]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/hpsa.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.18-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
136 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
137 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
159 */
160 static struct board_type products[] = {
161 {0x3241103C, "Smart Array P212", &SA5_access},
162 {0x3243103C, "Smart Array P410", &SA5_access},
163 {0x3245103C, "Smart Array P410i", &SA5_access},
164 {0x3247103C, "Smart Array P411", &SA5_access},
165 {0x3249103C, "Smart Array P812", &SA5_access},
166 {0x324A103C, "Smart Array P712m", &SA5_access},
167 {0x324B103C, "Smart Array P711m", &SA5_access},
168 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169 {0x3350103C, "Smart Array P222", &SA5_access},
170 {0x3351103C, "Smart Array P420", &SA5_access},
171 {0x3352103C, "Smart Array P421", &SA5_access},
172 {0x3353103C, "Smart Array P822", &SA5_access},
173 {0x3354103C, "Smart Array P420i", &SA5_access},
174 {0x3355103C, "Smart Array P220i", &SA5_access},
175 {0x3356103C, "Smart Array P721m", &SA5_access},
176 {0x1920103C, "Smart Array P430i", &SA5_access},
177 {0x1921103C, "Smart Array P830i", &SA5_access},
178 {0x1922103C, "Smart Array P430", &SA5_access},
179 {0x1923103C, "Smart Array P431", &SA5_access},
180 {0x1924103C, "Smart Array P830", &SA5_access},
181 {0x1925103C, "Smart Array P831", &SA5_access},
182 {0x1926103C, "Smart Array P731m", &SA5_access},
183 {0x1928103C, "Smart Array P230i", &SA5_access},
184 {0x1929103C, "Smart Array P530", &SA5_access},
185 {0x21BD103C, "Smart Array P244br", &SA5_access},
186 {0x21BE103C, "Smart Array P741m", &SA5_access},
187 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
188 {0x21C0103C, "Smart Array P440ar", &SA5_access},
189 {0x21C1103C, "Smart Array P840ar", &SA5_access},
190 {0x21C2103C, "Smart Array P440", &SA5_access},
191 {0x21C3103C, "Smart Array P441", &SA5_access},
192 {0x21C4103C, "Smart Array", &SA5_access},
193 {0x21C5103C, "Smart Array P841", &SA5_access},
194 {0x21C6103C, "Smart HBA H244br", &SA5_access},
195 {0x21C7103C, "Smart HBA H240", &SA5_access},
196 {0x21C8103C, "Smart HBA H241", &SA5_access},
197 {0x21C9103C, "Smart Array", &SA5_access},
198 {0x21CA103C, "Smart Array P246br", &SA5_access},
199 {0x21CB103C, "Smart Array P840", &SA5_access},
200 {0x21CC103C, "Smart Array", &SA5_access},
201 {0x21CD103C, "Smart Array", &SA5_access},
202 {0x21CE103C, "Smart HBA", &SA5_access},
203 {0x05809005, "SmartHBA-SA", &SA5_access},
204 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
205 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
207 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
208 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221 struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225 struct sas_rphy *rphy);
226
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239 void __user *arg);
240 #endif
241
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246 struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249 int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257 unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
262 static int hpsa_slave_alloc(struct scsi_device *sdev);
263 static int hpsa_slave_configure(struct scsi_device *sdev);
264 static void hpsa_slave_destroy(struct scsi_device *sdev);
265
266 static void hpsa_update_scsi_devices(struct ctlr_info *h);
267 static int check_for_unit_attention(struct ctlr_info *h,
268 struct CommandList *c);
269 static void check_ioctl_unit_attention(struct ctlr_info *h,
270 struct CommandList *c);
271 /* performant mode helper functions */
272 static void calc_bucket_map(int *bucket, int num_buckets,
273 int nsgs, int min_blocks, u32 *bucket_map);
274 static void hpsa_free_performant_mode(struct ctlr_info *h);
275 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
276 static inline u32 next_command(struct ctlr_info *h, u8 q);
277 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
278 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
279 u64 *cfg_offset);
280 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
281 unsigned long *memory_bar);
282 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
283 static int wait_for_device_to_become_ready(struct ctlr_info *h,
284 unsigned char lunaddr[],
285 int reply_queue);
286 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
287 int wait_for_ready);
288 static inline void finish_cmd(struct CommandList *c);
289 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
290 #define BOARD_NOT_READY 0
291 #define BOARD_READY 1
292 static void hpsa_drain_accel_commands(struct ctlr_info *h);
293 static void hpsa_flush_cache(struct ctlr_info *h);
294 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
295 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
296 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
297 static void hpsa_command_resubmit_worker(struct work_struct *work);
298 static u32 lockup_detected(struct ctlr_info *h);
299 static int detect_controller_lockup(struct ctlr_info *h);
300 static void hpsa_disable_rld_caching(struct ctlr_info *h);
301 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
302 struct ReportExtendedLUNdata *buf, int bufsize);
303 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
304 unsigned char scsi3addr[], u8 page);
305 static int hpsa_luns_changed(struct ctlr_info *h);
306 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
307 struct hpsa_scsi_dev_t *dev,
308 unsigned char *scsi3addr);
309
310 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
311 {
312 unsigned long *priv = shost_priv(sdev->host);
313 return (struct ctlr_info *) *priv;
314 }
315
316 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
317 {
318 unsigned long *priv = shost_priv(sh);
319 return (struct ctlr_info *) *priv;
320 }
321
322 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
323 {
324 return c->scsi_cmd == SCSI_CMD_IDLE;
325 }
326
327 static inline bool hpsa_is_pending_event(struct CommandList *c)
328 {
329 return c->abort_pending || c->reset_pending;
330 }
331
332 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
333 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
334 u8 *sense_key, u8 *asc, u8 *ascq)
335 {
336 struct scsi_sense_hdr sshdr;
337 bool rc;
338
339 *sense_key = -1;
340 *asc = -1;
341 *ascq = -1;
342
343 if (sense_data_len < 1)
344 return;
345
346 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
347 if (rc) {
348 *sense_key = sshdr.sense_key;
349 *asc = sshdr.asc;
350 *ascq = sshdr.ascq;
351 }
352 }
353
354 static int check_for_unit_attention(struct ctlr_info *h,
355 struct CommandList *c)
356 {
357 u8 sense_key, asc, ascq;
358 int sense_len;
359
360 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
361 sense_len = sizeof(c->err_info->SenseInfo);
362 else
363 sense_len = c->err_info->SenseLen;
364
365 decode_sense_data(c->err_info->SenseInfo, sense_len,
366 &sense_key, &asc, &ascq);
367 if (sense_key != UNIT_ATTENTION || asc == 0xff)
368 return 0;
369
370 switch (asc) {
371 case STATE_CHANGED:
372 dev_warn(&h->pdev->dev,
373 "%s: a state change detected, command retried\n",
374 h->devname);
375 break;
376 case LUN_FAILED:
377 dev_warn(&h->pdev->dev,
378 "%s: LUN failure detected\n", h->devname);
379 break;
380 case REPORT_LUNS_CHANGED:
381 dev_warn(&h->pdev->dev,
382 "%s: report LUN data changed\n", h->devname);
383 /*
384 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
385 * target (array) devices.
386 */
387 break;
388 case POWER_OR_RESET:
389 dev_warn(&h->pdev->dev,
390 "%s: a power on or device reset detected\n",
391 h->devname);
392 break;
393 case UNIT_ATTENTION_CLEARED:
394 dev_warn(&h->pdev->dev,
395 "%s: unit attention cleared by another initiator\n",
396 h->devname);
397 break;
398 default:
399 dev_warn(&h->pdev->dev,
400 "%s: unknown unit attention detected\n",
401 h->devname);
402 break;
403 }
404 return 1;
405 }
406
407 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
408 {
409 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
410 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
411 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
412 return 0;
413 dev_warn(&h->pdev->dev, HPSA "device busy");
414 return 1;
415 }
416
417 static u32 lockup_detected(struct ctlr_info *h);
418 static ssize_t host_show_lockup_detected(struct device *dev,
419 struct device_attribute *attr, char *buf)
420 {
421 int ld;
422 struct ctlr_info *h;
423 struct Scsi_Host *shost = class_to_shost(dev);
424
425 h = shost_to_hba(shost);
426 ld = lockup_detected(h);
427
428 return sprintf(buf, "ld=%d\n", ld);
429 }
430
431 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
432 struct device_attribute *attr,
433 const char *buf, size_t count)
434 {
435 int status, len;
436 struct ctlr_info *h;
437 struct Scsi_Host *shost = class_to_shost(dev);
438 char tmpbuf[10];
439
440 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
441 return -EACCES;
442 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
443 strncpy(tmpbuf, buf, len);
444 tmpbuf[len] = '\0';
445 if (sscanf(tmpbuf, "%d", &status) != 1)
446 return -EINVAL;
447 h = shost_to_hba(shost);
448 h->acciopath_status = !!status;
449 dev_warn(&h->pdev->dev,
450 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
451 h->acciopath_status ? "enabled" : "disabled");
452 return count;
453 }
454
455 static ssize_t host_store_raid_offload_debug(struct device *dev,
456 struct device_attribute *attr,
457 const char *buf, size_t count)
458 {
459 int debug_level, len;
460 struct ctlr_info *h;
461 struct Scsi_Host *shost = class_to_shost(dev);
462 char tmpbuf[10];
463
464 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
465 return -EACCES;
466 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
467 strncpy(tmpbuf, buf, len);
468 tmpbuf[len] = '\0';
469 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
470 return -EINVAL;
471 if (debug_level < 0)
472 debug_level = 0;
473 h = shost_to_hba(shost);
474 h->raid_offload_debug = debug_level;
475 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
476 h->raid_offload_debug);
477 return count;
478 }
479
480 static ssize_t host_store_rescan(struct device *dev,
481 struct device_attribute *attr,
482 const char *buf, size_t count)
483 {
484 struct ctlr_info *h;
485 struct Scsi_Host *shost = class_to_shost(dev);
486 h = shost_to_hba(shost);
487 hpsa_scan_start(h->scsi_host);
488 return count;
489 }
490
491 static ssize_t host_show_firmware_revision(struct device *dev,
492 struct device_attribute *attr, char *buf)
493 {
494 struct ctlr_info *h;
495 struct Scsi_Host *shost = class_to_shost(dev);
496 unsigned char *fwrev;
497
498 h = shost_to_hba(shost);
499 if (!h->hba_inquiry_data)
500 return 0;
501 fwrev = &h->hba_inquiry_data[32];
502 return snprintf(buf, 20, "%c%c%c%c\n",
503 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
504 }
505
506 static ssize_t host_show_commands_outstanding(struct device *dev,
507 struct device_attribute *attr, char *buf)
508 {
509 struct Scsi_Host *shost = class_to_shost(dev);
510 struct ctlr_info *h = shost_to_hba(shost);
511
512 return snprintf(buf, 20, "%d\n",
513 atomic_read(&h->commands_outstanding));
514 }
515
516 static ssize_t host_show_transport_mode(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct ctlr_info *h;
520 struct Scsi_Host *shost = class_to_shost(dev);
521
522 h = shost_to_hba(shost);
523 return snprintf(buf, 20, "%s\n",
524 h->transMethod & CFGTBL_Trans_Performant ?
525 "performant" : "simple");
526 }
527
528 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
529 struct device_attribute *attr, char *buf)
530 {
531 struct ctlr_info *h;
532 struct Scsi_Host *shost = class_to_shost(dev);
533
534 h = shost_to_hba(shost);
535 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
536 (h->acciopath_status == 1) ? "enabled" : "disabled");
537 }
538
539 /* List of controllers which cannot be hard reset on kexec with reset_devices */
540 static u32 unresettable_controller[] = {
541 0x324a103C, /* Smart Array P712m */
542 0x324b103C, /* Smart Array P711m */
543 0x3223103C, /* Smart Array P800 */
544 0x3234103C, /* Smart Array P400 */
545 0x3235103C, /* Smart Array P400i */
546 0x3211103C, /* Smart Array E200i */
547 0x3212103C, /* Smart Array E200 */
548 0x3213103C, /* Smart Array E200i */
549 0x3214103C, /* Smart Array E200i */
550 0x3215103C, /* Smart Array E200i */
551 0x3237103C, /* Smart Array E500 */
552 0x323D103C, /* Smart Array P700m */
553 0x40800E11, /* Smart Array 5i */
554 0x409C0E11, /* Smart Array 6400 */
555 0x409D0E11, /* Smart Array 6400 EM */
556 0x40700E11, /* Smart Array 5300 */
557 0x40820E11, /* Smart Array 532 */
558 0x40830E11, /* Smart Array 5312 */
559 0x409A0E11, /* Smart Array 641 */
560 0x409B0E11, /* Smart Array 642 */
561 0x40910E11, /* Smart Array 6i */
562 };
563
564 /* List of controllers which cannot even be soft reset */
565 static u32 soft_unresettable_controller[] = {
566 0x40800E11, /* Smart Array 5i */
567 0x40700E11, /* Smart Array 5300 */
568 0x40820E11, /* Smart Array 532 */
569 0x40830E11, /* Smart Array 5312 */
570 0x409A0E11, /* Smart Array 641 */
571 0x409B0E11, /* Smart Array 642 */
572 0x40910E11, /* Smart Array 6i */
573 /* Exclude 640x boards. These are two pci devices in one slot
574 * which share a battery backed cache module. One controls the
575 * cache, the other accesses the cache through the one that controls
576 * it. If we reset the one controlling the cache, the other will
577 * likely not be happy. Just forbid resetting this conjoined mess.
578 * The 640x isn't really supported by hpsa anyway.
579 */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582 };
583
584 static u32 needs_abort_tags_swizzled[] = {
585 0x323D103C, /* Smart Array P700m */
586 0x324a103C, /* Smart Array P712m */
587 0x324b103C, /* SmartArray P711m */
588 };
589
590 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
591 {
592 int i;
593
594 for (i = 0; i < nelems; i++)
595 if (a[i] == board_id)
596 return 1;
597 return 0;
598 }
599
600 static int ctlr_is_hard_resettable(u32 board_id)
601 {
602 return !board_id_in_array(unresettable_controller,
603 ARRAY_SIZE(unresettable_controller), board_id);
604 }
605
606 static int ctlr_is_soft_resettable(u32 board_id)
607 {
608 return !board_id_in_array(soft_unresettable_controller,
609 ARRAY_SIZE(soft_unresettable_controller), board_id);
610 }
611
612 static int ctlr_is_resettable(u32 board_id)
613 {
614 return ctlr_is_hard_resettable(board_id) ||
615 ctlr_is_soft_resettable(board_id);
616 }
617
618 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
619 {
620 return board_id_in_array(needs_abort_tags_swizzled,
621 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
622 }
623
624 static ssize_t host_show_resettable(struct device *dev,
625 struct device_attribute *attr, char *buf)
626 {
627 struct ctlr_info *h;
628 struct Scsi_Host *shost = class_to_shost(dev);
629
630 h = shost_to_hba(shost);
631 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632 }
633
634 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
635 {
636 return (scsi3addr[3] & 0xC0) == 0x40;
637 }
638
639 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
640 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
641 };
642 #define HPSA_RAID_0 0
643 #define HPSA_RAID_4 1
644 #define HPSA_RAID_1 2 /* also used for RAID 10 */
645 #define HPSA_RAID_5 3 /* also used for RAID 50 */
646 #define HPSA_RAID_51 4
647 #define HPSA_RAID_6 5 /* also used for RAID 60 */
648 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
649 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
650 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
651
652 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
653 {
654 return !device->physical_device;
655 }
656
657 static ssize_t raid_level_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659 {
660 ssize_t l = 0;
661 unsigned char rlevel;
662 struct ctlr_info *h;
663 struct scsi_device *sdev;
664 struct hpsa_scsi_dev_t *hdev;
665 unsigned long flags;
666
667 sdev = to_scsi_device(dev);
668 h = sdev_to_hba(sdev);
669 spin_lock_irqsave(&h->lock, flags);
670 hdev = sdev->hostdata;
671 if (!hdev) {
672 spin_unlock_irqrestore(&h->lock, flags);
673 return -ENODEV;
674 }
675
676 /* Is this even a logical drive? */
677 if (!is_logical_device(hdev)) {
678 spin_unlock_irqrestore(&h->lock, flags);
679 l = snprintf(buf, PAGE_SIZE, "N/A\n");
680 return l;
681 }
682
683 rlevel = hdev->raid_level;
684 spin_unlock_irqrestore(&h->lock, flags);
685 if (rlevel > RAID_UNKNOWN)
686 rlevel = RAID_UNKNOWN;
687 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
688 return l;
689 }
690
691 static ssize_t lunid_show(struct device *dev,
692 struct device_attribute *attr, char *buf)
693 {
694 struct ctlr_info *h;
695 struct scsi_device *sdev;
696 struct hpsa_scsi_dev_t *hdev;
697 unsigned long flags;
698 unsigned char lunid[8];
699
700 sdev = to_scsi_device(dev);
701 h = sdev_to_hba(sdev);
702 spin_lock_irqsave(&h->lock, flags);
703 hdev = sdev->hostdata;
704 if (!hdev) {
705 spin_unlock_irqrestore(&h->lock, flags);
706 return -ENODEV;
707 }
708 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
709 spin_unlock_irqrestore(&h->lock, flags);
710 return snprintf(buf, 20, "0x%8phN\n", lunid);
711 }
712
713 static ssize_t unique_id_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
715 {
716 struct ctlr_info *h;
717 struct scsi_device *sdev;
718 struct hpsa_scsi_dev_t *hdev;
719 unsigned long flags;
720 unsigned char sn[16];
721
722 sdev = to_scsi_device(dev);
723 h = sdev_to_hba(sdev);
724 spin_lock_irqsave(&h->lock, flags);
725 hdev = sdev->hostdata;
726 if (!hdev) {
727 spin_unlock_irqrestore(&h->lock, flags);
728 return -ENODEV;
729 }
730 memcpy(sn, hdev->device_id, sizeof(sn));
731 spin_unlock_irqrestore(&h->lock, flags);
732 return snprintf(buf, 16 * 2 + 2,
733 "%02X%02X%02X%02X%02X%02X%02X%02X"
734 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
735 sn[0], sn[1], sn[2], sn[3],
736 sn[4], sn[5], sn[6], sn[7],
737 sn[8], sn[9], sn[10], sn[11],
738 sn[12], sn[13], sn[14], sn[15]);
739 }
740
741 static ssize_t sas_address_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
743 {
744 struct ctlr_info *h;
745 struct scsi_device *sdev;
746 struct hpsa_scsi_dev_t *hdev;
747 unsigned long flags;
748 u64 sas_address;
749
750 sdev = to_scsi_device(dev);
751 h = sdev_to_hba(sdev);
752 spin_lock_irqsave(&h->lock, flags);
753 hdev = sdev->hostdata;
754 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
755 spin_unlock_irqrestore(&h->lock, flags);
756 return -ENODEV;
757 }
758 sas_address = hdev->sas_address;
759 spin_unlock_irqrestore(&h->lock, flags);
760
761 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
762 }
763
764 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
765 struct device_attribute *attr, char *buf)
766 {
767 struct ctlr_info *h;
768 struct scsi_device *sdev;
769 struct hpsa_scsi_dev_t *hdev;
770 unsigned long flags;
771 int offload_enabled;
772
773 sdev = to_scsi_device(dev);
774 h = sdev_to_hba(sdev);
775 spin_lock_irqsave(&h->lock, flags);
776 hdev = sdev->hostdata;
777 if (!hdev) {
778 spin_unlock_irqrestore(&h->lock, flags);
779 return -ENODEV;
780 }
781 offload_enabled = hdev->offload_enabled;
782 spin_unlock_irqrestore(&h->lock, flags);
783 return snprintf(buf, 20, "%d\n", offload_enabled);
784 }
785
786 #define MAX_PATHS 8
787 static ssize_t path_info_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789 {
790 struct ctlr_info *h;
791 struct scsi_device *sdev;
792 struct hpsa_scsi_dev_t *hdev;
793 unsigned long flags;
794 int i;
795 int output_len = 0;
796 u8 box;
797 u8 bay;
798 u8 path_map_index = 0;
799 char *active;
800 unsigned char phys_connector[2];
801
802 sdev = to_scsi_device(dev);
803 h = sdev_to_hba(sdev);
804 spin_lock_irqsave(&h->devlock, flags);
805 hdev = sdev->hostdata;
806 if (!hdev) {
807 spin_unlock_irqrestore(&h->devlock, flags);
808 return -ENODEV;
809 }
810
811 bay = hdev->bay;
812 for (i = 0; i < MAX_PATHS; i++) {
813 path_map_index = 1<<i;
814 if (i == hdev->active_path_index)
815 active = "Active";
816 else if (hdev->path_map & path_map_index)
817 active = "Inactive";
818 else
819 continue;
820
821 output_len += scnprintf(buf + output_len,
822 PAGE_SIZE - output_len,
823 "[%d:%d:%d:%d] %20.20s ",
824 h->scsi_host->host_no,
825 hdev->bus, hdev->target, hdev->lun,
826 scsi_device_type(hdev->devtype));
827
828 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
829 output_len += scnprintf(buf + output_len,
830 PAGE_SIZE - output_len,
831 "%s\n", active);
832 continue;
833 }
834
835 box = hdev->box[i];
836 memcpy(&phys_connector, &hdev->phys_connector[i],
837 sizeof(phys_connector));
838 if (phys_connector[0] < '0')
839 phys_connector[0] = '0';
840 if (phys_connector[1] < '0')
841 phys_connector[1] = '0';
842 output_len += scnprintf(buf + output_len,
843 PAGE_SIZE - output_len,
844 "PORT: %.2s ",
845 phys_connector);
846 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
847 hdev->expose_device) {
848 if (box == 0 || box == 0xFF) {
849 output_len += scnprintf(buf + output_len,
850 PAGE_SIZE - output_len,
851 "BAY: %hhu %s\n",
852 bay, active);
853 } else {
854 output_len += scnprintf(buf + output_len,
855 PAGE_SIZE - output_len,
856 "BOX: %hhu BAY: %hhu %s\n",
857 box, bay, active);
858 }
859 } else if (box != 0 && box != 0xFF) {
860 output_len += scnprintf(buf + output_len,
861 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
862 box, active);
863 } else
864 output_len += scnprintf(buf + output_len,
865 PAGE_SIZE - output_len, "%s\n", active);
866 }
867
868 spin_unlock_irqrestore(&h->devlock, flags);
869 return output_len;
870 }
871
872 static ssize_t host_show_ctlr_num(struct device *dev,
873 struct device_attribute *attr, char *buf)
874 {
875 struct ctlr_info *h;
876 struct Scsi_Host *shost = class_to_shost(dev);
877
878 h = shost_to_hba(shost);
879 return snprintf(buf, 20, "%d\n", h->ctlr);
880 }
881
882 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
883 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
884 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
885 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
886 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
887 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
888 host_show_hp_ssd_smart_path_enabled, NULL);
889 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
890 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
891 host_show_hp_ssd_smart_path_status,
892 host_store_hp_ssd_smart_path_status);
893 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
894 host_store_raid_offload_debug);
895 static DEVICE_ATTR(firmware_revision, S_IRUGO,
896 host_show_firmware_revision, NULL);
897 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
898 host_show_commands_outstanding, NULL);
899 static DEVICE_ATTR(transport_mode, S_IRUGO,
900 host_show_transport_mode, NULL);
901 static DEVICE_ATTR(resettable, S_IRUGO,
902 host_show_resettable, NULL);
903 static DEVICE_ATTR(lockup_detected, S_IRUGO,
904 host_show_lockup_detected, NULL);
905 static DEVICE_ATTR(ctlr_num, S_IRUGO,
906 host_show_ctlr_num, NULL);
907
908 static struct device_attribute *hpsa_sdev_attrs[] = {
909 &dev_attr_raid_level,
910 &dev_attr_lunid,
911 &dev_attr_unique_id,
912 &dev_attr_hp_ssd_smart_path_enabled,
913 &dev_attr_path_info,
914 &dev_attr_sas_address,
915 NULL,
916 };
917
918 static struct device_attribute *hpsa_shost_attrs[] = {
919 &dev_attr_rescan,
920 &dev_attr_firmware_revision,
921 &dev_attr_commands_outstanding,
922 &dev_attr_transport_mode,
923 &dev_attr_resettable,
924 &dev_attr_hp_ssd_smart_path_status,
925 &dev_attr_raid_offload_debug,
926 &dev_attr_lockup_detected,
927 &dev_attr_ctlr_num,
928 NULL,
929 };
930
931 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
932 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
933
934 static struct scsi_host_template hpsa_driver_template = {
935 .module = THIS_MODULE,
936 .name = HPSA,
937 .proc_name = HPSA,
938 .queuecommand = hpsa_scsi_queue_command,
939 .scan_start = hpsa_scan_start,
940 .scan_finished = hpsa_scan_finished,
941 .change_queue_depth = hpsa_change_queue_depth,
942 .this_id = -1,
943 .use_clustering = ENABLE_CLUSTERING,
944 .eh_abort_handler = hpsa_eh_abort_handler,
945 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
946 .ioctl = hpsa_ioctl,
947 .slave_alloc = hpsa_slave_alloc,
948 .slave_configure = hpsa_slave_configure,
949 .slave_destroy = hpsa_slave_destroy,
950 #ifdef CONFIG_COMPAT
951 .compat_ioctl = hpsa_compat_ioctl,
952 #endif
953 .sdev_attrs = hpsa_sdev_attrs,
954 .shost_attrs = hpsa_shost_attrs,
955 .max_sectors = 8192,
956 .no_write_same = 1,
957 };
958
959 static inline u32 next_command(struct ctlr_info *h, u8 q)
960 {
961 u32 a;
962 struct reply_queue_buffer *rq = &h->reply_queue[q];
963
964 if (h->transMethod & CFGTBL_Trans_io_accel1)
965 return h->access.command_completed(h, q);
966
967 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
968 return h->access.command_completed(h, q);
969
970 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
971 a = rq->head[rq->current_entry];
972 rq->current_entry++;
973 atomic_dec(&h->commands_outstanding);
974 } else {
975 a = FIFO_EMPTY;
976 }
977 /* Check for wraparound */
978 if (rq->current_entry == h->max_commands) {
979 rq->current_entry = 0;
980 rq->wraparound ^= 1;
981 }
982 return a;
983 }
984
985 /*
986 * There are some special bits in the bus address of the
987 * command that we have to set for the controller to know
988 * how to process the command:
989 *
990 * Normal performant mode:
991 * bit 0: 1 means performant mode, 0 means simple mode.
