 0;
8406
8407 h->events = readl(&(h->cfgtable->event_notify));
8408 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8409 }
8410
8411 /*
8412 * Check if any of the offline devices have become ready
8413 */
8414 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8415 {
8416 unsigned long flags;
8417 struct offline_device_entry *d;
8418 struct list_head *this, *tmp;
8419
8420 spin_lock_irqsave(&h->offline_device_lock, flags);
8421 list_for_each_safe(this, tmp, &h->offline_device_list) {
8422 d = list_entry(this, struct offline_device_entry,
8423 offline_list);
8424 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8425 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8426 spin_lock_irqsave(&h->offline_device_lock, flags);
8427 list_del(&d->offline_list);
8428 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8429 return 1;
8430 }
8431 spin_lock_irqsave(&h->offline_device_lock, flags);
8432 }
8433 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8434 return 0;
8435 }
8436
8437 static int hpsa_luns_changed(struct ctlr_info *h)
8438 {
8439 int rc = 1; /* assume there are changes */
8440 struct ReportLUNdata *logdev = NULL;
8441
8442 /* if we can't find out if lun data has changed,
8443 * assume that it has.
8444 */
8445
8446 if (!h->lastlogicals)
8447 return rc;
8448
8449 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8450 if (!logdev)
8451 return rc;
8452
8453 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8454 dev_warn(&h->pdev->dev,
8455 "report luns failed, can't track lun changes.\n");
8456 goto out;
8457 }
8458 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8459 dev_info(&h->pdev->dev,
8460 "Lun changes detected.\n");
8461 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8462 goto out;
8463 } else
8464 rc = 0; /* no changes detected. */
8465 out:
8466 kfree(logdev);
8467 return rc;
8468 }
8469
8470 static void hpsa_perform_rescan(struct ctlr_info *h)
8471 {
8472 struct Scsi_Host *sh = NULL;
8473 unsigned long flags;
8474
8475 /*
8476 * Do the scan after the reset
8477 */
8478 spin_lock_irqsave(&h->reset_lock, flags);
8479 if (h->reset_in_progress) {
8480 h->drv_req_rescan = 1;
8481 spin_unlock_irqrestore(&h->reset_lock, flags);
8482 return;
8483 }
8484 spin_unlock_irqrestore(&h->reset_lock, flags);
8485
8486 sh = scsi_host_get(h->scsi_host);
8487 if (sh != NULL) {
8488 hpsa_scan_start(sh);
8489 scsi_host_put(sh);
8490 h->drv_req_rescan = 0;
8491 }
8492 }
8493
8494 /*
8495 * watch for controller events
8496 */
8497 static void hpsa_event_monitor_worker(struct work_struct *work)
8498 {
8499 struct ctlr_info *h = container_of(to_delayed_work(work),
8500 struct ctlr_info, event_monitor_work);
8501 unsigned long flags;
8502
8503 spin_lock_irqsave(&h->lock, flags);
8504 if (h->remove_in_progress) {
8505 spin_unlock_irqrestore(&h->lock, flags);
8506 return;
8507 }
8508 spin_unlock_irqrestore(&h->lock, flags);
8509
8510 if (hpsa_ctlr_needs_rescan(h)) {
8511 hpsa_ack_ctlr_events(h);
8512 hpsa_perform_rescan(h);
8513 }
8514
8515 spin_lock_irqsave(&h->lock, flags);
8516 if (!h->remove_in_progress)
8517 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8518 HPSA_EVENT_MONITOR_INTERVAL);
8519 spin_unlock_irqrestore(&h->lock, flags);
8520 }
8521
8522 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8523 {
8524 unsigned long flags;
8525 struct ctlr_info *h = container_of(to_delayed_work(work),
8526 struct ctlr_info, rescan_ctlr_work);
8527
8528 spin_lock_irqsave(&h->lock, flags);
8529 if (h->remove_in_progress) {
8530 spin_unlock_irqrestore(&h->lock, flags);
8531 return;
8532 }
8533 spin_unlock_irqrestore(&h->lock, flags);
8534
8535 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8536 hpsa_perform_rescan(h);
8537 } else if (h->discovery_polling) {
8538 if (hpsa_luns_changed(h)) {
8539 dev_info(&h->pdev->dev,
8540 "driver discovery polling rescan.\n");
8541 hpsa_perform_rescan(h);
8542 }
8543 }
8544 spin_lock_irqsave(&h->lock, flags);
8545 if (!h->remove_in_progress)
8546 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8547 h->heartbeat_sample_interval);
8548 spin_unlock_irqrestore(&h->lock, flags);
8549 }
8550
8551 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8552 {
8553 unsigned long flags;
8554 struct ctlr_info *h = container_of(to_delayed_work(work),
8555 struct ctlr_info, monitor_ctlr_work);
8556
8557 detect_controller_lockup(h);
8558 if (lockup_detected(h))
8559 return;
8560
8561 spin_lock_irqsave(&h->lock, flags);
8562 if (!h->remove_in_progress)
8563 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8564 h->heartbeat_sample_interval);
8565 spin_unlock_irqrestore(&h->lock, flags);
8566 }
8567
8568 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8569 char *name)
8570 {
8571 struct workqueue_struct *wq = NULL;
8572
8573 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8574 if (!wq)
8575 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8576
8577 return wq;
8578 }
8579
8580 static void hpda_free_ctlr_info(struct ctlr_info *h)
8581 {
8582 kfree(h->reply_map);
8583 kfree(h);
8584 }
8585
8586 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8587 {
8588 struct ctlr_info *h;
8589
8590 h = kzalloc(sizeof(*h), GFP_KERNEL);
8591 if (!h)
8592 return NULL;
8593
8594 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8595 if (!h->reply_map) {
8596 kfree(h);
8597 return NULL;
8598 }
8599 return h;
8600 }
8601
8602 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8603 {
8604 int dac, rc;
8605 struct ctlr_info *h;
8606 int try_soft_reset = 0;
8607 unsigned long flags;
8608 u32 board_id;
8609
8610 if (number_of_controllers == 0)
8611 printk(KERN_INFO DRIVER_NAME "\n");
8612
8613 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8614 if (rc < 0) {
8615 dev_warn(&pdev->dev, "Board ID not found\n");
8616 return rc;
8617 }
8618
8619 rc = hpsa_init_reset_devices(pdev, board_id);
8620 if (rc) {
8621 if (rc != -ENOTSUPP)
8622 return rc;
8623 /* If the reset fails in a particular way (it has no way to do
8624 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8625 * a soft reset once we get the controller configured up to the
8626 * point that it can accept a command.
