]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/hpsa.c
drm/bridge: synopsys/dw-hdmi: Enable cec clock
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
158 */
159 static struct board_type products[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access},
161 {0x40800E11, "Smart Array 5i", &SA5B_access},
162 {0x40820E11, "Smart Array 532", &SA5B_access},
163 {0x40830E11, "Smart Array 5312", &SA5B_access},
164 {0x409A0E11, "Smart Array 641", &SA5A_access},
165 {0x409B0E11, "Smart Array 642", &SA5A_access},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 {0x40910E11, "Smart Array 6i", &SA5A_access},
169 {0x3225103C, "Smart Array P600", &SA5A_access},
170 {0x3223103C, "Smart Array P800", &SA5A_access},
171 {0x3234103C, "Smart Array P400", &SA5A_access},
172 {0x3235103C, "Smart Array P400i", &SA5A_access},
173 {0x3211103C, "Smart Array E200i", &SA5A_access},
174 {0x3212103C, "Smart Array E200", &SA5A_access},
175 {0x3213103C, "Smart Array E200i", &SA5A_access},
176 {0x3214103C, "Smart Array E200i", &SA5A_access},
177 {0x3215103C, "Smart Array E200i", &SA5A_access},
178 {0x3237103C, "Smart Array E500", &SA5A_access},
179 {0x323D103C, "Smart Array P700m", &SA5A_access},
180 {0x3241103C, "Smart Array P212", &SA5_access},
181 {0x3243103C, "Smart Array P410", &SA5_access},
182 {0x3245103C, "Smart Array P410i", &SA5_access},
183 {0x3247103C, "Smart Array P411", &SA5_access},
184 {0x3249103C, "Smart Array P812", &SA5_access},
185 {0x324A103C, "Smart Array P712m", &SA5_access},
186 {0x324B103C, "Smart Array P711m", &SA5_access},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access},
189 {0x3351103C, "Smart Array P420", &SA5_access},
190 {0x3352103C, "Smart Array P421", &SA5_access},
191 {0x3353103C, "Smart Array P822", &SA5_access},
192 {0x3354103C, "Smart Array P420i", &SA5_access},
193 {0x3355103C, "Smart Array P220i", &SA5_access},
194 {0x3356103C, "Smart Array P721m", &SA5_access},
195 {0x1920103C, "Smart Array P430i", &SA5_access},
196 {0x1921103C, "Smart Array P830i", &SA5_access},
197 {0x1922103C, "Smart Array P430", &SA5_access},
198 {0x1923103C, "Smart Array P431", &SA5_access},
199 {0x1924103C, "Smart Array P830", &SA5_access},
200 {0x1925103C, "Smart Array P831", &SA5_access},
201 {0x1926103C, "Smart Array P731m", &SA5_access},
202 {0x1928103C, "Smart Array P230i", &SA5_access},
203 {0x1929103C, "Smart Array P530", &SA5_access},
204 {0x21BD103C, "Smart Array P244br", &SA5_access},
205 {0x21BE103C, "Smart Array P741m", &SA5_access},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access},
209 {0x21C2103C, "Smart Array P440", &SA5_access},
210 {0x21C3103C, "Smart Array P441", &SA5_access},
211 {0x21C4103C, "Smart Array", &SA5_access},
212 {0x21C5103C, "Smart Array P841", &SA5_access},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access},
214 {0x21C7103C, "Smart HBA H240", &SA5_access},
215 {0x21C8103C, "Smart HBA H241", &SA5_access},
216 {0x21C9103C, "Smart Array", &SA5_access},
217 {0x21CA103C, "Smart Array P246br", &SA5_access},
218 {0x21CB103C, "Smart Array P840", &SA5_access},
219 {0x21CC103C, "Smart Array", &SA5_access},
220 {0x21CD103C, "Smart Array", &SA5_access},
221 {0x21CE103C, "Smart HBA", &SA5_access},
222 {0x05809005, "SmartHBA-SA", &SA5_access},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 unsigned char lunaddr[],
304 int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 struct hpsa_scsi_dev_t *dev,
327 unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 unsigned long *priv = shost_priv(sdev->host);
332 return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 unsigned long *priv = shost_priv(sh);
338 return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 struct scsi_sense_hdr sshdr;
356 bool rc;
357
358 *sense_key = -1;
359 *asc = -1;
360 *ascq = -1;
361
362 if (sense_data_len < 1)
363 return;
364
365 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 if (rc) {
367 *sense_key = sshdr.sense_key;
368 *asc = sshdr.asc;
369 *ascq = sshdr.ascq;
370 }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374 struct CommandList *c)
375 {
376 u8 sense_key, asc, ascq;
377 int sense_len;
378
379 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 sense_len = sizeof(c->err_info->SenseInfo);
381 else
382 sense_len = c->err_info->SenseLen;
383
384 decode_sense_data(c->err_info->SenseInfo, sense_len,
385 &sense_key, &asc, &ascq);
386 if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 return 0;
388
389 switch (asc) {
390 case STATE_CHANGED:
391 dev_warn(&h->pdev->dev,
392 "%s: a state change detected, command retried\n",
393 h->devname);
394 break;
395 case LUN_FAILED:
396 dev_warn(&h->pdev->dev,
397 "%s: LUN failure detected\n", h->devname);
398 break;
399 case REPORT_LUNS_CHANGED:
400 dev_warn(&h->pdev->dev,
401 "%s: report LUN data changed\n", h->devname);
402 /*
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
405 */
406 break;
407 case POWER_OR_RESET:
408 dev_warn(&h->pdev->dev,
409 "%s: a power on or device reset detected\n",
410 h->devname);
411 break;
412 case UNIT_ATTENTION_CLEARED:
413 dev_warn(&h->pdev->dev,
414 "%s: unit attention cleared by another initiator\n",
415 h->devname);
416 break;
417 default:
418 dev_warn(&h->pdev->dev,
419 "%s: unknown unit attention detected\n",
420 h->devname);
421 break;
422 }
423 return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 return 0;
432 dev_warn(&h->pdev->dev, HPSA "device busy");
433 return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 struct device_attribute *attr, char *buf)
439 {
440 int ld;
441 struct ctlr_info *h;
442 struct Scsi_Host *shost = class_to_shost(dev);
443
444 h = shost_to_hba(shost);
445 ld = lockup_detected(h);
446
447 return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
453 {
454 int status, len;
455 struct ctlr_info *h;
456 struct Scsi_Host *shost = class_to_shost(dev);
457 char tmpbuf[10];
458
459 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 return -EACCES;
461 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 strncpy(tmpbuf, buf, len);
463 tmpbuf[len] = '\0';
464 if (sscanf(tmpbuf, "%d", &status) != 1)
465 return -EINVAL;
466 h = shost_to_hba(shost);
467 h->acciopath_status = !!status;
468 dev_warn(&h->pdev->dev,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h->acciopath_status ? "enabled" : "disabled");
471 return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 struct device_attribute *attr,
476 const char *buf, size_t count)
477 {
478 int debug_level, len;
479 struct ctlr_info *h;
480 struct Scsi_Host *shost = class_to_shost(dev);
481 char tmpbuf[10];
482
483 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 return -EACCES;
485 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 strncpy(tmpbuf, buf, len);
487 tmpbuf[len] = '\0';
488 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 return -EINVAL;
490 if (debug_level < 0)
491 debug_level = 0;
492 h = shost_to_hba(shost);
493 h->raid_offload_debug = debug_level;
494 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 h->raid_offload_debug);
496 return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500 struct device_attribute *attr,
501 const char *buf, size_t count)
502 {
503 struct ctlr_info *h;
504 struct Scsi_Host *shost = class_to_shost(dev);
505 h = shost_to_hba(shost);
506 hpsa_scan_start(h->scsi_host);
507 return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 struct device_attribute *attr, char *buf)
512 {
513 struct ctlr_info *h;
514 struct Scsi_Host *shost = class_to_shost(dev);
515 unsigned char *fwrev;
516
517 h = shost_to_hba(shost);
518 if (!h->hba_inquiry_data)
519 return 0;
520 fwrev = &h->hba_inquiry_data[32];
521 return snprintf(buf, 20, "%c%c%c%c\n",
522 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct Scsi_Host *shost = class_to_shost(dev);
529 struct ctlr_info *h = shost_to_hba(shost);
530
531 return snprintf(buf, 20, "%d\n",
532 atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536 struct device_attribute *attr, char *buf)
537 {
538 struct ctlr_info *h;
539 struct Scsi_Host *shost = class_to_shost(dev);
540
541 h = shost_to_hba(shost);
542 return snprintf(buf, 20, "%s\n",
543 h->transMethod & CFGTBL_Trans_Performant ?
544 "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct ctlr_info *h;
551 struct Scsi_Host *shost = class_to_shost(dev);
552
553 h = shost_to_hba(shost);
554 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 (h->acciopath_status == 1) ? "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
598 */
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 int i;
606
607 for (i = 0; i < nelems; i++)
608 if (a[i] == board_id)
609 return 1;
610 return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 return !board_id_in_array(unresettable_controller,
616 ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 return !board_id_in_array(soft_unresettable_controller,
622 ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 return ctlr_is_hard_resettable(board_id) ||
628 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632 struct device_attribute *attr, char *buf)
633 {
634 struct ctlr_info *h;
635 struct Scsi_Host *shost = class_to_shost(dev);
636
637 h = shost_to_hba(shost);
638 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0 0
650 #define HPSA_RAID_4 1
651 #define HPSA_RAID_1 2 /* also used for RAID 10 */
652 #define HPSA_RAID_5 3 /* also used for RAID 50 */
653 #define HPSA_RAID_51 4
654 #define HPSA_RAID_6 5 /* also used for RAID 60 */
655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665 struct device_attribute *attr, char *buf)
666 {
667 ssize_t l = 0;
668 unsigned char rlevel;
669 struct ctlr_info *h;
670 struct scsi_device *sdev;
671 struct hpsa_scsi_dev_t *hdev;
672 unsigned long flags;
673
674 sdev = to_scsi_device(dev);
675 h = sdev_to_hba(sdev);
676 spin_lock_irqsave(&h->lock, flags);
677 hdev = sdev->hostdata;
678 if (!hdev) {
679 spin_unlock_irqrestore(&h->lock, flags);
680 return -ENODEV;
681 }
682
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev)) {
685 spin_unlock_irqrestore(&h->lock, flags);
686 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 return l;
688 }
689
690 rlevel = hdev->raid_level;
691 spin_unlock_irqrestore(&h->lock, flags);
692 if (rlevel > RAID_UNKNOWN)
693 rlevel = RAID_UNKNOWN;
694 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
700 {
701 struct ctlr_info *h;
702 struct scsi_device *sdev;
703 struct hpsa_scsi_dev_t *hdev;
704 unsigned long flags;
705 unsigned char lunid[8];
706
707 sdev = to_scsi_device(dev);
708 h = sdev_to_hba(sdev);
709 spin_lock_irqsave(&h->lock, flags);
710 hdev = sdev->hostdata;
711 if (!hdev) {
712 spin_unlock_irqrestore(&h->lock, flags);
713 return -ENODEV;
714 }
715 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 spin_unlock_irqrestore(&h->lock, flags);
717 return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721 struct device_attribute *attr, char *buf)
722 {
723 struct ctlr_info *h;
724 struct scsi_device *sdev;
725 struct hpsa_scsi_dev_t *hdev;
726 unsigned long flags;
727 unsigned char sn[16];
728
729 sdev = to_scsi_device(dev);
730 h = sdev_to_hba(sdev);
731 spin_lock_irqsave(&h->lock, flags);
732 hdev = sdev->hostdata;
733 if (!hdev) {
734 spin_unlock_irqrestore(&h->lock, flags);
735 return -ENODEV;
736 }
737 memcpy(sn, hdev->device_id, sizeof(sn));
738 spin_unlock_irqrestore(&h->lock, flags);
739 return snprintf(buf, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn[0], sn[1], sn[2], sn[3],
743 sn[4], sn[5], sn[6], sn[7],
744 sn[8], sn[9], sn[10], sn[11],
745 sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750 {
751 struct ctlr_info *h;
752 struct scsi_device *sdev;
753 struct hpsa_scsi_dev_t *hdev;
754 unsigned long flags;
755 u64 sas_address;
756
757 sdev = to_scsi_device(dev);
758 h = sdev_to_hba(sdev);
759 spin_lock_irqsave(&h->lock, flags);
760 hdev = sdev->hostdata;
761 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 spin_unlock_irqrestore(&h->lock, flags);
763 return -ENODEV;
764 }
765 sas_address = hdev->sas_address;
766 spin_unlock_irqrestore(&h->lock, flags);
767
768 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 struct device_attribute *attr, char *buf)
773 {
774 struct ctlr_info *h;
775 struct scsi_device *sdev;
776 struct hpsa_scsi_dev_t *hdev;
777 unsigned long flags;
778 int offload_enabled;
779
780 sdev = to_scsi_device(dev);
781 h = sdev_to_hba(sdev);
782 spin_lock_irqsave(&h->lock, flags);
783 hdev = sdev->hostdata;
784 if (!hdev) {
785 spin_unlock_irqrestore(&h->lock, flags);
786 return -ENODEV;
787 }
788 offload_enabled = hdev->offload_enabled;
789 spin_unlock_irqrestore(&h->lock, flags);
790
791 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 return snprintf(buf, 20, "%d\n", offload_enabled);
793 else
794 return snprintf(buf, 40, "%s\n",
795 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801 {
802 struct ctlr_info *h;
803 struct scsi_device *sdev;
804 struct hpsa_scsi_dev_t *hdev;
805 unsigned long flags;
806 int i;
807 int output_len = 0;
808 u8 box;
809 u8 bay;
810 u8 path_map_index = 0;
811 char *active;
812 unsigned char phys_connector[2];
813
814 sdev = to_scsi_device(dev);
815 h = sdev_to_hba(sdev);
816 spin_lock_irqsave(&h->devlock, flags);
817 hdev = sdev->hostdata;
818 if (!hdev) {
819 spin_unlock_irqrestore(&h->devlock, flags);
820 return -ENODEV;
821 }
822
823 bay = hdev->bay;
824 for (i = 0; i < MAX_PATHS; i++) {
825 path_map_index = 1<<i;
826 if (i == hdev->active_path_index)
827 active = "Active";
828 else if (hdev->path_map & path_map_index)
829 active = "Inactive";
830 else
831 continue;
832
833 output_len += scnprintf(buf + output_len,
834 PAGE_SIZE - output_len,
835 "[%d:%d:%d:%d] %20.20s ",
836 h->scsi_host->host_no,
837 hdev->bus, hdev->target, hdev->lun,
838 scsi_device_type(hdev->devtype));
839
840 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 output_len += scnprintf(buf + output_len,
842 PAGE_SIZE - output_len,
843 "%s\n", active);
844 continue;
845 }
846
847 box = hdev->box[i];
848 memcpy(&phys_connector, &hdev->phys_connector[i],
849 sizeof(phys_connector));
850 if (phys_connector[0] < '0')
851 phys_connector[0] = '0';
852 if (phys_connector[1] < '0')
853 phys_connector[1] = '0';
854 output_len += scnprintf(buf + output_len,
855 PAGE_SIZE - output_len,
856 "PORT: %.2s ",
857 phys_connector);
858 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 hdev->expose_device) {
860 if (box == 0 || box == 0xFF) {
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
863 "BAY: %hhu %s\n",
864 bay, active);
865 } else {
866 output_len += scnprintf(buf + output_len,
867 PAGE_SIZE - output_len,
868 "BOX: %hhu BAY: %hhu %s\n",
869 box, bay, active);
870 }
871 } else if (box != 0 && box != 0xFF) {
872 output_len += scnprintf(buf + output_len,
873 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 box, active);
875 } else
876 output_len += scnprintf(buf + output_len,
877 PAGE_SIZE - output_len, "%s\n", active);
878 }
879
880 spin_unlock_irqrestore(&h->devlock, flags);
881 return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 struct device_attribute *attr, char *buf)
886 {
887 struct ctlr_info *h;
888 struct Scsi_Host *shost = class_to_shost(dev);
889
890 h = shost_to_hba(shost);
891 return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895 struct device_attribute *attr, char *buf)
896 {
897 struct ctlr_info *h;
898 struct Scsi_Host *shost = class_to_shost(dev);
899
900 h = shost_to_hba(shost);
901 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
905 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
906 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 host_show_hp_ssd_smart_path_status,
914 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 &dev_attr_raid_level,
934 &dev_attr_lunid,
935 &dev_attr_unique_id,
936 &dev_attr_hp_ssd_smart_path_enabled,
937 &dev_attr_path_info,
938 &dev_attr_sas_address,
939 NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 &dev_attr_rescan,
944 &dev_attr_firmware_revision,
945 &dev_attr_commands_outstanding,
946 &dev_attr_transport_mode,
947 &dev_attr_resettable,
948 &dev_attr_hp_ssd_smart_path_status,
949 &dev_attr_raid_offload_debug,
950 &dev_attr_lockup_detected,
951 &dev_attr_ctlr_num,
952 &dev_attr_legacy_board,
953 NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960 .module = THIS_MODULE,
961 .name = HPSA,
962 .proc_name = HPSA,
963 .queuecommand = hpsa_scsi_queue_command,
964 .scan_start = hpsa_scan_start,
965 .scan_finished = hpsa_scan_finished,
966 .change_queue_depth = hpsa_change_queue_depth,
967 .this_id = -1,
968 .use_clustering = ENABLE_CLUSTERING,
969 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 .ioctl = hpsa_ioctl,
971 .slave_alloc = hpsa_slave_alloc,
972 .slave_configure = hpsa_slave_configure,
973 .slave_destroy = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 .compat_ioctl = hpsa_compat_ioctl,
976 #endif
977 .sdev_attrs = hpsa_sdev_attrs,
978 .shost_attrs = hpsa_shost_attrs,
979 .max_sectors = 1024,
980 .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 u32 a;
986 struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988 if (h->transMethod & CFGTBL_Trans_io_accel1)
989 return h->access.command_completed(h, q);
990
991 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 return h->access.command_completed(h, q);
993
994 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 a = rq->head[rq->current_entry];
996 rq->current_entry++;
997 atomic_dec(&h->commands_outstanding);
998 } else {
999 a = FIFO_EMPTY;
1000 }
1001 /* Check for wraparound */
1002 if (rq->current_entry == h->max_commands) {
1003 rq->current_entry = 0;
1004 rq->wraparound ^= 1;
1005 }
1006 return a;
1007 }
1008
1009 /*
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1013 *
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1018 *
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1027 *
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1033 */
1034
1035 /*
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1039 */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 int reply_queue)
1043 {
1044 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 if (unlikely(!h->msix_vectors))
1047 return;
1048 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049 c->Header.ReplyQueue =
1050 raw_smp_processor_id() % h->nreply_queues;
1051 else
1052 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1053 }
1054 }
1055
1056 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1057 struct CommandList *c,
1058 int reply_queue)
1059 {
1060 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1061
1062 /*
1063 * Tell the controller to post the reply to the queue for this
1064 * processor. This seems to give the best I/O throughput.
1065 */
1066 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1068 else
1069 cp->ReplyQueue = reply_queue % h->nreply_queues;
1070 /*
1071 * Set the bits in the address sent down to include:
1072 * - performant mode bit (bit 0)
1073 * - pull count (bits 1-3)
1074 * - command type (bits 4-6)
1075 */
1076 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 struct CommandList *c,
1082 int reply_queue)
1083 {
1084 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 &h->ioaccel2_cmd_pool[c->cmdindex];
1086
1087 /* Tell the controller to post the reply to the queue for this
1088 * processor. This seems to give the best I/O throughput.
1089 */
1090 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1091 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1092 else
1093 cp->reply_queue = reply_queue % h->nreply_queues;
1094 /* Set the bits in the address sent down to include:
1095 * - performant mode bit not used in ioaccel mode 2
1096 * - pull count (bits 0-3)
1097 * - command type isn't needed for ioaccel2
1098 */
1099 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 struct CommandList *c,
1104 int reply_queue)
1105 {
1106 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107
1108 /*
1109 * Tell the controller to post the reply to the queue for this
1110 * processor. This seems to give the best I/O throughput.
1111 */
1112 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1113 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1114 else
1115 cp->reply_queue = reply_queue % h->nreply_queues;
1116 /*
1117 * Set the bits in the address sent down to include:
1118 * - performant mode bit not used in ioaccel mode 2
1119 * - pull count (bits 0-3)
1120 * - command type isn't needed for ioaccel2
1121 */
1122 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1123 }
1124
1125 static int is_firmware_flash_cmd(u8 *cdb)
1126 {
1127 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1128 }
1129
1130 /*
1131 * During firmware flash, the heartbeat register may not update as frequently
1132 * as it should. So we dial down lockup detection during firmware flash. and
1133 * dial it back up when firmware flash completes.
1134 */
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1139 struct CommandList *c)
1140 {
1141 if (!is_firmware_flash_cmd(c->Request.CDB))
1142 return;
1143 atomic_inc(&h->firmware_flash_in_progress);
1144 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1145 }
1146
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1148 struct CommandList *c)
1149 {
1150 if (is_firmware_flash_cmd(c->Request.CDB) &&
1151 atomic_dec_and_test(&h->firmware_flash_in_progress))
1152 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1153 }
1154
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1156 struct CommandList *c, int reply_queue)
1157 {
1158 dial_down_lockup_detection_during_fw_flash(h, c);
1159 atomic_inc(&h->commands_outstanding);
1160 switch (c->cmd_type) {
1161 case CMD_IOACCEL1:
1162 set_ioaccel1_performant_mode(h, c, reply_queue);
1163 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164 break;
1165 case CMD_IOACCEL2:
1166 set_ioaccel2_performant_mode(h, c, reply_queue);
1167 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168 break;
1169 case IOACCEL2_TMF:
1170 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 break;
1173 default:
1174 set_performant_mode(h, c, reply_queue);
1175 h->access.submit_command(h, c);
1176 }
1177 }
1178
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181 if (unlikely(hpsa_is_pending_event(c)))
1182 return finish_cmd(c);
1183
1184 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1185 }
1186
1187 static inline int is_hba_lunid(unsigned char scsi3addr[])
1188 {
1189 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1190 }
1191
1192 static inline int is_scsi_rev_5(struct ctlr_info *h)
1193 {
1194 if (!h->hba_inquiry_data)
1195 return 0;
1196 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1197 return 1;
1198 return 0;
1199 }
1200
1201 static int hpsa_find_target_lun(struct ctlr_info *h,
1202 unsigned char scsi3addr[], int bus, int *target, int *lun)
1203 {
1204 /* finds an unused bus, target, lun for a new physical device
1205 * assumes h->devlock is held
1206 */
1207 int i, found = 0;
1208 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1209
1210 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1211
1212 for (i = 0; i < h->ndevices; i++) {
1213 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1214 __set_bit(h->dev[i]->target, lun_taken);
1215 }
1216
1217 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1218 if (i < HPSA_MAX_DEVICES) {
1219 /* *bus = 1; */
1220 *target = i;
1221 *lun = 0;
1222 found = 1;
1223 }
1224 return !found;
1225 }
1226
1227 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1228 struct hpsa_scsi_dev_t *dev, char *description)
1229 {
1230 #define LABEL_SIZE 25
1231 char label[LABEL_SIZE];
1232
1233 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234 return;
1235
1236 switch (dev->devtype) {
1237 case TYPE_RAID:
1238 snprintf(label, LABEL_SIZE, "controller");
1239 break;
1240 case TYPE_ENCLOSURE:
1241 snprintf(label, LABEL_SIZE, "enclosure");
1242 break;
1243 case TYPE_DISK:
1244 case TYPE_ZBC:
1245 if (dev->external)
1246 snprintf(label, LABEL_SIZE, "external");
1247 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1248 snprintf(label, LABEL_SIZE, "%s",
1249 raid_label[PHYSICAL_DRIVE]);
1250 else
1251 snprintf(label, LABEL_SIZE, "RAID-%s",
1252 dev->raid_level > RAID_UNKNOWN ? "?" :
1253 raid_label[dev->raid_level]);
1254 break;
1255 case TYPE_ROM:
1256 snprintf(label, LABEL_SIZE, "rom");
1257 break;
1258 case TYPE_TAPE:
1259 snprintf(label, LABEL_SIZE, "tape");
1260 break;
1261 case TYPE_MEDIUM_CHANGER:
1262 snprintf(label, LABEL_SIZE, "changer");
1263 break;
1264 default:
1265 snprintf(label, LABEL_SIZE, "UNKNOWN");
1266 break;
1267 }
1268
1269 dev_printk(level, &h->pdev->dev,
1270 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1272 description,
1273 scsi_device_type(dev->devtype),
1274 dev->vendor,
1275 dev->model,
1276 label,
1277 dev->offload_config ? '+' : '-',
1278 dev->offload_to_be_enabled ? '+' : '-',
1279 dev->expose_device);
1280 }
1281
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1284 struct hpsa_scsi_dev_t *device,
1285 struct hpsa_scsi_dev_t *added[], int *nadded)
1286 {
1287 /* assumes h->devlock is held */
1288 int n = h->ndevices;
1289 int i;
1290 unsigned char addr1[8], addr2[8];
1291 struct hpsa_scsi_dev_t *sd;
1292
1293 if (n >= HPSA_MAX_DEVICES) {
1294 dev_err(&h->pdev->dev, "too many devices, some will be "
1295 "inaccessible.\n");
1296 return -1;
1297 }
1298
1299 /* physical devices do not have lun or target assigned until now. */
1300 if (device->lun != -1)
1301 /* Logical device, lun is already assigned. */
1302 goto lun_assigned;
1303
1304 /* If this device a non-zero lun of a multi-lun device
1305 * byte 4 of the 8-byte LUN addr will contain the logical
1306 * unit no, zero otherwise.
1307 */
1308 if (device->scsi3addr[4] == 0) {
1309 /* This is not a non-zero lun of a multi-lun device */
1310 if (hpsa_find_target_lun(h, device->scsi3addr,
1311 device->bus, &device->target, &device->lun) != 0)
1312 return -1;
1313 goto lun_assigned;
1314 }
1315
1316 /* This is a non-zero lun of a multi-lun device.
1317 * Search through our list and find the device which
1318 * has the same 8 byte LUN address, excepting byte 4 and 5.
1319 * Assign the same bus and target for this new LUN.
1320 * Use the logical unit number from the firmware.
1321 */
1322 memcpy(addr1, device->scsi3addr, 8);
1323 addr1[4] = 0;
1324 addr1[5] = 0;
1325 for (i = 0; i < n; i++) {
1326 sd = h->dev[i];
1327 memcpy(addr2, sd->scsi3addr, 8);
1328 addr2[4] = 0;
1329 addr2[5] = 0;
1330 /* differ only in byte 4 and 5? */
1331 if (memcmp(addr1, addr2, 8) == 0) {
1332 device->bus = sd->bus;
1333 device->target = sd->target;
1334 device->lun = device->scsi3addr[4];
1335 break;
1336 }
1337 }
1338 if (device->lun == -1) {
1339 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1340 " suspect firmware bug or unsupported hardware "
1341 "configuration.\n");
1342 return -1;
1343 }
1344
1345 lun_assigned:
1346
1347 h->dev[n] = device;
1348 h->ndevices++;
1349 added[*nadded] = device;
1350 (*nadded)++;
1351 hpsa_show_dev_msg(KERN_INFO, h, device,
1352 device->expose_device ? "added" : "masked");
1353 return 0;
1354 }
1355
1356 /*
1357 * Called during a scan operation.
1358 *
1359 * Update an entry in h->dev[] array.
1360 */
1361 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1362 int entry, struct hpsa_scsi_dev_t *new_entry)
1363 {
1364 /* assumes h->devlock is held */
1365 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1366
1367 /* Raid level changed. */
1368 h->dev[entry]->raid_level = new_entry->raid_level;
1369
1370 /*
1371 * ioacccel_handle may have changed for a dual domain disk
1372 */
1373 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374
1375 /* Raid offload parameters changed. Careful about the ordering. */
1376 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1377 /*
1378 * if drive is newly offload_enabled, we want to copy the
1379 * raid map data first. If previously offload_enabled and
1380 * offload_config were set, raid map data had better be
1381 * the same as it was before. If raid map data has changed
1382 * then it had better be the case that
1383 * h->dev[entry]->offload_enabled is currently 0.
1384 */
1385 h->dev[entry]->raid_map = new_entry->raid_map;
1386 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387 }
1388 if (new_entry->offload_to_be_enabled) {
1389 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1390 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1391 }
1392 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1393 h->dev[entry]->offload_config = new_entry->offload_config;
1394 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1395 h->dev[entry]->queue_depth = new_entry->queue_depth;
1396
1397 /*
1398 * We can turn off ioaccel offload now, but need to delay turning
1399 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400 * can't do that until all the devices are updated.
1401 */
1402 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1403
1404 /*
1405 * turn ioaccel off immediately if told to do so.
1406 */
1407 if (!new_entry->offload_to_be_enabled)
1408 h->dev[entry]->offload_enabled = 0;
1409
1410 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1411 }
1412
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1415 int entry, struct hpsa_scsi_dev_t *new_entry,
1416 struct hpsa_scsi_dev_t *added[], int *nadded,
1417 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1418 {
1419 /* assumes h->devlock is held */
1420 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1421 removed[*nremoved] = h->dev[entry];
1422 (*nremoved)++;
1423
1424 /*
1425 * New physical devices won't have target/lun assigned yet
1426 * so we need to preserve the values in the slot we are replacing.
1427 */
1428 if (new_entry->target == -1) {
1429 new_entry->target = h->dev[entry]->target;
1430 new_entry->lun = h->dev[entry]->lun;
1431 }
1432
1433 h->dev[entry] = new_entry;
1434 added[*nadded] = new_entry;
1435 (*nadded)++;
1436
1437 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1438 }
1439
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1442 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1443 {
1444 /* assumes h->devlock is held */
1445 int i;
1446 struct hpsa_scsi_dev_t *sd;
1447
1448 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1449
1450 sd = h->dev[entry];
1451 removed[*nremoved] = h->dev[entry];
1452 (*nremoved)++;
1453
1454 for (i = entry; i < h->ndevices-1; i++)
1455 h->dev[i] = h->dev[i+1];
1456 h->ndevices--;
1457 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1458 }
1459
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461 (a)[7] == (b)[7] && \
1462 (a)[6] == (b)[6] && \
1463 (a)[5] == (b)[5] && \
1464 (a)[4] == (b)[4] && \
1465 (a)[3] == (b)[3] && \
1466 (a)[2] == (b)[2] && \
1467 (a)[1] == (b)[1] && \
1468 (a)[0] == (b)[0])
1469
1470 static void fixup_botched_add(struct ctlr_info *h,
1471 struct hpsa_scsi_dev_t *added)
1472 {
1473 /* called when scsi_add_device fails in order to re-adjust
1474 * h->dev[] to match the mid layer's view.
1475 */
1476 unsigned long flags;
1477 int i, j;
1478
1479 spin_lock_irqsave(&h->lock, flags);
1480 for (i = 0; i < h->ndevices; i++) {
1481 if (h->dev[i] == added) {
1482 for (j = i; j < h->ndevices-1; j++)
1483 h->dev[j] = h->dev[j+1];
1484 h->ndevices--;
1485 break;
1486 }
1487 }
1488 spin_unlock_irqrestore(&h->lock, flags);
1489 kfree(added);
1490 }
1491
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1493 struct hpsa_scsi_dev_t *dev2)
1494 {
1495 /* we compare everything except lun and target as these
1496 * are not yet assigned. Compare parts likely
1497 * to differ first
1498 */
1499 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1500 sizeof(dev1->scsi3addr)) != 0)
1501 return 0;
1502 if (memcmp(dev1->device_id, dev2->device_id,
1503 sizeof(dev1->device_id)) != 0)
1504 return 0;
1505 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1506 return 0;
1507 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1508 return 0;
1509 if (dev1->devtype != dev2->devtype)
1510 return 0;
1511 if (dev1->bus != dev2->bus)
1512 return 0;
1513 return 1;
1514 }
1515
1516 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1517 struct hpsa_scsi_dev_t *dev2)
1518 {
1519 /* Device attributes that can change, but don't mean
1520 * that the device is a different device, nor that the OS
1521 * needs to be told anything about the change.
1522 */
1523 if (dev1->raid_level != dev2->raid_level)
1524 return 1;
1525 if (dev1->offload_config != dev2->offload_config)
1526 return 1;
1527 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1528 return 1;
1529 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1530 if (dev1->queue_depth != dev2->queue_depth)
1531 return 1;
1532 /*
1533 * This can happen for dual domain devices. An active
1534 * path change causes the ioaccel handle to change
1535 *
1536 * for example note the handle differences between p0 and p1
1537 * Device WWN ,WWN hash,Handle
1538 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1540 */
1541 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1542 return 1;
1543 return 0;
1544 }
1545
1546 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1547 * and return needle location in *index. If scsi3addr matches, but not
1548 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549 * location in *index.
1550 * In the case of a minor device attribute change, such as RAID level, just
1551 * return DEVICE_UPDATED, along with the updated device's location in index.
1552 * If needle not found, return DEVICE_NOT_FOUND.
1553 */
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1555 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1556 int *index)
1557 {
1558 int i;
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1563 if (needle == NULL)
1564 return DEVICE_NOT_FOUND;
1565
1566 for (i = 0; i < haystack_size; i++) {
1567 if (haystack[i] == NULL) /* previously removed. */
1568 continue;
1569 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1570 *index = i;
1571 if (device_is_the_same(needle, haystack[i])) {
1572 if (device_updated(needle, haystack[i]))
1573 return DEVICE_UPDATED;
1574 return DEVICE_SAME;
1575 } else {
1576 /* Keep offline devices offline */
1577 if (needle->volume_offline)
1578 return DEVICE_NOT_FOUND;
1579 return DEVICE_CHANGED;
1580 }
1581 }
1582 }
1583 *index = -1;
1584 return DEVICE_NOT_FOUND;
1585 }
1586
1587 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1588 unsigned char scsi3addr[])
1589 {
1590 struct offline_device_entry *device;
1591 unsigned long flags;
1592
1593 /* Check to see if device is already on the list */
1594 spin_lock_irqsave(&h->offline_device_lock, flags);
1595 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1596 if (memcmp(device->scsi3addr, scsi3addr,
1597 sizeof(device->scsi3addr)) == 0) {
1598 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1599 return;
1600 }
1601 }
1602 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603
1604 /* Device is not on the list, add it. */
1605 device = kmalloc(sizeof(*device), GFP_KERNEL);
1606 if (!device)
1607 return;
1608
1609 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1610 spin_lock_irqsave(&h->offline_device_lock, flags);
1611 list_add_tail(&device->offline_list, &h->offline_device_list);
1612 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1613 }
1614
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info *h,
1617 struct hpsa_scsi_dev_t *sd)
1618 {
1619 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1620 dev_info(&h->pdev->dev,
1621 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622 h->scsi_host->host_no,
1623 sd->bus, sd->target, sd->lun);
1624 switch (sd->volume_offline) {
1625 case HPSA_LV_OK:
1626 break;
1627 case HPSA_LV_UNDERGOING_ERASE:
1628 dev_info(&h->pdev->dev,
1629 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630 h->scsi_host->host_no,
1631 sd->bus, sd->target, sd->lun);
1632 break;
1633 case HPSA_LV_NOT_AVAILABLE:
1634 dev_info(&h->pdev->dev,
1635 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636 h->scsi_host->host_no,
1637 sd->bus, sd->target, sd->lun);
1638 break;
1639 case HPSA_LV_UNDERGOING_RPI:
1640 dev_info(&h->pdev->dev,
1641 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642 h->scsi_host->host_no,
1643 sd->bus, sd->target, sd->lun);
1644 break;
1645 case HPSA_LV_PENDING_RPI:
1646 dev_info(&h->pdev->dev,
1647 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648 h->scsi_host->host_no,
1649 sd->bus, sd->target, sd->lun);
1650 break;
1651 case HPSA_LV_ENCRYPTED_NO_KEY:
1652 dev_info(&h->pdev->dev,
1653 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654 h->scsi_host->host_no,
1655 sd->bus, sd->target, sd->lun);
1656 break;
1657 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1658 dev_info(&h->pdev->dev,
1659 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660 h->scsi_host->host_no,
1661 sd->bus, sd->target, sd->lun);
1662 break;
1663 case HPSA_LV_UNDERGOING_ENCRYPTION:
1664 dev_info(&h->pdev->dev,
1665 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666 h->scsi_host->host_no,
1667 sd->bus, sd->target, sd->lun);
1668 break;
1669 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1670 dev_info(&h->pdev->dev,
1671 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672 h->scsi_host->host_no,
1673 sd->bus, sd->target, sd->lun);
1674 break;
1675 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1676 dev_info(&h->pdev->dev,
1677 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678 h->scsi_host->host_no,
1679 sd->bus, sd->target, sd->lun);
1680 break;
1681 case HPSA_LV_PENDING_ENCRYPTION:
1682 dev_info(&h->pdev->dev,
1683 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684 h->scsi_host->host_no,
1685 sd->bus, sd->target, sd->lun);
1686 break;
1687 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1688 dev_info(&h->pdev->dev,
1689 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690 h->scsi_host->host_no,
1691 sd->bus, sd->target, sd->lun);
1692 break;
1693 }
1694 }
1695
1696 /*
1697 * Figure the list of physical drive pointers for a logical drive with
1698 * raid offload configured.
