]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/hpsa.c
Merge remote-tracking branches 'asoc/topic/max98925', 'asoc/topic/max98927', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
158 */
159 static struct board_type products[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access},
161 {0x40800E11, "Smart Array 5i", &SA5B_access},
162 {0x40820E11, "Smart Array 532", &SA5B_access},
163 {0x40830E11, "Smart Array 5312", &SA5B_access},
164 {0x409A0E11, "Smart Array 641", &SA5A_access},
165 {0x409B0E11, "Smart Array 642", &SA5A_access},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 {0x40910E11, "Smart Array 6i", &SA5A_access},
169 {0x3225103C, "Smart Array P600", &SA5A_access},
170 {0x3223103C, "Smart Array P800", &SA5A_access},
171 {0x3234103C, "Smart Array P400", &SA5A_access},
172 {0x3235103C, "Smart Array P400i", &SA5A_access},
173 {0x3211103C, "Smart Array E200i", &SA5A_access},
174 {0x3212103C, "Smart Array E200", &SA5A_access},
175 {0x3213103C, "Smart Array E200i", &SA5A_access},
176 {0x3214103C, "Smart Array E200i", &SA5A_access},
177 {0x3215103C, "Smart Array E200i", &SA5A_access},
178 {0x3237103C, "Smart Array E500", &SA5A_access},
179 {0x323D103C, "Smart Array P700m", &SA5A_access},
180 {0x3241103C, "Smart Array P212", &SA5_access},
181 {0x3243103C, "Smart Array P410", &SA5_access},
182 {0x3245103C, "Smart Array P410i", &SA5_access},
183 {0x3247103C, "Smart Array P411", &SA5_access},
184 {0x3249103C, "Smart Array P812", &SA5_access},
185 {0x324A103C, "Smart Array P712m", &SA5_access},
186 {0x324B103C, "Smart Array P711m", &SA5_access},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access},
189 {0x3351103C, "Smart Array P420", &SA5_access},
190 {0x3352103C, "Smart Array P421", &SA5_access},
191 {0x3353103C, "Smart Array P822", &SA5_access},
192 {0x3354103C, "Smart Array P420i", &SA5_access},
193 {0x3355103C, "Smart Array P220i", &SA5_access},
194 {0x3356103C, "Smart Array P721m", &SA5_access},
195 {0x1920103C, "Smart Array P430i", &SA5_access},
196 {0x1921103C, "Smart Array P830i", &SA5_access},
197 {0x1922103C, "Smart Array P430", &SA5_access},
198 {0x1923103C, "Smart Array P431", &SA5_access},
199 {0x1924103C, "Smart Array P830", &SA5_access},
200 {0x1925103C, "Smart Array P831", &SA5_access},
201 {0x1926103C, "Smart Array P731m", &SA5_access},
202 {0x1928103C, "Smart Array P230i", &SA5_access},
203 {0x1929103C, "Smart Array P530", &SA5_access},
204 {0x21BD103C, "Smart Array P244br", &SA5_access},
205 {0x21BE103C, "Smart Array P741m", &SA5_access},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access},
209 {0x21C2103C, "Smart Array P440", &SA5_access},
210 {0x21C3103C, "Smart Array P441", &SA5_access},
211 {0x21C4103C, "Smart Array", &SA5_access},
212 {0x21C5103C, "Smart Array P841", &SA5_access},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access},
214 {0x21C7103C, "Smart HBA H240", &SA5_access},
215 {0x21C8103C, "Smart HBA H241", &SA5_access},
216 {0x21C9103C, "Smart Array", &SA5_access},
217 {0x21CA103C, "Smart Array P246br", &SA5_access},
218 {0x21CB103C, "Smart Array P840", &SA5_access},
219 {0x21CC103C, "Smart Array", &SA5_access},
220 {0x21CD103C, "Smart Array", &SA5_access},
221 {0x21CE103C, "Smart HBA", &SA5_access},
222 {0x05809005, "SmartHBA-SA", &SA5_access},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 unsigned char lunaddr[],
304 int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 struct hpsa_scsi_dev_t *dev,
327 unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 unsigned long *priv = shost_priv(sdev->host);
332 return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 unsigned long *priv = shost_priv(sh);
338 return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 struct scsi_sense_hdr sshdr;
356 bool rc;
357
358 *sense_key = -1;
359 *asc = -1;
360 *ascq = -1;
361
362 if (sense_data_len < 1)
363 return;
364
365 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 if (rc) {
367 *sense_key = sshdr.sense_key;
368 *asc = sshdr.asc;
369 *ascq = sshdr.ascq;
370 }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374 struct CommandList *c)
375 {
376 u8 sense_key, asc, ascq;
377 int sense_len;
378
379 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 sense_len = sizeof(c->err_info->SenseInfo);
381 else
382 sense_len = c->err_info->SenseLen;
383
384 decode_sense_data(c->err_info->SenseInfo, sense_len,
385 &sense_key, &asc, &ascq);
386 if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 return 0;
388
389 switch (asc) {
390 case STATE_CHANGED:
391 dev_warn(&h->pdev->dev,
392 "%s: a state change detected, command retried\n",
393 h->devname);
394 break;
395 case LUN_FAILED:
396 dev_warn(&h->pdev->dev,
397 "%s: LUN failure detected\n", h->devname);
398 break;
399 case REPORT_LUNS_CHANGED:
400 dev_warn(&h->pdev->dev,
401 "%s: report LUN data changed\n", h->devname);
402 /*
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
405 */
406 break;
407 case POWER_OR_RESET:
408 dev_warn(&h->pdev->dev,
409 "%s: a power on or device reset detected\n",
410 h->devname);
411 break;
412 case UNIT_ATTENTION_CLEARED:
413 dev_warn(&h->pdev->dev,
414 "%s: unit attention cleared by another initiator\n",
415 h->devname);
416 break;
417 default:
418 dev_warn(&h->pdev->dev,
419 "%s: unknown unit attention detected\n",
420 h->devname);
421 break;
422 }
423 return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 return 0;
432 dev_warn(&h->pdev->dev, HPSA "device busy");
433 return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 struct device_attribute *attr, char *buf)
439 {
440 int ld;
441 struct ctlr_info *h;
442 struct Scsi_Host *shost = class_to_shost(dev);
443
444 h = shost_to_hba(shost);
445 ld = lockup_detected(h);
446
447 return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
453 {
454 int status, len;
455 struct ctlr_info *h;
456 struct Scsi_Host *shost = class_to_shost(dev);
457 char tmpbuf[10];
458
459 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 return -EACCES;
461 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 strncpy(tmpbuf, buf, len);
463 tmpbuf[len] = '\0';
464 if (sscanf(tmpbuf, "%d", &status) != 1)
465 return -EINVAL;
466 h = shost_to_hba(shost);
467 h->acciopath_status = !!status;
468 dev_warn(&h->pdev->dev,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h->acciopath_status ? "enabled" : "disabled");
471 return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 struct device_attribute *attr,
476 const char *buf, size_t count)
477 {
478 int debug_level, len;
479 struct ctlr_info *h;
480 struct Scsi_Host *shost = class_to_shost(dev);
481 char tmpbuf[10];
482
483 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 return -EACCES;
485 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 strncpy(tmpbuf, buf, len);
487 tmpbuf[len] = '\0';
488 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 return -EINVAL;
490 if (debug_level < 0)
491 debug_level = 0;
492 h = shost_to_hba(shost);
493 h->raid_offload_debug = debug_level;
494 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 h->raid_offload_debug);
496 return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500 struct device_attribute *attr,
501 const char *buf, size_t count)
502 {
503 struct ctlr_info *h;
504 struct Scsi_Host *shost = class_to_shost(dev);
505 h = shost_to_hba(shost);
506 hpsa_scan_start(h->scsi_host);
507 return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 struct device_attribute *attr, char *buf)
512 {
513 struct ctlr_info *h;
514 struct Scsi_Host *shost = class_to_shost(dev);
515 unsigned char *fwrev;
516
517 h = shost_to_hba(shost);
518 if (!h->hba_inquiry_data)
519 return 0;
520 fwrev = &h->hba_inquiry_data[32];
521 return snprintf(buf, 20, "%c%c%c%c\n",
522 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct Scsi_Host *shost = class_to_shost(dev);
529 struct ctlr_info *h = shost_to_hba(shost);
530
531 return snprintf(buf, 20, "%d\n",
532 atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536 struct device_attribute *attr, char *buf)
537 {
538 struct ctlr_info *h;
539 struct Scsi_Host *shost = class_to_shost(dev);
540
541 h = shost_to_hba(shost);
542 return snprintf(buf, 20, "%s\n",
543 h->transMethod & CFGTBL_Trans_Performant ?
544 "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct ctlr_info *h;
551 struct Scsi_Host *shost = class_to_shost(dev);
552
553 h = shost_to_hba(shost);
554 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 (h->acciopath_status == 1) ? "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
598 */
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 int i;
606
607 for (i = 0; i < nelems; i++)
608 if (a[i] == board_id)
609 return 1;
610 return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 return !board_id_in_array(unresettable_controller,
616 ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 return !board_id_in_array(soft_unresettable_controller,
622 ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 return ctlr_is_hard_resettable(board_id) ||
628 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632 struct device_attribute *attr, char *buf)
633 {
634 struct ctlr_info *h;
635 struct Scsi_Host *shost = class_to_shost(dev);
636
637 h = shost_to_hba(shost);
638 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0 0
650 #define HPSA_RAID_4 1
651 #define HPSA_RAID_1 2 /* also used for RAID 10 */
652 #define HPSA_RAID_5 3 /* also used for RAID 50 */
653 #define HPSA_RAID_51 4
654 #define HPSA_RAID_6 5 /* also used for RAID 60 */
655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665 struct device_attribute *attr, char *buf)
666 {
667 ssize_t l = 0;
668 unsigned char rlevel;
669 struct ctlr_info *h;
670 struct scsi_device *sdev;
671 struct hpsa_scsi_dev_t *hdev;
672 unsigned long flags;
673
674 sdev = to_scsi_device(dev);
675 h = sdev_to_hba(sdev);
676 spin_lock_irqsave(&h->lock, flags);
677 hdev = sdev->hostdata;
678 if (!hdev) {
679 spin_unlock_irqrestore(&h->lock, flags);
680 return -ENODEV;
681 }
682
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev)) {
685 spin_unlock_irqrestore(&h->lock, flags);
686 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 return l;
688 }
689
690 rlevel = hdev->raid_level;
691 spin_unlock_irqrestore(&h->lock, flags);
692 if (rlevel > RAID_UNKNOWN)
693 rlevel = RAID_UNKNOWN;
694 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
700 {
701 struct ctlr_info *h;
702 struct scsi_device *sdev;
703 struct hpsa_scsi_dev_t *hdev;
704 unsigned long flags;
705 unsigned char lunid[8];
706
707 sdev = to_scsi_device(dev);
708 h = sdev_to_hba(sdev);
709 spin_lock_irqsave(&h->lock, flags);
710 hdev = sdev->hostdata;
711 if (!hdev) {
712 spin_unlock_irqrestore(&h->lock, flags);
713 return -ENODEV;
714 }
715 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 spin_unlock_irqrestore(&h->lock, flags);
717 return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721 struct device_attribute *attr, char *buf)
722 {
723 struct ctlr_info *h;
724 struct scsi_device *sdev;
725 struct hpsa_scsi_dev_t *hdev;
726 unsigned long flags;
727 unsigned char sn[16];
728
729 sdev = to_scsi_device(dev);
730 h = sdev_to_hba(sdev);
731 spin_lock_irqsave(&h->lock, flags);
732 hdev = sdev->hostdata;
733 if (!hdev) {
734 spin_unlock_irqrestore(&h->lock, flags);
735 return -ENODEV;
736 }
737 memcpy(sn, hdev->device_id, sizeof(sn));
738 spin_unlock_irqrestore(&h->lock, flags);
739 return snprintf(buf, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn[0], sn[1], sn[2], sn[3],
743 sn[4], sn[5], sn[6], sn[7],
744 sn[8], sn[9], sn[10], sn[11],
745 sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750 {
751 struct ctlr_info *h;
752 struct scsi_device *sdev;
753 struct hpsa_scsi_dev_t *hdev;
754 unsigned long flags;
755 u64 sas_address;
756
757 sdev = to_scsi_device(dev);
758 h = sdev_to_hba(sdev);
759 spin_lock_irqsave(&h->lock, flags);
760 hdev = sdev->hostdata;
761 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 spin_unlock_irqrestore(&h->lock, flags);
763 return -ENODEV;
764 }
765 sas_address = hdev->sas_address;
766 spin_unlock_irqrestore(&h->lock, flags);
767
768 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 struct device_attribute *attr, char *buf)
773 {
774 struct ctlr_info *h;
775 struct scsi_device *sdev;
776 struct hpsa_scsi_dev_t *hdev;
777 unsigned long flags;
778 int offload_enabled;
779
780 sdev = to_scsi_device(dev);
781 h = sdev_to_hba(sdev);
782 spin_lock_irqsave(&h->lock, flags);
783 hdev = sdev->hostdata;
784 if (!hdev) {
785 spin_unlock_irqrestore(&h->lock, flags);
786 return -ENODEV;
787 }
788 offload_enabled = hdev->offload_enabled;
789 spin_unlock_irqrestore(&h->lock, flags);
790 return snprintf(buf, 20, "%d\n", offload_enabled);
791 }
792
793 #define MAX_PATHS 8
794 static ssize_t path_info_show(struct device *dev,
795 struct device_attribute *attr, char *buf)
796 {
797 struct ctlr_info *h;
798 struct scsi_device *sdev;
799 struct hpsa_scsi_dev_t *hdev;
800 unsigned long flags;
801 int i;
802 int output_len = 0;
803 u8 box;
804 u8 bay;
805 u8 path_map_index = 0;
806 char *active;
807 unsigned char phys_connector[2];
808
809 sdev = to_scsi_device(dev);
810 h = sdev_to_hba(sdev);
811 spin_lock_irqsave(&h->devlock, flags);
812 hdev = sdev->hostdata;
813 if (!hdev) {
814 spin_unlock_irqrestore(&h->devlock, flags);
815 return -ENODEV;
816 }
817
818 bay = hdev->bay;
819 for (i = 0; i < MAX_PATHS; i++) {
820 path_map_index = 1<<i;
821 if (i == hdev->active_path_index)
822 active = "Active";
823 else if (hdev->path_map & path_map_index)
824 active = "Inactive";
825 else
826 continue;
827
828 output_len += scnprintf(buf + output_len,
829 PAGE_SIZE - output_len,
830 "[%d:%d:%d:%d] %20.20s ",
831 h->scsi_host->host_no,
832 hdev->bus, hdev->target, hdev->lun,
833 scsi_device_type(hdev->devtype));
834
835 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
836 output_len += scnprintf(buf + output_len,
837 PAGE_SIZE - output_len,
838 "%s\n", active);
839 continue;
840 }
841
842 box = hdev->box[i];
843 memcpy(&phys_connector, &hdev->phys_connector[i],
844 sizeof(phys_connector));
845 if (phys_connector[0] < '0')
846 phys_connector[0] = '0';
847 if (phys_connector[1] < '0')
848 phys_connector[1] = '0';
849 output_len += scnprintf(buf + output_len,
850 PAGE_SIZE - output_len,
851 "PORT: %.2s ",
852 phys_connector);
853 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
854 hdev->expose_device) {
855 if (box == 0 || box == 0xFF) {
856 output_len += scnprintf(buf + output_len,
857 PAGE_SIZE - output_len,
858 "BAY: %hhu %s\n",
859 bay, active);
860 } else {
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
863 "BOX: %hhu BAY: %hhu %s\n",
864 box, bay, active);
865 }
866 } else if (box != 0 && box != 0xFF) {
867 output_len += scnprintf(buf + output_len,
868 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
869 box, active);
870 } else
871 output_len += scnprintf(buf + output_len,
872 PAGE_SIZE - output_len, "%s\n", active);
873 }
874
875 spin_unlock_irqrestore(&h->devlock, flags);
876 return output_len;
877 }
878
879 static ssize_t host_show_ctlr_num(struct device *dev,
880 struct device_attribute *attr, char *buf)
881 {
882 struct ctlr_info *h;
883 struct Scsi_Host *shost = class_to_shost(dev);
884
885 h = shost_to_hba(shost);
886 return snprintf(buf, 20, "%d\n", h->ctlr);
887 }
888
889 static ssize_t host_show_legacy_board(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct ctlr_info *h;
893 struct Scsi_Host *shost = class_to_shost(dev);
894
895 h = shost_to_hba(shost);
896 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
897 }
898
899 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
900 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
901 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
902 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
903 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
904 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
905 host_show_hp_ssd_smart_path_enabled, NULL);
906 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
907 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
908 host_show_hp_ssd_smart_path_status,
909 host_store_hp_ssd_smart_path_status);
910 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
911 host_store_raid_offload_debug);
912 static DEVICE_ATTR(firmware_revision, S_IRUGO,
913 host_show_firmware_revision, NULL);
914 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
915 host_show_commands_outstanding, NULL);
916 static DEVICE_ATTR(transport_mode, S_IRUGO,
917 host_show_transport_mode, NULL);
918 static DEVICE_ATTR(resettable, S_IRUGO,
919 host_show_resettable, NULL);
920 static DEVICE_ATTR(lockup_detected, S_IRUGO,
921 host_show_lockup_detected, NULL);
922 static DEVICE_ATTR(ctlr_num, S_IRUGO,
923 host_show_ctlr_num, NULL);
924 static DEVICE_ATTR(legacy_board, S_IRUGO,
925 host_show_legacy_board, NULL);
926
927 static struct device_attribute *hpsa_sdev_attrs[] = {
928 &dev_attr_raid_level,
929 &dev_attr_lunid,
930 &dev_attr_unique_id,
931 &dev_attr_hp_ssd_smart_path_enabled,
932 &dev_attr_path_info,
933 &dev_attr_sas_address,
934 NULL,
935 };
936
937 static struct device_attribute *hpsa_shost_attrs[] = {
938 &dev_attr_rescan,
939 &dev_attr_firmware_revision,
940 &dev_attr_commands_outstanding,
941 &dev_attr_transport_mode,
942 &dev_attr_resettable,
943 &dev_attr_hp_ssd_smart_path_status,
944 &dev_attr_raid_offload_debug,
945 &dev_attr_lockup_detected,
946 &dev_attr_ctlr_num,
947 &dev_attr_legacy_board,
948 NULL,
949 };
950
951 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
952 HPSA_MAX_CONCURRENT_PASSTHRUS)
953
954 static struct scsi_host_template hpsa_driver_template = {
955 .module = THIS_MODULE,
956 .name = HPSA,
957 .proc_name = HPSA,
958 .queuecommand = hpsa_scsi_queue_command,
959 .scan_start = hpsa_scan_start,
960 .scan_finished = hpsa_scan_finished,
961 .change_queue_depth = hpsa_change_queue_depth,
962 .this_id = -1,
963 .use_clustering = ENABLE_CLUSTERING,
964 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
965 .ioctl = hpsa_ioctl,
966 .slave_alloc = hpsa_slave_alloc,
967 .slave_configure = hpsa_slave_configure,
968 .slave_destroy = hpsa_slave_destroy,
969 #ifdef CONFIG_COMPAT
970 .compat_ioctl = hpsa_compat_ioctl,
971 #endif
972 .sdev_attrs = hpsa_sdev_attrs,
973 .shost_attrs = hpsa_shost_attrs,
974 .max_sectors = 1024,
975 .no_write_same = 1,
976 };
977
978 static inline u32 next_command(struct ctlr_info *h, u8 q)
979 {
980 u32 a;
981 struct reply_queue_buffer *rq = &h->reply_queue[q];
982
983 if (h->transMethod & CFGTBL_Trans_io_accel1)
984 return h->access.command_completed(h, q);
985
986 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
987 return h->access.command_completed(h, q);
988
989 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
990 a = rq->head[rq->current_entry];
991 rq->current_entry++;
992 atomic_dec(&h->commands_outstanding);
993 } else {
994 a = FIFO_EMPTY;
995 }
996 /* Check for wraparound */
997 if (rq->current_entry == h->max_commands) {
998 rq->current_entry = 0;
999 rq->wraparound ^= 1;
1000 }
1001 return a;
1002 }
1003
1004 /*
1005 * There are some special bits in the bus address of the
1006 * command that we have to set for the controller to know
1007 * how to process the command:
1008 *
1009 * Normal performant mode:
1010 * bit 0: 1 means performant mode, 0 means simple mode.
1011 * bits 1-3 = block fetch table entry
1012 * bits 4-6 = command type (== 0)
1013 *
1014 * ioaccel1 mode:
1015 * bit 0 = "performant mode" bit.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 110)
1018 * (command type is needed because ioaccel1 mode
1019 * commands are submitted through the same register as normal
1020 * mode commands, so this is how the controller knows whether
1021 * the command is normal mode or ioaccel1 mode.)
1022 *
1023 * ioaccel2 mode:
1024 * bit 0 = "performant mode" bit.
1025 * bits 1-4 = block fetch table entry (note extra bit)
1026 * bits 4-6 = not needed, because ioaccel2 mode has
1027 * a separate special register for submitting commands.
1028 */
1029
1030 /*
1031 * set_performant_mode: Modify the tag for cciss performant
1032 * set bit 0 for pull model, bits 3-1 for block fetch
1033 * register number
1034 */
1035 #define DEFAULT_REPLY_QUEUE (-1)
1036 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1037 int reply_queue)
1038 {
1039 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1040 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1041 if (unlikely(!h->msix_vectors))
1042 return;
1043 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1044 c->Header.ReplyQueue =
1045 raw_smp_processor_id() % h->nreply_queues;
1046 else
1047 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1048 }
1049 }
1050
1051 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1052 struct CommandList *c,
1053 int reply_queue)
1054 {
1055 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056
1057 /*
1058 * Tell the controller to post the reply to the queue for this
1059 * processor. This seems to give the best I/O throughput.
1060 */
1061 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1062 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1063 else
1064 cp->ReplyQueue = reply_queue % h->nreply_queues;
1065 /*
1066 * Set the bits in the address sent down to include:
1067 * - performant mode bit (bit 0)
1068 * - pull count (bits 1-3)
1069 * - command type (bits 4-6)
1070 */
1071 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072 IOACCEL1_BUSADDR_CMDTYPE;
1073 }
1074
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076 struct CommandList *c,
1077 int reply_queue)
1078 {
1079 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080 &h->ioaccel2_cmd_pool[c->cmdindex];
1081
1082 /* Tell the controller to post the reply to the queue for this
1083 * processor. This seems to give the best I/O throughput.
1084 */
1085 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1086 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1087 else
1088 cp->reply_queue = reply_queue % h->nreply_queues;
1089 /* Set the bits in the address sent down to include:
1090 * - performant mode bit not used in ioaccel mode 2
1091 * - pull count (bits 0-3)
1092 * - command type isn't needed for ioaccel2
1093 */
1094 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1095 }
1096
1097 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1098 struct CommandList *c,
1099 int reply_queue)
1100 {
1101 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1102
1103 /*
1104 * Tell the controller to post the reply to the queue for this
1105 * processor. This seems to give the best I/O throughput.
1106 */
1107 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1108 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1109 else
1110 cp->reply_queue = reply_queue % h->nreply_queues;
1111 /*
1112 * Set the bits in the address sent down to include:
1113 * - performant mode bit not used in ioaccel mode 2
1114 * - pull count (bits 0-3)
1115 * - command type isn't needed for ioaccel2
1116 */
1117 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1118 }
1119
1120 static int is_firmware_flash_cmd(u8 *cdb)
1121 {
1122 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1123 }
1124
1125 /*
1126 * During firmware flash, the heartbeat register may not update as frequently
1127 * as it should. So we dial down lockup detection during firmware flash. and
1128 * dial it back up when firmware flash completes.
1129 */
1130 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1131 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1132 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1133 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1134 struct CommandList *c)
1135 {
1136 if (!is_firmware_flash_cmd(c->Request.CDB))
1137 return;
1138 atomic_inc(&h->firmware_flash_in_progress);
1139 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1140 }
1141
1142 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1143 struct CommandList *c)
1144 {
1145 if (is_firmware_flash_cmd(c->Request.CDB) &&
1146 atomic_dec_and_test(&h->firmware_flash_in_progress))
1147 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1148 }
1149
1150 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1151 struct CommandList *c, int reply_queue)
1152 {
1153 dial_down_lockup_detection_during_fw_flash(h, c);
1154 atomic_inc(&h->commands_outstanding);
1155 switch (c->cmd_type) {
1156 case CMD_IOACCEL1:
1157 set_ioaccel1_performant_mode(h, c, reply_queue);
1158 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1159 break;
1160 case CMD_IOACCEL2:
1161 set_ioaccel2_performant_mode(h, c, reply_queue);
1162 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1163 break;
1164 case IOACCEL2_TMF:
1165 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1166 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1167 break;
1168 default:
1169 set_performant_mode(h, c, reply_queue);
1170 h->access.submit_command(h, c);
1171 }
1172 }
1173
1174 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1175 {
1176 if (unlikely(hpsa_is_pending_event(c)))
1177 return finish_cmd(c);
1178
1179 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189 if (!h->hba_inquiry_data)
1190 return 0;
1191 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192 return 1;
1193 return 0;
1194 }
1195
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197 unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199 /* finds an unused bus, target, lun for a new physical device
1200 * assumes h->devlock is held
1201 */
1202 int i, found = 0;
1203 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204
1205 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206
1207 for (i = 0; i < h->ndevices; i++) {
1208 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209 __set_bit(h->dev[i]->target, lun_taken);
1210 }
1211
1212 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213 if (i < HPSA_MAX_DEVICES) {
1214 /* *bus = 1; */
1215 *target = i;
1216 *lun = 0;
1217 found = 1;
1218 }
1219 return !found;
1220 }
1221
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223 struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226 char label[LABEL_SIZE];
1227
1228 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229 return;
1230
1231 switch (dev->devtype) {
1232 case TYPE_RAID:
1233 snprintf(label, LABEL_SIZE, "controller");
1234 break;
1235 case TYPE_ENCLOSURE:
1236 snprintf(label, LABEL_SIZE, "enclosure");
1237 break;
1238 case TYPE_DISK:
1239 case TYPE_ZBC:
1240 if (dev->external)
1241 snprintf(label, LABEL_SIZE, "external");
1242 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243 snprintf(label, LABEL_SIZE, "%s",
1244 raid_label[PHYSICAL_DRIVE]);
1245 else
1246 snprintf(label, LABEL_SIZE, "RAID-%s",
1247 dev->raid_level > RAID_UNKNOWN ? "?" :
1248 raid_label[dev->raid_level]);
1249 break;
1250 case TYPE_ROM:
1251 snprintf(label, LABEL_SIZE, "rom");
1252 break;
1253 case TYPE_TAPE:
1254 snprintf(label, LABEL_SIZE, "tape");
1255 break;
1256 case TYPE_MEDIUM_CHANGER:
1257 snprintf(label, LABEL_SIZE, "changer");
1258 break;
1259 default:
1260 snprintf(label, LABEL_SIZE, "UNKNOWN");
1261 break;
1262 }
1263
1264 dev_printk(level, &h->pdev->dev,
1265 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267 description,
1268 scsi_device_type(dev->devtype),
1269 dev->vendor,
1270 dev->model,
1271 label,
1272 dev->offload_config ? '+' : '-',
1273 dev->offload_enabled ? '+' : '-',
1274 dev->expose_device);
1275 }
1276
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279 struct hpsa_scsi_dev_t *device,
1280 struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282 /* assumes h->devlock is held */
1283 int n = h->ndevices;
1284 int i;
1285 unsigned char addr1[8], addr2[8];
1286 struct hpsa_scsi_dev_t *sd;
1287
1288 if (n >= HPSA_MAX_DEVICES) {
1289 dev_err(&h->pdev->dev, "too many devices, some will be "
1290 "inaccessible.\n");
1291 return -1;
1292 }
1293
1294 /* physical devices do not have lun or target assigned until now. */
1295 if (device->lun != -1)
1296 /* Logical device, lun is already assigned. */
1297 goto lun_assigned;
1298
1299 /* If this device a non-zero lun of a multi-lun device
1300 * byte 4 of the 8-byte LUN addr will contain the logical
1301 * unit no, zero otherwise.
1302 */
1303 if (device->scsi3addr[4] == 0) {
1304 /* This is not a non-zero lun of a multi-lun device */
1305 if (hpsa_find_target_lun(h, device->scsi3addr,
1306 device->bus, &device->target, &device->lun) != 0)
1307 return -1;
1308 goto lun_assigned;
1309 }
1310
1311 /* This is a non-zero lun of a multi-lun device.
1312 * Search through our list and find the device which
1313 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 * Assign the same bus and target for this new LUN.
1315 * Use the logical unit number from the firmware.
1316 */
1317 memcpy(addr1, device->scsi3addr, 8);
1318 addr1[4] = 0;
1319 addr1[5] = 0;
1320 for (i = 0; i < n; i++) {
1321 sd = h->dev[i];
1322 memcpy(addr2, sd->scsi3addr, 8);
1323 addr2[4] = 0;
1324 addr2[5] = 0;
1325 /* differ only in byte 4 and 5? */
1326 if (memcmp(addr1, addr2, 8) == 0) {
1327 device->bus = sd->bus;
1328 device->target = sd->target;
1329 device->lun = device->scsi3addr[4];
1330 break;
1331 }
1332 }
1333 if (device->lun == -1) {
1334 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335 " suspect firmware bug or unsupported hardware "
1336 "configuration.\n");
1337 return -1;
1338 }
1339
1340 lun_assigned:
1341
1342 h->dev[n] = device;
1343 h->ndevices++;
1344 added[*nadded] = device;
1345 (*nadded)++;
1346 hpsa_show_dev_msg(KERN_INFO, h, device,
1347 device->expose_device ? "added" : "masked");
1348 device->offload_to_be_enabled = device->offload_enabled;
1349 device->offload_enabled = 0;
1350 return 0;
1351 }
1352
1353 /* Update an entry in h->dev[] array. */
1354 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1355 int entry, struct hpsa_scsi_dev_t *new_entry)
1356 {
1357 int offload_enabled;
1358 /* assumes h->devlock is held */
1359 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360
1361 /* Raid level changed. */
1362 h->dev[entry]->raid_level = new_entry->raid_level;
1363
1364 /* Raid offload parameters changed. Careful about the ordering. */
1365 if (new_entry->offload_config && new_entry->offload_enabled) {
1366 /*
1367 * if drive is newly offload_enabled, we want to copy the
1368 * raid map data first. If previously offload_enabled and
1369 * offload_config were set, raid map data had better be
1370 * the same as it was before. if raid map data is changed
1371 * then it had better be the case that
1372 * h->dev[entry]->offload_enabled is currently 0.
1373 */
1374 h->dev[entry]->raid_map = new_entry->raid_map;
1375 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 }
1377 if (new_entry->hba_ioaccel_enabled) {
1378 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 }
1381 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 h->dev[entry]->offload_config = new_entry->offload_config;
1383 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386 /*
1387 * We can turn off ioaccel offload now, but need to delay turning
1388 * it on until we can update h->dev[entry]->phys_disk[], but we
1389 * can't do that until all the devices are updated.
1390 */
1391 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1392 if (!new_entry->offload_enabled)
1393 h->dev[entry]->offload_enabled = 0;
1394
1395 offload_enabled = h->dev[entry]->offload_enabled;
1396 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1397 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1398 h->dev[entry]->offload_enabled = offload_enabled;
1399 }
1400
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1403 int entry, struct hpsa_scsi_dev_t *new_entry,
1404 struct hpsa_scsi_dev_t *added[], int *nadded,
1405 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1406 {
1407 /* assumes h->devlock is held */
1408 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1409 removed[*nremoved] = h->dev[entry];
1410 (*nremoved)++;
1411
1412 /*
1413 * New physical devices won't have target/lun assigned yet
1414 * so we need to preserve the values in the slot we are replacing.
1415 */
1416 if (new_entry->target == -1) {
1417 new_entry->target = h->dev[entry]->target;
1418 new_entry->lun = h->dev[entry]->lun;
1419 }
1420
1421 h->dev[entry] = new_entry;
1422 added[*nadded] = new_entry;
1423 (*nadded)++;
1424 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1425 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1426 new_entry->offload_enabled = 0;
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 /* assumes h->devlock is held */
1434 int i;
1435 struct hpsa_scsi_dev_t *sd;
1436
1437 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439 sd = h->dev[entry];
1440 removed[*nremoved] = h->dev[entry];
1441 (*nremoved)++;
1442
1443 for (i = entry; i < h->ndevices-1; i++)
1444 h->dev[i] = h->dev[i+1];
1445 h->ndevices--;
1446 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 (a)[7] == (b)[7] && \
1451 (a)[6] == (b)[6] && \
1452 (a)[5] == (b)[5] && \
1453 (a)[4] == (b)[4] && \
1454 (a)[3] == (b)[3] && \
1455 (a)[2] == (b)[2] && \
1456 (a)[1] == (b)[1] && \
1457 (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 struct hpsa_scsi_dev_t *added)
1461 {
1462 /* called when scsi_add_device fails in order to re-adjust
1463 * h->dev[] to match the mid layer's view.
1464 */
1465 unsigned long flags;
1466 int i, j;
1467
1468 spin_lock_irqsave(&h->lock, flags);
1469 for (i = 0; i < h->ndevices; i++) {
1470 if (h->dev[i] == added) {
1471 for (j = i; j < h->ndevices-1; j++)
1472 h->dev[j] = h->dev[j+1];
1473 h->ndevices--;
1474 break;
1475 }
1476 }
1477 spin_unlock_irqrestore(&h->lock, flags);
1478 kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 struct hpsa_scsi_dev_t *dev2)
1483 {
1484 /* we compare everything except lun and target as these
1485 * are not yet assigned. Compare parts likely
1486 * to differ first
1487 */
1488 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 sizeof(dev1->scsi3addr)) != 0)
1490 return 0;
1491 if (memcmp(dev1->device_id, dev2->device_id,
1492 sizeof(dev1->device_id)) != 0)
1493 return 0;
1494 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 return 0;
1496 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 return 0;
1498 if (dev1->devtype != dev2->devtype)
1499 return 0;
1500 if (dev1->bus != dev2->bus)
1501 return 0;
1502 return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 struct hpsa_scsi_dev_t *dev2)
1507 {
1508 /* Device attributes that can change, but don't mean
1509 * that the device is a different device, nor that the OS
1510 * needs to be told anything about the change.
1511 */
1512 if (dev1->raid_level != dev2->raid_level)
1513 return 1;
1514 if (dev1->offload_config != dev2->offload_config)
1515 return 1;
1516 if (dev1->offload_enabled != dev2->offload_enabled)
1517 return 1;
1518 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 if (dev1->queue_depth != dev2->queue_depth)
1520 return 1;
1521 return 0;
1522 }
1523
1524 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1525 * and return needle location in *index. If scsi3addr matches, but not
1526 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1527 * location in *index.
1528 * In the case of a minor device attribute change, such as RAID level, just
1529 * return DEVICE_UPDATED, along with the updated device's location in index.
1530 * If needle not found, return DEVICE_NOT_FOUND.