8627 */
8628 try_soft_reset = 1;
8629 rc = 0;
8630 }
8631
8632 reinit_after_soft_reset:
8633
8634 /* Command structures must be aligned on a 32-byte boundary because
8635 * the 5 lower bits of the address are used by the hardware. and by
8636 * the driver. See comments in hpsa.h for more info.
8637 */
8638 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8639 h = hpda_alloc_ctlr_info();
8640 if (!h) {
8641 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8642 return -ENOMEM;
8643 }
8644
8645 h->pdev = pdev;
8646
8647 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8648 INIT_LIST_HEAD(&h->offline_device_list);
8649 spin_lock_init(&h->lock);
8650 spin_lock_init(&h->offline_device_lock);
8651 spin_lock_init(&h->scan_lock);
8652 spin_lock_init(&h->reset_lock);
8653 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8654
8655 /* Allocate and clear per-cpu variable lockup_detected */
8656 h->lockup_detected = alloc_percpu(u32);
8657 if (!h->lockup_detected) {
8658 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8659 rc = -ENOMEM;
8660 goto clean1; /* aer/h */
8661 }
8662 set_lockup_detected_for_all_cpus(h, 0);
8663
8664 rc = hpsa_pci_init(h);
8665 if (rc)
8666 goto clean2; /* lu, aer/h */
8667
8668 /* relies on h-> settings made by hpsa_pci_init, including
8669 * interrupt_mode h->intr */
8670 rc = hpsa_scsi_host_alloc(h);
8671 if (rc)
8672 goto clean2_5; /* pci, lu, aer/h */
8673
8674 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8675 h->ctlr = number_of_controllers;
8676 number_of_controllers++;
8677
8678 /* configure PCI DMA stuff */
8679 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8680 if (rc == 0) {
8681 dac = 1;
8682 } else {
8683 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8684 if (rc == 0) {
8685 dac = 0;
8686 } else {
8687 dev_err(&pdev->dev, "no suitable DMA available\n");
8688 goto clean3; /* shost, pci, lu, aer/h */
8689 }
8690 }
8691
8692 /* make sure the board interrupts are off */
8693 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8694
8695 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8696 if (rc)
8697 goto clean3; /* shost, pci, lu, aer/h */
8698 rc = hpsa_alloc_cmd_pool(h);
8699 if (rc)
8700 goto clean4; /* irq, shost, pci, lu, aer/h */
8701 rc = hpsa_alloc_sg_chain_blocks(h);
8702 if (rc)
8703 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8704 init_waitqueue_head(&h->scan_wait_queue);
8705 init_waitqueue_head(&h->event_sync_wait_queue);
8706 mutex_init(&h->reset_mutex);
8707 h->scan_finished = 1; /* no scan currently in progress */
8708 h->scan_waiting = 0;
8709
8710 pci_set_drvdata(pdev, h);
8711 h->ndevices = 0;
8712
8713 spin_lock_init(&h->devlock);
8714 rc = hpsa_put_ctlr_into_performant_mode(h);
8715 if (rc)
8716 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8717
8718 /* create the resubmit workqueue */
8719 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8720 if (!h->rescan_ctlr_wq) {
8721 rc = -ENOMEM;
8722 goto clean7;
8723 }
8724
8725 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8726 if (!h->resubmit_wq) {
8727 rc = -ENOMEM;
8728 goto clean7; /* aer/h */
8729 }
8730
8731 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8732 if (!h->monitor_ctlr_wq) {
8733 rc = -ENOMEM;
8734 goto clean7;
8735 }
8736
8737 /*
8738 * At this point, the controller is ready to take commands.
8739 * Now, if reset_devices and the hard reset didn't work, try
8740 * the soft reset and see if that works.
8741 */
8742 if (try_soft_reset) {
8743
8744 /* This is kind of gross. We may or may not get a completion
8745 * from the soft reset command, and if we do, then the value
8746 * from the fifo may or may not be valid. So, we wait 10 secs
8747 * after the reset throwing away any completions we get during
8748 * that time. Unregister the interrupt handler and register
8749 * fake ones to scoop up any residual completions.
8750 */
8751 spin_lock_irqsave(&h->lock, flags);
8752 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8753 spin_unlock_irqrestore(&h->lock, flags);
8754 hpsa_free_irqs(h);
8755 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8756 hpsa_intx_discard_completions);
8757 if (rc) {
8758 dev_warn(&h->pdev->dev,
8759 "Failed to request_irq after soft reset.\n");
8760 /*
8761 * cannot goto clean7 or free_irqs will be called
8762 * again. Instead, do its work
8763 */
8764 hpsa_free_performant_mode(h); /* clean7 */
8765 hpsa_free_sg_chain_blocks(h); /* clean6 */
8766 hpsa_free_cmd_pool(h); /* clean5 */
8767 /*
8768 * skip hpsa_free_irqs(h) clean4 since that
8769 * was just called before request_irqs failed
8770 */
8771 goto clean3;
8772 }
8773
8774 rc = hpsa_kdump_soft_reset(h);
8775 if (rc)
8776 /* Neither hard nor soft reset worked, we're hosed. */
8777 goto clean7;
8778
8779 dev_info(&h->pdev->dev, "Board READY.\n");
8780 dev_info(&h->pdev->dev,
8781 "Waiting for stale completions to drain.\n");
8782 h->access.set_intr_mask(h, HPSA_INTR_ON);
8783 msleep(10000);
8784 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8785
8786 rc = controller_reset_failed(h->cfgtable);
8787 if (rc)
8788 dev_info(&h->pdev->dev,
8789 "Soft reset appears to have failed.\n");
8790
8791 /* since the controller's reset, we have to go back and re-init
8792 * everything. Easiest to just forget what we've done and do it
8793 * all over again.