1699 */
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1701 struct hpsa_scsi_dev_t *dev[], int ndevices,
1702 struct hpsa_scsi_dev_t *logical_drive)
1703 {
1704 struct raid_map_data *map = &logical_drive->raid_map;
1705 struct raid_map_disk_data *dd = &map->data[0];
1706 int i, j;
1707 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1708 le16_to_cpu(map->metadata_disks_per_row);
1709 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1710 le16_to_cpu(map->layout_map_count) *
1711 total_disks_per_row;
1712 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1713 total_disks_per_row;
1714 int qdepth;
1715
1716 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1717 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1718
1719 logical_drive->nphysical_disks = nraid_map_entries;
1720
1721 qdepth = 0;
1722 for (i = 0; i < nraid_map_entries; i++) {
1723 logical_drive->phys_disk[i] = NULL;
1724 if (!logical_drive->offload_config)
1725 continue;
1726 for (j = 0; j < ndevices; j++) {
1727 if (dev[j] == NULL)
1728 continue;
1729 if (dev[j]->devtype != TYPE_DISK &&
1730 dev[j]->devtype != TYPE_ZBC)
1731 continue;
1732 if (is_logical_device(dev[j]))
1733 continue;
1734 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735 continue;
1736
1737 logical_drive->phys_disk[i] = dev[j];
1738 if (i < nphys_disk)
1739 qdepth = min(h->nr_cmds, qdepth +
1740 logical_drive->phys_disk[i]->queue_depth);
1741 break;
1742 }
1743
1744 /*
1745 * This can happen if a physical drive is removed and
1746 * the logical drive is degraded. In that case, the RAID
1747 * map data will refer to a physical disk which isn't actually
1748 * present. And in that case offload_enabled should already
1749 * be 0, but we'll turn it off here just in case
1750 */
1751 if (!logical_drive->phys_disk[i]) {
1752 dev_warn(&h->pdev->dev,
1753 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1754 __func__,
1755 h->scsi_host->host_no, logical_drive->bus,
1756 logical_drive->target, logical_drive->lun);
1757 logical_drive->offload_enabled = 0;
1758 logical_drive->offload_to_be_enabled = 0;
1759 logical_drive->queue_depth = 8;
1760 }
1761 }
1762 if (nraid_map_entries)
1763 /*
1764 * This is correct for reads, too high for full stripe writes,
1765 * way too high for partial stripe writes
1766 */
1767 logical_drive->queue_depth = qdepth;
1768 else {
1769 if (logical_drive->external)
1770 logical_drive->queue_depth = EXTERNAL_QD;
1771 else
1772 logical_drive->queue_depth = h->nr_cmds;
1773 }
1774 }
1775
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779 int i;
1780
1781 for (i = 0; i < ndevices; i++) {
1782 if (dev[i] == NULL)
1783 continue;
1784 if (dev[i]->devtype != TYPE_DISK &&
1785 dev[i]->devtype != TYPE_ZBC)
1786 continue;
1787 if (!is_logical_device(dev[i]))
1788 continue;
1789
1790 /*
1791 * If offload is currently enabled, the RAID map and
1792 * phys_disk[] assignment *better* not be changing
1793 * because we would be changing ioaccel phsy_disk[] pointers
1794 * on a ioaccel volume processing I/O requests.
1795 *
1796 * If an ioaccel volume status changed, initially because it was
1797 * re-configured and thus underwent a transformation, or
1798 * a drive failed, we would have received a state change
1799 * request and ioaccel should have been turned off. When the
1800 * transformation completes, we get another state change
1801 * request to turn ioaccel back on. In this case, we need
1802 * to update the ioaccel information.
1803 *
1804 * Thus: If it is not currently enabled, but will be after
1805 * the scan completes, make sure the ioaccel pointers
1806 * are up to date.
1807 */
1808
1809 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811 }
1812 }
1813
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816 int rc = 0;
1817
1818 if (!h->scsi_host)
1819 return 1;
1820
1821 if (is_logical_device(device)) /* RAID */
1822 rc = scsi_add_device(h->scsi_host, device->bus,
1823 device->target, device->lun);
1824 else /* HBA */
1825 rc = hpsa_add_sas_device(h->sas_host, device);
1826
1827 return rc;
1828 }
1829
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 struct hpsa_scsi_dev_t *dev)
1832 {
1833 int i;
1834 int count = 0;
1835
1836 for (i = 0; i < h->nr_cmds; i++) {
1837 struct CommandList *c = h->cmd_pool + i;
1838 int refcount = atomic_inc_return(&c->refcount);
1839
1840 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841 dev->scsi3addr)) {
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1845 if (!hpsa_is_cmd_idle(c))
1846 ++count;
1847 spin_unlock_irqrestore(&h->lock, flags);
1848 }
1849
1850 cmd_free(h, c);
1851 }
1852
1853 return count;
1854 }
1855
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1857 struct hpsa_scsi_dev_t *device)
1858 {
1859 int cmds = 0;
1860 int waits = 0;
1861
1862 while (1) {
1863 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1864 if (cmds == 0)
1865 break;
1866 if (++waits > 20)
1867 break;
1868 msleep(1000);
1869 }
1870
1871 if (waits > 20)
1872 dev_warn(&h->pdev->dev,
1873 "%s: removing device with %d outstanding commands!\n",
1874 __func__, cmds);
1875 }
1876
1877 static void hpsa_remove_device(struct ctlr_info *h,
1878 struct hpsa_scsi_dev_t *device)
1879 {
1880 struct scsi_device *sdev = NULL;
1881
1882 if (!h->scsi_host)
1883 return;
1884
1885 /*
1886 * Allow for commands to drain
1887 */
1888 device->removed = 1;
1889 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1890
1891 if (is_logical_device(device)) { /* RAID */
1892 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1893 device->target, device->lun);
1894 if (sdev) {
1895 scsi_remove_device(sdev);
1896 scsi_device_put(sdev);
1897 } else {
1898 /*
1899 * We don't expect to get here. Future commands
1900 * to this device will get a selection timeout as
1901 * if the device were gone.
1902 */
1903 hpsa_show_dev_msg(KERN_WARNING, h, device,
1904 "didn't find device for removal.");
1905 }
1906 } else { /* HBA */
1907
1908 hpsa_remove_sas_device(device);
1909 }
1910 }
1911
1912 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1913 struct hpsa_scsi_dev_t *sd[], int nsds)
1914 {
1915 /* sd contains scsi3 addresses and devtypes, and inquiry
1916 * data. This function takes what's in sd to be the current
1917 * reality and updates h->dev[] to reflect that reality.
1918 */
1919 int i, entry, device_change, changes = 0;
1920 struct hpsa_scsi_dev_t *csd;
1921 unsigned long flags;
1922 struct hpsa_scsi_dev_t **added, **removed;
1923 int nadded, nremoved;
1924
1925 /*
1926 * A reset can cause a device status to change
1927 * re-schedule the scan to see what happened.
1928 */
1929 spin_lock_irqsave(&h->reset_lock, flags);
1930 if (h->reset_in_progress) {
1931 h->drv_req_rescan = 1;
1932 spin_unlock_irqrestore(&h->reset_lock, flags);
1933 return;
1934 }
1935 spin_unlock_irqrestore(&h->reset_lock, flags);
1936
1937 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1938 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1939
1940 if (!added || !removed) {
1941 dev_warn(&h->pdev->dev, "out of memory in "
1942 "adjust_hpsa_scsi_table\n");
1943 goto free_and_out;
1944 }
1945
1946 spin_lock_irqsave(&h->devlock, flags);
1947
1948 /* find any devices in h->dev[] that are not in
1949 * sd[] and remove them from h->dev[], and for any
1950 * devices which have changed, remove the old device
1951 * info and add the new device info.
1952 * If minor device attributes change, just update
1953 * the existing device structure.
1954 */
1955 i = 0;
1956 nremoved = 0;
1957 nadded = 0;
1958 while (i < h->ndevices) {
1959 csd = h->dev[i];
1960 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1961 if (device_change == DEVICE_NOT_FOUND) {
1962 changes++;
1963 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1964 continue; /* remove ^^^, hence i not incremented */
1965 } else if (device_change == DEVICE_CHANGED) {
1966 changes++;
1967 hpsa_scsi_replace_entry(h, i, sd[entry],
1968 added, &nadded, removed, &nremoved);
1969 /* Set it to NULL to prevent it from being freed
1970 * at the bottom of hpsa_update_scsi_devices()
1971 */
1972 sd[entry] = NULL;
1973 } else if (device_change == DEVICE_UPDATED) {
1974 hpsa_scsi_update_entry(h, i, sd[entry]);
1975 }
1976 i++;
1977 }
1978
1979 /* Now, make sure every device listed in sd[] is also
1980 * listed in h->dev[], adding them if they aren't found
1981 */
1982
1983 for (i = 0; i < nsds; i++) {
1984 if (!sd[i]) /* if already added above. */
1985 continue;
1986
1987 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988 * as the SCSI mid-layer does not handle such devices well.
1989 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990 * at 160Hz, and prevents the system from coming up.
1991 */
1992 if (sd[i]->volume_offline) {
1993 hpsa_show_volume_status(h, sd[i]);
1994 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1995 continue;
1996 }
1997
1998 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1999 h->ndevices, &entry);
2000 if (device_change == DEVICE_NOT_FOUND) {
2001 changes++;
2002 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2003 break;
2004 sd[i] = NULL; /* prevent from being freed later. */
2005 } else if (device_change == DEVICE_CHANGED) {
2006 /* should never happen... */
2007 changes++;
2008 dev_warn(&h->pdev->dev,
2009 "device unexpectedly changed.\n");
2010 /* but if it does happen, we just ignore that device */
2011 }
2012 }
2013 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2014
2015 /*
2016 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017 * any logical drives that need it enabled.
2018 *
2019 * The raid map should be current by now.
2020 *
2021 * We are updating the device list used for I/O requests.
2022 */
2023 for (i = 0; i < h->ndevices; i++) {
2024 if (h->dev[i] == NULL)
2025 continue;
2026 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2027 }
2028
2029 spin_unlock_irqrestore(&h->devlock, flags);
2030
2031 /* Monitor devices which are in one of several NOT READY states to be
2032 * brought online later. This must be done without holding h->devlock,
2033 * so don't touch h->dev[]
2034 */
2035 for (i = 0; i < nsds; i++) {
2036 if (!sd[i]) /* if already added above. */
2037 continue;
2038 if (sd[i]->volume_offline)
2039 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2040 }
2041
2042 /* Don't notify scsi mid layer of any changes the first time through
2043 * (or if there are no changes) scsi_scan_host will do it later the
2044 * first time through.
2045 */
2046 if (!changes)
2047 goto free_and_out;
2048
2049 /* Notify scsi mid layer of any removed devices */
2050 for (i = 0; i < nremoved; i++) {
2051 if (removed[i] == NULL)
2052 continue;
2053 if (removed[i]->expose_device)
2054 hpsa_remove_device(h, removed[i]);
2055 kfree(removed[i]);
2056 removed[i] = NULL;
2057 }
2058
2059 /* Notify scsi mid layer of any added devices */
2060 for (i = 0; i < nadded; i++) {
2061 int rc = 0;
2062
2063 if (added[i] == NULL)
2064 continue;
2065 if (!(added[i]->expose_device))
2066 continue;
2067 rc = hpsa_add_device(h, added[i]);
2068 if (!rc)
2069 continue;
2070 dev_warn(&h->pdev->dev,
2071 "addition failed %d, device not added.", rc);
2072 /* now we have to remove it from h->dev,
2073 * since it didn't get added to scsi mid layer
2074 */
2075 fixup_botched_add(h, added[i]);
2076 h->drv_req_rescan = 1;
2077 }
2078
2079 free_and_out:
2080 kfree(added);
2081 kfree(removed);
2082 }
2083
2084 /*
2085 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086 * Assume's h->devlock is held.
2087 */
2088 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2089 int bus, int target, int lun)
2090 {
2091 int i;
2092 struct hpsa_scsi_dev_t *sd;
2093
2094 for (i = 0; i < h->ndevices; i++) {
2095 sd = h->dev[i];
2096 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2097 return sd;
2098 }
2099 return NULL;
2100 }
2101
2102 static int hpsa_slave_alloc(struct scsi_device *sdev)
2103 {
2104 struct hpsa_scsi_dev_t *sd = NULL;
2105 unsigned long flags;
2106 struct ctlr_info *h;
2107
2108 h = sdev_to_hba(sdev);
2109 spin_lock_irqsave(&h->devlock, flags);
2110 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2111 struct scsi_target *starget;
2112 struct sas_rphy *rphy;
2113
2114 starget = scsi_target(sdev);
2115 rphy = target_to_rphy(starget);
2116 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2117 if (sd) {
2118 sd->target = sdev_id(sdev);
2119 sd->lun = sdev->lun;
2120 }
2121 }
2122 if (!sd)
2123 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2124 sdev_id(sdev), sdev->lun);
2125
2126 if (sd && sd->expose_device) {
2127 atomic_set(&sd->ioaccel_cmds_out, 0);
2128 sdev->hostdata = sd;
2129 } else
2130 sdev->hostdata = NULL;
2131 spin_unlock_irqrestore(&h->devlock, flags);
2132 return 0;
2133 }
2134
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device *sdev)
2137 {
2138 struct hpsa_scsi_dev_t *sd;
2139 int queue_depth;
2140
2141 sd = sdev->hostdata;
2142 sdev->no_uld_attach = !sd || !sd->expose_device;
2143
2144 if (sd) {
2145 if (sd->external)
2146 queue_depth = EXTERNAL_QD;
2147 else
2148 queue_depth = sd->queue_depth != 0 ?
2149 sd->queue_depth : sdev->host->can_queue;
2150 } else
2151 queue_depth = sdev->host->can_queue;
2152
2153 scsi_change_queue_depth(sdev, queue_depth);
2154
2155 return 0;
2156 }
2157
2158 static void hpsa_slave_destroy(struct scsi_device *sdev)
2159 {
2160 /* nothing to do. */
2161 }
2162
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2164 {
2165 int i;
2166
2167 if (!h->ioaccel2_cmd_sg_list)
2168 return;
2169 for (i = 0; i < h->nr_cmds; i++) {
2170 kfree(h->ioaccel2_cmd_sg_list[i]);
2171 h->ioaccel2_cmd_sg_list[i] = NULL;
2172 }
2173 kfree(h->ioaccel2_cmd_sg_list);
2174 h->ioaccel2_cmd_sg_list = NULL;
2175 }
2176
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2178 {
2179 int i;
2180
2181 if (h->chainsize <= 0)
2182 return 0;
2183
2184 h->ioaccel2_cmd_sg_list =
2185 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2186 GFP_KERNEL);
2187 if (!h->ioaccel2_cmd_sg_list)
2188 return -ENOMEM;
2189 for (i = 0; i < h->nr_cmds; i++) {
2190 h->ioaccel2_cmd_sg_list[i] =
2191 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2192 h->maxsgentries, GFP_KERNEL);
2193 if (!h->ioaccel2_cmd_sg_list[i])
2194 goto clean;
2195 }
2196 return 0;
2197
2198 clean:
2199 hpsa_free_ioaccel2_sg_chain_blocks(h);
2200 return -ENOMEM;
2201 }
2202
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2204 {
2205 int i;
2206
2207 if (!h->cmd_sg_list)
2208 return;
2209 for (i = 0; i < h->nr_cmds; i++) {
2210 kfree(h->cmd_sg_list[i]);
2211 h->cmd_sg_list[i] = NULL;
2212 }
2213 kfree(h->cmd_sg_list);
2214 h->cmd_sg_list = NULL;
2215 }
2216
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2218 {
2219 int i;
2220
2221 if (h->chainsize <= 0)
2222 return 0;
2223
2224 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2225 GFP_KERNEL);
2226 if (!h->cmd_sg_list)
2227 return -ENOMEM;
2228
2229 for (i = 0; i < h->nr_cmds; i++) {
2230 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2231 h->chainsize, GFP_KERNEL);
2232 if (!h->cmd_sg_list[i])
2233 goto clean;
2234
2235 }
2236 return 0;
2237
2238 clean:
2239 hpsa_free_sg_chain_blocks(h);
2240 return -ENOMEM;
2241 }
2242
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2244 struct io_accel2_cmd *cp, struct CommandList *c)
2245 {
2246 struct ioaccel2_sg_element *chain_block;
2247 u64 temp64;
2248 u32 chain_size;
2249
2250 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2251 chain_size = le32_to_cpu(cp->sg[0].length);
2252 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2253 PCI_DMA_TODEVICE);
2254 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2255 /* prevent subsequent unmapping */
2256 cp->sg->address = 0;
2257 return -1;
2258 }
2259 cp->sg->address = cpu_to_le64(temp64);
2260 return 0;
2261 }
2262
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2264 struct io_accel2_cmd *cp)
2265 {
2266 struct ioaccel2_sg_element *chain_sg;
2267 u64 temp64;
2268 u32 chain_size;
2269
2270 chain_sg = cp->sg;
2271 temp64 = le64_to_cpu(chain_sg->address);
2272 chain_size = le32_to_cpu(cp->sg[0].length);
2273 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2274 }
2275
2276 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2277 struct CommandList *c)
2278 {
2279 struct SGDescriptor *chain_sg, *chain_block;
2280 u64 temp64;
2281 u32 chain_len;
2282
2283 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2284 chain_block = h->cmd_sg_list[c->cmdindex];
2285 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2286 chain_len = sizeof(*chain_sg) *
2287 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2288 chain_sg->Len = cpu_to_le32(chain_len);
2289 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2290 PCI_DMA_TODEVICE);
2291 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2292 /* prevent subsequent unmapping */
2293 chain_sg->Addr = cpu_to_le64(0);
2294 return -1;
2295 }
2296 chain_sg->Addr = cpu_to_le64(temp64);
2297 return 0;
2298 }
2299
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2301 struct CommandList *c)
2302 {
2303 struct SGDescriptor *chain_sg;
2304
2305 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2306 return;
2307
2308 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2310 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2311 }
2312
2313
2314 /* Decode the various types of errors on ioaccel2 path.
2315 * Return 1 for any error that should generate a RAID path retry.
2316 * Return 0 for errors that don't require a RAID path retry.
2317 */
2318 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2319 struct CommandList *c,
2320 struct scsi_cmnd *cmd,
2321 struct io_accel2_cmd *c2,
2322 struct hpsa_scsi_dev_t *dev)
2323 {
2324 int data_len;
2325 int retry = 0;
2326 u32 ioaccel2_resid = 0;
2327
2328 switch (c2->error_data.serv_response) {
2329 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2330 switch (c2->error_data.status) {
2331 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2332 break;
2333 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2334 cmd->result |= SAM_STAT_CHECK_CONDITION;
2335 if (c2->error_data.data_present !=
2336 IOACCEL2_SENSE_DATA_PRESENT) {
2337 memset(cmd->sense_buffer, 0,
2338 SCSI_SENSE_BUFFERSIZE);
2339 break;
2340 }
2341 /* copy the sense data */
2342 data_len = c2->error_data.sense_data_len;
2343 if (data_len > SCSI_SENSE_BUFFERSIZE)
2344 data_len = SCSI_SENSE_BUFFERSIZE;
2345 if (data_len > sizeof(c2->error_data.sense_data_buff))
2346 data_len =
2347 sizeof(c2->error_data.sense_data_buff);
2348 memcpy(cmd->sense_buffer,
2349 c2->error_data.sense_data_buff, data_len);
2350 retry = 1;
2351 break;
2352 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2353 retry = 1;
2354 break;
2355 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2356 retry = 1;
2357 break;
2358 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2359 retry = 1;
2360 break;
2361 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2362 retry = 1;
2363 break;
2364 default:
2365 retry = 1;
2366 break;
2367 }
2368 break;
2369 case IOACCEL2_SERV_RESPONSE_FAILURE:
2370 switch (c2->error_data.status) {
2371 case IOACCEL2_STATUS_SR_IO_ERROR:
2372 case IOACCEL2_STATUS_SR_IO_ABORTED:
2373 case IOACCEL2_STATUS_SR_OVERRUN:
2374 retry = 1;
2375 break;
2376 case IOACCEL2_STATUS_SR_UNDERRUN:
2377 cmd->result = (DID_OK << 16); /* host byte */
2378 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2379 ioaccel2_resid = get_unaligned_le32(
2380 &c2->error_data.resid_cnt[0]);
2381 scsi_set_resid(cmd, ioaccel2_resid);
2382 break;
2383 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2384 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2385 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2386 /*
2387 * Did an HBA disk disappear? We will eventually
2388 * get a state change event from the controller but
2389 * in the meantime, we need to tell the OS that the
2390 * HBA disk is no longer there and stop I/O
2391 * from going down. This allows the potential re-insert
2392 * of the disk to get the same device node.
2393 */
2394 if (dev->physical_device && dev->expose_device) {
2395 cmd->result = DID_NO_CONNECT << 16;
2396 dev->removed = 1;
2397 h->drv_req_rescan = 1;
2398 dev_warn(&h->pdev->dev,
2399 "%s: device is gone!\n", __func__);
2400 } else
2401 /*
2402 * Retry by sending down the RAID path.
2403 * We will get an event from ctlr to
2404 * trigger rescan regardless.
2405 */
2406 retry = 1;
2407 break;
2408 default:
2409 retry = 1;
2410 }
2411 break;
2412 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2413 break;
2414 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2415 break;
2416 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2417 retry = 1;
2418 break;
2419 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2420 break;
2421 default:
2422 retry = 1;
2423 break;
2424 }
2425
2426 return retry; /* retry on raid path? */
2427 }
2428
2429 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2430 struct CommandList *c)
2431 {
2432 bool do_wake = false;
2433
2434 /*
2435 * Reset c->scsi_cmd here so that the reset handler will know
2436 * this command has completed. Then, check to see if the handler is
2437 * waiting for this command, and, if so, wake it.
2438 */
2439 c->scsi_cmd = SCSI_CMD_IDLE;
2440 mb(); /* Declare command idle before checking for pending events. */
2441 if (c->reset_pending) {
2442 unsigned long flags;
2443 struct hpsa_scsi_dev_t *dev;
2444
2445 /*
2446 * There appears to be a reset pending; lock the lock and
2447 * reconfirm. If so, then decrement the count of outstanding
2448 * commands and wake the reset command if this is the last one.
2449 */
2450 spin_lock_irqsave(&h->lock, flags);
2451 dev = c->reset_pending; /* Re-fetch under the lock. */
2452 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2453 do_wake = true;
2454 c->reset_pending = NULL;
2455 spin_unlock_irqrestore(&h->lock, flags);
2456 }
2457
2458 if (do_wake)
2459 wake_up_all(&h->event_sync_wait_queue);
2460 }
2461
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2463 struct CommandList *c)
2464 {
2465 hpsa_cmd_resolve_events(h, c);
2466 cmd_tagged_free(h, c);
2467 }
2468
2469 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2470 struct CommandList *c, struct scsi_cmnd *cmd)
2471 {
2472 hpsa_cmd_resolve_and_free(h, c);
2473 if (cmd && cmd->scsi_done)
2474 cmd->scsi_done(cmd);
2475 }
2476
2477 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2478 {
2479 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2480 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2481 }
2482
2483 static void process_ioaccel2_completion(struct ctlr_info *h,
2484 struct CommandList *c, struct scsi_cmnd *cmd,
2485 struct hpsa_scsi_dev_t *dev)
2486 {
2487 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2488
2489 /* check for good status */
2490 if (likely(c2->error_data.serv_response == 0 &&
2491 c2->error_data.status == 0))
2492 return hpsa_cmd_free_and_done(h, c, cmd);
2493
2494 /*
2495 * Any RAID offload error results in retry which will use
2496 * the normal I/O path so the controller can handle whatever is
2497 * wrong.
2498 */
2499 if (is_logical_device(dev) &&
2500 c2->error_data.serv_response ==
2501 IOACCEL2_SERV_RESPONSE_FAILURE) {
2502 if (c2->error_data.status ==
2503 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504 dev->offload_enabled = 0;
2505 dev->offload_to_be_enabled = 0;
2506 }
2507
2508 return hpsa_retry_cmd(h, c);
2509 }
2510
2511 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512 return hpsa_retry_cmd(h, c);
2513
2514 return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519 struct CommandList *cp)
2520 {
2521 u8 tmf_status = cp->err_info->ScsiStatus;
2522
2523 switch (tmf_status) {
2524 case CISS_TMF_COMPLETE:
2525 /*
2526 * CISS_TMF_COMPLETE never happens, instead,
2527 * ei->CommandStatus == 0 for this case.
2528 */
2529 case CISS_TMF_SUCCESS:
2530 return 0;
2531 case CISS_TMF_INVALID_FRAME:
2532 case CISS_TMF_NOT_SUPPORTED:
2533 case CISS_TMF_FAILED:
2534 case CISS_TMF_WRONG_LUN:
2535 case CISS_TMF_OVERLAPPED_TAG:
2536 break;
2537 default:
2538 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539 tmf_status);
2540 break;
2541 }
2542 return -tmf_status;
2543 }
2544
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547 struct scsi_cmnd *cmd;
2548 struct ctlr_info *h;
2549 struct ErrorInfo *ei;
2550 struct hpsa_scsi_dev_t *dev;
2551 struct io_accel2_cmd *c2;
2552
2553 u8 sense_key;
2554 u8 asc; /* additional sense code */
2555 u8 ascq; /* additional sense code qualifier */
2556 unsigned long sense_data_size;
2557
2558 ei = cp->err_info;
2559 cmd = cp->scsi_cmd;
2560 h = cp->h;
2561
2562 if (!cmd->device) {
2563 cmd->result = DID_NO_CONNECT << 16;
2564 return hpsa_cmd_free_and_done(h, cp, cmd);
2565 }
2566
2567 dev = cmd->device->hostdata;
2568 if (!dev) {
2569 cmd->result = DID_NO_CONNECT << 16;
2570 return hpsa_cmd_free_and_done(h, cp, cmd);
2571 }
2572 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573
2574 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575 if ((cp->cmd_type == CMD_SCSI) &&
2576 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577 hpsa_unmap_sg_chain_block(h, cp);
2578
2579 if ((cp->cmd_type == CMD_IOACCEL2) &&
2580 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582
2583 cmd->result = (DID_OK << 16); /* host byte */
2584 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2585
2586 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2587 if (dev->physical_device && dev->expose_device &&
2588 dev->removed) {
2589 cmd->result = DID_NO_CONNECT << 16;
2590 return hpsa_cmd_free_and_done(h, cp, cmd);
2591 }
2592 if (likely(cp->phys_disk != NULL))
2593 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2594 }
2595
2596 /*
2597 * We check for lockup status here as it may be set for
2598 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599 * fail_all_oustanding_cmds()
2600 */
2601 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2602 /* DID_NO_CONNECT will prevent a retry */
2603 cmd->result = DID_NO_CONNECT << 16;
2604 return hpsa_cmd_free_and_done(h, cp, cmd);
2605 }
2606
2607 if ((unlikely(hpsa_is_pending_event(cp))))
2608 if (cp->reset_pending)
2609 return hpsa_cmd_free_and_done(h, cp, cmd);
2610
2611 if (cp->cmd_type == CMD_IOACCEL2)
2612 return process_ioaccel2_completion(h, cp, cmd, dev);
2613
2614 scsi_set_resid(cmd, ei->ResidualCnt);
2615 if (ei->CommandStatus == 0)
2616 return hpsa_cmd_free_and_done(h, cp, cmd);
2617
2618 /* For I/O accelerator commands, copy over some fields to the normal
2619 * CISS header used below for error handling.
2620 */
2621 if (cp->cmd_type == CMD_IOACCEL1) {
2622 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2623 cp->Header.SGList = scsi_sg_count(cmd);
2624 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2625 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2626 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2627 cp->Header.tag = c->tag;
2628 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2629 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2630
2631 /* Any RAID offload error results in retry which will use
2632 * the normal I/O path so the controller can handle whatever's
2633 * wrong.
2634 */
2635 if (is_logical_device(dev)) {
2636 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2637 dev->offload_enabled = 0;
2638 return hpsa_retry_cmd(h, cp);
2639 }
2640 }
2641
2642 /* an error has occurred */
2643 switch (ei->CommandStatus) {
2644
2645 case CMD_TARGET_STATUS:
2646 cmd->result |= ei->ScsiStatus;
2647 /* copy the sense data */
2648 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2649 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2650 else
2651 sense_data_size = sizeof(ei->SenseInfo);
2652 if (ei->SenseLen < sense_data_size)
2653 sense_data_size = ei->SenseLen;
2654 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2655 if (ei->ScsiStatus)
2656 decode_sense_data(ei->SenseInfo, sense_data_size,
2657 &sense_key, &asc, &ascq);
2658 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2659 if (sense_key == ABORTED_COMMAND) {
2660 cmd->result |= DID_SOFT_ERROR << 16;
2661 break;
2662 }
2663 break;
2664 }
2665 /* Problem was not a check condition
2666 * Pass it up to the upper layers...
2667 */
2668 if (ei->ScsiStatus) {
2669 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2670 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671 "Returning result: 0x%x\n",
2672 cp, ei->ScsiStatus,
2673 sense_key, asc, ascq,
2674 cmd->result);
2675 } else { /* scsi status is zero??? How??? */
2676 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2677 "Returning no connection.\n", cp),
2678
2679 /* Ordinarily, this case should never happen,
2680 * but there is a bug in some released firmware
2681 * revisions that allows it to happen if, for
2682 * example, a 4100 backplane loses power and
2683 * the tape drive is in it. We assume that
2684 * it's a fatal error of some kind because we
2685 * can't show that it wasn't. We will make it
2686 * look like selection timeout since that is
2687 * the most common reason for this to occur,
2688 * and it's severe enough.
2689 */
2690
2691 cmd->result = DID_NO_CONNECT << 16;
2692 }
2693 break;
2694
2695 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2696 break;
2697 case CMD_DATA_OVERRUN:
2698 dev_warn(&h->pdev->dev,
2699 "CDB %16phN data overrun\n", cp->Request.CDB);
2700 break;
2701 case CMD_INVALID: {
2702 /* print_bytes(cp, sizeof(*cp), 1, 0);
2703 print_cmd(cp); */
2704 /* We get CMD_INVALID if you address a non-existent device
2705 * instead of a selection timeout (no response). You will
2706 * see this if you yank out a drive, then try to access it.
2707 * This is kind of a shame because it means that any other
2708 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709 * missing target. */
2710 cmd->result = DID_NO_CONNECT << 16;
2711 }
2712 break;
2713 case CMD_PROTOCOL_ERR:
2714 cmd->result = DID_ERROR << 16;
2715 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2716 cp->Request.CDB);
2717 break;
2718 case CMD_HARDWARE_ERR:
2719 cmd->result = DID_ERROR << 16;
2720 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2721 cp->Request.CDB);
2722 break;
2723 case CMD_CONNECTION_LOST:
2724 cmd->result = DID_ERROR << 16;
2725 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2726 cp->Request.CDB);
2727 break;
2728 case CMD_ABORTED:
2729 cmd->result = DID_ABORT << 16;
2730 break;
2731 case CMD_ABORT_FAILED:
2732 cmd->result = DID_ERROR << 16;
2733 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2734 cp->Request.CDB);
2735 break;
2736 case CMD_UNSOLICITED_ABORT:
2737 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2738 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2739 cp->Request.CDB);
2740 break;
2741 case CMD_TIMEOUT:
2742 cmd->result = DID_TIME_OUT << 16;
2743 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2744 cp->Request.CDB);
2745 break;
2746 case CMD_UNABORTABLE:
2747 cmd->result = DID_ERROR << 16;
2748 dev_warn(&h->pdev->dev, "Command unabortable\n");
2749 break;
2750 case CMD_TMF_STATUS:
2751 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2752 cmd->result = DID_ERROR << 16;
2753 break;
2754 case CMD_IOACCEL_DISABLED:
2755 /* This only handles the direct pass-through case since RAID
2756 * offload is handled above. Just attempt a retry.