1531 */
1532 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1533 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1534 int *index)
1535 {
1536 int i;
1537 #define DEVICE_NOT_FOUND 0
1538 #define DEVICE_CHANGED 1
1539 #define DEVICE_SAME 2
1540 #define DEVICE_UPDATED 3
1541 if (needle == NULL)
1542 return DEVICE_NOT_FOUND;
1543
1544 for (i = 0; i < haystack_size; i++) {
1545 if (haystack[i] == NULL) /* previously removed. */
1546 continue;
1547 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1548 *index = i;
1549 if (device_is_the_same(needle, haystack[i])) {
1550 if (device_updated(needle, haystack[i]))
1551 return DEVICE_UPDATED;
1552 return DEVICE_SAME;
1553 } else {
1554 /* Keep offline devices offline */
1555 if (needle->volume_offline)
1556 return DEVICE_NOT_FOUND;
1557 return DEVICE_CHANGED;
1558 }
1559 }
1560 }
1561 *index = -1;
1562 return DEVICE_NOT_FOUND;
1563 }
1564
1565 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1566 unsigned char scsi3addr[])
1567 {
1568 struct offline_device_entry *device;
1569 unsigned long flags;
1570
1571 /* Check to see if device is already on the list */
1572 spin_lock_irqsave(&h->offline_device_lock, flags);
1573 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1574 if (memcmp(device->scsi3addr, scsi3addr,
1575 sizeof(device->scsi3addr)) == 0) {
1576 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1577 return;
1578 }
1579 }
1580 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1581
1582 /* Device is not on the list, add it. */
1583 device = kmalloc(sizeof(*device), GFP_KERNEL);
1584 if (!device)
1585 return;
1586
1587 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1588 spin_lock_irqsave(&h->offline_device_lock, flags);
1589 list_add_tail(&device->offline_list, &h->offline_device_list);
1590 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1591 }
1592
1593 /* Print a message explaining various offline volume states */
1594 static void hpsa_show_volume_status(struct ctlr_info *h,
1595 struct hpsa_scsi_dev_t *sd)
1596 {
1597 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1598 dev_info(&h->pdev->dev,
1599 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1600 h->scsi_host->host_no,
1601 sd->bus, sd->target, sd->lun);
1602 switch (sd->volume_offline) {
1603 case HPSA_LV_OK:
1604 break;
1605 case HPSA_LV_UNDERGOING_ERASE:
1606 dev_info(&h->pdev->dev,
1607 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1608 h->scsi_host->host_no,
1609 sd->bus, sd->target, sd->lun);
1610 break;
1611 case HPSA_LV_NOT_AVAILABLE:
1612 dev_info(&h->pdev->dev,
1613 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1614 h->scsi_host->host_no,
1615 sd->bus, sd->target, sd->lun);
1616 break;
1617 case HPSA_LV_UNDERGOING_RPI:
1618 dev_info(&h->pdev->dev,
1619 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1620 h->scsi_host->host_no,
1621 sd->bus, sd->target, sd->lun);
1622 break;
1623 case HPSA_LV_PENDING_RPI:
1624 dev_info(&h->pdev->dev,
1625 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1626 h->scsi_host->host_no,
1627 sd->bus, sd->target, sd->lun);
1628 break;
1629 case HPSA_LV_ENCRYPTED_NO_KEY:
1630 dev_info(&h->pdev->dev,
1631 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1632 h->scsi_host->host_no,
1633 sd->bus, sd->target, sd->lun);
1634 break;
1635 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1636 dev_info(&h->pdev->dev,
1637 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1638 h->scsi_host->host_no,
1639 sd->bus, sd->target, sd->lun);
1640 break;
1641 case HPSA_LV_UNDERGOING_ENCRYPTION:
1642 dev_info(&h->pdev->dev,
1643 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1644 h->scsi_host->host_no,
1645 sd->bus, sd->target, sd->lun);
1646 break;
1647 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1648 dev_info(&h->pdev->dev,
1649 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1650 h->scsi_host->host_no,
1651 sd->bus, sd->target, sd->lun);
1652 break;
1653 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1654 dev_info(&h->pdev->dev,
1655 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1656 h->scsi_host->host_no,
1657 sd->bus, sd->target, sd->lun);
1658 break;
1659 case HPSA_LV_PENDING_ENCRYPTION:
1660 dev_info(&h->pdev->dev,
1661 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1662 h->scsi_host->host_no,
1663 sd->bus, sd->target, sd->lun);
1664 break;
1665 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1666 dev_info(&h->pdev->dev,
1667 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1668 h->scsi_host->host_no,
1669 sd->bus, sd->target, sd->lun);
1670 break;
1671 }
1672 }
1673
1674 /*
1675 * Figure the list of physical drive pointers for a logical drive with
1676 * raid offload configured.
1677 */
1678 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1679 struct hpsa_scsi_dev_t *dev[], int ndevices,
1680 struct hpsa_scsi_dev_t *logical_drive)
1681 {
1682 struct raid_map_data *map = &logical_drive->raid_map;
1683 struct raid_map_disk_data *dd = &map->data[0];
1684 int i, j;
1685 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1686 le16_to_cpu(map->metadata_disks_per_row);
1687 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1688 le16_to_cpu(map->layout_map_count) *
1689 total_disks_per_row;
1690 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1691 total_disks_per_row;
1692 int qdepth;
1693
1694 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1695 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1696
1697 logical_drive->nphysical_disks = nraid_map_entries;
1698
1699 qdepth = 0;
1700 for (i = 0; i < nraid_map_entries; i++) {
1701 logical_drive->phys_disk[i] = NULL;
1702 if (!logical_drive->offload_config)
1703 continue;
1704 for (j = 0; j < ndevices; j++) {
1705 if (dev[j] == NULL)
1706 continue;
1707 if (dev[j]->devtype != TYPE_DISK &&
1708 dev[j]->devtype != TYPE_ZBC)
1709 continue;
1710 if (is_logical_device(dev[j]))
1711 continue;
1712 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1713 continue;
1714
1715 logical_drive->phys_disk[i] = dev[j];
1716 if (i < nphys_disk)
1717 qdepth = min(h->nr_cmds, qdepth +
1718 logical_drive->phys_disk[i]->queue_depth);
1719 break;
1720 }
1721
1722 /*
1723 * This can happen if a physical drive is removed and
1724 * the logical drive is degraded. In that case, the RAID
1725 * map data will refer to a physical disk which isn't actually
1726 * present. And in that case offload_enabled should already
1727 * be 0, but we'll turn it off here just in case
1728 */
1729 if (!logical_drive->phys_disk[i]) {
1730 logical_drive->offload_enabled = 0;
1731 logical_drive->offload_to_be_enabled = 0;
1732 logical_drive->queue_depth = 8;
1733 }
1734 }
1735 if (nraid_map_entries)
1736 /*
1737 * This is correct for reads, too high for full stripe writes,
1738 * way too high for partial stripe writes
1739 */
1740 logical_drive->queue_depth = qdepth;
1741 else
1742 logical_drive->queue_depth = h->nr_cmds;
1743 }
1744
1745 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1746 struct hpsa_scsi_dev_t *dev[], int ndevices)
1747 {
1748 int i;
1749
1750 for (i = 0; i < ndevices; i++) {
1751 if (dev[i] == NULL)
1752 continue;
1753 if (dev[i]->devtype != TYPE_DISK &&
1754 dev[i]->devtype != TYPE_ZBC)
1755 continue;
1756 if (!is_logical_device(dev[i]))
1757 continue;
1758
1759 /*
1760 * If offload is currently enabled, the RAID map and
1761 * phys_disk[] assignment *better* not be changing
1762 * and since it isn't changing, we do not need to
1763 * update it.
1764 */
1765 if (dev[i]->offload_enabled)
1766 continue;
1767
1768 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1769 }
1770 }
1771
1772 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1773 {
1774 int rc = 0;
1775
1776 if (!h->scsi_host)
1777 return 1;
1778
1779 if (is_logical_device(device)) /* RAID */
1780 rc = scsi_add_device(h->scsi_host, device->bus,
1781 device->target, device->lun);
1782 else /* HBA */
1783 rc = hpsa_add_sas_device(h->sas_host, device);
1784
1785 return rc;
1786 }
1787
1788 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1789 struct hpsa_scsi_dev_t *dev)
1790 {
1791 int i;
1792 int count = 0;
1793
1794 for (i = 0; i < h->nr_cmds; i++) {
1795 struct CommandList *c = h->cmd_pool + i;
1796 int refcount = atomic_inc_return(&c->refcount);
1797
1798 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1799 dev->scsi3addr)) {
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1803 if (!hpsa_is_cmd_idle(c))
1804 ++count;
1805 spin_unlock_irqrestore(&h->lock, flags);
1806 }
1807
1808 cmd_free(h, c);
1809 }
1810
1811 return count;
1812 }
1813
1814 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1815 struct hpsa_scsi_dev_t *device)
1816 {
1817 int cmds = 0;
1818 int waits = 0;
1819
1820 while (1) {
1821 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1822 if (cmds == 0)
1823 break;
1824 if (++waits > 20)
1825 break;
1826 dev_warn(&h->pdev->dev,
1827 "%s: removing device with %d outstanding commands!\n",
1828 __func__, cmds);
1829 msleep(1000);
1830 }
1831 }
1832
1833 static void hpsa_remove_device(struct ctlr_info *h,
1834 struct hpsa_scsi_dev_t *device)
1835 {
1836 struct scsi_device *sdev = NULL;
1837
1838 if (!h->scsi_host)
1839 return;
1840
1841 if (is_logical_device(device)) { /* RAID */
1842 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1843 device->target, device->lun);
1844 if (sdev) {
1845 scsi_remove_device(sdev);
1846 scsi_device_put(sdev);
1847 } else {
1848 /*
1849 * We don't expect to get here. Future commands
1850 * to this device will get a selection timeout as
1851 * if the device were gone.
1852 */
1853 hpsa_show_dev_msg(KERN_WARNING, h, device,
1854 "didn't find device for removal.");
1855 }
1856 } else { /* HBA */
1857
1858 device->removed = 1;
1859 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1860
1861 hpsa_remove_sas_device(device);
1862 }
1863 }
1864
1865 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1866 struct hpsa_scsi_dev_t *sd[], int nsds)
1867 {
1868 /* sd contains scsi3 addresses and devtypes, and inquiry
1869 * data. This function takes what's in sd to be the current
1870 * reality and updates h->dev[] to reflect that reality.
1871 */
1872 int i, entry, device_change, changes = 0;
1873 struct hpsa_scsi_dev_t *csd;
1874 unsigned long flags;
1875 struct hpsa_scsi_dev_t **added, **removed;
1876 int nadded, nremoved;
1877
1878 /*
1879 * A reset can cause a device status to change
1880 * re-schedule the scan to see what happened.
1881 */
1882 spin_lock_irqsave(&h->reset_lock, flags);
1883 if (h->reset_in_progress) {
1884 h->drv_req_rescan = 1;
1885 spin_unlock_irqrestore(&h->reset_lock, flags);
1886 return;
1887 }
1888 spin_unlock_irqrestore(&h->reset_lock, flags);
1889
1890 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1891 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1892
1893 if (!added || !removed) {
1894 dev_warn(&h->pdev->dev, "out of memory in "
1895 "adjust_hpsa_scsi_table\n");
1896 goto free_and_out;
1897 }
1898
1899 spin_lock_irqsave(&h->devlock, flags);
1900
1901 /* find any devices in h->dev[] that are not in
1902 * sd[] and remove them from h->dev[], and for any
1903 * devices which have changed, remove the old device
1904 * info and add the new device info.
1905 * If minor device attributes change, just update
1906 * the existing device structure.
1907 */
1908 i = 0;
1909 nremoved = 0;
1910 nadded = 0;
1911 while (i < h->ndevices) {
1912 csd = h->dev[i];
1913 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1914 if (device_change == DEVICE_NOT_FOUND) {
1915 changes++;
1916 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1917 continue; /* remove ^^^, hence i not incremented */
1918 } else if (device_change == DEVICE_CHANGED) {
1919 changes++;
1920 hpsa_scsi_replace_entry(h, i, sd[entry],
1921 added, &nadded, removed, &nremoved);
1922 /* Set it to NULL to prevent it from being freed
1923 * at the bottom of hpsa_update_scsi_devices()
1924 */
1925 sd[entry] = NULL;
1926 } else if (device_change == DEVICE_UPDATED) {
1927 hpsa_scsi_update_entry(h, i, sd[entry]);
1928 }
1929 i++;
1930 }
1931
1932 /* Now, make sure every device listed in sd[] is also
1933 * listed in h->dev[], adding them if they aren't found
1934 */
1935
1936 for (i = 0; i < nsds; i++) {
1937 if (!sd[i]) /* if already added above. */
1938 continue;
1939
1940 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1941 * as the SCSI mid-layer does not handle such devices well.
1942 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1943 * at 160Hz, and prevents the system from coming up.
1944 */
1945 if (sd[i]->volume_offline) {
1946 hpsa_show_volume_status(h, sd[i]);
1947 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1948 continue;
1949 }
1950
1951 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1952 h->ndevices, &entry);
1953 if (device_change == DEVICE_NOT_FOUND) {
1954 changes++;
1955 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1956 break;
1957 sd[i] = NULL; /* prevent from being freed later. */
1958 } else if (device_change == DEVICE_CHANGED) {
1959 /* should never happen... */
1960 changes++;
1961 dev_warn(&h->pdev->dev,
1962 "device unexpectedly changed.\n");
1963 /* but if it does happen, we just ignore that device */
1964 }
1965 }
1966 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1967
1968 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1969 * any logical drives that need it enabled.
1970 */
1971 for (i = 0; i < h->ndevices; i++) {
1972 if (h->dev[i] == NULL)
1973 continue;
1974 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1975 }
1976
1977 spin_unlock_irqrestore(&h->devlock, flags);
1978
1979 /* Monitor devices which are in one of several NOT READY states to be
1980 * brought online later. This must be done without holding h->devlock,
1981 * so don't touch h->dev[]
1982 */
1983 for (i = 0; i < nsds; i++) {
1984 if (!sd[i]) /* if already added above. */
1985 continue;
1986 if (sd[i]->volume_offline)
1987 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1988 }
1989
1990 /* Don't notify scsi mid layer of any changes the first time through
1991 * (or if there are no changes) scsi_scan_host will do it later the
1992 * first time through.
1993 */
1994 if (!changes)
1995 goto free_and_out;
1996
1997 /* Notify scsi mid layer of any removed devices */
1998 for (i = 0; i < nremoved; i++) {
1999 if (removed[i] == NULL)
2000 continue;
2001 if (removed[i]->expose_device)
2002 hpsa_remove_device(h, removed[i]);
2003 kfree(removed[i]);
2004 removed[i] = NULL;
2005 }
2006
2007 /* Notify scsi mid layer of any added devices */
2008 for (i = 0; i < nadded; i++) {
2009 int rc = 0;
2010
2011 if (added[i] == NULL)
2012 continue;
2013 if (!(added[i]->expose_device))
2014 continue;
2015 rc = hpsa_add_device(h, added[i]);
2016 if (!rc)
2017 continue;
2018 dev_warn(&h->pdev->dev,
2019 "addition failed %d, device not added.", rc);
2020 /* now we have to remove it from h->dev,
2021 * since it didn't get added to scsi mid layer
2022 */
2023 fixup_botched_add(h, added[i]);
2024 h->drv_req_rescan = 1;
2025 }
2026
2027 free_and_out:
2028 kfree(added);
2029 kfree(removed);
2030 }
2031
2032 /*
2033 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2034 * Assume's h->devlock is held.
2035 */
2036 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2037 int bus, int target, int lun)
2038 {
2039 int i;
2040 struct hpsa_scsi_dev_t *sd;
2041
2042 for (i = 0; i < h->ndevices; i++) {
2043 sd = h->dev[i];
2044 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2045 return sd;
2046 }
2047 return NULL;
2048 }
2049
2050 static int hpsa_slave_alloc(struct scsi_device *sdev)
2051 {
2052 struct hpsa_scsi_dev_t *sd = NULL;
2053 unsigned long flags;
2054 struct ctlr_info *h;
2055
2056 h = sdev_to_hba(sdev);
2057 spin_lock_irqsave(&h->devlock, flags);
2058 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2059 struct scsi_target *starget;
2060 struct sas_rphy *rphy;
2061
2062 starget = scsi_target(sdev);
2063 rphy = target_to_rphy(starget);
2064 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2065 if (sd) {
2066 sd->target = sdev_id(sdev);
2067 sd->lun = sdev->lun;
2068 }
2069 }
2070 if (!sd)
2071 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2072 sdev_id(sdev), sdev->lun);
2073
2074 if (sd && sd->expose_device) {
2075 atomic_set(&sd->ioaccel_cmds_out, 0);
2076 sdev->hostdata = sd;
2077 } else
2078 sdev->hostdata = NULL;
2079 spin_unlock_irqrestore(&h->devlock, flags);
2080 return 0;
2081 }
2082
2083 /* configure scsi device based on internal per-device structure */
2084 static int hpsa_slave_configure(struct scsi_device *sdev)
2085 {
2086 struct hpsa_scsi_dev_t *sd;
2087 int queue_depth;
2088
2089 sd = sdev->hostdata;
2090 sdev->no_uld_attach = !sd || !sd->expose_device;
2091
2092 if (sd) {
2093 if (sd->external)
2094 queue_depth = EXTERNAL_QD;
2095 else
2096 queue_depth = sd->queue_depth != 0 ?
2097 sd->queue_depth : sdev->host->can_queue;
2098 } else
2099 queue_depth = sdev->host->can_queue;
2100
2101 scsi_change_queue_depth(sdev, queue_depth);
2102
2103 return 0;
2104 }
2105
2106 static void hpsa_slave_destroy(struct scsi_device *sdev)
2107 {
2108 /* nothing to do. */
2109 }
2110
2111 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2112 {
2113 int i;
2114
2115 if (!h->ioaccel2_cmd_sg_list)
2116 return;
2117 for (i = 0; i < h->nr_cmds; i++) {
2118 kfree(h->ioaccel2_cmd_sg_list[i]);
2119 h->ioaccel2_cmd_sg_list[i] = NULL;
2120 }
2121 kfree(h->ioaccel2_cmd_sg_list);
2122 h->ioaccel2_cmd_sg_list = NULL;
2123 }
2124
2125 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127 int i;
2128
2129 if (h->chainsize <= 0)
2130 return 0;
2131
2132 h->ioaccel2_cmd_sg_list =
2133 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2134 GFP_KERNEL);
2135 if (!h->ioaccel2_cmd_sg_list)
2136 return -ENOMEM;
2137 for (i = 0; i < h->nr_cmds; i++) {
2138 h->ioaccel2_cmd_sg_list[i] =
2139 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2140 h->maxsgentries, GFP_KERNEL);
2141 if (!h->ioaccel2_cmd_sg_list[i])
2142 goto clean;
2143 }
2144 return 0;
2145
2146 clean:
2147 hpsa_free_ioaccel2_sg_chain_blocks(h);
2148 return -ENOMEM;
2149 }
2150
2151 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2152 {
2153 int i;
2154
2155 if (!h->cmd_sg_list)
2156 return;
2157 for (i = 0; i < h->nr_cmds; i++) {
2158 kfree(h->cmd_sg_list[i]);
2159 h->cmd_sg_list[i] = NULL;
2160 }
2161 kfree(h->cmd_sg_list);
2162 h->cmd_sg_list = NULL;
2163 }
2164
2165 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167 int i;
2168
2169 if (h->chainsize <= 0)
2170 return 0;
2171
2172 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2173 GFP_KERNEL);
2174 if (!h->cmd_sg_list)
2175 return -ENOMEM;
2176
2177 for (i = 0; i < h->nr_cmds; i++) {
2178 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2179 h->chainsize, GFP_KERNEL);
2180 if (!h->cmd_sg_list[i])
2181 goto clean;
2182
2183 }
2184 return 0;
2185
2186 clean:
2187 hpsa_free_sg_chain_blocks(h);
2188 return -ENOMEM;
2189 }
2190
2191 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2192 struct io_accel2_cmd *cp, struct CommandList *c)
2193 {
2194 struct ioaccel2_sg_element *chain_block;
2195 u64 temp64;
2196 u32 chain_size;
2197
2198 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2199 chain_size = le32_to_cpu(cp->sg[0].length);
2200 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2201 PCI_DMA_TODEVICE);
2202 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2203 /* prevent subsequent unmapping */
2204 cp->sg->address = 0;
2205 return -1;
2206 }
2207 cp->sg->address = cpu_to_le64(temp64);
2208 return 0;
2209 }
2210
2211 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2212 struct io_accel2_cmd *cp)
2213 {
2214 struct ioaccel2_sg_element *chain_sg;
2215 u64 temp64;
2216 u32 chain_size;
2217
2218 chain_sg = cp->sg;
2219 temp64 = le64_to_cpu(chain_sg->address);
2220 chain_size = le32_to_cpu(cp->sg[0].length);
2221 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2222 }
2223
2224 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2225 struct CommandList *c)
2226 {
2227 struct SGDescriptor *chain_sg, *chain_block;
2228 u64 temp64;
2229 u32 chain_len;
2230
2231 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2232 chain_block = h->cmd_sg_list[c->cmdindex];
2233 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2234 chain_len = sizeof(*chain_sg) *
2235 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2236 chain_sg->Len = cpu_to_le32(chain_len);
2237 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2238 PCI_DMA_TODEVICE);
2239 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2240 /* prevent subsequent unmapping */
2241 chain_sg->Addr = cpu_to_le64(0);
2242 return -1;
2243 }
2244 chain_sg->Addr = cpu_to_le64(temp64);
2245 return 0;
2246 }
2247
2248 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2249 struct CommandList *c)
2250 {
2251 struct SGDescriptor *chain_sg;
2252
2253 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2254 return;
2255
2256 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2257 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2258 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2259 }
2260
2261
2262 /* Decode the various types of errors on ioaccel2 path.
2263 * Return 1 for any error that should generate a RAID path retry.
2264 * Return 0 for errors that don't require a RAID path retry.
2265 */
2266 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2267 struct CommandList *c,
2268 struct scsi_cmnd *cmd,
2269 struct io_accel2_cmd *c2,
2270 struct hpsa_scsi_dev_t *dev)
2271 {
2272 int data_len;
2273 int retry = 0;
2274 u32 ioaccel2_resid = 0;
2275
2276 switch (c2->error_data.serv_response) {
2277 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2278 switch (c2->error_data.status) {
2279 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2280 break;
2281 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2282 cmd->result |= SAM_STAT_CHECK_CONDITION;
2283 if (c2->error_data.data_present !=
2284 IOACCEL2_SENSE_DATA_PRESENT) {
2285 memset(cmd->sense_buffer, 0,
2286 SCSI_SENSE_BUFFERSIZE);
2287 break;
2288 }
2289 /* copy the sense data */
2290 data_len = c2->error_data.sense_data_len;
2291 if (data_len > SCSI_SENSE_BUFFERSIZE)
2292 data_len = SCSI_SENSE_BUFFERSIZE;
2293 if (data_len > sizeof(c2->error_data.sense_data_buff))
2294 data_len =
2295 sizeof(c2->error_data.sense_data_buff);
2296 memcpy(cmd->sense_buffer,
2297 c2->error_data.sense_data_buff, data_len);
2298 retry = 1;
2299 break;
2300 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2301 retry = 1;
2302 break;
2303 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2304 retry = 1;
2305 break;
2306 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2307 retry = 1;
2308 break;
2309 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2310 retry = 1;
2311 break;
2312 default:
2313 retry = 1;
2314 break;
2315 }
2316 break;
2317 case IOACCEL2_SERV_RESPONSE_FAILURE:
2318 switch (c2->error_data.status) {
2319 case IOACCEL2_STATUS_SR_IO_ERROR:
2320 case IOACCEL2_STATUS_SR_IO_ABORTED:
2321 case IOACCEL2_STATUS_SR_OVERRUN:
2322 retry = 1;
2323 break;
2324 case IOACCEL2_STATUS_SR_UNDERRUN:
2325 cmd->result = (DID_OK << 16); /* host byte */
2326 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2327 ioaccel2_resid = get_unaligned_le32(
2328 &c2->error_data.resid_cnt[0]);
2329 scsi_set_resid(cmd, ioaccel2_resid);
2330 break;
2331 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2332 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2333 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2334 /*
2335 * Did an HBA disk disappear? We will eventually
2336 * get a state change event from the controller but
2337 * in the meantime, we need to tell the OS that the
2338 * HBA disk is no longer there and stop I/O
2339 * from going down. This allows the potential re-insert
2340 * of the disk to get the same device node.
2341 */
2342 if (dev->physical_device && dev->expose_device) {
2343 cmd->result = DID_NO_CONNECT << 16;
2344 dev->removed = 1;
2345 h->drv_req_rescan = 1;
2346 dev_warn(&h->pdev->dev,
2347 "%s: device is gone!\n", __func__);
2348 } else
2349 /*
2350 * Retry by sending down the RAID path.
2351 * We will get an event from ctlr to
2352 * trigger rescan regardless.
2353 */
2354 retry = 1;
2355 break;
2356 default:
2357 retry = 1;
2358 }
2359 break;
2360 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2361 break;
2362 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2363 break;
2364 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2365 retry = 1;
2366 break;
2367 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2368 break;
2369 default:
2370 retry = 1;
2371 break;
2372 }
2373
2374 return retry; /* retry on raid path? */
2375 }
2376
2377 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2378 struct CommandList *c)
2379 {
2380 bool do_wake = false;
2381
2382 /*
2383 * Reset c->scsi_cmd here so that the reset handler will know
2384 * this command has completed. Then, check to see if the handler is
2385 * waiting for this command, and, if so, wake it.
2386 */
2387 c->scsi_cmd = SCSI_CMD_IDLE;
2388 mb(); /* Declare command idle before checking for pending events. */
2389 if (c->reset_pending) {
2390 unsigned long flags;
2391 struct hpsa_scsi_dev_t *dev;
2392
2393 /*
2394 * There appears to be a reset pending; lock the lock and
2395 * reconfirm. If so, then decrement the count of outstanding
2396 * commands and wake the reset command if this is the last one.
2397 */
2398 spin_lock_irqsave(&h->lock, flags);
2399 dev = c->reset_pending; /* Re-fetch under the lock. */
2400 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2401 do_wake = true;
2402 c->reset_pending = NULL;
2403 spin_unlock_irqrestore(&h->lock, flags);
2404 }
2405
2406 if (do_wake)
2407 wake_up_all(&h->event_sync_wait_queue);
2408 }
2409
2410 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2411 struct CommandList *c)
2412 {
2413 hpsa_cmd_resolve_events(h, c);
2414 cmd_tagged_free(h, c);
2415 }
2416
2417 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2418 struct CommandList *c, struct scsi_cmnd *cmd)
2419 {
2420 hpsa_cmd_resolve_and_free(h, c);
2421 if (cmd && cmd->scsi_done)
2422 cmd->scsi_done(cmd);
2423 }
2424
2425 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2426 {
2427 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2428 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2429 }
2430
2431 static void process_ioaccel2_completion(struct ctlr_info *h,
2432 struct CommandList *c, struct scsi_cmnd *cmd,
2433 struct hpsa_scsi_dev_t *dev)
2434 {
2435 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2436
2437 /* check for good status */
2438 if (likely(c2->error_data.serv_response == 0 &&
2439 c2->error_data.status == 0))
2440 return hpsa_cmd_free_and_done(h, c, cmd);
2441
2442 /*
2443 * Any RAID offload error results in retry which will use
2444 * the normal I/O path so the controller can handle whatever's
2445 * wrong.
2446 */
2447 if (is_logical_device(dev) &&
2448 c2->error_data.serv_response ==
2449 IOACCEL2_SERV_RESPONSE_FAILURE) {
2450 if (c2->error_data.status ==
2451 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2452 dev->offload_enabled = 0;
2453 dev->offload_to_be_enabled = 0;
2454 }
2455
2456 return hpsa_retry_cmd(h, c);
2457 }
2458
2459 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2460 return hpsa_retry_cmd(h, c);
2461
2462 return hpsa_cmd_free_and_done(h, c, cmd);
2463 }
2464
2465 /* Returns 0 on success, < 0 otherwise. */
2466 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2467 struct CommandList *cp)
2468 {
2469 u8 tmf_status = cp->err_info->ScsiStatus;
2470
2471 switch (tmf_status) {
2472 case CISS_TMF_COMPLETE:
2473 /*
2474 * CISS_TMF_COMPLETE never happens, instead,
2475 * ei->CommandStatus == 0 for this case.
2476 */
2477 case CISS_TMF_SUCCESS:
2478 return 0;
2479 case CISS_TMF_INVALID_FRAME:
2480 case CISS_TMF_NOT_SUPPORTED:
2481 case CISS_TMF_FAILED:
2482 case CISS_TMF_WRONG_LUN:
2483 case CISS_TMF_OVERLAPPED_TAG:
2484 break;
2485 default:
2486 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2487 tmf_status);
2488 break;
2489 }
2490 return -tmf_status;
2491 }
2492
2493 static void complete_scsi_command(struct CommandList *cp)
2494 {
2495 struct scsi_cmnd *cmd;
2496 struct ctlr_info *h;
2497 struct ErrorInfo *ei;
2498 struct hpsa_scsi_dev_t *dev;
2499 struct io_accel2_cmd *c2;
2500
2501 u8 sense_key;
2502 u8 asc; /* additional sense code */
2503 u8 ascq; /* additional sense code qualifier */
2504 unsigned long sense_data_size;
2505
2506 ei = cp->err_info;
2507 cmd = cp->scsi_cmd;
2508 h = cp->h;
2509
2510 if (!cmd->device) {
2511 cmd->result = DID_NO_CONNECT << 16;
2512 return hpsa_cmd_free_and_done(h, cp, cmd);
2513 }
2514
2515 dev = cmd->device->hostdata;
2516 if (!dev) {
2517 cmd->result = DID_NO_CONNECT << 16;
2518 return hpsa_cmd_free_and_done(h, cp, cmd);
2519 }
2520 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2521
2522 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2523 if ((cp->cmd_type == CMD_SCSI) &&
2524 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2525 hpsa_unmap_sg_chain_block(h, cp);
2526
2527 if ((cp->cmd_type == CMD_IOACCEL2) &&
2528 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2529 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2530
2531 cmd->result = (DID_OK << 16); /* host byte */
2532 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2533
2534 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2535 if (dev->physical_device && dev->expose_device &&
2536 dev->removed) {
2537 cmd->result = DID_NO_CONNECT << 16;
2538 return hpsa_cmd_free_and_done(h, cp, cmd);
2539 }
2540 if (likely(cp->phys_disk != NULL))
2541 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2542 }
2543
2544 /*
2545 * We check for lockup status here as it may be set for
2546 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2547 * fail_all_oustanding_cmds()
2548 */
2549 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2550 /* DID_NO_CONNECT will prevent a retry */
2551 cmd->result = DID_NO_CONNECT << 16;
2552 return hpsa_cmd_free_and_done(h, cp, cmd);
2553 }
2554
2555 if ((unlikely(hpsa_is_pending_event(cp))))
2556 if (cp->reset_pending)
2557 return hpsa_cmd_free_and_done(h, cp, cmd);
2558
2559 if (cp->cmd_type == CMD_IOACCEL2)
2560 return process_ioaccel2_completion(h, cp, cmd, dev);
2561
2562 scsi_set_resid(cmd, ei->ResidualCnt);
2563 if (ei->CommandStatus == 0)
2564 return hpsa_cmd_free_and_done(h, cp, cmd);
2565
2566 /* For I/O accelerator commands, copy over some fields to the normal
2567 * CISS header used below for error handling.
2568 */
2569 if (cp->cmd_type == CMD_IOACCEL1) {
2570 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2571 cp->Header.SGList = scsi_sg_count(cmd);
2572 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2573 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2574 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2575 cp->Header.tag = c->tag;
2576 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2577 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2578
2579 /* Any RAID offload error results in retry which will use
2580 * the normal I/O path so the controller can handle whatever's
2581 * wrong.
2582 */
2583 if (is_logical_device(dev)) {
2584 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2585 dev->offload_enabled = 0;
2586 return hpsa_retry_cmd(h, cp);
2587 }
2588 }
2589
2590 /* an error has occurred */
2591 switch (ei->CommandStatus) {
2592
2593 case CMD_TARGET_STATUS:
2594 cmd->result |= ei->ScsiStatus;
2595 /* copy the sense data */
2596 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2597 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2598 else
2599 sense_data_size = sizeof(ei->SenseInfo);
2600 if (ei->SenseLen < sense_data_size)
2601 sense_data_size = ei->SenseLen;
2602 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2603 if (ei->ScsiStatus)
2604 decode_sense_data(ei->SenseInfo, sense_data_size,
2605 &sense_key, &asc, &ascq);
2606 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2607 if (sense_key == ABORTED_COMMAND) {
2608 cmd->result |= DID_SOFT_ERROR << 16;
2609 break;
2610 }
2611 break;
2612 }
2613 /* Problem was not a check condition
2614 * Pass it up to the upper layers...
2615 */
2616 if (ei->ScsiStatus) {
2617 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2618 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2619 "Returning result: 0x%x\n",
2620 cp, ei->ScsiStatus,
2621 sense_key, asc, ascq,
2622 cmd->result);
2623 } else { /* scsi status is zero??? How??? */
2624 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2625 "Returning no connection.\n", cp),
2626
2627 /* Ordinarily, this case should never happen,
2628 * but there is a bug in some released firmware
2629 * revisions that allows it to happen if, for
2630 * example, a 4100 backplane loses power and
2631 * the tape drive is in it. We assume that
2632 * it's a fatal error of some kind because we
2633 * can't show that it wasn't. We will make it
2634 * look like selection timeout since that is
2635 * the most common reason for this to occur,
2636 * and it's severe enough.
2637 */
2638
2639 cmd->result = DID_NO_CONNECT << 16;
2640 }
2641 break;
2642
2643 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2644 break;
2645 case CMD_DATA_OVERRUN:
2646 dev_warn(&h->pdev->dev,
2647 "CDB %16phN data overrun\n", cp->Request.CDB);
2648 break;
2649 case CMD_INVALID: {
2650 /* print_bytes(cp, sizeof(*cp), 1, 0);
2651 print_cmd(cp); */
2652 /* We get CMD_INVALID if you address a non-existent device
2653 * instead of a selection timeout (no response). You will
2654 * see this if you yank out a drive, then try to access it.
2655 * This is kind of a shame because it means that any other
2656 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2657 * missing target. */
2658 cmd->result = DID_NO_CONNECT << 16;
2659 }
2660 break;
2661 case CMD_PROTOCOL_ERR:
2662 cmd->result = DID_ERROR << 16;
2663 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2664 cp->Request.CDB);
2665 break;
2666 case CMD_HARDWARE_ERR:
2667 cmd->result = DID_ERROR << 16;
2668 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2669 cp->Request.CDB);
2670 break;
2671 case CMD_CONNECTION_LOST:
2672 cmd->result = DID_ERROR << 16;
2673 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2674 cp->Request.CDB);
2675 break;
2676 case CMD_ABORTED:
2677 cmd->result = DID_ABORT << 16;
2678 break;
2679 case CMD_ABORT_FAILED:
2680 cmd->result = DID_ERROR << 16;
2681 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2682 cp->Request.CDB);
2683 break;
2684 case CMD_UNSOLICITED_ABORT:
2685 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2686 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2687 cp->Request.CDB);
2688 break;
2689 case CMD_TIMEOUT:
2690 cmd->result = DID_TIME_OUT << 16;
2691 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2692 cp->Request.CDB);
2693 break;
2694 case CMD_UNABORTABLE:
2695 cmd->result = DID_ERROR << 16;
2696 dev_warn(&h->pdev->dev, "Command unabortable\n");
2697 break;
2698 case CMD_TMF_STATUS:
2699 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2700 cmd->result = DID_ERROR << 16;
2701 break;
2702 case CMD_IOACCEL_DISABLED:
2703 /* This only handles the direct pass-through case since RAID
2704 * offload is handled above. Just attempt a retry.