8794 */
8795 hpsa_undo_allocations_after_kdump_soft_reset(h);
8796 try_soft_reset = 0;
8797 if (rc)
8798 /* don't goto clean, we already unallocated */
8799 return -ENODEV;
8800
8801 goto reinit_after_soft_reset;
8802 }
8803
8804 /* Enable Accelerated IO path at driver layer */
8805 h->acciopath_status = 1;
8806 /* Disable discovery polling.*/
8807 h->discovery_polling = 0;
8808
8809
8810 /* Turn the interrupts on so we can service requests */
8811 h->access.set_intr_mask(h, HPSA_INTR_ON);
8812
8813 hpsa_hba_inquiry(h);
8814
8815 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8816 if (!h->lastlogicals)
8817 dev_info(&h->pdev->dev,
8818 "Can't track change to report lun data\n");
8819
8820 /* hook into SCSI subsystem */
8821 rc = hpsa_scsi_add_host(h);
8822 if (rc)
8823 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8824
8825 /* Monitor the controller for firmware lockups */
8826 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8827 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8828 schedule_delayed_work(&h->monitor_ctlr_work,
8829 h->heartbeat_sample_interval);
8830 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8831 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8832 h->heartbeat_sample_interval);
8833 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8834 schedule_delayed_work(&h->event_monitor_work,
8835 HPSA_EVENT_MONITOR_INTERVAL);
8836 return 0;
8837
8838 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8839 hpsa_free_performant_mode(h);
8840 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8841 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8842 hpsa_free_sg_chain_blocks(h);
8843 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8844 hpsa_free_cmd_pool(h);
8845 clean4: /* irq, shost, pci, lu, aer/h */
8846 hpsa_free_irqs(h);
8847 clean3: /* shost, pci, lu, aer/h */
8848 scsi_host_put(h->scsi_host);
8849 h->scsi_host = NULL;
8850 clean2_5: /* pci, lu, aer/h */
8851 hpsa_free_pci_init(h);
8852 clean2: /* lu, aer/h */
8853 if (h->lockup_detected) {
8854 free_percpu(h->lockup_detected);
8855 h->lockup_detected = NULL;
8856 }
8857 clean1: /* wq/aer/h */
8858 if (h->resubmit_wq) {
8859 destroy_workqueue(h->resubmit_wq);
8860 h->resubmit_wq = NULL;
8861 }
8862 if (h->rescan_ctlr_wq) {
8863 destroy_workqueue(h->rescan_ctlr_wq);
8864 h->rescan_ctlr_wq = NULL;
8865 }
8866 if (h->monitor_ctlr_wq) {
8867 destroy_workqueue(h->monitor_ctlr_wq);
8868 h->monitor_ctlr_wq = NULL;
8869 }
8870 kfree(h);
8871 return rc;
8872 }
8873
8874 static void hpsa_flush_cache(struct ctlr_info *h)
8875 {
8876 char *flush_buf;
8877 struct CommandList *c;
8878 int rc;
8879
8880 if (unlikely(lockup_detected(h)))
8881 return;
8882 flush_buf = kzalloc(4, GFP_KERNEL);
8883 if (!flush_buf)
8884 return;
8885
8886 c = cmd_alloc(h);
8887
8888 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8889 RAID_CTLR_LUNID, TYPE_CMD)) {
8890 goto out;
8891 }
8892 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8893 DEFAULT_TIMEOUT);
8894 if (rc)
8895 goto out;
8896 if (c->err_info->CommandStatus != 0)
8897 out:
8898 dev_warn(&h->pdev->dev,
8899 "error flushing cache on controller\n");
8900 cmd_free(h, c);
8901 kfree(flush_buf);
8902 }
8903
8904 /* Make controller gather fresh report lun data each time we
8905 * send down a report luns request
8906 */
8907 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8908 {
8909 u32 *options;
8910 struct CommandList *c;
8911 int rc;
8912
8913 /* Don't bother trying to set diag options if locked up */
8914 if (unlikely(h->lockup_detected))
8915 return;
8916
8917 options = kzalloc(sizeof(*options), GFP_KERNEL);
8918 if (!options)
8919 return;
8920
8921 c = cmd_alloc(h);
8922
8923 /* first, get the current diag options settings */
8924 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8925 RAID_CTLR_LUNID, TYPE_CMD))
8926 goto errout;
8927
8928 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8929 NO_TIMEOUT);
8930 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8931 goto errout;
8932
8933 /* Now, set the bit for disabling the RLD caching */
8934 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8935
8936 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8937 RAID_CTLR_LUNID, TYPE_CMD))
8938 goto errout;
8939
8940 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8941 NO_TIMEOUT);
8942 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8943 goto errout;
8944
8945 /* Now verify that it got set: */
8946 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8947 RAID_CTLR_LUNID, TYPE_CMD))
8948 goto errout;
8949
8950 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8951 NO_TIMEOUT);
8952 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8953 goto errout;
8954
8955 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8956 goto out;
8957
8958 errout:
8959 dev_err(&h->pdev->dev,
8960 "Error: failed to disable report lun data caching.\n");
8961 out:
8962 cmd_free(h, c);
8963 kfree(options);
8964 }
8965
8966 static void __hpsa_shutdown(struct pci_dev *pdev)
8967 {
8968 struct ctlr_info *h;
8969
8970 h = pci_get_drvdata(pdev);
8971 /* Turn board interrupts off and send the flush cache command
8972 * sendcmd will turn off interrupt, and send the flush...
8973 * To write all data in the battery backed cache to disks
8974 */
8975 hpsa_flush_cache(h);
8976 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8977 hpsa_free_irqs(h); /* init_one 4 */
8978 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8979 }
8980
8981 static void hpsa_shutdown(struct pci_dev *pdev)
8982 {
8983 __hpsa_shutdown(pdev);
8984 pci_disable_device(pdev);
8985 }
8986
8987 static void hpsa_free_device_info(struct ctlr_info *h)
8988 {
8989 int i;
8990
8991 for (i = 0; i < h->ndevices; i++) {
8992 kfree(h->dev[i]);
8993 h->dev[i] = NULL;
8994 }
8995 }
8996
8997 static void hpsa_remove_one(struct pci_dev *pdev)
8998 {
8999 struct ctlr_info *h;
9000 unsigned long flags;
9001
9002 if (pci_get_drvdata(pdev) == NULL) {
9003 dev_err(&pdev->dev, "unable to remove device\n");
9004 return;
9005 }
9006 h = pci_get_drvdata(pdev);
9007
9008 /* Get rid of any controller monitoring work items */
9009 spin_lock_irqsave(&h->lock, flags);
9010 h->remove_in_progress = 1;
9011 spin_unlock_irqrestore(&h->lock, flags);
9012 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9013 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9014 cancel_delayed_work_sync(&h->event_monitor_work);
9015 destroy_workqueue(h->rescan_ctlr_wq);
9016 destroy_workqueue(h->resubmit_wq);
9017 destroy_workqueue(h->monitor_ctlr_wq);
9018
9019 hpsa_delete_sas_host(h);
9020
9021 /*
9022 * Call before disabling interrupts.