992 * bits 1-3 = block fetch table entry
993 * bits 4-6 = command type (== 0)
994 *
995 * ioaccel1 mode:
996 * bit 0 = "performant mode" bit.
997 * bits 1-3 = block fetch table entry
998 * bits 4-6 = command type (== 110)
999 * (command type is needed because ioaccel1 mode
1000 * commands are submitted through the same register as normal
1001 * mode commands, so this is how the controller knows whether
1002 * the command is normal mode or ioaccel1 mode.)
1003 *
1004 * ioaccel2 mode:
1005 * bit 0 = "performant mode" bit.
1006 * bits 1-4 = block fetch table entry (note extra bit)
1007 * bits 4-6 = not needed, because ioaccel2 mode has
1008 * a separate special register for submitting commands.
1009 */
1010
1011 /*
1012 * set_performant_mode: Modify the tag for cciss performant
1013 * set bit 0 for pull model, bits 3-1 for block fetch
1014 * register number
1015 */
1016 #define DEFAULT_REPLY_QUEUE (-1)
1017 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1018 int reply_queue)
1019 {
1020 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1021 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1022 if (unlikely(!h->msix_vectors))
1023 return;
1024 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 c->Header.ReplyQueue =
1026 raw_smp_processor_id() % h->nreply_queues;
1027 else
1028 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1029 }
1030 }
1031
1032 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1033 struct CommandList *c,
1034 int reply_queue)
1035 {
1036 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1037
1038 /*
1039 * Tell the controller to post the reply to the queue for this
1040 * processor. This seems to give the best I/O throughput.
1041 */
1042 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1044 else
1045 cp->ReplyQueue = reply_queue % h->nreply_queues;
1046 /*
1047 * Set the bits in the address sent down to include:
1048 * - performant mode bit (bit 0)
1049 * - pull count (bits 1-3)
1050 * - command type (bits 4-6)
1051 */
1052 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1053 IOACCEL1_BUSADDR_CMDTYPE;
1054 }
1055
1056 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1057 struct CommandList *c,
1058 int reply_queue)
1059 {
1060 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1061 &h->ioaccel2_cmd_pool[c->cmdindex];
1062
1063 /* Tell the controller to post the reply to the queue for this
1064 * processor. This seems to give the best I/O throughput.
1065 */
1066 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1068 else
1069 cp->reply_queue = reply_queue % h->nreply_queues;
1070 /* Set the bits in the address sent down to include:
1071 * - performant mode bit not used in ioaccel mode 2
1072 * - pull count (bits 0-3)
1073 * - command type isn't needed for ioaccel2
1074 */
1075 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1076 }
1077
1078 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1079 struct CommandList *c,
1080 int reply_queue)
1081 {
1082 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1083
1084 /*
1085 * Tell the controller to post the reply to the queue for this
1086 * processor. This seems to give the best I/O throughput.
1087 */
1088 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090 else
1091 cp->reply_queue = reply_queue % h->nreply_queues;
1092 /*
1093 * Set the bits in the address sent down to include:
1094 * - performant mode bit not used in ioaccel mode 2
1095 * - pull count (bits 0-3)
1096 * - command type isn't needed for ioaccel2
1097 */
1098 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1099 }
1100
1101 static int is_firmware_flash_cmd(u8 *cdb)
1102 {
1103 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1104 }
1105
1106 /*
1107 * During firmware flash, the heartbeat register may not update as frequently
1108 * as it should. So we dial down lockup detection during firmware flash. and
1109 * dial it back up when firmware flash completes.
1110 */
1111 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1112 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1113 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1114 struct CommandList *c)
1115 {
1116 if (!is_firmware_flash_cmd(c->Request.CDB))
1117 return;
1118 atomic_inc(&h->firmware_flash_in_progress);
1119 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1120 }
1121
1122 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1123 struct CommandList *c)
1124 {
1125 if (is_firmware_flash_cmd(c->Request.CDB) &&
1126 atomic_dec_and_test(&h->firmware_flash_in_progress))
1127 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1128 }
1129
1130 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1131 struct CommandList *c, int reply_queue)
1132 {
1133 dial_down_lockup_detection_during_fw_flash(h, c);
1134 atomic_inc(&h->commands_outstanding);
1135 switch (c->cmd_type) {
1136 case CMD_IOACCEL1:
1137 set_ioaccel1_performant_mode(h, c, reply_queue);
1138 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1139 break;
1140 case CMD_IOACCEL2:
1141 set_ioaccel2_performant_mode(h, c, reply_queue);
1142 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 break;
1144 case IOACCEL2_TMF:
1145 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1146 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1147 break;
1148 default:
1149 set_performant_mode(h, c, reply_queue);
1150 h->access.submit_command(h, c);
1151 }
1152 }
1153
1154 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1155 {
1156 if (unlikely(hpsa_is_pending_event(c)))
1157 return finish_cmd(c);
1158
1159 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1160 }
1161
1162 static inline int is_hba_lunid(unsigned char scsi3addr[])
1163 {
1164 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1165 }
1166
1167 static inline int is_scsi_rev_5(struct ctlr_info *h)
1168 {
1169 if (!h->hba_inquiry_data)
1170 return 0;
1171 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1172 return 1;
1173 return 0;
1174 }
1175
1176 static int hpsa_find_target_lun(struct ctlr_info *h,
1177 unsigned char scsi3addr[], int bus, int *target, int *lun)
1178 {
1179 /* finds an unused bus, target, lun for a new physical device
1180 * assumes h->devlock is held
1181 */
1182 int i, found = 0;
1183 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1184
1185 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1186
1187 for (i = 0; i < h->ndevices; i++) {
1188 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1189 __set_bit(h->dev[i]->target, lun_taken);
1190 }
1191
1192 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1193 if (i < HPSA_MAX_DEVICES) {
1194 /* *bus = 1; */
1195 *target = i;
1196 *lun = 0;
1197 found = 1;
1198 }
1199 return !found;
1200 }
1201
1202 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1203 struct hpsa_scsi_dev_t *dev, char *description)
1204 {
1205 #define LABEL_SIZE 25
1206 char label[LABEL_SIZE];
1207
1208 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1209 return;
1210
1211 switch (dev->devtype) {
1212 case TYPE_RAID:
1213 snprintf(label, LABEL_SIZE, "controller");
1214 break;
1215 case TYPE_ENCLOSURE:
1216 snprintf(label, LABEL_SIZE, "enclosure");
1217 break;
1218 case TYPE_DISK:
1219 case TYPE_ZBC:
1220 if (dev->external)
1221 snprintf(label, LABEL_SIZE, "external");
1222 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1223 snprintf(label, LABEL_SIZE, "%s",
1224 raid_label[PHYSICAL_DRIVE]);
1225 else
1226 snprintf(label, LABEL_SIZE, "RAID-%s",
1227 dev->raid_level > RAID_UNKNOWN ? "?" :
1228 raid_label[dev->raid_level]);
1229 break;
1230 case TYPE_ROM:
1231 snprintf(label, LABEL_SIZE, "rom");
1232 break;
1233 case TYPE_TAPE:
1234 snprintf(label, LABEL_SIZE, "tape");
1235 break;
1236 case TYPE_MEDIUM_CHANGER:
1237 snprintf(label, LABEL_SIZE, "changer");
1238 break;
1239 default:
1240 snprintf(label, LABEL_SIZE, "UNKNOWN");
1241 break;
1242 }
1243
1244 dev_printk(level, &h->pdev->dev,
1245 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1246 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1247 description,
1248 scsi_device_type(dev->devtype),
1249 dev->vendor,
1250 dev->model,
1251 label,
1252 dev->offload_config ? '+' : '-',
1253 dev->offload_enabled ? '+' : '-',
1254 dev->expose_device);
1255 }
1256
1257 /* Add an entry into h->dev[] array. */
1258 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1259 struct hpsa_scsi_dev_t *device,
1260 struct hpsa_scsi_dev_t *added[], int *nadded)
1261 {
1262 /* assumes h->devlock is held */
1263 int n = h->ndevices;
1264 int i;
1265 unsigned char addr1[8], addr2[8];
1266 struct hpsa_scsi_dev_t *sd;
1267
1268 if (n >= HPSA_MAX_DEVICES) {
1269 dev_err(&h->pdev->dev, "too many devices, some will be "
1270 "inaccessible.\n");
1271 return -1;
1272 }
1273
1274 /* physical devices do not have lun or target assigned until now. */
1275 if (device->lun != -1)
1276 /* Logical device, lun is already assigned. */
1277 goto lun_assigned;
1278
1279 /* If this device a non-zero lun of a multi-lun device
1280 * byte 4 of the 8-byte LUN addr will contain the logical
1281 * unit no, zero otherwise.
1282 */
1283 if (device->scsi3addr[4] == 0) {
1284 /* This is not a non-zero lun of a multi-lun device */
1285 if (hpsa_find_target_lun(h, device->scsi3addr,
1286 device->bus, &device->target, &device->lun) != 0)
1287 return -1;
1288 goto lun_assigned;
1289 }
1290
1291 /* This is a non-zero lun of a multi-lun device.
1292 * Search through our list and find the device which
1293 * has the same 8 byte LUN address, excepting byte 4 and 5.
1294 * Assign the same bus and target for this new LUN.
1295 * Use the logical unit number from the firmware.
1296 */
1297 memcpy(addr1, device->scsi3addr, 8);
1298 addr1[4] = 0;
1299 addr1[5] = 0;
1300 for (i = 0; i < n; i++) {
1301 sd = h->dev[i];
1302 memcpy(addr2, sd->scsi3addr, 8);
1303 addr2[4] = 0;
1304 addr2[5] = 0;
1305 /* differ only in byte 4 and 5? */
1306 if (memcmp(addr1, addr2, 8) == 0) {
1307 device->bus = sd->bus;
1308 device->target = sd->target;
1309 device->lun = device->scsi3addr[4];
1310 break;
1311 }
1312 }
1313 if (device->lun == -1) {
1314 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1315 " suspect firmware bug or unsupported hardware "
1316 "configuration.\n");
1317 return -1;
1318 }
1319
1320 lun_assigned:
1321
1322 h->dev[n] = device;
1323 h->ndevices++;
1324 added[*nadded] = device;
1325 (*nadded)++;
1326 hpsa_show_dev_msg(KERN_INFO, h, device,
1327 device->expose_device ? "added" : "masked");
1328 device->offload_to_be_enabled = device->offload_enabled;
1329 device->offload_enabled = 0;
1330 return 0;
1331 }
1332
1333 /* Update an entry in h->dev[] array. */
1334 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1335 int entry, struct hpsa_scsi_dev_t *new_entry)
1336 {
1337 int offload_enabled;
1338 /* assumes h->devlock is held */
1339 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1340
1341 /* Raid level changed. */
1342 h->dev[entry]->raid_level = new_entry->raid_level;
1343
1344 /* Raid offload parameters changed. Careful about the ordering. */
1345 if (new_entry->offload_config && new_entry->offload_enabled) {
1346 /*
1347 * if drive is newly offload_enabled, we want to copy the
1348 * raid map data first. If previously offload_enabled and
1349 * offload_config were set, raid map data had better be
1350 * the same as it was before. if raid map data is changed
1351 * then it had better be the case that
1352 * h->dev[entry]->offload_enabled is currently 0.
1353 */
1354 h->dev[entry]->raid_map = new_entry->raid_map;
1355 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1356 }
1357 if (new_entry->hba_ioaccel_enabled) {
1358 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1360 }
1361 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1362 h->dev[entry]->offload_config = new_entry->offload_config;
1363 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1364 h->dev[entry]->queue_depth = new_entry->queue_depth;
1365
1366 /*
1367 * We can turn off ioaccel offload now, but need to delay turning
1368 * it on until we can update h->dev[entry]->phys_disk[], but we
1369 * can't do that until all the devices are updated.
1370 */
1371 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1372 if (!new_entry->offload_enabled)
1373 h->dev[entry]->offload_enabled = 0;
1374
1375 offload_enabled = h->dev[entry]->offload_enabled;
1376 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1377 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1378 h->dev[entry]->offload_enabled = offload_enabled;
1379 }
1380
1381 /* Replace an entry from h->dev[] array. */
1382 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1383 int entry, struct hpsa_scsi_dev_t *new_entry,
1384 struct hpsa_scsi_dev_t *added[], int *nadded,
1385 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1386 {
1387 /* assumes h->devlock is held */
1388 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1389 removed[*nremoved] = h->dev[entry];
1390 (*nremoved)++;
1391
1392 /*
1393 * New physical devices won't have target/lun assigned yet
1394 * so we need to preserve the values in the slot we are replacing.
1395 */
1396 if (new_entry->target == -1) {
1397 new_entry->target = h->dev[entry]->target;
1398 new_entry->lun = h->dev[entry]->lun;
1399 }
1400
1401 h->dev[entry] = new_entry;
1402 added[*nadded] = new_entry;
1403 (*nadded)++;
1404 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1405 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1406 new_entry->offload_enabled = 0;
1407 }
1408
1409 /* Remove an entry from h->dev[] array. */
1410 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1411 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 /* assumes h->devlock is held */
1414 int i;
1415 struct hpsa_scsi_dev_t *sd;
1416
1417 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418
1419 sd = h->dev[entry];
1420 removed[*nremoved] = h->dev[entry];
1421 (*nremoved)++;
1422
1423 for (i = entry; i < h->ndevices-1; i++)
1424 h->dev[i] = h->dev[i+1];
1425 h->ndevices--;
1426 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1427 }
1428
1429 #define SCSI3ADDR_EQ(a, b) ( \
1430 (a)[7] == (b)[7] && \
1431 (a)[6] == (b)[6] && \
1432 (a)[5] == (b)[5] && \
1433 (a)[4] == (b)[4] && \
1434 (a)[3] == (b)[3] && \
1435 (a)[2] == (b)[2] && \
1436 (a)[1] == (b)[1] && \
1437 (a)[0] == (b)[0])
1438
1439 static void fixup_botched_add(struct ctlr_info *h,
1440 struct hpsa_scsi_dev_t *added)
1441 {
1442 /* called when scsi_add_device fails in order to re-adjust
1443 * h->dev[] to match the mid layer's view.
1444 */
1445 unsigned long flags;
1446 int i, j;
1447
1448 spin_lock_irqsave(&h->lock, flags);
1449 for (i = 0; i < h->ndevices; i++) {
1450 if (h->dev[i] == added) {
1451 for (j = i; j < h->ndevices-1; j++)
1452 h->dev[j] = h->dev[j+1];
1453 h->ndevices--;
1454 break;
1455 }
1456 }
1457 spin_unlock_irqrestore(&h->lock, flags);
1458 kfree(added);
1459 }
1460
1461 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1462 struct hpsa_scsi_dev_t *dev2)
1463 {
1464 /* we compare everything except lun and target as these
1465 * are not yet assigned. Compare parts likely
1466 * to differ first
1467 */
1468 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1469 sizeof(dev1->scsi3addr)) != 0)
1470 return 0;
1471 if (memcmp(dev1->device_id, dev2->device_id,
1472 sizeof(dev1->device_id)) != 0)
1473 return 0;
1474 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1475 return 0;
1476 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1477 return 0;
1478 if (dev1->devtype != dev2->devtype)
1479 return 0;
1480 if (dev1->bus != dev2->bus)
1481 return 0;
1482 return 1;
1483 }
1484
1485 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1486 struct hpsa_scsi_dev_t *dev2)
1487 {
1488 /* Device attributes that can change, but don't mean
1489 * that the device is a different device, nor that the OS
1490 * needs to be told anything about the change.
1491 */
1492 if (dev1->raid_level != dev2->raid_level)
1493 return 1;
1494 if (dev1->offload_config != dev2->offload_config)
1495 return 1;
1496 if (dev1->offload_enabled != dev2->offload_enabled)
1497 return 1;
1498 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1499 if (dev1->queue_depth != dev2->queue_depth)
1500 return 1;
1501 return 0;
1502 }
1503
1504 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1505 * and return needle location in *index. If scsi3addr matches, but not
1506 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1507 * location in *index.
1508 * In the case of a minor device attribute change, such as RAID level, just
1509 * return DEVICE_UPDATED, along with the updated device's location in index.
1510 * If needle not found, return DEVICE_NOT_FOUND.
1511 */
1512 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1513 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1514 int *index)
1515 {
1516 int i;
1517 #define DEVICE_NOT_FOUND 0
1518 #define DEVICE_CHANGED 1
1519 #define DEVICE_SAME 2
1520 #define DEVICE_UPDATED 3
1521 if (needle == NULL)
1522 return DEVICE_NOT_FOUND;
1523
1524 for (i = 0; i < haystack_size; i++) {
1525 if (haystack[i] == NULL) /* previously removed. */
1526 continue;
1527 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1528 *index = i;
1529 if (device_is_the_same(needle, haystack[i])) {
1530 if (device_updated(needle, haystack[i]))
1531 return DEVICE_UPDATED;
1532 return DEVICE_SAME;
1533 } else {
1534 /* Keep offline devices offline */
1535 if (needle->volume_offline)
1536 return DEVICE_NOT_FOUND;
1537 return DEVICE_CHANGED;
1538 }
1539 }
1540 }
1541 *index = -1;
1542 return DEVICE_NOT_FOUND;
1543 }
1544
1545 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1546 unsigned char scsi3addr[])
1547 {
1548 struct offline_device_entry *device;
1549 unsigned long flags;
1550
1551 /* Check to see if device is already on the list */
1552 spin_lock_irqsave(&h->offline_device_lock, flags);
1553 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1554 if (memcmp(device->scsi3addr, scsi3addr,
1555 sizeof(device->scsi3addr)) == 0) {
1556 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557 return;
1558 }
1559 }
1560 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1561
1562 /* Device is not on the list, add it. */
1563 device = kmalloc(sizeof(*device), GFP_KERNEL);
1564 if (!device)
1565 return;
1566
1567 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1568 spin_lock_irqsave(&h->offline_device_lock, flags);
1569 list_add_tail(&device->offline_list, &h->offline_device_list);
1570 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1571 }
1572
1573 /* Print a message explaining various offline volume states */
1574 static void hpsa_show_volume_status(struct ctlr_info *h,
1575 struct hpsa_scsi_dev_t *sd)
1576 {
1577 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1578 dev_info(&h->pdev->dev,
1579 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1580 h->scsi_host->host_no,
1581 sd->bus, sd->target, sd->lun);
1582 switch (sd->volume_offline) {
1583 case HPSA_LV_OK:
1584 break;
1585 case HPSA_LV_UNDERGOING_ERASE:
1586 dev_info(&h->pdev->dev,
1587 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1588 h->scsi_host->host_no,
1589 sd->bus, sd->target, sd->lun);
1590 break;
1591 case HPSA_LV_NOT_AVAILABLE:
1592 dev_info(&h->pdev->dev,
1593 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1594 h->scsi_host->host_no,
1595 sd->bus, sd->target, sd->lun);
1596 break;
1597 case HPSA_LV_UNDERGOING_RPI:
1598 dev_info(&h->pdev->dev,
1599 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1600 h->scsi_host->host_no,
1601 sd->bus, sd->target, sd->lun);
1602 break;
1603 case HPSA_LV_PENDING_RPI:
1604 dev_info(&h->pdev->dev,
1605 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1606 h->scsi_host->host_no,
1607 sd->bus, sd->target, sd->lun);
1608 break;
1609 case HPSA_LV_ENCRYPTED_NO_KEY:
1610 dev_info(&h->pdev->dev,
1611 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1612 h->scsi_host->host_no,
1613 sd->bus, sd->target, sd->lun);
1614 break;
1615 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1616 dev_info(&h->pdev->dev,
1617 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1618 h->scsi_host->host_no,
1619 sd->bus, sd->target, sd->lun);
1620 break;
1621 case HPSA_LV_UNDERGOING_ENCRYPTION:
1622 dev_info(&h->pdev->dev,
1623 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1624 h->scsi_host->host_no,
1625 sd->bus, sd->target, sd->lun);
1626 break;
1627 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1628 dev_info(&h->pdev->dev,
1629 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1630 h->scsi_host->host_no,
1631 sd->bus, sd->target, sd->lun);
1632 break;
1633 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1634 dev_info(&h->pdev->dev,
1635 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1636 h->scsi_host->host_no,
1637 sd->bus, sd->target, sd->lun);
1638 break;
1639 case HPSA_LV_PENDING_ENCRYPTION:
1640 dev_info(&h->pdev->dev,
1641 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1642 h->scsi_host->host_no,
1643 sd->bus, sd->target, sd->lun);
1644 break;
1645 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1646 dev_info(&h->pdev->dev,
1647 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1648 h->scsi_host->host_no,
1649 sd->bus, sd->target, sd->lun);
1650 break;
1651 }
1652 }
1653
1654 /*
1655 * Figure the list of physical drive pointers for a logical drive with
1656 * raid offload configured.
1657 */
1658 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1659 struct hpsa_scsi_dev_t *dev[], int ndevices,
1660 struct hpsa_scsi_dev_t *logical_drive)
1661 {
1662 struct raid_map_data *map = &logical_drive->raid_map;
1663 struct raid_map_disk_data *dd = &map->data[0];
1664 int i, j;
1665 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1666 le16_to_cpu(map->metadata_disks_per_row);
1667 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1668 le16_to_cpu(map->layout_map_count) *
1669 total_disks_per_row;
1670 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1671 total_disks_per_row;
1672 int qdepth;
1673
1674 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1675 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1676
1677 logical_drive->nphysical_disks = nraid_map_entries;
1678
1679 qdepth = 0;
1680 for (i = 0; i < nraid_map_entries; i++) {
1681 logical_drive->phys_disk[i] = NULL;
1682 if (!logical_drive->offload_config)
1683 continue;
1684 for (j = 0; j < ndevices; j++) {
1685 if (dev[j] == NULL)
1686 continue;
1687 if (dev[j]->devtype != TYPE_DISK &&
1688 dev[j]->devtype != TYPE_ZBC)
1689 continue;
1690 if (is_logical_device(dev[j]))
1691 continue;
1692 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1693 continue;
1694
1695 logical_drive->phys_disk[i] = dev[j];
1696 if (i < nphys_disk)
1697 qdepth = min(h->nr_cmds, qdepth +
1698 logical_drive->phys_disk[i]->queue_depth);
1699 break;
1700 }
1701
1702 /*
1703 * This can happen if a physical drive is removed and
1704 * the logical drive is degraded. In that case, the RAID
1705 * map data will refer to a physical disk which isn't actually
1706 * present. And in that case offload_enabled should already
1707 * be 0, but we'll turn it off here just in case
1708 */
1709 if (!logical_drive->phys_disk[i]) {
1710 logical_drive->offload_enabled = 0;
1711 logical_drive->offload_to_be_enabled = 0;
1712 logical_drive->queue_depth = 8;
1713 }
1714 }
1715 if (nraid_map_entries)
1716 /*
1717 * This is correct for reads, too high for full stripe writes,
1718 * way too high for partial stripe writes
1719 */
1720 logical_drive->queue_depth = qdepth;
1721 else
1722 logical_drive->queue_depth = h->nr_cmds;
1723 }
1724
1725 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1726 struct hpsa_scsi_dev_t *dev[], int ndevices)
1727 {
1728 int i;
1729
1730 for (i = 0; i < ndevices; i++) {
1731 if (dev[i] == NULL)
1732 continue;
1733 if (dev[i]->devtype != TYPE_DISK &&
1734 dev[i]->devtype != TYPE_ZBC)
1735 continue;
1736 if (!is_logical_device(dev[i]))
1737 continue;
1738
1739 /*
1740 * If offload is currently enabled, the RAID map and
1741 * phys_disk[] assignment *better* not be changing
1742 * and since it isn't changing, we do not need to
1743 * update it.