2705 */
2706 cmd->result = DID_SOFT_ERROR << 16;
2707 dev_warn(&h->pdev->dev,
2708 "cp %p had HP SSD Smart Path error\n", cp);
2709 break;
2710 default:
2711 cmd->result = DID_ERROR << 16;
2712 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2713 cp, ei->CommandStatus);
2714 }
2715
2716 return hpsa_cmd_free_and_done(h, cp, cmd);
2717 }
2718
2719 static void hpsa_pci_unmap(struct pci_dev *pdev,
2720 struct CommandList *c, int sg_used, int data_direction)
2721 {
2722 int i;
2723
2724 for (i = 0; i < sg_used; i++)
2725 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2726 le32_to_cpu(c->SG[i].Len),
2727 data_direction);
2728 }
2729
2730 static int hpsa_map_one(struct pci_dev *pdev,
2731 struct CommandList *cp,
2732 unsigned char *buf,
2733 size_t buflen,
2734 int data_direction)
2735 {
2736 u64 addr64;
2737
2738 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2739 cp->Header.SGList = 0;
2740 cp->Header.SGTotal = cpu_to_le16(0);
2741 return 0;
2742 }
2743
2744 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2745 if (dma_mapping_error(&pdev->dev, addr64)) {
2746 /* Prevent subsequent unmap of something never mapped */
2747 cp->Header.SGList = 0;
2748 cp->Header.SGTotal = cpu_to_le16(0);
2749 return -1;
2750 }
2751 cp->SG[0].Addr = cpu_to_le64(addr64);
2752 cp->SG[0].Len = cpu_to_le32(buflen);
2753 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2754 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2755 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2756 return 0;
2757 }
2758
2759 #define NO_TIMEOUT ((unsigned long) -1)
2760 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2761 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2762 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2763 {
2764 DECLARE_COMPLETION_ONSTACK(wait);
2765
2766 c->waiting = &wait;
2767 __enqueue_cmd_and_start_io(h, c, reply_queue);
2768 if (timeout_msecs == NO_TIMEOUT) {
2769 /* TODO: get rid of this no-timeout thing */
2770 wait_for_completion_io(&wait);
2771 return IO_OK;
2772 }
2773 if (!wait_for_completion_io_timeout(&wait,
2774 msecs_to_jiffies(timeout_msecs))) {
2775 dev_warn(&h->pdev->dev, "Command timed out.\n");
2776 return -ETIMEDOUT;
2777 }
2778 return IO_OK;
2779 }
2780
2781 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2782 int reply_queue, unsigned long timeout_msecs)
2783 {
2784 if (unlikely(lockup_detected(h))) {
2785 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2786 return IO_OK;
2787 }
2788 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2789 }
2790
2791 static u32 lockup_detected(struct ctlr_info *h)
2792 {
2793 int cpu;
2794 u32 rc, *lockup_detected;
2795
2796 cpu = get_cpu();
2797 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2798 rc = *lockup_detected;
2799 put_cpu();
2800 return rc;
2801 }
2802
2803 #define MAX_DRIVER_CMD_RETRIES 25
2804 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2805 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2806 {
2807 int backoff_time = 10, retry_count = 0;
2808 int rc;
2809
2810 do {
2811 memset(c->err_info, 0, sizeof(*c->err_info));
2812 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2813 timeout_msecs);
2814 if (rc)
2815 break;
2816 retry_count++;
2817 if (retry_count > 3) {
2818 msleep(backoff_time);
2819 if (backoff_time < 1000)
2820 backoff_time *= 2;
2821 }
2822 } while ((check_for_unit_attention(h, c) ||
2823 check_for_busy(h, c)) &&
2824 retry_count <= MAX_DRIVER_CMD_RETRIES);
2825 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2826 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2827 rc = -EIO;
2828 return rc;
2829 }
2830
2831 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2832 struct CommandList *c)
2833 {
2834 const u8 *cdb = c->Request.CDB;
2835 const u8 *lun = c->Header.LUN.LunAddrBytes;
2836
2837 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2838 txt, lun, cdb);
2839 }
2840
2841 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2842 struct CommandList *cp)
2843 {
2844 const struct ErrorInfo *ei = cp->err_info;
2845 struct device *d = &cp->h->pdev->dev;
2846 u8 sense_key, asc, ascq;
2847 int sense_len;
2848
2849 switch (ei->CommandStatus) {
2850 case CMD_TARGET_STATUS:
2851 if (ei->SenseLen > sizeof(ei->SenseInfo))
2852 sense_len = sizeof(ei->SenseInfo);
2853 else
2854 sense_len = ei->SenseLen;
2855 decode_sense_data(ei->SenseInfo, sense_len,
2856 &sense_key, &asc, &ascq);
2857 hpsa_print_cmd(h, "SCSI status", cp);
2858 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2859 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860 sense_key, asc, ascq);
2861 else
2862 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2863 if (ei->ScsiStatus == 0)
2864 dev_warn(d, "SCSI status is abnormally zero. "
2865 "(probably indicates selection timeout "
2866 "reported incorrectly due to a known "
2867 "firmware bug, circa July, 2001.)\n");
2868 break;
2869 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2870 break;
2871 case CMD_DATA_OVERRUN:
2872 hpsa_print_cmd(h, "overrun condition", cp);
2873 break;
2874 case CMD_INVALID: {
2875 /* controller unfortunately reports SCSI passthru's
2876 * to non-existent targets as invalid commands.
2877 */
2878 hpsa_print_cmd(h, "invalid command", cp);
2879 dev_warn(d, "probably means device no longer present\n");
2880 }
2881 break;
2882 case CMD_PROTOCOL_ERR:
2883 hpsa_print_cmd(h, "protocol error", cp);
2884 break;
2885 case CMD_HARDWARE_ERR:
2886 hpsa_print_cmd(h, "hardware error", cp);
2887 break;
2888 case CMD_CONNECTION_LOST:
2889 hpsa_print_cmd(h, "connection lost", cp);
2890 break;
2891 case CMD_ABORTED:
2892 hpsa_print_cmd(h, "aborted", cp);
2893 break;
2894 case CMD_ABORT_FAILED:
2895 hpsa_print_cmd(h, "abort failed", cp);
2896 break;
2897 case CMD_UNSOLICITED_ABORT:
2898 hpsa_print_cmd(h, "unsolicited abort", cp);
2899 break;
2900 case CMD_TIMEOUT:
2901 hpsa_print_cmd(h, "timed out", cp);
2902 break;
2903 case CMD_UNABORTABLE:
2904 hpsa_print_cmd(h, "unabortable", cp);
2905 break;
2906 case CMD_CTLR_LOCKUP:
2907 hpsa_print_cmd(h, "controller lockup detected", cp);
2908 break;
2909 default:
2910 hpsa_print_cmd(h, "unknown status", cp);
2911 dev_warn(d, "Unknown command status %x\n",
2912 ei->CommandStatus);
2913 }
2914 }
2915
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2917 u16 page, unsigned char *buf,
2918 unsigned char bufsize)
2919 {
2920 int rc = IO_OK;
2921 struct CommandList *c;
2922 struct ErrorInfo *ei;
2923
2924 c = cmd_alloc(h);
2925
2926 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2927 page, scsi3addr, TYPE_CMD)) {
2928 rc = -1;
2929 goto out;
2930 }
2931 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2932 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2933 if (rc)
2934 goto out;
2935 ei = c->err_info;
2936 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2937 hpsa_scsi_interpret_error(h, c);
2938 rc = -1;
2939 }
2940 out:
2941 cmd_free(h, c);
2942 return rc;
2943 }
2944
2945 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2946 u8 reset_type, int reply_queue)
2947 {
2948 int rc = IO_OK;
2949 struct CommandList *c;
2950 struct ErrorInfo *ei;
2951
2952 c = cmd_alloc(h);
2953
2954
2955 /* fill_cmd can't fail here, no data buffer to map. */
2956 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2957 scsi3addr, TYPE_MSG);
2958 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2959 if (rc) {
2960 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2961 goto out;
2962 }
2963 /* no unmap needed here because no data xfer. */
2964
2965 ei = c->err_info;
2966 if (ei->CommandStatus != 0) {
2967 hpsa_scsi_interpret_error(h, c);
2968 rc = -1;
2969 }
2970 out:
2971 cmd_free(h, c);
2972 return rc;
2973 }
2974
2975 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2976 struct hpsa_scsi_dev_t *dev,
2977 unsigned char *scsi3addr)
2978 {
2979 int i;
2980 bool match = false;
2981 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2982 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2983
2984 if (hpsa_is_cmd_idle(c))
2985 return false;
2986
2987 switch (c->cmd_type) {
2988 case CMD_SCSI:
2989 case CMD_IOCTL_PEND:
2990 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2991 sizeof(c->Header.LUN.LunAddrBytes));
2992 break;
2993
2994 case CMD_IOACCEL1:
2995 case CMD_IOACCEL2:
2996 if (c->phys_disk == dev) {
2997 /* HBA mode match */
2998 match = true;
2999 } else {
3000 /* Possible RAID mode -- check each phys dev. */
3001 /* FIXME: Do we need to take out a lock here? If
3002 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3003 * instead. */
3004 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3005 /* FIXME: an alternate test might be
3006 *
3007 * match = dev->phys_disk[i]->ioaccel_handle
3008 * == c2->scsi_nexus; */
3009 match = dev->phys_disk[i] == c->phys_disk;
3010 }
3011 }
3012 break;
3013
3014 case IOACCEL2_TMF:
3015 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3016 match = dev->phys_disk[i]->ioaccel_handle ==
3017 le32_to_cpu(ac->it_nexus);
3018 }
3019 break;
3020
3021 case 0: /* The command is in the middle of being initialized. */
3022 match = false;
3023 break;
3024
3025 default:
3026 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3027 c->cmd_type);
3028 BUG();
3029 }
3030
3031 return match;
3032 }
3033
3034 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3035 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3036 {
3037 int i;
3038 int rc = 0;
3039
3040 /* We can really only handle one reset at a time */
3041 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3042 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3043 return -EINTR;
3044 }
3045
3046 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3047
3048 for (i = 0; i < h->nr_cmds; i++) {
3049 struct CommandList *c = h->cmd_pool + i;
3050 int refcount = atomic_inc_return(&c->refcount);
3051
3052 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3053 unsigned long flags;
3054
3055 /*
3056 * Mark the target command as having a reset pending,
3057 * then lock a lock so that the command cannot complete
3058 * while we're considering it. If the command is not
3059 * idle then count it; otherwise revoke the event.
3060 */
3061 c->reset_pending = dev;
3062 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3063 if (!hpsa_is_cmd_idle(c))
3064 atomic_inc(&dev->reset_cmds_out);
3065 else
3066 c->reset_pending = NULL;
3067 spin_unlock_irqrestore(&h->lock, flags);
3068 }
3069
3070 cmd_free(h, c);
3071 }
3072
3073 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3074 if (!rc)
3075 wait_event(h->event_sync_wait_queue,
3076 atomic_read(&dev->reset_cmds_out) == 0 ||
3077 lockup_detected(h));
3078
3079 if (unlikely(lockup_detected(h))) {
3080 dev_warn(&h->pdev->dev,
3081 "Controller lockup detected during reset wait\n");
3082 rc = -ENODEV;
3083 }
3084
3085 if (unlikely(rc))
3086 atomic_set(&dev->reset_cmds_out, 0);
3087 else
3088 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3089
3090 mutex_unlock(&h->reset_mutex);
3091 return rc;
3092 }
3093
3094 static void hpsa_get_raid_level(struct ctlr_info *h,
3095 unsigned char *scsi3addr, unsigned char *raid_level)
3096 {
3097 int rc;
3098 unsigned char *buf;
3099
3100 *raid_level = RAID_UNKNOWN;
3101 buf = kzalloc(64, GFP_KERNEL);
3102 if (!buf)
3103 return;
3104
3105 if (!hpsa_vpd_page_supported(h, scsi3addr,
3106 HPSA_VPD_LV_DEVICE_GEOMETRY))
3107 goto exit;
3108
3109 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3110 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3111
3112 if (rc == 0)
3113 *raid_level = buf[8];
3114 if (*raid_level > RAID_UNKNOWN)
3115 *raid_level = RAID_UNKNOWN;
3116 exit:
3117 kfree(buf);
3118 return;
3119 }
3120
3121 #define HPSA_MAP_DEBUG
3122 #ifdef HPSA_MAP_DEBUG
3123 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3124 struct raid_map_data *map_buff)
3125 {
3126 struct raid_map_disk_data *dd = &map_buff->data[0];
3127 int map, row, col;
3128 u16 map_cnt, row_cnt, disks_per_row;
3129
3130 if (rc != 0)
3131 return;
3132
3133 /* Show details only if debugging has been activated. */
3134 if (h->raid_offload_debug < 2)
3135 return;
3136
3137 dev_info(&h->pdev->dev, "structure_size = %u\n",
3138 le32_to_cpu(map_buff->structure_size));
3139 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3140 le32_to_cpu(map_buff->volume_blk_size));
3141 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3142 le64_to_cpu(map_buff->volume_blk_cnt));
3143 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3144 map_buff->phys_blk_shift);
3145 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3146 map_buff->parity_rotation_shift);
3147 dev_info(&h->pdev->dev, "strip_size = %u\n",
3148 le16_to_cpu(map_buff->strip_size));
3149 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3150 le64_to_cpu(map_buff->disk_starting_blk));
3151 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3152 le64_to_cpu(map_buff->disk_blk_cnt));
3153 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3154 le16_to_cpu(map_buff->data_disks_per_row));
3155 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3156 le16_to_cpu(map_buff->metadata_disks_per_row));
3157 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3158 le16_to_cpu(map_buff->row_cnt));
3159 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3160 le16_to_cpu(map_buff->layout_map_count));
3161 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3162 le16_to_cpu(map_buff->flags));
3163 dev_info(&h->pdev->dev, "encryption = %s\n",
3164 le16_to_cpu(map_buff->flags) &
3165 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3166 dev_info(&h->pdev->dev, "dekindex = %u\n",
3167 le16_to_cpu(map_buff->dekindex));
3168 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3169 for (map = 0; map < map_cnt; map++) {
3170 dev_info(&h->pdev->dev, "Map%u:\n", map);
3171 row_cnt = le16_to_cpu(map_buff->row_cnt);
3172 for (row = 0; row < row_cnt; row++) {
3173 dev_info(&h->pdev->dev, " Row%u:\n", row);
3174 disks_per_row =
3175 le16_to_cpu(map_buff->data_disks_per_row);
3176 for (col = 0; col < disks_per_row; col++, dd++)
3177 dev_info(&h->pdev->dev,
3178 " D%02u: h=0x%04x xor=%u,%u\n",
3179 col, dd->ioaccel_handle,
3180 dd->xor_mult[0], dd->xor_mult[1]);
3181 disks_per_row =
3182 le16_to_cpu(map_buff->metadata_disks_per_row);
3183 for (col = 0; col < disks_per_row; col++, dd++)
3184 dev_info(&h->pdev->dev,
3185 " M%02u: h=0x%04x xor=%u,%u\n",
3186 col, dd->ioaccel_handle,
3187 dd->xor_mult[0], dd->xor_mult[1]);
3188 }
3189 }
3190 }
3191 #else
3192 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3193 __attribute__((unused)) int rc,
3194 __attribute__((unused)) struct raid_map_data *map_buff)
3195 {
3196 }
3197 #endif
3198
3199 static int hpsa_get_raid_map(struct ctlr_info *h,
3200 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3201 {
3202 int rc = 0;
3203 struct CommandList *c;
3204 struct ErrorInfo *ei;
3205
3206 c = cmd_alloc(h);
3207
3208 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3209 sizeof(this_device->raid_map), 0,
3210 scsi3addr, TYPE_CMD)) {
3211 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3212 cmd_free(h, c);
3213 return -1;
3214 }
3215 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3216 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3217 if (rc)
3218 goto out;
3219 ei = c->err_info;
3220 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3221 hpsa_scsi_interpret_error(h, c);
3222 rc = -1;
3223 goto out;
3224 }
3225 cmd_free(h, c);
3226
3227 /* @todo in the future, dynamically allocate RAID map memory */
3228 if (le32_to_cpu(this_device->raid_map.structure_size) >
3229 sizeof(this_device->raid_map)) {
3230 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3231 rc = -1;
3232 }
3233 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3234 return rc;
3235 out:
3236 cmd_free(h, c);
3237 return rc;
3238 }
3239
3240 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3241 unsigned char scsi3addr[], u16 bmic_device_index,
3242 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3243 {
3244 int rc = IO_OK;
3245 struct CommandList *c;
3246 struct ErrorInfo *ei;
3247
3248 c = cmd_alloc(h);
3249
3250 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3251 0, RAID_CTLR_LUNID, TYPE_CMD);
3252 if (rc)
3253 goto out;
3254
3255 c->Request.CDB[2] = bmic_device_index & 0xff;
3256 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3257
3258 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3259 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3260 if (rc)
3261 goto out;
3262 ei = c->err_info;
3263 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3264 hpsa_scsi_interpret_error(h, c);
3265 rc = -1;
3266 }
3267 out:
3268 cmd_free(h, c);
3269 return rc;
3270 }
3271
3272 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3273 struct bmic_identify_controller *buf, size_t bufsize)
3274 {
3275 int rc = IO_OK;
3276 struct CommandList *c;
3277 struct ErrorInfo *ei;
3278
3279 c = cmd_alloc(h);
3280
3281 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3282 0, RAID_CTLR_LUNID, TYPE_CMD);
3283 if (rc)
3284 goto out;
3285
3286 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3287 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3288 if (rc)
3289 goto out;
3290 ei = c->err_info;
3291 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3292 hpsa_scsi_interpret_error(h, c);
3293 rc = -1;
3294 }
3295 out:
3296 cmd_free(h, c);
3297 return rc;
3298 }
3299
3300 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3301 unsigned char scsi3addr[], u16 bmic_device_index,
3302 struct bmic_identify_physical_device *buf, size_t bufsize)
3303 {
3304 int rc = IO_OK;
3305 struct CommandList *c;
3306 struct ErrorInfo *ei;
3307
3308 c = cmd_alloc(h);
3309 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3310 0, RAID_CTLR_LUNID, TYPE_CMD);
3311 if (rc)
3312 goto out;
3313
3314 c->Request.CDB[2] = bmic_device_index & 0xff;
3315 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3316
3317 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3318 DEFAULT_TIMEOUT);
3319 ei = c->err_info;
3320 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3321 hpsa_scsi_interpret_error(h, c);
3322 rc = -1;
3323 }
3324 out:
3325 cmd_free(h, c);
3326
3327 return rc;
3328 }
3329
3330 /*
3331 * get enclosure information
3332 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3333 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3334 * Uses id_physical_device to determine the box_index.
3335 */
3336 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3337 unsigned char *scsi3addr,
3338 struct ReportExtendedLUNdata *rlep, int rle_index,
3339 struct hpsa_scsi_dev_t *encl_dev)
3340 {
3341 int rc = -1;
3342 struct CommandList *c = NULL;
3343 struct ErrorInfo *ei = NULL;
3344 struct bmic_sense_storage_box_params *bssbp = NULL;
3345 struct bmic_identify_physical_device *id_phys = NULL;
3346 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3347 u16 bmic_device_index = 0;
3348
3349 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3350
3351 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3352 rc = IO_OK;
3353 goto out;
3354 }
3355
3356 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357 rc = IO_OK;
3358 goto out;
3359 }
3360
3361 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362 if (!bssbp)
3363 goto out;
3364
3365 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366 if (!id_phys)
3367 goto out;
3368
3369 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370 id_phys, sizeof(*id_phys));
3371 if (rc) {
3372 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373 __func__, encl_dev->external, bmic_device_index);
3374 goto out;
3375 }
3376
3377 c = cmd_alloc(h);
3378
3379 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381
3382 if (rc)
3383 goto out;
3384
3385 if (id_phys->phys_connector[1] == 'E')
3386 c->Request.CDB[5] = id_phys->box_index;
3387 else
3388 c->Request.CDB[5] = 0;
3389
3390 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391 DEFAULT_TIMEOUT);
3392 if (rc)
3393 goto out;
3394
3395 ei = c->err_info;
3396 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397 rc = -1;
3398 goto out;
3399 }
3400
3401 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404
3405 rc = IO_OK;
3406 out:
3407 kfree(bssbp);
3408 kfree(id_phys);
3409
3410 if (c)
3411 cmd_free(h, c);
3412
3413 if (rc != IO_OK)
3414 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415 "Error, could not get enclosure information\n");
3416 }
3417
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419 unsigned char *scsi3addr)
3420 {
3421 struct ReportExtendedLUNdata *physdev;
3422 u32 nphysicals;
3423 u64 sa = 0;
3424 int i;
3425
3426 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427 if (!physdev)
3428 return 0;
3429
3430 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432 kfree(physdev);
3433 return 0;
3434 }
3435 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436
3437 for (i = 0; i < nphysicals; i++)
3438 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440 break;
3441 }
3442
3443 kfree(physdev);
3444
3445 return sa;
3446 }
3447
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449 struct hpsa_scsi_dev_t *dev)
3450 {
3451 int rc;
3452 u64 sa = 0;
3453
3454 if (is_hba_lunid(scsi3addr)) {
3455 struct bmic_sense_subsystem_info *ssi;
3456
3457 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458 if (!ssi)
3459 return;
3460
3461 rc = hpsa_bmic_sense_subsystem_information(h,
3462 scsi3addr, 0, ssi, sizeof(*ssi));
3463 if (rc == 0) {
3464 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465 h->sas_address = sa;
3466 }
3467
3468 kfree(ssi);
3469 } else
3470 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471
3472 dev->sas_address = sa;
3473 }
3474
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3477 unsigned char scsi3addr[], u8 page)
3478 {
3479 int rc;
3480 int i;
3481 int pages;
3482 unsigned char *buf, bufsize;
3483
3484 buf = kzalloc(256, GFP_KERNEL);
3485 if (!buf)
3486 return false;
3487
3488 /* Get the size of the page list first */
3489 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3490 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3491 buf, HPSA_VPD_HEADER_SZ);
3492 if (rc != 0)
3493 goto exit_unsupported;
3494 pages = buf[3];
3495 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3496 bufsize = pages + HPSA_VPD_HEADER_SZ;
3497 else
3498 bufsize = 255;
3499
3500 /* Get the whole VPD page list */
3501 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503 buf, bufsize);
3504 if (rc != 0)
3505 goto exit_unsupported;
3506
3507 pages = buf[3];
3508 for (i = 1; i <= pages; i++)
3509 if (buf[3 + i] == page)
3510 goto exit_supported;
3511 exit_unsupported:
3512 kfree(buf);
3513 return false;
3514 exit_supported:
3515 kfree(buf);
3516 return true;
3517 }
3518
3519 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3520 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3521 {
3522 int rc;
3523 unsigned char *buf;
3524 u8 ioaccel_status;
3525
3526 this_device->offload_config = 0;
3527 this_device->offload_enabled = 0;
3528 this_device->offload_to_be_enabled = 0;
3529
3530 buf = kzalloc(64, GFP_KERNEL);
3531 if (!buf)
3532 return;
3533 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3534 goto out;
3535 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3536 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3537 if (rc != 0)
3538 goto out;
3539
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3544 this_device->offload_config =
3545 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3546 if (this_device->offload_config) {
3547 this_device->offload_enabled =
3548 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3549 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3550 this_device->offload_enabled = 0;
3551 }
3552 this_device->offload_to_be_enabled = this_device->offload_enabled;
3553 out:
3554 kfree(buf);
3555 return;
3556 }
3557
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3560 unsigned char *device_id, int index, int buflen)
3561 {
3562 int rc;
3563 unsigned char *buf;
3564
3565 /* Does controller have VPD for device id? */
3566 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3567 return 1; /* not supported */
3568
3569 buf = kzalloc(64, GFP_KERNEL);
3570 if (!buf)
3571 return -ENOMEM;
3572
3573 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3574 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3575 if (rc == 0) {
3576 if (buflen > 16)
3577 buflen = 16;
3578 memcpy(device_id, &buf[8], buflen);
3579 }
3580
3581 kfree(buf);
3582
3583 return rc; /*0 - got id, otherwise, didn't */
3584 }
3585
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3587 void *buf, int bufsize,
3588 int extended_response)
3589 {
3590 int rc = IO_OK;
3591 struct CommandList *c;
3592 unsigned char scsi3addr[8];
3593 struct ErrorInfo *ei;
3594
3595 c = cmd_alloc(h);
3596
3597 /* address the controller */
3598 memset(scsi3addr, 0, sizeof(scsi3addr));
3599 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3600 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3601 rc = -EAGAIN;
3602 goto out;
3603 }
3604 if (extended_response)
3605 c->Request.CDB[1] = extended_response;
3606 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3607 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3608 if (rc)
3609 goto out;
3610 ei = c->err_info;
3611 if (ei->CommandStatus != 0 &&
3612 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3613 hpsa_scsi_interpret_error(h, c);
3614 rc = -EIO;
3615 } else {
3616 struct ReportLUNdata *rld = buf;
3617
3618 if (rld->extended_response_flag != extended_response) {
3619 if (!h->legacy_board) {
3620 dev_err(&h->pdev->dev,
3621 "report luns requested format %u, got %u\n",
3622 extended_response,
3623 rld->extended_response_flag);
3624 rc = -EINVAL;
3625 } else
3626 rc = -EOPNOTSUPP;
3627 }
3628 }
3629 out:
3630 cmd_free(h, c);
3631 return rc;
3632 }
3633
3634 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3635 struct ReportExtendedLUNdata *buf, int bufsize)
3636 {
3637 int rc;
3638 struct ReportLUNdata *lbuf;
3639
3640 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3641 HPSA_REPORT_PHYS_EXTENDED);
3642 if (!rc || rc != -EOPNOTSUPP)
3643 return rc;
3644
3645 /* REPORT PHYS EXTENDED is not supported */
3646 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3647 if (!lbuf)
3648 return -ENOMEM;
3649
3650 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3651 if (!rc) {
3652 int i;
3653 u32 nphys;
3654
3655 /* Copy ReportLUNdata header */
3656 memcpy(buf, lbuf, 8);
3657 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3658 for (i = 0; i < nphys; i++)
3659 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3660 }
3661 kfree(lbuf);
3662 return rc;
3663 }
3664
3665 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3666 struct ReportLUNdata *buf, int bufsize)
3667 {
3668 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3669 }
3670
3671 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3672 int bus, int target, int lun)
3673 {
3674 device->bus = bus;
3675 device->target = target;
3676 device->lun = lun;
3677 }
3678
3679 /* Use VPD inquiry to get details of volume status */
3680 static int hpsa_get_volume_status(struct ctlr_info *h,
3681 unsigned char scsi3addr[])
3682 {
3683 int rc;
3684 int status;
3685 int size;
3686 unsigned char *buf;
3687
3688 buf = kzalloc(64, GFP_KERNEL);
3689 if (!buf)
3690 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3691
3692 /* Does controller have VPD for logical volume status? */
3693 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3694 goto exit_failed;
3695
3696 /* Get the size of the VPD return buffer */
3697 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698 buf, HPSA_VPD_HEADER_SZ);
3699 if (rc != 0)
3700 goto exit_failed;
3701 size = buf[3];
3702
3703 /* Now get the whole VPD buffer */
3704 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3705 buf, size + HPSA_VPD_HEADER_SZ);
3706 if (rc != 0)
3707 goto exit_failed;
3708 status = buf[4]; /* status byte */
3709
3710 kfree(buf);
3711 return status;
3712 exit_failed:
3713 kfree(buf);
3714 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3715 }
3716
3717 /* Determine offline status of a volume.
3718 * Return either:
3719 * 0 (not offline)
3720 * 0xff (offline for unknown reasons)
3721 * # (integer code indicating one of several NOT READY states
3722 * describing why a volume is to be kept offline)
3723 */
3724 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3725 unsigned char scsi3addr[])
3726 {
3727 struct CommandList *c;
3728 unsigned char *sense;
3729 u8 sense_key, asc, ascq;
3730 int sense_len;
3731 int rc, ldstat = 0;
3732 u16 cmd_status;
3733 u8 scsi_status;
3734 #define ASC_LUN_NOT_READY 0x04
3735 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3736 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3737
3738 c = cmd_alloc(h);
3739
3740 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3741 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3742 DEFAULT_TIMEOUT);
3743 if (rc) {
3744 cmd_free(h, c);
3745 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3746 }
3747 sense = c->err_info->SenseInfo;
3748 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3749 sense_len = sizeof(c->err_info->SenseInfo);
3750 else
3751 sense_len = c->err_info->SenseLen;
3752 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3753 cmd_status = c->err_info->CommandStatus;
3754 scsi_status = c->err_info->ScsiStatus;
3755 cmd_free(h, c);
3756
3757 /* Determine the reason for not ready state */
3758 ldstat = hpsa_get_volume_status(h, scsi3addr);
3759
3760 /* Keep volume offline in certain cases: */
3761 switch (ldstat) {
3762 case HPSA_LV_FAILED:
3763 case HPSA_LV_UNDERGOING_ERASE:
3764 case HPSA_LV_NOT_AVAILABLE:
3765 case HPSA_LV_UNDERGOING_RPI:
3766 case HPSA_LV_PENDING_RPI:
3767 case HPSA_LV_ENCRYPTED_NO_KEY:
3768 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3769 case HPSA_LV_UNDERGOING_ENCRYPTION:
3770 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3771 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3772 return ldstat;
3773 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3774 /* If VPD status page isn't available,
3775 * use ASC/ASCQ to determine state
3776 */
3777 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3778 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3779 return ldstat;
3780 break;
3781 default:
3782 break;
3783 }
3784 return HPSA_LV_OK;
3785 }
3786
3787 static int hpsa_update_device_info(struct ctlr_info *h,
3788 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3789 unsigned char *is_OBDR_device)
3790 {
3791
3792 #define OBDR_SIG_OFFSET 43
3793 #define OBDR_TAPE_SIG "$DR-10"
3794 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3795 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3796
3797 unsigned char *inq_buff;
3798 unsigned char *obdr_sig;
3799 int rc = 0;
3800
3801 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3802 if (!inq_buff) {
3803 rc = -ENOMEM;
3804 goto bail_out;
3805 }
3806
3807 /* Do an inquiry to the device to see what it is. */
3808 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3809 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3810 dev_err(&h->pdev->dev,
3811 "%s: inquiry failed, device will be skipped.\n",
3812 __func__);
3813 rc = HPSA_INQUIRY_FAILED;
3814 goto bail_out;
3815 }
3816
3817 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3818 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3819
3820 this_device->devtype = (inq_buff[0] & 0x1f);
3821 memcpy(this_device->scsi3addr, scsi3addr, 8);
3822 memcpy(this_device->vendor, &inq_buff[8],
3823 sizeof(this_device->vendor));
3824 memcpy(this_device->model, &inq_buff[16],
3825 sizeof(this_device->model));
3826 this_device->rev = inq_buff[2];
3827 memset(this_device->device_id, 0,
3828 sizeof(this_device->device_id));
3829 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3830 sizeof(this_device->device_id)) < 0)
3831 dev_err(&h->pdev->dev,
3832 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3833 h->ctlr, __func__,
3834 h->scsi_host->host_no,
3835 this_device->target, this_device->lun,
3836 scsi_device_type(this_device->devtype),
3837 this_device->model);
3838
3839 if ((this_device->devtype == TYPE_DISK ||
3840 this_device->devtype == TYPE_ZBC) &&
3841 is_logical_dev_addr_mode(scsi3addr)) {
3842 unsigned char volume_offline;
3843
3844 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3845 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3846 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3847 volume_offline = hpsa_volume_offline(h, scsi3addr);
3848 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3849 h->legacy_board) {
3850 /*
3851 * Legacy boards might not support volume status
3852 */
3853 dev_info(&h->pdev->dev,
3854 "C0:T%d:L%d Volume status not available, assuming online.\n",
3855 this_device->target, this_device->lun);
3856 volume_offline = 0;
3857 }
3858 this_device->volume_offline = volume_offline;
3859 if (volume_offline == HPSA_LV_FAILED) {
3860 rc = HPSA_LV_FAILED;
3861 dev_err(&h->pdev->dev,
3862 "%s: LV failed, device will be skipped.\n",
3863 __func__);
3864 goto bail_out;
3865 }
3866 } else {
3867 this_device->raid_level = RAID_UNKNOWN;
3868 this_device->offload_config = 0;
3869 this_device->offload_enabled = 0;
3870 this_device->offload_to_be_enabled = 0;
3871 this_device->hba_ioaccel_enabled = 0;
3872 this_device->volume_offline = 0;
3873 this_device->queue_depth = h->nr_cmds;
3874 }
3875
3876 if (this_device->external)
3877 this_device->queue_depth = EXTERNAL_QD;
3878
3879 if (is_OBDR_device) {
3880 /* See if this is a One-Button-Disaster-Recovery device
3881 * by looking for "$DR-10" at offset 43 in inquiry data.
3882 */
3883 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3884 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3885 strncmp(obdr_sig, OBDR_TAPE_SIG,
3886 OBDR_SIG_LEN) == 0);
3887 }
3888 kfree(inq_buff);
3889 return 0;
3890
3891 bail_out:
3892 kfree(inq_buff);
3893 return rc;
3894 }
3895
3896 /*
3897 * Helper function to assign bus, target, lun mapping of devices.
3898 * Logical drive target and lun are assigned at this time, but
3899 * physical device lun and target assignment are deferred (assigned
3900 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3901 */
3902 static void figure_bus_target_lun(struct ctlr_info *h,
3903 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3904 {
3905 u32 lunid = get_unaligned_le32(lunaddrbytes);
3906
3907 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3908 /* physical device, target and lun filled in later */
3909 if (is_hba_lunid(lunaddrbytes)) {
3910 int bus = HPSA_HBA_BUS;
3911
3912 if (!device->rev)
3913 bus = HPSA_LEGACY_HBA_BUS;
3914 hpsa_set_bus_target_lun(device,
3915 bus, 0, lunid & 0x3fff);
3916 } else
3917 /* defer target, lun assignment for physical devices */
3918 hpsa_set_bus_target_lun(device,
3919 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3920 return;
3921 }
3922 /* It's a logical device */
3923 if (device->external) {
3924 hpsa_set_bus_target_lun(device,
3925 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3926 lunid & 0x00ff);
3927 return;
3928 }
3929 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3930 0, lunid & 0x3fff);
3931 }
3932
3933 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3934 int i, int nphysicals, int nlocal_logicals)
3935 {
3936 /* In report logicals, local logicals are listed first,
3937 * then any externals.
3938 */
3939 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3940
3941 if (i == raid_ctlr_position)
3942 return 0;
3943
3944 if (i < logicals_start)
3945 return 0;
3946
3947 /* i is in logicals range, but still within local logicals */
3948 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3949 return 0;
3950
3951 return 1; /* it's an external lun */
3952 }
3953
3954 /*
3955 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3956 * logdev. The number of luns in physdev and logdev are returned in
3957 * *nphysicals and *nlogicals, respectively.
3958 * Returns 0 on success, -1 otherwise.