2757 */
2758 cmd->result = DID_SOFT_ERROR << 16;
2759 dev_warn(&h->pdev->dev,
2760 "cp %p had HP SSD Smart Path error\n", cp);
2761 break;
2762 default:
2763 cmd->result = DID_ERROR << 16;
2764 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2765 cp, ei->CommandStatus);
2766 }
2767
2768 return hpsa_cmd_free_and_done(h, cp, cmd);
2769 }
2770
2771 static void hpsa_pci_unmap(struct pci_dev *pdev,
2772 struct CommandList *c, int sg_used, int data_direction)
2773 {
2774 int i;
2775
2776 for (i = 0; i < sg_used; i++)
2777 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2778 le32_to_cpu(c->SG[i].Len),
2779 data_direction);
2780 }
2781
2782 static int hpsa_map_one(struct pci_dev *pdev,
2783 struct CommandList *cp,
2784 unsigned char *buf,
2785 size_t buflen,
2786 int data_direction)
2787 {
2788 u64 addr64;
2789
2790 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2791 cp->Header.SGList = 0;
2792 cp->Header.SGTotal = cpu_to_le16(0);
2793 return 0;
2794 }
2795
2796 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2797 if (dma_mapping_error(&pdev->dev, addr64)) {
2798 /* Prevent subsequent unmap of something never mapped */
2799 cp->Header.SGList = 0;
2800 cp->Header.SGTotal = cpu_to_le16(0);
2801 return -1;
2802 }
2803 cp->SG[0].Addr = cpu_to_le64(addr64);
2804 cp->SG[0].Len = cpu_to_le32(buflen);
2805 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2806 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2807 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2808 return 0;
2809 }
2810
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2814 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2815 {
2816 DECLARE_COMPLETION_ONSTACK(wait);
2817
2818 c->waiting = &wait;
2819 __enqueue_cmd_and_start_io(h, c, reply_queue);
2820 if (timeout_msecs == NO_TIMEOUT) {
2821 /* TODO: get rid of this no-timeout thing */
2822 wait_for_completion_io(&wait);
2823 return IO_OK;
2824 }
2825 if (!wait_for_completion_io_timeout(&wait,
2826 msecs_to_jiffies(timeout_msecs))) {
2827 dev_warn(&h->pdev->dev, "Command timed out.\n");
2828 return -ETIMEDOUT;
2829 }
2830 return IO_OK;
2831 }
2832
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2834 int reply_queue, unsigned long timeout_msecs)
2835 {
2836 if (unlikely(lockup_detected(h))) {
2837 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2838 return IO_OK;
2839 }
2840 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2841 }
2842
2843 static u32 lockup_detected(struct ctlr_info *h)
2844 {
2845 int cpu;
2846 u32 rc, *lockup_detected;
2847
2848 cpu = get_cpu();
2849 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2850 rc = *lockup_detected;
2851 put_cpu();
2852 return rc;
2853 }
2854
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2857 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2858 {
2859 int backoff_time = 10, retry_count = 0;
2860 int rc;
2861
2862 do {
2863 memset(c->err_info, 0, sizeof(*c->err_info));
2864 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2865 timeout_msecs);
2866 if (rc)
2867 break;
2868 retry_count++;
2869 if (retry_count > 3) {
2870 msleep(backoff_time);
2871 if (backoff_time < 1000)
2872 backoff_time *= 2;
2873 }
2874 } while ((check_for_unit_attention(h, c) ||
2875 check_for_busy(h, c)) &&
2876 retry_count <= MAX_DRIVER_CMD_RETRIES);
2877 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2878 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2879 rc = -EIO;
2880 return rc;
2881 }
2882
2883 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2884 struct CommandList *c)
2885 {
2886 const u8 *cdb = c->Request.CDB;
2887 const u8 *lun = c->Header.LUN.LunAddrBytes;
2888
2889 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2890 txt, lun, cdb);
2891 }
2892
2893 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2894 struct CommandList *cp)
2895 {
2896 const struct ErrorInfo *ei = cp->err_info;
2897 struct device *d = &cp->h->pdev->dev;
2898 u8 sense_key, asc, ascq;
2899 int sense_len;
2900
2901 switch (ei->CommandStatus) {
2902 case CMD_TARGET_STATUS:
2903 if (ei->SenseLen > sizeof(ei->SenseInfo))
2904 sense_len = sizeof(ei->SenseInfo);
2905 else
2906 sense_len = ei->SenseLen;
2907 decode_sense_data(ei->SenseInfo, sense_len,
2908 &sense_key, &asc, &ascq);
2909 hpsa_print_cmd(h, "SCSI status", cp);
2910 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2911 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912 sense_key, asc, ascq);
2913 else
2914 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2915 if (ei->ScsiStatus == 0)
2916 dev_warn(d, "SCSI status is abnormally zero. "
2917 "(probably indicates selection timeout "
2918 "reported incorrectly due to a known "
2919 "firmware bug, circa July, 2001.)\n");
2920 break;
2921 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2922 break;
2923 case CMD_DATA_OVERRUN:
2924 hpsa_print_cmd(h, "overrun condition", cp);
2925 break;
2926 case CMD_INVALID: {
2927 /* controller unfortunately reports SCSI passthru's
2928 * to non-existent targets as invalid commands.
2929 */
2930 hpsa_print_cmd(h, "invalid command", cp);
2931 dev_warn(d, "probably means device no longer present\n");
2932 }
2933 break;
2934 case CMD_PROTOCOL_ERR:
2935 hpsa_print_cmd(h, "protocol error", cp);
2936 break;
2937 case CMD_HARDWARE_ERR:
2938 hpsa_print_cmd(h, "hardware error", cp);
2939 break;
2940 case CMD_CONNECTION_LOST:
2941 hpsa_print_cmd(h, "connection lost", cp);
2942 break;
2943 case CMD_ABORTED:
2944 hpsa_print_cmd(h, "aborted", cp);
2945 break;
2946 case CMD_ABORT_FAILED:
2947 hpsa_print_cmd(h, "abort failed", cp);
2948 break;
2949 case CMD_UNSOLICITED_ABORT:
2950 hpsa_print_cmd(h, "unsolicited abort", cp);
2951 break;
2952 case CMD_TIMEOUT:
2953 hpsa_print_cmd(h, "timed out", cp);
2954 break;
2955 case CMD_UNABORTABLE:
2956 hpsa_print_cmd(h, "unabortable", cp);
2957 break;
2958 case CMD_CTLR_LOCKUP:
2959 hpsa_print_cmd(h, "controller lockup detected", cp);
2960 break;
2961 default:
2962 hpsa_print_cmd(h, "unknown status", cp);
2963 dev_warn(d, "Unknown command status %x\n",
2964 ei->CommandStatus);
2965 }
2966 }
2967
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2969 u8 page, u8 *buf, size_t bufsize)
2970 {
2971 int rc = IO_OK;
2972 struct CommandList *c;
2973 struct ErrorInfo *ei;
2974
2975 c = cmd_alloc(h);
2976 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2977 page, scsi3addr, TYPE_CMD)) {
2978 rc = -1;
2979 goto out;
2980 }
2981 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2982 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2983 if (rc)
2984 goto out;
2985 ei = c->err_info;
2986 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2987 hpsa_scsi_interpret_error(h, c);
2988 rc = -1;
2989 }
2990 out:
2991 cmd_free(h, c);
2992 return rc;
2993 }
2994
2995 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2996 u8 *scsi3addr)
2997 {
2998 u8 *buf;
2999 u64 sa = 0;
3000 int rc = 0;
3001
3002 buf = kzalloc(1024, GFP_KERNEL);
3003 if (!buf)
3004 return 0;
3005
3006 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3007 buf, 1024);
3008
3009 if (rc)
3010 goto out;
3011
3012 sa = get_unaligned_be64(buf+12);
3013
3014 out:
3015 kfree(buf);
3016 return sa;
3017 }
3018
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3020 u16 page, unsigned char *buf,
3021 unsigned char bufsize)
3022 {
3023 int rc = IO_OK;
3024 struct CommandList *c;
3025 struct ErrorInfo *ei;
3026
3027 c = cmd_alloc(h);
3028
3029 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3030 page, scsi3addr, TYPE_CMD)) {
3031 rc = -1;
3032 goto out;
3033 }
3034 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3035 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3036 if (rc)
3037 goto out;
3038 ei = c->err_info;
3039 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3040 hpsa_scsi_interpret_error(h, c);
3041 rc = -1;
3042 }
3043 out:
3044 cmd_free(h, c);
3045 return rc;
3046 }
3047
3048 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3049 u8 reset_type, int reply_queue)
3050 {
3051 int rc = IO_OK;
3052 struct CommandList *c;
3053 struct ErrorInfo *ei;
3054
3055 c = cmd_alloc(h);
3056
3057
3058 /* fill_cmd can't fail here, no data buffer to map. */
3059 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3060 scsi3addr, TYPE_MSG);
3061 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3062 if (rc) {
3063 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3064 goto out;
3065 }
3066 /* no unmap needed here because no data xfer. */
3067
3068 ei = c->err_info;
3069 if (ei->CommandStatus != 0) {
3070 hpsa_scsi_interpret_error(h, c);
3071 rc = -1;
3072 }
3073 out:
3074 cmd_free(h, c);
3075 return rc;
3076 }
3077
3078 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3079 struct hpsa_scsi_dev_t *dev,
3080 unsigned char *scsi3addr)
3081 {
3082 int i;
3083 bool match = false;
3084 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3085 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3086
3087 if (hpsa_is_cmd_idle(c))
3088 return false;
3089
3090 switch (c->cmd_type) {
3091 case CMD_SCSI:
3092 case CMD_IOCTL_PEND:
3093 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3094 sizeof(c->Header.LUN.LunAddrBytes));
3095 break;
3096
3097 case CMD_IOACCEL1:
3098 case CMD_IOACCEL2:
3099 if (c->phys_disk == dev) {
3100 /* HBA mode match */
3101 match = true;
3102 } else {
3103 /* Possible RAID mode -- check each phys dev. */
3104 /* FIXME: Do we need to take out a lock here? If
3105 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3106 * instead. */
3107 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108 /* FIXME: an alternate test might be
3109 *
3110 * match = dev->phys_disk[i]->ioaccel_handle
3111 * == c2->scsi_nexus; */
3112 match = dev->phys_disk[i] == c->phys_disk;
3113 }
3114 }
3115 break;
3116
3117 case IOACCEL2_TMF:
3118 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3119 match = dev->phys_disk[i]->ioaccel_handle ==
3120 le32_to_cpu(ac->it_nexus);
3121 }
3122 break;
3123
3124 case 0: /* The command is in the middle of being initialized. */
3125 match = false;
3126 break;
3127
3128 default:
3129 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3130 c->cmd_type);
3131 BUG();
3132 }
3133
3134 return match;
3135 }
3136
3137 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3138 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3139 {
3140 int i;
3141 int rc = 0;
3142
3143 /* We can really only handle one reset at a time */
3144 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3145 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3146 return -EINTR;
3147 }
3148
3149 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3150
3151 for (i = 0; i < h->nr_cmds; i++) {
3152 struct CommandList *c = h->cmd_pool + i;
3153 int refcount = atomic_inc_return(&c->refcount);
3154
3155 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3156 unsigned long flags;
3157
3158 /*
3159 * Mark the target command as having a reset pending,
3160 * then lock a lock so that the command cannot complete
3161 * while we're considering it. If the command is not
3162 * idle then count it; otherwise revoke the event.
3163 */
3164 c->reset_pending = dev;
3165 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3166 if (!hpsa_is_cmd_idle(c))
3167 atomic_inc(&dev->reset_cmds_out);
3168 else
3169 c->reset_pending = NULL;
3170 spin_unlock_irqrestore(&h->lock, flags);
3171 }
3172
3173 cmd_free(h, c);
3174 }
3175
3176 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3177 if (!rc)
3178 wait_event(h->event_sync_wait_queue,
3179 atomic_read(&dev->reset_cmds_out) == 0 ||
3180 lockup_detected(h));
3181
3182 if (unlikely(lockup_detected(h))) {
3183 dev_warn(&h->pdev->dev,
3184 "Controller lockup detected during reset wait\n");
3185 rc = -ENODEV;
3186 }
3187
3188 if (unlikely(rc))
3189 atomic_set(&dev->reset_cmds_out, 0);
3190 else
3191 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3192
3193 mutex_unlock(&h->reset_mutex);
3194 return rc;
3195 }
3196
3197 static void hpsa_get_raid_level(struct ctlr_info *h,
3198 unsigned char *scsi3addr, unsigned char *raid_level)
3199 {
3200 int rc;
3201 unsigned char *buf;
3202
3203 *raid_level = RAID_UNKNOWN;
3204 buf = kzalloc(64, GFP_KERNEL);
3205 if (!buf)
3206 return;
3207
3208 if (!hpsa_vpd_page_supported(h, scsi3addr,
3209 HPSA_VPD_LV_DEVICE_GEOMETRY))
3210 goto exit;
3211
3212 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3213 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3214
3215 if (rc == 0)
3216 *raid_level = buf[8];
3217 if (*raid_level > RAID_UNKNOWN)
3218 *raid_level = RAID_UNKNOWN;
3219 exit:
3220 kfree(buf);
3221 return;
3222 }
3223
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3227 struct raid_map_data *map_buff)
3228 {
3229 struct raid_map_disk_data *dd = &map_buff->data[0];
3230 int map, row, col;
3231 u16 map_cnt, row_cnt, disks_per_row;
3232
3233 if (rc != 0)
3234 return;
3235
3236 /* Show details only if debugging has been activated. */
3237 if (h->raid_offload_debug < 2)
3238 return;
3239
3240 dev_info(&h->pdev->dev, "structure_size = %u\n",
3241 le32_to_cpu(map_buff->structure_size));
3242 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3243 le32_to_cpu(map_buff->volume_blk_size));
3244 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3245 le64_to_cpu(map_buff->volume_blk_cnt));
3246 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3247 map_buff->phys_blk_shift);
3248 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3249 map_buff->parity_rotation_shift);
3250 dev_info(&h->pdev->dev, "strip_size = %u\n",
3251 le16_to_cpu(map_buff->strip_size));
3252 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3253 le64_to_cpu(map_buff->disk_starting_blk));
3254 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3255 le64_to_cpu(map_buff->disk_blk_cnt));
3256 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3257 le16_to_cpu(map_buff->data_disks_per_row));
3258 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3259 le16_to_cpu(map_buff->metadata_disks_per_row));
3260 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3261 le16_to_cpu(map_buff->row_cnt));
3262 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3263 le16_to_cpu(map_buff->layout_map_count));
3264 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3265 le16_to_cpu(map_buff->flags));
3266 dev_info(&h->pdev->dev, "encryption = %s\n",
3267 le16_to_cpu(map_buff->flags) &
3268 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3269 dev_info(&h->pdev->dev, "dekindex = %u\n",
3270 le16_to_cpu(map_buff->dekindex));
3271 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3272 for (map = 0; map < map_cnt; map++) {
3273 dev_info(&h->pdev->dev, "Map%u:\n", map);
3274 row_cnt = le16_to_cpu(map_buff->row_cnt);
3275 for (row = 0; row < row_cnt; row++) {
3276 dev_info(&h->pdev->dev, " Row%u:\n", row);
3277 disks_per_row =
3278 le16_to_cpu(map_buff->data_disks_per_row);
3279 for (col = 0; col < disks_per_row; col++, dd++)
3280 dev_info(&h->pdev->dev,
3281 " D%02u: h=0x%04x xor=%u,%u\n",
3282 col, dd->ioaccel_handle,
3283 dd->xor_mult[0], dd->xor_mult[1]);
3284 disks_per_row =
3285 le16_to_cpu(map_buff->metadata_disks_per_row);
3286 for (col = 0; col < disks_per_row; col++, dd++)
3287 dev_info(&h->pdev->dev,
3288 " M%02u: h=0x%04x xor=%u,%u\n",
3289 col, dd->ioaccel_handle,
3290 dd->xor_mult[0], dd->xor_mult[1]);
3291 }
3292 }
3293 }
3294 #else
3295 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3296 __attribute__((unused)) int rc,
3297 __attribute__((unused)) struct raid_map_data *map_buff)
3298 {
3299 }
3300 #endif
3301
3302 static int hpsa_get_raid_map(struct ctlr_info *h,
3303 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3304 {
3305 int rc = 0;
3306 struct CommandList *c;
3307 struct ErrorInfo *ei;
3308
3309 c = cmd_alloc(h);
3310
3311 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3312 sizeof(this_device->raid_map), 0,
3313 scsi3addr, TYPE_CMD)) {
3314 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3315 cmd_free(h, c);
3316 return -1;
3317 }
3318 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3319 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3320 if (rc)
3321 goto out;
3322 ei = c->err_info;
3323 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324 hpsa_scsi_interpret_error(h, c);
3325 rc = -1;
3326 goto out;
3327 }
3328 cmd_free(h, c);
3329
3330 /* @todo in the future, dynamically allocate RAID map memory */
3331 if (le32_to_cpu(this_device->raid_map.structure_size) >
3332 sizeof(this_device->raid_map)) {
3333 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3334 rc = -1;
3335 }
3336 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3337 return rc;
3338 out:
3339 cmd_free(h, c);
3340 return rc;
3341 }
3342
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3344 unsigned char scsi3addr[], u16 bmic_device_index,
3345 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3346 {
3347 int rc = IO_OK;
3348 struct CommandList *c;
3349 struct ErrorInfo *ei;
3350
3351 c = cmd_alloc(h);
3352
3353 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3354 0, RAID_CTLR_LUNID, TYPE_CMD);
3355 if (rc)
3356 goto out;
3357
3358 c->Request.CDB[2] = bmic_device_index & 0xff;
3359 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3360
3361 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3362 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3363 if (rc)
3364 goto out;
3365 ei = c->err_info;
3366 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3367 hpsa_scsi_interpret_error(h, c);
3368 rc = -1;
3369 }
3370 out:
3371 cmd_free(h, c);
3372 return rc;
3373 }
3374
3375 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3376 struct bmic_identify_controller *buf, size_t bufsize)
3377 {
3378 int rc = IO_OK;
3379 struct CommandList *c;
3380 struct ErrorInfo *ei;
3381
3382 c = cmd_alloc(h);
3383
3384 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3385 0, RAID_CTLR_LUNID, TYPE_CMD);
3386 if (rc)
3387 goto out;
3388
3389 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3390 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3391 if (rc)
3392 goto out;
3393 ei = c->err_info;
3394 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395 hpsa_scsi_interpret_error(h, c);
3396 rc = -1;
3397 }
3398 out:
3399 cmd_free(h, c);
3400 return rc;
3401 }
3402
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3404 unsigned char scsi3addr[], u16 bmic_device_index,
3405 struct bmic_identify_physical_device *buf, size_t bufsize)
3406 {
3407 int rc = IO_OK;
3408 struct CommandList *c;
3409 struct ErrorInfo *ei;
3410
3411 c = cmd_alloc(h);
3412 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3413 0, RAID_CTLR_LUNID, TYPE_CMD);
3414 if (rc)
3415 goto out;
3416
3417 c->Request.CDB[2] = bmic_device_index & 0xff;
3418 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3419
3420 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3421 NO_TIMEOUT);
3422 ei = c->err_info;
3423 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3424 hpsa_scsi_interpret_error(h, c);
3425 rc = -1;
3426 }
3427 out:
3428 cmd_free(h, c);
3429
3430 return rc;
3431 }
3432
3433 /*
3434 * get enclosure information
3435 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437 * Uses id_physical_device to determine the box_index.
3438 */
3439 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3440 unsigned char *scsi3addr,
3441 struct ReportExtendedLUNdata *rlep, int rle_index,
3442 struct hpsa_scsi_dev_t *encl_dev)
3443 {
3444 int rc = -1;
3445 struct CommandList *c = NULL;
3446 struct ErrorInfo *ei = NULL;
3447 struct bmic_sense_storage_box_params *bssbp = NULL;
3448 struct bmic_identify_physical_device *id_phys = NULL;
3449 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3450 u16 bmic_device_index = 0;
3451
3452 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453
3454 encl_dev->sas_address =
3455 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3456
3457 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3458 rc = IO_OK;
3459 goto out;
3460 }
3461
3462 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3463 rc = IO_OK;
3464 goto out;
3465 }
3466
3467 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3468 if (!bssbp)
3469 goto out;
3470
3471 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3472 if (!id_phys)
3473 goto out;
3474
3475 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3476 id_phys, sizeof(*id_phys));
3477 if (rc) {
3478 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3479 __func__, encl_dev->external, bmic_device_index);
3480 goto out;
3481 }
3482
3483 c = cmd_alloc(h);
3484
3485 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3486 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3487
3488 if (rc)
3489 goto out;
3490
3491 if (id_phys->phys_connector[1] == 'E')
3492 c->Request.CDB[5] = id_phys->box_index;
3493 else
3494 c->Request.CDB[5] = 0;
3495
3496 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3497 NO_TIMEOUT);
3498 if (rc)
3499 goto out;
3500
3501 ei = c->err_info;
3502 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3503 rc = -1;
3504 goto out;
3505 }
3506
3507 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3508 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3509 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3510
3511 rc = IO_OK;
3512 out:
3513 kfree(bssbp);
3514 kfree(id_phys);
3515
3516 if (c)
3517 cmd_free(h, c);
3518
3519 if (rc != IO_OK)
3520 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3521 "Error, could not get enclosure information\n");
3522 }
3523
3524 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3525 unsigned char *scsi3addr)
3526 {
3527 struct ReportExtendedLUNdata *physdev;
3528 u32 nphysicals;
3529 u64 sa = 0;
3530 int i;
3531
3532 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3533 if (!physdev)
3534 return 0;
3535
3536 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3537 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3538 kfree(physdev);
3539 return 0;
3540 }
3541 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3542
3543 for (i = 0; i < nphysicals; i++)
3544 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3545 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3546 break;
3547 }
3548
3549 kfree(physdev);
3550
3551 return sa;
3552 }
3553
3554 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3555 struct hpsa_scsi_dev_t *dev)
3556 {
3557 int rc;
3558 u64 sa = 0;
3559
3560 if (is_hba_lunid(scsi3addr)) {
3561 struct bmic_sense_subsystem_info *ssi;
3562
3563 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3564 if (!ssi)
3565 return;
3566
3567 rc = hpsa_bmic_sense_subsystem_information(h,
3568 scsi3addr, 0, ssi, sizeof(*ssi));
3569 if (rc == 0) {
3570 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3571 h->sas_address = sa;
3572 }
3573
3574 kfree(ssi);
3575 } else
3576 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3577
3578 dev->sas_address = sa;
3579 }
3580
3581 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3582 struct ReportExtendedLUNdata *physdev)
3583 {
3584 u32 nphysicals;
3585 int i;
3586
3587 if (h->discovery_polling)
3588 return;
3589
3590 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3591
3592 for (i = 0; i < nphysicals; i++) {
3593 if (physdev->LUN[i].device_type ==
3594 BMIC_DEVICE_TYPE_CONTROLLER
3595 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3596 dev_info(&h->pdev->dev,
3597 "External controller present, activate discovery polling and disable rld caching\n");
3598 hpsa_disable_rld_caching(h);
3599 h->discovery_polling = 1;
3600 break;
3601 }
3602 }
3603 }
3604
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3607 unsigned char scsi3addr[], u8 page)
3608 {
3609 int rc;
3610 int i;
3611 int pages;
3612 unsigned char *buf, bufsize;
3613
3614 buf = kzalloc(256, GFP_KERNEL);
3615 if (!buf)
3616 return false;
3617
3618 /* Get the size of the page list first */
3619 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3620 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621 buf, HPSA_VPD_HEADER_SZ);
3622 if (rc != 0)
3623 goto exit_unsupported;
3624 pages = buf[3];
3625 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3626 bufsize = pages + HPSA_VPD_HEADER_SZ;
3627 else
3628 bufsize = 255;
3629
3630 /* Get the whole VPD page list */
3631 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 buf, bufsize);
3634 if (rc != 0)
3635 goto exit_unsupported;
3636
3637 pages = buf[3];
3638 for (i = 1; i <= pages; i++)
3639 if (buf[3 + i] == page)
3640 goto exit_supported;
3641 exit_unsupported:
3642 kfree(buf);
3643 return false;
3644 exit_supported:
3645 kfree(buf);
3646 return true;
3647 }
3648
3649 /*
3650 * Called during a scan operation.
3651 * Sets ioaccel status on the new device list, not the existing device list
3652 *
3653 * The device list used during I/O will be updated later in
3654 * adjust_hpsa_scsi_table.
3655 */
3656 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3657 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3658 {
3659 int rc;
3660 unsigned char *buf;
3661 u8 ioaccel_status;
3662
3663 this_device->offload_config = 0;
3664 this_device->offload_enabled = 0;
3665 this_device->offload_to_be_enabled = 0;
3666
3667 buf = kzalloc(64, GFP_KERNEL);
3668 if (!buf)
3669 return;
3670 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3671 goto out;
3672 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3673 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3674 if (rc != 0)
3675 goto out;
3676
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3681 this_device->offload_config =
3682 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3683 if (this_device->offload_config) {
3684 this_device->offload_to_be_enabled =
3685 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3686 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3687 this_device->offload_to_be_enabled = 0;
3688 }
3689
3690 out:
3691 kfree(buf);
3692 return;
3693 }
3694
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697 unsigned char *device_id, int index, int buflen)
3698 {
3699 int rc;
3700 unsigned char *buf;
3701
3702 /* Does controller have VPD for device id? */
3703 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704 return 1; /* not supported */
3705
3706 buf = kzalloc(64, GFP_KERNEL);
3707 if (!buf)
3708 return -ENOMEM;
3709
3710 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712 if (rc == 0) {
3713 if (buflen > 16)
3714 buflen = 16;
3715 memcpy(device_id, &buf[8], buflen);
3716 }
3717
3718 kfree(buf);
3719
3720 return rc; /*0 - got id, otherwise, didn't */
3721 }
3722
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724 void *buf, int bufsize,
3725 int extended_response)
3726 {
3727 int rc = IO_OK;
3728 struct CommandList *c;
3729 unsigned char scsi3addr[8];
3730 struct ErrorInfo *ei;
3731
3732 c = cmd_alloc(h);
3733
3734 /* address the controller */
3735 memset(scsi3addr, 0, sizeof(scsi3addr));
3736 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738 rc = -EAGAIN;
3739 goto out;
3740 }
3741 if (extended_response)
3742 c->Request.CDB[1] = extended_response;
3743 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3744 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3745 if (rc)
3746 goto out;
3747 ei = c->err_info;
3748 if (ei->CommandStatus != 0 &&
3749 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750 hpsa_scsi_interpret_error(h, c);
3751 rc = -EIO;
3752 } else {
3753 struct ReportLUNdata *rld = buf;
3754
3755 if (rld->extended_response_flag != extended_response) {
3756 if (!h->legacy_board) {
3757 dev_err(&h->pdev->dev,
3758 "report luns requested format %u, got %u\n",
3759 extended_response,
3760 rld->extended_response_flag);
3761 rc = -EINVAL;
3762 } else
3763 rc = -EOPNOTSUPP;
3764 }
3765 }
3766 out:
3767 cmd_free(h, c);
3768 return rc;
3769 }
3770
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772 struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774 int rc;
3775 struct ReportLUNdata *lbuf;
3776
3777 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778 HPSA_REPORT_PHYS_EXTENDED);
3779 if (!rc || rc != -EOPNOTSUPP)
3780 return rc;
3781
3782 /* REPORT PHYS EXTENDED is not supported */
3783 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784 if (!lbuf)
3785 return -ENOMEM;
3786
3787 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788 if (!rc) {
3789 int i;
3790 u32 nphys;
3791
3792 /* Copy ReportLUNdata header */
3793 memcpy(buf, lbuf, 8);
3794 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795 for (i = 0; i < nphys; i++)
3796 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797 }
3798 kfree(lbuf);
3799 return rc;
3800 }
3801
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803 struct ReportLUNdata *buf, int bufsize)
3804 {
3805 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809 int bus, int target, int lun)
3810 {
3811 device->bus = bus;
3812 device->target = target;
3813 device->lun = lun;
3814 }
3815
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818 unsigned char scsi3addr[])
3819 {
3820 int rc;
3821 int status;
3822 int size;
3823 unsigned char *buf;
3824
3825 buf = kzalloc(64, GFP_KERNEL);
3826 if (!buf)
3827 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828
3829 /* Does controller have VPD for logical volume status? */
3830 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831 goto exit_failed;
3832
3833 /* Get the size of the VPD return buffer */
3834 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835 buf, HPSA_VPD_HEADER_SZ);
3836 if (rc != 0)
3837 goto exit_failed;
3838 size = buf[3];
3839
3840 /* Now get the whole VPD buffer */
3841 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842 buf, size + HPSA_VPD_HEADER_SZ);
3843 if (rc != 0)
3844 goto exit_failed;
3845 status = buf[4]; /* status byte */
3846
3847 kfree(buf);
3848 return status;
3849 exit_failed:
3850 kfree(buf);
3851 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853
3854 /* Determine offline status of a volume.
3855 * Return either:
3856 * 0 (not offline)
3857 * 0xff (offline for unknown reasons)
3858 * # (integer code indicating one of several NOT READY states
3859 * describing why a volume is to be kept offline)
3860 */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862 unsigned char scsi3addr[])
3863 {
3864 struct CommandList *c;
3865 unsigned char *sense;
3866 u8 sense_key, asc, ascq;
3867 int sense_len;
3868 int rc, ldstat = 0;
3869 u16 cmd_status;
3870 u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874
3875 c = cmd_alloc(h);
3876
3877 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879 NO_TIMEOUT);
3880 if (rc) {
3881 cmd_free(h, c);
3882 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883 }
3884 sense = c->err_info->SenseInfo;
3885 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886 sense_len = sizeof(c->err_info->SenseInfo);
3887 else
3888 sense_len = c->err_info->SenseLen;
3889 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890 cmd_status = c->err_info->CommandStatus;
3891 scsi_status = c->err_info->ScsiStatus;
3892 cmd_free(h, c);
3893
3894 /* Determine the reason for not ready state */
3895 ldstat = hpsa_get_volume_status(h, scsi3addr);
3896
3897 /* Keep volume offline in certain cases: */
3898 switch (ldstat) {
3899 case HPSA_LV_FAILED:
3900 case HPSA_LV_UNDERGOING_ERASE:
3901 case HPSA_LV_NOT_AVAILABLE:
3902 case HPSA_LV_UNDERGOING_RPI:
3903 case HPSA_LV_PENDING_RPI:
3904 case HPSA_LV_ENCRYPTED_NO_KEY:
3905 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906 case HPSA_LV_UNDERGOING_ENCRYPTION:
3907 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909 return ldstat;
3910 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911 /* If VPD status page isn't available,
3912 * use ASC/ASCQ to determine state
3913 */
3914 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916 return ldstat;
3917 break;
3918 default:
3919 break;
3920 }
3921 return HPSA_LV_OK;
3922 }
3923
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926 unsigned char *is_OBDR_device)
3927 {
3928
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933
3934 unsigned char *inq_buff;
3935 unsigned char *obdr_sig;
3936 int rc = 0;
3937
3938 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939 if (!inq_buff) {
3940 rc = -ENOMEM;
3941 goto bail_out;
3942 }
3943
3944 /* Do an inquiry to the device to see what it is. */
3945 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947 dev_err(&h->pdev->dev,
3948 "%s: inquiry failed, device will be skipped.\n",
3949 __func__);
3950 rc = HPSA_INQUIRY_FAILED;
3951 goto bail_out;
3952 }
3953
3954 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956
3957 this_device->devtype = (inq_buff[0] & 0x1f);
3958 memcpy(this_device->scsi3addr, scsi3addr, 8);
3959 memcpy(this_device->vendor, &inq_buff[8],
3960 sizeof(this_device->vendor));
3961 memcpy(this_device->model, &inq_buff[16],
3962 sizeof(this_device->model));
3963 this_device->rev = inq_buff[2];
3964 memset(this_device->device_id, 0,
3965 sizeof(this_device->device_id));
3966 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967 sizeof(this_device->device_id)) < 0)
3968 dev_err(&h->pdev->dev,
3969 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3970 h->ctlr, __func__,
3971 h->scsi_host->host_no,
3972 this_device->target, this_device->lun,
3973 scsi_device_type(this_device->devtype),
3974 this_device->model);
3975
3976 if ((this_device->devtype == TYPE_DISK ||
3977 this_device->devtype == TYPE_ZBC) &&
3978 is_logical_dev_addr_mode(scsi3addr)) {
3979 unsigned char volume_offline;
3980
3981 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3982 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3983 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3984 volume_offline = hpsa_volume_offline(h, scsi3addr);
3985 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3986 h->legacy_board) {
3987 /*
3988 * Legacy boards might not support volume status
3989 */
3990 dev_info(&h->pdev->dev,
3991 "C0:T%d:L%d Volume status not available, assuming online.\n",
3992 this_device->target, this_device->lun);
3993 volume_offline = 0;
3994 }
3995 this_device->volume_offline = volume_offline;
3996 if (volume_offline == HPSA_LV_FAILED) {
3997 rc = HPSA_LV_FAILED;
3998 dev_err(&h->pdev->dev,
3999 "%s: LV failed, device will be skipped.\n",
4000 __func__);
4001 goto bail_out;
4002 }
4003 } else {
4004 this_device->raid_level = RAID_UNKNOWN;
4005 this_device->offload_config = 0;
4006 this_device->offload_enabled = 0;
4007 this_device->offload_to_be_enabled = 0;
4008 this_device->hba_ioaccel_enabled = 0;
4009 this_device->volume_offline = 0;
4010 this_device->queue_depth = h->nr_cmds;
4011 }
4012
4013 if (this_device->external)
4014 this_device->queue_depth = EXTERNAL_QD;
4015
4016 if (is_OBDR_device) {
4017 /* See if this is a One-Button-Disaster-Recovery device
4018 * by looking for "$DR-10" at offset 43 in inquiry data.
4019 */
4020 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4021 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4022 strncmp(obdr_sig, OBDR_TAPE_SIG,
4023 OBDR_SIG_LEN) == 0);
4024 }
4025 kfree(inq_buff);
4026 return 0;
4027
4028 bail_out:
4029 kfree(inq_buff);
4030 return rc;
4031 }
4032
4033 /*
4034 * Helper function to assign bus, target, lun mapping of devices.
4035 * Logical drive target and lun are assigned at this time, but
4036 * physical device lun and target assignment are deferred (assigned
4037 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4038 */
4039 static void figure_bus_target_lun(struct ctlr_info *h,
4040 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4041 {
4042 u32 lunid = get_unaligned_le32(lunaddrbytes);
4043
4044 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4045 /* physical device, target and lun filled in later */
4046 if (is_hba_lunid(lunaddrbytes)) {
4047 int bus = HPSA_HBA_BUS;
4048
4049 if (!device->rev)
4050 bus = HPSA_LEGACY_HBA_BUS;
4051 hpsa_set_bus_target_lun(device,
4052 bus, 0, lunid & 0x3fff);
4053 } else
4054 /* defer target, lun assignment for physical devices */
4055 hpsa_set_bus_target_lun(device,
4056 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4057 return;
4058 }
4059 /* It's a logical device */
4060 if (device->external) {
4061 hpsa_set_bus_target_lun(device,
4062 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4063 lunid & 0x00ff);
4064 return;
4065 }
4066 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4067 0, lunid & 0x3fff);
4068 }
4069
4070 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4071 int i, int nphysicals, int nlocal_logicals)
4072 {
4073 /* In report logicals, local logicals are listed first,
4074 * then any externals.
4075 */
4076 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4077
4078 if (i == raid_ctlr_position)
4079 return 0;
4080
4081 if (i < logicals_start)
4082 return 0;
4083
4084 /* i is in logicals range, but still within local logicals */
4085 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4086 return 0;
4087
4088 return 1; /* it's an external lun */
4089 }
4090
4091 /*
4092 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4093 * logdev. The number of luns in physdev and logdev are returned in
4094 * *nphysicals and *nlogicals, respectively.
4095 * Returns 0 on success, -1 otherwise.