1744 */
1745 if (dev[i]->offload_enabled)
1746 continue;
1747
1748 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1749 }
1750 }
1751
1752 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1753 {
1754 int rc = 0;
1755
1756 if (!h->scsi_host)
1757 return 1;
1758
1759 if (is_logical_device(device)) /* RAID */
1760 rc = scsi_add_device(h->scsi_host, device->bus,
1761 device->target, device->lun);
1762 else /* HBA */
1763 rc = hpsa_add_sas_device(h->sas_host, device);
1764
1765 return rc;
1766 }
1767
1768 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1769 struct hpsa_scsi_dev_t *dev)
1770 {
1771 int i;
1772 int count = 0;
1773
1774 for (i = 0; i < h->nr_cmds; i++) {
1775 struct CommandList *c = h->cmd_pool + i;
1776 int refcount = atomic_inc_return(&c->refcount);
1777
1778 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1779 dev->scsi3addr)) {
1780 unsigned long flags;
1781
1782 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1783 if (!hpsa_is_cmd_idle(c))
1784 ++count;
1785 spin_unlock_irqrestore(&h->lock, flags);
1786 }
1787
1788 cmd_free(h, c);
1789 }
1790
1791 return count;
1792 }
1793
1794 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1795 struct hpsa_scsi_dev_t *device)
1796 {
1797 int cmds = 0;
1798 int waits = 0;
1799
1800 while (1) {
1801 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1802 if (cmds == 0)
1803 break;
1804 if (++waits > 20)
1805 break;
1806 dev_warn(&h->pdev->dev,
1807 "%s: removing device with %d outstanding commands!\n",
1808 __func__, cmds);
1809 msleep(1000);
1810 }
1811 }
1812
1813 static void hpsa_remove_device(struct ctlr_info *h,
1814 struct hpsa_scsi_dev_t *device)
1815 {
1816 struct scsi_device *sdev = NULL;
1817
1818 if (!h->scsi_host)
1819 return;
1820
1821 if (is_logical_device(device)) { /* RAID */
1822 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1823 device->target, device->lun);
1824 if (sdev) {
1825 scsi_remove_device(sdev);
1826 scsi_device_put(sdev);
1827 } else {
1828 /*
1829 * We don't expect to get here. Future commands
1830 * to this device will get a selection timeout as
1831 * if the device were gone.
1832 */
1833 hpsa_show_dev_msg(KERN_WARNING, h, device,
1834 "didn't find device for removal.");
1835 }
1836 } else { /* HBA */
1837
1838 device->removed = 1;
1839 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1840
1841 hpsa_remove_sas_device(device);
1842 }
1843 }
1844
1845 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1846 struct hpsa_scsi_dev_t *sd[], int nsds)
1847 {
1848 /* sd contains scsi3 addresses and devtypes, and inquiry
1849 * data. This function takes what's in sd to be the current
1850 * reality and updates h->dev[] to reflect that reality.
1851 */
1852 int i, entry, device_change, changes = 0;
1853 struct hpsa_scsi_dev_t *csd;
1854 unsigned long flags;
1855 struct hpsa_scsi_dev_t **added, **removed;
1856 int nadded, nremoved;
1857
1858 /*
1859 * A reset can cause a device status to change
1860 * re-schedule the scan to see what happened.
1861 */
1862 if (h->reset_in_progress) {
1863 h->drv_req_rescan = 1;
1864 return;
1865 }
1866
1867 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1868 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1869
1870 if (!added || !removed) {
1871 dev_warn(&h->pdev->dev, "out of memory in "
1872 "adjust_hpsa_scsi_table\n");
1873 goto free_and_out;
1874 }
1875
1876 spin_lock_irqsave(&h->devlock, flags);
1877
1878 /* find any devices in h->dev[] that are not in
1879 * sd[] and remove them from h->dev[], and for any
1880 * devices which have changed, remove the old device
1881 * info and add the new device info.
1882 * If minor device attributes change, just update
1883 * the existing device structure.
1884 */
1885 i = 0;
1886 nremoved = 0;
1887 nadded = 0;
1888 while (i < h->ndevices) {
1889 csd = h->dev[i];
1890 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1891 if (device_change == DEVICE_NOT_FOUND) {
1892 changes++;
1893 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1894 continue; /* remove ^^^, hence i not incremented */
1895 } else if (device_change == DEVICE_CHANGED) {
1896 changes++;
1897 hpsa_scsi_replace_entry(h, i, sd[entry],
1898 added, &nadded, removed, &nremoved);
1899 /* Set it to NULL to prevent it from being freed
1900 * at the bottom of hpsa_update_scsi_devices()
1901 */
1902 sd[entry] = NULL;
1903 } else if (device_change == DEVICE_UPDATED) {
1904 hpsa_scsi_update_entry(h, i, sd[entry]);
1905 }
1906 i++;
1907 }
1908
1909 /* Now, make sure every device listed in sd[] is also
1910 * listed in h->dev[], adding them if they aren't found
1911 */
1912
1913 for (i = 0; i < nsds; i++) {
1914 if (!sd[i]) /* if already added above. */
1915 continue;
1916
1917 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1918 * as the SCSI mid-layer does not handle such devices well.
1919 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1920 * at 160Hz, and prevents the system from coming up.
1921 */
1922 if (sd[i]->volume_offline) {
1923 hpsa_show_volume_status(h, sd[i]);
1924 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1925 continue;
1926 }
1927
1928 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1929 h->ndevices, &entry);
1930 if (device_change == DEVICE_NOT_FOUND) {
1931 changes++;
1932 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1933 break;
1934 sd[i] = NULL; /* prevent from being freed later. */
1935 } else if (device_change == DEVICE_CHANGED) {
1936 /* should never happen... */
1937 changes++;
1938 dev_warn(&h->pdev->dev,
1939 "device unexpectedly changed.\n");
1940 /* but if it does happen, we just ignore that device */
1941 }
1942 }
1943 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1944
1945 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1946 * any logical drives that need it enabled.
1947 */
1948 for (i = 0; i < h->ndevices; i++) {
1949 if (h->dev[i] == NULL)
1950 continue;
1951 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1952 }
1953
1954 spin_unlock_irqrestore(&h->devlock, flags);
1955
1956 /* Monitor devices which are in one of several NOT READY states to be
1957 * brought online later. This must be done without holding h->devlock,
1958 * so don't touch h->dev[]
1959 */
1960 for (i = 0; i < nsds; i++) {
1961 if (!sd[i]) /* if already added above. */
1962 continue;
1963 if (sd[i]->volume_offline)
1964 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1965 }
1966
1967 /* Don't notify scsi mid layer of any changes the first time through
1968 * (or if there are no changes) scsi_scan_host will do it later the
1969 * first time through.
1970 */
1971 if (!changes)
1972 goto free_and_out;
1973
1974 /* Notify scsi mid layer of any removed devices */
1975 for (i = 0; i < nremoved; i++) {
1976 if (removed[i] == NULL)
1977 continue;
1978 if (removed[i]->expose_device)
1979 hpsa_remove_device(h, removed[i]);
1980 kfree(removed[i]);
1981 removed[i] = NULL;
1982 }
1983
1984 /* Notify scsi mid layer of any added devices */
1985 for (i = 0; i < nadded; i++) {
1986 int rc = 0;
1987
1988 if (added[i] == NULL)
1989 continue;
1990 if (!(added[i]->expose_device))
1991 continue;
1992 rc = hpsa_add_device(h, added[i]);
1993 if (!rc)
1994 continue;
1995 dev_warn(&h->pdev->dev,
1996 "addition failed %d, device not added.", rc);
1997 /* now we have to remove it from h->dev,
1998 * since it didn't get added to scsi mid layer
1999 */
2000 fixup_botched_add(h, added[i]);
2001 h->drv_req_rescan = 1;
2002 }
2003
2004 free_and_out:
2005 kfree(added);
2006 kfree(removed);
2007 }
2008
2009 /*
2010 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2011 * Assume's h->devlock is held.
2012 */
2013 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2014 int bus, int target, int lun)
2015 {
2016 int i;
2017 struct hpsa_scsi_dev_t *sd;
2018
2019 for (i = 0; i < h->ndevices; i++) {
2020 sd = h->dev[i];
2021 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2022 return sd;
2023 }
2024 return NULL;
2025 }
2026
2027 static int hpsa_slave_alloc(struct scsi_device *sdev)
2028 {
2029 struct hpsa_scsi_dev_t *sd = NULL;
2030 unsigned long flags;
2031 struct ctlr_info *h;
2032
2033 h = sdev_to_hba(sdev);
2034 spin_lock_irqsave(&h->devlock, flags);
2035 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2036 struct scsi_target *starget;
2037 struct sas_rphy *rphy;
2038
2039 starget = scsi_target(sdev);
2040 rphy = target_to_rphy(starget);
2041 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2042 if (sd) {
2043 sd->target = sdev_id(sdev);
2044 sd->lun = sdev->lun;
2045 }
2046 }
2047 if (!sd)
2048 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2049 sdev_id(sdev), sdev->lun);
2050
2051 if (sd && sd->expose_device) {
2052 atomic_set(&sd->ioaccel_cmds_out, 0);
2053 sdev->hostdata = sd;
2054 } else
2055 sdev->hostdata = NULL;
2056 spin_unlock_irqrestore(&h->devlock, flags);
2057 return 0;
2058 }
2059
2060 /* configure scsi device based on internal per-device structure */
2061 static int hpsa_slave_configure(struct scsi_device *sdev)
2062 {
2063 struct hpsa_scsi_dev_t *sd;
2064 int queue_depth;
2065
2066 sd = sdev->hostdata;
2067 sdev->no_uld_attach = !sd || !sd->expose_device;
2068
2069 if (sd)
2070 queue_depth = sd->queue_depth != 0 ?
2071 sd->queue_depth : sdev->host->can_queue;
2072 else
2073 queue_depth = sdev->host->can_queue;
2074
2075 scsi_change_queue_depth(sdev, queue_depth);
2076
2077 return 0;
2078 }
2079
2080 static void hpsa_slave_destroy(struct scsi_device *sdev)
2081 {
2082 /* nothing to do. */
2083 }
2084
2085 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2086 {
2087 int i;
2088
2089 if (!h->ioaccel2_cmd_sg_list)
2090 return;
2091 for (i = 0; i < h->nr_cmds; i++) {
2092 kfree(h->ioaccel2_cmd_sg_list[i]);
2093 h->ioaccel2_cmd_sg_list[i] = NULL;
2094 }
2095 kfree(h->ioaccel2_cmd_sg_list);
2096 h->ioaccel2_cmd_sg_list = NULL;
2097 }
2098
2099 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2100 {
2101 int i;
2102
2103 if (h->chainsize <= 0)
2104 return 0;
2105
2106 h->ioaccel2_cmd_sg_list =
2107 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2108 GFP_KERNEL);
2109 if (!h->ioaccel2_cmd_sg_list)
2110 return -ENOMEM;
2111 for (i = 0; i < h->nr_cmds; i++) {
2112 h->ioaccel2_cmd_sg_list[i] =
2113 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2114 h->maxsgentries, GFP_KERNEL);
2115 if (!h->ioaccel2_cmd_sg_list[i])
2116 goto clean;
2117 }
2118 return 0;
2119
2120 clean:
2121 hpsa_free_ioaccel2_sg_chain_blocks(h);
2122 return -ENOMEM;
2123 }
2124
2125 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127 int i;
2128
2129 if (!h->cmd_sg_list)
2130 return;
2131 for (i = 0; i < h->nr_cmds; i++) {
2132 kfree(h->cmd_sg_list[i]);
2133 h->cmd_sg_list[i] = NULL;
2134 }
2135 kfree(h->cmd_sg_list);
2136 h->cmd_sg_list = NULL;
2137 }
2138
2139 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2140 {
2141 int i;
2142
2143 if (h->chainsize <= 0)
2144 return 0;
2145
2146 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2147 GFP_KERNEL);
2148 if (!h->cmd_sg_list)
2149 return -ENOMEM;
2150
2151 for (i = 0; i < h->nr_cmds; i++) {
2152 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2153 h->chainsize, GFP_KERNEL);
2154 if (!h->cmd_sg_list[i])
2155 goto clean;
2156
2157 }
2158 return 0;
2159
2160 clean:
2161 hpsa_free_sg_chain_blocks(h);
2162 return -ENOMEM;
2163 }
2164
2165 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2166 struct io_accel2_cmd *cp, struct CommandList *c)
2167 {
2168 struct ioaccel2_sg_element *chain_block;
2169 u64 temp64;
2170 u32 chain_size;
2171
2172 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2173 chain_size = le32_to_cpu(cp->sg[0].length);
2174 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2175 PCI_DMA_TODEVICE);
2176 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2177 /* prevent subsequent unmapping */
2178 cp->sg->address = 0;
2179 return -1;
2180 }
2181 cp->sg->address = cpu_to_le64(temp64);
2182 return 0;
2183 }
2184
2185 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2186 struct io_accel2_cmd *cp)
2187 {
2188 struct ioaccel2_sg_element *chain_sg;
2189 u64 temp64;
2190 u32 chain_size;
2191
2192 chain_sg = cp->sg;
2193 temp64 = le64_to_cpu(chain_sg->address);
2194 chain_size = le32_to_cpu(cp->sg[0].length);
2195 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2196 }
2197
2198 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2199 struct CommandList *c)
2200 {
2201 struct SGDescriptor *chain_sg, *chain_block;
2202 u64 temp64;
2203 u32 chain_len;
2204
2205 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2206 chain_block = h->cmd_sg_list[c->cmdindex];
2207 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2208 chain_len = sizeof(*chain_sg) *
2209 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2210 chain_sg->Len = cpu_to_le32(chain_len);
2211 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2212 PCI_DMA_TODEVICE);
2213 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2214 /* prevent subsequent unmapping */
2215 chain_sg->Addr = cpu_to_le64(0);
2216 return -1;
2217 }
2218 chain_sg->Addr = cpu_to_le64(temp64);
2219 return 0;
2220 }
2221
2222 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2223 struct CommandList *c)
2224 {
2225 struct SGDescriptor *chain_sg;
2226
2227 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2228 return;
2229
2230 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2231 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2232 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2233 }
2234
2235
2236 /* Decode the various types of errors on ioaccel2 path.
2237 * Return 1 for any error that should generate a RAID path retry.
2238 * Return 0 for errors that don't require a RAID path retry.
2239 */
2240 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2241 struct CommandList *c,
2242 struct scsi_cmnd *cmd,
2243 struct io_accel2_cmd *c2,
2244 struct hpsa_scsi_dev_t *dev)
2245 {
2246 int data_len;
2247 int retry = 0;
2248 u32 ioaccel2_resid = 0;
2249
2250 switch (c2->error_data.serv_response) {
2251 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2252 switch (c2->error_data.status) {
2253 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2254 break;
2255 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2256 cmd->result |= SAM_STAT_CHECK_CONDITION;
2257 if (c2->error_data.data_present !=
2258 IOACCEL2_SENSE_DATA_PRESENT) {
2259 memset(cmd->sense_buffer, 0,
2260 SCSI_SENSE_BUFFERSIZE);
2261 break;
2262 }
2263 /* copy the sense data */
2264 data_len = c2->error_data.sense_data_len;
2265 if (data_len > SCSI_SENSE_BUFFERSIZE)
2266 data_len = SCSI_SENSE_BUFFERSIZE;
2267 if (data_len > sizeof(c2->error_data.sense_data_buff))
2268 data_len =
2269 sizeof(c2->error_data.sense_data_buff);
2270 memcpy(cmd->sense_buffer,
2271 c2->error_data.sense_data_buff, data_len);
2272 retry = 1;
2273 break;
2274 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2275 retry = 1;
2276 break;
2277 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2278 retry = 1;
2279 break;
2280 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2281 retry = 1;
2282 break;
2283 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2284 retry = 1;
2285 break;
2286 default:
2287 retry = 1;
2288 break;
2289 }
2290 break;
2291 case IOACCEL2_SERV_RESPONSE_FAILURE:
2292 switch (c2->error_data.status) {
2293 case IOACCEL2_STATUS_SR_IO_ERROR:
2294 case IOACCEL2_STATUS_SR_IO_ABORTED:
2295 case IOACCEL2_STATUS_SR_OVERRUN:
2296 retry = 1;
2297 break;
2298 case IOACCEL2_STATUS_SR_UNDERRUN:
2299 cmd->result = (DID_OK << 16); /* host byte */
2300 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2301 ioaccel2_resid = get_unaligned_le32(
2302 &c2->error_data.resid_cnt[0]);
2303 scsi_set_resid(cmd, ioaccel2_resid);
2304 break;
2305 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2306 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2307 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2308 /*
2309 * Did an HBA disk disappear? We will eventually
2310 * get a state change event from the controller but
2311 * in the meantime, we need to tell the OS that the
2312 * HBA disk is no longer there and stop I/O
2313 * from going down. This allows the potential re-insert
2314 * of the disk to get the same device node.
2315 */
2316 if (dev->physical_device && dev->expose_device) {
2317 cmd->result = DID_NO_CONNECT << 16;
2318 dev->removed = 1;
2319 h->drv_req_rescan = 1;
2320 dev_warn(&h->pdev->dev,
2321 "%s: device is gone!\n", __func__);
2322 } else
2323 /*
2324 * Retry by sending down the RAID path.
2325 * We will get an event from ctlr to
2326 * trigger rescan regardless.
2327 */
2328 retry = 1;
2329 break;
2330 default:
2331 retry = 1;
2332 }
2333 break;
2334 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2335 break;
2336 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2337 break;
2338 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2339 retry = 1;
2340 break;
2341 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2342 break;
2343 default:
2344 retry = 1;
2345 break;
2346 }
2347
2348 return retry; /* retry on raid path? */
2349 }
2350
2351 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2352 struct CommandList *c)
2353 {
2354 bool do_wake = false;
2355
2356 /*
2357 * Prevent the following race in the abort handler:
2358 *
2359 * 1. LLD is requested to abort a SCSI command
2360 * 2. The SCSI command completes
2361 * 3. The struct CommandList associated with step 2 is made available
2362 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2363 * 5. Abort handler follows scsi_cmnd->host_scribble and
2364 * finds struct CommandList and tries to aborts it
2365 * Now we have aborted the wrong command.
2366 *
2367 * Reset c->scsi_cmd here so that the abort or reset handler will know
2368 * this command has completed. Then, check to see if the handler is
2369 * waiting for this command, and, if so, wake it.
2370 */
2371 c->scsi_cmd = SCSI_CMD_IDLE;
2372 mb(); /* Declare command idle before checking for pending events. */
2373 if (c->abort_pending) {
2374 do_wake = true;
2375 c->abort_pending = false;
2376 }
2377 if (c->reset_pending) {
2378 unsigned long flags;
2379 struct hpsa_scsi_dev_t *dev;
2380
2381 /*
2382 * There appears to be a reset pending; lock the lock and
2383 * reconfirm. If so, then decrement the count of outstanding
2384 * commands and wake the reset command if this is the last one.
2385 */
2386 spin_lock_irqsave(&h->lock, flags);
2387 dev = c->reset_pending; /* Re-fetch under the lock. */
2388 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2389 do_wake = true;
2390 c->reset_pending = NULL;
2391 spin_unlock_irqrestore(&h->lock, flags);
2392 }
2393
2394 if (do_wake)
2395 wake_up_all(&h->event_sync_wait_queue);
2396 }
2397
2398 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2399 struct CommandList *c)
2400 {
2401 hpsa_cmd_resolve_events(h, c);
2402 cmd_tagged_free(h, c);
2403 }
2404
2405 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2406 struct CommandList *c, struct scsi_cmnd *cmd)
2407 {
2408 hpsa_cmd_resolve_and_free(h, c);
2409 if (cmd && cmd->scsi_done)
2410 cmd->scsi_done(cmd);
2411 }
2412
2413 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2414 {
2415 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2416 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2417 }
2418
2419 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2420 {
2421 cmd->result = DID_ABORT << 16;
2422 }
2423
2424 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2425 struct scsi_cmnd *cmd)
2426 {
2427 hpsa_set_scsi_cmd_aborted(cmd);
2428 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2429 c->Request.CDB, c->err_info->ScsiStatus);
2430 hpsa_cmd_resolve_and_free(h, c);
2431 }
2432
2433 static void process_ioaccel2_completion(struct ctlr_info *h,
2434 struct CommandList *c, struct scsi_cmnd *cmd,
2435 struct hpsa_scsi_dev_t *dev)
2436 {
2437 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2438
2439 /* check for good status */
2440 if (likely(c2->error_data.serv_response == 0 &&
2441 c2->error_data.status == 0))
2442 return hpsa_cmd_free_and_done(h, c, cmd);
2443
2444 /*
2445 * Any RAID offload error results in retry which will use
2446 * the normal I/O path so the controller can handle whatever's
2447 * wrong.
2448 */
2449 if (is_logical_device(dev) &&
2450 c2->error_data.serv_response ==
2451 IOACCEL2_SERV_RESPONSE_FAILURE) {
2452 if (c2->error_data.status ==
2453 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2454 dev->offload_enabled = 0;
2455 dev->offload_to_be_enabled = 0;
2456 }
2457
2458 return hpsa_retry_cmd(h, c);
2459 }
2460
2461 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2462 return hpsa_retry_cmd(h, c);
2463
2464 return hpsa_cmd_free_and_done(h, c, cmd);
2465 }
2466
2467 /* Returns 0 on success, < 0 otherwise. */
2468 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2469 struct CommandList *cp)
2470 {
2471 u8 tmf_status = cp->err_info->ScsiStatus;
2472
2473 switch (tmf_status) {
2474 case CISS_TMF_COMPLETE:
2475 /*
2476 * CISS_TMF_COMPLETE never happens, instead,
2477 * ei->CommandStatus == 0 for this case.
2478 */
2479 case CISS_TMF_SUCCESS:
2480 return 0;
2481 case CISS_TMF_INVALID_FRAME:
2482 case CISS_TMF_NOT_SUPPORTED:
2483 case CISS_TMF_FAILED:
2484 case CISS_TMF_WRONG_LUN:
2485 case CISS_TMF_OVERLAPPED_TAG:
2486 break;
2487 default:
2488 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2489 tmf_status);
2490 break;
2491 }
2492 return -tmf_status;
2493 }
2494
2495 static void complete_scsi_command(struct CommandList *cp)
2496 {
2497 struct scsi_cmnd *cmd;
2498 struct ctlr_info *h;
2499 struct ErrorInfo *ei;
2500 struct hpsa_scsi_dev_t *dev;
2501 struct io_accel2_cmd *c2;
2502
2503 u8 sense_key;
2504 u8 asc; /* additional sense code */
2505 u8 ascq; /* additional sense code qualifier */
2506 unsigned long sense_data_size;
2507
2508 ei = cp->err_info;
2509 cmd = cp->scsi_cmd;
2510 h = cp->h;
2511
2512 if (!cmd->device) {
2513 cmd->result = DID_NO_CONNECT << 16;
2514 return hpsa_cmd_free_and_done(h, cp, cmd);
2515 }
2516
2517 dev = cmd->device->hostdata;
2518 if (!dev) {
2519 cmd->result = DID_NO_CONNECT << 16;
2520 return hpsa_cmd_free_and_done(h, cp, cmd);
2521 }
2522 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2523
2524 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2525 if ((cp->cmd_type == CMD_SCSI) &&
2526 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2527 hpsa_unmap_sg_chain_block(h, cp);
2528
2529 if ((cp->cmd_type == CMD_IOACCEL2) &&
2530 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2531 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2532
2533 cmd->result = (DID_OK << 16); /* host byte */
2534 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2535
2536 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2537 if (dev->physical_device && dev->expose_device &&
2538 dev->removed) {
2539 cmd->result = DID_NO_CONNECT << 16;
2540 return hpsa_cmd_free_and_done(h, cp, cmd);
2541 }
2542 if (likely(cp->phys_disk != NULL))
2543 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2544 }
2545
2546 /*
2547 * We check for lockup status here as it may be set for
2548 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2549 * fail_all_oustanding_cmds()
2550 */
2551 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2552 /* DID_NO_CONNECT will prevent a retry */
2553 cmd->result = DID_NO_CONNECT << 16;
2554 return hpsa_cmd_free_and_done(h, cp, cmd);
2555 }
2556
2557 if ((unlikely(hpsa_is_pending_event(cp)))) {
2558 if (cp->reset_pending)
2559 return hpsa_cmd_free_and_done(h, cp, cmd);
2560 if (cp->abort_pending)
2561 return hpsa_cmd_abort_and_free(h, cp, cmd);
2562 }
2563
2564 if (cp->cmd_type == CMD_IOACCEL2)
2565 return process_ioaccel2_completion(h, cp, cmd, dev);
2566
2567 scsi_set_resid(cmd, ei->ResidualCnt);
2568 if (ei->CommandStatus == 0)
2569 return hpsa_cmd_free_and_done(h, cp, cmd);
2570
2571 /* For I/O accelerator commands, copy over some fields to the normal
2572 * CISS header used below for error handling.