3959 */
3960 static int hpsa_gather_lun_info(struct ctlr_info *h,
3961 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3962 struct ReportLUNdata *logdev, u32 *nlogicals)
3963 {
3964 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3965 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3966 return -1;
3967 }
3968 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3969 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3970 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3971 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3972 *nphysicals = HPSA_MAX_PHYS_LUN;
3973 }
3974 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3975 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3976 return -1;
3977 }
3978 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3979 /* Reject Logicals in excess of our max capability. */
3980 if (*nlogicals > HPSA_MAX_LUN) {
3981 dev_warn(&h->pdev->dev,
3982 "maximum logical LUNs (%d) exceeded. "
3983 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3984 *nlogicals - HPSA_MAX_LUN);
3985 *nlogicals = HPSA_MAX_LUN;
3986 }
3987 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3988 dev_warn(&h->pdev->dev,
3989 "maximum logical + physical LUNs (%d) exceeded. "
3990 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3991 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3992 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3993 }
3994 return 0;
3995 }
3996
3997 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3998 int i, int nphysicals, int nlogicals,
3999 struct ReportExtendedLUNdata *physdev_list,
4000 struct ReportLUNdata *logdev_list)
4001 {
4002 /* Helper function, figure out where the LUN ID info is coming from
4003 * given index i, lists of physical and logical devices, where in
4004 * the list the raid controller is supposed to appear (first or last)
4005 */
4006
4007 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4008 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4009
4010 if (i == raid_ctlr_position)
4011 return RAID_CTLR_LUNID;
4012
4013 if (i < logicals_start)
4014 return &physdev_list->LUN[i -
4015 (raid_ctlr_position == 0)].lunid[0];
4016
4017 if (i < last_device)
4018 return &logdev_list->LUN[i - nphysicals -
4019 (raid_ctlr_position == 0)][0];
4020 BUG();
4021 return NULL;
4022 }
4023
4024 /* get physical drive ioaccel handle and queue depth */
4025 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4026 struct hpsa_scsi_dev_t *dev,
4027 struct ReportExtendedLUNdata *rlep, int rle_index,
4028 struct bmic_identify_physical_device *id_phys)
4029 {
4030 int rc;
4031 struct ext_report_lun_entry *rle;
4032
4033 rle = &rlep->LUN[rle_index];
4034
4035 dev->ioaccel_handle = rle->ioaccel_handle;
4036 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4037 dev->hba_ioaccel_enabled = 1;
4038 memset(id_phys, 0, sizeof(*id_phys));
4039 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4040 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4041 sizeof(*id_phys));
4042 if (!rc)
4043 /* Reserve space for FW operations */
4044 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4045 #define DRIVE_QUEUE_DEPTH 7
4046 dev->queue_depth =
4047 le16_to_cpu(id_phys->current_queue_depth_limit) -
4048 DRIVE_CMDS_RESERVED_FOR_FW;
4049 else
4050 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4051 }
4052
4053 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4054 struct ReportExtendedLUNdata *rlep, int rle_index,
4055 struct bmic_identify_physical_device *id_phys)
4056 {
4057 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4058
4059 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4060 this_device->hba_ioaccel_enabled = 1;
4061
4062 memcpy(&this_device->active_path_index,
4063 &id_phys->active_path_number,
4064 sizeof(this_device->active_path_index));
4065 memcpy(&this_device->path_map,
4066 &id_phys->redundant_path_present_map,
4067 sizeof(this_device->path_map));
4068 memcpy(&this_device->box,
4069 &id_phys->alternate_paths_phys_box_on_port,
4070 sizeof(this_device->box));
4071 memcpy(&this_device->phys_connector,
4072 &id_phys->alternate_paths_phys_connector,
4073 sizeof(this_device->phys_connector));
4074 memcpy(&this_device->bay,
4075 &id_phys->phys_bay_in_box,
4076 sizeof(this_device->bay));
4077 }
4078
4079 /* get number of local logical disks. */
4080 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4081 struct bmic_identify_controller *id_ctlr,
4082 u32 *nlocals)
4083 {
4084 int rc;
4085
4086 if (!id_ctlr) {
4087 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4088 __func__);
4089 return -ENOMEM;
4090 }
4091 memset(id_ctlr, 0, sizeof(*id_ctlr));
4092 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4093 if (!rc)
4094 if (id_ctlr->configured_logical_drive_count < 255)
4095 *nlocals = id_ctlr->configured_logical_drive_count;
4096 else
4097 *nlocals = le16_to_cpu(
4098 id_ctlr->extended_logical_unit_count);
4099 else
4100 *nlocals = -1;
4101 return rc;
4102 }
4103
4104 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4105 {
4106 struct bmic_identify_physical_device *id_phys;
4107 bool is_spare = false;
4108 int rc;
4109
4110 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4111 if (!id_phys)
4112 return false;
4113
4114 rc = hpsa_bmic_id_physical_device(h,
4115 lunaddrbytes,
4116 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4117 id_phys, sizeof(*id_phys));
4118 if (rc == 0)
4119 is_spare = (id_phys->more_flags >> 6) & 0x01;
4120
4121 kfree(id_phys);
4122 return is_spare;
4123 }
4124
4125 #define RPL_DEV_FLAG_NON_DISK 0x1
4126 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4127 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4128
4129 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4130
4131 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4132 struct ext_report_lun_entry *rle)
4133 {
4134 u8 device_flags;
4135 u8 device_type;
4136
4137 if (!MASKED_DEVICE(lunaddrbytes))
4138 return false;
4139
4140 device_flags = rle->device_flags;
4141 device_type = rle->device_type;
4142
4143 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4144 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4145 return false;
4146 return true;
4147 }
4148
4149 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4150 return false;
4151
4152 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4153 return false;
4154
4155 /*
4156 * Spares may be spun down, we do not want to
4157 * do an Inquiry to a RAID set spare drive as
4158 * that would have them spun up, that is a
4159 * performance hit because I/O to the RAID device
4160 * stops while the spin up occurs which can take
4161 * over 50 seconds.
4162 */
4163 if (hpsa_is_disk_spare(h, lunaddrbytes))
4164 return true;
4165
4166 return false;
4167 }
4168
4169 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4170 {
4171 /* the idea here is we could get notified
4172 * that some devices have changed, so we do a report
4173 * physical luns and report logical luns cmd, and adjust
4174 * our list of devices accordingly.
4175 *
4176 * The scsi3addr's of devices won't change so long as the
4177 * adapter is not reset. That means we can rescan and
4178 * tell which devices we already know about, vs. new
4179 * devices, vs. disappearing devices.
4180 */
4181 struct ReportExtendedLUNdata *physdev_list = NULL;
4182 struct ReportLUNdata *logdev_list = NULL;
4183 struct bmic_identify_physical_device *id_phys = NULL;
4184 struct bmic_identify_controller *id_ctlr = NULL;
4185 u32 nphysicals = 0;
4186 u32 nlogicals = 0;
4187 u32 nlocal_logicals = 0;
4188 u32 ndev_allocated = 0;
4189 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4190 int ncurrent = 0;
4191 int i, n_ext_target_devs, ndevs_to_allocate;
4192 int raid_ctlr_position;
4193 bool physical_device;
4194 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4195
4196 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4197 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4198 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4199 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4200 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4201 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4202
4203 if (!currentsd || !physdev_list || !logdev_list ||
4204 !tmpdevice || !id_phys || !id_ctlr) {
4205 dev_err(&h->pdev->dev, "out of memory\n");
4206 goto out;
4207 }
4208 memset(lunzerobits, 0, sizeof(lunzerobits));
4209
4210 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4211
4212 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4213 logdev_list, &nlogicals)) {
4214 h->drv_req_rescan = 1;
4215 goto out;
4216 }
4217
4218 /* Set number of local logicals (non PTRAID) */
4219 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4220 dev_warn(&h->pdev->dev,
4221 "%s: Can't determine number of local logical devices.\n",
4222 __func__);
4223 }
4224
4225 /* We might see up to the maximum number of logical and physical disks
4226 * plus external target devices, and a device for the local RAID
4227 * controller.
4228 */
4229 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4230
4231 /* Allocate the per device structures */
4232 for (i = 0; i < ndevs_to_allocate; i++) {
4233 if (i >= HPSA_MAX_DEVICES) {
4234 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4235 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4236 ndevs_to_allocate - HPSA_MAX_DEVICES);
4237 break;
4238 }
4239
4240 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4241 if (!currentsd[i]) {
4242 h->drv_req_rescan = 1;
4243 goto out;
4244 }
4245 ndev_allocated++;
4246 }
4247
4248 if (is_scsi_rev_5(h))
4249 raid_ctlr_position = 0;
4250 else
4251 raid_ctlr_position = nphysicals + nlogicals;
4252
4253 /* adjust our table of devices */
4254 n_ext_target_devs = 0;
4255 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4256 u8 *lunaddrbytes, is_OBDR = 0;
4257 int rc = 0;
4258 int phys_dev_index = i - (raid_ctlr_position == 0);
4259 bool skip_device = false;
4260
4261 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4262
4263 /* Figure out where the LUN ID info is coming from */
4264 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4265 i, nphysicals, nlogicals, physdev_list, logdev_list);
4266
4267 /* Determine if this is a lun from an external target array */
4268 tmpdevice->external =
4269 figure_external_status(h, raid_ctlr_position, i,
4270 nphysicals, nlocal_logicals);
4271
4272 /*
4273 * Skip over some devices such as a spare.
4274 */
4275 if (!tmpdevice->external && physical_device) {
4276 skip_device = hpsa_skip_device(h, lunaddrbytes,
4277 &physdev_list->LUN[phys_dev_index]);
4278 if (skip_device)
4279 continue;
4280 }
4281
4282 /* Get device type, vendor, model, device id */
4283 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4284 &is_OBDR);
4285 if (rc == -ENOMEM) {
4286 dev_warn(&h->pdev->dev,
4287 "Out of memory, rescan deferred.\n");
4288 h->drv_req_rescan = 1;
4289 goto out;
4290 }
4291 if (rc) {
4292 h->drv_req_rescan = 1;
4293 continue;
4294 }
4295
4296 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4297 this_device = currentsd[ncurrent];
4298
4299 /* Turn on discovery_polling if there are ext target devices.
4300 * Event-based change notification is unreliable for those.
4301 */
4302 if (!h->discovery_polling) {
4303 if (tmpdevice->external) {
4304 h->discovery_polling = 1;
4305 dev_info(&h->pdev->dev,
4306 "External target, activate discovery polling.\n");
4307 }
4308 }
4309
4310
4311 *this_device = *tmpdevice;
4312 this_device->physical_device = physical_device;
4313
4314 /*
4315 * Expose all devices except for physical devices that
4316 * are masked.
4317 */
4318 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4319 this_device->expose_device = 0;
4320 else
4321 this_device->expose_device = 1;
4322
4323
4324 /*
4325 * Get the SAS address for physical devices that are exposed.
4326 */
4327 if (this_device->physical_device && this_device->expose_device)
4328 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4329
4330 switch (this_device->devtype) {
4331 case TYPE_ROM:
4332 /* We don't *really* support actual CD-ROM devices,
4333 * just "One Button Disaster Recovery" tape drive
4334 * which temporarily pretends to be a CD-ROM drive.
4335 * So we check that the device is really an OBDR tape
4336 * device by checking for "$DR-10" in bytes 43-48 of
4337 * the inquiry data.
4338 */
4339 if (is_OBDR)
4340 ncurrent++;
4341 break;
4342 case TYPE_DISK:
4343 case TYPE_ZBC:
4344 if (this_device->physical_device) {
4345 /* The disk is in HBA mode. */
4346 /* Never use RAID mapper in HBA mode. */
4347 this_device->offload_enabled = 0;
4348 hpsa_get_ioaccel_drive_info(h, this_device,
4349 physdev_list, phys_dev_index, id_phys);
4350 hpsa_get_path_info(this_device,
4351 physdev_list, phys_dev_index, id_phys);
4352 }
4353 ncurrent++;
4354 break;
4355 case TYPE_TAPE:
4356 case TYPE_MEDIUM_CHANGER:
4357 ncurrent++;
4358 break;
4359 case TYPE_ENCLOSURE:
4360 if (!this_device->external)
4361 hpsa_get_enclosure_info(h, lunaddrbytes,
4362 physdev_list, phys_dev_index,
4363 this_device);
4364 ncurrent++;
4365 break;
4366 case TYPE_RAID:
4367 /* Only present the Smartarray HBA as a RAID controller.
4368 * If it's a RAID controller other than the HBA itself
4369 * (an external RAID controller, MSA500 or similar)
4370 * don't present it.
4371 */
4372 if (!is_hba_lunid(lunaddrbytes))
4373 break;
4374 ncurrent++;
4375 break;
4376 default:
4377 break;
4378 }
4379 if (ncurrent >= HPSA_MAX_DEVICES)
4380 break;
4381 }
4382
4383 if (h->sas_host == NULL) {
4384 int rc = 0;
4385
4386 rc = hpsa_add_sas_host(h);
4387 if (rc) {
4388 dev_warn(&h->pdev->dev,
4389 "Could not add sas host %d\n", rc);
4390 goto out;
4391 }
4392 }
4393
4394 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4395 out:
4396 kfree(tmpdevice);
4397 for (i = 0; i < ndev_allocated; i++)
4398 kfree(currentsd[i]);
4399 kfree(currentsd);
4400 kfree(physdev_list);
4401 kfree(logdev_list);
4402 kfree(id_ctlr);
4403 kfree(id_phys);
4404 }
4405
4406 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4407 struct scatterlist *sg)
4408 {
4409 u64 addr64 = (u64) sg_dma_address(sg);
4410 unsigned int len = sg_dma_len(sg);
4411
4412 desc->Addr = cpu_to_le64(addr64);
4413 desc->Len = cpu_to_le32(len);
4414 desc->Ext = 0;
4415 }
4416
4417 /*
4418 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4419 * dma mapping and fills in the scatter gather entries of the
4420 * hpsa command, cp.
4421 */
4422 static int hpsa_scatter_gather(struct ctlr_info *h,
4423 struct CommandList *cp,
4424 struct scsi_cmnd *cmd)
4425 {
4426 struct scatterlist *sg;
4427 int use_sg, i, sg_limit, chained, last_sg;
4428 struct SGDescriptor *curr_sg;
4429
4430 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4431
4432 use_sg = scsi_dma_map(cmd);
4433 if (use_sg < 0)
4434 return use_sg;
4435
4436 if (!use_sg)
4437 goto sglist_finished;
4438
4439 /*
4440 * If the number of entries is greater than the max for a single list,
4441 * then we have a chained list; we will set up all but one entry in the
4442 * first list (the last entry is saved for link information);
4443 * otherwise, we don't have a chained list and we'll set up at each of
4444 * the entries in the one list.
4445 */
4446 curr_sg = cp->SG;
4447 chained = use_sg > h->max_cmd_sg_entries;
4448 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4449 last_sg = scsi_sg_count(cmd) - 1;
4450 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4451 hpsa_set_sg_descriptor(curr_sg, sg);
4452 curr_sg++;
4453 }
4454
4455 if (chained) {
4456 /*
4457 * Continue with the chained list. Set curr_sg to the chained
4458 * list. Modify the limit to the total count less the entries
4459 * we've already set up. Resume the scan at the list entry
4460 * where the previous loop left off.
4461 */
4462 curr_sg = h->cmd_sg_list[cp->cmdindex];
4463 sg_limit = use_sg - sg_limit;
4464 for_each_sg(sg, sg, sg_limit, i) {
4465 hpsa_set_sg_descriptor(curr_sg, sg);
4466 curr_sg++;
4467 }
4468 }
4469
4470 /* Back the pointer up to the last entry and mark it as "last". */
4471 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4472
4473 if (use_sg + chained > h->maxSG)
4474 h->maxSG = use_sg + chained;
4475
4476 if (chained) {
4477 cp->Header.SGList = h->max_cmd_sg_entries;
4478 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4479 if (hpsa_map_sg_chain_block(h, cp)) {
4480 scsi_dma_unmap(cmd);
4481 return -1;
4482 }
4483 return 0;
4484 }
4485
4486 sglist_finished:
4487
4488 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4489 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4490 return 0;
4491 }
4492
4493 #define BUFLEN 128
4494 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4495 u8 *cdb, int cdb_len,
4496 const char *func)
4497 {
4498 char buf[BUFLEN];
4499 int outlen;
4500 int i;
4501
4502 outlen = scnprintf(buf, BUFLEN,
4503 "%s: Blocking zero-length request: CDB:", func);
4504 for (i = 0; i < cdb_len; i++)
4505 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4506 "%02hhx", cdb[i]);
4507 dev_warn(&h->pdev->dev, "%s\n", buf);
4508 }
4509
4510 #define IO_ACCEL_INELIGIBLE 1
4511 /* zero-length transfers trigger hardware errors. */
4512 static bool is_zero_length_transfer(u8 *cdb)
4513 {
4514 u32 block_cnt;
4515
4516 /* Block zero-length transfer sizes on certain commands. */
4517 switch (cdb[0]) {
4518 case READ_10:
4519 case WRITE_10:
4520 case VERIFY: /* 0x2F */
4521 case WRITE_VERIFY: /* 0x2E */
4522 block_cnt = get_unaligned_be16(&cdb[7]);
4523 break;
4524 case READ_12:
4525 case WRITE_12:
4526 case VERIFY_12: /* 0xAF */
4527 case WRITE_VERIFY_12: /* 0xAE */
4528 block_cnt = get_unaligned_be32(&cdb[6]);
4529 break;
4530 case READ_16:
4531 case WRITE_16:
4532 case VERIFY_16: /* 0x8F */
4533 block_cnt = get_unaligned_be32(&cdb[10]);
4534 break;
4535 default:
4536 return false;
4537 }
4538
4539 return block_cnt == 0;
4540 }
4541
4542 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4543 {
4544 int is_write = 0;
4545 u32 block;
4546 u32 block_cnt;
4547
4548 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4549 switch (cdb[0]) {
4550 case WRITE_6:
4551 case WRITE_12:
4552 is_write = 1;
4553 case READ_6:
4554 case READ_12:
4555 if (*cdb_len == 6) {
4556 block = (((cdb[1] & 0x1F) << 16) |
4557 (cdb[2] << 8) |
4558 cdb[3]);
4559 block_cnt = cdb[4];
4560 if (block_cnt == 0)
4561 block_cnt = 256;
4562 } else {
4563 BUG_ON(*cdb_len != 12);
4564 block = get_unaligned_be32(&cdb[2]);
4565 block_cnt = get_unaligned_be32(&cdb[6]);
4566 }
4567 if (block_cnt > 0xffff)
4568 return IO_ACCEL_INELIGIBLE;
4569
4570 cdb[0] = is_write ? WRITE_10 : READ_10;
4571 cdb[1] = 0;
4572 cdb[2] = (u8) (block >> 24);
4573 cdb[3] = (u8) (block >> 16);
4574 cdb[4] = (u8) (block >> 8);
4575 cdb[5] = (u8) (block);
4576 cdb[6] = 0;
4577 cdb[7] = (u8) (block_cnt >> 8);
4578 cdb[8] = (u8) (block_cnt);
4579 cdb[9] = 0;
4580 *cdb_len = 10;
4581 break;
4582 }
4583 return 0;
4584 }
4585
4586 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4587 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4588 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4589 {
4590 struct scsi_cmnd *cmd = c->scsi_cmd;
4591 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4592 unsigned int len;
4593 unsigned int total_len = 0;
4594 struct scatterlist *sg;
4595 u64 addr64;
4596 int use_sg, i;
4597 struct SGDescriptor *curr_sg;
4598 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4599
4600 /* TODO: implement chaining support */
4601 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4602 atomic_dec(&phys_disk->ioaccel_cmds_out);
4603 return IO_ACCEL_INELIGIBLE;
4604 }
4605
4606 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4607
4608 if (is_zero_length_transfer(cdb)) {
4609 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4610 atomic_dec(&phys_disk->ioaccel_cmds_out);
4611 return IO_ACCEL_INELIGIBLE;
4612 }
4613
4614 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4615 atomic_dec(&phys_disk->ioaccel_cmds_out);
4616 return IO_ACCEL_INELIGIBLE;
4617 }
4618
4619 c->cmd_type = CMD_IOACCEL1;
4620
4621 /* Adjust the DMA address to point to the accelerated command buffer */
4622 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4623 (c->cmdindex * sizeof(*cp));
4624 BUG_ON(c->busaddr & 0x0000007F);
4625
4626 use_sg = scsi_dma_map(cmd);
4627 if (use_sg < 0) {
4628 atomic_dec(&phys_disk->ioaccel_cmds_out);
4629 return use_sg;
4630 }
4631
4632 if (use_sg) {
4633 curr_sg = cp->SG;
4634 scsi_for_each_sg(cmd, sg, use_sg, i) {
4635 addr64 = (u64) sg_dma_address(sg);
4636 len = sg_dma_len(sg);
4637 total_len += len;
4638 curr_sg->Addr = cpu_to_le64(addr64);
4639 curr_sg->Len = cpu_to_le32(len);
4640 curr_sg->Ext = cpu_to_le32(0);
4641 curr_sg++;
4642 }
4643 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4644
4645 switch (cmd->sc_data_direction) {
4646 case DMA_TO_DEVICE:
4647 control |= IOACCEL1_CONTROL_DATA_OUT;
4648 break;
4649 case DMA_FROM_DEVICE:
4650 control |= IOACCEL1_CONTROL_DATA_IN;
4651 break;
4652 case DMA_NONE:
4653 control |= IOACCEL1_CONTROL_NODATAXFER;
4654 break;
4655 default:
4656 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4657 cmd->sc_data_direction);
4658 BUG();
4659 break;
4660 }
4661 } else {
4662 control |= IOACCEL1_CONTROL_NODATAXFER;
4663 }
4664
4665 c->Header.SGList = use_sg;
4666 /* Fill out the command structure to submit */
4667 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4668 cp->transfer_len = cpu_to_le32(total_len);
4669 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4670 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4671 cp->control = cpu_to_le32(control);
4672 memcpy(cp->CDB, cdb, cdb_len);
4673 memcpy(cp->CISS_LUN, scsi3addr, 8);
4674 /* Tag was already set at init time. */
4675 enqueue_cmd_and_start_io(h, c);
4676 return 0;
4677 }
4678
4679 /*
4680 * Queue a command directly to a device behind the controller using the
4681 * I/O accelerator path.
4682 */
4683 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4684 struct CommandList *c)
4685 {
4686 struct scsi_cmnd *cmd = c->scsi_cmd;
4687 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4688
4689 if (!dev)
4690 return -1;
4691
4692 c->phys_disk = dev;
4693
4694 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4695 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4696 }
4697
4698 /*
4699 * Set encryption parameters for the ioaccel2 request
4700 */
4701 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4702 struct CommandList *c, struct io_accel2_cmd *cp)
4703 {
4704 struct scsi_cmnd *cmd = c->scsi_cmd;
4705 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 struct raid_map_data *map = &dev->raid_map;
4707 u64 first_block;
4708
4709 /* Are we doing encryption on this device */
4710 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4711 return;
4712 /* Set the data encryption key index. */
4713 cp->dekindex = map->dekindex;
4714
4715 /* Set the encryption enable flag, encoded into direction field. */
4716 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4717
4718 /* Set encryption tweak values based on logical block address
4719 * If block size is 512, tweak value is LBA.
4720 * For other block sizes, tweak is (LBA * block size)/ 512)
4721 */
4722 switch (cmd->cmnd[0]) {
4723 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4724 case READ_6:
4725 case WRITE_6:
4726 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4727 (cmd->cmnd[2] << 8) |
4728 cmd->cmnd[3]);
4729 break;
4730 case WRITE_10:
4731 case READ_10:
4732 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4733 case WRITE_12:
4734 case READ_12:
4735 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4736 break;
4737 case WRITE_16:
4738 case READ_16:
4739 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4740 break;
4741 default:
4742 dev_err(&h->pdev->dev,
4743 "ERROR: %s: size (0x%x) not supported for encryption\n",
4744 __func__, cmd->cmnd[0]);
4745 BUG();
4746 break;
4747 }
4748
4749 if (le32_to_cpu(map->volume_blk_size) != 512)
4750 first_block = first_block *
4751 le32_to_cpu(map->volume_blk_size)/512;
4752
4753 cp->tweak_lower = cpu_to_le32(first_block);
4754 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4755 }
4756
4757 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4758 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4759 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4760 {
4761 struct scsi_cmnd *cmd = c->scsi_cmd;
4762 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4763 struct ioaccel2_sg_element *curr_sg;
4764 int use_sg, i;
4765 struct scatterlist *sg;
4766 u64 addr64;
4767 u32 len;
4768 u32 total_len = 0;
4769
4770 if (!cmd->device)
4771 return -1;
4772
4773 if (!cmd->device->hostdata)
4774 return -1;
4775
4776 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4777
4778 if (is_zero_length_transfer(cdb)) {
4779 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4780 atomic_dec(&phys_disk->ioaccel_cmds_out);
4781 return IO_ACCEL_INELIGIBLE;
4782 }
4783
4784 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4785 atomic_dec(&phys_disk->ioaccel_cmds_out);
4786 return IO_ACCEL_INELIGIBLE;
4787 }
4788
4789 c->cmd_type = CMD_IOACCEL2;
4790 /* Adjust the DMA address to point to the accelerated command buffer */
4791 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4792 (c->cmdindex * sizeof(*cp));
4793 BUG_ON(c->busaddr & 0x0000007F);
4794
4795 memset(cp, 0, sizeof(*cp));
4796 cp->IU_type = IOACCEL2_IU_TYPE;
4797
4798 use_sg = scsi_dma_map(cmd);
4799 if (use_sg < 0) {
4800 atomic_dec(&phys_disk->ioaccel_cmds_out);
4801 return use_sg;
4802 }
4803
4804 if (use_sg) {
4805 curr_sg = cp->sg;
4806 if (use_sg > h->ioaccel_maxsg) {
4807 addr64 = le64_to_cpu(
4808 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4809 curr_sg->address = cpu_to_le64(addr64);
4810 curr_sg->length = 0;
4811 curr_sg->reserved[0] = 0;
4812 curr_sg->reserved[1] = 0;
4813 curr_sg->reserved[2] = 0;
4814 curr_sg->chain_indicator = 0x80;
4815
4816 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4817 }
4818 scsi_for_each_sg(cmd, sg, use_sg, i) {
4819 addr64 = (u64) sg_dma_address(sg);
4820 len = sg_dma_len(sg);
4821 total_len += len;
4822 curr_sg->address = cpu_to_le64(addr64);
4823 curr_sg->length = cpu_to_le32(len);
4824 curr_sg->reserved[0] = 0;
4825 curr_sg->reserved[1] = 0;
4826 curr_sg->reserved[2] = 0;
4827 curr_sg->chain_indicator = 0;
4828 curr_sg++;
4829 }
4830
4831 switch (cmd->sc_data_direction) {
4832 case DMA_TO_DEVICE:
4833 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4834 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4835 break;
4836 case DMA_FROM_DEVICE:
4837 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4838 cp->direction |= IOACCEL2_DIR_DATA_IN;
4839 break;
4840 case DMA_NONE:
4841 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4842 cp->direction |= IOACCEL2_DIR_NO_DATA;
4843 break;
4844 default:
4845 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4846 cmd->sc_data_direction);
4847 BUG();
4848 break;
4849 }
4850 } else {
4851 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4852 cp->direction |= IOACCEL2_DIR_NO_DATA;
4853 }
4854
4855 /* Set encryption parameters, if necessary */
4856 set_encrypt_ioaccel2(h, c, cp);
4857
4858 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4859 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4860 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4861
4862 cp->data_len = cpu_to_le32(total_len);
4863 cp->err_ptr = cpu_to_le64(c->busaddr +
4864 offsetof(struct io_accel2_cmd, error_data));
4865 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4866
4867 /* fill in sg elements */
4868 if (use_sg > h->ioaccel_maxsg) {
4869 cp->sg_count = 1;
4870 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4871 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4872 atomic_dec(&phys_disk->ioaccel_cmds_out);
4873 scsi_dma_unmap(cmd);
4874 return -1;
4875 }
4876 } else
4877 cp->sg_count = (u8) use_sg;
4878
4879 enqueue_cmd_and_start_io(h, c);
4880 return 0;
4881 }
4882
4883 /*
4884 * Queue a command to the correct I/O accelerator path.
4885 */
4886 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4887 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 if (!c->scsi_cmd->device)
4891 return -1;
4892
4893 if (!c->scsi_cmd->device->hostdata)
4894 return -1;
4895
4896 /* Try to honor the device's queue depth */
4897 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4898 phys_disk->queue_depth) {
4899 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900 return IO_ACCEL_INELIGIBLE;
4901 }
4902 if (h->transMethod & CFGTBL_Trans_io_accel1)
4903 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4904 cdb, cdb_len, scsi3addr,
4905 phys_disk);
4906 else
4907 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4908 cdb, cdb_len, scsi3addr,
4909 phys_disk);
4910 }
4911
4912 static void raid_map_helper(struct raid_map_data *map,
4913 int offload_to_mirror, u32 *map_index, u32 *current_group)
4914 {
4915 if (offload_to_mirror == 0) {
4916 /* use physical disk in the first mirrored group. */
4917 *map_index %= le16_to_cpu(map->data_disks_per_row);
4918 return;
4919 }
4920 do {
4921 /* determine mirror group that *map_index indicates */
4922 *current_group = *map_index /
4923 le16_to_cpu(map->data_disks_per_row);
4924 if (offload_to_mirror == *current_group)
4925 continue;
4926 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4927 /* select map index from next group */
4928 *map_index += le16_to_cpu(map->data_disks_per_row);
4929 (*current_group)++;
4930 } else {
4931 /* select map index from first group */
4932 *map_index %= le16_to_cpu(map->data_disks_per_row);
4933 *current_group = 0;
4934 }
4935 } while (offload_to_mirror != *current_group);
4936 }
4937
4938 /*
4939 * Attempt to perform offload RAID mapping for a logical volume I/O.
4940 */
4941 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4942 struct CommandList *c)
4943 {
4944 struct scsi_cmnd *cmd = c->scsi_cmd;
4945 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4946 struct raid_map_data *map = &dev->raid_map;
4947 struct raid_map_disk_data *dd = &map->data[0];
4948 int is_write = 0;
4949 u32 map_index;
4950 u64 first_block, last_block;
4951 u32 block_cnt;
4952 u32 blocks_per_row;
4953 u64 first_row, last_row;
4954 u32 first_row_offset, last_row_offset;
4955 u32 first_column, last_column;
4956 u64 r0_first_row, r0_last_row;
4957 u32 r5or6_blocks_per_row;
4958 u64 r5or6_first_row, r5or6_last_row;
4959 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4960 u32 r5or6_first_column, r5or6_last_column;
4961 u32 total_disks_per_row;
4962 u32 stripesize;
4963 u32 first_group, last_group, current_group;
4964 u32 map_row;
4965 u32 disk_handle;
4966 u64 disk_block;
4967 u32 disk_block_cnt;
4968 u8 cdb[16];
4969 u8 cdb_len;
4970 u16 strip_size;
4971 #if BITS_PER_LONG == 32
4972 u64 tmpdiv;
4973 #endif
4974 int offload_to_mirror;
4975
4976 if (!dev)
4977 return -1;
4978
4979 /* check for valid opcode, get LBA and block count */
4980 switch (cmd->cmnd[0]) {
4981 case WRITE_6:
4982 is_write = 1;
4983 case READ_6:
4984 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4985 (cmd->cmnd[2] << 8) |
4986 cmd->cmnd[3]);
4987 block_cnt = cmd->cmnd[4];
4988 if (block_cnt == 0)
4989 block_cnt = 256;
4990 break;
4991 case WRITE_10:
4992 is_write = 1;
4993 case READ_10:
4994 first_block =
4995 (((u64) cmd->cmnd[2]) << 24) |
4996 (((u64) cmd->cmnd[3]) << 16) |
4997 (((u64) cmd->cmnd[4]) << 8) |
4998 cmd->cmnd[5];
4999 block_cnt =
5000 (((u32) cmd->cmnd[7]) << 8) |
5001 cmd->cmnd[8];
5002 break;
5003 case WRITE_12:
5004 is_write = 1;
5005 case READ_12:
5006 first_block =
5007 (((u64) cmd->cmnd[2]) << 24) |
5008 (((u64) cmd->cmnd[3]) << 16) |
5009 (((u64) cmd->cmnd[4]) << 8) |
5010 cmd->cmnd[5];
5011 block_cnt =
5012 (((u32) cmd->cmnd[6]) << 24) |
5013 (((u32) cmd->cmnd[7]) << 16) |
5014 (((u32) cmd->cmnd[8]) << 8) |
5015 cmd->cmnd[9];
5016 break;
5017 case WRITE_16:
5018 is_write = 1;
5019 case READ_16:
5020 first_block =
5021 (((u64) cmd->cmnd[2]) << 56) |
5022 (((u64) cmd->cmnd[3]) << 48) |
5023 (((u64) cmd->cmnd[4]) << 40) |
5024 (((u64) cmd->cmnd[5]) << 32) |
5025 (((u64) cmd->cmnd[6]) << 24) |
5026 (((u64) cmd->cmnd[7]) << 16) |
5027 (((u64) cmd->cmnd[8]) << 8) |
5028 cmd->cmnd[9];
5029 block_cnt =
5030 (((u32) cmd->cmnd[10]) << 24) |
5031 (((u32) cmd->cmnd[11]) << 16) |
5032 (((u32) cmd->cmnd[12]) << 8) |
5033 cmd->cmnd[13];
5034 break;
5035 default:
5036 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5037 }
5038 last_block = first_block + block_cnt - 1;
5039
5040 /* check for write to non-RAID-0 */
5041 if (is_write && dev->raid_level != 0)
5042 return IO_ACCEL_INELIGIBLE;
5043
5044 /* check for invalid block or wraparound */
5045 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5046 last_block < first_block)
5047 return IO_ACCEL_INELIGIBLE;
5048
5049 /* calculate stripe information for the request */
5050 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5051 le16_to_cpu(map->strip_size);
5052 strip_size = le16_to_cpu(map->strip_size);
5053 #if BITS_PER_LONG == 32
5054 tmpdiv = first_block;
5055 (void) do_div(tmpdiv, blocks_per_row);
5056 first_row = tmpdiv;
5057 tmpdiv = last_block;
5058 (void) do_div(tmpdiv, blocks_per_row);
5059 last_row = tmpdiv;
5060 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5061 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5062 tmpdiv = first_row_offset;
5063 (void) do_div(tmpdiv, strip_size);
5064 first_column = tmpdiv;
5065 tmpdiv = last_row_offset;
5066 (void) do_div(tmpdiv, strip_size);
5067 last_column = tmpdiv;
5068 #else
5069 first_row = first_block / blocks_per_row;
5070 last_row = last_block / blocks_per_row;
5071 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5072 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5073 first_column = first_row_offset / strip_size;
5074 last_column = last_row_offset / strip_size;
5075 #endif
5076
5077 /* if this isn't a single row/column then give to the controller */
5078 if ((first_row != last_row) || (first_column != last_column))
5079 return IO_ACCEL_INELIGIBLE;
5080
5081 /* proceeding with driver mapping */
5082 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5083 le16_to_cpu(map->metadata_disks_per_row);
5084 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5085 le16_to_cpu(map->row_cnt);
5086 map_index = (map_row * total_disks_per_row) + first_column;
5087
5088 switch (dev->raid_level) {
5089 case HPSA_RAID_0:
5090 break; /* nothing special to do */
5091 case HPSA_RAID_1:
5092 /* Handles load balance across RAID 1 members.
5093 * (2-drive R1 and R10 with even # of drives.)
5094 * Appropriate for SSDs, not optimal for HDDs
5095 */
5096 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5097 if (dev->offload_to_mirror)
5098 map_index += le16_to_cpu(map->data_disks_per_row);
5099 dev->offload_to_mirror = !dev->offload_to_mirror;
5100 break;
5101 case HPSA_RAID_ADM:
5102 /* Handles N-way mirrors (R1-ADM)
5103 * and R10 with # of drives divisible by 3.)