4096 */
4097 static int hpsa_gather_lun_info(struct ctlr_info *h,
4098 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4099 struct ReportLUNdata *logdev, u32 *nlogicals)
4100 {
4101 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4102 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4103 return -1;
4104 }
4105 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4106 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4107 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4109 *nphysicals = HPSA_MAX_PHYS_LUN;
4110 }
4111 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4112 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4113 return -1;
4114 }
4115 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4116 /* Reject Logicals in excess of our max capability. */
4117 if (*nlogicals > HPSA_MAX_LUN) {
4118 dev_warn(&h->pdev->dev,
4119 "maximum logical LUNs (%d) exceeded. "
4120 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4121 *nlogicals - HPSA_MAX_LUN);
4122 *nlogicals = HPSA_MAX_LUN;
4123 }
4124 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4125 dev_warn(&h->pdev->dev,
4126 "maximum logical + physical LUNs (%d) exceeded. "
4127 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4128 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4129 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4130 }
4131 return 0;
4132 }
4133
4134 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4135 int i, int nphysicals, int nlogicals,
4136 struct ReportExtendedLUNdata *physdev_list,
4137 struct ReportLUNdata *logdev_list)
4138 {
4139 /* Helper function, figure out where the LUN ID info is coming from
4140 * given index i, lists of physical and logical devices, where in
4141 * the list the raid controller is supposed to appear (first or last)
4142 */
4143
4144 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4145 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4146
4147 if (i == raid_ctlr_position)
4148 return RAID_CTLR_LUNID;
4149
4150 if (i < logicals_start)
4151 return &physdev_list->LUN[i -
4152 (raid_ctlr_position == 0)].lunid[0];
4153
4154 if (i < last_device)
4155 return &logdev_list->LUN[i - nphysicals -
4156 (raid_ctlr_position == 0)][0];
4157 BUG();
4158 return NULL;
4159 }
4160
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4163 struct hpsa_scsi_dev_t *dev,
4164 struct ReportExtendedLUNdata *rlep, int rle_index,
4165 struct bmic_identify_physical_device *id_phys)
4166 {
4167 int rc;
4168 struct ext_report_lun_entry *rle;
4169
4170 rle = &rlep->LUN[rle_index];
4171
4172 dev->ioaccel_handle = rle->ioaccel_handle;
4173 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4174 dev->hba_ioaccel_enabled = 1;
4175 memset(id_phys, 0, sizeof(*id_phys));
4176 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4177 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4178 sizeof(*id_phys));
4179 if (!rc)
4180 /* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4183 dev->queue_depth =
4184 le16_to_cpu(id_phys->current_queue_depth_limit) -
4185 DRIVE_CMDS_RESERVED_FOR_FW;
4186 else
4187 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4188 }
4189
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4191 struct ReportExtendedLUNdata *rlep, int rle_index,
4192 struct bmic_identify_physical_device *id_phys)
4193 {
4194 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4195
4196 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4197 this_device->hba_ioaccel_enabled = 1;
4198
4199 memcpy(&this_device->active_path_index,
4200 &id_phys->active_path_number,
4201 sizeof(this_device->active_path_index));
4202 memcpy(&this_device->path_map,
4203 &id_phys->redundant_path_present_map,
4204 sizeof(this_device->path_map));
4205 memcpy(&this_device->box,
4206 &id_phys->alternate_paths_phys_box_on_port,
4207 sizeof(this_device->box));
4208 memcpy(&this_device->phys_connector,
4209 &id_phys->alternate_paths_phys_connector,
4210 sizeof(this_device->phys_connector));
4211 memcpy(&this_device->bay,
4212 &id_phys->phys_bay_in_box,
4213 sizeof(this_device->bay));
4214 }
4215
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4218 struct bmic_identify_controller *id_ctlr,
4219 u32 *nlocals)
4220 {
4221 int rc;
4222
4223 if (!id_ctlr) {
4224 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4225 __func__);
4226 return -ENOMEM;
4227 }
4228 memset(id_ctlr, 0, sizeof(*id_ctlr));
4229 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4230 if (!rc)
4231 if (id_ctlr->configured_logical_drive_count < 255)
4232 *nlocals = id_ctlr->configured_logical_drive_count;
4233 else
4234 *nlocals = le16_to_cpu(
4235 id_ctlr->extended_logical_unit_count);
4236 else
4237 *nlocals = -1;
4238 return rc;
4239 }
4240
4241 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4242 {
4243 struct bmic_identify_physical_device *id_phys;
4244 bool is_spare = false;
4245 int rc;
4246
4247 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4248 if (!id_phys)
4249 return false;
4250
4251 rc = hpsa_bmic_id_physical_device(h,
4252 lunaddrbytes,
4253 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4254 id_phys, sizeof(*id_phys));
4255 if (rc == 0)
4256 is_spare = (id_phys->more_flags >> 6) & 0x01;
4257
4258 kfree(id_phys);
4259 return is_spare;
4260 }
4261
4262 #define RPL_DEV_FLAG_NON_DISK 0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4265
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4267
4268 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4269 struct ext_report_lun_entry *rle)
4270 {
4271 u8 device_flags;
4272 u8 device_type;
4273
4274 if (!MASKED_DEVICE(lunaddrbytes))
4275 return false;
4276
4277 device_flags = rle->device_flags;
4278 device_type = rle->device_type;
4279
4280 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4281 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4282 return false;
4283 return true;
4284 }
4285
4286 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4287 return false;
4288
4289 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4290 return false;
4291
4292 /*
4293 * Spares may be spun down, we do not want to
4294 * do an Inquiry to a RAID set spare drive as
4295 * that would have them spun up, that is a
4296 * performance hit because I/O to the RAID device
4297 * stops while the spin up occurs which can take
4298 * over 50 seconds.
4299 */
4300 if (hpsa_is_disk_spare(h, lunaddrbytes))
4301 return true;
4302
4303 return false;
4304 }
4305
4306 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4307 {
4308 /* the idea here is we could get notified
4309 * that some devices have changed, so we do a report
4310 * physical luns and report logical luns cmd, and adjust
4311 * our list of devices accordingly.
4312 *
4313 * The scsi3addr's of devices won't change so long as the
4314 * adapter is not reset. That means we can rescan and
4315 * tell which devices we already know about, vs. new
4316 * devices, vs. disappearing devices.
4317 */
4318 struct ReportExtendedLUNdata *physdev_list = NULL;
4319 struct ReportLUNdata *logdev_list = NULL;
4320 struct bmic_identify_physical_device *id_phys = NULL;
4321 struct bmic_identify_controller *id_ctlr = NULL;
4322 u32 nphysicals = 0;
4323 u32 nlogicals = 0;
4324 u32 nlocal_logicals = 0;
4325 u32 ndev_allocated = 0;
4326 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4327 int ncurrent = 0;
4328 int i, n_ext_target_devs, ndevs_to_allocate;
4329 int raid_ctlr_position;
4330 bool physical_device;
4331 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4332
4333 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4334 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4335 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4336 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4337 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4338 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4339
4340 if (!currentsd || !physdev_list || !logdev_list ||
4341 !tmpdevice || !id_phys || !id_ctlr) {
4342 dev_err(&h->pdev->dev, "out of memory\n");
4343 goto out;
4344 }
4345 memset(lunzerobits, 0, sizeof(lunzerobits));
4346
4347 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4348
4349 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4350 logdev_list, &nlogicals)) {
4351 h->drv_req_rescan = 1;
4352 goto out;
4353 }
4354
4355 /* Set number of local logicals (non PTRAID) */
4356 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4357 dev_warn(&h->pdev->dev,
4358 "%s: Can't determine number of local logical devices.\n",
4359 __func__);
4360 }
4361
4362 /* We might see up to the maximum number of logical and physical disks
4363 * plus external target devices, and a device for the local RAID
4364 * controller.
4365 */
4366 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4367
4368 hpsa_ext_ctrl_present(h, physdev_list);
4369
4370 /* Allocate the per device structures */
4371 for (i = 0; i < ndevs_to_allocate; i++) {
4372 if (i >= HPSA_MAX_DEVICES) {
4373 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4374 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4375 ndevs_to_allocate - HPSA_MAX_DEVICES);
4376 break;
4377 }
4378
4379 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4380 if (!currentsd[i]) {
4381 h->drv_req_rescan = 1;
4382 goto out;
4383 }
4384 ndev_allocated++;
4385 }
4386
4387 if (is_scsi_rev_5(h))
4388 raid_ctlr_position = 0;
4389 else
4390 raid_ctlr_position = nphysicals + nlogicals;
4391
4392 /* adjust our table of devices */
4393 n_ext_target_devs = 0;
4394 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4395 u8 *lunaddrbytes, is_OBDR = 0;
4396 int rc = 0;
4397 int phys_dev_index = i - (raid_ctlr_position == 0);
4398 bool skip_device = false;
4399
4400 memset(tmpdevice, 0, sizeof(*tmpdevice));
4401
4402 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4403
4404 /* Figure out where the LUN ID info is coming from */
4405 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4406 i, nphysicals, nlogicals, physdev_list, logdev_list);
4407
4408 /* Determine if this is a lun from an external target array */
4409 tmpdevice->external =
4410 figure_external_status(h, raid_ctlr_position, i,
4411 nphysicals, nlocal_logicals);
4412
4413 /*
4414 * Skip over some devices such as a spare.
4415 */
4416 if (!tmpdevice->external && physical_device) {
4417 skip_device = hpsa_skip_device(h, lunaddrbytes,
4418 &physdev_list->LUN[phys_dev_index]);
4419 if (skip_device)
4420 continue;
4421 }
4422
4423 /* Get device type, vendor, model, device id, raid_map */
4424 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4425 &is_OBDR);
4426 if (rc == -ENOMEM) {
4427 dev_warn(&h->pdev->dev,
4428 "Out of memory, rescan deferred.\n");
4429 h->drv_req_rescan = 1;
4430 goto out;
4431 }
4432 if (rc) {
4433 h->drv_req_rescan = 1;
4434 continue;
4435 }
4436
4437 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4438 this_device = currentsd[ncurrent];
4439
4440 *this_device = *tmpdevice;
4441 this_device->physical_device = physical_device;
4442
4443 /*
4444 * Expose all devices except for physical devices that
4445 * are masked.
4446 */
4447 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4448 this_device->expose_device = 0;
4449 else
4450 this_device->expose_device = 1;
4451
4452
4453 /*
4454 * Get the SAS address for physical devices that are exposed.
4455 */
4456 if (this_device->physical_device && this_device->expose_device)
4457 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4458
4459 switch (this_device->devtype) {
4460 case TYPE_ROM:
4461 /* We don't *really* support actual CD-ROM devices,
4462 * just "One Button Disaster Recovery" tape drive
4463 * which temporarily pretends to be a CD-ROM drive.
4464 * So we check that the device is really an OBDR tape
4465 * device by checking for "$DR-10" in bytes 43-48 of
4466 * the inquiry data.
4467 */
4468 if (is_OBDR)
4469 ncurrent++;
4470 break;
4471 case TYPE_DISK:
4472 case TYPE_ZBC:
4473 if (this_device->physical_device) {
4474 /* The disk is in HBA mode. */
4475 /* Never use RAID mapper in HBA mode. */
4476 this_device->offload_enabled = 0;
4477 hpsa_get_ioaccel_drive_info(h, this_device,
4478 physdev_list, phys_dev_index, id_phys);
4479 hpsa_get_path_info(this_device,
4480 physdev_list, phys_dev_index, id_phys);
4481 }
4482 ncurrent++;
4483 break;
4484 case TYPE_TAPE:
4485 case TYPE_MEDIUM_CHANGER:
4486 ncurrent++;
4487 break;
4488 case TYPE_ENCLOSURE:
4489 if (!this_device->external)
4490 hpsa_get_enclosure_info(h, lunaddrbytes,
4491 physdev_list, phys_dev_index,
4492 this_device);
4493 ncurrent++;
4494 break;
4495 case TYPE_RAID:
4496 /* Only present the Smartarray HBA as a RAID controller.
4497 * If it's a RAID controller other than the HBA itself
4498 * (an external RAID controller, MSA500 or similar)
4499 * don't present it.
4500 */
4501 if (!is_hba_lunid(lunaddrbytes))
4502 break;
4503 ncurrent++;
4504 break;
4505 default:
4506 break;
4507 }
4508 if (ncurrent >= HPSA_MAX_DEVICES)
4509 break;
4510 }
4511
4512 if (h->sas_host == NULL) {
4513 int rc = 0;
4514
4515 rc = hpsa_add_sas_host(h);
4516 if (rc) {
4517 dev_warn(&h->pdev->dev,
4518 "Could not add sas host %d\n", rc);
4519 goto out;
4520 }
4521 }
4522
4523 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4524 out:
4525 kfree(tmpdevice);
4526 for (i = 0; i < ndev_allocated; i++)
4527 kfree(currentsd[i]);
4528 kfree(currentsd);
4529 kfree(physdev_list);
4530 kfree(logdev_list);
4531 kfree(id_ctlr);
4532 kfree(id_phys);
4533 }
4534
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4536 struct scatterlist *sg)
4537 {
4538 u64 addr64 = (u64) sg_dma_address(sg);
4539 unsigned int len = sg_dma_len(sg);
4540
4541 desc->Addr = cpu_to_le64(addr64);
4542 desc->Len = cpu_to_le32(len);
4543 desc->Ext = 0;
4544 }
4545
4546 /*
4547 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548 * dma mapping and fills in the scatter gather entries of the
4549 * hpsa command, cp.
4550 */
4551 static int hpsa_scatter_gather(struct ctlr_info *h,
4552 struct CommandList *cp,
4553 struct scsi_cmnd *cmd)
4554 {
4555 struct scatterlist *sg;
4556 int use_sg, i, sg_limit, chained, last_sg;
4557 struct SGDescriptor *curr_sg;
4558
4559 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4560
4561 use_sg = scsi_dma_map(cmd);
4562 if (use_sg < 0)
4563 return use_sg;
4564
4565 if (!use_sg)
4566 goto sglist_finished;
4567
4568 /*
4569 * If the number of entries is greater than the max for a single list,
4570 * then we have a chained list; we will set up all but one entry in the
4571 * first list (the last entry is saved for link information);
4572 * otherwise, we don't have a chained list and we'll set up at each of
4573 * the entries in the one list.
4574 */
4575 curr_sg = cp->SG;
4576 chained = use_sg > h->max_cmd_sg_entries;
4577 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4578 last_sg = scsi_sg_count(cmd) - 1;
4579 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4580 hpsa_set_sg_descriptor(curr_sg, sg);
4581 curr_sg++;
4582 }
4583
4584 if (chained) {
4585 /*
4586 * Continue with the chained list. Set curr_sg to the chained
4587 * list. Modify the limit to the total count less the entries
4588 * we've already set up. Resume the scan at the list entry
4589 * where the previous loop left off.
4590 */
4591 curr_sg = h->cmd_sg_list[cp->cmdindex];
4592 sg_limit = use_sg - sg_limit;
4593 for_each_sg(sg, sg, sg_limit, i) {
4594 hpsa_set_sg_descriptor(curr_sg, sg);
4595 curr_sg++;
4596 }
4597 }
4598
4599 /* Back the pointer up to the last entry and mark it as "last". */
4600 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4601
4602 if (use_sg + chained > h->maxSG)
4603 h->maxSG = use_sg + chained;
4604
4605 if (chained) {
4606 cp->Header.SGList = h->max_cmd_sg_entries;
4607 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4608 if (hpsa_map_sg_chain_block(h, cp)) {
4609 scsi_dma_unmap(cmd);
4610 return -1;
4611 }
4612 return 0;
4613 }
4614
4615 sglist_finished:
4616
4617 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4618 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4619 return 0;
4620 }
4621
4622 #define BUFLEN 128
4623 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4624 u8 *cdb, int cdb_len,
4625 const char *func)
4626 {
4627 char buf[BUFLEN];
4628 int outlen;
4629 int i;
4630
4631 outlen = scnprintf(buf, BUFLEN,
4632 "%s: Blocking zero-length request: CDB:", func);
4633 for (i = 0; i < cdb_len; i++)
4634 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4635 "%02hhx", cdb[i]);
4636 dev_warn(&h->pdev->dev, "%s\n", buf);
4637 }
4638
4639 #define IO_ACCEL_INELIGIBLE 1
4640 /* zero-length transfers trigger hardware errors. */
4641 static bool is_zero_length_transfer(u8 *cdb)
4642 {
4643 u32 block_cnt;
4644
4645 /* Block zero-length transfer sizes on certain commands. */
4646 switch (cdb[0]) {
4647 case READ_10:
4648 case WRITE_10:
4649 case VERIFY: /* 0x2F */
4650 case WRITE_VERIFY: /* 0x2E */
4651 block_cnt = get_unaligned_be16(&cdb[7]);
4652 break;
4653 case READ_12:
4654 case WRITE_12:
4655 case VERIFY_12: /* 0xAF */
4656 case WRITE_VERIFY_12: /* 0xAE */
4657 block_cnt = get_unaligned_be32(&cdb[6]);
4658 break;
4659 case READ_16:
4660 case WRITE_16:
4661 case VERIFY_16: /* 0x8F */
4662 block_cnt = get_unaligned_be32(&cdb[10]);
4663 break;
4664 default:
4665 return false;
4666 }
4667
4668 return block_cnt == 0;
4669 }
4670
4671 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4672 {
4673 int is_write = 0;
4674 u32 block;
4675 u32 block_cnt;
4676
4677 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4678 switch (cdb[0]) {
4679 case WRITE_6:
4680 case WRITE_12:
4681 is_write = 1;
4682 case READ_6:
4683 case READ_12:
4684 if (*cdb_len == 6) {
4685 block = (((cdb[1] & 0x1F) << 16) |
4686 (cdb[2] << 8) |
4687 cdb[3]);
4688 block_cnt = cdb[4];
4689 if (block_cnt == 0)
4690 block_cnt = 256;
4691 } else {
4692 BUG_ON(*cdb_len != 12);
4693 block = get_unaligned_be32(&cdb[2]);
4694 block_cnt = get_unaligned_be32(&cdb[6]);
4695 }
4696 if (block_cnt > 0xffff)
4697 return IO_ACCEL_INELIGIBLE;
4698
4699 cdb[0] = is_write ? WRITE_10 : READ_10;
4700 cdb[1] = 0;
4701 cdb[2] = (u8) (block >> 24);
4702 cdb[3] = (u8) (block >> 16);
4703 cdb[4] = (u8) (block >> 8);
4704 cdb[5] = (u8) (block);
4705 cdb[6] = 0;
4706 cdb[7] = (u8) (block_cnt >> 8);
4707 cdb[8] = (u8) (block_cnt);
4708 cdb[9] = 0;
4709 *cdb_len = 10;
4710 break;
4711 }
4712 return 0;
4713 }
4714
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719 struct scsi_cmnd *cmd = c->scsi_cmd;
4720 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721 unsigned int len;
4722 unsigned int total_len = 0;
4723 struct scatterlist *sg;
4724 u64 addr64;
4725 int use_sg, i;
4726 struct SGDescriptor *curr_sg;
4727 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728
4729 /* TODO: implement chaining support */
4730 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 return IO_ACCEL_INELIGIBLE;
4733 }
4734
4735 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736
4737 if (is_zero_length_transfer(cdb)) {
4738 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 return IO_ACCEL_INELIGIBLE;
4741 }
4742
4743 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744 atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 return IO_ACCEL_INELIGIBLE;
4746 }
4747
4748 c->cmd_type = CMD_IOACCEL1;
4749
4750 /* Adjust the DMA address to point to the accelerated command buffer */
4751 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752 (c->cmdindex * sizeof(*cp));
4753 BUG_ON(c->busaddr & 0x0000007F);
4754
4755 use_sg = scsi_dma_map(cmd);
4756 if (use_sg < 0) {
4757 atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 return use_sg;
4759 }
4760
4761 if (use_sg) {
4762 curr_sg = cp->SG;
4763 scsi_for_each_sg(cmd, sg, use_sg, i) {
4764 addr64 = (u64) sg_dma_address(sg);
4765 len = sg_dma_len(sg);
4766 total_len += len;
4767 curr_sg->Addr = cpu_to_le64(addr64);
4768 curr_sg->Len = cpu_to_le32(len);
4769 curr_sg->Ext = cpu_to_le32(0);
4770 curr_sg++;
4771 }
4772 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773
4774 switch (cmd->sc_data_direction) {
4775 case DMA_TO_DEVICE:
4776 control |= IOACCEL1_CONTROL_DATA_OUT;
4777 break;
4778 case DMA_FROM_DEVICE:
4779 control |= IOACCEL1_CONTROL_DATA_IN;
4780 break;
4781 case DMA_NONE:
4782 control |= IOACCEL1_CONTROL_NODATAXFER;
4783 break;
4784 default:
4785 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786 cmd->sc_data_direction);
4787 BUG();
4788 break;
4789 }
4790 } else {
4791 control |= IOACCEL1_CONTROL_NODATAXFER;
4792 }
4793
4794 c->Header.SGList = use_sg;
4795 /* Fill out the command structure to submit */
4796 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797 cp->transfer_len = cpu_to_le32(total_len);
4798 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800 cp->control = cpu_to_le32(control);
4801 memcpy(cp->CDB, cdb, cdb_len);
4802 memcpy(cp->CISS_LUN, scsi3addr, 8);
4803 /* Tag was already set at init time. */
4804 enqueue_cmd_and_start_io(h, c);
4805 return 0;
4806 }
4807
4808 /*
4809 * Queue a command directly to a device behind the controller using the
4810 * I/O accelerator path.
4811 */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813 struct CommandList *c)
4814 {
4815 struct scsi_cmnd *cmd = c->scsi_cmd;
4816 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817
4818 if (!dev)
4819 return -1;
4820
4821 c->phys_disk = dev;
4822
4823 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826
4827 /*
4828 * Set encryption parameters for the ioaccel2 request
4829 */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831 struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833 struct scsi_cmnd *cmd = c->scsi_cmd;
4834 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835 struct raid_map_data *map = &dev->raid_map;
4836 u64 first_block;
4837
4838 /* Are we doing encryption on this device */
4839 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840 return;
4841 /* Set the data encryption key index. */
4842 cp->dekindex = map->dekindex;
4843
4844 /* Set the encryption enable flag, encoded into direction field. */
4845 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846
4847 /* Set encryption tweak values based on logical block address
4848 * If block size is 512, tweak value is LBA.
4849 * For other block sizes, tweak is (LBA * block size)/ 512)
4850 */
4851 switch (cmd->cmnd[0]) {
4852 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853 case READ_6:
4854 case WRITE_6:
4855 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856 (cmd->cmnd[2] << 8) |
4857 cmd->cmnd[3]);
4858 break;
4859 case WRITE_10:
4860 case READ_10:
4861 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862 case WRITE_12:
4863 case READ_12:
4864 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865 break;
4866 case WRITE_16:
4867 case READ_16:
4868 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869 break;
4870 default:
4871 dev_err(&h->pdev->dev,
4872 "ERROR: %s: size (0x%x) not supported for encryption\n",
4873 __func__, cmd->cmnd[0]);
4874 BUG();
4875 break;
4876 }
4877
4878 if (le32_to_cpu(map->volume_blk_size) != 512)
4879 first_block = first_block *
4880 le32_to_cpu(map->volume_blk_size)/512;
4881
4882 cp->tweak_lower = cpu_to_le32(first_block);
4883 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 struct scsi_cmnd *cmd = c->scsi_cmd;
4891 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892 struct ioaccel2_sg_element *curr_sg;
4893 int use_sg, i;
4894 struct scatterlist *sg;
4895 u64 addr64;
4896 u32 len;
4897 u32 total_len = 0;
4898
4899 if (!cmd->device)
4900 return -1;
4901
4902 if (!cmd->device->hostdata)
4903 return -1;
4904
4905 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906
4907 if (is_zero_length_transfer(cdb)) {
4908 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909 atomic_dec(&phys_disk->ioaccel_cmds_out);
4910 return IO_ACCEL_INELIGIBLE;
4911 }
4912
4913 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 return IO_ACCEL_INELIGIBLE;
4916 }
4917
4918 c->cmd_type = CMD_IOACCEL2;
4919 /* Adjust the DMA address to point to the accelerated command buffer */
4920 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921 (c->cmdindex * sizeof(*cp));
4922 BUG_ON(c->busaddr & 0x0000007F);
4923
4924 memset(cp, 0, sizeof(*cp));
4925 cp->IU_type = IOACCEL2_IU_TYPE;
4926
4927 use_sg = scsi_dma_map(cmd);
4928 if (use_sg < 0) {
4929 atomic_dec(&phys_disk->ioaccel_cmds_out);
4930 return use_sg;
4931 }
4932
4933 if (use_sg) {
4934 curr_sg = cp->sg;
4935 if (use_sg > h->ioaccel_maxsg) {
4936 addr64 = le64_to_cpu(
4937 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938 curr_sg->address = cpu_to_le64(addr64);
4939 curr_sg->length = 0;
4940 curr_sg->reserved[0] = 0;
4941 curr_sg->reserved[1] = 0;
4942 curr_sg->reserved[2] = 0;
4943 curr_sg->chain_indicator = 0x80;
4944
4945 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946 }
4947 scsi_for_each_sg(cmd, sg, use_sg, i) {
4948 addr64 = (u64) sg_dma_address(sg);
4949 len = sg_dma_len(sg);
4950 total_len += len;
4951 curr_sg->address = cpu_to_le64(addr64);
4952 curr_sg->length = cpu_to_le32(len);
4953 curr_sg->reserved[0] = 0;
4954 curr_sg->reserved[1] = 0;
4955 curr_sg->reserved[2] = 0;
4956 curr_sg->chain_indicator = 0;
4957 curr_sg++;
4958 }
4959
4960 switch (cmd->sc_data_direction) {
4961 case DMA_TO_DEVICE:
4962 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4964 break;
4965 case DMA_FROM_DEVICE:
4966 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967 cp->direction |= IOACCEL2_DIR_DATA_IN;
4968 break;
4969 case DMA_NONE:
4970 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971 cp->direction |= IOACCEL2_DIR_NO_DATA;
4972 break;
4973 default:
4974 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4975 cmd->sc_data_direction);
4976 BUG();
4977 break;
4978 }
4979 } else {
4980 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4981 cp->direction |= IOACCEL2_DIR_NO_DATA;
4982 }
4983
4984 /* Set encryption parameters, if necessary */
4985 set_encrypt_ioaccel2(h, c, cp);
4986
4987 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4988 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4989 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4990
4991 cp->data_len = cpu_to_le32(total_len);
4992 cp->err_ptr = cpu_to_le64(c->busaddr +
4993 offsetof(struct io_accel2_cmd, error_data));
4994 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4995
4996 /* fill in sg elements */
4997 if (use_sg > h->ioaccel_maxsg) {
4998 cp->sg_count = 1;
4999 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5000 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5001 atomic_dec(&phys_disk->ioaccel_cmds_out);
5002 scsi_dma_unmap(cmd);
5003 return -1;
5004 }
5005 } else
5006 cp->sg_count = (u8) use_sg;
5007
5008 enqueue_cmd_and_start_io(h, c);
5009 return 0;
5010 }
5011
5012 /*
5013 * Queue a command to the correct I/O accelerator path.
5014 */
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018 {
5019 if (!c->scsi_cmd->device)
5020 return -1;
5021
5022 if (!c->scsi_cmd->device->hostdata)
5023 return -1;
5024
5025 /* Try to honor the device's queue depth */
5026 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5027 phys_disk->queue_depth) {
5028 atomic_dec(&phys_disk->ioaccel_cmds_out);
5029 return IO_ACCEL_INELIGIBLE;
5030 }
5031 if (h->transMethod & CFGTBL_Trans_io_accel1)
5032 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5033 cdb, cdb_len, scsi3addr,
5034 phys_disk);
5035 else
5036 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5037 cdb, cdb_len, scsi3addr,
5038 phys_disk);
5039 }
5040
5041 static void raid_map_helper(struct raid_map_data *map,
5042 int offload_to_mirror, u32 *map_index, u32 *current_group)
5043 {
5044 if (offload_to_mirror == 0) {
5045 /* use physical disk in the first mirrored group. */
5046 *map_index %= le16_to_cpu(map->data_disks_per_row);
5047 return;
5048 }
5049 do {
5050 /* determine mirror group that *map_index indicates */
5051 *current_group = *map_index /
5052 le16_to_cpu(map->data_disks_per_row);
5053 if (offload_to_mirror == *current_group)
5054 continue;
5055 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5056 /* select map index from next group */
5057 *map_index += le16_to_cpu(map->data_disks_per_row);
5058 (*current_group)++;
5059 } else {
5060 /* select map index from first group */
5061 *map_index %= le16_to_cpu(map->data_disks_per_row);
5062 *current_group = 0;
5063 }
5064 } while (offload_to_mirror != *current_group);
5065 }
5066
5067 /*
5068 * Attempt to perform offload RAID mapping for a logical volume I/O.
5069 */
5070 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5071 struct CommandList *c)
5072 {
5073 struct scsi_cmnd *cmd = c->scsi_cmd;
5074 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5075 struct raid_map_data *map = &dev->raid_map;
5076 struct raid_map_disk_data *dd = &map->data[0];
5077 int is_write = 0;
5078 u32 map_index;
5079 u64 first_block, last_block;
5080 u32 block_cnt;
5081 u32 blocks_per_row;
5082 u64 first_row, last_row;
5083 u32 first_row_offset, last_row_offset;
5084 u32 first_column, last_column;
5085 u64 r0_first_row, r0_last_row;
5086 u32 r5or6_blocks_per_row;
5087 u64 r5or6_first_row, r5or6_last_row;
5088 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5089 u32 r5or6_first_column, r5or6_last_column;
5090 u32 total_disks_per_row;
5091 u32 stripesize;
5092 u32 first_group, last_group, current_group;
5093 u32 map_row;
5094 u32 disk_handle;
5095 u64 disk_block;
5096 u32 disk_block_cnt;
5097 u8 cdb[16];
5098 u8 cdb_len;
5099 u16 strip_size;
5100 #if BITS_PER_LONG == 32
5101 u64 tmpdiv;
5102 #endif
5103 int offload_to_mirror;
5104
5105 if (!dev)
5106 return -1;
5107
5108 /* check for valid opcode, get LBA and block count */
5109 switch (cmd->cmnd[0]) {
5110 case WRITE_6:
5111 is_write = 1;
5112 case READ_6:
5113 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5114 (cmd->cmnd[2] << 8) |
5115 cmd->cmnd[3]);
5116 block_cnt = cmd->cmnd[4];
5117 if (block_cnt == 0)
5118 block_cnt = 256;
5119 break;
5120 case WRITE_10:
5121 is_write = 1;
5122 case READ_10:
5123 first_block =
5124 (((u64) cmd->cmnd[2]) << 24) |
5125 (((u64) cmd->cmnd[3]) << 16) |
5126 (((u64) cmd->cmnd[4]) << 8) |
5127 cmd->cmnd[5];
5128 block_cnt =
5129 (((u32) cmd->cmnd[7]) << 8) |
5130 cmd->cmnd[8];
5131 break;
5132 case WRITE_12:
5133 is_write = 1;
5134 case READ_12:
5135 first_block =
5136 (((u64) cmd->cmnd[2]) << 24) |
5137 (((u64) cmd->cmnd[3]) << 16) |
5138 (((u64) cmd->cmnd[4]) << 8) |
5139 cmd->cmnd[5];
5140 block_cnt =
5141 (((u32) cmd->cmnd[6]) << 24) |
5142 (((u32) cmd->cmnd[7]) << 16) |
5143 (((u32) cmd->cmnd[8]) << 8) |
5144 cmd->cmnd[9];
5145 break;
5146 case WRITE_16:
5147 is_write = 1;
5148 case READ_16:
5149 first_block =
5150 (((u64) cmd->cmnd[2]) << 56) |
5151 (((u64) cmd->cmnd[3]) << 48) |
5152 (((u64) cmd->cmnd[4]) << 40) |
5153 (((u64) cmd->cmnd[5]) << 32) |
5154 (((u64) cmd->cmnd[6]) << 24) |
5155 (((u64) cmd->cmnd[7]) << 16) |
5156 (((u64) cmd->cmnd[8]) << 8) |
5157 cmd->cmnd[9];
5158 block_cnt =
5159 (((u32) cmd->cmnd[10]) << 24) |
5160 (((u32) cmd->cmnd[11]) << 16) |
5161 (((u32) cmd->cmnd[12]) << 8) |
5162 cmd->cmnd[13];
5163 break;
5164 default:
5165 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5166 }
5167 last_block = first_block + block_cnt - 1;
5168
5169 /* check for write to non-RAID-0 */
5170 if (is_write && dev->raid_level != 0)
5171 return IO_ACCEL_INELIGIBLE;
5172
5173 /* check for invalid block or wraparound */
5174 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5175 last_block < first_block)
5176 return IO_ACCEL_INELIGIBLE;
5177
5178 /* calculate stripe information for the request */
5179 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5180 le16_to_cpu(map->strip_size);
5181 strip_size = le16_to_cpu(map->strip_size);
5182 #if BITS_PER_LONG == 32
5183 tmpdiv = first_block;
5184 (void) do_div(tmpdiv, blocks_per_row);
5185 first_row = tmpdiv;
5186 tmpdiv = last_block;
5187 (void) do_div(tmpdiv, blocks_per_row);
5188 last_row = tmpdiv;
5189 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5190 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5191 tmpdiv = first_row_offset;
5192 (void) do_div(tmpdiv, strip_size);
5193 first_column = tmpdiv;
5194 tmpdiv = last_row_offset;
5195 (void) do_div(tmpdiv, strip_size);
5196 last_column = tmpdiv;
5197 #else
5198 first_row = first_block / blocks_per_row;
5199 last_row = last_block / blocks_per_row;
5200 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5201 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5202 first_column = first_row_offset / strip_size;
5203 last_column = last_row_offset / strip_size;
5204 #endif
5205
5206 /* if this isn't a single row/column then give to the controller */
5207 if ((first_row != last_row) || (first_column != last_column))
5208 return IO_ACCEL_INELIGIBLE;
5209
5210 /* proceeding with driver mapping */
5211 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5212 le16_to_cpu(map->metadata_disks_per_row);
5213 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5214 le16_to_cpu(map->row_cnt);
5215 map_index = (map_row * total_disks_per_row) + first_column;
5216
5217 switch (dev->raid_level) {
5218 case HPSA_RAID_0:
5219 break; /* nothing special to do */
5220 case HPSA_RAID_1:
5221 /* Handles load balance across RAID 1 members.
5222 * (2-drive R1 and R10 with even # of drives.)
5223 * Appropriate for SSDs, not optimal for HDDs
5224 */
5225 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5226 if (dev->offload_to_mirror)
5227 map_index += le16_to_cpu(map->data_disks_per_row);
5228 dev->offload_to_mirror = !dev->offload_to_mirror;
5229 break;
5230 case HPSA_RAID_ADM:
5231 /* Handles N-way mirrors (R1-ADM)
5232 * and R10 with # of drives divisible by 3.)
5233 */
5234 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5235
5236 offload_to_mirror = dev->offload_to_mirror;
5237 raid_map_helper(map, offload_to_mirror,
5238 &map_index, &current_group);
5239 /* set mirror group to use next time */
5240 offload_to_mirror =
5241 (offload_to_mirror >=
5242 le16_to_cpu(map->layout_map_count) - 1)
5243 ? 0 : offload_to_mirror + 1;
5244 dev->offload_to_mirror = offload_to_mirror;
5245 /* Avoid direct use of dev->offload_to_mirror within this
5246 * function since multiple threads might simultaneously
5247 * increment it beyond the range of dev->layout_map_count -1.