2573 */
2574 if (cp->cmd_type == CMD_IOACCEL1) {
2575 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2576 cp->Header.SGList = scsi_sg_count(cmd);
2577 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2578 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2579 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2580 cp->Header.tag = c->tag;
2581 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2582 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2583
2584 /* Any RAID offload error results in retry which will use
2585 * the normal I/O path so the controller can handle whatever's
2586 * wrong.
2587 */
2588 if (is_logical_device(dev)) {
2589 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2590 dev->offload_enabled = 0;
2591 return hpsa_retry_cmd(h, cp);
2592 }
2593 }
2594
2595 /* an error has occurred */
2596 switch (ei->CommandStatus) {
2597
2598 case CMD_TARGET_STATUS:
2599 cmd->result |= ei->ScsiStatus;
2600 /* copy the sense data */
2601 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2602 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2603 else
2604 sense_data_size = sizeof(ei->SenseInfo);
2605 if (ei->SenseLen < sense_data_size)
2606 sense_data_size = ei->SenseLen;
2607 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2608 if (ei->ScsiStatus)
2609 decode_sense_data(ei->SenseInfo, sense_data_size,
2610 &sense_key, &asc, &ascq);
2611 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2612 if (sense_key == ABORTED_COMMAND) {
2613 cmd->result |= DID_SOFT_ERROR << 16;
2614 break;
2615 }
2616 break;
2617 }
2618 /* Problem was not a check condition
2619 * Pass it up to the upper layers...
2620 */
2621 if (ei->ScsiStatus) {
2622 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2623 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2624 "Returning result: 0x%x\n",
2625 cp, ei->ScsiStatus,
2626 sense_key, asc, ascq,
2627 cmd->result);
2628 } else { /* scsi status is zero??? How??? */
2629 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2630 "Returning no connection.\n", cp),
2631
2632 /* Ordinarily, this case should never happen,
2633 * but there is a bug in some released firmware
2634 * revisions that allows it to happen if, for
2635 * example, a 4100 backplane loses power and
2636 * the tape drive is in it. We assume that
2637 * it's a fatal error of some kind because we
2638 * can't show that it wasn't. We will make it
2639 * look like selection timeout since that is
2640 * the most common reason for this to occur,
2641 * and it's severe enough.
2642 */
2643
2644 cmd->result = DID_NO_CONNECT << 16;
2645 }
2646 break;
2647
2648 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2649 break;
2650 case CMD_DATA_OVERRUN:
2651 dev_warn(&h->pdev->dev,
2652 "CDB %16phN data overrun\n", cp->Request.CDB);
2653 break;
2654 case CMD_INVALID: {
2655 /* print_bytes(cp, sizeof(*cp), 1, 0);
2656 print_cmd(cp); */
2657 /* We get CMD_INVALID if you address a non-existent device
2658 * instead of a selection timeout (no response). You will
2659 * see this if you yank out a drive, then try to access it.
2660 * This is kind of a shame because it means that any other
2661 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2662 * missing target. */
2663 cmd->result = DID_NO_CONNECT << 16;
2664 }
2665 break;
2666 case CMD_PROTOCOL_ERR:
2667 cmd->result = DID_ERROR << 16;
2668 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2669 cp->Request.CDB);
2670 break;
2671 case CMD_HARDWARE_ERR:
2672 cmd->result = DID_ERROR << 16;
2673 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2674 cp->Request.CDB);
2675 break;
2676 case CMD_CONNECTION_LOST:
2677 cmd->result = DID_ERROR << 16;
2678 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2679 cp->Request.CDB);
2680 break;
2681 case CMD_ABORTED:
2682 /* Return now to avoid calling scsi_done(). */
2683 return hpsa_cmd_abort_and_free(h, cp, cmd);
2684 case CMD_ABORT_FAILED:
2685 cmd->result = DID_ERROR << 16;
2686 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2687 cp->Request.CDB);
2688 break;
2689 case CMD_UNSOLICITED_ABORT:
2690 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2691 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2692 cp->Request.CDB);
2693 break;
2694 case CMD_TIMEOUT:
2695 cmd->result = DID_TIME_OUT << 16;
2696 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2697 cp->Request.CDB);
2698 break;
2699 case CMD_UNABORTABLE:
2700 cmd->result = DID_ERROR << 16;
2701 dev_warn(&h->pdev->dev, "Command unabortable\n");
2702 break;
2703 case CMD_TMF_STATUS:
2704 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2705 cmd->result = DID_ERROR << 16;
2706 break;
2707 case CMD_IOACCEL_DISABLED:
2708 /* This only handles the direct pass-through case since RAID
2709 * offload is handled above. Just attempt a retry.
2710 */
2711 cmd->result = DID_SOFT_ERROR << 16;
2712 dev_warn(&h->pdev->dev,
2713 "cp %p had HP SSD Smart Path error\n", cp);
2714 break;
2715 default:
2716 cmd->result = DID_ERROR << 16;
2717 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2718 cp, ei->CommandStatus);
2719 }
2720
2721 return hpsa_cmd_free_and_done(h, cp, cmd);
2722 }
2723
2724 static void hpsa_pci_unmap(struct pci_dev *pdev,
2725 struct CommandList *c, int sg_used, int data_direction)
2726 {
2727 int i;
2728
2729 for (i = 0; i < sg_used; i++)
2730 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2731 le32_to_cpu(c->SG[i].Len),
2732 data_direction);
2733 }
2734
2735 static int hpsa_map_one(struct pci_dev *pdev,
2736 struct CommandList *cp,
2737 unsigned char *buf,
2738 size_t buflen,
2739 int data_direction)
2740 {
2741 u64 addr64;
2742
2743 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2744 cp->Header.SGList = 0;
2745 cp->Header.SGTotal = cpu_to_le16(0);
2746 return 0;
2747 }
2748
2749 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2750 if (dma_mapping_error(&pdev->dev, addr64)) {
2751 /* Prevent subsequent unmap of something never mapped */
2752 cp->Header.SGList = 0;
2753 cp->Header.SGTotal = cpu_to_le16(0);
2754 return -1;
2755 }
2756 cp->SG[0].Addr = cpu_to_le64(addr64);
2757 cp->SG[0].Len = cpu_to_le32(buflen);
2758 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2759 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2760 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2761 return 0;
2762 }
2763
2764 #define NO_TIMEOUT ((unsigned long) -1)
2765 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2766 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2767 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2768 {
2769 DECLARE_COMPLETION_ONSTACK(wait);
2770
2771 c->waiting = &wait;
2772 __enqueue_cmd_and_start_io(h, c, reply_queue);
2773 if (timeout_msecs == NO_TIMEOUT) {
2774 /* TODO: get rid of this no-timeout thing */
2775 wait_for_completion_io(&wait);
2776 return IO_OK;
2777 }
2778 if (!wait_for_completion_io_timeout(&wait,
2779 msecs_to_jiffies(timeout_msecs))) {
2780 dev_warn(&h->pdev->dev, "Command timed out.\n");
2781 return -ETIMEDOUT;
2782 }
2783 return IO_OK;
2784 }
2785
2786 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2787 int reply_queue, unsigned long timeout_msecs)
2788 {
2789 if (unlikely(lockup_detected(h))) {
2790 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2791 return IO_OK;
2792 }
2793 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2794 }
2795
2796 static u32 lockup_detected(struct ctlr_info *h)
2797 {
2798 int cpu;
2799 u32 rc, *lockup_detected;
2800
2801 cpu = get_cpu();
2802 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2803 rc = *lockup_detected;
2804 put_cpu();
2805 return rc;
2806 }
2807
2808 #define MAX_DRIVER_CMD_RETRIES 25
2809 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2810 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2811 {
2812 int backoff_time = 10, retry_count = 0;
2813 int rc;
2814
2815 do {
2816 memset(c->err_info, 0, sizeof(*c->err_info));
2817 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2818 timeout_msecs);
2819 if (rc)
2820 break;
2821 retry_count++;
2822 if (retry_count > 3) {
2823 msleep(backoff_time);
2824 if (backoff_time < 1000)
2825 backoff_time *= 2;
2826 }
2827 } while ((check_for_unit_attention(h, c) ||
2828 check_for_busy(h, c)) &&
2829 retry_count <= MAX_DRIVER_CMD_RETRIES);
2830 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2831 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2832 rc = -EIO;
2833 return rc;
2834 }
2835
2836 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2837 struct CommandList *c)
2838 {
2839 const u8 *cdb = c->Request.CDB;
2840 const u8 *lun = c->Header.LUN.LunAddrBytes;
2841
2842 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2843 txt, lun, cdb);
2844 }
2845
2846 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2847 struct CommandList *cp)
2848 {
2849 const struct ErrorInfo *ei = cp->err_info;
2850 struct device *d = &cp->h->pdev->dev;
2851 u8 sense_key, asc, ascq;
2852 int sense_len;
2853
2854 switch (ei->CommandStatus) {
2855 case CMD_TARGET_STATUS:
2856 if (ei->SenseLen > sizeof(ei->SenseInfo))
2857 sense_len = sizeof(ei->SenseInfo);
2858 else
2859 sense_len = ei->SenseLen;
2860 decode_sense_data(ei->SenseInfo, sense_len,
2861 &sense_key, &asc, &ascq);
2862 hpsa_print_cmd(h, "SCSI status", cp);
2863 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2864 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2865 sense_key, asc, ascq);
2866 else
2867 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2868 if (ei->ScsiStatus == 0)
2869 dev_warn(d, "SCSI status is abnormally zero. "
2870 "(probably indicates selection timeout "
2871 "reported incorrectly due to a known "
2872 "firmware bug, circa July, 2001.)\n");
2873 break;
2874 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2875 break;
2876 case CMD_DATA_OVERRUN:
2877 hpsa_print_cmd(h, "overrun condition", cp);
2878 break;
2879 case CMD_INVALID: {
2880 /* controller unfortunately reports SCSI passthru's
2881 * to non-existent targets as invalid commands.
2882 */
2883 hpsa_print_cmd(h, "invalid command", cp);
2884 dev_warn(d, "probably means device no longer present\n");
2885 }
2886 break;
2887 case CMD_PROTOCOL_ERR:
2888 hpsa_print_cmd(h, "protocol error", cp);
2889 break;
2890 case CMD_HARDWARE_ERR:
2891 hpsa_print_cmd(h, "hardware error", cp);
2892 break;
2893 case CMD_CONNECTION_LOST:
2894 hpsa_print_cmd(h, "connection lost", cp);
2895 break;
2896 case CMD_ABORTED:
2897 hpsa_print_cmd(h, "aborted", cp);
2898 break;
2899 case CMD_ABORT_FAILED:
2900 hpsa_print_cmd(h, "abort failed", cp);
2901 break;
2902 case CMD_UNSOLICITED_ABORT:
2903 hpsa_print_cmd(h, "unsolicited abort", cp);
2904 break;
2905 case CMD_TIMEOUT:
2906 hpsa_print_cmd(h, "timed out", cp);
2907 break;
2908 case CMD_UNABORTABLE:
2909 hpsa_print_cmd(h, "unabortable", cp);
2910 break;
2911 case CMD_CTLR_LOCKUP:
2912 hpsa_print_cmd(h, "controller lockup detected", cp);
2913 break;
2914 default:
2915 hpsa_print_cmd(h, "unknown status", cp);
2916 dev_warn(d, "Unknown command status %x\n",
2917 ei->CommandStatus);
2918 }
2919 }
2920
2921 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2922 u16 page, unsigned char *buf,
2923 unsigned char bufsize)
2924 {
2925 int rc = IO_OK;
2926 struct CommandList *c;
2927 struct ErrorInfo *ei;
2928
2929 c = cmd_alloc(h);
2930
2931 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2932 page, scsi3addr, TYPE_CMD)) {
2933 rc = -1;
2934 goto out;
2935 }
2936 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2937 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2938 if (rc)
2939 goto out;
2940 ei = c->err_info;
2941 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2942 hpsa_scsi_interpret_error(h, c);
2943 rc = -1;
2944 }
2945 out:
2946 cmd_free(h, c);
2947 return rc;
2948 }
2949
2950 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2951 u8 reset_type, int reply_queue)
2952 {
2953 int rc = IO_OK;
2954 struct CommandList *c;
2955 struct ErrorInfo *ei;
2956
2957 c = cmd_alloc(h);
2958
2959
2960 /* fill_cmd can't fail here, no data buffer to map. */
2961 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2962 scsi3addr, TYPE_MSG);
2963 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2964 if (rc) {
2965 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2966 goto out;
2967 }
2968 /* no unmap needed here because no data xfer. */
2969
2970 ei = c->err_info;
2971 if (ei->CommandStatus != 0) {
2972 hpsa_scsi_interpret_error(h, c);
2973 rc = -1;
2974 }
2975 out:
2976 cmd_free(h, c);
2977 return rc;
2978 }
2979
2980 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2981 struct hpsa_scsi_dev_t *dev,
2982 unsigned char *scsi3addr)
2983 {
2984 int i;
2985 bool match = false;
2986 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2987 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2988
2989 if (hpsa_is_cmd_idle(c))
2990 return false;
2991
2992 switch (c->cmd_type) {
2993 case CMD_SCSI:
2994 case CMD_IOCTL_PEND:
2995 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2996 sizeof(c->Header.LUN.LunAddrBytes));
2997 break;
2998
2999 case CMD_IOACCEL1:
3000 case CMD_IOACCEL2:
3001 if (c->phys_disk == dev) {
3002 /* HBA mode match */
3003 match = true;
3004 } else {
3005 /* Possible RAID mode -- check each phys dev. */
3006 /* FIXME: Do we need to take out a lock here? If
3007 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3008 * instead. */
3009 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3010 /* FIXME: an alternate test might be
3011 *
3012 * match = dev->phys_disk[i]->ioaccel_handle
3013 * == c2->scsi_nexus; */
3014 match = dev->phys_disk[i] == c->phys_disk;
3015 }
3016 }
3017 break;
3018
3019 case IOACCEL2_TMF:
3020 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3021 match = dev->phys_disk[i]->ioaccel_handle ==
3022 le32_to_cpu(ac->it_nexus);
3023 }
3024 break;
3025
3026 case 0: /* The command is in the middle of being initialized. */
3027 match = false;
3028 break;
3029
3030 default:
3031 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3032 c->cmd_type);
3033 BUG();
3034 }
3035
3036 return match;
3037 }
3038
3039 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3040 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3041 {
3042 int i;
3043 int rc = 0;
3044
3045 /* We can really only handle one reset at a time */
3046 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3047 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3048 return -EINTR;
3049 }
3050
3051 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3052
3053 for (i = 0; i < h->nr_cmds; i++) {
3054 struct CommandList *c = h->cmd_pool + i;
3055 int refcount = atomic_inc_return(&c->refcount);
3056
3057 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3058 unsigned long flags;
3059
3060 /*
3061 * Mark the target command as having a reset pending,
3062 * then lock a lock so that the command cannot complete
3063 * while we're considering it. If the command is not
3064 * idle then count it; otherwise revoke the event.
3065 */
3066 c->reset_pending = dev;
3067 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3068 if (!hpsa_is_cmd_idle(c))
3069 atomic_inc(&dev->reset_cmds_out);
3070 else
3071 c->reset_pending = NULL;
3072 spin_unlock_irqrestore(&h->lock, flags);
3073 }
3074
3075 cmd_free(h, c);
3076 }
3077
3078 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3079 if (!rc)
3080 wait_event(h->event_sync_wait_queue,
3081 atomic_read(&dev->reset_cmds_out) == 0 ||
3082 lockup_detected(h));
3083
3084 if (unlikely(lockup_detected(h))) {
3085 dev_warn(&h->pdev->dev,
3086 "Controller lockup detected during reset wait\n");
3087 rc = -ENODEV;
3088 }
3089
3090 if (unlikely(rc))
3091 atomic_set(&dev->reset_cmds_out, 0);
3092 else
3093 wait_for_device_to_become_ready(h, scsi3addr, 0);
3094
3095 mutex_unlock(&h->reset_mutex);
3096 return rc;
3097 }
3098
3099 static void hpsa_get_raid_level(struct ctlr_info *h,
3100 unsigned char *scsi3addr, unsigned char *raid_level)
3101 {
3102 int rc;
3103 unsigned char *buf;
3104
3105 *raid_level = RAID_UNKNOWN;
3106 buf = kzalloc(64, GFP_KERNEL);
3107 if (!buf)
3108 return;
3109
3110 if (!hpsa_vpd_page_supported(h, scsi3addr,
3111 HPSA_VPD_LV_DEVICE_GEOMETRY))
3112 goto exit;
3113
3114 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3115 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3116
3117 if (rc == 0)
3118 *raid_level = buf[8];
3119 if (*raid_level > RAID_UNKNOWN)
3120 *raid_level = RAID_UNKNOWN;
3121 exit:
3122 kfree(buf);
3123 return;
3124 }
3125
3126 #define HPSA_MAP_DEBUG
3127 #ifdef HPSA_MAP_DEBUG
3128 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3129 struct raid_map_data *map_buff)
3130 {
3131 struct raid_map_disk_data *dd = &map_buff->data[0];
3132 int map, row, col;
3133 u16 map_cnt, row_cnt, disks_per_row;
3134
3135 if (rc != 0)
3136 return;
3137
3138 /* Show details only if debugging has been activated. */
3139 if (h->raid_offload_debug < 2)
3140 return;
3141
3142 dev_info(&h->pdev->dev, "structure_size = %u\n",
3143 le32_to_cpu(map_buff->structure_size));
3144 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3145 le32_to_cpu(map_buff->volume_blk_size));
3146 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3147 le64_to_cpu(map_buff->volume_blk_cnt));
3148 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3149 map_buff->phys_blk_shift);
3150 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3151 map_buff->parity_rotation_shift);
3152 dev_info(&h->pdev->dev, "strip_size = %u\n",
3153 le16_to_cpu(map_buff->strip_size));
3154 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3155 le64_to_cpu(map_buff->disk_starting_blk));
3156 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3157 le64_to_cpu(map_buff->disk_blk_cnt));
3158 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3159 le16_to_cpu(map_buff->data_disks_per_row));
3160 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3161 le16_to_cpu(map_buff->metadata_disks_per_row));
3162 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3163 le16_to_cpu(map_buff->row_cnt));
3164 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3165 le16_to_cpu(map_buff->layout_map_count));
3166 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3167 le16_to_cpu(map_buff->flags));
3168 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3169 le16_to_cpu(map_buff->flags) &
3170 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3171 dev_info(&h->pdev->dev, "dekindex = %u\n",
3172 le16_to_cpu(map_buff->dekindex));
3173 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3174 for (map = 0; map < map_cnt; map++) {
3175 dev_info(&h->pdev->dev, "Map%u:\n", map);
3176 row_cnt = le16_to_cpu(map_buff->row_cnt);
3177 for (row = 0; row < row_cnt; row++) {
3178 dev_info(&h->pdev->dev, " Row%u:\n", row);
3179 disks_per_row =
3180 le16_to_cpu(map_buff->data_disks_per_row);
3181 for (col = 0; col < disks_per_row; col++, dd++)
3182 dev_info(&h->pdev->dev,
3183 " D%02u: h=0x%04x xor=%u,%u\n",
3184 col, dd->ioaccel_handle,
3185 dd->xor_mult[0], dd->xor_mult[1]);
3186 disks_per_row =
3187 le16_to_cpu(map_buff->metadata_disks_per_row);
3188 for (col = 0; col < disks_per_row; col++, dd++)
3189 dev_info(&h->pdev->dev,
3190 " M%02u: h=0x%04x xor=%u,%u\n",
3191 col, dd->ioaccel_handle,
3192 dd->xor_mult[0], dd->xor_mult[1]);
3193 }
3194 }
3195 }
3196 #else
3197 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3198 __attribute__((unused)) int rc,
3199 __attribute__((unused)) struct raid_map_data *map_buff)
3200 {
3201 }
3202 #endif
3203
3204 static int hpsa_get_raid_map(struct ctlr_info *h,
3205 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3206 {
3207 int rc = 0;
3208 struct CommandList *c;
3209 struct ErrorInfo *ei;
3210
3211 c = cmd_alloc(h);
3212
3213 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3214 sizeof(this_device->raid_map), 0,
3215 scsi3addr, TYPE_CMD)) {
3216 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3217 cmd_free(h, c);
3218 return -1;
3219 }
3220 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3221 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3222 if (rc)
3223 goto out;
3224 ei = c->err_info;
3225 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3226 hpsa_scsi_interpret_error(h, c);
3227 rc = -1;
3228 goto out;
3229 }
3230 cmd_free(h, c);
3231
3232 /* @todo in the future, dynamically allocate RAID map memory */
3233 if (le32_to_cpu(this_device->raid_map.structure_size) >
3234 sizeof(this_device->raid_map)) {
3235 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3236 rc = -1;
3237 }
3238 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3239 return rc;
3240 out:
3241 cmd_free(h, c);
3242 return rc;
3243 }
3244
3245 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3246 unsigned char scsi3addr[], u16 bmic_device_index,
3247 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3248 {
3249 int rc = IO_OK;
3250 struct CommandList *c;
3251 struct ErrorInfo *ei;
3252
3253 c = cmd_alloc(h);
3254
3255 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3256 0, RAID_CTLR_LUNID, TYPE_CMD);
3257 if (rc)
3258 goto out;
3259
3260 c->Request.CDB[2] = bmic_device_index & 0xff;
3261 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3262
3263 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3264 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3265 if (rc)
3266 goto out;
3267 ei = c->err_info;
3268 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3269 hpsa_scsi_interpret_error(h, c);
3270 rc = -1;
3271 }
3272 out:
3273 cmd_free(h, c);
3274 return rc;
3275 }
3276
3277 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3278 struct bmic_identify_controller *buf, size_t bufsize)
3279 {
3280 int rc = IO_OK;
3281 struct CommandList *c;
3282 struct ErrorInfo *ei;
3283
3284 c = cmd_alloc(h);
3285
3286 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3287 0, RAID_CTLR_LUNID, TYPE_CMD);
3288 if (rc)
3289 goto out;
3290
3291 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3292 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3293 if (rc)
3294 goto out;
3295 ei = c->err_info;
3296 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3297 hpsa_scsi_interpret_error(h, c);
3298 rc = -1;
3299 }
3300 out:
3301 cmd_free(h, c);
3302 return rc;
3303 }
3304
3305 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3306 unsigned char scsi3addr[], u16 bmic_device_index,
3307 struct bmic_identify_physical_device *buf, size_t bufsize)
3308 {
3309 int rc = IO_OK;
3310 struct CommandList *c;
3311 struct ErrorInfo *ei;
3312
3313 c = cmd_alloc(h);
3314 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3315 0, RAID_CTLR_LUNID, TYPE_CMD);
3316 if (rc)
3317 goto out;
3318
3319 c->Request.CDB[2] = bmic_device_index & 0xff;
3320 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3321
3322 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3323 DEFAULT_TIMEOUT);
3324 ei = c->err_info;
3325 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326 hpsa_scsi_interpret_error(h, c);
3327 rc = -1;
3328 }
3329 out:
3330 cmd_free(h, c);
3331
3332 return rc;
3333 }
3334
3335 /*
3336 * get enclosure information
3337 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3338 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3339 * Uses id_physical_device to determine the box_index.