5104 */
5105 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5106
5107 offload_to_mirror = dev->offload_to_mirror;
5108 raid_map_helper(map, offload_to_mirror,
5109 &map_index, &current_group);
5110 /* set mirror group to use next time */
5111 offload_to_mirror =
5112 (offload_to_mirror >=
5113 le16_to_cpu(map->layout_map_count) - 1)
5114 ? 0 : offload_to_mirror + 1;
5115 dev->offload_to_mirror = offload_to_mirror;
5116 /* Avoid direct use of dev->offload_to_mirror within this
5117 * function since multiple threads might simultaneously
5118 * increment it beyond the range of dev->layout_map_count -1.
5119 */
5120 break;
5121 case HPSA_RAID_5:
5122 case HPSA_RAID_6:
5123 if (le16_to_cpu(map->layout_map_count) <= 1)
5124 break;
5125
5126 /* Verify first and last block are in same RAID group */
5127 r5or6_blocks_per_row =
5128 le16_to_cpu(map->strip_size) *
5129 le16_to_cpu(map->data_disks_per_row);
5130 BUG_ON(r5or6_blocks_per_row == 0);
5131 stripesize = r5or6_blocks_per_row *
5132 le16_to_cpu(map->layout_map_count);
5133 #if BITS_PER_LONG == 32
5134 tmpdiv = first_block;
5135 first_group = do_div(tmpdiv, stripesize);
5136 tmpdiv = first_group;
5137 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5138 first_group = tmpdiv;
5139 tmpdiv = last_block;
5140 last_group = do_div(tmpdiv, stripesize);
5141 tmpdiv = last_group;
5142 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5143 last_group = tmpdiv;
5144 #else
5145 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5146 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5147 #endif
5148 if (first_group != last_group)
5149 return IO_ACCEL_INELIGIBLE;
5150
5151 /* Verify request is in a single row of RAID 5/6 */
5152 #if BITS_PER_LONG == 32
5153 tmpdiv = first_block;
5154 (void) do_div(tmpdiv, stripesize);
5155 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5156 tmpdiv = last_block;
5157 (void) do_div(tmpdiv, stripesize);
5158 r5or6_last_row = r0_last_row = tmpdiv;
5159 #else
5160 first_row = r5or6_first_row = r0_first_row =
5161 first_block / stripesize;
5162 r5or6_last_row = r0_last_row = last_block / stripesize;
5163 #endif
5164 if (r5or6_first_row != r5or6_last_row)
5165 return IO_ACCEL_INELIGIBLE;
5166
5167
5168 /* Verify request is in a single column */
5169 #if BITS_PER_LONG == 32
5170 tmpdiv = first_block;
5171 first_row_offset = do_div(tmpdiv, stripesize);
5172 tmpdiv = first_row_offset;
5173 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5174 r5or6_first_row_offset = first_row_offset;
5175 tmpdiv = last_block;
5176 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5177 tmpdiv = r5or6_last_row_offset;
5178 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5179 tmpdiv = r5or6_first_row_offset;
5180 (void) do_div(tmpdiv, map->strip_size);
5181 first_column = r5or6_first_column = tmpdiv;
5182 tmpdiv = r5or6_last_row_offset;
5183 (void) do_div(tmpdiv, map->strip_size);
5184 r5or6_last_column = tmpdiv;
5185 #else
5186 first_row_offset = r5or6_first_row_offset =
5187 (u32)((first_block % stripesize) %
5188 r5or6_blocks_per_row);
5189
5190 r5or6_last_row_offset =
5191 (u32)((last_block % stripesize) %
5192 r5or6_blocks_per_row);
5193
5194 first_column = r5or6_first_column =
5195 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5196 r5or6_last_column =
5197 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5198 #endif
5199 if (r5or6_first_column != r5or6_last_column)
5200 return IO_ACCEL_INELIGIBLE;
5201
5202 /* Request is eligible */
5203 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5204 le16_to_cpu(map->row_cnt);
5205
5206 map_index = (first_group *
5207 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5208 (map_row * total_disks_per_row) + first_column;
5209 break;
5210 default:
5211 return IO_ACCEL_INELIGIBLE;
5212 }
5213
5214 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5215 return IO_ACCEL_INELIGIBLE;
5216
5217 c->phys_disk = dev->phys_disk[map_index];
5218 if (!c->phys_disk)
5219 return IO_ACCEL_INELIGIBLE;
5220
5221 disk_handle = dd[map_index].ioaccel_handle;
5222 disk_block = le64_to_cpu(map->disk_starting_blk) +
5223 first_row * le16_to_cpu(map->strip_size) +
5224 (first_row_offset - first_column *
5225 le16_to_cpu(map->strip_size));
5226 disk_block_cnt = block_cnt;
5227
5228 /* handle differing logical/physical block sizes */
5229 if (map->phys_blk_shift) {
5230 disk_block <<= map->phys_blk_shift;
5231 disk_block_cnt <<= map->phys_blk_shift;
5232 }
5233 BUG_ON(disk_block_cnt > 0xffff);
5234
5235 /* build the new CDB for the physical disk I/O */
5236 if (disk_block > 0xffffffff) {
5237 cdb[0] = is_write ? WRITE_16 : READ_16;
5238 cdb[1] = 0;
5239 cdb[2] = (u8) (disk_block >> 56);
5240 cdb[3] = (u8) (disk_block >> 48);
5241 cdb[4] = (u8) (disk_block >> 40);
5242 cdb[5] = (u8) (disk_block >> 32);
5243 cdb[6] = (u8) (disk_block >> 24);
5244 cdb[7] = (u8) (disk_block >> 16);
5245 cdb[8] = (u8) (disk_block >> 8);
5246 cdb[9] = (u8) (disk_block);
5247 cdb[10] = (u8) (disk_block_cnt >> 24);
5248 cdb[11] = (u8) (disk_block_cnt >> 16);
5249 cdb[12] = (u8) (disk_block_cnt >> 8);
5250 cdb[13] = (u8) (disk_block_cnt);
5251 cdb[14] = 0;
5252 cdb[15] = 0;
5253 cdb_len = 16;
5254 } else {
5255 cdb[0] = is_write ? WRITE_10 : READ_10;
5256 cdb[1] = 0;
5257 cdb[2] = (u8) (disk_block >> 24);
5258 cdb[3] = (u8) (disk_block >> 16);
5259 cdb[4] = (u8) (disk_block >> 8);
5260 cdb[5] = (u8) (disk_block);
5261 cdb[6] = 0;
5262 cdb[7] = (u8) (disk_block_cnt >> 8);
5263 cdb[8] = (u8) (disk_block_cnt);
5264 cdb[9] = 0;
5265 cdb_len = 10;
5266 }
5267 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5268 dev->scsi3addr,
5269 dev->phys_disk[map_index]);
5270 }
5271
5272 /*
5273 * Submit commands down the "normal" RAID stack path
5274 * All callers to hpsa_ciss_submit must check lockup_detected
5275 * beforehand, before (opt.) and after calling cmd_alloc
5276 */
5277 static int hpsa_ciss_submit(struct ctlr_info *h,
5278 struct CommandList *c, struct scsi_cmnd *cmd,
5279 unsigned char scsi3addr[])
5280 {
5281 cmd->host_scribble = (unsigned char *) c;
5282 c->cmd_type = CMD_SCSI;
5283 c->scsi_cmd = cmd;
5284 c->Header.ReplyQueue = 0; /* unused in simple mode */
5285 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5286 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5287
5288 /* Fill in the request block... */
5289
5290 c->Request.Timeout = 0;
5291 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5292 c->Request.CDBLen = cmd->cmd_len;
5293 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5294 switch (cmd->sc_data_direction) {
5295 case DMA_TO_DEVICE:
5296 c->Request.type_attr_dir =
5297 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5298 break;
5299 case DMA_FROM_DEVICE:
5300 c->Request.type_attr_dir =
5301 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5302 break;
5303 case DMA_NONE:
5304 c->Request.type_attr_dir =
5305 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5306 break;
5307 case DMA_BIDIRECTIONAL:
5308 /* This can happen if a buggy application does a scsi passthru
5309 * and sets both inlen and outlen to non-zero. ( see
5310 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5311 */
5312
5313 c->Request.type_attr_dir =
5314 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5315 /* This is technically wrong, and hpsa controllers should
5316 * reject it with CMD_INVALID, which is the most correct
5317 * response, but non-fibre backends appear to let it
5318 * slide by, and give the same results as if this field
5319 * were set correctly. Either way is acceptable for
5320 * our purposes here.
5321 */
5322
5323 break;
5324
5325 default:
5326 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5327 cmd->sc_data_direction);
5328 BUG();
5329 break;
5330 }
5331
5332 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5333 hpsa_cmd_resolve_and_free(h, c);
5334 return SCSI_MLQUEUE_HOST_BUSY;
5335 }
5336 enqueue_cmd_and_start_io(h, c);
5337 /* the cmd'll come back via intr handler in complete_scsi_command() */
5338 return 0;
5339 }
5340
5341 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5342 struct CommandList *c)
5343 {
5344 dma_addr_t cmd_dma_handle, err_dma_handle;
5345
5346 /* Zero out all of commandlist except the last field, refcount */
5347 memset(c, 0, offsetof(struct CommandList, refcount));
5348 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5349 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5350 c->err_info = h->errinfo_pool + index;
5351 memset(c->err_info, 0, sizeof(*c->err_info));
5352 err_dma_handle = h->errinfo_pool_dhandle
5353 + index * sizeof(*c->err_info);
5354 c->cmdindex = index;
5355 c->busaddr = (u32) cmd_dma_handle;
5356 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5357 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5358 c->h = h;
5359 c->scsi_cmd = SCSI_CMD_IDLE;
5360 }
5361
5362 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5363 {
5364 int i;
5365
5366 for (i = 0; i < h->nr_cmds; i++) {
5367 struct CommandList *c = h->cmd_pool + i;
5368
5369 hpsa_cmd_init(h, i, c);
5370 atomic_set(&c->refcount, 0);
5371 }
5372 }
5373
5374 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5375 struct CommandList *c)
5376 {
5377 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5378
5379 BUG_ON(c->cmdindex != index);
5380
5381 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5382 memset(c->err_info, 0, sizeof(*c->err_info));
5383 c->busaddr = (u32) cmd_dma_handle;
5384 }
5385
5386 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5387 struct CommandList *c, struct scsi_cmnd *cmd,
5388 unsigned char *scsi3addr)
5389 {
5390 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5391 int rc = IO_ACCEL_INELIGIBLE;
5392
5393 if (!dev)
5394 return SCSI_MLQUEUE_HOST_BUSY;
5395
5396 cmd->host_scribble = (unsigned char *) c;
5397
5398 if (dev->offload_enabled) {
5399 hpsa_cmd_init(h, c->cmdindex, c);
5400 c->cmd_type = CMD_SCSI;
5401 c->scsi_cmd = cmd;
5402 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5403 if (rc < 0) /* scsi_dma_map failed. */
5404 rc = SCSI_MLQUEUE_HOST_BUSY;
5405 } else if (dev->hba_ioaccel_enabled) {
5406 hpsa_cmd_init(h, c->cmdindex, c);
5407 c->cmd_type = CMD_SCSI;
5408 c->scsi_cmd = cmd;
5409 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5410 if (rc < 0) /* scsi_dma_map failed. */
5411 rc = SCSI_MLQUEUE_HOST_BUSY;
5412 }
5413 return rc;
5414 }
5415
5416 static void hpsa_command_resubmit_worker(struct work_struct *work)
5417 {
5418 struct scsi_cmnd *cmd;
5419 struct hpsa_scsi_dev_t *dev;
5420 struct CommandList *c = container_of(work, struct CommandList, work);
5421
5422 cmd = c->scsi_cmd;
5423 dev = cmd->device->hostdata;
5424 if (!dev) {
5425 cmd->result = DID_NO_CONNECT << 16;
5426 return hpsa_cmd_free_and_done(c->h, c, cmd);
5427 }
5428 if (c->reset_pending)
5429 return hpsa_cmd_free_and_done(c->h, c, cmd);
5430 if (c->cmd_type == CMD_IOACCEL2) {
5431 struct ctlr_info *h = c->h;
5432 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5433 int rc;
5434
5435 if (c2->error_data.serv_response ==
5436 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5437 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5438 if (rc == 0)
5439 return;
5440 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5441 /*
5442 * If we get here, it means dma mapping failed.
5443 * Try again via scsi mid layer, which will
5444 * then get SCSI_MLQUEUE_HOST_BUSY.
5445 */
5446 cmd->result = DID_IMM_RETRY << 16;
5447 return hpsa_cmd_free_and_done(h, c, cmd);
5448 }
5449 /* else, fall thru and resubmit down CISS path */
5450 }
5451 }
5452 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5453 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5454 /*
5455 * If we get here, it means dma mapping failed. Try
5456 * again via scsi mid layer, which will then get
5457 * SCSI_MLQUEUE_HOST_BUSY.
5458 *
5459 * hpsa_ciss_submit will have already freed c
5460 * if it encountered a dma mapping failure.
5461 */
5462 cmd->result = DID_IMM_RETRY << 16;
5463 cmd->scsi_done(cmd);
5464 }
5465 }
5466
5467 /* Running in struct Scsi_Host->host_lock less mode */
5468 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5469 {
5470 struct ctlr_info *h;
5471 struct hpsa_scsi_dev_t *dev;
5472 unsigned char scsi3addr[8];
5473 struct CommandList *c;
5474 int rc = 0;
5475
5476 /* Get the ptr to our adapter structure out of cmd->host. */
5477 h = sdev_to_hba(cmd->device);
5478
5479 BUG_ON(cmd->request->tag < 0);
5480
5481 dev = cmd->device->hostdata;
5482 if (!dev) {
5483 cmd->result = DID_NO_CONNECT << 16;
5484 cmd->scsi_done(cmd);
5485 return 0;
5486 }
5487
5488 if (dev->removed) {
5489 cmd->result = DID_NO_CONNECT << 16;
5490 cmd->scsi_done(cmd);
5491 return 0;
5492 }
5493
5494 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5495
5496 if (unlikely(lockup_detected(h))) {
5497 cmd->result = DID_NO_CONNECT << 16;
5498 cmd->scsi_done(cmd);
5499 return 0;
5500 }
5501 c = cmd_tagged_alloc(h, cmd);
5502
5503 /*
5504 * Call alternate submit routine for I/O accelerated commands.
5505 * Retries always go down the normal I/O path.
5506 */
5507 if (likely(cmd->retries == 0 &&
5508 !blk_rq_is_passthrough(cmd->request) &&
5509 h->acciopath_status)) {
5510 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5511 if (rc == 0)
5512 return 0;
5513 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5514 hpsa_cmd_resolve_and_free(h, c);
5515 return SCSI_MLQUEUE_HOST_BUSY;
5516 }
5517 }
5518 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5519 }
5520
5521 static void hpsa_scan_complete(struct ctlr_info *h)
5522 {
5523 unsigned long flags;
5524
5525 spin_lock_irqsave(&h->scan_lock, flags);
5526 h->scan_finished = 1;
5527 wake_up(&h->scan_wait_queue);
5528 spin_unlock_irqrestore(&h->scan_lock, flags);
5529 }
5530
5531 static void hpsa_scan_start(struct Scsi_Host *sh)
5532 {
5533 struct ctlr_info *h = shost_to_hba(sh);
5534 unsigned long flags;
5535
5536 /*
5537 * Don't let rescans be initiated on a controller known to be locked
5538 * up. If the controller locks up *during* a rescan, that thread is
5539 * probably hosed, but at least we can prevent new rescan threads from
5540 * piling up on a locked up controller.
5541 */
5542 if (unlikely(lockup_detected(h)))
5543 return hpsa_scan_complete(h);
5544
5545 /*
5546 * If a scan is already waiting to run, no need to add another
5547 */
5548 spin_lock_irqsave(&h->scan_lock, flags);
5549 if (h->scan_waiting) {
5550 spin_unlock_irqrestore(&h->scan_lock, flags);
5551 return;
5552 }
5553
5554 spin_unlock_irqrestore(&h->scan_lock, flags);
5555
5556 /* wait until any scan already in progress is finished. */
5557 while (1) {
5558 spin_lock_irqsave(&h->scan_lock, flags);
5559 if (h->scan_finished)
5560 break;
5561 h->scan_waiting = 1;
5562 spin_unlock_irqrestore(&h->scan_lock, flags);
5563 wait_event(h->scan_wait_queue, h->scan_finished);
5564 /* Note: We don't need to worry about a race between this
5565 * thread and driver unload because the midlayer will
5566 * have incremented the reference count, so unload won't
5567 * happen if we're in here.
5568 */
5569 }
5570 h->scan_finished = 0; /* mark scan as in progress */
5571 h->scan_waiting = 0;
5572 spin_unlock_irqrestore(&h->scan_lock, flags);
5573
5574 if (unlikely(lockup_detected(h)))
5575 return hpsa_scan_complete(h);
5576
5577 /*
5578 * Do the scan after a reset completion
5579 */
5580 spin_lock_irqsave(&h->reset_lock, flags);
5581 if (h->reset_in_progress) {
5582 h->drv_req_rescan = 1;
5583 spin_unlock_irqrestore(&h->reset_lock, flags);
5584 hpsa_scan_complete(h);
5585 return;
5586 }
5587 spin_unlock_irqrestore(&h->reset_lock, flags);
5588
5589 hpsa_update_scsi_devices(h);
5590
5591 hpsa_scan_complete(h);
5592 }
5593
5594 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5595 {
5596 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5597
5598 if (!logical_drive)
5599 return -ENODEV;
5600
5601 if (qdepth < 1)
5602 qdepth = 1;
5603 else if (qdepth > logical_drive->queue_depth)
5604 qdepth = logical_drive->queue_depth;
5605
5606 return scsi_change_queue_depth(sdev, qdepth);
5607 }
5608
5609 static int hpsa_scan_finished(struct Scsi_Host *sh,
5610 unsigned long elapsed_time)
5611 {
5612 struct ctlr_info *h = shost_to_hba(sh);
5613 unsigned long flags;
5614 int finished;
5615
5616 spin_lock_irqsave(&h->scan_lock, flags);
5617 finished = h->scan_finished;
5618 spin_unlock_irqrestore(&h->scan_lock, flags);
5619 return finished;
5620 }
5621
5622 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5623 {
5624 struct Scsi_Host *sh;
5625
5626 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5627 if (sh == NULL) {
5628 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5629 return -ENOMEM;
5630 }
5631
5632 sh->io_port = 0;
5633 sh->n_io_port = 0;
5634 sh->this_id = -1;
5635 sh->max_channel = 3;
5636 sh->max_cmd_len = MAX_COMMAND_SIZE;
5637 sh->max_lun = HPSA_MAX_LUN;
5638 sh->max_id = HPSA_MAX_LUN;
5639 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5640 sh->cmd_per_lun = sh->can_queue;
5641 sh->sg_tablesize = h->maxsgentries;
5642 sh->transportt = hpsa_sas_transport_template;
5643 sh->hostdata[0] = (unsigned long) h;
5644 sh->irq = pci_irq_vector(h->pdev, 0);
5645 sh->unique_id = sh->irq;
5646
5647 h->scsi_host = sh;
5648 return 0;
5649 }
5650
5651 static int hpsa_scsi_add_host(struct ctlr_info *h)
5652 {
5653 int rv;
5654
5655 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5656 if (rv) {
5657 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5658 return rv;
5659 }
5660 scsi_scan_host(h->scsi_host);
5661 return 0;
5662 }
5663
5664 /*
5665 * The block layer has already gone to the trouble of picking out a unique,
5666 * small-integer tag for this request. We use an offset from that value as
5667 * an index to select our command block. (The offset allows us to reserve the
5668 * low-numbered entries for our own uses.)
5669 */
5670 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5671 {
5672 int idx = scmd->request->tag;
5673
5674 if (idx < 0)
5675 return idx;
5676
5677 /* Offset to leave space for internal cmds. */
5678 return idx += HPSA_NRESERVED_CMDS;
5679 }
5680
5681 /*
5682 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5683 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5684 */
5685 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5686 struct CommandList *c, unsigned char lunaddr[],
5687 int reply_queue)
5688 {
5689 int rc;
5690
5691 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5692 (void) fill_cmd(c, TEST_UNIT_READY, h,
5693 NULL, 0, 0, lunaddr, TYPE_CMD);
5694 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5695 if (rc)
5696 return rc;
5697 /* no unmap needed here because no data xfer. */
5698
5699 /* Check if the unit is already ready. */
5700 if (c->err_info->CommandStatus == CMD_SUCCESS)
5701 return 0;
5702
5703 /*
5704 * The first command sent after reset will receive "unit attention" to
5705 * indicate that the LUN has been reset...this is actually what we're
5706 * looking for (but, success is good too).
5707 */
5708 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5709 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5710 (c->err_info->SenseInfo[2] == NO_SENSE ||
5711 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5712 return 0;
5713
5714 return 1;
5715 }
5716
5717 /*
5718 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5719 * returns zero when the unit is ready, and non-zero when giving up.
5720 */
5721 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5722 struct CommandList *c,
5723 unsigned char lunaddr[], int reply_queue)
5724 {
5725 int rc;
5726 int count = 0;
5727 int waittime = 1; /* seconds */
5728
5729 /* Send test unit ready until device ready, or give up. */
5730 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5731
5732 /*
5733 * Wait for a bit. do this first, because if we send
5734 * the TUR right away, the reset will just abort it.
5735 */
5736 msleep(1000 * waittime);
5737
5738 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5739 if (!rc)
5740 break;
5741
5742 /* Increase wait time with each try, up to a point. */
5743 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5744 waittime *= 2;
5745
5746 dev_warn(&h->pdev->dev,
5747 "waiting %d secs for device to become ready.\n",
5748 waittime);
5749 }
5750
5751 return rc;
5752 }
5753
5754 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5755 unsigned char lunaddr[],
5756 int reply_queue)
5757 {
5758 int first_queue;
5759 int last_queue;
5760 int rq;
5761 int rc = 0;
5762 struct CommandList *c;
5763
5764 c = cmd_alloc(h);
5765
5766 /*
5767 * If no specific reply queue was requested, then send the TUR
5768 * repeatedly, requesting a reply on each reply queue; otherwise execute
5769 * the loop exactly once using only the specified queue.
5770 */
5771 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5772 first_queue = 0;
5773 last_queue = h->nreply_queues - 1;
5774 } else {
5775 first_queue = reply_queue;
5776 last_queue = reply_queue;
5777 }
5778
5779 for (rq = first_queue; rq <= last_queue; rq++) {
5780 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5781 if (rc)
5782 break;
5783 }
5784
5785 if (rc)
5786 dev_warn(&h->pdev->dev, "giving up on device.\n");
5787 else
5788 dev_warn(&h->pdev->dev, "device is ready.\n");
5789
5790 cmd_free(h, c);
5791 return rc;
5792 }
5793
5794 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5795 * complaining. Doing a host- or bus-reset can't do anything good here.
5796 */
5797 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5798 {
5799 int rc = SUCCESS;
5800 struct ctlr_info *h;
5801 struct hpsa_scsi_dev_t *dev;
5802 u8 reset_type;
5803 char msg[48];
5804 unsigned long flags;
5805
5806 /* find the controller to which the command to be aborted was sent */
5807 h = sdev_to_hba(scsicmd->device);
5808 if (h == NULL) /* paranoia */
5809 return FAILED;
5810
5811 spin_lock_irqsave(&h->reset_lock, flags);
5812 h->reset_in_progress = 1;
5813 spin_unlock_irqrestore(&h->reset_lock, flags);
5814
5815 if (lockup_detected(h)) {
5816 rc = FAILED;
5817 goto return_reset_status;
5818 }
5819
5820 dev = scsicmd->device->hostdata;
5821 if (!dev) {
5822 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5823 rc = FAILED;
5824 goto return_reset_status;
5825 }
5826
5827 if (dev->devtype == TYPE_ENCLOSURE) {
5828 rc = SUCCESS;
5829 goto return_reset_status;
5830 }
5831
5832 /* if controller locked up, we can guarantee command won't complete */
5833 if (lockup_detected(h)) {
5834 snprintf(msg, sizeof(msg),
5835 "cmd %d RESET FAILED, lockup detected",
5836 hpsa_get_cmd_index(scsicmd));
5837 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5838 rc = FAILED;
5839 goto return_reset_status;
5840 }
5841
5842 /* this reset request might be the result of a lockup; check */
5843 if (detect_controller_lockup(h)) {
5844 snprintf(msg, sizeof(msg),
5845 "cmd %d RESET FAILED, new lockup detected",
5846 hpsa_get_cmd_index(scsicmd));
5847 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5848 rc = FAILED;
5849 goto return_reset_status;
5850 }
5851
5852 /* Do not attempt on controller */
5853 if (is_hba_lunid(dev->scsi3addr)) {
5854 rc = SUCCESS;
5855 goto return_reset_status;
5856 }
5857
5858 if (is_logical_dev_addr_mode(dev->scsi3addr))
5859 reset_type = HPSA_DEVICE_RESET_MSG;
5860 else
5861 reset_type = HPSA_PHYS_TARGET_RESET;
5862
5863 sprintf(msg, "resetting %s",
5864 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5865 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866
5867 /* send a reset to the SCSI LUN which the command was sent to */
5868 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5869 DEFAULT_REPLY_QUEUE);
5870 if (rc == 0)
5871 rc = SUCCESS;
5872 else
5873 rc = FAILED;
5874
5875 sprintf(msg, "reset %s %s",
5876 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5877 rc == SUCCESS ? "completed successfully" : "failed");
5878 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5879
5880 return_reset_status:
5881 spin_lock_irqsave(&h->reset_lock, flags);
5882 h->reset_in_progress = 0;
5883 spin_unlock_irqrestore(&h->reset_lock, flags);
5884 return rc;
5885 }
5886
5887 /*
5888 * For operations with an associated SCSI command, a command block is allocated
5889 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5890 * block request tag as an index into a table of entries. cmd_tagged_free() is
5891 * the complement, although cmd_free() may be called instead.
5892 */
5893 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5894 struct scsi_cmnd *scmd)
5895 {
5896 int idx = hpsa_get_cmd_index(scmd);
5897 struct CommandList *c = h->cmd_pool + idx;
5898
5899 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5900 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5901 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5902 /* The index value comes from the block layer, so if it's out of
5903 * bounds, it's probably not our bug.
5904 */
5905 BUG();
5906 }
5907
5908 atomic_inc(&c->refcount);
5909 if (unlikely(!hpsa_is_cmd_idle(c))) {
5910 /*
5911 * We expect that the SCSI layer will hand us a unique tag
5912 * value. Thus, there should never be a collision here between
5913 * two requests...because if the selected command isn't idle
5914 * then someone is going to be very disappointed.
5915 */
5916 dev_err(&h->pdev->dev,
5917 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5918 idx);
5919 if (c->scsi_cmd != NULL)
5920 scsi_print_command(c->scsi_cmd);
5921 scsi_print_command(scmd);
5922 }
5923
5924 hpsa_cmd_partial_init(h, idx, c);
5925 return c;
5926 }
5927
5928 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5929 {
5930 /*
5931 * Release our reference to the block. We don't need to do anything
5932 * else to free it, because it is accessed by index.
5933 */
5934 (void)atomic_dec(&c->refcount);
5935 }
5936
5937 /*
5938 * For operations that cannot sleep, a command block is allocated at init,
5939 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5940 * which ones are free or in use. Lock must be held when calling this.
5941 * cmd_free() is the complement.
5942 * This function never gives up and returns NULL. If it hangs,
5943 * another thread must call cmd_free() to free some tags.
5944 */
5945
5946 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5947 {
5948 struct CommandList *c;
5949 int refcount, i;
5950 int offset = 0;
5951
5952 /*
5953 * There is some *extremely* small but non-zero chance that that
5954 * multiple threads could get in here, and one thread could
5955 * be scanning through the list of bits looking for a free
5956 * one, but the free ones are always behind him, and other
5957 * threads sneak in behind him and eat them before he can
5958 * get to them, so that while there is always a free one, a
5959 * very unlucky thread might be starved anyway, never able to
5960 * beat the other threads. In reality, this happens so
5961 * infrequently as to be indistinguishable from never.
5962 *
5963 * Note that we start allocating commands before the SCSI host structure
5964 * is initialized. Since the search starts at bit zero, this
5965 * all works, since we have at least one command structure available;
5966 * however, it means that the structures with the low indexes have to be
5967 * reserved for driver-initiated requests, while requests from the block
5968 * layer will use the higher indexes.
5969 */
5970
5971 for (;;) {
5972 i = find_next_zero_bit(h->cmd_pool_bits,
5973 HPSA_NRESERVED_CMDS,
5974 offset);
5975 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5976 offset = 0;
5977 continue;
5978 }
5979 c = h->cmd_pool + i;
5980 refcount = atomic_inc_return(&c->refcount);
5981 if (unlikely(refcount > 1)) {
5982 cmd_free(h, c); /* already in use */
5983 offset = (i + 1) % HPSA_NRESERVED_CMDS;
5984 continue;
5985 }
5986 set_bit(i & (BITS_PER_LONG - 1),
5987 h->cmd_pool_bits + (i / BITS_PER_LONG));
5988 break; /* it's ours now. */
5989 }
5990 hpsa_cmd_partial_init(h, i, c);
5991 return c;
5992 }
5993
5994 /*
5995 * This is the complementary operation to cmd_alloc(). Note, however, in some
5996 * corner cases it may also be used to free blocks allocated by
5997 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5998 * the clear-bit is harmless.