5248 */
5249 break;
5250 case HPSA_RAID_5:
5251 case HPSA_RAID_6:
5252 if (le16_to_cpu(map->layout_map_count) <= 1)
5253 break;
5254
5255 /* Verify first and last block are in same RAID group */
5256 r5or6_blocks_per_row =
5257 le16_to_cpu(map->strip_size) *
5258 le16_to_cpu(map->data_disks_per_row);
5259 BUG_ON(r5or6_blocks_per_row == 0);
5260 stripesize = r5or6_blocks_per_row *
5261 le16_to_cpu(map->layout_map_count);
5262 #if BITS_PER_LONG == 32
5263 tmpdiv = first_block;
5264 first_group = do_div(tmpdiv, stripesize);
5265 tmpdiv = first_group;
5266 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5267 first_group = tmpdiv;
5268 tmpdiv = last_block;
5269 last_group = do_div(tmpdiv, stripesize);
5270 tmpdiv = last_group;
5271 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5272 last_group = tmpdiv;
5273 #else
5274 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5275 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5276 #endif
5277 if (first_group != last_group)
5278 return IO_ACCEL_INELIGIBLE;
5279
5280 /* Verify request is in a single row of RAID 5/6 */
5281 #if BITS_PER_LONG == 32
5282 tmpdiv = first_block;
5283 (void) do_div(tmpdiv, stripesize);
5284 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5285 tmpdiv = last_block;
5286 (void) do_div(tmpdiv, stripesize);
5287 r5or6_last_row = r0_last_row = tmpdiv;
5288 #else
5289 first_row = r5or6_first_row = r0_first_row =
5290 first_block / stripesize;
5291 r5or6_last_row = r0_last_row = last_block / stripesize;
5292 #endif
5293 if (r5or6_first_row != r5or6_last_row)
5294 return IO_ACCEL_INELIGIBLE;
5295
5296
5297 /* Verify request is in a single column */
5298 #if BITS_PER_LONG == 32
5299 tmpdiv = first_block;
5300 first_row_offset = do_div(tmpdiv, stripesize);
5301 tmpdiv = first_row_offset;
5302 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5303 r5or6_first_row_offset = first_row_offset;
5304 tmpdiv = last_block;
5305 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5306 tmpdiv = r5or6_last_row_offset;
5307 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5308 tmpdiv = r5or6_first_row_offset;
5309 (void) do_div(tmpdiv, map->strip_size);
5310 first_column = r5or6_first_column = tmpdiv;
5311 tmpdiv = r5or6_last_row_offset;
5312 (void) do_div(tmpdiv, map->strip_size);
5313 r5or6_last_column = tmpdiv;
5314 #else
5315 first_row_offset = r5or6_first_row_offset =
5316 (u32)((first_block % stripesize) %
5317 r5or6_blocks_per_row);
5318
5319 r5or6_last_row_offset =
5320 (u32)((last_block % stripesize) %
5321 r5or6_blocks_per_row);
5322
5323 first_column = r5or6_first_column =
5324 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5325 r5or6_last_column =
5326 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5327 #endif
5328 if (r5or6_first_column != r5or6_last_column)
5329 return IO_ACCEL_INELIGIBLE;
5330
5331 /* Request is eligible */
5332 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5333 le16_to_cpu(map->row_cnt);
5334
5335 map_index = (first_group *
5336 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5337 (map_row * total_disks_per_row) + first_column;
5338 break;
5339 default:
5340 return IO_ACCEL_INELIGIBLE;
5341 }
5342
5343 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5344 return IO_ACCEL_INELIGIBLE;
5345
5346 c->phys_disk = dev->phys_disk[map_index];
5347 if (!c->phys_disk)
5348 return IO_ACCEL_INELIGIBLE;
5349
5350 disk_handle = dd[map_index].ioaccel_handle;
5351 disk_block = le64_to_cpu(map->disk_starting_blk) +
5352 first_row * le16_to_cpu(map->strip_size) +
5353 (first_row_offset - first_column *
5354 le16_to_cpu(map->strip_size));
5355 disk_block_cnt = block_cnt;
5356
5357 /* handle differing logical/physical block sizes */
5358 if (map->phys_blk_shift) {
5359 disk_block <<= map->phys_blk_shift;
5360 disk_block_cnt <<= map->phys_blk_shift;
5361 }
5362 BUG_ON(disk_block_cnt > 0xffff);
5363
5364 /* build the new CDB for the physical disk I/O */
5365 if (disk_block > 0xffffffff) {
5366 cdb[0] = is_write ? WRITE_16 : READ_16;
5367 cdb[1] = 0;
5368 cdb[2] = (u8) (disk_block >> 56);
5369 cdb[3] = (u8) (disk_block >> 48);
5370 cdb[4] = (u8) (disk_block >> 40);
5371 cdb[5] = (u8) (disk_block >> 32);
5372 cdb[6] = (u8) (disk_block >> 24);
5373 cdb[7] = (u8) (disk_block >> 16);
5374 cdb[8] = (u8) (disk_block >> 8);
5375 cdb[9] = (u8) (disk_block);
5376 cdb[10] = (u8) (disk_block_cnt >> 24);
5377 cdb[11] = (u8) (disk_block_cnt >> 16);
5378 cdb[12] = (u8) (disk_block_cnt >> 8);
5379 cdb[13] = (u8) (disk_block_cnt);
5380 cdb[14] = 0;
5381 cdb[15] = 0;
5382 cdb_len = 16;
5383 } else {
5384 cdb[0] = is_write ? WRITE_10 : READ_10;
5385 cdb[1] = 0;
5386 cdb[2] = (u8) (disk_block >> 24);
5387 cdb[3] = (u8) (disk_block >> 16);
5388 cdb[4] = (u8) (disk_block >> 8);
5389 cdb[5] = (u8) (disk_block);
5390 cdb[6] = 0;
5391 cdb[7] = (u8) (disk_block_cnt >> 8);
5392 cdb[8] = (u8) (disk_block_cnt);
5393 cdb[9] = 0;
5394 cdb_len = 10;
5395 }
5396 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5397 dev->scsi3addr,
5398 dev->phys_disk[map_index]);
5399 }
5400
5401 /*
5402 * Submit commands down the "normal" RAID stack path
5403 * All callers to hpsa_ciss_submit must check lockup_detected
5404 * beforehand, before (opt.) and after calling cmd_alloc
5405 */
5406 static int hpsa_ciss_submit(struct ctlr_info *h,
5407 struct CommandList *c, struct scsi_cmnd *cmd,
5408 unsigned char scsi3addr[])
5409 {
5410 cmd->host_scribble = (unsigned char *) c;
5411 c->cmd_type = CMD_SCSI;
5412 c->scsi_cmd = cmd;
5413 c->Header.ReplyQueue = 0; /* unused in simple mode */
5414 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5415 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5416
5417 /* Fill in the request block... */
5418
5419 c->Request.Timeout = 0;
5420 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5421 c->Request.CDBLen = cmd->cmd_len;
5422 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5423 switch (cmd->sc_data_direction) {
5424 case DMA_TO_DEVICE:
5425 c->Request.type_attr_dir =
5426 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5427 break;
5428 case DMA_FROM_DEVICE:
5429 c->Request.type_attr_dir =
5430 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5431 break;
5432 case DMA_NONE:
5433 c->Request.type_attr_dir =
5434 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5435 break;
5436 case DMA_BIDIRECTIONAL:
5437 /* This can happen if a buggy application does a scsi passthru
5438 * and sets both inlen and outlen to non-zero. ( see
5439 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5440 */
5441
5442 c->Request.type_attr_dir =
5443 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5444 /* This is technically wrong, and hpsa controllers should
5445 * reject it with CMD_INVALID, which is the most correct
5446 * response, but non-fibre backends appear to let it
5447 * slide by, and give the same results as if this field
5448 * were set correctly. Either way is acceptable for
5449 * our purposes here.
5450 */
5451
5452 break;
5453
5454 default:
5455 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5456 cmd->sc_data_direction);
5457 BUG();
5458 break;
5459 }
5460
5461 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5462 hpsa_cmd_resolve_and_free(h, c);
5463 return SCSI_MLQUEUE_HOST_BUSY;
5464 }
5465 enqueue_cmd_and_start_io(h, c);
5466 /* the cmd'll come back via intr handler in complete_scsi_command() */
5467 return 0;
5468 }
5469
5470 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5471 struct CommandList *c)
5472 {
5473 dma_addr_t cmd_dma_handle, err_dma_handle;
5474
5475 /* Zero out all of commandlist except the last field, refcount */
5476 memset(c, 0, offsetof(struct CommandList, refcount));
5477 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5478 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5479 c->err_info = h->errinfo_pool + index;
5480 memset(c->err_info, 0, sizeof(*c->err_info));
5481 err_dma_handle = h->errinfo_pool_dhandle
5482 + index * sizeof(*c->err_info);
5483 c->cmdindex = index;
5484 c->busaddr = (u32) cmd_dma_handle;
5485 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5486 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5487 c->h = h;
5488 c->scsi_cmd = SCSI_CMD_IDLE;
5489 }
5490
5491 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5492 {
5493 int i;
5494
5495 for (i = 0; i < h->nr_cmds; i++) {
5496 struct CommandList *c = h->cmd_pool + i;
5497
5498 hpsa_cmd_init(h, i, c);
5499 atomic_set(&c->refcount, 0);
5500 }
5501 }
5502
5503 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5504 struct CommandList *c)
5505 {
5506 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5507
5508 BUG_ON(c->cmdindex != index);
5509
5510 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5511 memset(c->err_info, 0, sizeof(*c->err_info));
5512 c->busaddr = (u32) cmd_dma_handle;
5513 }
5514
5515 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5516 struct CommandList *c, struct scsi_cmnd *cmd,
5517 unsigned char *scsi3addr)
5518 {
5519 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5520 int rc = IO_ACCEL_INELIGIBLE;
5521
5522 if (!dev)
5523 return SCSI_MLQUEUE_HOST_BUSY;
5524
5525 cmd->host_scribble = (unsigned char *) c;
5526
5527 if (dev->offload_enabled) {
5528 hpsa_cmd_init(h, c->cmdindex, c);
5529 c->cmd_type = CMD_SCSI;
5530 c->scsi_cmd = cmd;
5531 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5532 if (rc < 0) /* scsi_dma_map failed. */
5533 rc = SCSI_MLQUEUE_HOST_BUSY;
5534 } else if (dev->hba_ioaccel_enabled) {
5535 hpsa_cmd_init(h, c->cmdindex, c);
5536 c->cmd_type = CMD_SCSI;
5537 c->scsi_cmd = cmd;
5538 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5539 if (rc < 0) /* scsi_dma_map failed. */
5540 rc = SCSI_MLQUEUE_HOST_BUSY;
5541 }
5542 return rc;
5543 }
5544
5545 static void hpsa_command_resubmit_worker(struct work_struct *work)
5546 {
5547 struct scsi_cmnd *cmd;
5548 struct hpsa_scsi_dev_t *dev;
5549 struct CommandList *c = container_of(work, struct CommandList, work);
5550
5551 cmd = c->scsi_cmd;
5552 dev = cmd->device->hostdata;
5553 if (!dev) {
5554 cmd->result = DID_NO_CONNECT << 16;
5555 return hpsa_cmd_free_and_done(c->h, c, cmd);
5556 }
5557 if (c->reset_pending)
5558 return hpsa_cmd_free_and_done(c->h, c, cmd);
5559 if (c->cmd_type == CMD_IOACCEL2) {
5560 struct ctlr_info *h = c->h;
5561 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5562 int rc;
5563
5564 if (c2->error_data.serv_response ==
5565 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5566 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5567 if (rc == 0)
5568 return;
5569 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5570 /*
5571 * If we get here, it means dma mapping failed.
5572 * Try again via scsi mid layer, which will
5573 * then get SCSI_MLQUEUE_HOST_BUSY.
5574 */
5575 cmd->result = DID_IMM_RETRY << 16;
5576 return hpsa_cmd_free_and_done(h, c, cmd);
5577 }
5578 /* else, fall thru and resubmit down CISS path */
5579 }
5580 }
5581 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5582 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5583 /*
5584 * If we get here, it means dma mapping failed. Try
5585 * again via scsi mid layer, which will then get
5586 * SCSI_MLQUEUE_HOST_BUSY.
5587 *
5588 * hpsa_ciss_submit will have already freed c
5589 * if it encountered a dma mapping failure.
5590 */
5591 cmd->result = DID_IMM_RETRY << 16;
5592 cmd->scsi_done(cmd);
5593 }
5594 }
5595
5596 /* Running in struct Scsi_Host->host_lock less mode */
5597 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5598 {
5599 struct ctlr_info *h;
5600 struct hpsa_scsi_dev_t *dev;
5601 unsigned char scsi3addr[8];
5602 struct CommandList *c;
5603 int rc = 0;
5604
5605 /* Get the ptr to our adapter structure out of cmd->host. */
5606 h = sdev_to_hba(cmd->device);
5607
5608 BUG_ON(cmd->request->tag < 0);
5609
5610 dev = cmd->device->hostdata;
5611 if (!dev) {
5612 cmd->result = DID_NO_CONNECT << 16;
5613 cmd->scsi_done(cmd);
5614 return 0;
5615 }
5616
5617 if (dev->removed) {
5618 cmd->result = DID_NO_CONNECT << 16;
5619 cmd->scsi_done(cmd);
5620 return 0;
5621 }
5622
5623 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5624
5625 if (unlikely(lockup_detected(h))) {
5626 cmd->result = DID_NO_CONNECT << 16;
5627 cmd->scsi_done(cmd);
5628 return 0;
5629 }
5630 c = cmd_tagged_alloc(h, cmd);
5631
5632 /*
5633 * Call alternate submit routine for I/O accelerated commands.
5634 * Retries always go down the normal I/O path.
5635 */
5636 if (likely(cmd->retries == 0 &&
5637 !blk_rq_is_passthrough(cmd->request) &&
5638 h->acciopath_status)) {
5639 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5640 if (rc == 0)
5641 return 0;
5642 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643 hpsa_cmd_resolve_and_free(h, c);
5644 return SCSI_MLQUEUE_HOST_BUSY;
5645 }
5646 }
5647 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5648 }
5649
5650 static void hpsa_scan_complete(struct ctlr_info *h)
5651 {
5652 unsigned long flags;
5653
5654 spin_lock_irqsave(&h->scan_lock, flags);
5655 h->scan_finished = 1;
5656 wake_up(&h->scan_wait_queue);
5657 spin_unlock_irqrestore(&h->scan_lock, flags);
5658 }
5659
5660 static void hpsa_scan_start(struct Scsi_Host *sh)
5661 {
5662 struct ctlr_info *h = shost_to_hba(sh);
5663 unsigned long flags;
5664
5665 /*
5666 * Don't let rescans be initiated on a controller known to be locked
5667 * up. If the controller locks up *during* a rescan, that thread is
5668 * probably hosed, but at least we can prevent new rescan threads from
5669 * piling up on a locked up controller.
5670 */
5671 if (unlikely(lockup_detected(h)))
5672 return hpsa_scan_complete(h);
5673
5674 /*
5675 * If a scan is already waiting to run, no need to add another
5676 */
5677 spin_lock_irqsave(&h->scan_lock, flags);
5678 if (h->scan_waiting) {
5679 spin_unlock_irqrestore(&h->scan_lock, flags);
5680 return;
5681 }
5682
5683 spin_unlock_irqrestore(&h->scan_lock, flags);
5684
5685 /* wait until any scan already in progress is finished. */
5686 while (1) {
5687 spin_lock_irqsave(&h->scan_lock, flags);
5688 if (h->scan_finished)
5689 break;
5690 h->scan_waiting = 1;
5691 spin_unlock_irqrestore(&h->scan_lock, flags);
5692 wait_event(h->scan_wait_queue, h->scan_finished);
5693 /* Note: We don't need to worry about a race between this
5694 * thread and driver unload because the midlayer will
5695 * have incremented the reference count, so unload won't
5696 * happen if we're in here.
5697 */
5698 }
5699 h->scan_finished = 0; /* mark scan as in progress */
5700 h->scan_waiting = 0;
5701 spin_unlock_irqrestore(&h->scan_lock, flags);
5702
5703 if (unlikely(lockup_detected(h)))
5704 return hpsa_scan_complete(h);
5705
5706 /*
5707 * Do the scan after a reset completion
5708 */
5709 spin_lock_irqsave(&h->reset_lock, flags);
5710 if (h->reset_in_progress) {
5711 h->drv_req_rescan = 1;
5712 spin_unlock_irqrestore(&h->reset_lock, flags);
5713 hpsa_scan_complete(h);
5714 return;
5715 }
5716 spin_unlock_irqrestore(&h->reset_lock, flags);
5717
5718 hpsa_update_scsi_devices(h);
5719
5720 hpsa_scan_complete(h);
5721 }
5722
5723 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5724 {
5725 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5726
5727 if (!logical_drive)
5728 return -ENODEV;
5729
5730 if (qdepth < 1)
5731 qdepth = 1;
5732 else if (qdepth > logical_drive->queue_depth)
5733 qdepth = logical_drive->queue_depth;
5734
5735 return scsi_change_queue_depth(sdev, qdepth);
5736 }
5737
5738 static int hpsa_scan_finished(struct Scsi_Host *sh,
5739 unsigned long elapsed_time)
5740 {
5741 struct ctlr_info *h = shost_to_hba(sh);
5742 unsigned long flags;
5743 int finished;
5744
5745 spin_lock_irqsave(&h->scan_lock, flags);
5746 finished = h->scan_finished;
5747 spin_unlock_irqrestore(&h->scan_lock, flags);
5748 return finished;
5749 }
5750
5751 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5752 {
5753 struct Scsi_Host *sh;
5754
5755 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5756 if (sh == NULL) {
5757 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5758 return -ENOMEM;
5759 }
5760
5761 sh->io_port = 0;
5762 sh->n_io_port = 0;
5763 sh->this_id = -1;
5764 sh->max_channel = 3;
5765 sh->max_cmd_len = MAX_COMMAND_SIZE;
5766 sh->max_lun = HPSA_MAX_LUN;
5767 sh->max_id = HPSA_MAX_LUN;
5768 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5769 sh->cmd_per_lun = sh->can_queue;
5770 sh->sg_tablesize = h->maxsgentries;
5771 sh->transportt = hpsa_sas_transport_template;
5772 sh->hostdata[0] = (unsigned long) h;
5773 sh->irq = pci_irq_vector(h->pdev, 0);
5774 sh->unique_id = sh->irq;
5775
5776 h->scsi_host = sh;
5777 return 0;
5778 }
5779
5780 static int hpsa_scsi_add_host(struct ctlr_info *h)
5781 {
5782 int rv;
5783
5784 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5785 if (rv) {
5786 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5787 return rv;
5788 }
5789 scsi_scan_host(h->scsi_host);
5790 return 0;
5791 }
5792
5793 /*
5794 * The block layer has already gone to the trouble of picking out a unique,
5795 * small-integer tag for this request. We use an offset from that value as
5796 * an index to select our command block. (The offset allows us to reserve the
5797 * low-numbered entries for our own uses.)
5798 */
5799 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5800 {
5801 int idx = scmd->request->tag;
5802
5803 if (idx < 0)
5804 return idx;
5805
5806 /* Offset to leave space for internal cmds. */
5807 return idx += HPSA_NRESERVED_CMDS;
5808 }
5809
5810 /*
5811 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5812 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5813 */
5814 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5815 struct CommandList *c, unsigned char lunaddr[],
5816 int reply_queue)
5817 {
5818 int rc;
5819
5820 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5821 (void) fill_cmd(c, TEST_UNIT_READY, h,
5822 NULL, 0, 0, lunaddr, TYPE_CMD);
5823 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5824 if (rc)
5825 return rc;
5826 /* no unmap needed here because no data xfer. */
5827
5828 /* Check if the unit is already ready. */
5829 if (c->err_info->CommandStatus == CMD_SUCCESS)
5830 return 0;
5831
5832 /*
5833 * The first command sent after reset will receive "unit attention" to
5834 * indicate that the LUN has been reset...this is actually what we're
5835 * looking for (but, success is good too).
5836 */
5837 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5838 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5839 (c->err_info->SenseInfo[2] == NO_SENSE ||
5840 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5841 return 0;
5842
5843 return 1;
5844 }
5845
5846 /*
5847 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5848 * returns zero when the unit is ready, and non-zero when giving up.
5849 */
5850 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5851 struct CommandList *c,
5852 unsigned char lunaddr[], int reply_queue)
5853 {
5854 int rc;
5855 int count = 0;
5856 int waittime = 1; /* seconds */
5857
5858 /* Send test unit ready until device ready, or give up. */
5859 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5860
5861 /*
5862 * Wait for a bit. do this first, because if we send
5863 * the TUR right away, the reset will just abort it.
5864 */
5865 msleep(1000 * waittime);
5866
5867 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5868 if (!rc)
5869 break;
5870
5871 /* Increase wait time with each try, up to a point. */
5872 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5873 waittime *= 2;
5874
5875 dev_warn(&h->pdev->dev,
5876 "waiting %d secs for device to become ready.\n",
5877 waittime);
5878 }
5879
5880 return rc;
5881 }
5882
5883 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5884 unsigned char lunaddr[],
5885 int reply_queue)
5886 {
5887 int first_queue;
5888 int last_queue;
5889 int rq;
5890 int rc = 0;
5891 struct CommandList *c;
5892
5893 c = cmd_alloc(h);
5894
5895 /*
5896 * If no specific reply queue was requested, then send the TUR
5897 * repeatedly, requesting a reply on each reply queue; otherwise execute
5898 * the loop exactly once using only the specified queue.
5899 */
5900 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5901 first_queue = 0;
5902 last_queue = h->nreply_queues - 1;
5903 } else {
5904 first_queue = reply_queue;
5905 last_queue = reply_queue;
5906 }
5907
5908 for (rq = first_queue; rq <= last_queue; rq++) {
5909 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5910 if (rc)
5911 break;
5912 }
5913
5914 if (rc)
5915 dev_warn(&h->pdev->dev, "giving up on device.\n");
5916 else
5917 dev_warn(&h->pdev->dev, "device is ready.\n");
5918
5919 cmd_free(h, c);
5920 return rc;
5921 }
5922
5923 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5924 * complaining. Doing a host- or bus-reset can't do anything good here.
5925 */
5926 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5927 {
5928 int rc = SUCCESS;
5929 struct ctlr_info *h;
5930 struct hpsa_scsi_dev_t *dev;
5931 u8 reset_type;
5932 char msg[48];
5933 unsigned long flags;
5934
5935 /* find the controller to which the command to be aborted was sent */
5936 h = sdev_to_hba(scsicmd->device);
5937 if (h == NULL) /* paranoia */
5938 return FAILED;
5939
5940 spin_lock_irqsave(&h->reset_lock, flags);
5941 h->reset_in_progress = 1;
5942 spin_unlock_irqrestore(&h->reset_lock, flags);
5943
5944 if (lockup_detected(h)) {
5945 rc = FAILED;
5946 goto return_reset_status;
5947 }
5948
5949 dev = scsicmd->device->hostdata;
5950 if (!dev) {
5951 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5952 rc = FAILED;
5953 goto return_reset_status;
5954 }
5955
5956 if (dev->devtype == TYPE_ENCLOSURE) {
5957 rc = SUCCESS;
5958 goto return_reset_status;
5959 }
5960
5961 /* if controller locked up, we can guarantee command won't complete */
5962 if (lockup_detected(h)) {
5963 snprintf(msg, sizeof(msg),
5964 "cmd %d RESET FAILED, lockup detected",
5965 hpsa_get_cmd_index(scsicmd));
5966 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5967 rc = FAILED;
5968 goto return_reset_status;
5969 }
5970
5971 /* this reset request might be the result of a lockup; check */
5972 if (detect_controller_lockup(h)) {
5973 snprintf(msg, sizeof(msg),
5974 "cmd %d RESET FAILED, new lockup detected",
5975 hpsa_get_cmd_index(scsicmd));
5976 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5977 rc = FAILED;
5978 goto return_reset_status;
5979 }
5980
5981 /* Do not attempt on controller */
5982 if (is_hba_lunid(dev->scsi3addr)) {
5983 rc = SUCCESS;
5984 goto return_reset_status;
5985 }
5986
5987 if (is_logical_dev_addr_mode(dev->scsi3addr))
5988 reset_type = HPSA_DEVICE_RESET_MSG;
5989 else
5990 reset_type = HPSA_PHYS_TARGET_RESET;
5991
5992 sprintf(msg, "resetting %s",
5993 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5994 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5995
5996 /* send a reset to the SCSI LUN which the command was sent to */
5997 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5998 DEFAULT_REPLY_QUEUE);
5999 if (rc == 0)
6000 rc = SUCCESS;
6001 else
6002 rc = FAILED;
6003
6004 sprintf(msg, "reset %s %s",
6005 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6006 rc == SUCCESS ? "completed successfully" : "failed");
6007 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6008
6009 return_reset_status:
6010 spin_lock_irqsave(&h->reset_lock, flags);
6011 h->reset_in_progress = 0;
6012 spin_unlock_irqrestore(&h->reset_lock, flags);
6013 return rc;
6014 }
6015
6016 /*
6017 * For operations with an associated SCSI command, a command block is allocated
6018 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6019 * block request tag as an index into a table of entries. cmd_tagged_free() is
6020 * the complement, although cmd_free() may be called instead.
6021 */
6022 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6023 struct scsi_cmnd *scmd)
6024 {
6025 int idx = hpsa_get_cmd_index(scmd);
6026 struct CommandList *c = h->cmd_pool + idx;
6027
6028 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6029 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6030 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6031 /* The index value comes from the block layer, so if it's out of
6032 * bounds, it's probably not our bug.
6033 */
6034 BUG();
6035 }
6036
6037 atomic_inc(&c->refcount);
6038 if (unlikely(!hpsa_is_cmd_idle(c))) {
6039 /*
6040 * We expect that the SCSI layer will hand us a unique tag
6041 * value. Thus, there should never be a collision here between
6042 * two requests...because if the selected command isn't idle
6043 * then someone is going to be very disappointed.
6044 */
6045 dev_err(&h->pdev->dev,
6046 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6047 idx);
6048 if (c->scsi_cmd != NULL)
6049 scsi_print_command(c->scsi_cmd);
6050 scsi_print_command(scmd);
6051 }
6052
6053 hpsa_cmd_partial_init(h, idx, c);
6054 return c;
6055 }
6056
6057 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6058 {
6059 /*
6060 * Release our reference to the block. We don't need to do anything
6061 * else to free it, because it is accessed by index.
6062 */
6063 (void)atomic_dec(&c->refcount);
6064 }
6065
6066 /*
6067 * For operations that cannot sleep, a command block is allocated at init,
6068 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6069 * which ones are free or in use. Lock must be held when calling this.
6070 * cmd_free() is the complement.
6071 * This function never gives up and returns NULL. If it hangs,
6072 * another thread must call cmd_free() to free some tags.
6073 */
6074
6075 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6076 {
6077 struct CommandList *c;
6078 int refcount, i;
6079 int offset = 0;
6080
6081 /*
6082 * There is some *extremely* small but non-zero chance that that
6083 * multiple threads could get in here, and one thread could
6084 * be scanning through the list of bits looking for a free
6085 * one, but the free ones are always behind him, and other
6086 * threads sneak in behind him and eat them before he can
6087 * get to them, so that while there is always a free one, a
6088 * very unlucky thread might be starved anyway, never able to
6089 * beat the other threads. In reality, this happens so
6090 * infrequently as to be indistinguishable from never.
6091 *
6092 * Note that we start allocating commands before the SCSI host structure
6093 * is initialized. Since the search starts at bit zero, this
6094 * all works, since we have at least one command structure available;
6095 * however, it means that the structures with the low indexes have to be
6096 * reserved for driver-initiated requests, while requests from the block
6097 * layer will use the higher indexes.
6098 */
6099
6100 for (;;) {
6101 i = find_next_zero_bit(h->cmd_pool_bits,
6102 HPSA_NRESERVED_CMDS,
6103 offset);
6104 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6105 offset = 0;
6106 continue;
6107 }
6108 c = h->cmd_pool + i;
6109 refcount = atomic_inc_return(&c->refcount);
6110 if (unlikely(refcount > 1)) {
6111 cmd_free(h, c); /* already in use */
6112 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6113 continue;
6114 }
6115 set_bit(i & (BITS_PER_LONG - 1),
6116 h->cmd_pool_bits + (i / BITS_PER_LONG));
6117 break; /* it's ours now. */
6118 }
6119 hpsa_cmd_partial_init(h, i, c);
6120 return c;
6121 }
6122
6123 /*
6124 * This is the complementary operation to cmd_alloc(). Note, however, in some
6125 * corner cases it may also be used to free blocks allocated by
6126 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6127 * the clear-bit is harmless.
6128 */
6129 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6130 {
6131 if (atomic_dec_and_test(&c->refcount)) {
6132 int i;
6133
6134 i = c - h->cmd_pool;
6135 clear_bit(i & (BITS_PER_LONG - 1),
6136 h->cmd_pool_bits + (i / BITS_PER_LONG));
6137 }
6138 }
6139
6140 #ifdef CONFIG_COMPAT
6141
6142 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6143 void __user *arg)
6144 {
6145 IOCTL32_Command_struct __user *arg32 =
6146 (IOCTL32_Command_struct __user *) arg;
6147 IOCTL_Command_struct arg64;
6148 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6149 int err;
6150 u32 cp;
6151
6152 memset(&arg64, 0, sizeof(arg64));
6153 err = 0;
6154 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6155 sizeof(arg64.LUN_info));
6156 err |= copy_from_user(&arg64.Request, &arg32->Request,
6157 sizeof(arg64.Request));
6158 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6159 sizeof(arg64.error_info));
6160 err |= get_user(arg64.buf_size, &arg32->buf_size);
6161 err |= get_user(cp, &arg32->buf);
6162 arg64.buf = compat_ptr(cp);
6163 err |= copy_to_user(p, &arg64, sizeof(arg64));
6164
6165 if (err)
6166 return -EFAULT;
6167
6168 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6169 if (err)
6170 return err;
6171 err |= copy_in_user(&arg32->error_info, &p->error_info,
6172 sizeof(arg32->error_info));
6173 if (err)
6174 return -EFAULT;
6175 return err;
6176 }
6177
6178 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6179 int cmd, void __user *arg)
6180 {
6181 BIG_IOCTL32_Command_struct __user *arg32 =
6182 (BIG_IOCTL32_Command_struct __user *) arg;
6183 BIG_IOCTL_Command_struct arg64;
6184 BIG_IOCTL_Command_struct __user *p =
6185 compat_alloc_user_space(sizeof(arg64));
6186 int err;
6187 u32 cp;
6188
6189 memset(&arg64, 0, sizeof(arg64));
6190 err = 0;
6191 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6192 sizeof(arg64.LUN_info));
6193 err |= copy_from_user(&arg64.Request, &arg32->Request,
6194 sizeof(arg64.Request));
6195 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6196 sizeof(arg64.error_info));
6197 err |= get_user(arg64.buf_size, &arg32->buf_size);
6198 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6199 err |= get_user(cp, &arg32->buf);
6200 arg64.buf = compat_ptr(cp);
6201 err |= copy_to_user(p, &arg64, sizeof(arg64));
6202
6203 if (err)
6204 return -EFAULT;
6205
6206 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6207 if (err)
6208 return err;
6209 err |= copy_in_user(&arg32->error_info, &p->error_info,
6210 sizeof(arg32->error_info));
6211 if (err)
6212 return -EFAULT;
6213 return err;
6214 }
6215
6216 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6217 {
6218 switch (cmd) {
6219 case CCISS_GETPCIINFO:
6220 case CCISS_GETINTINFO:
6221 case CCISS_SETINTINFO:
6222 case CCISS_GETNODENAME:
6223 case CCISS_SETNODENAME:
6224 case CCISS_GETHEARTBEAT:
6225 case CCISS_GETBUSTYPES:
6226 case CCISS_GETFIRMVER:
6227 case CCISS_GETDRIVVER:
6228 case CCISS_REVALIDVOLS:
6229 case CCISS_DEREGDISK:
6230 case CCISS_REGNEWDISK:
6231 case CCISS_REGNEWD:
6232 case CCISS_RESCANDISK:
6233 case CCISS_GETLUNINFO:
6234 return hpsa_ioctl(dev, cmd, arg);
6235
6236 case CCISS_PASSTHRU32:
6237 return hpsa_ioctl32_passthru(dev, cmd, arg);
6238 case CCISS_BIG_PASSTHRU32:
6239 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6240
6241 default:
6242 return -ENOIOCTLCMD;
6243 }
6244 }
6245 #endif
6246
6247 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6248 {
6249 struct hpsa_pci_info pciinfo;
6250
6251 if (!argp)
6252 return -EINVAL;
6253 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6254 pciinfo.bus = h->pdev->bus->number;
6255 pciinfo.dev_fn = h->pdev->devfn;
6256 pciinfo.board_id = h->board_id;
6257 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6258 return -EFAULT;
6259 return 0;
6260 }
6261
6262 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6263 {
6264 DriverVer_type DriverVer;
6265 unsigned char vmaj, vmin, vsubmin;
6266 int rc;
6267
6268 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6269 &vmaj, &vmin, &vsubmin);
6270 if (rc != 3) {
6271 dev_info(&h->pdev->dev, "driver version string '%s' "
6272 "unrecognized.", HPSA_DRIVER_VERSION);
6273 vmaj = 0;
6274 vmin = 0;
6275 vsubmin = 0;
6276 }
6277 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6278 if (!argp)
6279 return -EINVAL;
6280 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6281 return -EFAULT;
6282 return 0;
6283 }
6284
6285 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6286 {
6287 IOCTL_Command_struct iocommand;
6288 struct CommandList *c;
6289 char *buff = NULL;
6290 u64 temp64;
6291 int rc = 0;
6292
6293 if (!argp)
6294 return -EINVAL;
6295 if (!capable(CAP_SYS_RAWIO))
6296 return -EPERM;
6297 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6298 return -EFAULT;
6299 if ((iocommand.buf_size < 1) &&
6300 (iocommand.Request.Type.Direction != XFER_NONE)) {
6301 return -EINVAL;
6302 }
6303 if (iocommand.buf_size > 0) {
6304 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6305 if (buff == NULL)
6306 return -ENOMEM;
6307 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6308 /* Copy the data into the buffer we created */
6309 if (copy_from_user(buff, iocommand.buf,
6310 iocommand.buf_size)) {
6311 rc = -EFAULT;
6312 goto out_kfree;
6313 }
6314 } else {
6315 memset(buff, 0, iocommand.buf_size);
6316 }
6317 }
6318 c = cmd_alloc(h);
6319
6320 /* Fill in the command type */
6321 c->cmd_type = CMD_IOCTL_PEND;
6322 c->scsi_cmd = SCSI_CMD_BUSY;
6323 /* Fill in Command Header */
6324 c->Header.ReplyQueue = 0; /* unused in simple mode */
6325 if (iocommand.buf_size > 0) { /* buffer to fill */
6326 c->Header.SGList = 1;
6327 c->Header.SGTotal = cpu_to_le16(1);
6328 } else { /* no buffers to fill */
6329 c->Header.SGList = 0;
6330 c->Header.SGTotal = cpu_to_le16(0);
6331 }
6332 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6333
6334 /* Fill in Request block */
6335 memcpy(&c->Request, &iocommand.Request,
6336 sizeof(c->Request));
6337
6338 /* Fill in the scatter gather information */
6339 if (iocommand.buf_size > 0) {
6340 temp64 = pci_map_single(h->pdev, buff,
6341 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6342 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6343 c->SG[0].Addr = cpu_to_le64(0);
6344 c->SG[0].Len = cpu_to_le32(0);
6345 rc = -ENOMEM;
6346 goto out;
6347 }
6348 c->SG[0].Addr = cpu_to_le64(temp64);
6349 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6350 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6351 }
6352 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6353 NO_TIMEOUT);
6354 if (iocommand.buf_size > 0)
6355 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6356 check_ioctl_unit_attention(h, c);
6357 if (rc) {
6358 rc = -EIO;
6359 goto out;
6360 }
6361
6362 /* Copy the error information out */
6363 memcpy(&iocommand.error_info, c->err_info,
6364 sizeof(iocommand.error_info));
6365 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6366 rc = -EFAULT;
6367 goto out;
6368 }
6369 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6370 iocommand.buf_size > 0) {
6371 /* Copy the data out of the buffer we created */
6372 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6373 rc = -EFAULT;
6374 goto out;
6375 }
6376 }
6377 out:
6378 cmd_free(h, c);
6379 out_kfree:
6380 kfree(buff);
6381 return rc;
6382 }
6383
6384 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6385 {
6386 BIG_IOCTL_Command_struct *ioc;
6387 struct CommandList *c;
6388 unsigned char **buff = NULL;
6389 int *buff_size = NULL;
6390 u64 temp64;
6391 BYTE sg_used = 0;
6392 int status = 0;
6393 u32 left;
6394 u32 sz;
6395 BYTE __user *data_ptr;
6396
6397 if (!argp)
6398 return -EINVAL;
6399 if (!capable(CAP_SYS_RAWIO))
6400 return -EPERM;
6401 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6402 if (!ioc) {
6403 status = -ENOMEM;
6404 goto cleanup1;
6405 }
6406 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6407 status = -EFAULT;
6408 goto cleanup1;
6409 }
6410 if ((ioc->buf_size < 1) &&
6411 (ioc->Request.Type.Direction != XFER_NONE)) {
6412 status = -EINVAL;
6413 goto cleanup1;
6414 }
6415 /* Check kmalloc limits using all SGs */
6416 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6417 status = -EINVAL;
6418 goto cleanup1;
6419 }
6420 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6421 status = -EINVAL;
6422 goto cleanup1;
6423 }
6424 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6425 if (!buff) {
6426 status = -ENOMEM;
6427 goto cleanup1;
6428 }
6429 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6430 if (!buff_size) {
6431 status = -ENOMEM;
6432 goto cleanup1;
6433 }
6434 left = ioc->buf_size;
6435 data_ptr = ioc->buf;
6436 while (left) {
6437 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6438 buff_size[sg_used] = sz;
6439 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6440 if (buff[sg_used] == NULL) {
6441 status = -ENOMEM;
6442 goto cleanup1;
6443 }
6444 if (ioc->Request.Type.Direction & XFER_WRITE) {
6445 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6446 status = -EFAULT;
6447 goto cleanup1;
6448 }
6449 } else
6450 memset(buff[sg_used], 0, sz);
6451 left -= sz;
6452 data_ptr += sz;
6453 sg_used++;
6454 }
6455 c = cmd_alloc(h);
6456
6457 c->cmd_type = CMD_IOCTL_PEND;
6458 c->scsi_cmd = SCSI_CMD_BUSY;
6459 c->Header.ReplyQueue = 0;
6460 c->Header.SGList = (u8) sg_used;
6461 c->Header.SGTotal = cpu_to_le16(sg_used);
6462 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6463 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6464 if (ioc->buf_size > 0) {
6465 int i;
6466 for (i = 0; i < sg_used; i++) {
6467 temp64 = pci_map_single(h->pdev, buff[i],
6468 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6469 if (dma_mapping_error(&h->pdev->dev,
6470 (dma_addr_t) temp64)) {
6471 c->SG[i].Addr = cpu_to_le64(0);
6472 c->SG[i].Len = cpu_to_le32(0);
6473 hpsa_pci_unmap(h->pdev, c, i,
6474 PCI_DMA_BIDIRECTIONAL);
6475 status = -ENOMEM;
6476 goto cleanup0;
6477 }
6478 c->SG[i].Addr = cpu_to_le64(temp64);
6479 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6480 c->SG[i].Ext = cpu_to_le32(0);
6481 }
6482 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6483 }
6484 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6485 NO_TIMEOUT);
6486 if (sg_used)
6487 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6488 check_ioctl_unit_attention(h, c);
6489 if (status) {
6490 status = -EIO;
6491 goto cleanup0;
6492 }
6493
6494 /* Copy the error information out */
6495 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6496 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6497 status = -EFAULT;
6498 goto cleanup0;
6499 }
6500 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6501 int i;
6502
6503 /* Copy the data out of the buffer we created */
6504 BYTE __user *ptr = ioc->buf;
6505 for (i = 0; i < sg_used; i++) {
6506 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6507 status = -EFAULT;
6508 goto cleanup0;
6509 }
6510 ptr += buff_size[i];
6511 }
6512 }
6513 status = 0;
6514 cleanup0:
6515 cmd_free(h, c);
6516 cleanup1:
6517 if (buff) {
6518 int i;
6519
6520 for (i = 0; i < sg_used; i++)
6521 kfree(buff[i]);
6522 kfree(buff);
6523 }
6524 kfree(buff_size);
6525 kfree(ioc);
6526 return status;
6527 }
6528
6529 static void check_ioctl_unit_attention(struct ctlr_info *h,
6530 struct CommandList *c)
6531 {
6532 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6533 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6534 (void) check_for_unit_attention(h, c);
6535 }
6536
6537 /*
6538 * ioctl
6539 */
6540 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6541 {
6542 struct ctlr_info *h;
6543 void __user *argp = (void __user *)arg;
6544 int rc;
6545
6546 h = sdev_to_hba(dev);
6547
6548 switch (cmd) {
6549 case CCISS_DEREGDISK:
6550 case CCISS_REGNEWDISK:
6551 case CCISS_REGNEWD:
6552 hpsa_scan_start(h->scsi_host);
6553 return 0;
6554 case CCISS_GETPCIINFO:
6555 return hpsa_getpciinfo_ioctl(h, argp);
6556 case CCISS_GETDRIVVER:
6557 return hpsa_getdrivver_ioctl(h, argp);
6558 case CCISS_PASSTHRU:
6559 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6560 return -EAGAIN;
6561 rc = hpsa_passthru_ioctl(h, argp);
6562 atomic_inc(&h->passthru_cmds_avail);
6563 return rc;
6564 case CCISS_BIG_PASSTHRU:
6565 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6566 return -EAGAIN;
6567 rc = hpsa_big_passthru_ioctl(h, argp);
6568 atomic_inc(&h->passthru_cmds_avail);
6569 return rc;
6570 default:
6571 return -ENOTTY;
6572 }
6573 }
6574
6575 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6576 u8 reset_type)
6577 {
6578 struct CommandList *c;
6579
6580 c = cmd_alloc(h);
6581
6582 /* fill_cmd can't fail here, no data buffer to map */
6583 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6584 RAID_CTLR_LUNID, TYPE_MSG);
6585 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6586 c->waiting = NULL;
6587 enqueue_cmd_and_start_io(h, c);
6588 /* Don't wait for completion, the reset won't complete. Don't free
6589 * the command either. This is the last command we will send before
6590 * re-initializing everything, so it doesn't matter and won't leak.