9023 * scsi_remove_host can trigger I/O operations especially
9024 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9025 * operations which cannot complete and will hang the system.
9026 */
9027 if (h->scsi_host)
9028 scsi_remove_host(h->scsi_host); /* init_one 8 */
9029 /* includes hpsa_free_irqs - init_one 4 */
9030 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9031 __hpsa_shutdown(pdev);
9032
9033 hpsa_free_device_info(h); /* scan */
9034
9035 kfree(h->hba_inquiry_data); /* init_one 10 */
9036 h->hba_inquiry_data = NULL; /* init_one 10 */
9037 hpsa_free_ioaccel2_sg_chain_blocks(h);
9038 hpsa_free_performant_mode(h); /* init_one 7 */
9039 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9040 hpsa_free_cmd_pool(h); /* init_one 5 */
9041 kfree(h->lastlogicals);
9042
9043 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9044
9045 scsi_host_put(h->scsi_host); /* init_one 3 */
9046 h->scsi_host = NULL; /* init_one 3 */
9047
9048 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9049 hpsa_free_pci_init(h); /* init_one 2.5 */
9050
9051 free_percpu(h->lockup_detected); /* init_one 2 */
9052 h->lockup_detected = NULL; /* init_one 2 */
9053 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9054
9055 hpda_free_ctlr_info(h); /* init_one 1 */
9056 }
9057
9058 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9059 __attribute__((unused)) pm_message_t state)
9060 {
9061 return -ENOSYS;
9062 }
9063
9064 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9065 {
9066 return -ENOSYS;
9067 }
9068
9069 static struct pci_driver hpsa_pci_driver = {
9070 .name = HPSA,
9071 .probe = hpsa_init_one,
9072 .remove = hpsa_remove_one,
9073 .id_table = hpsa_pci_device_id, /* id_table */
9074 .shutdown = hpsa_shutdown,
9075 .suspend = hpsa_suspend,
9076 .resume = hpsa_resume,
9077 };
9078
9079 /* Fill in bucket_map[], given nsgs (the max number of
9080 * scatter gather elements supported) and bucket[],
9081 * which is an array of 8 integers. The bucket[] array
9082 * contains 8 different DMA transfer sizes (in 16
9083 * byte increments) which the controller uses to fetch
9084 * commands. This function fills in bucket_map[], which
9085 * maps a given number of scatter gather elements to one of
9086 * the 8 DMA transfer sizes. The point of it is to allow the
9087 * controller to only do as much DMA as needed to fetch the
9088 * command, with the DMA transfer size encoded in the lower
9089 * bits of the command address.
9090 */
9091 static void calc_bucket_map(int bucket[], int num_buckets,
9092 int nsgs, int min_blocks, u32 *bucket_map)
9093 {
9094 int i, j, b, size;
9095
9096 /* Note, bucket_map must have nsgs+1 entries. */
9097 for (i = 0; i <= nsgs; i++) {
9098 /* Compute size of a command with i SG entries */
9099 size = i + min_blocks;
9100 b = num_buckets; /* Assume the biggest bucket */
9101 /* Find the bucket that is just big enough */
9102 for (j = 0; j < num_buckets; j++) {
9103 if (bucket[j] >= size) {
9104 b = j;
9105 break;
9106 }
9107 }
9108 /* for a command with i SG entries, use bucket b. */
9109 bucket_map[i] = b;
9110 }
9111 }
9112
9113 /*
9114 * return -ENODEV on err, 0 on success (or no action)
9115 * allocates numerous items that must be freed later
9116 */
9117 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9118 {
9119 int i;
9120 unsigned long register_value;
9121 unsigned long transMethod = CFGTBL_Trans_Performant |
9122 (trans_support & CFGTBL_Trans_use_short_tags) |
9123 CFGTBL_Trans_enable_directed_msix |
9124 (trans_support & (CFGTBL_Trans_io_accel1 |
9125 CFGTBL_Trans_io_accel2));
9126 struct access_method access = SA5_performant_access;
9127
9128 /* This is a bit complicated. There are 8 registers on
9129 * the controller which we write to to tell it 8 different
9130 * sizes of commands which there may be. It's a way of
9131 * reducing the DMA done to fetch each command. Encoded into
9132 * each command's tag are 3 bits which communicate to the controller
9133 * which of the eight sizes that command fits within. The size of
9134 * each command depends on how many scatter gather entries there are.
9135 * Each SG entry requires 16 bytes. The eight registers are programmed
9136 * with the number of 16-byte blocks a command of that size requires.
9137 * The smallest command possible requires 5 such 16 byte blocks.
9138 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9139 * blocks. Note, this only extends to the SG entries contained
9140 * within the command block, and does not extend to chained blocks
9141 * of SG elements. bft[] contains the eight values we write to
9142 * the registers. They are not evenly distributed, but have more
9143 * sizes for small commands, and fewer sizes for larger commands.
9144 */
9145 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9146 #define MIN_IOACCEL2_BFT_ENTRY 5
9147 #define HPSA_IOACCEL2_HEADER_SZ 4
9148 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9149 13, 14, 15, 16, 17, 18, 19,
9150 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9151 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9152 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9153 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9154 16 * MIN_IOACCEL2_BFT_ENTRY);
9155 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9156 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9157 /* 5 = 1 s/g entry or 4k
9158 * 6 = 2 s/g entry or 8k
9159 * 8 = 4 s/g entry or 16k
9160 * 10 = 6 s/g entry or 24k
9161 */
9162
9163 /* If the controller supports either ioaccel method then
9164 * we can also use the RAID stack submit path that does not
9165 * perform the superfluous readl() after each command submission.