5999 */
6000 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6001 {
6002 if (atomic_dec_and_test(&c->refcount)) {
6003 int i;
6004
6005 i = c - h->cmd_pool;
6006 clear_bit(i & (BITS_PER_LONG - 1),
6007 h->cmd_pool_bits + (i / BITS_PER_LONG));
6008 }
6009 }
6010
6011 #ifdef CONFIG_COMPAT
6012
6013 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6014 void __user *arg)
6015 {
6016 IOCTL32_Command_struct __user *arg32 =
6017 (IOCTL32_Command_struct __user *) arg;
6018 IOCTL_Command_struct arg64;
6019 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6020 int err;
6021 u32 cp;
6022
6023 memset(&arg64, 0, sizeof(arg64));
6024 err = 0;
6025 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6026 sizeof(arg64.LUN_info));
6027 err |= copy_from_user(&arg64.Request, &arg32->Request,
6028 sizeof(arg64.Request));
6029 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6030 sizeof(arg64.error_info));
6031 err |= get_user(arg64.buf_size, &arg32->buf_size);
6032 err |= get_user(cp, &arg32->buf);
6033 arg64.buf = compat_ptr(cp);
6034 err |= copy_to_user(p, &arg64, sizeof(arg64));
6035
6036 if (err)
6037 return -EFAULT;
6038
6039 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6040 if (err)
6041 return err;
6042 err |= copy_in_user(&arg32->error_info, &p->error_info,
6043 sizeof(arg32->error_info));
6044 if (err)
6045 return -EFAULT;
6046 return err;
6047 }
6048
6049 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6050 int cmd, void __user *arg)
6051 {
6052 BIG_IOCTL32_Command_struct __user *arg32 =
6053 (BIG_IOCTL32_Command_struct __user *) arg;
6054 BIG_IOCTL_Command_struct arg64;
6055 BIG_IOCTL_Command_struct __user *p =
6056 compat_alloc_user_space(sizeof(arg64));
6057 int err;
6058 u32 cp;
6059
6060 memset(&arg64, 0, sizeof(arg64));
6061 err = 0;
6062 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6063 sizeof(arg64.LUN_info));
6064 err |= copy_from_user(&arg64.Request, &arg32->Request,
6065 sizeof(arg64.Request));
6066 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6067 sizeof(arg64.error_info));
6068 err |= get_user(arg64.buf_size, &arg32->buf_size);
6069 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6070 err |= get_user(cp, &arg32->buf);
6071 arg64.buf = compat_ptr(cp);
6072 err |= copy_to_user(p, &arg64, sizeof(arg64));
6073
6074 if (err)
6075 return -EFAULT;
6076
6077 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6078 if (err)
6079 return err;
6080 err |= copy_in_user(&arg32->error_info, &p->error_info,
6081 sizeof(arg32->error_info));
6082 if (err)
6083 return -EFAULT;
6084 return err;
6085 }
6086
6087 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6088 {
6089 switch (cmd) {
6090 case CCISS_GETPCIINFO:
6091 case CCISS_GETINTINFO:
6092 case CCISS_SETINTINFO:
6093 case CCISS_GETNODENAME:
6094 case CCISS_SETNODENAME:
6095 case CCISS_GETHEARTBEAT:
6096 case CCISS_GETBUSTYPES:
6097 case CCISS_GETFIRMVER:
6098 case CCISS_GETDRIVVER:
6099 case CCISS_REVALIDVOLS:
6100 case CCISS_DEREGDISK:
6101 case CCISS_REGNEWDISK:
6102 case CCISS_REGNEWD:
6103 case CCISS_RESCANDISK:
6104 case CCISS_GETLUNINFO:
6105 return hpsa_ioctl(dev, cmd, arg);
6106
6107 case CCISS_PASSTHRU32:
6108 return hpsa_ioctl32_passthru(dev, cmd, arg);
6109 case CCISS_BIG_PASSTHRU32:
6110 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6111
6112 default:
6113 return -ENOIOCTLCMD;
6114 }
6115 }
6116 #endif
6117
6118 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6119 {
6120 struct hpsa_pci_info pciinfo;
6121
6122 if (!argp)
6123 return -EINVAL;
6124 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6125 pciinfo.bus = h->pdev->bus->number;
6126 pciinfo.dev_fn = h->pdev->devfn;
6127 pciinfo.board_id = h->board_id;
6128 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6129 return -EFAULT;
6130 return 0;
6131 }
6132
6133 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6134 {
6135 DriverVer_type DriverVer;
6136 unsigned char vmaj, vmin, vsubmin;
6137 int rc;
6138
6139 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6140 &vmaj, &vmin, &vsubmin);
6141 if (rc != 3) {
6142 dev_info(&h->pdev->dev, "driver version string '%s' "
6143 "unrecognized.", HPSA_DRIVER_VERSION);
6144 vmaj = 0;
6145 vmin = 0;
6146 vsubmin = 0;
6147 }
6148 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6149 if (!argp)
6150 return -EINVAL;
6151 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6152 return -EFAULT;
6153 return 0;
6154 }
6155
6156 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6157 {
6158 IOCTL_Command_struct iocommand;
6159 struct CommandList *c;
6160 char *buff = NULL;
6161 u64 temp64;
6162 int rc = 0;
6163
6164 if (!argp)
6165 return -EINVAL;
6166 if (!capable(CAP_SYS_RAWIO))
6167 return -EPERM;
6168 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6169 return -EFAULT;
6170 if ((iocommand.buf_size < 1) &&
6171 (iocommand.Request.Type.Direction != XFER_NONE)) {
6172 return -EINVAL;
6173 }
6174 if (iocommand.buf_size > 0) {
6175 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6176 if (buff == NULL)
6177 return -ENOMEM;
6178 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6179 /* Copy the data into the buffer we created */
6180 if (copy_from_user(buff, iocommand.buf,
6181 iocommand.buf_size)) {
6182 rc = -EFAULT;
6183 goto out_kfree;
6184 }
6185 } else {
6186 memset(buff, 0, iocommand.buf_size);
6187 }
6188 }
6189 c = cmd_alloc(h);
6190
6191 /* Fill in the command type */
6192 c->cmd_type = CMD_IOCTL_PEND;
6193 c->scsi_cmd = SCSI_CMD_BUSY;
6194 /* Fill in Command Header */
6195 c->Header.ReplyQueue = 0; /* unused in simple mode */
6196 if (iocommand.buf_size > 0) { /* buffer to fill */
6197 c->Header.SGList = 1;
6198 c->Header.SGTotal = cpu_to_le16(1);
6199 } else { /* no buffers to fill */
6200 c->Header.SGList = 0;
6201 c->Header.SGTotal = cpu_to_le16(0);
6202 }
6203 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6204
6205 /* Fill in Request block */
6206 memcpy(&c->Request, &iocommand.Request,
6207 sizeof(c->Request));
6208
6209 /* Fill in the scatter gather information */
6210 if (iocommand.buf_size > 0) {
6211 temp64 = pci_map_single(h->pdev, buff,
6212 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6213 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6214 c->SG[0].Addr = cpu_to_le64(0);
6215 c->SG[0].Len = cpu_to_le32(0);
6216 rc = -ENOMEM;
6217 goto out;
6218 }
6219 c->SG[0].Addr = cpu_to_le64(temp64);
6220 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6221 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6222 }
6223 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6224 NO_TIMEOUT);
6225 if (iocommand.buf_size > 0)
6226 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6227 check_ioctl_unit_attention(h, c);
6228 if (rc) {
6229 rc = -EIO;
6230 goto out;
6231 }
6232
6233 /* Copy the error information out */
6234 memcpy(&iocommand.error_info, c->err_info,
6235 sizeof(iocommand.error_info));
6236 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6237 rc = -EFAULT;
6238 goto out;
6239 }
6240 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6241 iocommand.buf_size > 0) {
6242 /* Copy the data out of the buffer we created */
6243 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6244 rc = -EFAULT;
6245 goto out;
6246 }
6247 }
6248 out:
6249 cmd_free(h, c);
6250 out_kfree:
6251 kfree(buff);
6252 return rc;
6253 }
6254
6255 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6256 {
6257 BIG_IOCTL_Command_struct *ioc;
6258 struct CommandList *c;
6259 unsigned char **buff = NULL;
6260 int *buff_size = NULL;
6261 u64 temp64;
6262 BYTE sg_used = 0;
6263 int status = 0;
6264 u32 left;
6265 u32 sz;
6266 BYTE __user *data_ptr;
6267
6268 if (!argp)
6269 return -EINVAL;
6270 if (!capable(CAP_SYS_RAWIO))
6271 return -EPERM;
6272 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6273 if (!ioc) {
6274 status = -ENOMEM;
6275 goto cleanup1;
6276 }
6277 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6278 status = -EFAULT;
6279 goto cleanup1;
6280 }
6281 if ((ioc->buf_size < 1) &&
6282 (ioc->Request.Type.Direction != XFER_NONE)) {
6283 status = -EINVAL;
6284 goto cleanup1;
6285 }
6286 /* Check kmalloc limits using all SGs */
6287 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6288 status = -EINVAL;
6289 goto cleanup1;
6290 }
6291 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6292 status = -EINVAL;
6293 goto cleanup1;
6294 }
6295 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6296 if (!buff) {
6297 status = -ENOMEM;
6298 goto cleanup1;
6299 }
6300 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6301 if (!buff_size) {
6302 status = -ENOMEM;
6303 goto cleanup1;
6304 }
6305 left = ioc->buf_size;
6306 data_ptr = ioc->buf;
6307 while (left) {
6308 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6309 buff_size[sg_used] = sz;
6310 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6311 if (buff[sg_used] == NULL) {
6312 status = -ENOMEM;
6313 goto cleanup1;
6314 }
6315 if (ioc->Request.Type.Direction & XFER_WRITE) {
6316 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6317 status = -EFAULT;
6318 goto cleanup1;
6319 }
6320 } else
6321 memset(buff[sg_used], 0, sz);
6322 left -= sz;
6323 data_ptr += sz;
6324 sg_used++;
6325 }
6326 c = cmd_alloc(h);
6327
6328 c->cmd_type = CMD_IOCTL_PEND;
6329 c->scsi_cmd = SCSI_CMD_BUSY;
6330 c->Header.ReplyQueue = 0;
6331 c->Header.SGList = (u8) sg_used;
6332 c->Header.SGTotal = cpu_to_le16(sg_used);
6333 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6334 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6335 if (ioc->buf_size > 0) {
6336 int i;
6337 for (i = 0; i < sg_used; i++) {
6338 temp64 = pci_map_single(h->pdev, buff[i],
6339 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6340 if (dma_mapping_error(&h->pdev->dev,
6341 (dma_addr_t) temp64)) {
6342 c->SG[i].Addr = cpu_to_le64(0);
6343 c->SG[i].Len = cpu_to_le32(0);
6344 hpsa_pci_unmap(h->pdev, c, i,
6345 PCI_DMA_BIDIRECTIONAL);
6346 status = -ENOMEM;
6347 goto cleanup0;
6348 }
6349 c->SG[i].Addr = cpu_to_le64(temp64);
6350 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6351 c->SG[i].Ext = cpu_to_le32(0);
6352 }
6353 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6354 }
6355 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6356 NO_TIMEOUT);
6357 if (sg_used)
6358 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6359 check_ioctl_unit_attention(h, c);
6360 if (status) {
6361 status = -EIO;
6362 goto cleanup0;
6363 }
6364
6365 /* Copy the error information out */
6366 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6367 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6368 status = -EFAULT;
6369 goto cleanup0;
6370 }
6371 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6372 int i;
6373
6374 /* Copy the data out of the buffer we created */
6375 BYTE __user *ptr = ioc->buf;
6376 for (i = 0; i < sg_used; i++) {
6377 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6378 status = -EFAULT;
6379 goto cleanup0;
6380 }
6381 ptr += buff_size[i];
6382 }
6383 }
6384 status = 0;
6385 cleanup0:
6386 cmd_free(h, c);
6387 cleanup1:
6388 if (buff) {
6389 int i;
6390
6391 for (i = 0; i < sg_used; i++)
6392 kfree(buff[i]);
6393 kfree(buff);
6394 }
6395 kfree(buff_size);
6396 kfree(ioc);
6397 return status;
6398 }
6399
6400 static void check_ioctl_unit_attention(struct ctlr_info *h,
6401 struct CommandList *c)
6402 {
6403 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6404 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6405 (void) check_for_unit_attention(h, c);
6406 }
6407
6408 /*
6409 * ioctl
6410 */
6411 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6412 {
6413 struct ctlr_info *h;
6414 void __user *argp = (void __user *)arg;
6415 int rc;
6416
6417 h = sdev_to_hba(dev);
6418
6419 switch (cmd) {
6420 case CCISS_DEREGDISK:
6421 case CCISS_REGNEWDISK:
6422 case CCISS_REGNEWD:
6423 hpsa_scan_start(h->scsi_host);
6424 return 0;
6425 case CCISS_GETPCIINFO:
6426 return hpsa_getpciinfo_ioctl(h, argp);
6427 case CCISS_GETDRIVVER:
6428 return hpsa_getdrivver_ioctl(h, argp);
6429 case CCISS_PASSTHRU:
6430 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6431 return -EAGAIN;
6432 rc = hpsa_passthru_ioctl(h, argp);
6433 atomic_inc(&h->passthru_cmds_avail);
6434 return rc;
6435 case CCISS_BIG_PASSTHRU:
6436 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6437 return -EAGAIN;
6438 rc = hpsa_big_passthru_ioctl(h, argp);
6439 atomic_inc(&h->passthru_cmds_avail);
6440 return rc;
6441 default:
6442 return -ENOTTY;
6443 }
6444 }
6445
6446 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6447 u8 reset_type)
6448 {
6449 struct CommandList *c;
6450
6451 c = cmd_alloc(h);
6452
6453 /* fill_cmd can't fail here, no data buffer to map */
6454 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6455 RAID_CTLR_LUNID, TYPE_MSG);
6456 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6457 c->waiting = NULL;
6458 enqueue_cmd_and_start_io(h, c);
6459 /* Don't wait for completion, the reset won't complete. Don't free
6460 * the command either. This is the last command we will send before
6461 * re-initializing everything, so it doesn't matter and won't leak.
6462 */
6463 return;
6464 }
6465
6466 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6467 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6468 int cmd_type)
6469 {
6470 int pci_dir = XFER_NONE;
6471
6472 c->cmd_type = CMD_IOCTL_PEND;
6473 c->scsi_cmd = SCSI_CMD_BUSY;
6474 c->Header.ReplyQueue = 0;
6475 if (buff != NULL && size > 0) {
6476 c->Header.SGList = 1;
6477 c->Header.SGTotal = cpu_to_le16(1);
6478 } else {
6479 c->Header.SGList = 0;
6480 c->Header.SGTotal = cpu_to_le16(0);
6481 }
6482 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6483
6484 if (cmd_type == TYPE_CMD) {
6485 switch (cmd) {
6486 case HPSA_INQUIRY:
6487 /* are we trying to read a vital product page */
6488 if (page_code & VPD_PAGE) {
6489 c->Request.CDB[1] = 0x01;
6490 c->Request.CDB[2] = (page_code & 0xff);
6491 }
6492 c->Request.CDBLen = 6;
6493 c->Request.type_attr_dir =
6494 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6495 c->Request.Timeout = 0;
6496 c->Request.CDB[0] = HPSA_INQUIRY;
6497 c->Request.CDB[4] = size & 0xFF;
6498 break;
6499 case HPSA_REPORT_LOG:
6500 case HPSA_REPORT_PHYS:
6501 /* Talking to controller so It's a physical command
6502 mode = 00 target = 0. Nothing to write.
6503 */
6504 c->Request.CDBLen = 12;
6505 c->Request.type_attr_dir =
6506 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6507 c->Request.Timeout = 0;
6508 c->Request.CDB[0] = cmd;
6509 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6510 c->Request.CDB[7] = (size >> 16) & 0xFF;
6511 c->Request.CDB[8] = (size >> 8) & 0xFF;
6512 c->Request.CDB[9] = size & 0xFF;
6513 break;
6514 case BMIC_SENSE_DIAG_OPTIONS:
6515 c->Request.CDBLen = 16;
6516 c->Request.type_attr_dir =
6517 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6518 c->Request.Timeout = 0;
6519 /* Spec says this should be BMIC_WRITE */
6520 c->Request.CDB[0] = BMIC_READ;
6521 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6522 break;
6523 case BMIC_SET_DIAG_OPTIONS:
6524 c->Request.CDBLen = 16;
6525 c->Request.type_attr_dir =
6526 TYPE_ATTR_DIR(cmd_type,
6527 ATTR_SIMPLE, XFER_WRITE);
6528 c->Request.Timeout = 0;
6529 c->Request.CDB[0] = BMIC_WRITE;
6530 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6531 break;
6532 case HPSA_CACHE_FLUSH:
6533 c->Request.CDBLen = 12;
6534 c->Request.type_attr_dir =
6535 TYPE_ATTR_DIR(cmd_type,
6536 ATTR_SIMPLE, XFER_WRITE);
6537 c->Request.Timeout = 0;
6538 c->Request.CDB[0] = BMIC_WRITE;
6539 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6540 c->Request.CDB[7] = (size >> 8) & 0xFF;
6541 c->Request.CDB[8] = size & 0xFF;
6542 break;
6543 case TEST_UNIT_READY:
6544 c->Request.CDBLen = 6;
6545 c->Request.type_attr_dir =
6546 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6547 c->Request.Timeout = 0;
6548 break;
6549 case HPSA_GET_RAID_MAP:
6550 c->Request.CDBLen = 12;
6551 c->Request.type_attr_dir =
6552 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6553 c->Request.Timeout = 0;
6554 c->Request.CDB[0] = HPSA_CISS_READ;
6555 c->Request.CDB[1] = cmd;
6556 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6557 c->Request.CDB[7] = (size >> 16) & 0xFF;
6558 c->Request.CDB[8] = (size >> 8) & 0xFF;
6559 c->Request.CDB[9] = size & 0xFF;
6560 break;
6561 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6562 c->Request.CDBLen = 10;
6563 c->Request.type_attr_dir =
6564 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6565 c->Request.Timeout = 0;
6566 c->Request.CDB[0] = BMIC_READ;
6567 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6568 c->Request.CDB[7] = (size >> 16) & 0xFF;
6569 c->Request.CDB[8] = (size >> 8) & 0xFF;
6570 break;
6571 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6572 c->Request.CDBLen = 10;
6573 c->Request.type_attr_dir =
6574 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6575 c->Request.Timeout = 0;
6576 c->Request.CDB[0] = BMIC_READ;
6577 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6578 c->Request.CDB[7] = (size >> 16) & 0xFF;
6579 c->Request.CDB[8] = (size >> 8) & 0XFF;
6580 break;
6581 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6582 c->Request.CDBLen = 10;
6583 c->Request.type_attr_dir =
6584 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6585 c->Request.Timeout = 0;
6586 c->Request.CDB[0] = BMIC_READ;
6587 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6588 c->Request.CDB[7] = (size >> 16) & 0xFF;
6589 c->Request.CDB[8] = (size >> 8) & 0XFF;
6590 break;
6591 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6592 c->Request.CDBLen = 10;
6593 c->Request.type_attr_dir =
6594 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6595 c->Request.Timeout = 0;
6596 c->Request.CDB[0] = BMIC_READ;
6597 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6598 c->Request.CDB[7] = (size >> 16) & 0xFF;
6599 c->Request.CDB[8] = (size >> 8) & 0XFF;
6600 break;
6601 case BMIC_IDENTIFY_CONTROLLER:
6602 c->Request.CDBLen = 10;
6603 c->Request.type_attr_dir =
6604 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605 c->Request.Timeout = 0;
6606 c->Request.CDB[0] = BMIC_READ;
6607 c->Request.CDB[1] = 0;
6608 c->Request.CDB[2] = 0;
6609 c->Request.CDB[3] = 0;
6610 c->Request.CDB[4] = 0;
6611 c->Request.CDB[5] = 0;
6612 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6613 c->Request.CDB[7] = (size >> 16) & 0xFF;
6614 c->Request.CDB[8] = (size >> 8) & 0XFF;
6615 c->Request.CDB[9] = 0;
6616 break;
6617 default:
6618 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6619 BUG();
6620 }
6621 } else if (cmd_type == TYPE_MSG) {
6622 switch (cmd) {
6623
6624 case HPSA_PHYS_TARGET_RESET:
6625 c->Request.CDBLen = 16;
6626 c->Request.type_attr_dir =
6627 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6628 c->Request.Timeout = 0; /* Don't time out */
6629 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6630 c->Request.CDB[0] = HPSA_RESET;
6631 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6632 /* Physical target reset needs no control bytes 4-7*/
6633 c->Request.CDB[4] = 0x00;
6634 c->Request.CDB[5] = 0x00;
6635 c->Request.CDB[6] = 0x00;
6636 c->Request.CDB[7] = 0x00;
6637 break;
6638 case HPSA_DEVICE_RESET_MSG:
6639 c->Request.CDBLen = 16;
6640 c->Request.type_attr_dir =
6641 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6642 c->Request.Timeout = 0; /* Don't time out */
6643 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6644 c->Request.CDB[0] = cmd;
6645 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6646 /* If bytes 4-7 are zero, it means reset the */
6647 /* LunID device */
6648 c->Request.CDB[4] = 0x00;
6649 c->Request.CDB[5] = 0x00;
6650 c->Request.CDB[6] = 0x00;
6651 c->Request.CDB[7] = 0x00;
6652 break;
6653 default:
6654 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6655 cmd);
6656 BUG();
6657 }
6658 } else {
6659 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6660 BUG();
6661 }
6662
6663 switch (GET_DIR(c->Request.type_attr_dir)) {
6664 case XFER_READ:
6665 pci_dir = PCI_DMA_FROMDEVICE;
6666 break;
6667 case XFER_WRITE:
6668 pci_dir = PCI_DMA_TODEVICE;
6669 break;
6670 case XFER_NONE:
6671 pci_dir = PCI_DMA_NONE;
6672 break;
6673 default:
6674 pci_dir = PCI_DMA_BIDIRECTIONAL;
6675 }
6676 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6677 return -1;
6678 return 0;
6679 }
6680
6681 /*
6682 * Map (physical) PCI mem into (virtual) kernel space
6683 */
6684 static void __iomem *remap_pci_mem(ulong base, ulong size)
6685 {
6686 ulong page_base = ((ulong) base) & PAGE_MASK;
6687 ulong page_offs = ((ulong) base) - page_base;
6688 void __iomem *page_remapped = ioremap_nocache(page_base,
6689 page_offs + size);
6690
6691 return page_remapped ? (page_remapped + page_offs) : NULL;
6692 }
6693
6694 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6695 {
6696 return h->access.command_completed(h, q);
6697 }
6698
6699 static inline bool interrupt_pending(struct ctlr_info *h)
6700 {
6701 return h->access.intr_pending(h);
6702 }
6703
6704 static inline long interrupt_not_for_us(struct ctlr_info *h)
6705 {
6706 return (h->access.intr_pending(h) == 0) ||
6707 (h->interrupts_enabled == 0);
6708 }
6709
6710 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6711 u32 raw_tag)
6712 {
6713 if (unlikely(tag_index >= h->nr_cmds)) {
6714 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6715 return 1;
6716 }
6717 return 0;
6718 }
6719
6720 static inline void finish_cmd(struct CommandList *c)
6721 {
6722 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6723 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6724 || c->cmd_type == CMD_IOACCEL2))
6725 complete_scsi_command(c);
6726 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6727 complete(c->waiting);
6728 }
6729
6730 /* process completion of an indexed ("direct lookup") command */
6731 static inline void process_indexed_cmd(struct ctlr_info *h,
6732 u32 raw_tag)
6733 {
6734 u32 tag_index;
6735 struct CommandList *c;
6736
6737 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6738 if (!bad_tag(h, tag_index, raw_tag)) {
6739 c = h->cmd_pool + tag_index;
6740 finish_cmd(c);
6741 }
6742 }
6743
6744 /* Some controllers, like p400, will give us one interrupt
6745 * after a soft reset, even if we turned interrupts off.
6746 * Only need to check for this in the hpsa_xxx_discard_completions
6747 * functions.
6748 */
6749 static int ignore_bogus_interrupt(struct ctlr_info *h)
6750 {
6751 if (likely(!reset_devices))
6752 return 0;
6753
6754 if (likely(h->interrupts_enabled))
6755 return 0;
6756
6757 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6758 "(known firmware bug.) Ignoring.\n");
6759
6760 return 1;
6761 }
6762
6763 /*
6764 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6765 * Relies on (h-q[x] == x) being true for x such that
6766 * 0 <= x < MAX_REPLY_QUEUES.
6767 */
6768 static struct ctlr_info *queue_to_hba(u8 *queue)
6769 {
6770 return container_of((queue - *queue), struct ctlr_info, q[0]);
6771 }
6772
6773 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6774 {
6775 struct ctlr_info *h = queue_to_hba(queue);
6776 u8 q = *(u8 *) queue;
6777 u32 raw_tag;
6778
6779 if (ignore_bogus_interrupt(h))
6780 return IRQ_NONE;
6781
6782 if (interrupt_not_for_us(h))
6783 return IRQ_NONE;
6784 h->last_intr_timestamp = get_jiffies_64();
6785 while (interrupt_pending(h)) {
6786 raw_tag = get_next_completion(h, q);
6787 while (raw_tag != FIFO_EMPTY)
6788 raw_tag = next_command(h, q);
6789 }
6790 return IRQ_HANDLED;
6791 }
6792
6793 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6794 {
6795 struct ctlr_info *h = queue_to_hba(queue);
6796 u32 raw_tag;
6797 u8 q = *(u8 *) queue;
6798
6799 if (ignore_bogus_interrupt(h))
6800 return IRQ_NONE;
6801
6802 h->last_intr_timestamp = get_jiffies_64();
6803 raw_tag = get_next_completion(h, q);
6804 while (raw_tag != FIFO_EMPTY)
6805 raw_tag = next_command(h, q);
6806 return IRQ_HANDLED;
6807 }
6808
6809 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6810 {
6811 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6812 u32 raw_tag;
6813 u8 q = *(u8 *) queue;
6814
6815 if (interrupt_not_for_us(h))
6816 return IRQ_NONE;
6817 h->last_intr_timestamp = get_jiffies_64();
6818 while (interrupt_pending(h)) {
6819 raw_tag = get_next_completion(h, q);
6820 while (raw_tag != FIFO_EMPTY) {
6821 process_indexed_cmd(h, raw_tag);
6822 raw_tag = next_command(h, q);
6823 }
6824 }
6825 return IRQ_HANDLED;
6826 }
6827
6828 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6829 {
6830 struct ctlr_info *h = queue_to_hba(queue);
6831 u32 raw_tag;
6832 u8 q = *(u8 *) queue;
6833
6834 h->last_intr_timestamp = get_jiffies_64();
6835 raw_tag = get_next_completion(h, q);
6836 while (raw_tag != FIFO_EMPTY) {
6837 process_indexed_cmd(h, raw_tag);
6838 raw_tag = next_command(h, q);
6839 }
6840 return IRQ_HANDLED;
6841 }
6842
6843 /* Send a message CDB to the firmware. Careful, this only works
6844 * in simple mode, not performant mode due to the tag lookup.
6845 * We only ever use this immediately after a controller reset.
6846 */
6847 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6848 unsigned char type)
6849 {
6850 struct Command {
6851 struct CommandListHeader CommandHeader;
6852 struct RequestBlock Request;
6853 struct ErrDescriptor ErrorDescriptor;
6854 };
6855 struct Command *cmd;
6856 static const size_t cmd_sz = sizeof(*cmd) +
6857 sizeof(cmd->ErrorDescriptor);
6858 dma_addr_t paddr64;
6859 __le32 paddr32;
6860 u32 tag;
6861 void __iomem *vaddr;
6862 int i, err;
6863
6864 vaddr = pci_ioremap_bar(pdev, 0);
6865 if (vaddr == NULL)
6866 return -ENOMEM;
6867
6868 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6869 * CCISS commands, so they must be allocated from the lower 4GiB of
6870 * memory.
6871 */
6872 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6873 if (err) {
6874 iounmap(vaddr);
6875 return err;
6876 }
6877
6878 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6879 if (cmd == NULL) {
6880 iounmap(vaddr);
6881 return -ENOMEM;
6882 }
6883
6884 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6885 * although there's no guarantee, we assume that the address is at
6886 * least 4-byte aligned (most likely, it's page-aligned).
6887 */
6888 paddr32 = cpu_to_le32(paddr64);
6889
6890 cmd->CommandHeader.ReplyQueue = 0;
6891 cmd->CommandHeader.SGList = 0;
6892 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6893 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6894 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6895
6896 cmd->Request.CDBLen = 16;
6897 cmd->Request.type_attr_dir =
6898 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6899 cmd->Request.Timeout = 0; /* Don't time out */
6900 cmd->Request.CDB[0] = opcode;
6901 cmd->Request.CDB[1] = type;
6902 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6903 cmd->ErrorDescriptor.Addr =
6904 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6905 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6906
6907 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6908
6909 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6910 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6911 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6912 break;
6913 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6914 }
6915
6916 iounmap(vaddr);
6917
6918 /* we leak the DMA buffer here ... no choice since the controller could
6919 * still complete the command.
6920 */
6921 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6922 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6923 opcode, type);
6924 return -ETIMEDOUT;
6925 }
6926
6927 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6928
6929 if (tag & HPSA_ERROR_BIT) {
6930 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6931 opcode, type);
6932 return -EIO;
6933 }
6934
6935 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6936 opcode, type);
6937 return 0;
6938 }
6939
6940 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6941
6942 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6943 void __iomem *vaddr, u32 use_doorbell)
6944 {
6945
6946 if (use_doorbell) {
6947 /* For everything after the P600, the PCI power state method
6948 * of resetting the controller doesn't work, so we have this
6949 * other way using the doorbell register.
6950 */
6951 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6952 writel(use_doorbell, vaddr + SA5_DOORBELL);
6953
6954 /* PMC hardware guys tell us we need a 10 second delay after
6955 * doorbell reset and before any attempt to talk to the board
6956 * at all to ensure that this actually works and doesn't fall
6957 * over in some weird corner cases.
6958 */
6959 msleep(10000);
6960 } else { /* Try to do it the PCI power state way */
6961
6962 /* Quoting from the Open CISS Specification: "The Power
6963 * Management Control/Status Register (CSR) controls the power
6964 * state of the device. The normal operating state is D0,
6965 * CSR=00h. The software off state is D3, CSR=03h. To reset
6966 * the controller, place the interface device in D3 then to D0,
6967 * this causes a secondary PCI reset which will reset the
6968 * controller." */
6969
6970 int rc = 0;
6971
6972 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6973
6974 /* enter the D3hot power management state */
6975 rc = pci_set_power_state(pdev, PCI_D3hot);
6976 if (rc)
6977 return rc;
6978
6979 msleep(500);
6980
6981 /* enter the D0 power management state */
6982 rc = pci_set_power_state(pdev, PCI_D0);
6983 if (rc)
6984 return rc;
6985
6986 /*
6987 * The P600 requires a small delay when changing states.
6988 * Otherwise we may think the board did not reset and we bail.
6989 * This for kdump only and is particular to the P600.
6990 */
6991 msleep(500);
6992 }
6993 return 0;
6994 }
6995
6996 static void init_driver_version(char *driver_version, int len)
6997 {
6998 memset(driver_version, 0, len);
6999 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7000 }
7001
7002 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7003 {
7004 char *driver_version;
7005 int i, size = sizeof(cfgtable->driver_version);
7006
7007 driver_version = kmalloc(size, GFP_KERNEL);
7008 if (!driver_version)
7009 return -ENOMEM;
7010
7011 init_driver_version(driver_version, size);
7012 for (i = 0; i < size; i++)
7013 writeb(driver_version[i], &cfgtable->driver_version[i]);
7014 kfree(driver_version);
7015 return 0;
7016 }
7017
7018 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7019 unsigned char *driver_ver)
7020 {
7021 int i;
7022
7023 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7024 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7025 }
7026
7027 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7028 {
7029
7030 char *driver_ver, *old_driver_ver;
7031 int rc, size = sizeof(cfgtable->driver_version);
7032
7033 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7034 if (!old_driver_ver)
7035 return -ENOMEM;
7036 driver_ver = old_driver_ver + size;
7037
7038 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7039 * should have been changed, otherwise we know the reset failed.
7040 */
7041 init_driver_version(old_driver_ver, size);
7042 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7043 rc = !memcmp(driver_ver, old_driver_ver, size);
7044 kfree(old_driver_ver);
7045 return rc;
7046 }
7047 /* This does a hard reset of the controller using PCI power management
7048 * states or the using the doorbell register.
7049 */
7050 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7051 {
7052 u64 cfg_offset;
7053 u32 cfg_base_addr;
7054 u64 cfg_base_addr_index;
7055 void __iomem *vaddr;
7056 unsigned long paddr;
7057 u32 misc_fw_support;
7058 int rc;
7059 struct CfgTable __iomem *cfgtable;
7060 u32 use_doorbell;
7061 u16 command_register;
7062
7063 /* For controllers as old as the P600, this is very nearly
7064 * the same thing as
7065 *
7066 * pci_save_state(pci_dev);
7067 * pci_set_power_state(pci_dev, PCI_D3hot);
7068 * pci_set_power_state(pci_dev, PCI_D0);
7069 * pci_restore_state(pci_dev);
7070 *
7071 * For controllers newer than the P600, the pci power state
7072 * method of resetting doesn't work so we have another way
7073 * using the doorbell register.
7074 */
7075
7076 if (!ctlr_is_resettable(board_id)) {
7077 dev_warn(&pdev->dev, "Controller not resettable\n");
7078 return -ENODEV;
7079 }
7080
7081 /* if controller is soft- but not hard resettable... */
7082 if (!ctlr_is_hard_resettable(board_id))
7083 return -ENOTSUPP; /* try soft reset later. */
7084
7085 /* Save the PCI command register */
7086 pci_read_config_word(pdev, 4, &command_register);
7087 pci_save_state(pdev);
7088
7089 /* find the first memory BAR, so we can find the cfg table */
7090 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7091 if (rc)
7092 return rc;
7093 vaddr = remap_pci_mem(paddr, 0x250);
7094 if (!vaddr)
7095 return -ENOMEM;
7096
7097 /* find cfgtable in order to check if reset via doorbell is supported */
7098 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7099 &cfg_base_addr_index, &cfg_offset);
7100 if (rc)
7101 goto unmap_vaddr;
7102 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7103 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7104 if (!cfgtable) {
7105 rc = -ENOMEM;
7106 goto unmap_vaddr;
7107 }
7108 rc = write_driver_ver_to_cfgtable(cfgtable);
7109 if (rc)
7110 goto unmap_cfgtable;
7111
7112 /* If reset via doorbell register is supported, use that.
7113 * There are two such methods. Favor the newest method.
7114 */
7115 misc_fw_support = readl(&cfgtable->misc_fw_support);
7116 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7117 if (use_doorbell) {
7118 use_doorbell = DOORBELL_CTLR_RESET2;
7119 } else {
7120 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7121 if (use_doorbell) {
7122 dev_warn(&pdev->dev,
7123 "Soft reset not supported. Firmware update is required.\n");
7124 rc = -ENOTSUPP; /* try soft reset */
7125 goto unmap_cfgtable;
7126 }
7127 }
7128
7129 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7130 if (rc)
7131 goto unmap_cfgtable;
7132
7133 pci_restore_state(pdev);
7134 pci_write_config_word(pdev, 4, command_register);
7135
7136 /* Some devices (notably the HP Smart Array 5i Controller)
7137 need a little pause here */
7138 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7139
7140 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7141 if (rc) {
7142 dev_warn(&pdev->dev,
7143 "Failed waiting for board to become ready after hard reset\n");
7144 goto unmap_cfgtable;
7145 }
7146
7147 rc = controller_reset_failed(vaddr);
7148 if (rc < 0)
7149 goto unmap_cfgtable;
7150 if (rc) {
7151 dev_warn(&pdev->dev, "Unable to successfully reset "
7152 "controller. Will try soft reset.\n");
7153 rc = -ENOTSUPP;
7154 } else {
7155 dev_info(&pdev->dev, "board ready after hard reset.\n");
7156 }
7157
7158 unmap_cfgtable:
7159 iounmap(cfgtable);
7160
7161 unmap_vaddr:
7162 iounmap(vaddr);
7163 return rc;
7164 }
7165
7166 /*
7167 * We cannot read the structure directly, for portability we must use
7168 * the io functions.
7169 * This is for debug only.
7170 */
7171 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7172 {
7173 #ifdef HPSA_DEBUG
7174 int i;
7175 char temp_name[17];
7176
7177 dev_info(dev, "Controller Configuration information\n");
7178 dev_info(dev, "------------------------------------\n");
7179 for (i = 0; i < 4; i++)
7180 temp_name[i] = readb(&(tb->Signature[i]));
7181 temp_name[4] = '\0';
7182 dev_info(dev, " Signature = %s\n", temp_name);
7183 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7184 dev_info(dev, " Transport methods supported = 0x%x\n",
7185 readl(&(tb->TransportSupport)));
7186 dev_info(dev, " Transport methods active = 0x%x\n",
7187 readl(&(tb->TransportActive)));
7188 dev_info(dev, " Requested transport Method = 0x%x\n",
7189 readl(&(tb->HostWrite.TransportRequest)));
7190 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7191 readl(&(tb->HostWrite.CoalIntDelay)));
7192 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7193 readl(&(tb->HostWrite.CoalIntCount)));
7194 dev_info(dev, " Max outstanding commands = %d\n",
7195 readl(&(tb->CmdsOutMax)));
7196 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7197 for (i = 0; i < 16; i++)
7198 temp_name[i] = readb(&(tb->ServerName[i]));
7199 temp_name[16] = '\0';
7200 dev_info(dev, " Server Name = %s\n", temp_name);
7201 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7202 readl(&(tb->HeartBeat)));
7203 #endif /* HPSA_DEBUG */
7204 }
7205
7206 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7207 {
7208 int i, offset, mem_type, bar_type;
7209
7210 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7211 return 0;
7212 offset = 0;
7213 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7214 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7215 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7216 offset += 4;
7217 else {
7218 mem_type = pci_resource_flags(pdev, i) &
7219 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7220 switch (mem_type) {
7221 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7222 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7223 offset += 4; /* 32 bit */
7224 break;
7225 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7226 offset += 8;
7227 break;
7228 default: /* reserved in PCI 2.2 */
7229 dev_warn(&pdev->dev,
7230 "base address is invalid\n");
7231 return -1;
7232 break;
7233 }
7234 }
7235 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7236 return i + 1;
7237 }
7238 return -1;
7239 }
7240
7241 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7242 {
7243 pci_free_irq_vectors(h->pdev);
7244 h->msix_vectors = 0;
7245 }
7246
7247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7248 * controllers that are capable. If not, we use legacy INTx mode.
7249 */
7250 static int hpsa_interrupt_mode(struct ctlr_info *h)
7251 {
7252 unsigned int flags = PCI_IRQ_LEGACY;
7253 int ret;
7254
7255 /* Some boards advertise MSI but don't really support it */
7256 switch (h->board_id) {
7257 case 0x40700E11:
7258 case 0x40800E11:
7259 case 0x40820E11:
7260 case 0x40830E11:
7261 break;
7262 default:
7263 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7264 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7265 if (ret > 0) {
7266 h->msix_vectors = ret;
7267 return 0;
7268 }
7269
7270 flags |= PCI_IRQ_MSI;
7271 break;
7272 }
7273
7274 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7275 if (ret < 0)
7276 return ret;
7277 return 0;
7278 }
7279
7280 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7281 bool *legacy_board)
7282 {
7283 int i;
7284 u32 subsystem_vendor_id, subsystem_device_id;
7285
7286 subsystem_vendor_id = pdev->subsystem_vendor;
7287 subsystem_device_id = pdev->subsystem_device;
7288 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7289 subsystem_vendor_id;
7290
7291 if (legacy_board)
7292 *legacy_board = false;
7293 for (i = 0; i < ARRAY_SIZE(products); i++)
7294 if (*board_id == products[i].board_id) {
7295 if (products[i].access != &SA5A_access &&
7296 products[i].access != &SA5B_access)
7297 return i;
7298 dev_warn(&pdev->dev,
7299 "legacy board ID: 0x%08x\n",
7300 *board_id);
7301 if (legacy_board)
7302 *legacy_board = true;
7303 return i;
7304 }
7305
7306 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7307 if (legacy_board)
7308 *legacy_board = true;
7309 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7310 }
7311
7312 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7313 unsigned long *memory_bar)
7314 {
7315 int i;
7316
7317 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7318 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7319 /* addressing mode bits already removed */
7320 *memory_bar = pci_resource_start(pdev, i);
7321 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7322 *memory_bar);
7323 return 0;
7324 }
7325 dev_warn(&pdev->dev, "no memory BAR found\n");
7326 return -ENODEV;
7327 }
7328
7329 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7330 int wait_for_ready)
7331 {
7332 int i, iterations;
7333 u32 scratchpad;
7334 if (wait_for_ready)
7335 iterations = HPSA_BOARD_READY_ITERATIONS;
7336 else
7337 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7338
7339 for (i = 0; i < iterations; i++) {
7340 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7341 if (wait_for_ready) {
7342 if (scratchpad == HPSA_FIRMWARE_READY)
7343 return 0;
7344 } else {
7345 if (scratchpad != HPSA_FIRMWARE_READY)
7346 return 0;
7347 }
7348 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7349 }
7350 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7351 return -ENODEV;
7352 }
7353
7354 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7355 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7356 u64 *cfg_offset)
7357 {
7358 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7359 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7360 *cfg_base_addr &= (u32) 0x0000ffff;
7361 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7362 if (*cfg_base_addr_index == -1) {
7363 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7364 return -ENODEV;
7365 }
7366 return 0;
7367 }
7368
7369 static void hpsa_free_cfgtables(struct ctlr_info *h)
7370 {
7371 if (h->transtable) {
7372 iounmap(h->transtable);
7373 h->transtable = NULL;
7374 }
7375 if (h->cfgtable) {
7376 iounmap(h->cfgtable);
7377 h->cfgtable = NULL;
7378 }
7379 }
7380
7381 /* Find and map CISS config table and transfer table
7382 + * several items must be unmapped (freed) later
7383 + * */
7384 static int hpsa_find_cfgtables(struct ctlr_info *h)
7385 {
7386 u64 cfg_offset;
7387 u32 cfg_base_addr;
7388 u64 cfg_base_addr_index;
7389 u32 trans_offset;
7390 int rc;
7391
7392 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7393 &cfg_base_addr_index, &cfg_offset);
7394 if (rc)
7395 return rc;
7396 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7397 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7398 if (!h->cfgtable) {
7399 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7400 return -ENOMEM;
7401 }
7402 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7403 if (rc)
7404 return rc;
7405 /* Find performant mode table. */
7406 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7407 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7408 cfg_base_addr_index)+cfg_offset+trans_offset,
7409 sizeof(*h->transtable));
7410 if (!h->transtable) {
7411 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7412 hpsa_free_cfgtables(h);
7413 return -ENOMEM;
7414 }
7415 return 0;
7416 }
7417
7418 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7419 {
7420 #define MIN_MAX_COMMANDS 16
7421 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7422
7423 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7424
7425 /* Limit commands in memory limited kdump scenario. */
7426 if (reset_devices && h->max_commands > 32)
7427 h->max_commands = 32;
7428
7429 if (h->max_commands < MIN_MAX_COMMANDS) {
7430 dev_warn(&h->pdev->dev,
7431 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7432 h->max_commands,
7433 MIN_MAX_COMMANDS);
7434 h->max_commands = MIN_MAX_COMMANDS;
7435 }
7436 }
7437
7438 /* If the controller reports that the total max sg entries is greater than 512,
7439 * then we know that chained SG blocks work. (Original smart arrays did not
7440 * support chained SG blocks and would return zero for max sg entries.)