6591 */
6592 return;
6593 }
6594
6595 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6596 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6597 int cmd_type)
6598 {
6599 int pci_dir = XFER_NONE;
6600
6601 c->cmd_type = CMD_IOCTL_PEND;
6602 c->scsi_cmd = SCSI_CMD_BUSY;
6603 c->Header.ReplyQueue = 0;
6604 if (buff != NULL && size > 0) {
6605 c->Header.SGList = 1;
6606 c->Header.SGTotal = cpu_to_le16(1);
6607 } else {
6608 c->Header.SGList = 0;
6609 c->Header.SGTotal = cpu_to_le16(0);
6610 }
6611 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6612
6613 if (cmd_type == TYPE_CMD) {
6614 switch (cmd) {
6615 case HPSA_INQUIRY:
6616 /* are we trying to read a vital product page */
6617 if (page_code & VPD_PAGE) {
6618 c->Request.CDB[1] = 0x01;
6619 c->Request.CDB[2] = (page_code & 0xff);
6620 }
6621 c->Request.CDBLen = 6;
6622 c->Request.type_attr_dir =
6623 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624 c->Request.Timeout = 0;
6625 c->Request.CDB[0] = HPSA_INQUIRY;
6626 c->Request.CDB[4] = size & 0xFF;
6627 break;
6628 case RECEIVE_DIAGNOSTIC:
6629 c->Request.CDBLen = 6;
6630 c->Request.type_attr_dir =
6631 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6632 c->Request.Timeout = 0;
6633 c->Request.CDB[0] = cmd;
6634 c->Request.CDB[1] = 1;
6635 c->Request.CDB[2] = 1;
6636 c->Request.CDB[3] = (size >> 8) & 0xFF;
6637 c->Request.CDB[4] = size & 0xFF;
6638 break;
6639 case HPSA_REPORT_LOG:
6640 case HPSA_REPORT_PHYS:
6641 /* Talking to controller so It's a physical command
6642 mode = 00 target = 0. Nothing to write.
6643 */
6644 c->Request.CDBLen = 12;
6645 c->Request.type_attr_dir =
6646 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6647 c->Request.Timeout = 0;
6648 c->Request.CDB[0] = cmd;
6649 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6650 c->Request.CDB[7] = (size >> 16) & 0xFF;
6651 c->Request.CDB[8] = (size >> 8) & 0xFF;
6652 c->Request.CDB[9] = size & 0xFF;
6653 break;
6654 case BMIC_SENSE_DIAG_OPTIONS:
6655 c->Request.CDBLen = 16;
6656 c->Request.type_attr_dir =
6657 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6658 c->Request.Timeout = 0;
6659 /* Spec says this should be BMIC_WRITE */
6660 c->Request.CDB[0] = BMIC_READ;
6661 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6662 break;
6663 case BMIC_SET_DIAG_OPTIONS:
6664 c->Request.CDBLen = 16;
6665 c->Request.type_attr_dir =
6666 TYPE_ATTR_DIR(cmd_type,
6667 ATTR_SIMPLE, XFER_WRITE);
6668 c->Request.Timeout = 0;
6669 c->Request.CDB[0] = BMIC_WRITE;
6670 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6671 break;
6672 case HPSA_CACHE_FLUSH:
6673 c->Request.CDBLen = 12;
6674 c->Request.type_attr_dir =
6675 TYPE_ATTR_DIR(cmd_type,
6676 ATTR_SIMPLE, XFER_WRITE);
6677 c->Request.Timeout = 0;
6678 c->Request.CDB[0] = BMIC_WRITE;
6679 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6680 c->Request.CDB[7] = (size >> 8) & 0xFF;
6681 c->Request.CDB[8] = size & 0xFF;
6682 break;
6683 case TEST_UNIT_READY:
6684 c->Request.CDBLen = 6;
6685 c->Request.type_attr_dir =
6686 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6687 c->Request.Timeout = 0;
6688 break;
6689 case HPSA_GET_RAID_MAP:
6690 c->Request.CDBLen = 12;
6691 c->Request.type_attr_dir =
6692 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6693 c->Request.Timeout = 0;
6694 c->Request.CDB[0] = HPSA_CISS_READ;
6695 c->Request.CDB[1] = cmd;
6696 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6697 c->Request.CDB[7] = (size >> 16) & 0xFF;
6698 c->Request.CDB[8] = (size >> 8) & 0xFF;
6699 c->Request.CDB[9] = size & 0xFF;
6700 break;
6701 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6702 c->Request.CDBLen = 10;
6703 c->Request.type_attr_dir =
6704 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705 c->Request.Timeout = 0;
6706 c->Request.CDB[0] = BMIC_READ;
6707 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6708 c->Request.CDB[7] = (size >> 16) & 0xFF;
6709 c->Request.CDB[8] = (size >> 8) & 0xFF;
6710 break;
6711 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6712 c->Request.CDBLen = 10;
6713 c->Request.type_attr_dir =
6714 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6715 c->Request.Timeout = 0;
6716 c->Request.CDB[0] = BMIC_READ;
6717 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6718 c->Request.CDB[7] = (size >> 16) & 0xFF;
6719 c->Request.CDB[8] = (size >> 8) & 0XFF;
6720 break;
6721 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6722 c->Request.CDBLen = 10;
6723 c->Request.type_attr_dir =
6724 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 c->Request.Timeout = 0;
6726 c->Request.CDB[0] = BMIC_READ;
6727 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6728 c->Request.CDB[7] = (size >> 16) & 0xFF;
6729 c->Request.CDB[8] = (size >> 8) & 0XFF;
6730 break;
6731 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6732 c->Request.CDBLen = 10;
6733 c->Request.type_attr_dir =
6734 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735 c->Request.Timeout = 0;
6736 c->Request.CDB[0] = BMIC_READ;
6737 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6738 c->Request.CDB[7] = (size >> 16) & 0xFF;
6739 c->Request.CDB[8] = (size >> 8) & 0XFF;
6740 break;
6741 case BMIC_IDENTIFY_CONTROLLER:
6742 c->Request.CDBLen = 10;
6743 c->Request.type_attr_dir =
6744 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6745 c->Request.Timeout = 0;
6746 c->Request.CDB[0] = BMIC_READ;
6747 c->Request.CDB[1] = 0;
6748 c->Request.CDB[2] = 0;
6749 c->Request.CDB[3] = 0;
6750 c->Request.CDB[4] = 0;
6751 c->Request.CDB[5] = 0;
6752 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6753 c->Request.CDB[7] = (size >> 16) & 0xFF;
6754 c->Request.CDB[8] = (size >> 8) & 0XFF;
6755 c->Request.CDB[9] = 0;
6756 break;
6757 default:
6758 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6759 BUG();
6760 }
6761 } else if (cmd_type == TYPE_MSG) {
6762 switch (cmd) {
6763
6764 case HPSA_PHYS_TARGET_RESET:
6765 c->Request.CDBLen = 16;
6766 c->Request.type_attr_dir =
6767 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6768 c->Request.Timeout = 0; /* Don't time out */
6769 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6770 c->Request.CDB[0] = HPSA_RESET;
6771 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6772 /* Physical target reset needs no control bytes 4-7*/
6773 c->Request.CDB[4] = 0x00;
6774 c->Request.CDB[5] = 0x00;
6775 c->Request.CDB[6] = 0x00;
6776 c->Request.CDB[7] = 0x00;
6777 break;
6778 case HPSA_DEVICE_RESET_MSG:
6779 c->Request.CDBLen = 16;
6780 c->Request.type_attr_dir =
6781 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6782 c->Request.Timeout = 0; /* Don't time out */
6783 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6784 c->Request.CDB[0] = cmd;
6785 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6786 /* If bytes 4-7 are zero, it means reset the */
6787 /* LunID device */
6788 c->Request.CDB[4] = 0x00;
6789 c->Request.CDB[5] = 0x00;
6790 c->Request.CDB[6] = 0x00;
6791 c->Request.CDB[7] = 0x00;
6792 break;
6793 default:
6794 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6795 cmd);
6796 BUG();
6797 }
6798 } else {
6799 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6800 BUG();
6801 }
6802
6803 switch (GET_DIR(c->Request.type_attr_dir)) {
6804 case XFER_READ:
6805 pci_dir = PCI_DMA_FROMDEVICE;
6806 break;
6807 case XFER_WRITE:
6808 pci_dir = PCI_DMA_TODEVICE;
6809 break;
6810 case XFER_NONE:
6811 pci_dir = PCI_DMA_NONE;
6812 break;
6813 default:
6814 pci_dir = PCI_DMA_BIDIRECTIONAL;
6815 }
6816 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6817 return -1;
6818 return 0;
6819 }
6820
6821 /*
6822 * Map (physical) PCI mem into (virtual) kernel space
6823 */
6824 static void __iomem *remap_pci_mem(ulong base, ulong size)
6825 {
6826 ulong page_base = ((ulong) base) & PAGE_MASK;
6827 ulong page_offs = ((ulong) base) - page_base;
6828 void __iomem *page_remapped = ioremap_nocache(page_base,
6829 page_offs + size);
6830
6831 return page_remapped ? (page_remapped + page_offs) : NULL;
6832 }
6833
6834 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6835 {
6836 return h->access.command_completed(h, q);
6837 }
6838
6839 static inline bool interrupt_pending(struct ctlr_info *h)
6840 {
6841 return h->access.intr_pending(h);
6842 }
6843
6844 static inline long interrupt_not_for_us(struct ctlr_info *h)
6845 {
6846 return (h->access.intr_pending(h) == 0) ||
6847 (h->interrupts_enabled == 0);
6848 }
6849
6850 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6851 u32 raw_tag)
6852 {
6853 if (unlikely(tag_index >= h->nr_cmds)) {
6854 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6855 return 1;
6856 }
6857 return 0;
6858 }
6859
6860 static inline void finish_cmd(struct CommandList *c)
6861 {
6862 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6863 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6864 || c->cmd_type == CMD_IOACCEL2))
6865 complete_scsi_command(c);
6866 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6867 complete(c->waiting);
6868 }
6869
6870 /* process completion of an indexed ("direct lookup") command */
6871 static inline void process_indexed_cmd(struct ctlr_info *h,
6872 u32 raw_tag)
6873 {
6874 u32 tag_index;
6875 struct CommandList *c;
6876
6877 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6878 if (!bad_tag(h, tag_index, raw_tag)) {
6879 c = h->cmd_pool + tag_index;
6880 finish_cmd(c);
6881 }
6882 }
6883
6884 /* Some controllers, like p400, will give us one interrupt
6885 * after a soft reset, even if we turned interrupts off.
6886 * Only need to check for this in the hpsa_xxx_discard_completions
6887 * functions.
6888 */
6889 static int ignore_bogus_interrupt(struct ctlr_info *h)
6890 {
6891 if (likely(!reset_devices))
6892 return 0;
6893
6894 if (likely(h->interrupts_enabled))
6895 return 0;
6896
6897 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6898 "(known firmware bug.) Ignoring.\n");
6899
6900 return 1;
6901 }
6902
6903 /*
6904 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6905 * Relies on (h-q[x] == x) being true for x such that
6906 * 0 <= x < MAX_REPLY_QUEUES.
6907 */
6908 static struct ctlr_info *queue_to_hba(u8 *queue)
6909 {
6910 return container_of((queue - *queue), struct ctlr_info, q[0]);
6911 }
6912
6913 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6914 {
6915 struct ctlr_info *h = queue_to_hba(queue);
6916 u8 q = *(u8 *) queue;
6917 u32 raw_tag;
6918
6919 if (ignore_bogus_interrupt(h))
6920 return IRQ_NONE;
6921
6922 if (interrupt_not_for_us(h))
6923 return IRQ_NONE;
6924 h->last_intr_timestamp = get_jiffies_64();
6925 while (interrupt_pending(h)) {
6926 raw_tag = get_next_completion(h, q);
6927 while (raw_tag != FIFO_EMPTY)
6928 raw_tag = next_command(h, q);
6929 }
6930 return IRQ_HANDLED;
6931 }
6932
6933 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6934 {
6935 struct ctlr_info *h = queue_to_hba(queue);
6936 u32 raw_tag;
6937 u8 q = *(u8 *) queue;
6938
6939 if (ignore_bogus_interrupt(h))
6940 return IRQ_NONE;
6941
6942 h->last_intr_timestamp = get_jiffies_64();
6943 raw_tag = get_next_completion(h, q);
6944 while (raw_tag != FIFO_EMPTY)
6945 raw_tag = next_command(h, q);
6946 return IRQ_HANDLED;
6947 }
6948
6949 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6950 {
6951 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6952 u32 raw_tag;
6953 u8 q = *(u8 *) queue;
6954
6955 if (interrupt_not_for_us(h))
6956 return IRQ_NONE;
6957 h->last_intr_timestamp = get_jiffies_64();
6958 while (interrupt_pending(h)) {
6959 raw_tag = get_next_completion(h, q);
6960 while (raw_tag != FIFO_EMPTY) {
6961 process_indexed_cmd(h, raw_tag);
6962 raw_tag = next_command(h, q);
6963 }
6964 }
6965 return IRQ_HANDLED;
6966 }
6967
6968 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6969 {
6970 struct ctlr_info *h = queue_to_hba(queue);
6971 u32 raw_tag;
6972 u8 q = *(u8 *) queue;
6973
6974 h->last_intr_timestamp = get_jiffies_64();
6975 raw_tag = get_next_completion(h, q);
6976 while (raw_tag != FIFO_EMPTY) {
6977 process_indexed_cmd(h, raw_tag);
6978 raw_tag = next_command(h, q);
6979 }
6980 return IRQ_HANDLED;
6981 }
6982
6983 /* Send a message CDB to the firmware. Careful, this only works
6984 * in simple mode, not performant mode due to the tag lookup.
6985 * We only ever use this immediately after a controller reset.
6986 */
6987 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6988 unsigned char type)
6989 {
6990 struct Command {
6991 struct CommandListHeader CommandHeader;
6992 struct RequestBlock Request;
6993 struct ErrDescriptor ErrorDescriptor;
6994 };
6995 struct Command *cmd;
6996 static const size_t cmd_sz = sizeof(*cmd) +
6997 sizeof(cmd->ErrorDescriptor);
6998 dma_addr_t paddr64;
6999 __le32 paddr32;
7000 u32 tag;
7001 void __iomem *vaddr;
7002 int i, err;
7003
7004 vaddr = pci_ioremap_bar(pdev, 0);
7005 if (vaddr == NULL)
7006 return -ENOMEM;
7007
7008 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7009 * CCISS commands, so they must be allocated from the lower 4GiB of
7010 * memory.
7011 */
7012 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7013 if (err) {
7014 iounmap(vaddr);
7015 return err;
7016 }
7017
7018 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7019 if (cmd == NULL) {
7020 iounmap(vaddr);
7021 return -ENOMEM;
7022 }
7023
7024 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7025 * although there's no guarantee, we assume that the address is at
7026 * least 4-byte aligned (most likely, it's page-aligned).
7027 */
7028 paddr32 = cpu_to_le32(paddr64);
7029
7030 cmd->CommandHeader.ReplyQueue = 0;
7031 cmd->CommandHeader.SGList = 0;
7032 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7033 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7034 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7035
7036 cmd->Request.CDBLen = 16;
7037 cmd->Request.type_attr_dir =
7038 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7039 cmd->Request.Timeout = 0; /* Don't time out */
7040 cmd->Request.CDB[0] = opcode;
7041 cmd->Request.CDB[1] = type;
7042 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7043 cmd->ErrorDescriptor.Addr =
7044 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7045 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7046
7047 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7048
7049 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7050 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7051 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7052 break;
7053 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7054 }
7055
7056 iounmap(vaddr);
7057
7058 /* we leak the DMA buffer here ... no choice since the controller could
7059 * still complete the command.
7060 */
7061 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7062 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7063 opcode, type);
7064 return -ETIMEDOUT;
7065 }
7066
7067 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7068
7069 if (tag & HPSA_ERROR_BIT) {
7070 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7071 opcode, type);
7072 return -EIO;
7073 }
7074
7075 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7076 opcode, type);
7077 return 0;
7078 }
7079
7080 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7081
7082 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7083 void __iomem *vaddr, u32 use_doorbell)
7084 {
7085
7086 if (use_doorbell) {
7087 /* For everything after the P600, the PCI power state method
7088 * of resetting the controller doesn't work, so we have this
7089 * other way using the doorbell register.
7090 */
7091 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7092 writel(use_doorbell, vaddr + SA5_DOORBELL);
7093
7094 /* PMC hardware guys tell us we need a 10 second delay after
7095 * doorbell reset and before any attempt to talk to the board
7096 * at all to ensure that this actually works and doesn't fall
7097 * over in some weird corner cases.
7098 */
7099 msleep(10000);
7100 } else { /* Try to do it the PCI power state way */
7101
7102 /* Quoting from the Open CISS Specification: "The Power
7103 * Management Control/Status Register (CSR) controls the power
7104 * state of the device. The normal operating state is D0,
7105 * CSR=00h. The software off state is D3, CSR=03h. To reset
7106 * the controller, place the interface device in D3 then to D0,
7107 * this causes a secondary PCI reset which will reset the
7108 * controller." */
7109
7110 int rc = 0;
7111
7112 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7113
7114 /* enter the D3hot power management state */
7115 rc = pci_set_power_state(pdev, PCI_D3hot);
7116 if (rc)
7117 return rc;
7118
7119 msleep(500);
7120
7121 /* enter the D0 power management state */
7122 rc = pci_set_power_state(pdev, PCI_D0);
7123 if (rc)
7124 return rc;
7125
7126 /*
7127 * The P600 requires a small delay when changing states.
7128 * Otherwise we may think the board did not reset and we bail.
7129 * This for kdump only and is particular to the P600.
7130 */
7131 msleep(500);
7132 }
7133 return 0;
7134 }
7135
7136 static void init_driver_version(char *driver_version, int len)
7137 {
7138 memset(driver_version, 0, len);
7139 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7140 }
7141
7142 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7143 {
7144 char *driver_version;
7145 int i, size = sizeof(cfgtable->driver_version);
7146
7147 driver_version = kmalloc(size, GFP_KERNEL);
7148 if (!driver_version)
7149 return -ENOMEM;
7150
7151 init_driver_version(driver_version, size);
7152 for (i = 0; i < size; i++)
7153 writeb(driver_version[i], &cfgtable->driver_version[i]);
7154 kfree(driver_version);
7155 return 0;
7156 }
7157
7158 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7159 unsigned char *driver_ver)
7160 {
7161 int i;
7162
7163 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7164 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7165 }
7166
7167 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7168 {
7169
7170 char *driver_ver, *old_driver_ver;
7171 int rc, size = sizeof(cfgtable->driver_version);
7172
7173 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7174 if (!old_driver_ver)
7175 return -ENOMEM;
7176 driver_ver = old_driver_ver + size;
7177
7178 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7179 * should have been changed, otherwise we know the reset failed.
7180 */
7181 init_driver_version(old_driver_ver, size);
7182 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7183 rc = !memcmp(driver_ver, old_driver_ver, size);
7184 kfree(old_driver_ver);
7185 return rc;
7186 }
7187 /* This does a hard reset of the controller using PCI power management
7188 * states or the using the doorbell register.
7189 */
7190 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7191 {
7192 u64 cfg_offset;
7193 u32 cfg_base_addr;
7194 u64 cfg_base_addr_index;
7195 void __iomem *vaddr;
7196 unsigned long paddr;
7197 u32 misc_fw_support;
7198 int rc;
7199 struct CfgTable __iomem *cfgtable;
7200 u32 use_doorbell;
7201 u16 command_register;
7202
7203 /* For controllers as old as the P600, this is very nearly
7204 * the same thing as
7205 *
7206 * pci_save_state(pci_dev);
7207 * pci_set_power_state(pci_dev, PCI_D3hot);
7208 * pci_set_power_state(pci_dev, PCI_D0);
7209 * pci_restore_state(pci_dev);
7210 *
7211 * For controllers newer than the P600, the pci power state
7212 * method of resetting doesn't work so we have another way
7213 * using the doorbell register.
7214 */
7215
7216 if (!ctlr_is_resettable(board_id)) {
7217 dev_warn(&pdev->dev, "Controller not resettable\n");
7218 return -ENODEV;
7219 }
7220
7221 /* if controller is soft- but not hard resettable... */
7222 if (!ctlr_is_hard_resettable(board_id))
7223 return -ENOTSUPP; /* try soft reset later. */
7224
7225 /* Save the PCI command register */
7226 pci_read_config_word(pdev, 4, &command_register);
7227 pci_save_state(pdev);
7228
7229 /* find the first memory BAR, so we can find the cfg table */
7230 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7231 if (rc)
7232 return rc;
7233 vaddr = remap_pci_mem(paddr, 0x250);
7234 if (!vaddr)
7235 return -ENOMEM;
7236
7237 /* find cfgtable in order to check if reset via doorbell is supported */
7238 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7239 &cfg_base_addr_index, &cfg_offset);
7240 if (rc)
7241 goto unmap_vaddr;
7242 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7243 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7244 if (!cfgtable) {
7245 rc = -ENOMEM;
7246 goto unmap_vaddr;
7247 }
7248 rc = write_driver_ver_to_cfgtable(cfgtable);
7249 if (rc)
7250 goto unmap_cfgtable;
7251
7252 /* If reset via doorbell register is supported, use that.
7253 * There are two such methods. Favor the newest method.
7254 */
7255 misc_fw_support = readl(&cfgtable->misc_fw_support);
7256 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7257 if (use_doorbell) {
7258 use_doorbell = DOORBELL_CTLR_RESET2;
7259 } else {
7260 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7261 if (use_doorbell) {
7262 dev_warn(&pdev->dev,
7263 "Soft reset not supported. Firmware update is required.\n");
7264 rc = -ENOTSUPP; /* try soft reset */
7265 goto unmap_cfgtable;
7266 }
7267 }
7268
7269 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7270 if (rc)
7271 goto unmap_cfgtable;
7272
7273 pci_restore_state(pdev);
7274 pci_write_config_word(pdev, 4, command_register);
7275
7276 /* Some devices (notably the HP Smart Array 5i Controller)
7277 need a little pause here */
7278 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7279
7280 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7281 if (rc) {
7282 dev_warn(&pdev->dev,
7283 "Failed waiting for board to become ready after hard reset\n");
7284 goto unmap_cfgtable;
7285 }
7286
7287 rc = controller_reset_failed(vaddr);
7288 if (rc < 0)
7289 goto unmap_cfgtable;
7290 if (rc) {
7291 dev_warn(&pdev->dev, "Unable to successfully reset "
7292 "controller. Will try soft reset.\n");
7293 rc = -ENOTSUPP;
7294 } else {
7295 dev_info(&pdev->dev, "board ready after hard reset.\n");
7296 }
7297
7298 unmap_cfgtable:
7299 iounmap(cfgtable);
7300
7301 unmap_vaddr:
7302 iounmap(vaddr);
7303 return rc;
7304 }
7305
7306 /*
7307 * We cannot read the structure directly, for portability we must use
7308 * the io functions.
7309 * This is for debug only.
7310 */
7311 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7312 {
7313 #ifdef HPSA_DEBUG
7314 int i;
7315 char temp_name[17];
7316
7317 dev_info(dev, "Controller Configuration information\n");
7318 dev_info(dev, "------------------------------------\n");
7319 for (i = 0; i < 4; i++)
7320 temp_name[i] = readb(&(tb->Signature[i]));
7321 temp_name[4] = '\0';
7322 dev_info(dev, " Signature = %s\n", temp_name);
7323 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7324 dev_info(dev, " Transport methods supported = 0x%x\n",
7325 readl(&(tb->TransportSupport)));
7326 dev_info(dev, " Transport methods active = 0x%x\n",
7327 readl(&(tb->TransportActive)));
7328 dev_info(dev, " Requested transport Method = 0x%x\n",
7329 readl(&(tb->HostWrite.TransportRequest)));
7330 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7331 readl(&(tb->HostWrite.CoalIntDelay)));
7332 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7333 readl(&(tb->HostWrite.CoalIntCount)));
7334 dev_info(dev, " Max outstanding commands = %d\n",
7335 readl(&(tb->CmdsOutMax)));
7336 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7337 for (i = 0; i < 16; i++)
7338 temp_name[i] = readb(&(tb->ServerName[i]));
7339 temp_name[16] = '\0';
7340 dev_info(dev, " Server Name = %s\n", temp_name);
7341 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7342 readl(&(tb->HeartBeat)));
7343 #endif /* HPSA_DEBUG */
7344 }
7345
7346 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7347 {
7348 int i, offset, mem_type, bar_type;
7349
7350 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7351 return 0;
7352 offset = 0;
7353 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7354 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7355 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7356 offset += 4;
7357 else {
7358 mem_type = pci_resource_flags(pdev, i) &
7359 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7360 switch (mem_type) {
7361 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7362 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7363 offset += 4; /* 32 bit */
7364 break;
7365 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7366 offset += 8;
7367 break;
7368 default: /* reserved in PCI 2.2 */
7369 dev_warn(&pdev->dev,
7370 "base address is invalid\n");
7371 return -1;
7372 break;
7373 }
7374 }
7375 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7376 return i + 1;
7377 }
7378 return -1;
7379 }
7380
7381 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7382 {
7383 pci_free_irq_vectors(h->pdev);
7384 h->msix_vectors = 0;
7385 }
7386
7387 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7388 * controllers that are capable. If not, we use legacy INTx mode.
7389 */
7390 static int hpsa_interrupt_mode(struct ctlr_info *h)
7391 {
7392 unsigned int flags = PCI_IRQ_LEGACY;
7393 int ret;
7394
7395 /* Some boards advertise MSI but don't really support it */
7396 switch (h->board_id) {
7397 case 0x40700E11:
7398 case 0x40800E11:
7399 case 0x40820E11:
7400 case 0x40830E11:
7401 break;
7402 default:
7403 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7404 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7405 if (ret > 0) {
7406 h->msix_vectors = ret;
7407 return 0;
7408 }
7409
7410 flags |= PCI_IRQ_MSI;
7411 break;
7412 }
7413
7414 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7415 if (ret < 0)
7416 return ret;
7417 return 0;
7418 }
7419
7420 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7421 bool *legacy_board)
7422 {
7423 int i;
7424 u32 subsystem_vendor_id, subsystem_device_id;
7425
7426 subsystem_vendor_id = pdev->subsystem_vendor;
7427 subsystem_device_id = pdev->subsystem_device;
7428 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7429 subsystem_vendor_id;
7430
7431 if (legacy_board)
7432 *legacy_board = false;
7433 for (i = 0; i < ARRAY_SIZE(products); i++)
7434 if (*board_id == products[i].board_id) {
7435 if (products[i].access != &SA5A_access &&
7436 products[i].access != &SA5B_access)
7437 return i;
7438 dev_warn(&pdev->dev,
7439 "legacy board ID: 0x%08x\n",
7440 *board_id);
7441 if (legacy_board)
7442 *legacy_board = true;
7443 return i;
7444 }
7445
7446 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7447 if (legacy_board)
7448 *legacy_board = true;
7449 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7450 }
7451
7452 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7453 unsigned long *memory_bar)
7454 {
7455 int i;
7456
7457 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7458 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7459 /* addressing mode bits already removed */
7460 *memory_bar = pci_resource_start(pdev, i);
7461 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7462 *memory_bar);
7463 return 0;
7464 }
7465 dev_warn(&pdev->dev, "no memory BAR found\n");
7466 return -ENODEV;
7467 }
7468
7469 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7470 int wait_for_ready)
7471 {
7472 int i, iterations;
7473 u32 scratchpad;
7474 if (wait_for_ready)
7475 iterations = HPSA_BOARD_READY_ITERATIONS;
7476 else
7477 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7478
7479 for (i = 0; i < iterations; i++) {
7480 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7481 if (wait_for_ready) {
7482 if (scratchpad == HPSA_FIRMWARE_READY)
7483 return 0;
7484 } else {
7485 if (scratchpad != HPSA_FIRMWARE_READY)
7486 return 0;
7487 }
7488 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7489 }
7490 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7491 return -ENODEV;
7492 }
7493
7494 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7495 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7496 u64 *cfg_offset)
7497 {
7498 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7499 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7500 *cfg_base_addr &= (u32) 0x0000ffff;
7501 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7502 if (*cfg_base_addr_index == -1) {
7503 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7504 return -ENODEV;
7505 }
7506 return 0;
7507 }
7508
7509 static void hpsa_free_cfgtables(struct ctlr_info *h)
7510 {
7511 if (h->transtable) {
7512 iounmap(h->transtable);
7513 h->transtable = NULL;
7514 }
7515 if (h->cfgtable) {
7516 iounmap(h->cfgtable);
7517 h->cfgtable = NULL;
7518 }
7519 }
7520
7521 /* Find and map CISS config table and transfer table
7522 + * several items must be unmapped (freed) later
7523 + * */
7524 static int hpsa_find_cfgtables(struct ctlr_info *h)
7525 {
7526 u64 cfg_offset;
7527 u32 cfg_base_addr;
7528 u64 cfg_base_addr_index;
7529 u32 trans_offset;
7530 int rc;
7531
7532 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7533 &cfg_base_addr_index, &cfg_offset);
7534 if (rc)
7535 return rc;
7536 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7537 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7538 if (!h->cfgtable) {
7539 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7540 return -ENOMEM;
7541 }
7542 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7543 if (rc)
7544 return rc;
7545 /* Find performant mode table. */
7546 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7547 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7548 cfg_base_addr_index)+cfg_offset+trans_offset,
7549 sizeof(*h->transtable));
7550 if (!h->transtable) {
7551 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7552 hpsa_free_cfgtables(h);
7553 return -ENOMEM;
7554 }
7555 return 0;
7556 }
7557
7558 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7559 {
7560 #define MIN_MAX_COMMANDS 16
7561 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7562
7563 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7564
7565 /* Limit commands in memory limited kdump scenario. */
7566 if (reset_devices && h->max_commands > 32)
7567 h->max_commands = 32;
7568
7569 if (h->max_commands < MIN_MAX_COMMANDS) {
7570 dev_warn(&h->pdev->dev,
7571 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7572 h->max_commands,
7573 MIN_MAX_COMMANDS);
7574 h->max_commands = MIN_MAX_COMMANDS;
7575 }
7576 }
7577
7578 /* If the controller reports that the total max sg entries is greater than 512,
7579 * then we know that chained SG blocks work. (Original smart arrays did not
7580 * support chained SG blocks and would return zero for max sg entries.)