3340 */
3341 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3342 unsigned char *scsi3addr,
3343 struct ReportExtendedLUNdata *rlep, int rle_index,
3344 struct hpsa_scsi_dev_t *encl_dev)
3345 {
3346 int rc = -1;
3347 struct CommandList *c = NULL;
3348 struct ErrorInfo *ei = NULL;
3349 struct bmic_sense_storage_box_params *bssbp = NULL;
3350 struct bmic_identify_physical_device *id_phys = NULL;
3351 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3352 u16 bmic_device_index = 0;
3353
3354 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3355
3356 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357 rc = IO_OK;
3358 goto out;
3359 }
3360
3361 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362 if (!bssbp)
3363 goto out;
3364
3365 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366 if (!id_phys)
3367 goto out;
3368
3369 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370 id_phys, sizeof(*id_phys));
3371 if (rc) {
3372 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373 __func__, encl_dev->external, bmic_device_index);
3374 goto out;
3375 }
3376
3377 c = cmd_alloc(h);
3378
3379 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381
3382 if (rc)
3383 goto out;
3384
3385 if (id_phys->phys_connector[1] == 'E')
3386 c->Request.CDB[5] = id_phys->box_index;
3387 else
3388 c->Request.CDB[5] = 0;
3389
3390 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391 DEFAULT_TIMEOUT);
3392 if (rc)
3393 goto out;
3394
3395 ei = c->err_info;
3396 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397 rc = -1;
3398 goto out;
3399 }
3400
3401 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404
3405 rc = IO_OK;
3406 out:
3407 kfree(bssbp);
3408 kfree(id_phys);
3409
3410 if (c)
3411 cmd_free(h, c);
3412
3413 if (rc != IO_OK)
3414 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415 "Error, could not get enclosure information\n");
3416 }
3417
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419 unsigned char *scsi3addr)
3420 {
3421 struct ReportExtendedLUNdata *physdev;
3422 u32 nphysicals;
3423 u64 sa = 0;
3424 int i;
3425
3426 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427 if (!physdev)
3428 return 0;
3429
3430 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432 kfree(physdev);
3433 return 0;
3434 }
3435 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436
3437 for (i = 0; i < nphysicals; i++)
3438 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440 break;
3441 }
3442
3443 kfree(physdev);
3444
3445 return sa;
3446 }
3447
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449 struct hpsa_scsi_dev_t *dev)
3450 {
3451 int rc;
3452 u64 sa = 0;
3453
3454 if (is_hba_lunid(scsi3addr)) {
3455 struct bmic_sense_subsystem_info *ssi;
3456
3457 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458 if (!ssi)
3459 return;
3460
3461 rc = hpsa_bmic_sense_subsystem_information(h,
3462 scsi3addr, 0, ssi, sizeof(*ssi));
3463 if (rc == 0) {
3464 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465 h->sas_address = sa;
3466 }
3467
3468 kfree(ssi);
3469 } else
3470 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471
3472 dev->sas_address = sa;
3473 }
3474
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3477 unsigned char scsi3addr[], u8 page)
3478 {
3479 int rc;
3480 int i;
3481 int pages;
3482 unsigned char *buf, bufsize;
3483
3484 buf = kzalloc(256, GFP_KERNEL);
3485 if (!buf)
3486 return false;
3487
3488 /* Get the size of the page list first */
3489 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3490 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3491 buf, HPSA_VPD_HEADER_SZ);
3492 if (rc != 0)
3493 goto exit_unsupported;
3494 pages = buf[3];
3495 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3496 bufsize = pages + HPSA_VPD_HEADER_SZ;
3497 else
3498 bufsize = 255;
3499
3500 /* Get the whole VPD page list */
3501 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503 buf, bufsize);
3504 if (rc != 0)
3505 goto exit_unsupported;
3506
3507 pages = buf[3];
3508 for (i = 1; i <= pages; i++)
3509 if (buf[3 + i] == page)
3510 goto exit_supported;
3511 exit_unsupported:
3512 kfree(buf);
3513 return false;
3514 exit_supported:
3515 kfree(buf);
3516 return true;
3517 }
3518
3519 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3520 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3521 {
3522 int rc;
3523 unsigned char *buf;
3524 u8 ioaccel_status;
3525
3526 this_device->offload_config = 0;
3527 this_device->offload_enabled = 0;
3528 this_device->offload_to_be_enabled = 0;
3529
3530 buf = kzalloc(64, GFP_KERNEL);
3531 if (!buf)
3532 return;
3533 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3534 goto out;
3535 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3536 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3537 if (rc != 0)
3538 goto out;
3539
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3544 this_device->offload_config =
3545 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3546 if (this_device->offload_config) {
3547 this_device->offload_enabled =
3548 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3549 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3550 this_device->offload_enabled = 0;
3551 }
3552 this_device->offload_to_be_enabled = this_device->offload_enabled;
3553 out:
3554 kfree(buf);
3555 return;
3556 }
3557
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3560 unsigned char *device_id, int index, int buflen)
3561 {
3562 int rc;
3563 unsigned char *buf;
3564
3565 /* Does controller have VPD for device id? */
3566 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3567 return 1; /* not supported */
3568
3569 buf = kzalloc(64, GFP_KERNEL);
3570 if (!buf)
3571 return -ENOMEM;
3572
3573 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3574 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3575 if (rc == 0) {
3576 if (buflen > 16)
3577 buflen = 16;
3578 memcpy(device_id, &buf[8], buflen);
3579 }
3580
3581 kfree(buf);
3582
3583 return rc; /*0 - got id, otherwise, didn't */
3584 }
3585
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3587 void *buf, int bufsize,
3588 int extended_response)
3589 {
3590 int rc = IO_OK;
3591 struct CommandList *c;
3592 unsigned char scsi3addr[8];
3593 struct ErrorInfo *ei;
3594
3595 c = cmd_alloc(h);
3596
3597 /* address the controller */
3598 memset(scsi3addr, 0, sizeof(scsi3addr));
3599 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3600 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3601 rc = -1;
3602 goto out;
3603 }
3604 if (extended_response)
3605 c->Request.CDB[1] = extended_response;
3606 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3607 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3608 if (rc)
3609 goto out;
3610 ei = c->err_info;
3611 if (ei->CommandStatus != 0 &&
3612 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3613 hpsa_scsi_interpret_error(h, c);
3614 rc = -1;
3615 } else {
3616 struct ReportLUNdata *rld = buf;
3617
3618 if (rld->extended_response_flag != extended_response) {
3619 dev_err(&h->pdev->dev,
3620 "report luns requested format %u, got %u\n",
3621 extended_response,
3622 rld->extended_response_flag);
3623 rc = -1;
3624 }
3625 }
3626 out:
3627 cmd_free(h, c);
3628 return rc;
3629 }
3630
3631 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3632 struct ReportExtendedLUNdata *buf, int bufsize)
3633 {
3634 int rc;
3635 struct ReportLUNdata *lbuf;
3636
3637 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3638 HPSA_REPORT_PHYS_EXTENDED);
3639 if (!rc || !hpsa_allow_any)
3640 return rc;
3641
3642 /* REPORT PHYS EXTENDED is not supported */
3643 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3644 if (!lbuf)
3645 return -ENOMEM;
3646
3647 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3648 if (!rc) {
3649 int i;
3650 u32 nphys;
3651
3652 /* Copy ReportLUNdata header */
3653 memcpy(buf, lbuf, 8);
3654 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3655 for (i = 0; i < nphys; i++)
3656 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3657 }
3658 kfree(lbuf);
3659 return rc;
3660 }
3661
3662 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3663 struct ReportLUNdata *buf, int bufsize)
3664 {
3665 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3666 }
3667
3668 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3669 int bus, int target, int lun)
3670 {
3671 device->bus = bus;
3672 device->target = target;
3673 device->lun = lun;
3674 }
3675
3676 /* Use VPD inquiry to get details of volume status */
3677 static int hpsa_get_volume_status(struct ctlr_info *h,
3678 unsigned char scsi3addr[])
3679 {
3680 int rc;
3681 int status;
3682 int size;
3683 unsigned char *buf;
3684
3685 buf = kzalloc(64, GFP_KERNEL);
3686 if (!buf)
3687 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3688
3689 /* Does controller have VPD for logical volume status? */
3690 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3691 goto exit_failed;
3692
3693 /* Get the size of the VPD return buffer */
3694 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3695 buf, HPSA_VPD_HEADER_SZ);
3696 if (rc != 0)
3697 goto exit_failed;
3698 size = buf[3];
3699
3700 /* Now get the whole VPD buffer */
3701 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3702 buf, size + HPSA_VPD_HEADER_SZ);
3703 if (rc != 0)
3704 goto exit_failed;
3705 status = buf[4]; /* status byte */
3706
3707 kfree(buf);
3708 return status;
3709 exit_failed:
3710 kfree(buf);
3711 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3712 }
3713
3714 /* Determine offline status of a volume.
3715 * Return either:
3716 * 0 (not offline)
3717 * 0xff (offline for unknown reasons)
3718 * # (integer code indicating one of several NOT READY states
3719 * describing why a volume is to be kept offline)
3720 */
3721 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3722 unsigned char scsi3addr[])
3723 {
3724 struct CommandList *c;
3725 unsigned char *sense;
3726 u8 sense_key, asc, ascq;
3727 int sense_len;
3728 int rc, ldstat = 0;
3729 u16 cmd_status;
3730 u8 scsi_status;
3731 #define ASC_LUN_NOT_READY 0x04
3732 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3733 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3734
3735 c = cmd_alloc(h);
3736
3737 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3738 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3739 DEFAULT_TIMEOUT);
3740 if (rc) {
3741 cmd_free(h, c);
3742 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3743 }
3744 sense = c->err_info->SenseInfo;
3745 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3746 sense_len = sizeof(c->err_info->SenseInfo);
3747 else
3748 sense_len = c->err_info->SenseLen;
3749 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3750 cmd_status = c->err_info->CommandStatus;
3751 scsi_status = c->err_info->ScsiStatus;
3752 cmd_free(h, c);
3753
3754 /* Determine the reason for not ready state */
3755 ldstat = hpsa_get_volume_status(h, scsi3addr);
3756
3757 /* Keep volume offline in certain cases: */
3758 switch (ldstat) {
3759 case HPSA_LV_FAILED:
3760 case HPSA_LV_UNDERGOING_ERASE:
3761 case HPSA_LV_NOT_AVAILABLE:
3762 case HPSA_LV_UNDERGOING_RPI:
3763 case HPSA_LV_PENDING_RPI:
3764 case HPSA_LV_ENCRYPTED_NO_KEY:
3765 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3766 case HPSA_LV_UNDERGOING_ENCRYPTION:
3767 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3768 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3769 return ldstat;
3770 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3771 /* If VPD status page isn't available,
3772 * use ASC/ASCQ to determine state
3773 */
3774 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3775 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3776 return ldstat;
3777 break;
3778 default:
3779 break;
3780 }
3781 return HPSA_LV_OK;
3782 }
3783
3784 /*
3785 * Find out if a logical device supports aborts by simply trying one.
3786 * Smart Array may claim not to support aborts on logical drives, but
3787 * if a MSA2000 * is connected, the drives on that will be presented
3788 * by the Smart Array as logical drives, and aborts may be sent to
3789 * those devices successfully. So the simplest way to find out is
3790 * to simply try an abort and see how the device responds.
3791 */
3792 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3793 unsigned char *scsi3addr)
3794 {
3795 struct CommandList *c;
3796 struct ErrorInfo *ei;
3797 int rc = 0;
3798
3799 u64 tag = (u64) -1; /* bogus tag */
3800
3801 /* Assume that physical devices support aborts */
3802 if (!is_logical_dev_addr_mode(scsi3addr))
3803 return 1;
3804
3805 c = cmd_alloc(h);
3806
3807 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3808 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3809 DEFAULT_TIMEOUT);
3810 /* no unmap needed here because no data xfer. */
3811 ei = c->err_info;
3812 switch (ei->CommandStatus) {
3813 case CMD_INVALID:
3814 rc = 0;
3815 break;
3816 case CMD_UNABORTABLE:
3817 case CMD_ABORT_FAILED:
3818 rc = 1;
3819 break;
3820 case CMD_TMF_STATUS:
3821 rc = hpsa_evaluate_tmf_status(h, c);
3822 break;
3823 default:
3824 rc = 0;
3825 break;
3826 }
3827 cmd_free(h, c);
3828 return rc;
3829 }
3830
3831 static int hpsa_update_device_info(struct ctlr_info *h,
3832 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3833 unsigned char *is_OBDR_device)
3834 {
3835
3836 #define OBDR_SIG_OFFSET 43
3837 #define OBDR_TAPE_SIG "$DR-10"
3838 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3839 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3840
3841 unsigned char *inq_buff;
3842 unsigned char *obdr_sig;
3843 int rc = 0;
3844
3845 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3846 if (!inq_buff) {
3847 rc = -ENOMEM;
3848 goto bail_out;
3849 }
3850
3851 /* Do an inquiry to the device to see what it is. */
3852 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3853 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3854 dev_err(&h->pdev->dev,
3855 "%s: inquiry failed, device will be skipped.\n",
3856 __func__);
3857 rc = HPSA_INQUIRY_FAILED;
3858 goto bail_out;
3859 }
3860
3861 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3862 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3863
3864 this_device->devtype = (inq_buff[0] & 0x1f);
3865 memcpy(this_device->scsi3addr, scsi3addr, 8);
3866 memcpy(this_device->vendor, &inq_buff[8],
3867 sizeof(this_device->vendor));
3868 memcpy(this_device->model, &inq_buff[16],
3869 sizeof(this_device->model));
3870 this_device->rev = inq_buff[2];
3871 memset(this_device->device_id, 0,
3872 sizeof(this_device->device_id));
3873 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3874 sizeof(this_device->device_id)))
3875 dev_err(&h->pdev->dev,
3876 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3877 h->ctlr, __func__,
3878 h->scsi_host->host_no,
3879 this_device->target, this_device->lun,
3880 scsi_device_type(this_device->devtype),
3881 this_device->model);
3882
3883 if ((this_device->devtype == TYPE_DISK ||
3884 this_device->devtype == TYPE_ZBC) &&
3885 is_logical_dev_addr_mode(scsi3addr)) {
3886 unsigned char volume_offline;
3887
3888 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3889 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3890 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3891 volume_offline = hpsa_volume_offline(h, scsi3addr);
3892 this_device->volume_offline = volume_offline;
3893 if (volume_offline == HPSA_LV_FAILED) {
3894 rc = HPSA_LV_FAILED;
3895 dev_err(&h->pdev->dev,
3896 "%s: LV failed, device will be skipped.\n",
3897 __func__);
3898 goto bail_out;
3899 }
3900 } else {
3901 this_device->raid_level = RAID_UNKNOWN;
3902 this_device->offload_config = 0;
3903 this_device->offload_enabled = 0;
3904 this_device->offload_to_be_enabled = 0;
3905 this_device->hba_ioaccel_enabled = 0;
3906 this_device->volume_offline = 0;
3907 this_device->queue_depth = h->nr_cmds;
3908 }
3909
3910 if (is_OBDR_device) {
3911 /* See if this is a One-Button-Disaster-Recovery device
3912 * by looking for "$DR-10" at offset 43 in inquiry data.
3913 */
3914 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3915 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3916 strncmp(obdr_sig, OBDR_TAPE_SIG,
3917 OBDR_SIG_LEN) == 0);
3918 }
3919 kfree(inq_buff);
3920 return 0;
3921
3922 bail_out:
3923 kfree(inq_buff);
3924 return rc;
3925 }
3926
3927 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3928 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3929 {
3930 unsigned long flags;
3931 int rc, entry;
3932 /*
3933 * See if this device supports aborts. If we already know
3934 * the device, we already know if it supports aborts, otherwise
3935 * we have to find out if it supports aborts by trying one.
3936 */
3937 spin_lock_irqsave(&h->devlock, flags);
3938 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3939 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3940 entry >= 0 && entry < h->ndevices) {
3941 dev->supports_aborts = h->dev[entry]->supports_aborts;
3942 spin_unlock_irqrestore(&h->devlock, flags);
3943 } else {
3944 spin_unlock_irqrestore(&h->devlock, flags);
3945 dev->supports_aborts =
3946 hpsa_device_supports_aborts(h, scsi3addr);
3947 if (dev->supports_aborts < 0)
3948 dev->supports_aborts = 0;
3949 }
3950 }
3951
3952 /*
3953 * Helper function to assign bus, target, lun mapping of devices.
3954 * Logical drive target and lun are assigned at this time, but
3955 * physical device lun and target assignment are deferred (assigned
3956 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3957 */
3958 static void figure_bus_target_lun(struct ctlr_info *h,
3959 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3960 {
3961 u32 lunid = get_unaligned_le32(lunaddrbytes);
3962
3963 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3964 /* physical device, target and lun filled in later */
3965 if (is_hba_lunid(lunaddrbytes)) {
3966 int bus = HPSA_HBA_BUS;
3967
3968 if (!device->rev)
3969 bus = HPSA_LEGACY_HBA_BUS;
3970 hpsa_set_bus_target_lun(device,
3971 bus, 0, lunid & 0x3fff);
3972 } else
3973 /* defer target, lun assignment for physical devices */
3974 hpsa_set_bus_target_lun(device,
3975 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3976 return;
3977 }
3978 /* It's a logical device */
3979 if (device->external) {
3980 hpsa_set_bus_target_lun(device,
3981 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3982 lunid & 0x00ff);
3983 return;
3984 }
3985 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3986 0, lunid & 0x3fff);
3987 }
3988
3989
3990 /*
3991 * Get address of physical disk used for an ioaccel2 mode command:
3992 * 1. Extract ioaccel2 handle from the command.
3993 * 2. Find a matching ioaccel2 handle from list of physical disks.
3994 * 3. Return:
3995 * 1 and set scsi3addr to address of matching physical
3996 * 0 if no matching physical disk was found.
3997 */
3998 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3999 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4000 {
4001 struct io_accel2_cmd *c2 =
4002 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4003 unsigned long flags;
4004 int i;
4005
4006 spin_lock_irqsave(&h->devlock, flags);
4007 for (i = 0; i < h->ndevices; i++)
4008 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4009 memcpy(scsi3addr, h->dev[i]->scsi3addr,
4010 sizeof(h->dev[i]->scsi3addr));
4011 spin_unlock_irqrestore(&h->devlock, flags);
4012 return 1;
4013 }
4014 spin_unlock_irqrestore(&h->devlock, flags);
4015 return 0;
4016 }
4017
4018 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4019 int i, int nphysicals, int nlocal_logicals)
4020 {
4021 /* In report logicals, local logicals are listed first,
4022 * then any externals.
4023 */
4024 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4025
4026 if (i == raid_ctlr_position)
4027 return 0;
4028
4029 if (i < logicals_start)
4030 return 0;
4031
4032 /* i is in logicals range, but still within local logicals */
4033 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4034 return 0;
4035
4036 return 1; /* it's an external lun */
4037 }
4038
4039 /*
4040 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4041 * logdev. The number of luns in physdev and logdev are returned in
4042 * *nphysicals and *nlogicals, respectively.
4043 * Returns 0 on success, -1 otherwise.
4044 */
4045 static int hpsa_gather_lun_info(struct ctlr_info *h,
4046 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4047 struct ReportLUNdata *logdev, u32 *nlogicals)
4048 {
4049 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4050 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4051 return -1;
4052 }
4053 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4054 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4055 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4056 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4057 *nphysicals = HPSA_MAX_PHYS_LUN;
4058 }
4059 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4060 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4061 return -1;
4062 }
4063 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4064 /* Reject Logicals in excess of our max capability. */
4065 if (*nlogicals > HPSA_MAX_LUN) {
4066 dev_warn(&h->pdev->dev,
4067 "maximum logical LUNs (%d) exceeded. "
4068 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4069 *nlogicals - HPSA_MAX_LUN);
4070 *nlogicals = HPSA_MAX_LUN;
4071 }
4072 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4073 dev_warn(&h->pdev->dev,
4074 "maximum logical + physical LUNs (%d) exceeded. "
4075 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4076 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4077 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4078 }
4079 return 0;
4080 }
4081
4082 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4083 int i, int nphysicals, int nlogicals,
4084 struct ReportExtendedLUNdata *physdev_list,
4085 struct ReportLUNdata *logdev_list)
4086 {
4087 /* Helper function, figure out where the LUN ID info is coming from
4088 * given index i, lists of physical and logical devices, where in
4089 * the list the raid controller is supposed to appear (first or last)
4090 */
4091
4092 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4093 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4094
4095 if (i == raid_ctlr_position)
4096 return RAID_CTLR_LUNID;
4097
4098 if (i < logicals_start)
4099 return &physdev_list->LUN[i -
4100 (raid_ctlr_position == 0)].lunid[0];
4101
4102 if (i < last_device)
4103 return &logdev_list->LUN[i - nphysicals -
4104 (raid_ctlr_position == 0)][0];
4105 BUG();
4106 return NULL;
4107 }
4108
4109 /* get physical drive ioaccel handle and queue depth */
4110 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4111 struct hpsa_scsi_dev_t *dev,
4112 struct ReportExtendedLUNdata *rlep, int rle_index,
4113 struct bmic_identify_physical_device *id_phys)
4114 {
4115 int rc;
4116 struct ext_report_lun_entry *rle;
4117
4118 /*
4119 * external targets don't support BMIC
4120 */
4121 if (dev->external) {
4122 dev->queue_depth = 7;
4123 return;
4124 }
4125
4126 rle = &rlep->LUN[rle_index];
4127
4128 dev->ioaccel_handle = rle->ioaccel_handle;
4129 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4130 dev->hba_ioaccel_enabled = 1;
4131 memset(id_phys, 0, sizeof(*id_phys));
4132 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4133 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4134 sizeof(*id_phys));
4135 if (!rc)
4136 /* Reserve space for FW operations */
4137 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4138 #define DRIVE_QUEUE_DEPTH 7
4139 dev->queue_depth =
4140 le16_to_cpu(id_phys->current_queue_depth_limit) -
4141 DRIVE_CMDS_RESERVED_FOR_FW;
4142 else
4143 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4144 }
4145
4146 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4147 struct ReportExtendedLUNdata *rlep, int rle_index,
4148 struct bmic_identify_physical_device *id_phys)
4149 {
4150 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4151
4152 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4153 this_device->hba_ioaccel_enabled = 1;
4154
4155 memcpy(&this_device->active_path_index,
4156 &id_phys->active_path_number,
4157 sizeof(this_device->active_path_index));
4158 memcpy(&this_device->path_map,
4159 &id_phys->redundant_path_present_map,
4160 sizeof(this_device->path_map));
4161 memcpy(&this_device->box,
4162 &id_phys->alternate_paths_phys_box_on_port,
4163 sizeof(this_device->box));
4164 memcpy(&this_device->phys_connector,
4165 &id_phys->alternate_paths_phys_connector,
4166 sizeof(this_device->phys_connector));
4167 memcpy(&this_device->bay,
4168 &id_phys->phys_bay_in_box,
4169 sizeof(this_device->bay));
4170 }
4171
4172 /* get number of local logical disks. */
4173 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4174 struct bmic_identify_controller *id_ctlr,
4175 u32 *nlocals)
4176 {
4177 int rc;
4178
4179 if (!id_ctlr) {
4180 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4181 __func__);
4182 return -ENOMEM;
4183 }
4184 memset(id_ctlr, 0, sizeof(*id_ctlr));
4185 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4186 if (!rc)
4187 if (id_ctlr->configured_logical_drive_count < 256)
4188 *nlocals = id_ctlr->configured_logical_drive_count;
4189 else
4190 *nlocals = le16_to_cpu(
4191 id_ctlr->extended_logical_unit_count);
4192 else
4193 *nlocals = -1;
4194 return rc;
4195 }
4196
4197 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4198 {
4199 struct bmic_identify_physical_device *id_phys;
4200 bool is_spare = false;
4201 int rc;
4202
4203 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4204 if (!id_phys)
4205 return false;
4206
4207 rc = hpsa_bmic_id_physical_device(h,
4208 lunaddrbytes,
4209 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4210 id_phys, sizeof(*id_phys));
4211 if (rc == 0)
4212 is_spare = (id_phys->more_flags >> 6) & 0x01;
4213
4214 kfree(id_phys);
4215 return is_spare;
4216 }
4217
4218 #define RPL_DEV_FLAG_NON_DISK 0x1
4219 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4220 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4221
4222 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4223
4224 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4225 struct ext_report_lun_entry *rle)
4226 {
4227 u8 device_flags;
4228 u8 device_type;
4229
4230 if (!MASKED_DEVICE(lunaddrbytes))
4231 return false;
4232
4233 device_flags = rle->device_flags;
4234 device_type = rle->device_type;
4235
4236 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4237 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4238 return false;
4239 return true;
4240 }
4241
4242 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4243 return false;
4244
4245 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4246 return false;
4247
4248 /*
4249 * Spares may be spun down, we do not want to
4250 * do an Inquiry to a RAID set spare drive as
4251 * that would have them spun up, that is a
4252 * performance hit because I/O to the RAID device
4253 * stops while the spin up occurs which can take
4254 * over 50 seconds.