7441 */
7442 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7443 {
7444 return h->maxsgentries > 512;
7445 }
7446
7447 /* Interrogate the hardware for some limits:
7448 * max commands, max SG elements without chaining, and with chaining,
7449 * SG chain block size, etc.
7450 */
7451 static void hpsa_find_board_params(struct ctlr_info *h)
7452 {
7453 hpsa_get_max_perf_mode_cmds(h);
7454 h->nr_cmds = h->max_commands;
7455 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7456 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7457 if (hpsa_supports_chained_sg_blocks(h)) {
7458 /* Limit in-command s/g elements to 32 save dma'able memory. */
7459 h->max_cmd_sg_entries = 32;
7460 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7461 h->maxsgentries--; /* save one for chain pointer */
7462 } else {
7463 /*
7464 * Original smart arrays supported at most 31 s/g entries
7465 * embedded inline in the command (trying to use more
7466 * would lock up the controller)
7467 */
7468 h->max_cmd_sg_entries = 31;
7469 h->maxsgentries = 31; /* default to traditional values */
7470 h->chainsize = 0;
7471 }
7472
7473 /* Find out what task management functions are supported and cache */
7474 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7475 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7476 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7477 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7478 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7479 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7480 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7481 }
7482
7483 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7484 {
7485 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7486 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7487 return false;
7488 }
7489 return true;
7490 }
7491
7492 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7493 {
7494 u32 driver_support;
7495
7496 driver_support = readl(&(h->cfgtable->driver_support));
7497 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7498 #ifdef CONFIG_X86
7499 driver_support |= ENABLE_SCSI_PREFETCH;
7500 #endif
7501 driver_support |= ENABLE_UNIT_ATTN;
7502 writel(driver_support, &(h->cfgtable->driver_support));
7503 }
7504
7505 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7506 * in a prefetch beyond physical memory.
7507 */
7508 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7509 {
7510 u32 dma_prefetch;
7511
7512 if (h->board_id != 0x3225103C)
7513 return;
7514 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7515 dma_prefetch |= 0x8000;
7516 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7517 }
7518
7519 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7520 {
7521 int i;
7522 u32 doorbell_value;
7523 unsigned long flags;
7524 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7525 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7526 spin_lock_irqsave(&h->lock, flags);
7527 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7528 spin_unlock_irqrestore(&h->lock, flags);
7529 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7530 goto done;
7531 /* delay and try again */
7532 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7533 }
7534 return -ENODEV;
7535 done:
7536 return 0;
7537 }
7538
7539 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7540 {
7541 int i;
7542 u32 doorbell_value;
7543 unsigned long flags;
7544
7545 /* under certain very rare conditions, this can take awhile.
7546 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7547 * as we enter this code.)
7548 */
7549 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7550 if (h->remove_in_progress)
7551 goto done;
7552 spin_lock_irqsave(&h->lock, flags);
7553 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7554 spin_unlock_irqrestore(&h->lock, flags);
7555 if (!(doorbell_value & CFGTBL_ChangeReq))
7556 goto done;
7557 /* delay and try again */
7558 msleep(MODE_CHANGE_WAIT_INTERVAL);
7559 }
7560 return -ENODEV;
7561 done:
7562 return 0;
7563 }
7564
7565 /* return -ENODEV or other reason on error, 0 on success */
7566 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7567 {
7568 u32 trans_support;
7569
7570 trans_support = readl(&(h->cfgtable->TransportSupport));
7571 if (!(trans_support & SIMPLE_MODE))
7572 return -ENOTSUPP;
7573
7574 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7575
7576 /* Update the field, and then ring the doorbell */
7577 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7578 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7579 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7580 if (hpsa_wait_for_mode_change_ack(h))
7581 goto error;
7582 print_cfg_table(&h->pdev->dev, h->cfgtable);
7583 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7584 goto error;
7585 h->transMethod = CFGTBL_Trans_Simple;
7586 return 0;
7587 error:
7588 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7589 return -ENODEV;
7590 }
7591
7592 /* free items allocated or mapped by hpsa_pci_init */
7593 static void hpsa_free_pci_init(struct ctlr_info *h)
7594 {
7595 hpsa_free_cfgtables(h); /* pci_init 4 */
7596 iounmap(h->vaddr); /* pci_init 3 */
7597 h->vaddr = NULL;
7598 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7599 /*
7600 * call pci_disable_device before pci_release_regions per
7601 * Documentation/PCI/pci.txt
7602 */
7603 pci_disable_device(h->pdev); /* pci_init 1 */
7604 pci_release_regions(h->pdev); /* pci_init 2 */
7605 }
7606
7607 /* several items must be freed later */
7608 static int hpsa_pci_init(struct ctlr_info *h)
7609 {
7610 int prod_index, err;
7611 bool legacy_board;
7612
7613 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7614 if (prod_index < 0)
7615 return prod_index;
7616 h->product_name = products[prod_index].product_name;
7617 h->access = *(products[prod_index].access);
7618 h->legacy_board = legacy_board;
7619 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7620 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7621
7622 err = pci_enable_device(h->pdev);
7623 if (err) {
7624 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7625 pci_disable_device(h->pdev);
7626 return err;
7627 }
7628
7629 err = pci_request_regions(h->pdev, HPSA);
7630 if (err) {
7631 dev_err(&h->pdev->dev,
7632 "failed to obtain PCI resources\n");
7633 pci_disable_device(h->pdev);
7634 return err;
7635 }
7636
7637 pci_set_master(h->pdev);
7638
7639 err = hpsa_interrupt_mode(h);
7640 if (err)
7641 goto clean1;
7642 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7643 if (err)
7644 goto clean2; /* intmode+region, pci */
7645 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7646 if (!h->vaddr) {
7647 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7648 err = -ENOMEM;
7649 goto clean2; /* intmode+region, pci */
7650 }
7651 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7652 if (err)
7653 goto clean3; /* vaddr, intmode+region, pci */
7654 err = hpsa_find_cfgtables(h);
7655 if (err)
7656 goto clean3; /* vaddr, intmode+region, pci */
7657 hpsa_find_board_params(h);
7658
7659 if (!hpsa_CISS_signature_present(h)) {
7660 err = -ENODEV;
7661 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7662 }
7663 hpsa_set_driver_support_bits(h);
7664 hpsa_p600_dma_prefetch_quirk(h);
7665 err = hpsa_enter_simple_mode(h);
7666 if (err)
7667 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7668 return 0;
7669
7670 clean4: /* cfgtables, vaddr, intmode+region, pci */
7671 hpsa_free_cfgtables(h);
7672 clean3: /* vaddr, intmode+region, pci */
7673 iounmap(h->vaddr);
7674 h->vaddr = NULL;
7675 clean2: /* intmode+region, pci */
7676 hpsa_disable_interrupt_mode(h);
7677 clean1:
7678 /*
7679 * call pci_disable_device before pci_release_regions per
7680 * Documentation/PCI/pci.txt
7681 */
7682 pci_disable_device(h->pdev);
7683 pci_release_regions(h->pdev);
7684 return err;
7685 }
7686
7687 static void hpsa_hba_inquiry(struct ctlr_info *h)
7688 {
7689 int rc;
7690
7691 #define HBA_INQUIRY_BYTE_COUNT 64
7692 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7693 if (!h->hba_inquiry_data)
7694 return;
7695 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7696 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7697 if (rc != 0) {
7698 kfree(h->hba_inquiry_data);
7699 h->hba_inquiry_data = NULL;
7700 }
7701 }
7702
7703 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7704 {
7705 int rc, i;
7706 void __iomem *vaddr;
7707
7708 if (!reset_devices)
7709 return 0;
7710
7711 /* kdump kernel is loading, we don't know in which state is
7712 * the pci interface. The dev->enable_cnt is equal zero
7713 * so we call enable+disable, wait a while and switch it on.
7714 */
7715 rc = pci_enable_device(pdev);
7716 if (rc) {
7717 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7718 return -ENODEV;
7719 }
7720 pci_disable_device(pdev);
7721 msleep(260); /* a randomly chosen number */
7722 rc = pci_enable_device(pdev);
7723 if (rc) {
7724 dev_warn(&pdev->dev, "failed to enable device.\n");
7725 return -ENODEV;
7726 }
7727
7728 pci_set_master(pdev);
7729
7730 vaddr = pci_ioremap_bar(pdev, 0);
7731 if (vaddr == NULL) {
7732 rc = -ENOMEM;
7733 goto out_disable;
7734 }
7735 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7736 iounmap(vaddr);
7737
7738 /* Reset the controller with a PCI power-cycle or via doorbell */
7739 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7740
7741 /* -ENOTSUPP here means we cannot reset the controller
7742 * but it's already (and still) up and running in
7743 * "performant mode". Or, it might be 640x, which can't reset
7744 * due to concerns about shared bbwc between 6402/6404 pair.
7745 */
7746 if (rc)
7747 goto out_disable;
7748
7749 /* Now try to get the controller to respond to a no-op */
7750 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7751 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7752 if (hpsa_noop(pdev) == 0)
7753 break;
7754 else
7755 dev_warn(&pdev->dev, "no-op failed%s\n",
7756 (i < 11 ? "; re-trying" : ""));
7757 }
7758
7759 out_disable:
7760
7761 pci_disable_device(pdev);
7762 return rc;
7763 }
7764
7765 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7766 {
7767 kfree(h->cmd_pool_bits);
7768 h->cmd_pool_bits = NULL;
7769 if (h->cmd_pool) {
7770 pci_free_consistent(h->pdev,
7771 h->nr_cmds * sizeof(struct CommandList),
7772 h->cmd_pool,
7773 h->cmd_pool_dhandle);
7774 h->cmd_pool = NULL;
7775 h->cmd_pool_dhandle = 0;
7776 }
7777 if (h->errinfo_pool) {
7778 pci_free_consistent(h->pdev,
7779 h->nr_cmds * sizeof(struct ErrorInfo),
7780 h->errinfo_pool,
7781 h->errinfo_pool_dhandle);
7782 h->errinfo_pool = NULL;
7783 h->errinfo_pool_dhandle = 0;
7784 }
7785 }
7786
7787 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7788 {
7789 h->cmd_pool_bits = kzalloc(
7790 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7791 sizeof(unsigned long), GFP_KERNEL);
7792 h->cmd_pool = pci_alloc_consistent(h->pdev,
7793 h->nr_cmds * sizeof(*h->cmd_pool),
7794 &(h->cmd_pool_dhandle));
7795 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7796 h->nr_cmds * sizeof(*h->errinfo_pool),
7797 &(h->errinfo_pool_dhandle));
7798 if ((h->cmd_pool_bits == NULL)
7799 || (h->cmd_pool == NULL)
7800 || (h->errinfo_pool == NULL)) {
7801 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7802 goto clean_up;
7803 }
7804 hpsa_preinitialize_commands(h);
7805 return 0;
7806 clean_up:
7807 hpsa_free_cmd_pool(h);
7808 return -ENOMEM;
7809 }
7810
7811 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7812 static void hpsa_free_irqs(struct ctlr_info *h)
7813 {
7814 int i;
7815
7816 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7817 /* Single reply queue, only one irq to free */
7818 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7819 h->q[h->intr_mode] = 0;
7820 return;
7821 }
7822
7823 for (i = 0; i < h->msix_vectors; i++) {
7824 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7825 h->q[i] = 0;
7826 }
7827 for (; i < MAX_REPLY_QUEUES; i++)
7828 h->q[i] = 0;
7829 }
7830
7831 /* returns 0 on success; cleans up and returns -Enn on error */
7832 static int hpsa_request_irqs(struct ctlr_info *h,
7833 irqreturn_t (*msixhandler)(int, void *),
7834 irqreturn_t (*intxhandler)(int, void *))
7835 {
7836 int rc, i;
7837
7838 /*
7839 * initialize h->q[x] = x so that interrupt handlers know which
7840 * queue to process.
7841 */
7842 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7843 h->q[i] = (u8) i;
7844
7845 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7846 /* If performant mode and MSI-X, use multiple reply queues */
7847 for (i = 0; i < h->msix_vectors; i++) {
7848 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7849 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7850 0, h->intrname[i],
7851 &h->q[i]);
7852 if (rc) {
7853 int j;
7854
7855 dev_err(&h->pdev->dev,
7856 "failed to get irq %d for %s\n",
7857 pci_irq_vector(h->pdev, i), h->devname);
7858 for (j = 0; j < i; j++) {
7859 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7860 h->q[j] = 0;
7861 }
7862 for (; j < MAX_REPLY_QUEUES; j++)
7863 h->q[j] = 0;
7864 return rc;
7865 }
7866 }
7867 } else {
7868 /* Use single reply pool */
7869 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7870 sprintf(h->intrname[0], "%s-msi%s", h->devname,
7871 h->msix_vectors ? "x" : "");
7872 rc = request_irq(pci_irq_vector(h->pdev, 0),
7873 msixhandler, 0,
7874 h->intrname[0],
7875 &h->q[h->intr_mode]);
7876 } else {
7877 sprintf(h->intrname[h->intr_mode],
7878 "%s-intx", h->devname);
7879 rc = request_irq(pci_irq_vector(h->pdev, 0),
7880 intxhandler, IRQF_SHARED,
7881 h->intrname[0],
7882 &h->q[h->intr_mode]);
7883 }
7884 }
7885 if (rc) {
7886 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7887 pci_irq_vector(h->pdev, 0), h->devname);
7888 hpsa_free_irqs(h);
7889 return -ENODEV;
7890 }
7891 return 0;
7892 }
7893
7894 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7895 {
7896 int rc;
7897 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7898
7899 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7900 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7901 if (rc) {
7902 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7903 return rc;
7904 }
7905
7906 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7907 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7908 if (rc) {
7909 dev_warn(&h->pdev->dev, "Board failed to become ready "
7910 "after soft reset.\n");
7911 return rc;
7912 }
7913
7914 return 0;
7915 }
7916
7917 static void hpsa_free_reply_queues(struct ctlr_info *h)
7918 {
7919 int i;
7920
7921 for (i = 0; i < h->nreply_queues; i++) {
7922 if (!h->reply_queue[i].head)
7923 continue;
7924 pci_free_consistent(h->pdev,
7925 h->reply_queue_size,
7926 h->reply_queue[i].head,
7927 h->reply_queue[i].busaddr);
7928 h->reply_queue[i].head = NULL;
7929 h->reply_queue[i].busaddr = 0;
7930 }
7931 h->reply_queue_size = 0;
7932 }
7933
7934 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7935 {
7936 hpsa_free_performant_mode(h); /* init_one 7 */
7937 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7938 hpsa_free_cmd_pool(h); /* init_one 5 */
7939 hpsa_free_irqs(h); /* init_one 4 */
7940 scsi_host_put(h->scsi_host); /* init_one 3 */
7941 h->scsi_host = NULL; /* init_one 3 */
7942 hpsa_free_pci_init(h); /* init_one 2_5 */
7943 free_percpu(h->lockup_detected); /* init_one 2 */
7944 h->lockup_detected = NULL; /* init_one 2 */
7945 if (h->resubmit_wq) {
7946 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
7947 h->resubmit_wq = NULL;
7948 }
7949 if (h->rescan_ctlr_wq) {
7950 destroy_workqueue(h->rescan_ctlr_wq);
7951 h->rescan_ctlr_wq = NULL;
7952 }
7953 kfree(h); /* init_one 1 */
7954 }
7955
7956 /* Called when controller lockup detected. */
7957 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7958 {
7959 int i, refcount;
7960 struct CommandList *c;
7961 int failcount = 0;
7962
7963 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7964 for (i = 0; i < h->nr_cmds; i++) {
7965 c = h->cmd_pool + i;
7966 refcount = atomic_inc_return(&c->refcount);
7967 if (refcount > 1) {
7968 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7969 finish_cmd(c);
7970 atomic_dec(&h->commands_outstanding);
7971 failcount++;
7972 }
7973 cmd_free(h, c);
7974 }
7975 dev_warn(&h->pdev->dev,
7976 "failed %d commands in fail_all\n", failcount);
7977 }
7978
7979 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7980 {
7981 int cpu;
7982
7983 for_each_online_cpu(cpu) {
7984 u32 *lockup_detected;
7985 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7986 *lockup_detected = value;
7987 }
7988 wmb(); /* be sure the per-cpu variables are out to memory */
7989 }
7990
7991 static void controller_lockup_detected(struct ctlr_info *h)
7992 {
7993 unsigned long flags;
7994 u32 lockup_detected;
7995
7996 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7997 spin_lock_irqsave(&h->lock, flags);
7998 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7999 if (!lockup_detected) {
8000 /* no heartbeat, but controller gave us a zero. */
8001 dev_warn(&h->pdev->dev,
8002 "lockup detected after %d but scratchpad register is zero\n",
8003 h->heartbeat_sample_interval / HZ);
8004 lockup_detected = 0xffffffff;
8005 }
8006 set_lockup_detected_for_all_cpus(h, lockup_detected);
8007 spin_unlock_irqrestore(&h->lock, flags);
8008 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8009 lockup_detected, h->heartbeat_sample_interval / HZ);
8010 pci_disable_device(h->pdev);
8011 fail_all_outstanding_cmds(h);
8012 }
8013
8014 static int detect_controller_lockup(struct ctlr_info *h)
8015 {
8016 u64 now;
8017 u32 heartbeat;
8018 unsigned long flags;
8019
8020 now = get_jiffies_64();
8021 /* If we've received an interrupt recently, we're ok. */
8022 if (time_after64(h->last_intr_timestamp +
8023 (h->heartbeat_sample_interval), now))
8024 return false;
8025
8026 /*
8027 * If we've already checked the heartbeat recently, we're ok.
8028 * This could happen if someone sends us a signal. We
8029 * otherwise don't care about signals in this thread.
8030 */
8031 if (time_after64(h->last_heartbeat_timestamp +
8032 (h->heartbeat_sample_interval), now))
8033 return false;
8034
8035 /* If heartbeat has not changed since we last looked, we're not ok. */
8036 spin_lock_irqsave(&h->lock, flags);
8037 heartbeat = readl(&h->cfgtable->HeartBeat);
8038 spin_unlock_irqrestore(&h->lock, flags);
8039 if (h->last_heartbeat == heartbeat) {
8040 controller_lockup_detected(h);
8041 return true;
8042 }
8043
8044 /* We're ok. */
8045 h->last_heartbeat = heartbeat;
8046 h->last_heartbeat_timestamp = now;
8047 return false;
8048 }
8049
8050 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8051 {
8052 int i;
8053 char *event_type;
8054
8055 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8056 return;
8057
8058 /* Ask the controller to clear the events we're handling. */
8059 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8060 | CFGTBL_Trans_io_accel2)) &&
8061 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8062 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8063
8064 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8065 event_type = "state change";
8066 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8067 event_type = "configuration change";
8068 /* Stop sending new RAID offload reqs via the IO accelerator */
8069 scsi_block_requests(h->scsi_host);
8070 for (i = 0; i < h->ndevices; i++) {
8071 h->dev[i]->offload_enabled = 0;
8072 h->dev[i]->offload_to_be_enabled = 0;
8073 }
8074 hpsa_drain_accel_commands(h);
8075 /* Set 'accelerator path config change' bit */
8076 dev_warn(&h->pdev->dev,
8077 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8078 h->events, event_type);
8079 writel(h->events, &(h->cfgtable->clear_event_notify));
8080 /* Set the "clear event notify field update" bit 6 */
8081 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8082 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8083 hpsa_wait_for_clear_event_notify_ack(h);
8084 scsi_unblock_requests(h->scsi_host);
8085 } else {
8086 /* Acknowledge controller notification events. */
8087 writel(h->events, &(h->cfgtable->clear_event_notify));
8088 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8089 hpsa_wait_for_clear_event_notify_ack(h);
8090 #if 0
8091 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8092 hpsa_wait_for_mode_change_ack(h);
8093 #endif
8094 }
8095 return;
8096 }
8097
8098 /* Check a register on the controller to see if there are configuration
8099 * changes (added/changed/removed logical drives, etc.) which mean that
8100 * we should rescan the controller for devices.
8101 * Also check flag for driver-initiated rescan.
8102 */
8103 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8104 {
8105 if (h->drv_req_rescan) {
8106 h->drv_req_rescan = 0;
8107 return 1;
8108 }
8109
8110 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8111 return 0;
8112
8113 h->events = readl(&(h->cfgtable->event_notify));
8114 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8115 }
8116
8117 /*
8118 * Check if any of the offline devices have become ready
8119 */
8120 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8121 {
8122 unsigned long flags;
8123 struct offline_device_entry *d;
8124 struct list_head *this, *tmp;
8125
8126 spin_lock_irqsave(&h->offline_device_lock, flags);
8127 list_for_each_safe(this, tmp, &h->offline_device_list) {
8128 d = list_entry(this, struct offline_device_entry,
8129 offline_list);
8130 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8131 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8132 spin_lock_irqsave(&h->offline_device_lock, flags);
8133 list_del(&d->offline_list);
8134 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8135 return 1;
8136 }
8137 spin_lock_irqsave(&h->offline_device_lock, flags);
8138 }
8139 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8140 return 0;
8141 }
8142
8143 static int hpsa_luns_changed(struct ctlr_info *h)
8144 {
8145 int rc = 1; /* assume there are changes */
8146 struct ReportLUNdata *logdev = NULL;
8147
8148 /* if we can't find out if lun data has changed,
8149 * assume that it has.
8150 */
8151
8152 if (!h->lastlogicals)
8153 return rc;
8154
8155 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8156 if (!logdev)
8157 return rc;
8158
8159 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8160 dev_warn(&h->pdev->dev,
8161 "report luns failed, can't track lun changes.\n");
8162 goto out;
8163 }
8164 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8165 dev_info(&h->pdev->dev,
8166 "Lun changes detected.\n");
8167 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8168 goto out;
8169 } else
8170 rc = 0; /* no changes detected. */
8171 out:
8172 kfree(logdev);
8173 return rc;
8174 }
8175
8176 static void hpsa_perform_rescan(struct ctlr_info *h)
8177 {
8178 struct Scsi_Host *sh = NULL;
8179 unsigned long flags;
8180
8181 /*
8182 * Do the scan after the reset
8183 */
8184 spin_lock_irqsave(&h->reset_lock, flags);
8185 if (h->reset_in_progress) {
8186 h->drv_req_rescan = 1;
8187 spin_unlock_irqrestore(&h->reset_lock, flags);
8188 return;
8189 }
8190 spin_unlock_irqrestore(&h->reset_lock, flags);
8191
8192 sh = scsi_host_get(h->scsi_host);
8193 if (sh != NULL) {
8194 hpsa_scan_start(sh);
8195 scsi_host_put(sh);
8196 h->drv_req_rescan = 0;
8197 }
8198 }
8199
8200 /*
8201 * watch for controller events
8202 */
8203 static void hpsa_event_monitor_worker(struct work_struct *work)
8204 {
8205 struct ctlr_info *h = container_of(to_delayed_work(work),
8206 struct ctlr_info, event_monitor_work);
8207 unsigned long flags;
8208
8209 spin_lock_irqsave(&h->lock, flags);
8210 if (h->remove_in_progress) {
8211 spin_unlock_irqrestore(&h->lock, flags);
8212 return;
8213 }
8214 spin_unlock_irqrestore(&h->lock, flags);
8215
8216 if (hpsa_ctlr_needs_rescan(h)) {
8217 hpsa_ack_ctlr_events(h);
8218 hpsa_perform_rescan(h);
8219 }
8220
8221 spin_lock_irqsave(&h->lock, flags);
8222 if (!h->remove_in_progress)
8223 schedule_delayed_work(&h->event_monitor_work,
8224 HPSA_EVENT_MONITOR_INTERVAL);
8225 spin_unlock_irqrestore(&h->lock, flags);
8226 }
8227
8228 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8229 {
8230 unsigned long flags;
8231 struct ctlr_info *h = container_of(to_delayed_work(work),
8232 struct ctlr_info, rescan_ctlr_work);
8233
8234 spin_lock_irqsave(&h->lock, flags);
8235 if (h->remove_in_progress) {
8236 spin_unlock_irqrestore(&h->lock, flags);
8237 return;
8238 }
8239 spin_unlock_irqrestore(&h->lock, flags);
8240
8241 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8242 hpsa_perform_rescan(h);
8243 } else if (h->discovery_polling) {
8244 hpsa_disable_rld_caching(h);
8245 if (hpsa_luns_changed(h)) {
8246 dev_info(&h->pdev->dev,
8247 "driver discovery polling rescan.\n");
8248 hpsa_perform_rescan(h);
8249 }
8250 }
8251 spin_lock_irqsave(&h->lock, flags);
8252 if (!h->remove_in_progress)
8253 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8254 h->heartbeat_sample_interval);
8255 spin_unlock_irqrestore(&h->lock, flags);
8256 }
8257
8258 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8259 {
8260 unsigned long flags;
8261 struct ctlr_info *h = container_of(to_delayed_work(work),
8262 struct ctlr_info, monitor_ctlr_work);
8263
8264 detect_controller_lockup(h);
8265 if (lockup_detected(h))
8266 return;
8267
8268 spin_lock_irqsave(&h->lock, flags);
8269 if (!h->remove_in_progress)
8270 schedule_delayed_work(&h->monitor_ctlr_work,
8271 h->heartbeat_sample_interval);
8272 spin_unlock_irqrestore(&h->lock, flags);
8273 }
8274
8275 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8276 char *name)
8277 {
8278 struct workqueue_struct *wq = NULL;
8279
8280 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8281 if (!wq)
8282 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8283
8284 return wq;
8285 }
8286
8287 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8288 {
8289 int dac, rc;
8290 struct ctlr_info *h;
8291 int try_soft_reset = 0;
8292 unsigned long flags;
8293 u32 board_id;
8294
8295 if (number_of_controllers == 0)
8296 printk(KERN_INFO DRIVER_NAME "\n");
8297
8298 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8299 if (rc < 0) {
8300 dev_warn(&pdev->dev, "Board ID not found\n");
8301 return rc;
8302 }
8303
8304 rc = hpsa_init_reset_devices(pdev, board_id);
8305 if (rc) {
8306 if (rc != -ENOTSUPP)
8307 return rc;
8308 /* If the reset fails in a particular way (it has no way to do
8309 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8310 * a soft reset once we get the controller configured up to the
8311 * point that it can accept a command.
8312 */
8313 try_soft_reset = 1;
8314 rc = 0;
8315 }
8316
8317 reinit_after_soft_reset:
8318
8319 /* Command structures must be aligned on a 32-byte boundary because
8320 * the 5 lower bits of the address are used by the hardware. and by
8321 * the driver. See comments in hpsa.h for more info.
8322 */
8323 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8324 h = kzalloc(sizeof(*h), GFP_KERNEL);
8325 if (!h) {
8326 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8327 return -ENOMEM;
8328 }
8329
8330 h->pdev = pdev;
8331
8332 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8333 INIT_LIST_HEAD(&h->offline_device_list);
8334 spin_lock_init(&h->lock);
8335 spin_lock_init(&h->offline_device_lock);
8336 spin_lock_init(&h->scan_lock);
8337 spin_lock_init(&h->reset_lock);
8338 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8339
8340 /* Allocate and clear per-cpu variable lockup_detected */
8341 h->lockup_detected = alloc_percpu(u32);
8342 if (!h->lockup_detected) {
8343 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8344 rc = -ENOMEM;
8345 goto clean1; /* aer/h */
8346 }
8347 set_lockup_detected_for_all_cpus(h, 0);
8348
8349 rc = hpsa_pci_init(h);
8350 if (rc)
8351 goto clean2; /* lu, aer/h */
8352
8353 /* relies on h-> settings made by hpsa_pci_init, including
8354 * interrupt_mode h->intr */
8355 rc = hpsa_scsi_host_alloc(h);
8356 if (rc)
8357 goto clean2_5; /* pci, lu, aer/h */
8358
8359 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8360 h->ctlr = number_of_controllers;
8361 number_of_controllers++;
8362
8363 /* configure PCI DMA stuff */
8364 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8365 if (rc == 0) {
8366 dac = 1;
8367 } else {
8368 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8369 if (rc == 0) {
8370 dac = 0;
8371 } else {
8372 dev_err(&pdev->dev, "no suitable DMA available\n");
8373 goto clean3; /* shost, pci, lu, aer/h */
8374 }
8375 }
8376
8377 /* make sure the board interrupts are off */
8378 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8379
8380 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8381 if (rc)
8382 goto clean3; /* shost, pci, lu, aer/h */
8383 rc = hpsa_alloc_cmd_pool(h);
8384 if (rc)
8385 goto clean4; /* irq, shost, pci, lu, aer/h */
8386 rc = hpsa_alloc_sg_chain_blocks(h);
8387 if (rc)
8388 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8389 init_waitqueue_head(&h->scan_wait_queue);
8390 init_waitqueue_head(&h->event_sync_wait_queue);
8391 mutex_init(&h->reset_mutex);
8392 h->scan_finished = 1; /* no scan currently in progress */
8393 h->scan_waiting = 0;
8394
8395 pci_set_drvdata(pdev, h);
8396 h->ndevices = 0;
8397
8398 spin_lock_init(&h->devlock);
8399 rc = hpsa_put_ctlr_into_performant_mode(h);
8400 if (rc)
8401 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8402
8403 /* create the resubmit workqueue */
8404 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8405 if (!h->rescan_ctlr_wq) {
8406 rc = -ENOMEM;
8407 goto clean7;
8408 }
8409
8410 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8411 if (!h->resubmit_wq) {
8412 rc = -ENOMEM;
8413 goto clean7; /* aer/h */
8414 }
8415
8416 /*
8417 * At this point, the controller is ready to take commands.
8418 * Now, if reset_devices and the hard reset didn't work, try
8419 * the soft reset and see if that works.
8420 */
8421 if (try_soft_reset) {
8422
8423 /* This is kind of gross. We may or may not get a completion
8424 * from the soft reset command, and if we do, then the value
8425 * from the fifo may or may not be valid. So, we wait 10 secs
8426 * after the reset throwing away any completions we get during
8427 * that time. Unregister the interrupt handler and register
8428 * fake ones to scoop up any residual completions.
8429 */
8430 spin_lock_irqsave(&h->lock, flags);
8431 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8432 spin_unlock_irqrestore(&h->lock, flags);
8433 hpsa_free_irqs(h);
8434 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8435 hpsa_intx_discard_completions);
8436 if (rc) {
8437 dev_warn(&h->pdev->dev,
8438 "Failed to request_irq after soft reset.\n");
8439 /*
8440 * cannot goto clean7 or free_irqs will be called
8441 * again. Instead, do its work
8442 */
8443 hpsa_free_performant_mode(h); /* clean7 */
8444 hpsa_free_sg_chain_blocks(h); /* clean6 */
8445 hpsa_free_cmd_pool(h); /* clean5 */
8446 /*
8447 * skip hpsa_free_irqs(h) clean4 since that
8448 * was just called before request_irqs failed
8449 */
8450 goto clean3;
8451 }
8452
8453 rc = hpsa_kdump_soft_reset(h);
8454 if (rc)
8455 /* Neither hard nor soft reset worked, we're hosed. */
8456 goto clean7;
8457
8458 dev_info(&h->pdev->dev, "Board READY.\n");
8459 dev_info(&h->pdev->dev,
8460 "Waiting for stale completions to drain.\n");
8461 h->access.set_intr_mask(h, HPSA_INTR_ON);
8462 msleep(10000);
8463 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8464
8465 rc = controller_reset_failed(h->cfgtable);
8466 if (rc)
8467 dev_info(&h->pdev->dev,
8468 "Soft reset appears to have failed.\n");
8469
8470 /* since the controller's reset, we have to go back and re-init
8471 * everything. Easiest to just forget what we've done and do it
8472 * all over again.