9166 */
9167 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9168 access = SA5_performant_access_no_read;
9169
9170 /* Controller spec: zero out this buffer. */
9171 for (i = 0; i < h->nreply_queues; i++)
9172 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9173
9174 bft[7] = SG_ENTRIES_IN_CMD + 4;
9175 calc_bucket_map(bft, ARRAY_SIZE(bft),
9176 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9177 for (i = 0; i < 8; i++)
9178 writel(bft[i], &h->transtable->BlockFetch[i]);
9179
9180 /* size of controller ring buffer */
9181 writel(h->max_commands, &h->transtable->RepQSize);
9182 writel(h->nreply_queues, &h->transtable->RepQCount);
9183 writel(0, &h->transtable->RepQCtrAddrLow32);
9184 writel(0, &h->transtable->RepQCtrAddrHigh32);
9185
9186 for (i = 0; i < h->nreply_queues; i++) {
9187 writel(0, &h->transtable->RepQAddr[i].upper);
9188 writel(h->reply_queue[i].busaddr,
9189 &h->transtable->RepQAddr[i].lower);
9190 }
9191
9192 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9193 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9194 /*
9195 * enable outbound interrupt coalescing in accelerator mode;
9196 */
9197 if (trans_support & CFGTBL_Trans_io_accel1) {
9198 access = SA5_ioaccel_mode1_access;
9199 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9200 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9201 } else
9202 if (trans_support & CFGTBL_Trans_io_accel2)
9203 access = SA5_ioaccel_mode2_access;
9204 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9205 if (hpsa_wait_for_mode_change_ack(h)) {
9206 dev_err(&h->pdev->dev,
9207 "performant mode problem - doorbell timeout\n");
9208 return -ENODEV;
9209 }
9210 register_value = readl(&(h->cfgtable->TransportActive));
9211 if (!(register_value & CFGTBL_Trans_Performant)) {
9212 dev_err(&h->pdev->dev,
9213 "performant mode problem - transport not active\n");
9214 return -ENODEV;
9215 }
9216 /* Change the access methods to the performant access methods */
9217 h->access = access;
9218 h->transMethod = transMethod;
9219
9220 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9221 (trans_support & CFGTBL_Trans_io_accel2)))
9222 return 0;
9223
9224 if (trans_support & CFGTBL_Trans_io_accel1) {
9225 /* Set up I/O accelerator mode */
9226 for (i = 0; i < h->nreply_queues; i++) {
9227 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9228 h->reply_queue[i].current_entry =
9229 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9230 }
9231 bft[7] = h->ioaccel_maxsg + 8;
9232 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9233 h->ioaccel1_blockFetchTable);
9234
9235 /* initialize all reply queue entries to unused */
9236 for (i = 0; i < h->nreply_queues; i++)
9237 memset(h->reply_queue[i].head,
9238 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9239 h->reply_queue_size);
9240
9241 /* set all the constant fields in the accelerator command
9242 * frames once at init time to save CPU cycles later.
9243 */
9244 for (i = 0; i < h->nr_cmds; i++) {
9245 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9246
9247 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9248 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9249 (i * sizeof(struct ErrorInfo)));
9250 cp->err_info_len = sizeof(struct ErrorInfo);
9251 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9252 cp->host_context_flags =
9253 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9254 cp->timeout_sec = 0;
9255 cp->ReplyQueue = 0;
9256 cp->tag =
9257 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9258 cp->host_addr =
9259 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9260 (i * sizeof(struct io_accel1_cmd)));
9261 }
9262 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9263 u64 cfg_offset, cfg_base_addr_index;
9264 u32 bft2_offset, cfg_base_addr;
9265 int rc;
9266
9267 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9268 &cfg_base_addr_index, &cfg_offset);
9269 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9270 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9271 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9272 4, h->ioaccel2_blockFetchTable);
9273 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9274 BUILD_BUG_ON(offsetof(struct CfgTable,
9275 io_accel_request_size_offset) != 0xb8);
9276 h->ioaccel2_bft2_regs =
9277 remap_pci_mem(pci_resource_start(h->pdev,
9278 cfg_base_addr_index) +
9279 cfg_offset + bft2_offset,
9280 ARRAY_SIZE(bft2) *
9281 sizeof(*h->ioaccel2_bft2_regs));
9282 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9283 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9284 }
9285 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9286 if (hpsa_wait_for_mode_change_ack(h)) {
9287 dev_err(&h->pdev->dev,
9288 "performant mode problem - enabling ioaccel mode\n");
9289 return -ENODEV;
9290 }
9291 return 0;
9292 }
9293
9294 /* Free ioaccel1 mode command blocks and block fetch table */
9295 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9296 {
9297 if (h->ioaccel_cmd_pool) {
9298 pci_free_consistent(h->pdev,
9299 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9300 h->ioaccel_cmd_pool,
9301 h->ioaccel_cmd_pool_dhandle);
9302 h->ioaccel_cmd_pool = NULL;
9303 h->ioaccel_cmd_pool_dhandle = 0;
9304 }
9305 kfree(h->ioaccel1_blockFetchTable);
9306 h->ioaccel1_blockFetchTable = NULL;
9307 }
9308
9309 /* Allocate ioaccel1 mode command blocks and block fetch table */
9310 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9311 {
9312 h->ioaccel_maxsg =
9313 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9314 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9315 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9316
9317 /* Command structures must be aligned on a 128-byte boundary
9318 * because the 7 lower bits of the address are used by the
9319 * hardware.