7581 */
7582 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7583 {
7584 return h->maxsgentries > 512;
7585 }
7586
7587 /* Interrogate the hardware for some limits:
7588 * max commands, max SG elements without chaining, and with chaining,
7589 * SG chain block size, etc.
7590 */
7591 static void hpsa_find_board_params(struct ctlr_info *h)
7592 {
7593 hpsa_get_max_perf_mode_cmds(h);
7594 h->nr_cmds = h->max_commands;
7595 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7596 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7597 if (hpsa_supports_chained_sg_blocks(h)) {
7598 /* Limit in-command s/g elements to 32 save dma'able memory. */
7599 h->max_cmd_sg_entries = 32;
7600 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7601 h->maxsgentries--; /* save one for chain pointer */
7602 } else {
7603 /*
7604 * Original smart arrays supported at most 31 s/g entries
7605 * embedded inline in the command (trying to use more
7606 * would lock up the controller)
7607 */
7608 h->max_cmd_sg_entries = 31;
7609 h->maxsgentries = 31; /* default to traditional values */
7610 h->chainsize = 0;
7611 }
7612
7613 /* Find out what task management functions are supported and cache */
7614 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7615 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7616 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7617 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7618 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7619 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7620 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7621 }
7622
7623 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7624 {
7625 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7626 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7627 return false;
7628 }
7629 return true;
7630 }
7631
7632 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7633 {
7634 u32 driver_support;
7635
7636 driver_support = readl(&(h->cfgtable->driver_support));
7637 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7638 #ifdef CONFIG_X86
7639 driver_support |= ENABLE_SCSI_PREFETCH;
7640 #endif
7641 driver_support |= ENABLE_UNIT_ATTN;
7642 writel(driver_support, &(h->cfgtable->driver_support));
7643 }
7644
7645 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7646 * in a prefetch beyond physical memory.
7647 */
7648 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7649 {
7650 u32 dma_prefetch;
7651
7652 if (h->board_id != 0x3225103C)
7653 return;
7654 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7655 dma_prefetch |= 0x8000;
7656 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7657 }
7658
7659 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7660 {
7661 int i;
7662 u32 doorbell_value;
7663 unsigned long flags;
7664 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7665 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7666 spin_lock_irqsave(&h->lock, flags);
7667 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7668 spin_unlock_irqrestore(&h->lock, flags);
7669 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7670 goto done;
7671 /* delay and try again */
7672 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7673 }
7674 return -ENODEV;
7675 done:
7676 return 0;
7677 }
7678
7679 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7680 {
7681 int i;
7682 u32 doorbell_value;
7683 unsigned long flags;
7684
7685 /* under certain very rare conditions, this can take awhile.
7686 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7687 * as we enter this code.)
7688 */
7689 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7690 if (h->remove_in_progress)
7691 goto done;
7692 spin_lock_irqsave(&h->lock, flags);
7693 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7694 spin_unlock_irqrestore(&h->lock, flags);
7695 if (!(doorbell_value & CFGTBL_ChangeReq))
7696 goto done;
7697 /* delay and try again */
7698 msleep(MODE_CHANGE_WAIT_INTERVAL);
7699 }
7700 return -ENODEV;
7701 done:
7702 return 0;
7703 }
7704
7705 /* return -ENODEV or other reason on error, 0 on success */
7706 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7707 {
7708 u32 trans_support;
7709
7710 trans_support = readl(&(h->cfgtable->TransportSupport));
7711 if (!(trans_support & SIMPLE_MODE))
7712 return -ENOTSUPP;
7713
7714 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7715
7716 /* Update the field, and then ring the doorbell */
7717 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7718 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7719 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7720 if (hpsa_wait_for_mode_change_ack(h))
7721 goto error;
7722 print_cfg_table(&h->pdev->dev, h->cfgtable);
7723 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7724 goto error;
7725 h->transMethod = CFGTBL_Trans_Simple;
7726 return 0;
7727 error:
7728 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7729 return -ENODEV;
7730 }
7731
7732 /* free items allocated or mapped by hpsa_pci_init */
7733 static void hpsa_free_pci_init(struct ctlr_info *h)
7734 {
7735 hpsa_free_cfgtables(h); /* pci_init 4 */
7736 iounmap(h->vaddr); /* pci_init 3 */
7737 h->vaddr = NULL;
7738 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7739 /*
7740 * call pci_disable_device before pci_release_regions per
7741 * Documentation/PCI/pci.txt
7742 */
7743 pci_disable_device(h->pdev); /* pci_init 1 */
7744 pci_release_regions(h->pdev); /* pci_init 2 */
7745 }
7746
7747 /* several items must be freed later */
7748 static int hpsa_pci_init(struct ctlr_info *h)
7749 {
7750 int prod_index, err;
7751 bool legacy_board;
7752
7753 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7754 if (prod_index < 0)
7755 return prod_index;
7756 h->product_name = products[prod_index].product_name;
7757 h->access = *(products[prod_index].access);
7758 h->legacy_board = legacy_board;
7759 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7760 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7761
7762 err = pci_enable_device(h->pdev);
7763 if (err) {
7764 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7765 pci_disable_device(h->pdev);
7766 return err;
7767 }
7768
7769 err = pci_request_regions(h->pdev, HPSA);
7770 if (err) {
7771 dev_err(&h->pdev->dev,
7772 "failed to obtain PCI resources\n");
7773 pci_disable_device(h->pdev);
7774 return err;
7775 }
7776
7777 pci_set_master(h->pdev);
7778
7779 err = hpsa_interrupt_mode(h);
7780 if (err)
7781 goto clean1;
7782 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7783 if (err)
7784 goto clean2; /* intmode+region, pci */
7785 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7786 if (!h->vaddr) {
7787 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7788 err = -ENOMEM;
7789 goto clean2; /* intmode+region, pci */
7790 }
7791 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7792 if (err)
7793 goto clean3; /* vaddr, intmode+region, pci */
7794 err = hpsa_find_cfgtables(h);
7795 if (err)
7796 goto clean3; /* vaddr, intmode+region, pci */
7797 hpsa_find_board_params(h);
7798
7799 if (!hpsa_CISS_signature_present(h)) {
7800 err = -ENODEV;
7801 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7802 }
7803 hpsa_set_driver_support_bits(h);
7804 hpsa_p600_dma_prefetch_quirk(h);
7805 err = hpsa_enter_simple_mode(h);
7806 if (err)
7807 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7808 return 0;
7809
7810 clean4: /* cfgtables, vaddr, intmode+region, pci */
7811 hpsa_free_cfgtables(h);
7812 clean3: /* vaddr, intmode+region, pci */
7813 iounmap(h->vaddr);
7814 h->vaddr = NULL;
7815 clean2: /* intmode+region, pci */
7816 hpsa_disable_interrupt_mode(h);
7817 clean1:
7818 /*
7819 * call pci_disable_device before pci_release_regions per
7820 * Documentation/PCI/pci.txt
7821 */
7822 pci_disable_device(h->pdev);
7823 pci_release_regions(h->pdev);
7824 return err;
7825 }
7826
7827 static void hpsa_hba_inquiry(struct ctlr_info *h)
7828 {
7829 int rc;
7830
7831 #define HBA_INQUIRY_BYTE_COUNT 64
7832 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7833 if (!h->hba_inquiry_data)
7834 return;
7835 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7836 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7837 if (rc != 0) {
7838 kfree(h->hba_inquiry_data);
7839 h->hba_inquiry_data = NULL;
7840 }
7841 }
7842
7843 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7844 {
7845 int rc, i;
7846 void __iomem *vaddr;
7847
7848 if (!reset_devices)
7849 return 0;
7850
7851 /* kdump kernel is loading, we don't know in which state is
7852 * the pci interface. The dev->enable_cnt is equal zero
7853 * so we call enable+disable, wait a while and switch it on.
7854 */
7855 rc = pci_enable_device(pdev);
7856 if (rc) {
7857 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7858 return -ENODEV;
7859 }
7860 pci_disable_device(pdev);
7861 msleep(260); /* a randomly chosen number */
7862 rc = pci_enable_device(pdev);
7863 if (rc) {
7864 dev_warn(&pdev->dev, "failed to enable device.\n");
7865 return -ENODEV;
7866 }
7867
7868 pci_set_master(pdev);
7869
7870 vaddr = pci_ioremap_bar(pdev, 0);
7871 if (vaddr == NULL) {
7872 rc = -ENOMEM;
7873 goto out_disable;
7874 }
7875 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7876 iounmap(vaddr);
7877
7878 /* Reset the controller with a PCI power-cycle or via doorbell */
7879 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7880
7881 /* -ENOTSUPP here means we cannot reset the controller
7882 * but it's already (and still) up and running in
7883 * "performant mode". Or, it might be 640x, which can't reset
7884 * due to concerns about shared bbwc between 6402/6404 pair.
7885 */
7886 if (rc)
7887 goto out_disable;
7888
7889 /* Now try to get the controller to respond to a no-op */
7890 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7891 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7892 if (hpsa_noop(pdev) == 0)
7893 break;
7894 else
7895 dev_warn(&pdev->dev, "no-op failed%s\n",
7896 (i < 11 ? "; re-trying" : ""));
7897 }
7898
7899 out_disable:
7900
7901 pci_disable_device(pdev);
7902 return rc;
7903 }
7904
7905 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7906 {
7907 kfree(h->cmd_pool_bits);
7908 h->cmd_pool_bits = NULL;
7909 if (h->cmd_pool) {
7910 pci_free_consistent(h->pdev,
7911 h->nr_cmds * sizeof(struct CommandList),
7912 h->cmd_pool,
7913 h->cmd_pool_dhandle);
7914 h->cmd_pool = NULL;
7915 h->cmd_pool_dhandle = 0;
7916 }
7917 if (h->errinfo_pool) {
7918 pci_free_consistent(h->pdev,
7919 h->nr_cmds * sizeof(struct ErrorInfo),
7920 h->errinfo_pool,
7921 h->errinfo_pool_dhandle);
7922 h->errinfo_pool = NULL;
7923 h->errinfo_pool_dhandle = 0;
7924 }
7925 }
7926
7927 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7928 {
7929 h->cmd_pool_bits = kzalloc(
7930 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7931 sizeof(unsigned long), GFP_KERNEL);
7932 h->cmd_pool = pci_alloc_consistent(h->pdev,
7933 h->nr_cmds * sizeof(*h->cmd_pool),
7934 &(h->cmd_pool_dhandle));
7935 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7936 h->nr_cmds * sizeof(*h->errinfo_pool),
7937 &(h->errinfo_pool_dhandle));
7938 if ((h->cmd_pool_bits == NULL)
7939 || (h->cmd_pool == NULL)
7940 || (h->errinfo_pool == NULL)) {
7941 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7942 goto clean_up;
7943 }
7944 hpsa_preinitialize_commands(h);
7945 return 0;
7946 clean_up:
7947 hpsa_free_cmd_pool(h);
7948 return -ENOMEM;
7949 }
7950
7951 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7952 static void hpsa_free_irqs(struct ctlr_info *h)
7953 {
7954 int i;
7955
7956 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7957 /* Single reply queue, only one irq to free */
7958 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7959 h->q[h->intr_mode] = 0;
7960 return;
7961 }
7962
7963 for (i = 0; i < h->msix_vectors; i++) {
7964 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7965 h->q[i] = 0;
7966 }
7967 for (; i < MAX_REPLY_QUEUES; i++)
7968 h->q[i] = 0;
7969 }
7970
7971 /* returns 0 on success; cleans up and returns -Enn on error */
7972 static int hpsa_request_irqs(struct ctlr_info *h,
7973 irqreturn_t (*msixhandler)(int, void *),
7974 irqreturn_t (*intxhandler)(int, void *))
7975 {
7976 int rc, i;
7977
7978 /*
7979 * initialize h->q[x] = x so that interrupt handlers know which
7980 * queue to process.
7981 */
7982 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7983 h->q[i] = (u8) i;
7984
7985 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7986 /* If performant mode and MSI-X, use multiple reply queues */
7987 for (i = 0; i < h->msix_vectors; i++) {
7988 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7989 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7990 0, h->intrname[i],
7991 &h->q[i]);
7992 if (rc) {
7993 int j;
7994
7995 dev_err(&h->pdev->dev,
7996 "failed to get irq %d for %s\n",
7997 pci_irq_vector(h->pdev, i), h->devname);
7998 for (j = 0; j < i; j++) {
7999 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8000 h->q[j] = 0;
8001 }
8002 for (; j < MAX_REPLY_QUEUES; j++)
8003 h->q[j] = 0;
8004 return rc;
8005 }
8006 }
8007 } else {
8008 /* Use single reply pool */
8009 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8010 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8011 h->msix_vectors ? "x" : "");
8012 rc = request_irq(pci_irq_vector(h->pdev, 0),
8013 msixhandler, 0,
8014 h->intrname[0],
8015 &h->q[h->intr_mode]);
8016 } else {
8017 sprintf(h->intrname[h->intr_mode],
8018 "%s-intx", h->devname);
8019 rc = request_irq(pci_irq_vector(h->pdev, 0),
8020 intxhandler, IRQF_SHARED,
8021 h->intrname[0],
8022 &h->q[h->intr_mode]);
8023 }
8024 }
8025 if (rc) {
8026 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8027 pci_irq_vector(h->pdev, 0), h->devname);
8028 hpsa_free_irqs(h);
8029 return -ENODEV;
8030 }
8031 return 0;
8032 }
8033
8034 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8035 {
8036 int rc;
8037 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8038
8039 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8040 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8041 if (rc) {
8042 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8043 return rc;
8044 }
8045
8046 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8047 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8048 if (rc) {
8049 dev_warn(&h->pdev->dev, "Board failed to become ready "
8050 "after soft reset.\n");
8051 return rc;
8052 }
8053
8054 return 0;
8055 }
8056
8057 static void hpsa_free_reply_queues(struct ctlr_info *h)
8058 {
8059 int i;
8060
8061 for (i = 0; i < h->nreply_queues; i++) {
8062 if (!h->reply_queue[i].head)
8063 continue;
8064 pci_free_consistent(h->pdev,
8065 h->reply_queue_size,
8066 h->reply_queue[i].head,
8067 h->reply_queue[i].busaddr);
8068 h->reply_queue[i].head = NULL;
8069 h->reply_queue[i].busaddr = 0;
8070 }
8071 h->reply_queue_size = 0;
8072 }
8073
8074 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8075 {
8076 hpsa_free_performant_mode(h); /* init_one 7 */
8077 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8078 hpsa_free_cmd_pool(h); /* init_one 5 */
8079 hpsa_free_irqs(h); /* init_one 4 */
8080 scsi_host_put(h->scsi_host); /* init_one 3 */
8081 h->scsi_host = NULL; /* init_one 3 */
8082 hpsa_free_pci_init(h); /* init_one 2_5 */
8083 free_percpu(h->lockup_detected); /* init_one 2 */
8084 h->lockup_detected = NULL; /* init_one 2 */
8085 if (h->resubmit_wq) {
8086 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8087 h->resubmit_wq = NULL;
8088 }
8089 if (h->rescan_ctlr_wq) {
8090 destroy_workqueue(h->rescan_ctlr_wq);
8091 h->rescan_ctlr_wq = NULL;
8092 }
8093 kfree(h); /* init_one 1 */
8094 }
8095
8096 /* Called when controller lockup detected. */
8097 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8098 {
8099 int i, refcount;
8100 struct CommandList *c;
8101 int failcount = 0;
8102
8103 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8104 for (i = 0; i < h->nr_cmds; i++) {
8105 c = h->cmd_pool + i;
8106 refcount = atomic_inc_return(&c->refcount);
8107 if (refcount > 1) {
8108 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8109 finish_cmd(c);
8110 atomic_dec(&h->commands_outstanding);
8111 failcount++;
8112 }
8113 cmd_free(h, c);
8114 }
8115 dev_warn(&h->pdev->dev,
8116 "failed %d commands in fail_all\n", failcount);
8117 }
8118
8119 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8120 {
8121 int cpu;
8122
8123 for_each_online_cpu(cpu) {
8124 u32 *lockup_detected;
8125 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8126 *lockup_detected = value;
8127 }
8128 wmb(); /* be sure the per-cpu variables are out to memory */
8129 }
8130
8131 static void controller_lockup_detected(struct ctlr_info *h)
8132 {
8133 unsigned long flags;
8134 u32 lockup_detected;
8135
8136 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8137 spin_lock_irqsave(&h->lock, flags);
8138 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8139 if (!lockup_detected) {
8140 /* no heartbeat, but controller gave us a zero. */
8141 dev_warn(&h->pdev->dev,
8142 "lockup detected after %d but scratchpad register is zero\n",
8143 h->heartbeat_sample_interval / HZ);
8144 lockup_detected = 0xffffffff;
8145 }
8146 set_lockup_detected_for_all_cpus(h, lockup_detected);
8147 spin_unlock_irqrestore(&h->lock, flags);
8148 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8149 lockup_detected, h->heartbeat_sample_interval / HZ);
8150 if (lockup_detected == 0xffff0000) {
8151 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8152 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8153 }
8154 pci_disable_device(h->pdev);
8155 fail_all_outstanding_cmds(h);
8156 }
8157
8158 static int detect_controller_lockup(struct ctlr_info *h)
8159 {
8160 u64 now;
8161 u32 heartbeat;
8162 unsigned long flags;
8163
8164 now = get_jiffies_64();
8165 /* If we've received an interrupt recently, we're ok. */
8166 if (time_after64(h->last_intr_timestamp +
8167 (h->heartbeat_sample_interval), now))
8168 return false;
8169
8170 /*
8171 * If we've already checked the heartbeat recently, we're ok.
8172 * This could happen if someone sends us a signal. We
8173 * otherwise don't care about signals in this thread.
8174 */
8175 if (time_after64(h->last_heartbeat_timestamp +
8176 (h->heartbeat_sample_interval), now))
8177 return false;
8178
8179 /* If heartbeat has not changed since we last looked, we're not ok. */
8180 spin_lock_irqsave(&h->lock, flags);
8181 heartbeat = readl(&h->cfgtable->HeartBeat);
8182 spin_unlock_irqrestore(&h->lock, flags);
8183 if (h->last_heartbeat == heartbeat) {
8184 controller_lockup_detected(h);
8185 return true;
8186 }
8187
8188 /* We're ok. */
8189 h->last_heartbeat = heartbeat;
8190 h->last_heartbeat_timestamp = now;
8191 return false;
8192 }
8193
8194 /*
8195 * Set ioaccel status for all ioaccel volumes.
8196 *
8197 * Called from monitor controller worker (hpsa_event_monitor_worker)
8198 *
8199 * A Volume (or Volumes that comprise an Array set may be undergoing a
8200 * transformation, so we will be turning off ioaccel for all volumes that
8201 * make up the Array.
8202 */
8203 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8204 {
8205 int rc;
8206 int i;
8207 u8 ioaccel_status;
8208 unsigned char *buf;
8209 struct hpsa_scsi_dev_t *device;
8210
8211 if (!h)
8212 return;
8213
8214 buf = kmalloc(64, GFP_KERNEL);
8215 if (!buf)
8216 return;
8217
8218 /*
8219 * Run through current device list used during I/O requests.
8220 */
8221 for (i = 0; i < h->ndevices; i++) {
8222 device = h->dev[i];
8223
8224 if (!device)
8225 continue;
8226 if (!device->scsi3addr)
8227 continue;
8228 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8229 HPSA_VPD_LV_IOACCEL_STATUS))
8230 continue;
8231
8232 memset(buf, 0, 64);
8233
8234 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8235 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8236 buf, 64);
8237 if (rc != 0)
8238 continue;
8239
8240 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8241 device->offload_config =
8242 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8243 if (device->offload_config)
8244 device->offload_to_be_enabled =
8245 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8246
8247 /*
8248 * Immediately turn off ioaccel for any volume the
8249 * controller tells us to. Some of the reasons could be:
8250 * transformation - change to the LVs of an Array.
8251 * degraded volume - component failure
8252 *
8253 * If ioaccel is to be re-enabled, re-enable later during the
8254 * scan operation so the driver can get a fresh raidmap
8255 * before turning ioaccel back on.
8256 *
8257 */
8258 if (!device->offload_to_be_enabled)
8259 device->offload_enabled = 0;
8260 }
8261
8262 kfree(buf);
8263 }
8264
8265 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8266 {
8267 char *event_type;
8268
8269 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8270 return;
8271
8272 /* Ask the controller to clear the events we're handling. */
8273 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8274 | CFGTBL_Trans_io_accel2)) &&
8275 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8276 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8277
8278 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8279 event_type = "state change";
8280 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8281 event_type = "configuration change";
8282 /* Stop sending new RAID offload reqs via the IO accelerator */
8283 scsi_block_requests(h->scsi_host);
8284 hpsa_set_ioaccel_status(h);
8285 hpsa_drain_accel_commands(h);
8286 /* Set 'accelerator path config change' bit */
8287 dev_warn(&h->pdev->dev,
8288 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8289 h->events, event_type);
8290 writel(h->events, &(h->cfgtable->clear_event_notify));
8291 /* Set the "clear event notify field update" bit 6 */
8292 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8293 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8294 hpsa_wait_for_clear_event_notify_ack(h);
8295 scsi_unblock_requests(h->scsi_host);
8296 } else {
8297 /* Acknowledge controller notification events. */
8298 writel(h->events, &(h->cfgtable->clear_event_notify));
8299 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8300 hpsa_wait_for_clear_event_notify_ack(h);
8301 }
8302 return;
8303 }
8304
8305 /* Check a register on the controller to see if there are configuration
8306 * changes (added/changed/removed logical drives, etc.) which mean that
8307 * we should rescan the controller for devices.
8308 * Also check flag for driver-initiated rescan.
8309 */
8310 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8311 {
8312 if (h->drv_req_rescan) {
8313 h->drv_req_rescan = 0;
8314 return 1;
8315 }
8316
8317 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8318 return 0;
8319
8320 h->events = readl(&(h->cfgtable->event_notify));
8321 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8322 }
8323
8324 /*
8325 * Check if any of the offline devices have become ready
8326 */
8327 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8328 {
8329 unsigned long flags;
8330 struct offline_device_entry *d;
8331 struct list_head *this, *tmp;
8332
8333 spin_lock_irqsave(&h->offline_device_lock, flags);
8334 list_for_each_safe(this, tmp, &h->offline_device_list) {
8335 d = list_entry(this, struct offline_device_entry,
8336 offline_list);
8337 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8338 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8339 spin_lock_irqsave(&h->offline_device_lock, flags);
8340 list_del(&d->offline_list);
8341 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8342 return 1;
8343 }
8344 spin_lock_irqsave(&h->offline_device_lock, flags);
8345 }
8346 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347 return 0;
8348 }
8349
8350 static int hpsa_luns_changed(struct ctlr_info *h)
8351 {
8352 int rc = 1; /* assume there are changes */
8353 struct ReportLUNdata *logdev = NULL;
8354
8355 /* if we can't find out if lun data has changed,
8356 * assume that it has.
8357 */
8358
8359 if (!h->lastlogicals)
8360 return rc;
8361
8362 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8363 if (!logdev)
8364 return rc;
8365
8366 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8367 dev_warn(&h->pdev->dev,
8368 "report luns failed, can't track lun changes.\n");
8369 goto out;
8370 }
8371 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8372 dev_info(&h->pdev->dev,
8373 "Lun changes detected.\n");
8374 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8375 goto out;
8376 } else
8377 rc = 0; /* no changes detected. */
8378 out:
8379 kfree(logdev);
8380 return rc;
8381 }
8382
8383 static void hpsa_perform_rescan(struct ctlr_info *h)
8384 {
8385 struct Scsi_Host *sh = NULL;
8386 unsigned long flags;
8387
8388 /*
8389 * Do the scan after the reset
8390 */
8391 spin_lock_irqsave(&h->reset_lock, flags);
8392 if (h->reset_in_progress) {
8393 h->drv_req_rescan = 1;
8394 spin_unlock_irqrestore(&h->reset_lock, flags);
8395 return;
8396 }
8397 spin_unlock_irqrestore(&h->reset_lock, flags);
8398
8399 sh = scsi_host_get(h->scsi_host);
8400 if (sh != NULL) {
8401 hpsa_scan_start(sh);
8402 scsi_host_put(sh);
8403 h->drv_req_rescan = 0;
8404 }
8405 }
8406
8407 /*
8408 * watch for controller events
8409 */
8410 static void hpsa_event_monitor_worker(struct work_struct *work)
8411 {
8412 struct ctlr_info *h = container_of(to_delayed_work(work),
8413 struct ctlr_info, event_monitor_work);
8414 unsigned long flags;
8415
8416 spin_lock_irqsave(&h->lock, flags);
8417 if (h->remove_in_progress) {
8418 spin_unlock_irqrestore(&h->lock, flags);
8419 return;
8420 }
8421 spin_unlock_irqrestore(&h->lock, flags);
8422
8423 if (hpsa_ctlr_needs_rescan(h)) {
8424 hpsa_ack_ctlr_events(h);
8425 hpsa_perform_rescan(h);
8426 }
8427
8428 spin_lock_irqsave(&h->lock, flags);
8429 if (!h->remove_in_progress)
8430 schedule_delayed_work(&h->event_monitor_work,
8431 HPSA_EVENT_MONITOR_INTERVAL);
8432 spin_unlock_irqrestore(&h->lock, flags);
8433 }
8434
8435 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8436 {
8437 unsigned long flags;
8438 struct ctlr_info *h = container_of(to_delayed_work(work),
8439 struct ctlr_info, rescan_ctlr_work);
8440
8441 spin_lock_irqsave(&h->lock, flags);
8442 if (h->remove_in_progress) {
8443 spin_unlock_irqrestore(&h->lock, flags);
8444 return;
8445 }
8446 spin_unlock_irqrestore(&h->lock, flags);
8447
8448 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8449 hpsa_perform_rescan(h);
8450 } else if (h->discovery_polling) {
8451 if (hpsa_luns_changed(h)) {
8452 dev_info(&h->pdev->dev,
8453 "driver discovery polling rescan.\n");
8454 hpsa_perform_rescan(h);
8455 }
8456 }
8457 spin_lock_irqsave(&h->lock, flags);
8458 if (!h->remove_in_progress)
8459 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8460 h->heartbeat_sample_interval);
8461 spin_unlock_irqrestore(&h->lock, flags);
8462 }
8463
8464 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8465 {
8466 unsigned long flags;
8467 struct ctlr_info *h = container_of(to_delayed_work(work),
8468 struct ctlr_info, monitor_ctlr_work);
8469
8470 detect_controller_lockup(h);
8471 if (lockup_detected(h))
8472 return;
8473
8474 spin_lock_irqsave(&h->lock, flags);
8475 if (!h->remove_in_progress)
8476 schedule_delayed_work(&h->monitor_ctlr_work,
8477 h->heartbeat_sample_interval);
8478 spin_unlock_irqrestore(&h->lock, flags);
8479 }
8480
8481 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8482 char *name)
8483 {
8484 struct workqueue_struct *wq = NULL;
8485
8486 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8487 if (!wq)
8488 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8489
8490 return wq;
8491 }
8492
8493 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8494 {
8495 int dac, rc;
8496 struct ctlr_info *h;
8497 int try_soft_reset = 0;
8498 unsigned long flags;
8499 u32 board_id;
8500
8501 if (number_of_controllers == 0)
8502 printk(KERN_INFO DRIVER_NAME "\n");
8503
8504 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8505 if (rc < 0) {
8506 dev_warn(&pdev->dev, "Board ID not found\n");
8507 return rc;
8508 }
8509
8510 rc = hpsa_init_reset_devices(pdev, board_id);
8511 if (rc) {
8512 if (rc != -ENOTSUPP)
8513 return rc;
8514 /* If the reset fails in a particular way (it has no way to do
8515 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8516 * a soft reset once we get the controller configured up to the
8517 * point that it can accept a command.
8518 */
8519 try_soft_reset = 1;
8520 rc = 0;
8521 }
8522
8523 reinit_after_soft_reset:
8524
8525 /* Command structures must be aligned on a 32-byte boundary because
8526 * the 5 lower bits of the address are used by the hardware. and by
8527 * the driver. See comments in hpsa.h for more info.
8528 */
8529 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8530 h = kzalloc(sizeof(*h), GFP_KERNEL);
8531 if (!h) {
8532 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8533 return -ENOMEM;
8534 }
8535
8536 h->pdev = pdev;
8537
8538 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8539 INIT_LIST_HEAD(&h->offline_device_list);
8540 spin_lock_init(&h->lock);
8541 spin_lock_init(&h->offline_device_lock);
8542 spin_lock_init(&h->scan_lock);
8543 spin_lock_init(&h->reset_lock);
8544 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8545
8546 /* Allocate and clear per-cpu variable lockup_detected */
8547 h->lockup_detected = alloc_percpu(u32);
8548 if (!h->lockup_detected) {
8549 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8550 rc = -ENOMEM;
8551 goto clean1; /* aer/h */
8552 }
8553 set_lockup_detected_for_all_cpus(h, 0);
8554
8555 rc = hpsa_pci_init(h);
8556 if (rc)
8557 goto clean2; /* lu, aer/h */
8558
8559 /* relies on h-> settings made by hpsa_pci_init, including
8560 * interrupt_mode h->intr */
8561 rc = hpsa_scsi_host_alloc(h);
8562 if (rc)
8563 goto clean2_5; /* pci, lu, aer/h */
8564
8565 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8566 h->ctlr = number_of_controllers;
8567 number_of_controllers++;
8568
8569 /* configure PCI DMA stuff */
8570 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8571 if (rc == 0) {
8572 dac = 1;
8573 } else {
8574 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8575 if (rc == 0) {
8576 dac = 0;
8577 } else {
8578 dev_err(&pdev->dev, "no suitable DMA available\n");
8579 goto clean3; /* shost, pci, lu, aer/h */
8580 }
8581 }
8582
8583 /* make sure the board interrupts are off */
8584 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8585
8586 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8587 if (rc)
8588 goto clean3; /* shost, pci, lu, aer/h */
8589 rc = hpsa_alloc_cmd_pool(h);
8590 if (rc)
8591 goto clean4; /* irq, shost, pci, lu, aer/h */
8592 rc = hpsa_alloc_sg_chain_blocks(h);
8593 if (rc)
8594 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8595 init_waitqueue_head(&h->scan_wait_queue);
8596 init_waitqueue_head(&h->event_sync_wait_queue);
8597 mutex_init(&h->reset_mutex);
8598 h->scan_finished = 1; /* no scan currently in progress */
8599 h->scan_waiting = 0;
8600
8601 pci_set_drvdata(pdev, h);
8602 h->ndevices = 0;
8603
8604 spin_lock_init(&h->devlock);
8605 rc = hpsa_put_ctlr_into_performant_mode(h);
8606 if (rc)
8607 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8608
8609 /* create the resubmit workqueue */
8610 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8611 if (!h->rescan_ctlr_wq) {
8612 rc = -ENOMEM;
8613 goto clean7;
8614 }
8615
8616 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8617 if (!h->resubmit_wq) {
8618 rc = -ENOMEM;
8619 goto clean7; /* aer/h */
8620 }
8621
8622 /*
8623 * At this point, the controller is ready to take commands.
8624 * Now, if reset_devices and the hard reset didn't work, try
8625 * the soft reset and see if that works.
8626 */
8627 if (try_soft_reset) {
8628
8629 /* This is kind of gross. We may or may not get a completion
8630 * from the soft reset command, and if we do, then the value
8631 * from the fifo may or may not be valid. So, we wait 10 secs
8632 * after the reset throwing away any completions we get during
8633 * that time. Unregister the interrupt handler and register
8634 * fake ones to scoop up any residual completions.
8635 */
8636 spin_lock_irqsave(&h->lock, flags);
8637 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8638 spin_unlock_irqrestore(&h->lock, flags);
8639 hpsa_free_irqs(h);
8640 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8641 hpsa_intx_discard_completions);
8642 if (rc) {
8643 dev_warn(&h->pdev->dev,
8644 "Failed to request_irq after soft reset.\n");
8645 /*
8646 * cannot goto clean7 or free_irqs will be called
8647 * again. Instead, do its work
8648 */
8649 hpsa_free_performant_mode(h); /* clean7 */
8650 hpsa_free_sg_chain_blocks(h); /* clean6 */
8651 hpsa_free_cmd_pool(h); /* clean5 */
8652 /*
8653 * skip hpsa_free_irqs(h) clean4 since that
8654 * was just called before request_irqs failed
8655 */
8656 goto clean3;
8657 }
8658
8659 rc = hpsa_kdump_soft_reset(h);
8660 if (rc)
8661 /* Neither hard nor soft reset worked, we're hosed. */
8662 goto clean7;
8663
8664 dev_info(&h->pdev->dev, "Board READY.\n");
8665 dev_info(&h->pdev->dev,
8666 "Waiting for stale completions to drain.\n");
8667 h->access.set_intr_mask(h, HPSA_INTR_ON);
8668 msleep(10000);
8669 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8670
8671 rc = controller_reset_failed(h->cfgtable);
8672 if (rc)
8673 dev_info(&h->pdev->dev,
8674 "Soft reset appears to have failed.\n");
8675
8676 /* since the controller's reset, we have to go back and re-init
8677 * everything. Easiest to just forget what we've done and do it
8678 * all over again.