8473 */
8474 hpsa_undo_allocations_after_kdump_soft_reset(h);
8475 try_soft_reset = 0;
8476 if (rc)
8477 /* don't goto clean, we already unallocated */
8478 return -ENODEV;
8479
8480 goto reinit_after_soft_reset;
8481 }
8482
8483 /* Enable Accelerated IO path at driver layer */
8484 h->acciopath_status = 1;
8485 /* Disable discovery polling.*/
8486 h->discovery_polling = 0;
8487
8488
8489 /* Turn the interrupts on so we can service requests */
8490 h->access.set_intr_mask(h, HPSA_INTR_ON);
8491
8492 hpsa_hba_inquiry(h);
8493
8494 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8495 if (!h->lastlogicals)
8496 dev_info(&h->pdev->dev,
8497 "Can't track change to report lun data\n");
8498
8499 /* hook into SCSI subsystem */
8500 rc = hpsa_scsi_add_host(h);
8501 if (rc)
8502 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8503
8504 /* Monitor the controller for firmware lockups */
8505 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8506 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8507 schedule_delayed_work(&h->monitor_ctlr_work,
8508 h->heartbeat_sample_interval);
8509 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8510 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8511 h->heartbeat_sample_interval);
8512 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8513 schedule_delayed_work(&h->event_monitor_work,
8514 HPSA_EVENT_MONITOR_INTERVAL);
8515 return 0;
8516
8517 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8518 hpsa_free_performant_mode(h);
8519 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8520 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8521 hpsa_free_sg_chain_blocks(h);
8522 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8523 hpsa_free_cmd_pool(h);
8524 clean4: /* irq, shost, pci, lu, aer/h */
8525 hpsa_free_irqs(h);
8526 clean3: /* shost, pci, lu, aer/h */
8527 scsi_host_put(h->scsi_host);
8528 h->scsi_host = NULL;
8529 clean2_5: /* pci, lu, aer/h */
8530 hpsa_free_pci_init(h);
8531 clean2: /* lu, aer/h */
8532 if (h->lockup_detected) {
8533 free_percpu(h->lockup_detected);
8534 h->lockup_detected = NULL;
8535 }
8536 clean1: /* wq/aer/h */
8537 if (h->resubmit_wq) {
8538 destroy_workqueue(h->resubmit_wq);
8539 h->resubmit_wq = NULL;
8540 }
8541 if (h->rescan_ctlr_wq) {
8542 destroy_workqueue(h->rescan_ctlr_wq);
8543 h->rescan_ctlr_wq = NULL;
8544 }
8545 kfree(h);
8546 return rc;
8547 }
8548
8549 static void hpsa_flush_cache(struct ctlr_info *h)
8550 {
8551 char *flush_buf;
8552 struct CommandList *c;
8553 int rc;
8554
8555 if (unlikely(lockup_detected(h)))
8556 return;
8557 flush_buf = kzalloc(4, GFP_KERNEL);
8558 if (!flush_buf)
8559 return;
8560
8561 c = cmd_alloc(h);
8562
8563 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8564 RAID_CTLR_LUNID, TYPE_CMD)) {
8565 goto out;
8566 }
8567 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8568 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8569 if (rc)
8570 goto out;
8571 if (c->err_info->CommandStatus != 0)
8572 out:
8573 dev_warn(&h->pdev->dev,
8574 "error flushing cache on controller\n");
8575 cmd_free(h, c);
8576 kfree(flush_buf);
8577 }
8578
8579 /* Make controller gather fresh report lun data each time we
8580 * send down a report luns request
8581 */
8582 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8583 {
8584 u32 *options;
8585 struct CommandList *c;
8586 int rc;
8587
8588 /* Don't bother trying to set diag options if locked up */
8589 if (unlikely(h->lockup_detected))
8590 return;
8591
8592 options = kzalloc(sizeof(*options), GFP_KERNEL);
8593 if (!options)
8594 return;
8595
8596 c = cmd_alloc(h);
8597
8598 /* first, get the current diag options settings */
8599 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8600 RAID_CTLR_LUNID, TYPE_CMD))
8601 goto errout;
8602
8603 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8604 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8605 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8606 goto errout;
8607
8608 /* Now, set the bit for disabling the RLD caching */
8609 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8610
8611 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8612 RAID_CTLR_LUNID, TYPE_CMD))
8613 goto errout;
8614
8615 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8616 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8617 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8618 goto errout;
8619
8620 /* Now verify that it got set: */
8621 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8622 RAID_CTLR_LUNID, TYPE_CMD))
8623 goto errout;
8624
8625 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8626 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8627 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8628 goto errout;
8629
8630 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8631 goto out;
8632
8633 errout:
8634 dev_err(&h->pdev->dev,
8635 "Error: failed to disable report lun data caching.\n");
8636 out:
8637 cmd_free(h, c);
8638 kfree(options);
8639 }
8640
8641 static void hpsa_shutdown(struct pci_dev *pdev)
8642 {
8643 struct ctlr_info *h;
8644
8645 h = pci_get_drvdata(pdev);
8646 /* Turn board interrupts off and send the flush cache command
8647 * sendcmd will turn off interrupt, and send the flush...
8648 * To write all data in the battery backed cache to disks
8649 */
8650 hpsa_flush_cache(h);
8651 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8652 hpsa_free_irqs(h); /* init_one 4 */
8653 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8654 }
8655
8656 static void hpsa_free_device_info(struct ctlr_info *h)
8657 {
8658 int i;
8659
8660 for (i = 0; i < h->ndevices; i++) {
8661 kfree(h->dev[i]);
8662 h->dev[i] = NULL;
8663 }
8664 }
8665
8666 static void hpsa_remove_one(struct pci_dev *pdev)
8667 {
8668 struct ctlr_info *h;
8669 unsigned long flags;
8670
8671 if (pci_get_drvdata(pdev) == NULL) {
8672 dev_err(&pdev->dev, "unable to remove device\n");
8673 return;
8674 }
8675 h = pci_get_drvdata(pdev);
8676
8677 /* Get rid of any controller monitoring work items */
8678 spin_lock_irqsave(&h->lock, flags);
8679 h->remove_in_progress = 1;
8680 spin_unlock_irqrestore(&h->lock, flags);
8681 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8682 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8683 cancel_delayed_work_sync(&h->event_monitor_work);
8684 destroy_workqueue(h->rescan_ctlr_wq);
8685 destroy_workqueue(h->resubmit_wq);
8686
8687 /*
8688 * Call before disabling interrupts.
8689 * scsi_remove_host can trigger I/O operations especially
8690 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8691 * operations which cannot complete and will hang the system.
8692 */
8693 if (h->scsi_host)
8694 scsi_remove_host(h->scsi_host); /* init_one 8 */
8695 /* includes hpsa_free_irqs - init_one 4 */
8696 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8697 hpsa_shutdown(pdev);
8698
8699 hpsa_free_device_info(h); /* scan */
8700
8701 kfree(h->hba_inquiry_data); /* init_one 10 */
8702 h->hba_inquiry_data = NULL; /* init_one 10 */
8703 hpsa_free_ioaccel2_sg_chain_blocks(h);
8704 hpsa_free_performant_mode(h); /* init_one 7 */
8705 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8706 hpsa_free_cmd_pool(h); /* init_one 5 */
8707 kfree(h->lastlogicals);
8708
8709 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8710
8711 scsi_host_put(h->scsi_host); /* init_one 3 */
8712 h->scsi_host = NULL; /* init_one 3 */
8713
8714 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8715 hpsa_free_pci_init(h); /* init_one 2.5 */
8716
8717 free_percpu(h->lockup_detected); /* init_one 2 */
8718 h->lockup_detected = NULL; /* init_one 2 */
8719 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8720
8721 hpsa_delete_sas_host(h);
8722
8723 kfree(h); /* init_one 1 */
8724 }
8725
8726 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8727 __attribute__((unused)) pm_message_t state)
8728 {
8729 return -ENOSYS;
8730 }
8731
8732 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8733 {
8734 return -ENOSYS;
8735 }
8736
8737 static struct pci_driver hpsa_pci_driver = {
8738 .name = HPSA,
8739 .probe = hpsa_init_one,
8740 .remove = hpsa_remove_one,
8741 .id_table = hpsa_pci_device_id, /* id_table */
8742 .shutdown = hpsa_shutdown,
8743 .suspend = hpsa_suspend,
8744 .resume = hpsa_resume,
8745 };
8746
8747 /* Fill in bucket_map[], given nsgs (the max number of
8748 * scatter gather elements supported) and bucket[],
8749 * which is an array of 8 integers. The bucket[] array
8750 * contains 8 different DMA transfer sizes (in 16
8751 * byte increments) which the controller uses to fetch
8752 * commands. This function fills in bucket_map[], which
8753 * maps a given number of scatter gather elements to one of
8754 * the 8 DMA transfer sizes. The point of it is to allow the
8755 * controller to only do as much DMA as needed to fetch the
8756 * command, with the DMA transfer size encoded in the lower
8757 * bits of the command address.
8758 */
8759 static void calc_bucket_map(int bucket[], int num_buckets,
8760 int nsgs, int min_blocks, u32 *bucket_map)
8761 {
8762 int i, j, b, size;
8763
8764 /* Note, bucket_map must have nsgs+1 entries. */
8765 for (i = 0; i <= nsgs; i++) {
8766 /* Compute size of a command with i SG entries */
8767 size = i + min_blocks;
8768 b = num_buckets; /* Assume the biggest bucket */
8769 /* Find the bucket that is just big enough */
8770 for (j = 0; j < num_buckets; j++) {
8771 if (bucket[j] >= size) {
8772 b = j;
8773 break;
8774 }
8775 }
8776 /* for a command with i SG entries, use bucket b. */
8777 bucket_map[i] = b;
8778 }
8779 }
8780
8781 /*
8782 * return -ENODEV on err, 0 on success (or no action)
8783 * allocates numerous items that must be freed later
8784 */
8785 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8786 {
8787 int i;
8788 unsigned long register_value;
8789 unsigned long transMethod = CFGTBL_Trans_Performant |
8790 (trans_support & CFGTBL_Trans_use_short_tags) |
8791 CFGTBL_Trans_enable_directed_msix |
8792 (trans_support & (CFGTBL_Trans_io_accel1 |
8793 CFGTBL_Trans_io_accel2));
8794 struct access_method access = SA5_performant_access;
8795
8796 /* This is a bit complicated. There are 8 registers on
8797 * the controller which we write to to tell it 8 different
8798 * sizes of commands which there may be. It's a way of
8799 * reducing the DMA done to fetch each command. Encoded into
8800 * each command's tag are 3 bits which communicate to the controller
8801 * which of the eight sizes that command fits within. The size of
8802 * each command depends on how many scatter gather entries there are.
8803 * Each SG entry requires 16 bytes. The eight registers are programmed
8804 * with the number of 16-byte blocks a command of that size requires.
8805 * The smallest command possible requires 5 such 16 byte blocks.
8806 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8807 * blocks. Note, this only extends to the SG entries contained
8808 * within the command block, and does not extend to chained blocks
8809 * of SG elements. bft[] contains the eight values we write to
8810 * the registers. They are not evenly distributed, but have more
8811 * sizes for small commands, and fewer sizes for larger commands.
8812 */
8813 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8814 #define MIN_IOACCEL2_BFT_ENTRY 5
8815 #define HPSA_IOACCEL2_HEADER_SZ 4
8816 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8817 13, 14, 15, 16, 17, 18, 19,
8818 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8819 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8820 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8821 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8822 16 * MIN_IOACCEL2_BFT_ENTRY);
8823 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8824 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8825 /* 5 = 1 s/g entry or 4k
8826 * 6 = 2 s/g entry or 8k
8827 * 8 = 4 s/g entry or 16k
8828 * 10 = 6 s/g entry or 24k
8829 */
8830
8831 /* If the controller supports either ioaccel method then
8832 * we can also use the RAID stack submit path that does not
8833 * perform the superfluous readl() after each command submission.
8834 */
8835 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8836 access = SA5_performant_access_no_read;
8837
8838 /* Controller spec: zero out this buffer. */
8839 for (i = 0; i < h->nreply_queues; i++)
8840 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8841
8842 bft[7] = SG_ENTRIES_IN_CMD + 4;
8843 calc_bucket_map(bft, ARRAY_SIZE(bft),
8844 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8845 for (i = 0; i < 8; i++)
8846 writel(bft[i], &h->transtable->BlockFetch[i]);
8847
8848 /* size of controller ring buffer */
8849 writel(h->max_commands, &h->transtable->RepQSize);
8850 writel(h->nreply_queues, &h->transtable->RepQCount);
8851 writel(0, &h->transtable->RepQCtrAddrLow32);
8852 writel(0, &h->transtable->RepQCtrAddrHigh32);
8853
8854 for (i = 0; i < h->nreply_queues; i++) {
8855 writel(0, &h->transtable->RepQAddr[i].upper);
8856 writel(h->reply_queue[i].busaddr,
8857 &h->transtable->RepQAddr[i].lower);
8858 }
8859
8860 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8861 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8862 /*
8863 * enable outbound interrupt coalescing in accelerator mode;
8864 */
8865 if (trans_support & CFGTBL_Trans_io_accel1) {
8866 access = SA5_ioaccel_mode1_access;
8867 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8868 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8869 } else
8870 if (trans_support & CFGTBL_Trans_io_accel2)
8871 access = SA5_ioaccel_mode2_access;
8872 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8873 if (hpsa_wait_for_mode_change_ack(h)) {
8874 dev_err(&h->pdev->dev,
8875 "performant mode problem - doorbell timeout\n");
8876 return -ENODEV;
8877 }
8878 register_value = readl(&(h->cfgtable->TransportActive));
8879 if (!(register_value & CFGTBL_Trans_Performant)) {
8880 dev_err(&h->pdev->dev,
8881 "performant mode problem - transport not active\n");
8882 return -ENODEV;
8883 }
8884 /* Change the access methods to the performant access methods */
8885 h->access = access;
8886 h->transMethod = transMethod;
8887
8888 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8889 (trans_support & CFGTBL_Trans_io_accel2)))
8890 return 0;
8891
8892 if (trans_support & CFGTBL_Trans_io_accel1) {
8893 /* Set up I/O accelerator mode */
8894 for (i = 0; i < h->nreply_queues; i++) {
8895 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8896 h->reply_queue[i].current_entry =
8897 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8898 }
8899 bft[7] = h->ioaccel_maxsg + 8;
8900 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8901 h->ioaccel1_blockFetchTable);
8902
8903 /* initialize all reply queue entries to unused */
8904 for (i = 0; i < h->nreply_queues; i++)
8905 memset(h->reply_queue[i].head,
8906 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8907 h->reply_queue_size);
8908
8909 /* set all the constant fields in the accelerator command
8910 * frames once at init time to save CPU cycles later.
8911 */
8912 for (i = 0; i < h->nr_cmds; i++) {
8913 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8914
8915 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8916 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8917 (i * sizeof(struct ErrorInfo)));
8918 cp->err_info_len = sizeof(struct ErrorInfo);
8919 cp->sgl_offset = IOACCEL1_SGLOFFSET;
8920 cp->host_context_flags =
8921 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8922 cp->timeout_sec = 0;
8923 cp->ReplyQueue = 0;
8924 cp->tag =
8925 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8926 cp->host_addr =
8927 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8928 (i * sizeof(struct io_accel1_cmd)));
8929 }
8930 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8931 u64 cfg_offset, cfg_base_addr_index;
8932 u32 bft2_offset, cfg_base_addr;
8933 int rc;
8934
8935 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8936 &cfg_base_addr_index, &cfg_offset);
8937 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8938 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8939 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8940 4, h->ioaccel2_blockFetchTable);
8941 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8942 BUILD_BUG_ON(offsetof(struct CfgTable,
8943 io_accel_request_size_offset) != 0xb8);
8944 h->ioaccel2_bft2_regs =
8945 remap_pci_mem(pci_resource_start(h->pdev,
8946 cfg_base_addr_index) +
8947 cfg_offset + bft2_offset,
8948 ARRAY_SIZE(bft2) *
8949 sizeof(*h->ioaccel2_bft2_regs));
8950 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8951 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8952 }
8953 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8954 if (hpsa_wait_for_mode_change_ack(h)) {
8955 dev_err(&h->pdev->dev,
8956 "performant mode problem - enabling ioaccel mode\n");
8957 return -ENODEV;
8958 }
8959 return 0;
8960 }
8961
8962 /* Free ioaccel1 mode command blocks and block fetch table */
8963 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8964 {
8965 if (h->ioaccel_cmd_pool) {
8966 pci_free_consistent(h->pdev,
8967 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8968 h->ioaccel_cmd_pool,
8969 h->ioaccel_cmd_pool_dhandle);
8970 h->ioaccel_cmd_pool = NULL;
8971 h->ioaccel_cmd_pool_dhandle = 0;
8972 }
8973 kfree(h->ioaccel1_blockFetchTable);
8974 h->ioaccel1_blockFetchTable = NULL;
8975 }
8976
8977 /* Allocate ioaccel1 mode command blocks and block fetch table */
8978 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8979 {
8980 h->ioaccel_maxsg =
8981 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8982 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8983 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8984
8985 /* Command structures must be aligned on a 128-byte boundary
8986 * because the 7 lower bits of the address are used by the
8987 * hardware.
8988 */
8989 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8990 IOACCEL1_COMMANDLIST_ALIGNMENT);
8991 h->ioaccel_cmd_pool =
8992 pci_alloc_consistent(h->pdev,
8993 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8994 &(h->ioaccel_cmd_pool_dhandle));
8995
8996 h->ioaccel1_blockFetchTable =
8997 kmalloc(((h->ioaccel_maxsg + 1) *
8998 sizeof(u32)), GFP_KERNEL);
8999
9000 if ((h->ioaccel_cmd_pool == NULL) ||
9001 (h->ioaccel1_blockFetchTable == NULL))
9002 goto clean_up;
9003
9004 memset(h->ioaccel_cmd_pool, 0,
9005 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9006 return 0;
9007
9008 clean_up:
9009 hpsa_free_ioaccel1_cmd_and_bft(h);
9010 return -ENOMEM;
9011 }
9012
9013 /* Free ioaccel2 mode command blocks and block fetch table */
9014 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9015 {
9016 hpsa_free_ioaccel2_sg_chain_blocks(h);
9017
9018 if (h->ioaccel2_cmd_pool) {
9019 pci_free_consistent(h->pdev,
9020 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9021 h->ioaccel2_cmd_pool,
9022 h->ioaccel2_cmd_pool_dhandle);
9023 h->ioaccel2_cmd_pool = NULL;
9024 h->ioaccel2_cmd_pool_dhandle = 0;
9025 }
9026 kfree(h->ioaccel2_blockFetchTable);
9027 h->ioaccel2_blockFetchTable = NULL;
9028 }
9029
9030 /* Allocate ioaccel2 mode command blocks and block fetch table */
9031 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9032 {
9033 int rc;
9034
9035 /* Allocate ioaccel2 mode command blocks and block fetch table */
9036
9037 h->ioaccel_maxsg =
9038 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9039 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9040 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9041
9042 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9043 IOACCEL2_COMMANDLIST_ALIGNMENT);
9044 h->ioaccel2_cmd_pool =
9045 pci_alloc_consistent(h->pdev,
9046 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9047 &(h->ioaccel2_cmd_pool_dhandle));
9048
9049 h->ioaccel2_blockFetchTable =
9050 kmalloc(((h->ioaccel_maxsg + 1) *
9051 sizeof(u32)), GFP_KERNEL);
9052
9053 if ((h->ioaccel2_cmd_pool == NULL) ||
9054 (h->ioaccel2_blockFetchTable == NULL)) {
9055 rc = -ENOMEM;
9056 goto clean_up;
9057 }
9058
9059 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9060 if (rc)
9061 goto clean_up;
9062
9063 memset(h->ioaccel2_cmd_pool, 0,
9064 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9065 return 0;
9066
9067 clean_up:
9068 hpsa_free_ioaccel2_cmd_and_bft(h);
9069 return rc;
9070 }
9071
9072 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9073 static void hpsa_free_performant_mode(struct ctlr_info *h)
9074 {
9075 kfree(h->blockFetchTable);
9076 h->blockFetchTable = NULL;
9077 hpsa_free_reply_queues(h);
9078 hpsa_free_ioaccel1_cmd_and_bft(h);
9079 hpsa_free_ioaccel2_cmd_and_bft(h);
9080 }
9081
9082 /* return -ENODEV on error, 0 on success (or no action)
9083 * allocates numerous items that must be freed later
9084 */
9085 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9086 {
9087 u32 trans_support;
9088 unsigned long transMethod = CFGTBL_Trans_Performant |
9089 CFGTBL_Trans_use_short_tags;
9090 int i, rc;
9091
9092 if (hpsa_simple_mode)
9093 return 0;
9094
9095 trans_support = readl(&(h->cfgtable->TransportSupport));
9096 if (!(trans_support & PERFORMANT_MODE))
9097 return 0;
9098
9099 /* Check for I/O accelerator mode support */
9100 if (trans_support & CFGTBL_Trans_io_accel1) {
9101 transMethod |= CFGTBL_Trans_io_accel1 |
9102 CFGTBL_Trans_enable_directed_msix;
9103 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9104 if (rc)
9105 return rc;
9106 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9107 transMethod |= CFGTBL_Trans_io_accel2 |
9108 CFGTBL_Trans_enable_directed_msix;
9109 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9110 if (rc)
9111 return rc;
9112 }
9113
9114 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9115 hpsa_get_max_perf_mode_cmds(h);
9116 /* Performant mode ring buffer and supporting data structures */
9117 h->reply_queue_size = h->max_commands * sizeof(u64);
9118
9119 for (i = 0; i < h->nreply_queues; i++) {
9120 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9121 h->reply_queue_size,
9122 &(h->reply_queue[i].busaddr));
9123 if (!h->reply_queue[i].head) {
9124 rc = -ENOMEM;
9125 goto clean1; /* rq, ioaccel */
9126 }
9127 h->reply_queue[i].size = h->max_commands;
9128 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9129 h->reply_queue[i].current_entry = 0;
9130 }
9131
9132 /* Need a block fetch table for performant mode */
9133 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9134 sizeof(u32)), GFP_KERNEL);
9135 if (!h->blockFetchTable) {
9136 rc = -ENOMEM;
9137 goto clean1; /* rq, ioaccel */
9138 }
9139
9140 rc = hpsa_enter_performant_mode(h, trans_support);
9141 if (rc)
9142 goto clean2; /* bft, rq, ioaccel */
9143 return 0;
9144
9145 clean2: /* bft, rq, ioaccel */
9146 kfree(h->blockFetchTable);
9147 h->blockFetchTable = NULL;
9148 clean1: /* rq, ioaccel */
9149 hpsa_free_reply_queues(h);
9150 hpsa_free_ioaccel1_cmd_and_bft(h);
9151 hpsa_free_ioaccel2_cmd_and_bft(h);
9152 return rc;
9153 }
9154
9155 static int is_accelerated_cmd(struct CommandList *c)
9156 {
9157 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9158 }
9159
9160 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9161 {
9162 struct CommandList *c = NULL;
9163 int i, accel_cmds_out;
9164 int refcount;
9165
9166 do { /* wait for all outstanding ioaccel commands to drain out */
9167 accel_cmds_out = 0;
9168 for (i = 0; i < h->nr_cmds; i++) {
9169 c = h->cmd_pool + i;
9170 refcount = atomic_inc_return(&c->refcount);
9171 if (refcount > 1) /* Command is allocated */
9172 accel_cmds_out += is_accelerated_cmd(c);
9173 cmd_free(h, c);
9174 }
9175 if (accel_cmds_out <= 0)
9176 break;
9177 msleep(100);
9178 } while (1);
9179 }
9180
9181 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9182 struct hpsa_sas_port *hpsa_sas_port)
9183 {
9184 struct hpsa_sas_phy *hpsa_sas_phy;
9185 struct sas_phy *phy;
9186
9187 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9188 if (!hpsa_sas_phy)
9189 return NULL;
9190
9191 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9192 hpsa_sas_port->next_phy_index);
9193 if (!phy) {
9194 kfree(hpsa_sas_phy);
9195 return NULL;
9196 }
9197
9198 hpsa_sas_port->next_phy_index++;
9199 hpsa_sas_phy->phy = phy;
9200 hpsa_sas_phy->parent_port = hpsa_sas_port;
9201
9202 return hpsa_sas_phy;
9203 }
9204
9205 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9206 {
9207 struct sas_phy *phy = hpsa_sas_phy->phy;
9208
9209 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9210 sas_phy_free(phy);
9211 if (hpsa_sas_phy->added_to_port)
9212 list_del(&hpsa_sas_phy->phy_list_entry);
9213 kfree(hpsa_sas_phy);
9214 }
9215
9216 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9217 {
9218 int rc;
9219 struct hpsa_sas_port *hpsa_sas_port;
9220 struct sas_phy *phy;
9221 struct sas_identify *identify;
9222
9223 hpsa_sas_port = hpsa_sas_phy->parent_port;
9224 phy = hpsa_sas_phy->phy;
9225
9226 identify = &phy->identify;
9227 memset(identify, 0, sizeof(*identify));
9228 identify->sas_address = hpsa_sas_port->sas_address;
9229 identify->device_type = SAS_END_DEVICE;
9230 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9231 identify->target_port_protocols = SAS_PROTOCOL_STP;
9232 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9233 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9234 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9235 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9236 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9237
9238 rc = sas_phy_add(hpsa_sas_phy->phy);
9239 if (rc)
9240 return rc;
9241
9242 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9243 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9244 &hpsa_sas_port->phy_list_head);
9245 hpsa_sas_phy->added_to_port = true;
9246
9247 return 0;
9248 }
9249
9250 static int
9251 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9252 struct sas_rphy *rphy)
9253 {
9254 struct sas_identify *identify;
9255
9256 identify = &rphy->identify;
9257 identify->sas_address = hpsa_sas_port->sas_address;
9258 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9259 identify->target_port_protocols = SAS_PROTOCOL_STP;
9260
9261 return sas_rphy_add(rphy);
9262 }
9263
9264 static struct hpsa_sas_port
9265 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9266 u64 sas_address)
9267 {
9268 int rc;
9269 struct hpsa_sas_port *hpsa_sas_port;
9270 struct sas_port *port;
9271
9272 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9273 if (!hpsa_sas_port)
9274 return NULL;
9275
9276 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9277 hpsa_sas_port->parent_node = hpsa_sas_node;
9278
9279 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9280 if (!port)
9281 goto free_hpsa_port;
9282
9283 rc = sas_port_add(port);
9284 if (rc)
9285 goto free_sas_port;
9286
9287 hpsa_sas_port->port = port;
9288 hpsa_sas_port->sas_address = sas_address;
9289 list_add_tail(&hpsa_sas_port->port_list_entry,
9290 &hpsa_sas_node->port_list_head);
9291
9292 return hpsa_sas_port;
9293
9294 free_sas_port:
9295 sas_port_free(port);
9296 free_hpsa_port:
9297 kfree(hpsa_sas_port);
9298
9299 return NULL;
9300 }
9301
9302 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9303 {
9304 struct hpsa_sas_phy *hpsa_sas_phy;
9305 struct hpsa_sas_phy *next;
9306
9307 list_for_each_entry_safe(hpsa_sas_phy, next,
9308 &hpsa_sas_port->phy_list_head, phy_list_entry)
9309 hpsa_free_sas_phy(hpsa_sas_phy);
9310
9311 sas_port_delete(hpsa_sas_port->port);
9312 list_del(&hpsa_sas_port->port_list_entry);
9313 kfree(hpsa_sas_port);
9314 }
9315
9316 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9317 {
9318 struct hpsa_sas_node *hpsa_sas_node;
9319
9320 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9321 if (hpsa_sas_node) {
9322 hpsa_sas_node->parent_dev = parent_dev;
9323 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9324 }
9325
9326 return hpsa_sas_node;
9327 }
9328
9329 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9330 {
9331 struct hpsa_sas_port *hpsa_sas_port;
9332 struct hpsa_sas_port *next;
9333
9334 if (!hpsa_sas_node)
9335 return;
9336
9337 list_for_each_entry_safe(hpsa_sas_port, next,
9338 &hpsa_sas_node->port_list_head, port_list_entry)
9339 hpsa_free_sas_port(hpsa_sas_port);
9340
9341 kfree(hpsa_sas_node);
9342 }
9343
9344 static struct hpsa_scsi_dev_t
9345 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9346 struct sas_rphy *rphy)
9347 {
9348 int i;
9349 struct hpsa_scsi_dev_t *device;
9350
9351 for (i = 0; i < h->ndevices; i++) {
9352 device = h->dev[i];
9353 if (!device->sas_port)
9354 continue;
9355 if (device->sas_port->rphy == rphy)
9356 return device;
9357 }
9358
9359 return NULL;
9360 }
9361
9362 static int hpsa_add_sas_host(struct ctlr_info *h)
9363 {
9364 int rc;
9365 struct device *parent_dev;
9366 struct hpsa_sas_node *hpsa_sas_node;
9367 struct hpsa_sas_port *hpsa_sas_port;
9368 struct hpsa_sas_phy *hpsa_sas_phy;
9369
9370 parent_dev = &h->scsi_host->shost_gendev;
9371
9372 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9373 if (!hpsa_sas_node)
9374 return -ENOMEM;
9375
9376 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9377 if (!hpsa_sas_port) {
9378 rc = -ENODEV;
9379 goto free_sas_node;
9380 }
9381
9382 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9383 if (!hpsa_sas_phy) {
9384 rc = -ENODEV;
9385 goto free_sas_port;
9386 }
9387
9388 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9389 if (rc)
9390 goto free_sas_phy;
9391
9392 h->sas_host = hpsa_sas_node;
9393
9394 return 0;
9395
9396 free_sas_phy:
9397 hpsa_free_sas_phy(hpsa_sas_phy);
9398 free_sas_port:
9399 hpsa_free_sas_port(hpsa_sas_port);
9400 free_sas_node:
9401 hpsa_free_sas_node(hpsa_sas_node);
9402
9403 return rc;
9404 }
9405
9406 static void hpsa_delete_sas_host(struct ctlr_info *h)
9407 {
9408 hpsa_free_sas_node(h->sas_host);
9409 }
9410
9411 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9412 struct hpsa_scsi_dev_t *device)
9413 {
9414 int rc;
9415 struct hpsa_sas_port *hpsa_sas_port;
9416 struct sas_rphy *rphy;
9417
9418 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9419 if (!hpsa_sas_port)
9420 return -ENOMEM;
9421
9422 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9423 if (!rphy) {
9424 rc = -ENODEV;
9425 goto free_sas_port;
9426 }
9427
9428 hpsa_sas_port->rphy = rphy;
9429 device->sas_port = hpsa_sas_port;
9430
9431 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9432 if (rc)
9433 goto free_sas_port;
9434
9435 return 0;
9436
9437 free_sas_port:
9438 hpsa_free_sas_port(hpsa_sas_port);
9439 device->sas_port = NULL;
9440
9441 return rc;
9442 }
9443
9444 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9445 {
9446 if (device->sas_port) {
9447 hpsa_free_sas_port(device->sas_port);
9448 device->sas_port = NULL;
9449 }
9450 }
9451
9452 static int
9453 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9454 {
9455 return 0;
9456 }
9457
9458 static int
9459 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9460 {
9461 *identifier = 0;
9462 return 0;
9463 }
9464
9465 static int
9466 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9467 {
9468 return -ENXIO;
9469 }
9470
9471 static int
9472 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9473 {
9474 return 0;
9475 }
9476
9477 static int
9478 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9479 {
9480 return 0;
9481 }
9482
9483 static int
9484 hpsa_sas_phy_setup(struct sas_phy *phy)
9485 {
9486 return 0;
9487 }
9488
9489 static void
9490 hpsa_sas_phy_release(struct sas_phy *phy)
9491 {
9492 }
9493
9494 static int
9495 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9496 {
9497 return -EINVAL;
9498 }
9499
9500 static struct sas_function_template hpsa_sas_transport_functions = {
9501 .get_linkerrors = hpsa_sas_get_linkerrors,
9502 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9503 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9504 .phy_reset = hpsa_sas_phy_reset,
9505 .phy_enable = hpsa_sas_phy_enable,
9506 .phy_setup = hpsa_sas_phy_setup,
9507 .phy_release = hpsa_sas_phy_release,
9508 .set_phy_speed = hpsa_sas_phy_speed,
9509 };
9510
9511 /*
9512 * This is it. Register the PCI driver information for the cards we control
9513 * the OS will call our registered routines when it finds one of our cards.
9514 */
9515 static int __init hpsa_init(void)
9516 {
9517 int rc;
9518
9519 hpsa_sas_transport_template =
9520 sas_attach_transport(&hpsa_sas_transport_functions);
9521 if (!hpsa_sas_transport_template)
9522 return -ENODEV;
9523
9524 rc = pci_register_driver(&hpsa_pci_driver);
9525
9526 if (rc)
9527 sas_release_transport(hpsa_sas_transport_template);
9528
9529 return rc;
9530 }
9531
9532 static void __exit hpsa_cleanup(void)
9533 {
9534 pci_unregister_driver(&hpsa_pci_driver);
9535 sas_release_transport(hpsa_sas_transport_template);
9536 }
9537
9538 static void __attribute__((unused)) verify_offsets(void)
9539 {
9540 #define VERIFY_OFFSET(member, offset) \
9541 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9542
9543 VERIFY_OFFSET(structure_size, 0);
9544 VERIFY_OFFSET(volume_blk_size, 4);
9545 VERIFY_OFFSET(volume_blk_cnt, 8);
9546 VERIFY_OFFSET(phys_blk_shift, 16);
9547 VERIFY_OFFSET(parity_rotation_shift, 17);
9548 VERIFY_OFFSET(strip_size, 18);
9549 VERIFY_OFFSET(disk_starting_blk, 20);
9550 VERIFY_OFFSET(disk_blk_cnt, 28);
9551 VERIFY_OFFSET(data_disks_per_row, 36);
9552 VERIFY_OFFSET(metadata_disks_per_row, 38);
9553 VERIFY_OFFSET(row_cnt, 40);
9554 VERIFY_OFFSET(layout_map_count, 42);
9555 VERIFY_OFFSET(flags, 44);
9556 VERIFY_OFFSET(dekindex, 46);
9557 /* VERIFY_OFFSET(reserved, 48 */
9558 VERIFY_OFFSET(data, 64);
9559
9560 #undef VERIFY_OFFSET
9561
9562 #define VERIFY_OFFSET(member, offset) \
9563 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9564
9565 VERIFY_OFFSET(IU_type, 0);
9566 VERIFY_OFFSET(direction, 1);
9567 VERIFY_OFFSET(reply_queue, 2);
9568 /* VERIFY_OFFSET(reserved1, 3); */
9569 VERIFY_OFFSET(scsi_nexus, 4);
9570 VERIFY_OFFSET(Tag, 8);
9571 VERIFY_OFFSET(cdb, 16);
9572 VERIFY_OFFSET(cciss_lun, 32);
9573 VERIFY_OFFSET(data_len, 40);
9574 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9575 VERIFY_OFFSET(sg_count, 45);
9576 /* VERIFY_OFFSET(reserved3 */
9577 VERIFY_OFFSET(err_ptr, 48);
9578 VERIFY_OFFSET(err_len, 56);
9579 /* VERIFY_OFFSET(reserved4 */
9580 VERIFY_OFFSET(sg, 64);
9581
9582 #undef VERIFY_OFFSET
9583
9584 #define VERIFY_OFFSET(member, offset) \
9585 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9586
9587 VERIFY_OFFSET(dev_handle, 0x00);
9588 VERIFY_OFFSET(reserved1, 0x02);
9589 VERIFY_OFFSET(function, 0x03);
9590 VERIFY_OFFSET(reserved2, 0x04);
9591 VERIFY_OFFSET(err_info, 0x0C);
9592 VERIFY_OFFSET(reserved3, 0x10);
9593 VERIFY_OFFSET(err_info_len, 0x12);
9594 VERIFY_OFFSET(reserved4, 0x13);
9595 VERIFY_OFFSET(sgl_offset, 0x14);
9596 VERIFY_OFFSET(reserved5, 0x15);
9597 VERIFY_OFFSET(transfer_len, 0x1C);
9598 VERIFY_OFFSET(reserved6, 0x20);
9599 VERIFY_OFFSET(io_flags, 0x24);
9600 VERIFY_OFFSET(reserved7, 0x26);
9601 VERIFY_OFFSET(LUN, 0x34);
9602 VERIFY_OFFSET(control, 0x3C);
9603 VERIFY_OFFSET(CDB, 0x40);
9604 VERIFY_OFFSET(reserved8, 0x50);
9605 VERIFY_OFFSET(host_context_flags, 0x60);
9606 VERIFY_OFFSET(timeout_sec, 0x62);
9607 VERIFY_OFFSET(ReplyQueue, 0x64);
9608 VERIFY_OFFSET(reserved9, 0x65);
9609 VERIFY_OFFSET(tag, 0x68);
9610 VERIFY_OFFSET(host_addr, 0x70);
9611 VERIFY_OFFSET(CISS_LUN, 0x78);
9612 VERIFY_OFFSET(SG, 0x78 + 8);
9613 #undef VERIFY_OFFSET
9614 }
9615
9616 module_init(hpsa_init);
9617 module_exit(hpsa_cleanup);