9320 */
9321 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9322 IOACCEL1_COMMANDLIST_ALIGNMENT);
9323 h->ioaccel_cmd_pool =
9324 dma_alloc_coherent(&h->pdev->dev,
9325 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9326 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9327
9328 h->ioaccel1_blockFetchTable =
9329 kmalloc(((h->ioaccel_maxsg + 1) *
9330 sizeof(u32)), GFP_KERNEL);
9331
9332 if ((h->ioaccel_cmd_pool == NULL) ||
9333 (h->ioaccel1_blockFetchTable == NULL))
9334 goto clean_up;
9335
9336 memset(h->ioaccel_cmd_pool, 0,
9337 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9338 return 0;
9339
9340 clean_up:
9341 hpsa_free_ioaccel1_cmd_and_bft(h);
9342 return -ENOMEM;
9343 }
9344
9345 /* Free ioaccel2 mode command blocks and block fetch table */
9346 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9347 {
9348 hpsa_free_ioaccel2_sg_chain_blocks(h);
9349
9350 if (h->ioaccel2_cmd_pool) {
9351 pci_free_consistent(h->pdev,
9352 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9353 h->ioaccel2_cmd_pool,
9354 h->ioaccel2_cmd_pool_dhandle);
9355 h->ioaccel2_cmd_pool = NULL;
9356 h->ioaccel2_cmd_pool_dhandle = 0;
9357 }
9358 kfree(h->ioaccel2_blockFetchTable);
9359 h->ioaccel2_blockFetchTable = NULL;
9360 }
9361
9362 /* Allocate ioaccel2 mode command blocks and block fetch table */
9363 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9364 {
9365 int rc;
9366
9367 /* Allocate ioaccel2 mode command blocks and block fetch table */
9368
9369 h->ioaccel_maxsg =
9370 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9371 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9372 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9373
9374 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9375 IOACCEL2_COMMANDLIST_ALIGNMENT);
9376 h->ioaccel2_cmd_pool =
9377 dma_alloc_coherent(&h->pdev->dev,
9378 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9379 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9380
9381 h->ioaccel2_blockFetchTable =
9382 kmalloc(((h->ioaccel_maxsg + 1) *
9383 sizeof(u32)), GFP_KERNEL);
9384
9385 if ((h->ioaccel2_cmd_pool == NULL) ||
9386 (h->ioaccel2_blockFetchTable == NULL)) {
9387 rc = -ENOMEM;
9388 goto clean_up;
9389 }
9390
9391 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9392 if (rc)
9393 goto clean_up;
9394
9395 memset(h->ioaccel2_cmd_pool, 0,
9396 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9397 return 0;
9398
9399 clean_up:
9400 hpsa_free_ioaccel2_cmd_and_bft(h);
9401 return rc;
9402 }
9403
9404 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9405 static void hpsa_free_performant_mode(struct ctlr_info *h)
9406 {
9407 kfree(h->blockFetchTable);
9408 h->blockFetchTable = NULL;
9409 hpsa_free_reply_queues(h);
9410 hpsa_free_ioaccel1_cmd_and_bft(h);
9411 hpsa_free_ioaccel2_cmd_and_bft(h);
9412 }
9413
9414 /* return -ENODEV on error, 0 on success (or no action)
9415 * allocates numerous items that must be freed later
9416 */
9417 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9418 {
9419 u32 trans_support;
9420 unsigned long transMethod = CFGTBL_Trans_Performant |
9421 CFGTBL_Trans_use_short_tags;
9422 int i, rc;
9423
9424 if (hpsa_simple_mode)
9425 return 0;
9426
9427 trans_support = readl(&(h->cfgtable->TransportSupport));
9428 if (!(trans_support & PERFORMANT_MODE))
9429 return 0;
9430
9431 /* Check for I/O accelerator mode support */
9432 if (trans_support & CFGTBL_Trans_io_accel1) {
9433 transMethod |= CFGTBL_Trans_io_accel1 |
9434 CFGTBL_Trans_enable_directed_msix;
9435 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9436 if (rc)
9437 return rc;
9438 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9439 transMethod |= CFGTBL_Trans_io_accel2 |
9440 CFGTBL_Trans_enable_directed_msix;
9441 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9442 if (rc)
9443 return rc;
9444 }
9445
9446 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9447 hpsa_get_max_perf_mode_cmds(h);
9448 /* Performant mode ring buffer and supporting data structures */
9449 h->reply_queue_size = h->max_commands * sizeof(u64);
9450
9451 for (i = 0; i < h->nreply_queues; i++) {
9452 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9453 h->reply_queue_size,
9454 &h->reply_queue[i].busaddr,
9455 GFP_KERNEL);
9456 if (!h->reply_queue[i].head) {
9457 rc = -ENOMEM;
9458 goto clean1; /* rq, ioaccel */
9459 }
9460 h->reply_queue[i].size = h->max_commands;
9461 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9462 h->reply_queue[i].current_entry = 0;
9463 }
9464
9465 /* Need a block fetch table for performant mode */
9466 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9467 sizeof(u32)), GFP_KERNEL);
9468 if (!h->blockFetchTable) {
9469 rc = -ENOMEM;
9470 goto clean1; /* rq, ioaccel */
9471 }
9472
9473 rc = hpsa_enter_performant_mode(h, trans_support);
9474 if (rc)
9475 goto clean2; /* bft, rq, ioaccel */
9476 return 0;
9477
9478 clean2: /* bft, rq, ioaccel */
9479 kfree(h->blockFetchTable);
9480 h->blockFetchTable = NULL;
9481 clean1: /* rq, ioaccel */
9482 hpsa_free_reply_queues(h);
9483 hpsa_free_ioaccel1_cmd_and_bft(h);
9484 hpsa_free_ioaccel2_cmd_and_bft(h);
9485 return rc;
9486 }
9487
9488 static int is_accelerated_cmd(struct CommandList *c)
9489 {
9490 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9491 }
9492
9493 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9494 {
9495 struct CommandList *c = NULL;
9496 int i, accel_cmds_out;
9497 int refcount;
9498
9499 do { /* wait for all outstanding ioaccel commands to drain out */
9500 accel_cmds_out = 0;
9501 for (i = 0; i < h->nr_cmds; i++) {
9502 c = h->cmd_pool + i;
9503 refcount = atomic_inc_return(&c->refcount);
9504 if (refcount > 1) /* Command is allocated */
9505 accel_cmds_out += is_accelerated_cmd(c);
9506 cmd_free(h, c);
9507 }
9508 if (accel_cmds_out <= 0)
9509 break;
9510 msleep(100);
9511 } while (1);
9512 }
9513
9514 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9515 struct hpsa_sas_port *hpsa_sas_port)
9516 {
9517 struct hpsa_sas_phy *hpsa_sas_phy;
9518 struct sas_phy *phy;
9519
9520 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9521 if (!hpsa_sas_phy)
9522 return NULL;
9523
9524 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9525 hpsa_sas_port->next_phy_index);
9526 if (!phy) {
9527 kfree(hpsa_sas_phy);
9528 return NULL;
9529 }
9530
9531 hpsa_sas_port->next_phy_index++;
9532 hpsa_sas_phy->phy = phy;
9533 hpsa_sas_phy->parent_port = hpsa_sas_port;
9534
9535 return hpsa_sas_phy;
9536 }
9537
9538 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9539 {
9540 struct sas_phy *phy = hpsa_sas_phy->phy;
9541
9542 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9543 if (hpsa_sas_phy->added_to_port)
9544 list_del(&hpsa_sas_phy->phy_list_entry);
9545 sas_phy_delete(phy);
9546 kfree(hpsa_sas_phy);
9547 }
9548
9549 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9550 {
9551 int rc;
9552 struct hpsa_sas_port *hpsa_sas_port;
9553 struct sas_phy *phy;
9554 struct sas_identify *identify;
9555
9556 hpsa_sas_port = hpsa_sas_phy->parent_port;
9557 phy = hpsa_sas_phy->phy;
9558
9559 identify = &phy->identify;
9560 memset(identify, 0, sizeof(*identify));
9561 identify->sas_address = hpsa_sas_port->sas_address;
9562 identify->device_type = SAS_END_DEVICE;
9563 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9564 identify->target_port_protocols = SAS_PROTOCOL_STP;