8679 */
8680 hpsa_undo_allocations_after_kdump_soft_reset(h);
8681 try_soft_reset = 0;
8682 if (rc)
8683 /* don't goto clean, we already unallocated */
8684 return -ENODEV;
8685
8686 goto reinit_after_soft_reset;
8687 }
8688
8689 /* Enable Accelerated IO path at driver layer */
8690 h->acciopath_status = 1;
8691 /* Disable discovery polling.*/
8692 h->discovery_polling = 0;
8693
8694
8695 /* Turn the interrupts on so we can service requests */
8696 h->access.set_intr_mask(h, HPSA_INTR_ON);
8697
8698 hpsa_hba_inquiry(h);
8699
8700 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8701 if (!h->lastlogicals)
8702 dev_info(&h->pdev->dev,
8703 "Can't track change to report lun data\n");
8704
8705 /* hook into SCSI subsystem */
8706 rc = hpsa_scsi_add_host(h);
8707 if (rc)
8708 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8709
8710 /* Monitor the controller for firmware lockups */
8711 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8712 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8713 schedule_delayed_work(&h->monitor_ctlr_work,
8714 h->heartbeat_sample_interval);
8715 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8716 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8717 h->heartbeat_sample_interval);
8718 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8719 schedule_delayed_work(&h->event_monitor_work,
8720 HPSA_EVENT_MONITOR_INTERVAL);
8721 return 0;
8722
8723 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8724 hpsa_free_performant_mode(h);
8725 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8726 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8727 hpsa_free_sg_chain_blocks(h);
8728 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8729 hpsa_free_cmd_pool(h);
8730 clean4: /* irq, shost, pci, lu, aer/h */
8731 hpsa_free_irqs(h);
8732 clean3: /* shost, pci, lu, aer/h */
8733 scsi_host_put(h->scsi_host);
8734 h->scsi_host = NULL;
8735 clean2_5: /* pci, lu, aer/h */
8736 hpsa_free_pci_init(h);
8737 clean2: /* lu, aer/h */
8738 if (h->lockup_detected) {
8739 free_percpu(h->lockup_detected);
8740 h->lockup_detected = NULL;
8741 }
8742 clean1: /* wq/aer/h */
8743 if (h->resubmit_wq) {
8744 destroy_workqueue(h->resubmit_wq);
8745 h->resubmit_wq = NULL;
8746 }
8747 if (h->rescan_ctlr_wq) {
8748 destroy_workqueue(h->rescan_ctlr_wq);
8749 h->rescan_ctlr_wq = NULL;
8750 }
8751 kfree(h);
8752 return rc;
8753 }
8754
8755 static void hpsa_flush_cache(struct ctlr_info *h)
8756 {
8757 char *flush_buf;
8758 struct CommandList *c;
8759 int rc;
8760
8761 if (unlikely(lockup_detected(h)))
8762 return;
8763 flush_buf = kzalloc(4, GFP_KERNEL);
8764 if (!flush_buf)
8765 return;
8766
8767 c = cmd_alloc(h);
8768
8769 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8770 RAID_CTLR_LUNID, TYPE_CMD)) {
8771 goto out;
8772 }
8773 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8774 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8775 if (rc)
8776 goto out;
8777 if (c->err_info->CommandStatus != 0)
8778 out:
8779 dev_warn(&h->pdev->dev,
8780 "error flushing cache on controller\n");
8781 cmd_free(h, c);
8782 kfree(flush_buf);
8783 }
8784
8785 /* Make controller gather fresh report lun data each time we
8786 * send down a report luns request
8787 */
8788 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8789 {
8790 u32 *options;
8791 struct CommandList *c;
8792 int rc;
8793
8794 /* Don't bother trying to set diag options if locked up */
8795 if (unlikely(h->lockup_detected))
8796 return;
8797
8798 options = kzalloc(sizeof(*options), GFP_KERNEL);
8799 if (!options)
8800 return;
8801
8802 c = cmd_alloc(h);
8803
8804 /* first, get the current diag options settings */
8805 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8806 RAID_CTLR_LUNID, TYPE_CMD))
8807 goto errout;
8808
8809 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8810 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8811 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8812 goto errout;
8813
8814 /* Now, set the bit for disabling the RLD caching */
8815 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8816
8817 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8818 RAID_CTLR_LUNID, TYPE_CMD))
8819 goto errout;
8820
8821 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8822 PCI_DMA_TODEVICE, NO_TIMEOUT);
8823 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8824 goto errout;
8825
8826 /* Now verify that it got set: */
8827 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8828 RAID_CTLR_LUNID, TYPE_CMD))
8829 goto errout;
8830
8831 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8832 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8833 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8834 goto errout;
8835
8836 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8837 goto out;
8838
8839 errout:
8840 dev_err(&h->pdev->dev,
8841 "Error: failed to disable report lun data caching.\n");
8842 out:
8843 cmd_free(h, c);
8844 kfree(options);
8845 }
8846
8847 static void hpsa_shutdown(struct pci_dev *pdev)
8848 {
8849 struct ctlr_info *h;
8850
8851 h = pci_get_drvdata(pdev);
8852 /* Turn board interrupts off and send the flush cache command
8853 * sendcmd will turn off interrupt, and send the flush...
8854 * To write all data in the battery backed cache to disks
8855 */
8856 hpsa_flush_cache(h);
8857 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8858 hpsa_free_irqs(h); /* init_one 4 */
8859 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8860 }
8861
8862 static void hpsa_free_device_info(struct ctlr_info *h)
8863 {
8864 int i;
8865
8866 for (i = 0; i < h->ndevices; i++) {
8867 kfree(h->dev[i]);
8868 h->dev[i] = NULL;
8869 }
8870 }
8871
8872 static void hpsa_remove_one(struct pci_dev *pdev)
8873 {
8874 struct ctlr_info *h;
8875 unsigned long flags;
8876
8877 if (pci_get_drvdata(pdev) == NULL) {
8878 dev_err(&pdev->dev, "unable to remove device\n");
8879 return;
8880 }
8881 h = pci_get_drvdata(pdev);
8882
8883 /* Get rid of any controller monitoring work items */
8884 spin_lock_irqsave(&h->lock, flags);
8885 h->remove_in_progress = 1;
8886 spin_unlock_irqrestore(&h->lock, flags);
8887 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8888 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8889 cancel_delayed_work_sync(&h->event_monitor_work);
8890 destroy_workqueue(h->rescan_ctlr_wq);
8891 destroy_workqueue(h->resubmit_wq);
8892
8893 hpsa_delete_sas_host(h);
8894
8895 /*
8896 * Call before disabling interrupts.
8897 * scsi_remove_host can trigger I/O operations especially
8898 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8899 * operations which cannot complete and will hang the system.
8900 */
8901 if (h->scsi_host)
8902 scsi_remove_host(h->scsi_host); /* init_one 8 */
8903 /* includes hpsa_free_irqs - init_one 4 */
8904 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8905 hpsa_shutdown(pdev);
8906
8907 hpsa_free_device_info(h); /* scan */
8908
8909 kfree(h->hba_inquiry_data); /* init_one 10 */
8910 h->hba_inquiry_data = NULL; /* init_one 10 */
8911 hpsa_free_ioaccel2_sg_chain_blocks(h);
8912 hpsa_free_performant_mode(h); /* init_one 7 */
8913 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8914 hpsa_free_cmd_pool(h); /* init_one 5 */
8915 kfree(h->lastlogicals);
8916
8917 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8918
8919 scsi_host_put(h->scsi_host); /* init_one 3 */
8920 h->scsi_host = NULL; /* init_one 3 */
8921
8922 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8923 hpsa_free_pci_init(h); /* init_one 2.5 */
8924
8925 free_percpu(h->lockup_detected); /* init_one 2 */
8926 h->lockup_detected = NULL; /* init_one 2 */
8927 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8928
8929 kfree(h); /* init_one 1 */
8930 }
8931
8932 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8933 __attribute__((unused)) pm_message_t state)
8934 {
8935 return -ENOSYS;
8936 }
8937
8938 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8939 {
8940 return -ENOSYS;
8941 }
8942
8943 static struct pci_driver hpsa_pci_driver = {
8944 .name = HPSA,
8945 .probe = hpsa_init_one,
8946 .remove = hpsa_remove_one,
8947 .id_table = hpsa_pci_device_id, /* id_table */
8948 .shutdown = hpsa_shutdown,
8949 .suspend = hpsa_suspend,
8950 .resume = hpsa_resume,
8951 };
8952
8953 /* Fill in bucket_map[], given nsgs (the max number of
8954 * scatter gather elements supported) and bucket[],
8955 * which is an array of 8 integers. The bucket[] array
8956 * contains 8 different DMA transfer sizes (in 16
8957 * byte increments) which the controller uses to fetch
8958 * commands. This function fills in bucket_map[], which
8959 * maps a given number of scatter gather elements to one of
8960 * the 8 DMA transfer sizes. The point of it is to allow the
8961 * controller to only do as much DMA as needed to fetch the
8962 * command, with the DMA transfer size encoded in the lower
8963 * bits of the command address.
8964 */
8965 static void calc_bucket_map(int bucket[], int num_buckets,
8966 int nsgs, int min_blocks, u32 *bucket_map)
8967 {
8968 int i, j, b, size;
8969
8970 /* Note, bucket_map must have nsgs+1 entries. */
8971 for (i = 0; i <= nsgs; i++) {
8972 /* Compute size of a command with i SG entries */
8973 size = i + min_blocks;
8974 b = num_buckets; /* Assume the biggest bucket */
8975 /* Find the bucket that is just big enough */
8976 for (j = 0; j < num_buckets; j++) {
8977 if (bucket[j] >= size) {
8978 b = j;
8979 break;
8980 }
8981 }
8982 /* for a command with i SG entries, use bucket b. */
8983 bucket_map[i] = b;
8984 }
8985 }
8986
8987 /*
8988 * return -ENODEV on err, 0 on success (or no action)
8989 * allocates numerous items that must be freed later
8990 */
8991 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8992 {
8993 int i;
8994 unsigned long register_value;
8995 unsigned long transMethod = CFGTBL_Trans_Performant |
8996 (trans_support & CFGTBL_Trans_use_short_tags) |
8997 CFGTBL_Trans_enable_directed_msix |
8998 (trans_support & (CFGTBL_Trans_io_accel1 |
8999 CFGTBL_Trans_io_accel2));
9000 struct access_method access = SA5_performant_access;
9001
9002 /* This is a bit complicated. There are 8 registers on
9003 * the controller which we write to to tell it 8 different
9004 * sizes of commands which there may be. It's a way of
9005 * reducing the DMA done to fetch each command. Encoded into
9006 * each command's tag are 3 bits which communicate to the controller
9007 * which of the eight sizes that command fits within. The size of
9008 * each command depends on how many scatter gather entries there are.
9009 * Each SG entry requires 16 bytes. The eight registers are programmed
9010 * with the number of 16-byte blocks a command of that size requires.
9011 * The smallest command possible requires 5 such 16 byte blocks.
9012 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9013 * blocks. Note, this only extends to the SG entries contained
9014 * within the command block, and does not extend to chained blocks
9015 * of SG elements. bft[] contains the eight values we write to
9016 * the registers. They are not evenly distributed, but have more
9017 * sizes for small commands, and fewer sizes for larger commands.
9018 */
9019 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9020 #define MIN_IOACCEL2_BFT_ENTRY 5
9021 #define HPSA_IOACCEL2_HEADER_SZ 4
9022 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9023 13, 14, 15, 16, 17, 18, 19,
9024 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9025 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9026 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9027 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9028 16 * MIN_IOACCEL2_BFT_ENTRY);
9029 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9030 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9031 /* 5 = 1 s/g entry or 4k
9032 * 6 = 2 s/g entry or 8k
9033 * 8 = 4 s/g entry or 16k
9034 * 10 = 6 s/g entry or 24k
9035 */
9036
9037 /* If the controller supports either ioaccel method then
9038 * we can also use the RAID stack submit path that does not
9039 * perform the superfluous readl() after each command submission.
9040 */
9041 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9042 access = SA5_performant_access_no_read;
9043
9044 /* Controller spec: zero out this buffer. */
9045 for (i = 0; i < h->nreply_queues; i++)
9046 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9047
9048 bft[7] = SG_ENTRIES_IN_CMD + 4;
9049 calc_bucket_map(bft, ARRAY_SIZE(bft),
9050 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9051 for (i = 0; i < 8; i++)
9052 writel(bft[i], &h->transtable->BlockFetch[i]);
9053
9054 /* size of controller ring buffer */
9055 writel(h->max_commands, &h->transtable->RepQSize);
9056 writel(h->nreply_queues, &h->transtable->RepQCount);
9057 writel(0, &h->transtable->RepQCtrAddrLow32);
9058 writel(0, &h->transtable->RepQCtrAddrHigh32);
9059
9060 for (i = 0; i < h->nreply_queues; i++) {
9061 writel(0, &h->transtable->RepQAddr[i].upper);
9062 writel(h->reply_queue[i].busaddr,
9063 &h->transtable->RepQAddr[i].lower);
9064 }
9065
9066 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9067 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9068 /*
9069 * enable outbound interrupt coalescing in accelerator mode;
9070 */
9071 if (trans_support & CFGTBL_Trans_io_accel1) {
9072 access = SA5_ioaccel_mode1_access;
9073 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9074 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9075 } else
9076 if (trans_support & CFGTBL_Trans_io_accel2)
9077 access = SA5_ioaccel_mode2_access;
9078 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9079 if (hpsa_wait_for_mode_change_ack(h)) {
9080 dev_err(&h->pdev->dev,
9081 "performant mode problem - doorbell timeout\n");
9082 return -ENODEV;
9083 }
9084 register_value = readl(&(h->cfgtable->TransportActive));
9085 if (!(register_value & CFGTBL_Trans_Performant)) {
9086 dev_err(&h->pdev->dev,
9087 "performant mode problem - transport not active\n");
9088 return -ENODEV;
9089 }
9090 /* Change the access methods to the performant access methods */
9091 h->access = access;
9092 h->transMethod = transMethod;
9093
9094 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9095 (trans_support & CFGTBL_Trans_io_accel2)))
9096 return 0;
9097
9098 if (trans_support & CFGTBL_Trans_io_accel1) {
9099 /* Set up I/O accelerator mode */
9100 for (i = 0; i < h->nreply_queues; i++) {
9101 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9102 h->reply_queue[i].current_entry =
9103 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9104 }
9105 bft[7] = h->ioaccel_maxsg + 8;
9106 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9107 h->ioaccel1_blockFetchTable);
9108
9109 /* initialize all reply queue entries to unused */
9110 for (i = 0; i < h->nreply_queues; i++)
9111 memset(h->reply_queue[i].head,
9112 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9113 h->reply_queue_size);
9114
9115 /* set all the constant fields in the accelerator command
9116 * frames once at init time to save CPU cycles later.
9117 */
9118 for (i = 0; i < h->nr_cmds; i++) {
9119 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9120
9121 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9122 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9123 (i * sizeof(struct ErrorInfo)));
9124 cp->err_info_len = sizeof(struct ErrorInfo);
9125 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9126 cp->host_context_flags =
9127 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9128 cp->timeout_sec = 0;
9129 cp->ReplyQueue = 0;
9130 cp->tag =
9131 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9132 cp->host_addr =
9133 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9134 (i * sizeof(struct io_accel1_cmd)));
9135 }
9136 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9137 u64 cfg_offset, cfg_base_addr_index;
9138 u32 bft2_offset, cfg_base_addr;
9139 int rc;
9140
9141 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9142 &cfg_base_addr_index, &cfg_offset);
9143 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9144 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9145 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9146 4, h->ioaccel2_blockFetchTable);
9147 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9148 BUILD_BUG_ON(offsetof(struct CfgTable,
9149 io_accel_request_size_offset) != 0xb8);
9150 h->ioaccel2_bft2_regs =
9151 remap_pci_mem(pci_resource_start(h->pdev,
9152 cfg_base_addr_index) +
9153 cfg_offset + bft2_offset,
9154 ARRAY_SIZE(bft2) *
9155 sizeof(*h->ioaccel2_bft2_regs));
9156 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9157 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9158 }
9159 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9160 if (hpsa_wait_for_mode_change_ack(h)) {
9161 dev_err(&h->pdev->dev,
9162 "performant mode problem - enabling ioaccel mode\n");
9163 return -ENODEV;
9164 }
9165 return 0;
9166 }
9167
9168 /* Free ioaccel1 mode command blocks and block fetch table */
9169 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9170 {
9171 if (h->ioaccel_cmd_pool) {
9172 pci_free_consistent(h->pdev,
9173 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9174 h->ioaccel_cmd_pool,
9175 h->ioaccel_cmd_pool_dhandle);
9176 h->ioaccel_cmd_pool = NULL;
9177 h->ioaccel_cmd_pool_dhandle = 0;
9178 }
9179 kfree(h->ioaccel1_blockFetchTable);
9180 h->ioaccel1_blockFetchTable = NULL;
9181 }
9182
9183 /* Allocate ioaccel1 mode command blocks and block fetch table */
9184 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9185 {
9186 h->ioaccel_maxsg =
9187 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9188 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9189 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9190
9191 /* Command structures must be aligned on a 128-byte boundary
9192 * because the 7 lower bits of the address are used by the
9193 * hardware.
9194 */
9195 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9196 IOACCEL1_COMMANDLIST_ALIGNMENT);
9197 h->ioaccel_cmd_pool =
9198 pci_alloc_consistent(h->pdev,
9199 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9200 &(h->ioaccel_cmd_pool_dhandle));
9201
9202 h->ioaccel1_blockFetchTable =
9203 kmalloc(((h->ioaccel_maxsg + 1) *
9204 sizeof(u32)), GFP_KERNEL);
9205
9206 if ((h->ioaccel_cmd_pool == NULL) ||
9207 (h->ioaccel1_blockFetchTable == NULL))
9208 goto clean_up;
9209
9210 memset(h->ioaccel_cmd_pool, 0,
9211 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9212 return 0;
9213
9214 clean_up:
9215 hpsa_free_ioaccel1_cmd_and_bft(h);
9216 return -ENOMEM;
9217 }
9218
9219 /* Free ioaccel2 mode command blocks and block fetch table */
9220 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9221 {
9222 hpsa_free_ioaccel2_sg_chain_blocks(h);
9223
9224 if (h->ioaccel2_cmd_pool) {
9225 pci_free_consistent(h->pdev,
9226 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9227 h->ioaccel2_cmd_pool,
9228 h->ioaccel2_cmd_pool_dhandle);
9229 h->ioaccel2_cmd_pool = NULL;
9230 h->ioaccel2_cmd_pool_dhandle = 0;
9231 }
9232 kfree(h->ioaccel2_blockFetchTable);
9233 h->ioaccel2_blockFetchTable = NULL;
9234 }
9235
9236 /* Allocate ioaccel2 mode command blocks and block fetch table */
9237 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9238 {
9239 int rc;
9240
9241 /* Allocate ioaccel2 mode command blocks and block fetch table */
9242
9243 h->ioaccel_maxsg =
9244 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9246 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9247
9248 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9249 IOACCEL2_COMMANDLIST_ALIGNMENT);
9250 h->ioaccel2_cmd_pool =
9251 pci_alloc_consistent(h->pdev,
9252 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9253 &(h->ioaccel2_cmd_pool_dhandle));
9254
9255 h->ioaccel2_blockFetchTable =
9256 kmalloc(((h->ioaccel_maxsg + 1) *
9257 sizeof(u32)), GFP_KERNEL);
9258
9259 if ((h->ioaccel2_cmd_pool == NULL) ||
9260 (h->ioaccel2_blockFetchTable == NULL)) {
9261 rc = -ENOMEM;
9262 goto clean_up;
9263 }
9264
9265 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9266 if (rc)
9267 goto clean_up;
9268
9269 memset(h->ioaccel2_cmd_pool, 0,
9270 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9271 return 0;
9272
9273 clean_up:
9274 hpsa_free_ioaccel2_cmd_and_bft(h);
9275 return rc;
9276 }
9277
9278 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9279 static void hpsa_free_performant_mode(struct ctlr_info *h)
9280 {
9281 kfree(h->blockFetchTable);
9282 h->blockFetchTable = NULL;
9283 hpsa_free_reply_queues(h);
9284 hpsa_free_ioaccel1_cmd_and_bft(h);
9285 hpsa_free_ioaccel2_cmd_and_bft(h);
9286 }
9287
9288 /* return -ENODEV on error, 0 on success (or no action)
9289 * allocates numerous items that must be freed later
9290 */
9291 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9292 {
9293 u32 trans_support;
9294 unsigned long transMethod = CFGTBL_Trans_Performant |
9295 CFGTBL_Trans_use_short_tags;
9296 int i, rc;
9297
9298 if (hpsa_simple_mode)
9299 return 0;
9300
9301 trans_support = readl(&(h->cfgtable->TransportSupport));
9302 if (!(trans_support & PERFORMANT_MODE))
9303 return 0;
9304
9305 /* Check for I/O accelerator mode support */
9306 if (trans_support & CFGTBL_Trans_io_accel1) {
9307 transMethod |= CFGTBL_Trans_io_accel1 |
9308 CFGTBL_Trans_enable_directed_msix;
9309 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9310 if (rc)
9311 return rc;
9312 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9313 transMethod |= CFGTBL_Trans_io_accel2 |
9314 CFGTBL_Trans_enable_directed_msix;
9315 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9316 if (rc)
9317 return rc;
9318 }
9319
9320 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9321 hpsa_get_max_perf_mode_cmds(h);
9322 /* Performant mode ring buffer and supporting data structures */
9323 h->reply_queue_size = h->max_commands * sizeof(u64);
9324
9325 for (i = 0; i < h->nreply_queues; i++) {
9326 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9327 h->reply_queue_size,
9328 &(h->reply_queue[i].busaddr));
9329 if (!h->reply_queue[i].head) {
9330 rc = -ENOMEM;
9331 goto clean1; /* rq, ioaccel */
9332 }
9333 h->reply_queue[i].size = h->max_commands;
9334 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9335 h->reply_queue[i].current_entry = 0;
9336 }
9337
9338 /* Need a block fetch table for performant mode */
9339 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9340 sizeof(u32)), GFP_KERNEL);
9341 if (!h->blockFetchTable) {
9342 rc = -ENOMEM;
9343 goto clean1; /* rq, ioaccel */
9344 }
9345
9346 rc = hpsa_enter_performant_mode(h, trans_support);
9347 if (rc)
9348 goto clean2; /* bft, rq, ioaccel */
9349 return 0;
9350
9351 clean2: /* bft, rq, ioaccel */
9352 kfree(h->blockFetchTable);
9353 h->blockFetchTable = NULL;
9354 clean1: /* rq, ioaccel */
9355 hpsa_free_reply_queues(h);
9356 hpsa_free_ioaccel1_cmd_and_bft(h);
9357 hpsa_free_ioaccel2_cmd_and_bft(h);
9358 return rc;
9359 }
9360
9361 static int is_accelerated_cmd(struct CommandList *c)
9362 {
9363 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9364 }
9365
9366 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9367 {
9368 struct CommandList *c = NULL;
9369 int i, accel_cmds_out;
9370 int refcount;
9371
9372 do { /* wait for all outstanding ioaccel commands to drain out */
9373 accel_cmds_out = 0;
9374 for (i = 0; i < h->nr_cmds; i++) {
9375 c = h->cmd_pool + i;
9376 refcount = atomic_inc_return(&c->refcount);
9377 if (refcount > 1) /* Command is allocated */
9378 accel_cmds_out += is_accelerated_cmd(c);
9379 cmd_free(h, c);
9380 }
9381 if (accel_cmds_out <= 0)
9382 break;
9383 msleep(100);
9384 } while (1);
9385 }
9386
9387 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9388 struct hpsa_sas_port *hpsa_sas_port)
9389 {
9390 struct hpsa_sas_phy *hpsa_sas_phy;
9391 struct sas_phy *phy;
9392
9393 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9394 if (!hpsa_sas_phy)
9395 return NULL;
9396
9397 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9398 hpsa_sas_port->next_phy_index);
9399 if (!phy) {
9400 kfree(hpsa_sas_phy);
9401 return NULL;
9402 }
9403
9404 hpsa_sas_port->next_phy_index++;
9405 hpsa_sas_phy->phy = phy;
9406 hpsa_sas_phy->parent_port = hpsa_sas_port;
9407
9408 return hpsa_sas_phy;
9409 }
9410
9411 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9412 {
9413 struct sas_phy *phy = hpsa_sas_phy->phy;
9414
9415 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9416 if (hpsa_sas_phy->added_to_port)
9417 list_del(&hpsa_sas_phy->phy_list_entry);
9418 sas_phy_delete(phy);
9419 kfree(hpsa_sas_phy);
9420 }
9421
9422 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9423 {
9424 int rc;
9425 struct hpsa_sas_port *hpsa_sas_port;
9426 struct sas_phy *phy;
9427 struct sas_identify *identify;
9428
9429 hpsa_sas_port = hpsa_sas_phy->parent_port;
9430 phy = hpsa_sas_phy->phy;
9431
9432 identify = &phy->identify;
9433 memset(identify, 0, sizeof(*identify));
9434 identify->sas_address = hpsa_sas_port->sas_address;
9435 identify->device_type = SAS_END_DEVICE;
9436 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9437 identify->target_port_protocols = SAS_PROTOCOL_STP;
9438 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9439 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9440 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9441 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9442 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9443
9444 rc = sas_phy_add(hpsa_sas_phy->phy);
9445 if (rc)
9446 return rc;
9447
9448 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9449 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9450 &hpsa_sas_port->phy_list_head);
9451 hpsa_sas_phy->added_to_port = true;
9452
9453 return 0;
9454 }
9455
9456 static int
9457 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9458 struct sas_rphy *rphy)
9459 {
9460 struct sas_identify *identify;
9461
9462 identify = &rphy->identify;
9463 identify->sas_address = hpsa_sas_port->sas_address;
9464 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9465 identify->target_port_protocols = SAS_PROTOCOL_STP;
9466
9467 return sas_rphy_add(rphy);
9468 }
9469
9470 static struct hpsa_sas_port
9471 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9472 u64 sas_address)
9473 {
9474 int rc;
9475 struct hpsa_sas_port *hpsa_sas_port;
9476 struct sas_port *port;
9477
9478 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9479 if (!hpsa_sas_port)
9480 return NULL;
9481
9482 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9483 hpsa_sas_port->parent_node = hpsa_sas_node;
9484
9485 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9486 if (!port)
9487 goto free_hpsa_port;
9488
9489 rc = sas_port_add(port);
9490 if (rc)
9491 goto free_sas_port;
9492
9493 hpsa_sas_port->port = port;
9494 hpsa_sas_port->sas_address = sas_address;
9495 list_add_tail(&hpsa_sas_port->port_list_entry,
9496 &hpsa_sas_node->port_list_head);
9497
9498 return hpsa_sas_port;
9499
9500 free_sas_port:
9501 sas_port_free(port);
9502 free_hpsa_port:
9503 kfree(hpsa_sas_port);
9504
9505 return NULL;
9506 }
9507
9508 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9509 {
9510 struct hpsa_sas_phy *hpsa_sas_phy;
9511 struct hpsa_sas_phy *next;
9512
9513 list_for_each_entry_safe(hpsa_sas_phy, next,
9514 &hpsa_sas_port->phy_list_head, phy_list_entry)
9515 hpsa_free_sas_phy(hpsa_sas_phy);
9516
9517 sas_port_delete(hpsa_sas_port->port);
9518 list_del(&hpsa_sas_port->port_list_entry);
9519 kfree(hpsa_sas_port);
9520 }
9521
9522 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9523 {
9524 struct hpsa_sas_node *hpsa_sas_node;
9525
9526 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9527 if (hpsa_sas_node) {
9528 hpsa_sas_node->parent_dev = parent_dev;
9529 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9530 }
9531
9532 return hpsa_sas_node;
9533 }
9534
9535 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9536 {
9537 struct hpsa_sas_port *hpsa_sas_port;
9538 struct hpsa_sas_port *next;
9539
9540 if (!hpsa_sas_node)
9541 return;
9542
9543 list_for_each_entry_safe(hpsa_sas_port, next,
9544 &hpsa_sas_node->port_list_head, port_list_entry)
9545 hpsa_free_sas_port(hpsa_sas_port);
9546
9547 kfree(hpsa_sas_node);
9548 }
9549
9550 static struct hpsa_scsi_dev_t
9551 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9552 struct sas_rphy *rphy)
9553 {
9554 int i;
9555 struct hpsa_scsi_dev_t *device;
9556
9557 for (i = 0; i < h->ndevices; i++) {
9558 device = h->dev[i];
9559 if (!device->sas_port)
9560 continue;
9561 if (device->sas_port->rphy == rphy)
9562 return device;
9563 }
9564
9565 return NULL;
9566 }
9567
9568 static int hpsa_add_sas_host(struct ctlr_info *h)
9569 {
9570 int rc;
9571 struct device *parent_dev;
9572 struct hpsa_sas_node *hpsa_sas_node;
9573 struct hpsa_sas_port *hpsa_sas_port;
9574 struct hpsa_sas_phy *hpsa_sas_phy;
9575
9576 parent_dev = &h->scsi_host->shost_dev;
9577
9578 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9579 if (!hpsa_sas_node)
9580 return -ENOMEM;
9581
9582 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9583 if (!hpsa_sas_port) {
9584 rc = -ENODEV;
9585 goto free_sas_node;
9586 }
9587
9588 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9589 if (!hpsa_sas_phy) {
9590 rc = -ENODEV;
9591 goto free_sas_port;
9592 }
9593
9594 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9595 if (rc)
9596 goto free_sas_phy;
9597
9598 h->sas_host = hpsa_sas_node;
9599
9600 return 0;
9601
9602 free_sas_phy:
9603 hpsa_free_sas_phy(hpsa_sas_phy);
9604 free_sas_port:
9605 hpsa_free_sas_port(hpsa_sas_port);
9606 free_sas_node:
9607 hpsa_free_sas_node(hpsa_sas_node);
9608
9609 return rc;
9610 }
9611
9612 static void hpsa_delete_sas_host(struct ctlr_info *h)
9613 {
9614 hpsa_free_sas_node(h->sas_host);
9615 }
9616
9617 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9618 struct hpsa_scsi_dev_t *device)
9619 {
9620 int rc;
9621 struct hpsa_sas_port *hpsa_sas_port;
9622 struct sas_rphy *rphy;
9623
9624 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9625 if (!hpsa_sas_port)
9626 return -ENOMEM;
9627
9628 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9629 if (!rphy) {
9630 rc = -ENODEV;
9631 goto free_sas_port;
9632 }
9633
9634 hpsa_sas_port->rphy = rphy;
9635 device->sas_port = hpsa_sas_port;
9636
9637 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9638 if (rc)
9639 goto free_sas_port;
9640
9641 return 0;
9642
9643 free_sas_port:
9644 hpsa_free_sas_port(hpsa_sas_port);
9645 device->sas_port = NULL;
9646
9647 return rc;
9648 }
9649
9650 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9651 {
9652 if (device->sas_port) {
9653 hpsa_free_sas_port(device->sas_port);
9654 device->sas_port = NULL;
9655 }
9656 }
9657
9658 static int
9659 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9660 {
9661 return 0;
9662 }
9663
9664 static int
9665 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9666 {
9667 *identifier = rphy->identify.sas_address;
9668 return 0;
9669 }
9670
9671 static int
9672 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9673 {
9674 return -ENXIO;
9675 }
9676
9677 static int
9678 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9679 {
9680 return 0;
9681 }
9682
9683 static int
9684 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9685 {
9686 return 0;
9687 }
9688
9689 static int
9690 hpsa_sas_phy_setup(struct sas_phy *phy)
9691 {
9692 return 0;
9693 }
9694
9695 static void
9696 hpsa_sas_phy_release(struct sas_phy *phy)
9697 {
9698 }
9699
9700 static int
9701 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9702 {
9703 return -EINVAL;
9704 }
9705
9706 static struct sas_function_template hpsa_sas_transport_functions = {
9707 .get_linkerrors = hpsa_sas_get_linkerrors,
9708 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9709 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9710 .phy_reset = hpsa_sas_phy_reset,
9711 .phy_enable = hpsa_sas_phy_enable,
9712 .phy_setup = hpsa_sas_phy_setup,
9713 .phy_release = hpsa_sas_phy_release,
9714 .set_phy_speed = hpsa_sas_phy_speed,
9715 };
9716
9717 /*
9718 * This is it. Register the PCI driver information for the cards we control
9719 * the OS will call our registered routines when it finds one of our cards.
9720 */
9721 static int __init hpsa_init(void)
9722 {
9723 int rc;
9724
9725 hpsa_sas_transport_template =
9726 sas_attach_transport(&hpsa_sas_transport_functions);
9727 if (!hpsa_sas_transport_template)
9728 return -ENODEV;
9729
9730 rc = pci_register_driver(&hpsa_pci_driver);
9731
9732 if (rc)
9733 sas_release_transport(hpsa_sas_transport_template);
9734
9735 return rc;
9736 }
9737
9738 static void __exit hpsa_cleanup(void)
9739 {
9740 pci_unregister_driver(&hpsa_pci_driver);
9741 sas_release_transport(hpsa_sas_transport_template);
9742 }
9743
9744 static void __attribute__((unused)) verify_offsets(void)
9745 {
9746 #define VERIFY_OFFSET(member, offset) \
9747 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9748
9749 VERIFY_OFFSET(structure_size, 0);
9750 VERIFY_OFFSET(volume_blk_size, 4);
9751 VERIFY_OFFSET(volume_blk_cnt, 8);
9752 VERIFY_OFFSET(phys_blk_shift, 16);
9753 VERIFY_OFFSET(parity_rotation_shift, 17);
9754 VERIFY_OFFSET(strip_size, 18);
9755 VERIFY_OFFSET(disk_starting_blk, 20);
9756 VERIFY_OFFSET(disk_blk_cnt, 28);
9757 VERIFY_OFFSET(data_disks_per_row, 36);
9758 VERIFY_OFFSET(metadata_disks_per_row, 38);
9759 VERIFY_OFFSET(row_cnt, 40);
9760 VERIFY_OFFSET(layout_map_count, 42);
9761 VERIFY_OFFSET(flags, 44);
9762 VERIFY_OFFSET(dekindex, 46);
9763 /* VERIFY_OFFSET(reserved, 48 */
9764 VERIFY_OFFSET(data, 64);
9765
9766 #undef VERIFY_OFFSET
9767
9768 #define VERIFY_OFFSET(member, offset) \
9769 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9770
9771 VERIFY_OFFSET(IU_type, 0);
9772 VERIFY_OFFSET(direction, 1);
9773 VERIFY_OFFSET(reply_queue, 2);
9774 /* VERIFY_OFFSET(reserved1, 3); */
9775 VERIFY_OFFSET(scsi_nexus, 4);
9776 VERIFY_OFFSET(Tag, 8);
9777 VERIFY_OFFSET(cdb, 16);
9778 VERIFY_OFFSET(cciss_lun, 32);
9779 VERIFY_OFFSET(data_len, 40);
9780 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9781 VERIFY_OFFSET(sg_count, 45);
9782 /* VERIFY_OFFSET(reserved3 */
9783 VERIFY_OFFSET(err_ptr, 48);
9784 VERIFY_OFFSET(err_len, 56);
9785 /* VERIFY_OFFSET(reserved4 */
9786 VERIFY_OFFSET(sg, 64);
9787
9788 #undef VERIFY_OFFSET
9789
9790 #define VERIFY_OFFSET(member, offset) \
9791 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9792
9793 VERIFY_OFFSET(dev_handle, 0x00);
9794 VERIFY_OFFSET(reserved1, 0x02);
9795 VERIFY_OFFSET(function, 0x03);
9796 VERIFY_OFFSET(reserved2, 0x04);
9797 VERIFY_OFFSET(err_info, 0x0C);
9798 VERIFY_OFFSET(reserved3, 0x10);
9799 VERIFY_OFFSET(err_info_len, 0x12);
9800 VERIFY_OFFSET(reserved4, 0x13);
9801 VERIFY_OFFSET(sgl_offset, 0x14);
9802 VERIFY_OFFSET(reserved5, 0x15);
9803 VERIFY_OFFSET(transfer_len, 0x1C);
9804 VERIFY_OFFSET(reserved6, 0x20);
9805 VERIFY_OFFSET(io_flags, 0x24);
9806 VERIFY_OFFSET(reserved7, 0x26);
9807 VERIFY_OFFSET(LUN, 0x34);
9808 VERIFY_OFFSET(control, 0x3C);
9809 VERIFY_OFFSET(CDB, 0x40);
9810 VERIFY_OFFSET(reserved8, 0x50);
9811 VERIFY_OFFSET(host_context_flags, 0x60);
9812 VERIFY_OFFSET(timeout_sec, 0x62);
9813 VERIFY_OFFSET(ReplyQueue, 0x64);
9814 VERIFY_OFFSET(reserved9, 0x65);
9815 VERIFY_OFFSET(tag, 0x68);
9816 VERIFY_OFFSET(host_addr, 0x70);
9817 VERIFY_OFFSET(CISS_LUN, 0x78);
9818 VERIFY_OFFSET(SG, 0x78 + 8);
9819 #undef VERIFY_OFFSET
9820 }
9821
9822 module_init(hpsa_init);
9823 module_exit(hpsa_cleanup);