4255 */
4256 if (hpsa_is_disk_spare(h, lunaddrbytes))
4257 return true;
4258
4259 return false;
4260 }
4261
4262 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4263 {
4264 /* the idea here is we could get notified
4265 * that some devices have changed, so we do a report
4266 * physical luns and report logical luns cmd, and adjust
4267 * our list of devices accordingly.
4268 *
4269 * The scsi3addr's of devices won't change so long as the
4270 * adapter is not reset. That means we can rescan and
4271 * tell which devices we already know about, vs. new
4272 * devices, vs. disappearing devices.
4273 */
4274 struct ReportExtendedLUNdata *physdev_list = NULL;
4275 struct ReportLUNdata *logdev_list = NULL;
4276 struct bmic_identify_physical_device *id_phys = NULL;
4277 struct bmic_identify_controller *id_ctlr = NULL;
4278 u32 nphysicals = 0;
4279 u32 nlogicals = 0;
4280 u32 nlocal_logicals = 0;
4281 u32 ndev_allocated = 0;
4282 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4283 int ncurrent = 0;
4284 int i, n_ext_target_devs, ndevs_to_allocate;
4285 int raid_ctlr_position;
4286 bool physical_device;
4287 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4288
4289 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4290 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4291 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4292 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4293 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4294 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4295
4296 if (!currentsd || !physdev_list || !logdev_list ||
4297 !tmpdevice || !id_phys || !id_ctlr) {
4298 dev_err(&h->pdev->dev, "out of memory\n");
4299 goto out;
4300 }
4301 memset(lunzerobits, 0, sizeof(lunzerobits));
4302
4303 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4304
4305 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4306 logdev_list, &nlogicals)) {
4307 h->drv_req_rescan = 1;
4308 goto out;
4309 }
4310
4311 /* Set number of local logicals (non PTRAID) */
4312 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4313 dev_warn(&h->pdev->dev,
4314 "%s: Can't determine number of local logical devices.\n",
4315 __func__);
4316 }
4317
4318 /* We might see up to the maximum number of logical and physical disks
4319 * plus external target devices, and a device for the local RAID
4320 * controller.
4321 */
4322 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4323
4324 /* Allocate the per device structures */
4325 for (i = 0; i < ndevs_to_allocate; i++) {
4326 if (i >= HPSA_MAX_DEVICES) {
4327 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4328 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4329 ndevs_to_allocate - HPSA_MAX_DEVICES);
4330 break;
4331 }
4332
4333 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4334 if (!currentsd[i]) {
4335 h->drv_req_rescan = 1;
4336 goto out;
4337 }
4338 ndev_allocated++;
4339 }
4340
4341 if (is_scsi_rev_5(h))
4342 raid_ctlr_position = 0;
4343 else
4344 raid_ctlr_position = nphysicals + nlogicals;
4345
4346 /* adjust our table of devices */
4347 n_ext_target_devs = 0;
4348 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4349 u8 *lunaddrbytes, is_OBDR = 0;
4350 int rc = 0;
4351 int phys_dev_index = i - (raid_ctlr_position == 0);
4352 bool skip_device = false;
4353
4354 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4355
4356 /* Figure out where the LUN ID info is coming from */
4357 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4358 i, nphysicals, nlogicals, physdev_list, logdev_list);
4359
4360 /* Determine if this is a lun from an external target array */
4361 tmpdevice->external =
4362 figure_external_status(h, raid_ctlr_position, i,
4363 nphysicals, nlocal_logicals);
4364
4365 /*
4366 * Skip over some devices such as a spare.
4367 */
4368 if (!tmpdevice->external && physical_device) {
4369 skip_device = hpsa_skip_device(h, lunaddrbytes,
4370 &physdev_list->LUN[phys_dev_index]);
4371 if (skip_device)
4372 continue;
4373 }
4374
4375 /* Get device type, vendor, model, device id */
4376 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4377 &is_OBDR);
4378 if (rc == -ENOMEM) {
4379 dev_warn(&h->pdev->dev,
4380 "Out of memory, rescan deferred.\n");
4381 h->drv_req_rescan = 1;
4382 goto out;
4383 }
4384 if (rc) {
4385 h->drv_req_rescan = 1;
4386 continue;
4387 }
4388
4389 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4390 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4391 this_device = currentsd[ncurrent];
4392
4393 /* Turn on discovery_polling if there are ext target devices.
4394 * Event-based change notification is unreliable for those.
4395 */
4396 if (!h->discovery_polling) {
4397 if (tmpdevice->external) {
4398 h->discovery_polling = 1;
4399 dev_info(&h->pdev->dev,
4400 "External target, activate discovery polling.\n");
4401 }
4402 }
4403
4404
4405 *this_device = *tmpdevice;
4406 this_device->physical_device = physical_device;
4407
4408 /*
4409 * Expose all devices except for physical devices that
4410 * are masked.
4411 */
4412 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4413 this_device->expose_device = 0;
4414 else
4415 this_device->expose_device = 1;
4416
4417
4418 /*
4419 * Get the SAS address for physical devices that are exposed.
4420 */
4421 if (this_device->physical_device && this_device->expose_device)
4422 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4423
4424 switch (this_device->devtype) {
4425 case TYPE_ROM:
4426 /* We don't *really* support actual CD-ROM devices,
4427 * just "One Button Disaster Recovery" tape drive
4428 * which temporarily pretends to be a CD-ROM drive.
4429 * So we check that the device is really an OBDR tape
4430 * device by checking for "$DR-10" in bytes 43-48 of
4431 * the inquiry data.
4432 */
4433 if (is_OBDR)
4434 ncurrent++;
4435 break;
4436 case TYPE_DISK:
4437 case TYPE_ZBC:
4438 if (this_device->physical_device) {
4439 /* The disk is in HBA mode. */
4440 /* Never use RAID mapper in HBA mode. */
4441 this_device->offload_enabled = 0;
4442 hpsa_get_ioaccel_drive_info(h, this_device,
4443 physdev_list, phys_dev_index, id_phys);
4444 hpsa_get_path_info(this_device,
4445 physdev_list, phys_dev_index, id_phys);
4446 }
4447 ncurrent++;
4448 break;
4449 case TYPE_TAPE:
4450 case TYPE_MEDIUM_CHANGER:
4451 ncurrent++;
4452 break;
4453 case TYPE_ENCLOSURE:
4454 if (!this_device->external)
4455 hpsa_get_enclosure_info(h, lunaddrbytes,
4456 physdev_list, phys_dev_index,
4457 this_device);
4458 ncurrent++;
4459 break;
4460 case TYPE_RAID:
4461 /* Only present the Smartarray HBA as a RAID controller.
4462 * If it's a RAID controller other than the HBA itself
4463 * (an external RAID controller, MSA500 or similar)
4464 * don't present it.
4465 */
4466 if (!is_hba_lunid(lunaddrbytes))
4467 break;
4468 ncurrent++;
4469 break;
4470 default:
4471 break;
4472 }
4473 if (ncurrent >= HPSA_MAX_DEVICES)
4474 break;
4475 }
4476
4477 if (h->sas_host == NULL) {
4478 int rc = 0;
4479
4480 rc = hpsa_add_sas_host(h);
4481 if (rc) {
4482 dev_warn(&h->pdev->dev,
4483 "Could not add sas host %d\n", rc);
4484 goto out;
4485 }
4486 }
4487
4488 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4489 out:
4490 kfree(tmpdevice);
4491 for (i = 0; i < ndev_allocated; i++)
4492 kfree(currentsd[i]);
4493 kfree(currentsd);
4494 kfree(physdev_list);
4495 kfree(logdev_list);
4496 kfree(id_ctlr);
4497 kfree(id_phys);
4498 }
4499
4500 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4501 struct scatterlist *sg)
4502 {
4503 u64 addr64 = (u64) sg_dma_address(sg);
4504 unsigned int len = sg_dma_len(sg);
4505
4506 desc->Addr = cpu_to_le64(addr64);
4507 desc->Len = cpu_to_le32(len);
4508 desc->Ext = 0;
4509 }
4510
4511 /*
4512 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4513 * dma mapping and fills in the scatter gather entries of the
4514 * hpsa command, cp.
4515 */
4516 static int hpsa_scatter_gather(struct ctlr_info *h,
4517 struct CommandList *cp,
4518 struct scsi_cmnd *cmd)
4519 {
4520 struct scatterlist *sg;
4521 int use_sg, i, sg_limit, chained, last_sg;
4522 struct SGDescriptor *curr_sg;
4523
4524 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4525
4526 use_sg = scsi_dma_map(cmd);
4527 if (use_sg < 0)
4528 return use_sg;
4529
4530 if (!use_sg)
4531 goto sglist_finished;
4532
4533 /*
4534 * If the number of entries is greater than the max for a single list,
4535 * then we have a chained list; we will set up all but one entry in the
4536 * first list (the last entry is saved for link information);
4537 * otherwise, we don't have a chained list and we'll set up at each of
4538 * the entries in the one list.
4539 */
4540 curr_sg = cp->SG;
4541 chained = use_sg > h->max_cmd_sg_entries;
4542 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4543 last_sg = scsi_sg_count(cmd) - 1;
4544 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4545 hpsa_set_sg_descriptor(curr_sg, sg);
4546 curr_sg++;
4547 }
4548
4549 if (chained) {
4550 /*
4551 * Continue with the chained list. Set curr_sg to the chained
4552 * list. Modify the limit to the total count less the entries
4553 * we've already set up. Resume the scan at the list entry
4554 * where the previous loop left off.
4555 */
4556 curr_sg = h->cmd_sg_list[cp->cmdindex];
4557 sg_limit = use_sg - sg_limit;
4558 for_each_sg(sg, sg, sg_limit, i) {
4559 hpsa_set_sg_descriptor(curr_sg, sg);
4560 curr_sg++;
4561 }
4562 }
4563
4564 /* Back the pointer up to the last entry and mark it as "last". */
4565 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4566
4567 if (use_sg + chained > h->maxSG)
4568 h->maxSG = use_sg + chained;
4569
4570 if (chained) {
4571 cp->Header.SGList = h->max_cmd_sg_entries;
4572 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4573 if (hpsa_map_sg_chain_block(h, cp)) {
4574 scsi_dma_unmap(cmd);
4575 return -1;
4576 }
4577 return 0;
4578 }
4579
4580 sglist_finished:
4581
4582 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4583 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4584 return 0;
4585 }
4586
4587 #define IO_ACCEL_INELIGIBLE (1)
4588 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4589 {
4590 int is_write = 0;
4591 u32 block;
4592 u32 block_cnt;
4593
4594 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4595 switch (cdb[0]) {
4596 case WRITE_6:
4597 case WRITE_12:
4598 is_write = 1;
4599 case READ_6:
4600 case READ_12:
4601 if (*cdb_len == 6) {
4602 block = (((cdb[1] & 0x1F) << 16) |
4603 (cdb[2] << 8) |
4604 cdb[3]);
4605 block_cnt = cdb[4];
4606 if (block_cnt == 0)
4607 block_cnt = 256;
4608 } else {
4609 BUG_ON(*cdb_len != 12);
4610 block = get_unaligned_be32(&cdb[2]);
4611 block_cnt = get_unaligned_be32(&cdb[6]);
4612 }
4613 if (block_cnt > 0xffff)
4614 return IO_ACCEL_INELIGIBLE;
4615
4616 cdb[0] = is_write ? WRITE_10 : READ_10;
4617 cdb[1] = 0;
4618 cdb[2] = (u8) (block >> 24);
4619 cdb[3] = (u8) (block >> 16);
4620 cdb[4] = (u8) (block >> 8);
4621 cdb[5] = (u8) (block);
4622 cdb[6] = 0;
4623 cdb[7] = (u8) (block_cnt >> 8);
4624 cdb[8] = (u8) (block_cnt);
4625 cdb[9] = 0;
4626 *cdb_len = 10;
4627 break;
4628 }
4629 return 0;
4630 }
4631
4632 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4633 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4634 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4635 {
4636 struct scsi_cmnd *cmd = c->scsi_cmd;
4637 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4638 unsigned int len;
4639 unsigned int total_len = 0;
4640 struct scatterlist *sg;
4641 u64 addr64;
4642 int use_sg, i;
4643 struct SGDescriptor *curr_sg;
4644 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4645
4646 /* TODO: implement chaining support */
4647 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4648 atomic_dec(&phys_disk->ioaccel_cmds_out);
4649 return IO_ACCEL_INELIGIBLE;
4650 }
4651
4652 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4653
4654 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4655 atomic_dec(&phys_disk->ioaccel_cmds_out);
4656 return IO_ACCEL_INELIGIBLE;
4657 }
4658
4659 c->cmd_type = CMD_IOACCEL1;
4660
4661 /* Adjust the DMA address to point to the accelerated command buffer */
4662 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4663 (c->cmdindex * sizeof(*cp));
4664 BUG_ON(c->busaddr & 0x0000007F);
4665
4666 use_sg = scsi_dma_map(cmd);
4667 if (use_sg < 0) {
4668 atomic_dec(&phys_disk->ioaccel_cmds_out);
4669 return use_sg;
4670 }
4671
4672 if (use_sg) {
4673 curr_sg = cp->SG;
4674 scsi_for_each_sg(cmd, sg, use_sg, i) {
4675 addr64 = (u64) sg_dma_address(sg);
4676 len = sg_dma_len(sg);
4677 total_len += len;
4678 curr_sg->Addr = cpu_to_le64(addr64);
4679 curr_sg->Len = cpu_to_le32(len);
4680 curr_sg->Ext = cpu_to_le32(0);
4681 curr_sg++;
4682 }
4683 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4684
4685 switch (cmd->sc_data_direction) {
4686 case DMA_TO_DEVICE:
4687 control |= IOACCEL1_CONTROL_DATA_OUT;
4688 break;
4689 case DMA_FROM_DEVICE:
4690 control |= IOACCEL1_CONTROL_DATA_IN;
4691 break;
4692 case DMA_NONE:
4693 control |= IOACCEL1_CONTROL_NODATAXFER;
4694 break;
4695 default:
4696 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4697 cmd->sc_data_direction);
4698 BUG();
4699 break;
4700 }
4701 } else {
4702 control |= IOACCEL1_CONTROL_NODATAXFER;
4703 }
4704
4705 c->Header.SGList = use_sg;
4706 /* Fill out the command structure to submit */
4707 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4708 cp->transfer_len = cpu_to_le32(total_len);
4709 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4710 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4711 cp->control = cpu_to_le32(control);
4712 memcpy(cp->CDB, cdb, cdb_len);
4713 memcpy(cp->CISS_LUN, scsi3addr, 8);
4714 /* Tag was already set at init time. */
4715 enqueue_cmd_and_start_io(h, c);
4716 return 0;
4717 }
4718
4719 /*
4720 * Queue a command directly to a device behind the controller using the
4721 * I/O accelerator path.
4722 */
4723 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4724 struct CommandList *c)
4725 {
4726 struct scsi_cmnd *cmd = c->scsi_cmd;
4727 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4728
4729 if (!dev)
4730 return -1;
4731
4732 c->phys_disk = dev;
4733
4734 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4735 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4736 }
4737
4738 /*
4739 * Set encryption parameters for the ioaccel2 request
4740 */
4741 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4742 struct CommandList *c, struct io_accel2_cmd *cp)
4743 {
4744 struct scsi_cmnd *cmd = c->scsi_cmd;
4745 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4746 struct raid_map_data *map = &dev->raid_map;
4747 u64 first_block;
4748
4749 /* Are we doing encryption on this device */
4750 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4751 return;
4752 /* Set the data encryption key index. */
4753 cp->dekindex = map->dekindex;
4754
4755 /* Set the encryption enable flag, encoded into direction field. */
4756 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4757
4758 /* Set encryption tweak values based on logical block address
4759 * If block size is 512, tweak value is LBA.
4760 * For other block sizes, tweak is (LBA * block size)/ 512)
4761 */
4762 switch (cmd->cmnd[0]) {
4763 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4764 case READ_6:
4765 case WRITE_6:
4766 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4767 (cmd->cmnd[2] << 8) |
4768 cmd->cmnd[3]);
4769 break;
4770 case WRITE_10:
4771 case READ_10:
4772 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4773 case WRITE_12:
4774 case READ_12:
4775 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4776 break;
4777 case WRITE_16:
4778 case READ_16:
4779 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4780 break;
4781 default:
4782 dev_err(&h->pdev->dev,
4783 "ERROR: %s: size (0x%x) not supported for encryption\n",
4784 __func__, cmd->cmnd[0]);
4785 BUG();
4786 break;
4787 }
4788
4789 if (le32_to_cpu(map->volume_blk_size) != 512)
4790 first_block = first_block *
4791 le32_to_cpu(map->volume_blk_size)/512;
4792
4793 cp->tweak_lower = cpu_to_le32(first_block);
4794 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4795 }
4796
4797 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4798 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4799 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4800 {
4801 struct scsi_cmnd *cmd = c->scsi_cmd;
4802 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4803 struct ioaccel2_sg_element *curr_sg;
4804 int use_sg, i;
4805 struct scatterlist *sg;
4806 u64 addr64;
4807 u32 len;
4808 u32 total_len = 0;
4809
4810 if (!cmd->device)
4811 return -1;
4812
4813 if (!cmd->device->hostdata)
4814 return -1;
4815
4816 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4817
4818 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4819 atomic_dec(&phys_disk->ioaccel_cmds_out);
4820 return IO_ACCEL_INELIGIBLE;
4821 }
4822
4823 c->cmd_type = CMD_IOACCEL2;
4824 /* Adjust the DMA address to point to the accelerated command buffer */
4825 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4826 (c->cmdindex * sizeof(*cp));
4827 BUG_ON(c->busaddr & 0x0000007F);
4828
4829 memset(cp, 0, sizeof(*cp));
4830 cp->IU_type = IOACCEL2_IU_TYPE;
4831
4832 use_sg = scsi_dma_map(cmd);
4833 if (use_sg < 0) {
4834 atomic_dec(&phys_disk->ioaccel_cmds_out);
4835 return use_sg;
4836 }
4837
4838 if (use_sg) {
4839 curr_sg = cp->sg;
4840 if (use_sg > h->ioaccel_maxsg) {
4841 addr64 = le64_to_cpu(
4842 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4843 curr_sg->address = cpu_to_le64(addr64);
4844 curr_sg->length = 0;
4845 curr_sg->reserved[0] = 0;
4846 curr_sg->reserved[1] = 0;
4847 curr_sg->reserved[2] = 0;
4848 curr_sg->chain_indicator = 0x80;
4849
4850 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4851 }
4852 scsi_for_each_sg(cmd, sg, use_sg, i) {
4853 addr64 = (u64) sg_dma_address(sg);
4854 len = sg_dma_len(sg);
4855 total_len += len;
4856 curr_sg->address = cpu_to_le64(addr64);
4857 curr_sg->length = cpu_to_le32(len);
4858 curr_sg->reserved[0] = 0;
4859 curr_sg->reserved[1] = 0;
4860 curr_sg->reserved[2] = 0;
4861 curr_sg->chain_indicator = 0;
4862 curr_sg++;
4863 }
4864
4865 switch (cmd->sc_data_direction) {
4866 case DMA_TO_DEVICE:
4867 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4868 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4869 break;
4870 case DMA_FROM_DEVICE:
4871 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4872 cp->direction |= IOACCEL2_DIR_DATA_IN;
4873 break;
4874 case DMA_NONE:
4875 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4876 cp->direction |= IOACCEL2_DIR_NO_DATA;
4877 break;
4878 default:
4879 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4880 cmd->sc_data_direction);
4881 BUG();
4882 break;
4883 }
4884 } else {
4885 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4886 cp->direction |= IOACCEL2_DIR_NO_DATA;
4887 }
4888
4889 /* Set encryption parameters, if necessary */
4890 set_encrypt_ioaccel2(h, c, cp);
4891
4892 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4893 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4894 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4895
4896 cp->data_len = cpu_to_le32(total_len);
4897 cp->err_ptr = cpu_to_le64(c->busaddr +
4898 offsetof(struct io_accel2_cmd, error_data));
4899 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4900
4901 /* fill in sg elements */
4902 if (use_sg > h->ioaccel_maxsg) {
4903 cp->sg_count = 1;
4904 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4905 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4906 atomic_dec(&phys_disk->ioaccel_cmds_out);
4907 scsi_dma_unmap(cmd);
4908 return -1;
4909 }
4910 } else
4911 cp->sg_count = (u8) use_sg;
4912
4913 enqueue_cmd_and_start_io(h, c);
4914 return 0;
4915 }
4916
4917 /*
4918 * Queue a command to the correct I/O accelerator path.
4919 */
4920 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4921 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4922 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4923 {
4924 if (!c->scsi_cmd->device)
4925 return -1;
4926
4927 if (!c->scsi_cmd->device->hostdata)
4928 return -1;
4929
4930 /* Try to honor the device's queue depth */
4931 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4932 phys_disk->queue_depth) {
4933 atomic_dec(&phys_disk->ioaccel_cmds_out);
4934 return IO_ACCEL_INELIGIBLE;
4935 }
4936 if (h->transMethod & CFGTBL_Trans_io_accel1)
4937 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4938 cdb, cdb_len, scsi3addr,
4939 phys_disk);
4940 else
4941 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4942 cdb, cdb_len, scsi3addr,
4943 phys_disk);
4944 }
4945
4946 static void raid_map_helper(struct raid_map_data *map,
4947 int offload_to_mirror, u32 *map_index, u32 *current_group)
4948 {
4949 if (offload_to_mirror == 0) {
4950 /* use physical disk in the first mirrored group. */
4951 *map_index %= le16_to_cpu(map->data_disks_per_row);
4952 return;
4953 }
4954 do {
4955 /* determine mirror group that *map_index indicates */
4956 *current_group = *map_index /
4957 le16_to_cpu(map->data_disks_per_row);
4958 if (offload_to_mirror == *current_group)
4959 continue;
4960 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4961 /* select map index from next group */
4962 *map_index += le16_to_cpu(map->data_disks_per_row);
4963 (*current_group)++;
4964 } else {
4965 /* select map index from first group */
4966 *map_index %= le16_to_cpu(map->data_disks_per_row);
4967 *current_group = 0;
4968 }
4969 } while (offload_to_mirror != *current_group);
4970 }
4971
4972 /*
4973 * Attempt to perform offload RAID mapping for a logical volume I/O.