9565 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9566 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9567 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9568 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9569 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9570
9571 rc = sas_phy_add(hpsa_sas_phy->phy);
9572 if (rc)
9573 return rc;
9574
9575 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9576 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9577 &hpsa_sas_port->phy_list_head);
9578 hpsa_sas_phy->added_to_port = true;
9579
9580 return 0;
9581 }
9582
9583 static int
9584 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9585 struct sas_rphy *rphy)
9586 {
9587 struct sas_identify *identify;
9588
9589 identify = &rphy->identify;
9590 identify->sas_address = hpsa_sas_port->sas_address;
9591 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9592 identify->target_port_protocols = SAS_PROTOCOL_STP;
9593
9594 return sas_rphy_add(rphy);
9595 }
9596
9597 static struct hpsa_sas_port
9598 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9599 u64 sas_address)
9600 {
9601 int rc;
9602 struct hpsa_sas_port *hpsa_sas_port;
9603 struct sas_port *port;
9604
9605 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9606 if (!hpsa_sas_port)
9607 return NULL;
9608
9609 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9610 hpsa_sas_port->parent_node = hpsa_sas_node;
9611
9612 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9613 if (!port)
9614 goto free_hpsa_port;
9615
9616 rc = sas_port_add(port);
9617 if (rc)
9618 goto free_sas_port;
9619
9620 hpsa_sas_port->port = port;
9621 hpsa_sas_port->sas_address = sas_address;
9622 list_add_tail(&hpsa_sas_port->port_list_entry,
9623 &hpsa_sas_node->port_list_head);
9624
9625 return hpsa_sas_port;
9626
9627 free_sas_port:
9628 sas_port_free(port);
9629 free_hpsa_port:
9630 kfree(hpsa_sas_port);
9631
9632 return NULL;
9633 }
9634
9635 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9636 {
9637 struct hpsa_sas_phy *hpsa_sas_phy;
9638 struct hpsa_sas_phy *next;
9639
9640 list_for_each_entry_safe(hpsa_sas_phy, next,
9641 &hpsa_sas_port->phy_list_head, phy_list_entry)
9642 hpsa_free_sas_phy(hpsa_sas_phy);
9643
9644 sas_port_delete(hpsa_sas_port->port);
9645 list_del(&hpsa_sas_port->port_list_entry);
9646 kfree(hpsa_sas_port);
9647 }
9648
9649 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9650 {
9651 struct hpsa_sas_node *hpsa_sas_node;
9652
9653 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9654 if (hpsa_sas_node) {
9655 hpsa_sas_node->parent_dev = parent_dev;
9656 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9657 }
9658
9659 return hpsa_sas_node;
9660 }
9661
9662 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9663 {
9664 struct hpsa_sas_port *hpsa_sas_port;
9665 struct hpsa_sas_port *next;
9666
9667 if (!hpsa_sas_node)
9668 return;
9669
9670 list_for_each_entry_safe(hpsa_sas_port, next,
9671 &hpsa_sas_node->port_list_head, port_list_entry)
9672 hpsa_free_sas_port(hpsa_sas_port);
9673
9674 kfree(hpsa_sas_node);
9675 }
9676
9677 static struct hpsa_scsi_dev_t
9678 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9679 struct sas_rphy *rphy)
9680 {
9681 int i;
9682 struct hpsa_scsi_dev_t *device;
9683
9684 for (i = 0; i < h->ndevices; i++) {
9685 device = h->dev[i];
9686 if (!device->sas_port)
9687 continue;
9688 if (device->sas_port->rphy == rphy)
9689 return device;
9690 }
9691
9692 return NULL;
9693 }
9694
9695 static int hpsa_add_sas_host(struct ctlr_info *h)
9696 {
9697 int rc;
9698 struct device *parent_dev;
9699 struct hpsa_sas_node *hpsa_sas_node;
9700 struct hpsa_sas_port *hpsa_sas_port;
9701 struct hpsa_sas_phy *hpsa_sas_phy;
9702
9703 parent_dev = &h->scsi_host->shost_dev;
9704
9705 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9706 if (!hpsa_sas_node)
9707 return -ENOMEM;
9708
9709 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9710 if (!hpsa_sas_port) {
9711 rc = -ENODEV;
9712 goto free_sas_node;
9713 }
9714
9715 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9716 if (!hpsa_sas_phy) {
9717 rc = -ENODEV;
9718 goto free_sas_port;
9719 }
9720
9721 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9722 if (rc)
9723 goto free_sas_phy;
9724
9725 h->sas_host = hpsa_sas_node;
9726
9727 return 0;
9728
9729 free_sas_phy:
9730 hpsa_free_sas_phy(hpsa_sas_phy);
9731 free_sas_port:
9732 hpsa_free_sas_port(hpsa_sas_port);
9733 free_sas_node:
9734 hpsa_free_sas_node(hpsa_sas_node);
9735
9736 return rc;
9737 }
9738
9739 static void hpsa_delete_sas_host(struct ctlr_info *h)
9740 {
9741 hpsa_free_sas_node(h->sas_host);
9742 }
9743
9744 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9745 struct hpsa_scsi_dev_t *device)
9746 {
9747 int rc;
9748 struct hpsa_sas_port *hpsa_sas_port;
9749 struct sas_rphy *rphy;
9750
9751 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9752 if (!hpsa_sas_port)
9753 return -ENOMEM;
9754
9755 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9756 if (!rphy) {
9757 rc = -ENODEV;
9758 goto free_sas_port;
9759 }
9760
9761 hpsa_sas_port->rphy = rphy;
9762 device->sas_port = hpsa_sas_port;
9763
9764 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9765 if (rc)
9766 goto free_sas_port;
9767
9768 return 0;
9769
9770 free_sas_port:
9771 hpsa_free_sas_port(hpsa_sas_port);
9772 device->sas_port = NULL;
9773
9774 return rc;
9775 }
9776
9777 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9778 {
9779 if (device->sas_port) {
9780 hpsa_free_sas_port(device->sas_port);
9781 device->sas_port = NULL;
9782 }
9783 }
9784
9785 static int
9786 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9787 {
9788 return 0;
9789 }
9790
9791 static int
9792 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9793 {
9794 struct Scsi_Host *shost = phy_to_shost(rphy);
9795 struct ctlr_info *h;
9796 struct hpsa_scsi_dev_t *sd;
9797
9798 if (!shost)
9799 return -ENXIO;
9800
9801 h = shost_to_hba(shost);
9802
9803 if (!h)
9804 return -ENXIO;
9805
9806 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9807 if (!sd)
9808 return -ENXIO;
9809
9810 *identifier = sd->eli;
9811
9812 return 0;
9813 }
9814
9815 static int
9816 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9817 {
9818 return -ENXIO;
9819 }
9820
9821 static int
9822 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9823 {
9824 return 0;
9825 }
9826
9827 static int
9828 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9829 {
9830 return 0;
9831 }
9832
9833 static int
9834 hpsa_sas_phy_setup(struct sas_phy *phy)
9835 {
9836 return 0;
9837 }
9838
9839 static void
9840 hpsa_sas_phy_release(struct sas_phy *phy)
9841 {
9842 }
9843
9844 static int
9845 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9846 {
9847 return -EINVAL;
9848 }
9849
9850 static struct sas_function_template hpsa_sas_transport_functions = {
9851 .get_linkerrors = hpsa_sas_get_linkerrors,
9852 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9853 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9854 .phy_reset = hpsa_sas_phy_reset,
9855 .phy_enable = hpsa_sas_phy_enable,
9856 .phy_setup = hpsa_sas_phy_setup,
9857 .phy_release = hpsa_sas_phy_release,
9858 .set_phy_speed = hpsa_sas_phy_speed,
9859 };
9860
9861 /*
9862 * This is it. Register the PCI driver information for the cards we control
9863 * the OS will call our registered routines when it finds one of our cards.