4974 */
4975 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4976 struct CommandList *c)
4977 {
4978 struct scsi_cmnd *cmd = c->scsi_cmd;
4979 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4980 struct raid_map_data *map = &dev->raid_map;
4981 struct raid_map_disk_data *dd = &map->data[0];
4982 int is_write = 0;
4983 u32 map_index;
4984 u64 first_block, last_block;
4985 u32 block_cnt;
4986 u32 blocks_per_row;
4987 u64 first_row, last_row;
4988 u32 first_row_offset, last_row_offset;
4989 u32 first_column, last_column;
4990 u64 r0_first_row, r0_last_row;
4991 u32 r5or6_blocks_per_row;
4992 u64 r5or6_first_row, r5or6_last_row;
4993 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4994 u32 r5or6_first_column, r5or6_last_column;
4995 u32 total_disks_per_row;
4996 u32 stripesize;
4997 u32 first_group, last_group, current_group;
4998 u32 map_row;
4999 u32 disk_handle;
5000 u64 disk_block;
5001 u32 disk_block_cnt;
5002 u8 cdb[16];
5003 u8 cdb_len;
5004 u16 strip_size;
5005 #if BITS_PER_LONG == 32
5006 u64 tmpdiv;
5007 #endif
5008 int offload_to_mirror;
5009
5010 if (!dev)
5011 return -1;
5012
5013 /* check for valid opcode, get LBA and block count */
5014 switch (cmd->cmnd[0]) {
5015 case WRITE_6:
5016 is_write = 1;
5017 case READ_6:
5018 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5019 (cmd->cmnd[2] << 8) |
5020 cmd->cmnd[3]);
5021 block_cnt = cmd->cmnd[4];
5022 if (block_cnt == 0)
5023 block_cnt = 256;
5024 break;
5025 case WRITE_10:
5026 is_write = 1;
5027 case READ_10:
5028 first_block =
5029 (((u64) cmd->cmnd[2]) << 24) |
5030 (((u64) cmd->cmnd[3]) << 16) |
5031 (((u64) cmd->cmnd[4]) << 8) |
5032 cmd->cmnd[5];
5033 block_cnt =
5034 (((u32) cmd->cmnd[7]) << 8) |
5035 cmd->cmnd[8];
5036 break;
5037 case WRITE_12:
5038 is_write = 1;
5039 case READ_12:
5040 first_block =
5041 (((u64) cmd->cmnd[2]) << 24) |
5042 (((u64) cmd->cmnd[3]) << 16) |
5043 (((u64) cmd->cmnd[4]) << 8) |
5044 cmd->cmnd[5];
5045 block_cnt =
5046 (((u32) cmd->cmnd[6]) << 24) |
5047 (((u32) cmd->cmnd[7]) << 16) |
5048 (((u32) cmd->cmnd[8]) << 8) |
5049 cmd->cmnd[9];
5050 break;
5051 case WRITE_16:
5052 is_write = 1;
5053 case READ_16:
5054 first_block =
5055 (((u64) cmd->cmnd[2]) << 56) |
5056 (((u64) cmd->cmnd[3]) << 48) |
5057 (((u64) cmd->cmnd[4]) << 40) |
5058 (((u64) cmd->cmnd[5]) << 32) |
5059 (((u64) cmd->cmnd[6]) << 24) |
5060 (((u64) cmd->cmnd[7]) << 16) |
5061 (((u64) cmd->cmnd[8]) << 8) |
5062 cmd->cmnd[9];
5063 block_cnt =
5064 (((u32) cmd->cmnd[10]) << 24) |
5065 (((u32) cmd->cmnd[11]) << 16) |
5066 (((u32) cmd->cmnd[12]) << 8) |
5067 cmd->cmnd[13];
5068 break;
5069 default:
5070 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5071 }
5072 last_block = first_block + block_cnt - 1;
5073
5074 /* check for write to non-RAID-0 */
5075 if (is_write && dev->raid_level != 0)
5076 return IO_ACCEL_INELIGIBLE;
5077
5078 /* check for invalid block or wraparound */
5079 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5080 last_block < first_block)
5081 return IO_ACCEL_INELIGIBLE;
5082
5083 /* calculate stripe information for the request */
5084 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5085 le16_to_cpu(map->strip_size);
5086 strip_size = le16_to_cpu(map->strip_size);
5087 #if BITS_PER_LONG == 32
5088 tmpdiv = first_block;
5089 (void) do_div(tmpdiv, blocks_per_row);
5090 first_row = tmpdiv;
5091 tmpdiv = last_block;
5092 (void) do_div(tmpdiv, blocks_per_row);
5093 last_row = tmpdiv;
5094 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5095 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5096 tmpdiv = first_row_offset;
5097 (void) do_div(tmpdiv, strip_size);
5098 first_column = tmpdiv;
5099 tmpdiv = last_row_offset;
5100 (void) do_div(tmpdiv, strip_size);
5101 last_column = tmpdiv;
5102 #else
5103 first_row = first_block / blocks_per_row;
5104 last_row = last_block / blocks_per_row;
5105 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5106 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5107 first_column = first_row_offset / strip_size;
5108 last_column = last_row_offset / strip_size;
5109 #endif
5110
5111 /* if this isn't a single row/column then give to the controller */
5112 if ((first_row != last_row) || (first_column != last_column))
5113 return IO_ACCEL_INELIGIBLE;
5114
5115 /* proceeding with driver mapping */
5116 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5117 le16_to_cpu(map->metadata_disks_per_row);
5118 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5119 le16_to_cpu(map->row_cnt);
5120 map_index = (map_row * total_disks_per_row) + first_column;
5121
5122 switch (dev->raid_level) {
5123 case HPSA_RAID_0:
5124 break; /* nothing special to do */
5125 case HPSA_RAID_1:
5126 /* Handles load balance across RAID 1 members.
5127 * (2-drive R1 and R10 with even # of drives.)
5128 * Appropriate for SSDs, not optimal for HDDs
5129 */
5130 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5131 if (dev->offload_to_mirror)
5132 map_index += le16_to_cpu(map->data_disks_per_row);
5133 dev->offload_to_mirror = !dev->offload_to_mirror;
5134 break;
5135 case HPSA_RAID_ADM:
5136 /* Handles N-way mirrors (R1-ADM)
5137 * and R10 with # of drives divisible by 3.)
5138 */
5139 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5140
5141 offload_to_mirror = dev->offload_to_mirror;
5142 raid_map_helper(map, offload_to_mirror,
5143 &map_index, &current_group);
5144 /* set mirror group to use next time */
5145 offload_to_mirror =
5146 (offload_to_mirror >=
5147 le16_to_cpu(map->layout_map_count) - 1)
5148 ? 0 : offload_to_mirror + 1;
5149 dev->offload_to_mirror = offload_to_mirror;
5150 /* Avoid direct use of dev->offload_to_mirror within this
5151 * function since multiple threads might simultaneously
5152 * increment it beyond the range of dev->layout_map_count -1.
5153 */
5154 break;
5155 case HPSA_RAID_5:
5156 case HPSA_RAID_6:
5157 if (le16_to_cpu(map->layout_map_count) <= 1)
5158 break;
5159
5160 /* Verify first and last block are in same RAID group */
5161 r5or6_blocks_per_row =
5162 le16_to_cpu(map->strip_size) *
5163 le16_to_cpu(map->data_disks_per_row);
5164 BUG_ON(r5or6_blocks_per_row == 0);
5165 stripesize = r5or6_blocks_per_row *
5166 le16_to_cpu(map->layout_map_count);
5167 #if BITS_PER_LONG == 32
5168 tmpdiv = first_block;
5169 first_group = do_div(tmpdiv, stripesize);
5170 tmpdiv = first_group;
5171 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5172 first_group = tmpdiv;
5173 tmpdiv = last_block;
5174 last_group = do_div(tmpdiv, stripesize);
5175 tmpdiv = last_group;
5176 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5177 last_group = tmpdiv;
5178 #else
5179 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5180 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5181 #endif
5182 if (first_group != last_group)
5183 return IO_ACCEL_INELIGIBLE;
5184
5185 /* Verify request is in a single row of RAID 5/6 */
5186 #if BITS_PER_LONG == 32
5187 tmpdiv = first_block;
5188 (void) do_div(tmpdiv, stripesize);
5189 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5190 tmpdiv = last_block;
5191 (void) do_div(tmpdiv, stripesize);
5192 r5or6_last_row = r0_last_row = tmpdiv;
5193 #else
5194 first_row = r5or6_first_row = r0_first_row =
5195 first_block / stripesize;
5196 r5or6_last_row = r0_last_row = last_block / stripesize;
5197 #endif
5198 if (r5or6_first_row != r5or6_last_row)
5199 return IO_ACCEL_INELIGIBLE;
5200
5201
5202 /* Verify request is in a single column */
5203 #if BITS_PER_LONG == 32
5204 tmpdiv = first_block;
5205 first_row_offset = do_div(tmpdiv, stripesize);
5206 tmpdiv = first_row_offset;
5207 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5208 r5or6_first_row_offset = first_row_offset;
5209 tmpdiv = last_block;
5210 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5211 tmpdiv = r5or6_last_row_offset;
5212 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5213 tmpdiv = r5or6_first_row_offset;
5214 (void) do_div(tmpdiv, map->strip_size);
5215 first_column = r5or6_first_column = tmpdiv;
5216 tmpdiv = r5or6_last_row_offset;
5217 (void) do_div(tmpdiv, map->strip_size);
5218 r5or6_last_column = tmpdiv;
5219 #else
5220 first_row_offset = r5or6_first_row_offset =
5221 (u32)((first_block % stripesize) %
5222 r5or6_blocks_per_row);
5223
5224 r5or6_last_row_offset =
5225 (u32)((last_block % stripesize) %
5226 r5or6_blocks_per_row);
5227
5228 first_column = r5or6_first_column =
5229 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5230 r5or6_last_column =
5231 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5232 #endif
5233 if (r5or6_first_column != r5or6_last_column)
5234 return IO_ACCEL_INELIGIBLE;
5235
5236 /* Request is eligible */
5237 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5238 le16_to_cpu(map->row_cnt);
5239
5240 map_index = (first_group *
5241 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5242 (map_row * total_disks_per_row) + first_column;
5243 break;
5244 default:
5245 return IO_ACCEL_INELIGIBLE;
5246 }
5247
5248 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5249 return IO_ACCEL_INELIGIBLE;
5250
5251 c->phys_disk = dev->phys_disk[map_index];
5252 if (!c->phys_disk)
5253 return IO_ACCEL_INELIGIBLE;
5254
5255 disk_handle = dd[map_index].ioaccel_handle;
5256 disk_block = le64_to_cpu(map->disk_starting_blk) +
5257 first_row * le16_to_cpu(map->strip_size) +
5258 (first_row_offset - first_column *
5259 le16_to_cpu(map->strip_size));
5260 disk_block_cnt = block_cnt;
5261
5262 /* handle differing logical/physical block sizes */
5263 if (map->phys_blk_shift) {
5264 disk_block <<= map->phys_blk_shift;
5265 disk_block_cnt <<= map->phys_blk_shift;
5266 }
5267 BUG_ON(disk_block_cnt > 0xffff);
5268
5269 /* build the new CDB for the physical disk I/O */
5270 if (disk_block > 0xffffffff) {
5271 cdb[0] = is_write ? WRITE_16 : READ_16;
5272 cdb[1] = 0;
5273 cdb[2] = (u8) (disk_block >> 56);
5274 cdb[3] = (u8) (disk_block >> 48);
5275 cdb[4] = (u8) (disk_block >> 40);
5276 cdb[5] = (u8) (disk_block >> 32);
5277 cdb[6] = (u8) (disk_block >> 24);
5278 cdb[7] = (u8) (disk_block >> 16);
5279 cdb[8] = (u8) (disk_block >> 8);
5280 cdb[9] = (u8) (disk_block);
5281 cdb[10] = (u8) (disk_block_cnt >> 24);
5282 cdb[11] = (u8) (disk_block_cnt >> 16);
5283 cdb[12] = (u8) (disk_block_cnt >> 8);
5284 cdb[13] = (u8) (disk_block_cnt);
5285 cdb[14] = 0;
5286 cdb[15] = 0;
5287 cdb_len = 16;
5288 } else {
5289 cdb[0] = is_write ? WRITE_10 : READ_10;
5290 cdb[1] = 0;
5291 cdb[2] = (u8) (disk_block >> 24);
5292 cdb[3] = (u8) (disk_block >> 16);
5293 cdb[4] = (u8) (disk_block >> 8);
5294 cdb[5] = (u8) (disk_block);
5295 cdb[6] = 0;
5296 cdb[7] = (u8) (disk_block_cnt >> 8);
5297 cdb[8] = (u8) (disk_block_cnt);
5298 cdb[9] = 0;
5299 cdb_len = 10;
5300 }
5301 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5302 dev->scsi3addr,
5303 dev->phys_disk[map_index]);
5304 }
5305
5306 /*
5307 * Submit commands down the "normal" RAID stack path
5308 * All callers to hpsa_ciss_submit must check lockup_detected
5309 * beforehand, before (opt.) and after calling cmd_alloc
5310 */
5311 static int hpsa_ciss_submit(struct ctlr_info *h,
5312 struct CommandList *c, struct scsi_cmnd *cmd,
5313 unsigned char scsi3addr[])
5314 {
5315 cmd->host_scribble = (unsigned char *) c;
5316 c->cmd_type = CMD_SCSI;
5317 c->scsi_cmd = cmd;
5318 c->Header.ReplyQueue = 0; /* unused in simple mode */
5319 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5320 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5321
5322 /* Fill in the request block... */
5323
5324 c->Request.Timeout = 0;
5325 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5326 c->Request.CDBLen = cmd->cmd_len;
5327 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5328 switch (cmd->sc_data_direction) {
5329 case DMA_TO_DEVICE:
5330 c->Request.type_attr_dir =
5331 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5332 break;
5333 case DMA_FROM_DEVICE:
5334 c->Request.type_attr_dir =
5335 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5336 break;
5337 case DMA_NONE:
5338 c->Request.type_attr_dir =
5339 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5340 break;
5341 case DMA_BIDIRECTIONAL:
5342 /* This can happen if a buggy application does a scsi passthru
5343 * and sets both inlen and outlen to non-zero. ( see
5344 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5345 */
5346
5347 c->Request.type_attr_dir =
5348 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5349 /* This is technically wrong, and hpsa controllers should
5350 * reject it with CMD_INVALID, which is the most correct
5351 * response, but non-fibre backends appear to let it
5352 * slide by, and give the same results as if this field
5353 * were set correctly. Either way is acceptable for
5354 * our purposes here.
5355 */
5356
5357 break;
5358
5359 default:
5360 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5361 cmd->sc_data_direction);
5362 BUG();
5363 break;
5364 }
5365
5366 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5367 hpsa_cmd_resolve_and_free(h, c);
5368 return SCSI_MLQUEUE_HOST_BUSY;
5369 }
5370 enqueue_cmd_and_start_io(h, c);
5371 /* the cmd'll come back via intr handler in complete_scsi_command() */
5372 return 0;
5373 }
5374
5375 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5376 struct CommandList *c)
5377 {
5378 dma_addr_t cmd_dma_handle, err_dma_handle;
5379
5380 /* Zero out all of commandlist except the last field, refcount */
5381 memset(c, 0, offsetof(struct CommandList, refcount));
5382 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5383 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5384 c->err_info = h->errinfo_pool + index;
5385 memset(c->err_info, 0, sizeof(*c->err_info));
5386 err_dma_handle = h->errinfo_pool_dhandle
5387 + index * sizeof(*c->err_info);
5388 c->cmdindex = index;
5389 c->busaddr = (u32) cmd_dma_handle;
5390 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5391 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5392 c->h = h;
5393 c->scsi_cmd = SCSI_CMD_IDLE;
5394 }
5395
5396 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5397 {
5398 int i;
5399
5400 for (i = 0; i < h->nr_cmds; i++) {
5401 struct CommandList *c = h->cmd_pool + i;
5402
5403 hpsa_cmd_init(h, i, c);
5404 atomic_set(&c->refcount, 0);
5405 }
5406 }
5407
5408 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5409 struct CommandList *c)
5410 {
5411 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5412
5413 BUG_ON(c->cmdindex != index);
5414
5415 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5416 memset(c->err_info, 0, sizeof(*c->err_info));
5417 c->busaddr = (u32) cmd_dma_handle;
5418 }
5419
5420 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5421 struct CommandList *c, struct scsi_cmnd *cmd,
5422 unsigned char *scsi3addr)
5423 {
5424 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5425 int rc = IO_ACCEL_INELIGIBLE;
5426
5427 if (!dev)
5428 return SCSI_MLQUEUE_HOST_BUSY;
5429
5430 cmd->host_scribble = (unsigned char *) c;
5431
5432 if (dev->offload_enabled) {
5433 hpsa_cmd_init(h, c->cmdindex, c);
5434 c->cmd_type = CMD_SCSI;
5435 c->scsi_cmd = cmd;
5436 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5437 if (rc < 0) /* scsi_dma_map failed. */
5438 rc = SCSI_MLQUEUE_HOST_BUSY;
5439 } else if (dev->hba_ioaccel_enabled) {
5440 hpsa_cmd_init(h, c->cmdindex, c);
5441 c->cmd_type = CMD_SCSI;
5442 c->scsi_cmd = cmd;
5443 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5444 if (rc < 0) /* scsi_dma_map failed. */
5445 rc = SCSI_MLQUEUE_HOST_BUSY;
5446 }
5447 return rc;
5448 }
5449
5450 static void hpsa_command_resubmit_worker(struct work_struct *work)
5451 {
5452 struct scsi_cmnd *cmd;
5453 struct hpsa_scsi_dev_t *dev;
5454 struct CommandList *c = container_of(work, struct CommandList, work);
5455
5456 cmd = c->scsi_cmd;
5457 dev = cmd->device->hostdata;
5458 if (!dev) {
5459 cmd->result = DID_NO_CONNECT << 16;
5460 return hpsa_cmd_free_and_done(c->h, c, cmd);
5461 }
5462 if (c->reset_pending)
5463 return hpsa_cmd_resolve_and_free(c->h, c);
5464 if (c->abort_pending)
5465 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5466 if (c->cmd_type == CMD_IOACCEL2) {
5467 struct ctlr_info *h = c->h;
5468 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5469 int rc;
5470
5471 if (c2->error_data.serv_response ==
5472 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5473 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5474 if (rc == 0)
5475 return;
5476 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5477 /*
5478 * If we get here, it means dma mapping failed.
5479 * Try again via scsi mid layer, which will
5480 * then get SCSI_MLQUEUE_HOST_BUSY.
5481 */
5482 cmd->result = DID_IMM_RETRY << 16;
5483 return hpsa_cmd_free_and_done(h, c, cmd);
5484 }
5485 /* else, fall thru and resubmit down CISS path */
5486 }
5487 }
5488 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5489 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5490 /*
5491 * If we get here, it means dma mapping failed. Try
5492 * again via scsi mid layer, which will then get
5493 * SCSI_MLQUEUE_HOST_BUSY.
5494 *
5495 * hpsa_ciss_submit will have already freed c
5496 * if it encountered a dma mapping failure.
5497 */
5498 cmd->result = DID_IMM_RETRY << 16;
5499 cmd->scsi_done(cmd);
5500 }
5501 }
5502
5503 /* Running in struct Scsi_Host->host_lock less mode */
5504 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5505 {
5506 struct ctlr_info *h;
5507 struct hpsa_scsi_dev_t *dev;
5508 unsigned char scsi3addr[8];
5509 struct CommandList *c;
5510 int rc = 0;
5511
5512 /* Get the ptr to our adapter structure out of cmd->host. */
5513 h = sdev_to_hba(cmd->device);
5514
5515 BUG_ON(cmd->request->tag < 0);
5516
5517 dev = cmd->device->hostdata;
5518 if (!dev) {
5519 cmd->result = DID_NO_CONNECT << 16;
5520 cmd->scsi_done(cmd);
5521 return 0;
5522 }
5523
5524 if (dev->removed) {
5525 cmd->result = DID_NO_CONNECT << 16;
5526 cmd->scsi_done(cmd);
5527 return 0;
5528 }
5529
5530 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5531
5532 if (unlikely(lockup_detected(h))) {
5533 cmd->result = DID_NO_CONNECT << 16;
5534 cmd->scsi_done(cmd);
5535 return 0;
5536 }
5537 c = cmd_tagged_alloc(h, cmd);
5538
5539 /*
5540 * Call alternate submit routine for I/O accelerated commands.
5541 * Retries always go down the normal I/O path.
5542 */
5543 if (likely(cmd->retries == 0 &&
5544 !blk_rq_is_passthrough(cmd->request) &&
5545 h->acciopath_status)) {
5546 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5547 if (rc == 0)
5548 return 0;
5549 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5550 hpsa_cmd_resolve_and_free(h, c);
5551 return SCSI_MLQUEUE_HOST_BUSY;
5552 }
5553 }
5554 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5555 }
5556
5557 static void hpsa_scan_complete(struct ctlr_info *h)
5558 {
5559 unsigned long flags;
5560
5561 spin_lock_irqsave(&h->scan_lock, flags);
5562 h->scan_finished = 1;
5563 wake_up(&h->scan_wait_queue);
5564 spin_unlock_irqrestore(&h->scan_lock, flags);
5565 }
5566
5567 static void hpsa_scan_start(struct Scsi_Host *sh)
5568 {
5569 struct ctlr_info *h = shost_to_hba(sh);
5570 unsigned long flags;
5571
5572 /*
5573 * Don't let rescans be initiated on a controller known to be locked
5574 * up. If the controller locks up *during* a rescan, that thread is
5575 * probably hosed, but at least we can prevent new rescan threads from
5576 * piling up on a locked up controller.
5577 */
5578 if (unlikely(lockup_detected(h)))
5579 return hpsa_scan_complete(h);
5580
5581 /*
5582 * If a scan is already waiting to run, no need to add another
5583 */
5584 spin_lock_irqsave(&h->scan_lock, flags);
5585 if (h->scan_waiting) {
5586 spin_unlock_irqrestore(&h->scan_lock, flags);
5587 return;
5588 }
5589
5590 spin_unlock_irqrestore(&h->scan_lock, flags);
5591
5592 /* wait until any scan already in progress is finished. */
5593 while (1) {
5594 spin_lock_irqsave(&h->scan_lock, flags);
5595 if (h->scan_finished)
5596 break;
5597 h->scan_waiting = 1;
5598 spin_unlock_irqrestore(&h->scan_lock, flags);
5599 wait_event(h->scan_wait_queue, h->scan_finished);
5600 /* Note: We don't need to worry about a race between this
5601 * thread and driver unload because the midlayer will
5602 * have incremented the reference count, so unload won't
5603 * happen if we're in here.
5604 */
5605 }
5606 h->scan_finished = 0; /* mark scan as in progress */
5607 h->scan_waiting = 0;
5608 spin_unlock_irqrestore(&h->scan_lock, flags);
5609
5610 if (unlikely(lockup_detected(h)))
5611 return hpsa_scan_complete(h);
5612
5613 /*
5614 * Do the scan after a reset completion
5615 */
5616 if (h->reset_in_progress) {
5617 h->drv_req_rescan = 1;
5618 return;
5619 }
5620
5621 hpsa_update_scsi_devices(h);
5622
5623 hpsa_scan_complete(h);
5624 }
5625
5626 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5627 {
5628 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5629
5630 if (!logical_drive)
5631 return -ENODEV;
5632
5633 if (qdepth < 1)
5634 qdepth = 1;
5635 else if (qdepth > logical_drive->queue_depth)
5636 qdepth = logical_drive->queue_depth;
5637
5638 return scsi_change_queue_depth(sdev, qdepth);
5639 }
5640
5641 static int hpsa_scan_finished(struct Scsi_Host *sh,
5642 unsigned long elapsed_time)
5643 {
5644 struct ctlr_info *h = shost_to_hba(sh);
5645 unsigned long flags;
5646 int finished;
5647
5648 spin_lock_irqsave(&h->scan_lock, flags);
5649 finished = h->scan_finished;
5650 spin_unlock_irqrestore(&h->scan_lock, flags);
5651 return finished;
5652 }
5653
5654 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5655 {
5656 struct Scsi_Host *sh;
5657
5658 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5659 if (sh == NULL) {
5660 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5661 return -ENOMEM;
5662 }
5663
5664 sh->io_port = 0;
5665 sh->n_io_port = 0;
5666 sh->this_id = -1;
5667 sh->max_channel = 3;
5668 sh->max_cmd_len = MAX_COMMAND_SIZE;
5669 sh->max_lun = HPSA_MAX_LUN;
5670 sh->max_id = HPSA_MAX_LUN;
5671 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5672 sh->cmd_per_lun = sh->can_queue;
5673 sh->sg_tablesize = h->maxsgentries;
5674 sh->transportt = hpsa_sas_transport_template;
5675 sh->hostdata[0] = (unsigned long) h;
5676 sh->irq = pci_irq_vector(h->pdev, 0);
5677 sh->unique_id = sh->irq;
5678
5679 h->scsi_host = sh;
5680 return 0;
5681 }
5682
5683 static int hpsa_scsi_add_host(struct ctlr_info *h)
5684 {
5685 int rv;
5686
5687 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5688 if (rv) {
5689 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5690 return rv;
5691 }
5692 scsi_scan_host(h->scsi_host);
5693 return 0;
5694 }
5695
5696 /*
5697 * The block layer has already gone to the trouble of picking out a unique,
5698 * small-integer tag for this request. We use an offset from that value as
5699 * an index to select our command block. (The offset allows us to reserve the
5700 * low-numbered entries for our own uses.)
5701 */
5702 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5703 {
5704 int idx = scmd->request->tag;
5705
5706 if (idx < 0)
5707 return idx;
5708
5709 /* Offset to leave space for internal cmds. */
5710 return idx += HPSA_NRESERVED_CMDS;
5711 }
5712
5713 /*
5714 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5715 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5716 */
5717 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5718 struct CommandList *c, unsigned char lunaddr[],
5719 int reply_queue)
5720 {
5721 int rc;
5722
5723 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5724 (void) fill_cmd(c, TEST_UNIT_READY, h,
5725 NULL, 0, 0, lunaddr, TYPE_CMD);
5726 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5727 if (rc)
5728 return rc;
5729 /* no unmap needed here because no data xfer. */
5730
5731 /* Check if the unit is already ready. */
5732 if (c->err_info->CommandStatus == CMD_SUCCESS)
5733 return 0;
5734
5735 /*
5736 * The first command sent after reset will receive "unit attention" to
5737 * indicate that the LUN has been reset...this is actually what we're
5738 * looking for (but, success is good too).