9864 */
9865 static int __init hpsa_init(void)
9866 {
9867 int rc;
9868
9869 hpsa_sas_transport_template =
9870 sas_attach_transport(&hpsa_sas_transport_functions);
9871 if (!hpsa_sas_transport_template)
9872 return -ENODEV;
9873
9874 rc = pci_register_driver(&hpsa_pci_driver);
9875
9876 if (rc)
9877 sas_release_transport(hpsa_sas_transport_template);
9878
9879 return rc;
9880 }
9881
9882 static void __exit hpsa_cleanup(void)
9883 {
9884 pci_unregister_driver(&hpsa_pci_driver);
9885 sas_release_transport(hpsa_sas_transport_template);
9886 }
9887
9888 static void __attribute__((unused)) verify_offsets(void)
9889 {
9890 #define VERIFY_OFFSET(member, offset) \
9891 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9892
9893 VERIFY_OFFSET(structure_size, 0);
9894 VERIFY_OFFSET(volume_blk_size, 4);
9895 VERIFY_OFFSET(volume_blk_cnt, 8);
9896 VERIFY_OFFSET(phys_blk_shift, 16);
9897 VERIFY_OFFSET(parity_rotation_shift, 17);
9898 VERIFY_OFFSET(strip_size, 18);
9899 VERIFY_OFFSET(disk_starting_blk, 20);
9900 VERIFY_OFFSET(disk_blk_cnt, 28);
9901 VERIFY_OFFSET(data_disks_per_row, 36);
9902 VERIFY_OFFSET(metadata_disks_per_row, 38);
9903 VERIFY_OFFSET(row_cnt, 40);
9904 VERIFY_OFFSET(layout_map_count, 42);
9905 VERIFY_OFFSET(flags, 44);
9906 VERIFY_OFFSET(dekindex, 46);
9907 /* VERIFY_OFFSET(reserved, 48 */
9908 VERIFY_OFFSET(data, 64);
9909
9910 #undef VERIFY_OFFSET
9911
9912 #define VERIFY_OFFSET(member, offset) \
9913 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9914
9915 VERIFY_OFFSET(IU_type, 0);
9916 VERIFY_OFFSET(direction, 1);
9917 VERIFY_OFFSET(reply_queue, 2);
9918 /* VERIFY_OFFSET(reserved1, 3); */
9919 VERIFY_OFFSET(scsi_nexus, 4);
9920 VERIFY_OFFSET(Tag, 8);
9921 VERIFY_OFFSET(cdb, 16);
9922 VERIFY_OFFSET(cciss_lun, 32);
9923 VERIFY_OFFSET(data_len, 40);
9924 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9925 VERIFY_OFFSET(sg_count, 45);
9926 /* VERIFY_OFFSET(reserved3 */
9927 VERIFY_OFFSET(err_ptr, 48);
9928 VERIFY_OFFSET(err_len, 56);
9929 /* VERIFY_OFFSET(reserved4 */
9930 VERIFY_OFFSET(sg, 64);
9931
9932 #undef VERIFY_OFFSET
9933
9934 #define VERIFY_OFFSET(member, offset) \
9935 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9936
9937 VERIFY_OFFSET(dev_handle, 0x00);
9938 VERIFY_OFFSET(reserved1, 0x02);
9939 VERIFY_OFFSET(function, 0x03);
9940 VERIFY_OFFSET(reserved2, 0x04);
9941 VERIFY_OFFSET(err_info, 0x0C);
9942 VERIFY_OFFSET(reserved3, 0x10);
9943 VERIFY_OFFSET(err_info_len, 0x12);
9944 VERIFY_OFFSET(reserved4, 0x13);
9945 VERIFY_OFFSET(sgl_offset, 0x14);
9946 VERIFY_OFFSET(reserved5, 0x15);
9947 VERIFY_OFFSET(transfer_len, 0x1C);
9948 VERIFY_OFFSET(reserved6, 0x20);
9949 VERIFY_OFFSET(io_flags, 0x24);
9950 VERIFY_OFFSET(reserved7, 0x26);
9951 VERIFY_OFFSET(LUN, 0x34);
9952 VERIFY_OFFSET(control, 0x3C);
9953 VERIFY_OFFSET(CDB, 0x40);
9954 VERIFY_OFFSET(reserved8, 0x50);
9955 VERIFY_OFFSET(host_context_flags, 0x60);
9956 VERIFY_OFFSET(timeout_sec, 0x62);
9957 VERIFY_OFFSET(ReplyQueue, 0x64);
9958 VERIFY_OFFSET(reserved9, 0x65);
9959 VERIFY_OFFSET(tag, 0x68);
9960 VERIFY_OFFSET(host_addr, 0x70);
9961 VERIFY_OFFSET(CISS_LUN, 0x78);
9962 VERIFY_OFFSET(SG, 0x78 + 8);
9963 #undef VERIFY_OFFSET
9964 }
9965
9966 module_init(hpsa_init);
9967 module_exit(hpsa_cleanup);