5739 */
5740 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5741 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5742 (c->err_info->SenseInfo[2] == NO_SENSE ||
5743 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5744 return 0;
5745
5746 return 1;
5747 }
5748
5749 /*
5750 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5751 * returns zero when the unit is ready, and non-zero when giving up.
5752 */
5753 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5754 struct CommandList *c,
5755 unsigned char lunaddr[], int reply_queue)
5756 {
5757 int rc;
5758 int count = 0;
5759 int waittime = 1; /* seconds */
5760
5761 /* Send test unit ready until device ready, or give up. */
5762 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5763
5764 /*
5765 * Wait for a bit. do this first, because if we send
5766 * the TUR right away, the reset will just abort it.
5767 */
5768 msleep(1000 * waittime);
5769
5770 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5771 if (!rc)
5772 break;
5773
5774 /* Increase wait time with each try, up to a point. */
5775 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5776 waittime *= 2;
5777
5778 dev_warn(&h->pdev->dev,
5779 "waiting %d secs for device to become ready.\n",
5780 waittime);
5781 }
5782
5783 return rc;
5784 }
5785
5786 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5787 unsigned char lunaddr[],
5788 int reply_queue)
5789 {
5790 int first_queue;
5791 int last_queue;
5792 int rq;
5793 int rc = 0;
5794 struct CommandList *c;
5795
5796 c = cmd_alloc(h);
5797
5798 /*
5799 * If no specific reply queue was requested, then send the TUR
5800 * repeatedly, requesting a reply on each reply queue; otherwise execute
5801 * the loop exactly once using only the specified queue.
5802 */
5803 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5804 first_queue = 0;
5805 last_queue = h->nreply_queues - 1;
5806 } else {
5807 first_queue = reply_queue;
5808 last_queue = reply_queue;
5809 }
5810
5811 for (rq = first_queue; rq <= last_queue; rq++) {
5812 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5813 if (rc)
5814 break;
5815 }
5816
5817 if (rc)
5818 dev_warn(&h->pdev->dev, "giving up on device.\n");
5819 else
5820 dev_warn(&h->pdev->dev, "device is ready.\n");
5821
5822 cmd_free(h, c);
5823 return rc;
5824 }
5825
5826 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5827 * complaining. Doing a host- or bus-reset can't do anything good here.
5828 */
5829 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5830 {
5831 int rc;
5832 struct ctlr_info *h;
5833 struct hpsa_scsi_dev_t *dev;
5834 u8 reset_type;
5835 char msg[48];
5836
5837 /* find the controller to which the command to be aborted was sent */
5838 h = sdev_to_hba(scsicmd->device);
5839 if (h == NULL) /* paranoia */
5840 return FAILED;
5841
5842 if (lockup_detected(h))
5843 return FAILED;
5844
5845 dev = scsicmd->device->hostdata;
5846 if (!dev) {
5847 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5848 return FAILED;
5849 }
5850
5851 /* if controller locked up, we can guarantee command won't complete */
5852 if (lockup_detected(h)) {
5853 snprintf(msg, sizeof(msg),
5854 "cmd %d RESET FAILED, lockup detected",
5855 hpsa_get_cmd_index(scsicmd));
5856 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5857 return FAILED;
5858 }
5859
5860 /* this reset request might be the result of a lockup; check */
5861 if (detect_controller_lockup(h)) {
5862 snprintf(msg, sizeof(msg),
5863 "cmd %d RESET FAILED, new lockup detected",
5864 hpsa_get_cmd_index(scsicmd));
5865 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866 return FAILED;
5867 }
5868
5869 /* Do not attempt on controller */
5870 if (is_hba_lunid(dev->scsi3addr))
5871 return SUCCESS;
5872
5873 if (is_logical_dev_addr_mode(dev->scsi3addr))
5874 reset_type = HPSA_DEVICE_RESET_MSG;
5875 else
5876 reset_type = HPSA_PHYS_TARGET_RESET;
5877
5878 sprintf(msg, "resetting %s",
5879 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5880 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5881
5882 h->reset_in_progress = 1;
5883
5884 /* send a reset to the SCSI LUN which the command was sent to */
5885 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5886 DEFAULT_REPLY_QUEUE);
5887 sprintf(msg, "reset %s %s",
5888 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5889 rc == 0 ? "completed successfully" : "failed");
5890 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5891 h->reset_in_progress = 0;
5892 return rc == 0 ? SUCCESS : FAILED;
5893 }
5894
5895 static void swizzle_abort_tag(u8 *tag)
5896 {
5897 u8 original_tag[8];
5898
5899 memcpy(original_tag, tag, 8);
5900 tag[0] = original_tag[3];
5901 tag[1] = original_tag[2];
5902 tag[2] = original_tag[1];
5903 tag[3] = original_tag[0];
5904 tag[4] = original_tag[7];
5905 tag[5] = original_tag[6];
5906 tag[6] = original_tag[5];
5907 tag[7] = original_tag[4];
5908 }
5909
5910 static void hpsa_get_tag(struct ctlr_info *h,
5911 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5912 {
5913 u64 tag;
5914 if (c->cmd_type == CMD_IOACCEL1) {
5915 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5916 &h->ioaccel_cmd_pool[c->cmdindex];
5917 tag = le64_to_cpu(cm1->tag);
5918 *tagupper = cpu_to_le32(tag >> 32);
5919 *taglower = cpu_to_le32(tag);
5920 return;
5921 }
5922 if (c->cmd_type == CMD_IOACCEL2) {
5923 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5924 &h->ioaccel2_cmd_pool[c->cmdindex];
5925 /* upper tag not used in ioaccel2 mode */
5926 memset(tagupper, 0, sizeof(*tagupper));
5927 *taglower = cm2->Tag;
5928 return;
5929 }
5930 tag = le64_to_cpu(c->Header.tag);
5931 *tagupper = cpu_to_le32(tag >> 32);
5932 *taglower = cpu_to_le32(tag);
5933 }
5934
5935 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5936 struct CommandList *abort, int reply_queue)
5937 {
5938 int rc = IO_OK;
5939 struct CommandList *c;
5940 struct ErrorInfo *ei;
5941 __le32 tagupper, taglower;
5942
5943 c = cmd_alloc(h);
5944
5945 /* fill_cmd can't fail here, no buffer to map */
5946 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5947 0, 0, scsi3addr, TYPE_MSG);
5948 if (h->needs_abort_tags_swizzled)
5949 swizzle_abort_tag(&c->Request.CDB[4]);
5950 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5951 hpsa_get_tag(h, abort, &taglower, &tagupper);
5952 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5953 __func__, tagupper, taglower);
5954 /* no unmap needed here because no data xfer. */
5955
5956 ei = c->err_info;
5957 switch (ei->CommandStatus) {
5958 case CMD_SUCCESS:
5959 break;
5960 case CMD_TMF_STATUS:
5961 rc = hpsa_evaluate_tmf_status(h, c);
5962 break;
5963 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5964 rc = -1;
5965 break;
5966 default:
5967 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5968 __func__, tagupper, taglower);
5969 hpsa_scsi_interpret_error(h, c);
5970 rc = -1;
5971 break;
5972 }
5973 cmd_free(h, c);
5974 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5975 __func__, tagupper, taglower);
5976 return rc;
5977 }
5978
5979 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5980 struct CommandList *command_to_abort, int reply_queue)
5981 {
5982 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5983 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5984 struct io_accel2_cmd *c2a =
5985 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5986 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5987 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5988
5989 if (!dev)
5990 return;
5991
5992 /*
5993 * We're overlaying struct hpsa_tmf_struct on top of something which
5994 * was allocated as a struct io_accel2_cmd, so we better be sure it
5995 * actually fits, and doesn't overrun the error info space.
5996 */
5997 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5998 sizeof(struct io_accel2_cmd));
5999 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
6000 offsetof(struct hpsa_tmf_struct, error_len) +
6001 sizeof(ac->error_len));
6002
6003 c->cmd_type = IOACCEL2_TMF;
6004 c->scsi_cmd = SCSI_CMD_BUSY;
6005
6006 /* Adjust the DMA address to point to the accelerated command buffer */
6007 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6008 (c->cmdindex * sizeof(struct io_accel2_cmd));
6009 BUG_ON(c->busaddr & 0x0000007F);
6010
6011 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6012 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6013 ac->reply_queue = reply_queue;
6014 ac->tmf = IOACCEL2_TMF_ABORT;
6015 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6016 memset(ac->lun_id, 0, sizeof(ac->lun_id));
6017 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6018 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6019 ac->error_ptr = cpu_to_le64(c->busaddr +
6020 offsetof(struct io_accel2_cmd, error_data));
6021 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6022 }
6023
6024 /* ioaccel2 path firmware cannot handle abort task requests.
6025 * Change abort requests to physical target reset, and send to the
6026 * address of the physical disk used for the ioaccel 2 command.
6027 * Return 0 on success (IO_OK)
6028 * -1 on failure
6029 */
6030
6031 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6032 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6033 {
6034 int rc = IO_OK;
6035 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6036 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6037 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6038 unsigned char *psa = &phys_scsi3addr[0];
6039
6040 /* Get a pointer to the hpsa logical device. */
6041 scmd = abort->scsi_cmd;
6042 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6043 if (dev == NULL) {
6044 dev_warn(&h->pdev->dev,
6045 "Cannot abort: no device pointer for command.\n");
6046 return -1; /* not abortable */
6047 }
6048
6049 if (h->raid_offload_debug > 0)
6050 dev_info(&h->pdev->dev,
6051 "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6052 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6053 "Reset as abort", scsi3addr);
6054
6055 if (!dev->offload_enabled) {
6056 dev_warn(&h->pdev->dev,
6057 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6058 return -1; /* not abortable */
6059 }
6060
6061 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6062 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6063 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6064 return -1; /* not abortable */
6065 }
6066
6067 /* send the reset */
6068 if (h->raid_offload_debug > 0)
6069 dev_info(&h->pdev->dev,
6070 "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6071 psa);
6072 rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6073 if (rc != 0) {
6074 dev_warn(&h->pdev->dev,
6075 "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6076 psa);
6077 return rc; /* failed to reset */
6078 }
6079
6080 /* wait for device to recover */
6081 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6082 dev_warn(&h->pdev->dev,
6083 "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6084 psa);
6085 return -1; /* failed to recover */
6086 }
6087
6088 /* device recovered */
6089 dev_info(&h->pdev->dev,
6090 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6091 psa);
6092
6093 return rc; /* success */
6094 }
6095
6096 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6097 struct CommandList *abort, int reply_queue)
6098 {
6099 int rc = IO_OK;
6100 struct CommandList *c;
6101 __le32 taglower, tagupper;
6102 struct hpsa_scsi_dev_t *dev;
6103 struct io_accel2_cmd *c2;
6104
6105 dev = abort->scsi_cmd->device->hostdata;
6106 if (!dev)
6107 return -1;
6108
6109 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6110 return -1;
6111
6112 c = cmd_alloc(h);
6113 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6114 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6115 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6116 hpsa_get_tag(h, abort, &taglower, &tagupper);
6117 dev_dbg(&h->pdev->dev,
6118 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6119 __func__, tagupper, taglower);
6120 /* no unmap needed here because no data xfer. */
6121
6122 dev_dbg(&h->pdev->dev,
6123 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6124 __func__, tagupper, taglower, c2->error_data.serv_response);
6125 switch (c2->error_data.serv_response) {
6126 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6127 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6128 rc = 0;
6129 break;
6130 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6131 case IOACCEL2_SERV_RESPONSE_FAILURE:
6132 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6133 rc = -1;
6134 break;
6135 default:
6136 dev_warn(&h->pdev->dev,
6137 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6138 __func__, tagupper, taglower,
6139 c2->error_data.serv_response);
6140 rc = -1;
6141 }
6142 cmd_free(h, c);
6143 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6144 tagupper, taglower);
6145 return rc;
6146 }
6147
6148 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6149 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6150 {
6151 /*
6152 * ioccelerator mode 2 commands should be aborted via the
6153 * accelerated path, since RAID path is unaware of these commands,
6154 * but not all underlying firmware can handle abort TMF.
6155 * Change abort to physical device reset when abort TMF is unsupported.
6156 */
6157 if (abort->cmd_type == CMD_IOACCEL2) {
6158 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6159 dev->physical_device)
6160 return hpsa_send_abort_ioaccel2(h, abort,
6161 reply_queue);
6162 else
6163 return hpsa_send_reset_as_abort_ioaccel2(h,
6164 dev->scsi3addr,
6165 abort, reply_queue);
6166 }
6167 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6168 }
6169
6170 /* Find out which reply queue a command was meant to return on */
6171 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6172 struct CommandList *c)
6173 {
6174 if (c->cmd_type == CMD_IOACCEL2)
6175 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6176 return c->Header.ReplyQueue;
6177 }
6178
6179 /*
6180 * Limit concurrency of abort commands to prevent
6181 * over-subscription of commands
6182 */
6183 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6184 {
6185 #define ABORT_CMD_WAIT_MSECS 5000
6186 return !wait_event_timeout(h->abort_cmd_wait_queue,
6187 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6188 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6189 }
6190
6191 /* Send an abort for the specified command.
6192 * If the device and controller support it,
6193 * send a task abort request.
6194 */
6195 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6196 {
6197
6198 int rc;
6199 struct ctlr_info *h;
6200 struct hpsa_scsi_dev_t *dev;
6201 struct CommandList *abort; /* pointer to command to be aborted */
6202 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
6203 char msg[256]; /* For debug messaging. */
6204 int ml = 0;
6205 __le32 tagupper, taglower;
6206 int refcount, reply_queue;
6207
6208 if (sc == NULL)
6209 return FAILED;
6210
6211 if (sc->device == NULL)
6212 return FAILED;
6213
6214 /* Find the controller of the command to be aborted */
6215 h = sdev_to_hba(sc->device);
6216 if (h == NULL)
6217 return FAILED;
6218
6219 /* Find the device of the command to be aborted */
6220 dev = sc->device->hostdata;
6221 if (!dev) {
6222 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6223 msg);
6224 return FAILED;
6225 }
6226
6227 /* If controller locked up, we can guarantee command won't complete */
6228 if (lockup_detected(h)) {
6229 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6230 "ABORT FAILED, lockup detected");
6231 return FAILED;
6232 }
6233
6234 /* This is a good time to check if controller lockup has occurred */
6235 if (detect_controller_lockup(h)) {
6236 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6237 "ABORT FAILED, new lockup detected");
6238 return FAILED;
6239 }
6240
6241 /* Check that controller supports some kind of task abort */
6242 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6243 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6244 return FAILED;
6245
6246 memset(msg, 0, sizeof(msg));
6247 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6248 h->scsi_host->host_no, sc->device->channel,
6249 sc->device->id, sc->device->lun,
6250 "Aborting command", sc);
6251
6252 /* Get SCSI command to be aborted */
6253 abort = (struct CommandList *) sc->host_scribble;
6254 if (abort == NULL) {
6255 /* This can happen if the command already completed. */
6256 return SUCCESS;
6257 }
6258 refcount = atomic_inc_return(&abort->refcount);
6259 if (refcount == 1) { /* Command is done already. */
6260 cmd_free(h, abort);
6261 return SUCCESS;
6262 }
6263
6264 /* Don't bother trying the abort if we know it won't work. */
6265 if (abort->cmd_type != CMD_IOACCEL2 &&
6266 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6267 cmd_free(h, abort);
6268 return FAILED;
6269 }
6270
6271 /*
6272 * Check that we're aborting the right command.
6273 * It's possible the CommandList already completed and got re-used.
6274 */
6275 if (abort->scsi_cmd != sc) {
6276 cmd_free(h, abort);
6277 return SUCCESS;
6278 }
6279
6280 abort->abort_pending = true;
6281 hpsa_get_tag(h, abort, &taglower, &tagupper);
6282 reply_queue = hpsa_extract_reply_queue(h, abort);
6283 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6284 as = abort->scsi_cmd;
6285 if (as != NULL)
6286 ml += sprintf(msg+ml,
6287 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6288 as->cmd_len, as->cmnd[0], as->cmnd[1],
6289 as->serial_number);
6290 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6291 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6292
6293 /*
6294 * Command is in flight, or possibly already completed
6295 * by the firmware (but not to the scsi mid layer) but we can't
6296 * distinguish which. Send the abort down.
6297 */
6298 if (wait_for_available_abort_cmd(h)) {
6299 dev_warn(&h->pdev->dev,
6300 "%s FAILED, timeout waiting for an abort command to become available.\n",
6301 msg);
6302 cmd_free(h, abort);
6303 return FAILED;
6304 }
6305 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6306 atomic_inc(&h->abort_cmds_available);
6307 wake_up_all(&h->abort_cmd_wait_queue);
6308 if (rc != 0) {
6309 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6310 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6311 "FAILED to abort command");
6312 cmd_free(h, abort);
6313 return FAILED;
6314 }
6315 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6316 wait_event(h->event_sync_wait_queue,
6317 abort->scsi_cmd != sc || lockup_detected(h));
6318 cmd_free(h, abort);
6319 return !lockup_detected(h) ? SUCCESS : FAILED;
6320 }
6321
6322 /*
6323 * For operations with an associated SCSI command, a command block is allocated
6324 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6325 * block request tag as an index into a table of entries. cmd_tagged_free() is
6326 * the complement, although cmd_free() may be called instead.
6327 */
6328 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6329 struct scsi_cmnd *scmd)
6330 {
6331 int idx = hpsa_get_cmd_index(scmd);
6332 struct CommandList *c = h->cmd_pool + idx;
6333
6334 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6335 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6336 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6337 /* The index value comes from the block layer, so if it's out of
6338 * bounds, it's probably not our bug.
6339 */
6340 BUG();
6341 }
6342
6343 atomic_inc(&c->refcount);
6344 if (unlikely(!hpsa_is_cmd_idle(c))) {
6345 /*
6346 * We expect that the SCSI layer will hand us a unique tag
6347 * value. Thus, there should never be a collision here between
6348 * two requests...because if the selected command isn't idle
6349 * then someone is going to be very disappointed.
6350 */
6351 dev_err(&h->pdev->dev,
6352 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6353 idx);
6354 if (c->scsi_cmd != NULL)
6355 scsi_print_command(c->scsi_cmd);
6356 scsi_print_command(scmd);
6357 }
6358
6359 hpsa_cmd_partial_init(h, idx, c);
6360 return c;
6361 }
6362
6363 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6364 {
6365 /*
6366 * Release our reference to the block. We don't need to do anything
6367 * else to free it, because it is accessed by index. (There's no point
6368 * in checking the result of the decrement, since we cannot guarantee
6369 * that there isn't a concurrent abort which is also accessing it.)
6370 */
6371 (void)atomic_dec(&c->refcount);
6372 }
6373
6374 /*
6375 * For operations that cannot sleep, a command block is allocated at init,
6376 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6377 * which ones are free or in use. Lock must be held when calling this.
6378 * cmd_free() is the complement.
6379 * This function never gives up and returns NULL. If it hangs,
6380 * another thread must call cmd_free() to free some tags.
6381 */
6382
6383 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6384 {
6385 struct CommandList *c;
6386 int refcount, i;
6387 int offset = 0;
6388
6389 /*
6390 * There is some *extremely* small but non-zero chance that that
6391 * multiple threads could get in here, and one thread could
6392 * be scanning through the list of bits looking for a free
6393 * one, but the free ones are always behind him, and other
6394 * threads sneak in behind him and eat them before he can
6395 * get to them, so that while there is always a free one, a
6396 * very unlucky thread might be starved anyway, never able to
6397 * beat the other threads. In reality, this happens so
6398 * infrequently as to be indistinguishable from never.
6399 *
6400 * Note that we start allocating commands before the SCSI host structure
6401 * is initialized. Since the search starts at bit zero, this
6402 * all works, since we have at least one command structure available;
6403 * however, it means that the structures with the low indexes have to be
6404 * reserved for driver-initiated requests, while requests from the block
6405 * layer will use the higher indexes.
6406 */
6407
6408 for (;;) {
6409 i = find_next_zero_bit(h->cmd_pool_bits,
6410 HPSA_NRESERVED_CMDS,
6411 offset);
6412 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6413 offset = 0;
6414 continue;
6415 }
6416 c = h->cmd_pool + i;
6417 refcount = atomic_inc_return(&c->refcount);
6418 if (unlikely(refcount > 1)) {
6419 cmd_free(h, c); /* already in use */
6420 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6421 continue;
6422 }
6423 set_bit(i & (BITS_PER_LONG - 1),
6424 h->cmd_pool_bits + (i / BITS_PER_LONG));
6425 break; /* it's ours now. */
6426 }
6427 hpsa_cmd_partial_init(h, i, c);
6428 return c;
6429 }
6430
6431 /*
6432 * This is the complementary operation to cmd_alloc(). Note, however, in some
6433 * corner cases it may also be used to free blocks allocated by
6434 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6435 * the clear-bit is harmless.
6436 */
6437 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6438 {
6439 if (atomic_dec_and_test(&c->refcount)) {
6440 int i;
6441
6442 i = c - h->cmd_pool;
6443 clear_bit(i & (BITS_PER_LONG - 1),
6444 h->cmd_pool_bits + (i / BITS_PER_LONG));
6445 }
6446 }
6447
6448 #ifdef CONFIG_COMPAT
6449
6450 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6451 void __user *arg)
6452 {
6453 IOCTL32_Command_struct __user *arg32 =
6454 (IOCTL32_Command_struct __user *) arg;
6455 IOCTL_Command_struct arg64;
6456 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6457 int err;
6458 u32 cp;
6459
6460 memset(&arg64, 0, sizeof(arg64));
6461 err = 0;
6462 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6463 sizeof(arg64.LUN_info));
6464 err |= copy_from_user(&arg64.Request, &arg32->Request,
6465 sizeof(arg64.Request));
6466 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6467 sizeof(arg64.error_info));
6468 err |= get_user(arg64.buf_size, &arg32->buf_size);
6469 err |= get_user(cp, &arg32->buf);
6470 arg64.buf = compat_ptr(cp);
6471 err |= copy_to_user(p, &arg64, sizeof(arg64));
6472
6473 if (err)
6474 return -EFAULT;
6475
6476 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6477 if (err)
6478 return err;
6479 err |= copy_in_user(&arg32->error_info, &p->error_info,
6480 sizeof(arg32->error_info));
6481 if (err)
6482 return -EFAULT;
6483 return err;
6484 }
6485
6486 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6487 int cmd, void __user *arg)
6488 {
6489 BIG_IOCTL32_Command_struct __user *arg32 =
6490 (BIG_IOCTL32_Command_struct __user *) arg;
6491 BIG_IOCTL_Command_struct arg64;
6492 BIG_IOCTL_Command_struct __user *p =
6493 compat_alloc_user_space(sizeof(arg64));
6494 int err;
6495 u32 cp;
6496
6497 memset(&arg64, 0, sizeof(arg64));
6498 err = 0;
6499 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6500 sizeof(arg64.LUN_info));
6501 err |= copy_from_user(&arg64.Request, &arg32->Request,
6502 sizeof(arg64.Request));
6503 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6504 sizeof(arg64.error_info));
6505 err |= get_user(arg64.buf_size, &arg32->buf_size);
6506 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6507 err |= get_user(cp, &arg32->buf);
6508 arg64.buf = compat_ptr(cp);
6509 err |= copy_to_user(p, &arg64, sizeof(arg64));
6510
6511 if (err)
6512 return -EFAULT;
6513
6514 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6515 if (err)
6516 return err;
6517 err |= copy_in_user(&arg32->error_info, &p->error_info,
6518 sizeof(arg32->error_info));
6519 if (err)
6520 return -EFAULT;
6521 return err;
6522 }
6523
6524 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6525 {
6526 switch (cmd) {
6527 case CCISS_GETPCIINFO:
6528 case CCISS_GETINTINFO:
6529 case CCISS_SETINTINFO:
6530 case CCISS_GETNODENAME:
6531 case CCISS_SETNODENAME:
6532 case CCISS_GETHEARTBEAT:
6533 case CCISS_GETBUSTYPES:
6534 case CCISS_GETFIRMVER:
6535 case CCISS_GETDRIVVER:
6536 case CCISS_REVALIDVOLS:
6537 case CCISS_DEREGDISK:
6538 case CCISS_REGNEWDISK:
6539 case CCISS_REGNEWD:
6540 case CCISS_RESCANDISK:
6541 case CCISS_GETLUNINFO:
6542 return hpsa_ioctl(dev, cmd, arg);
6543
6544 case CCISS_PASSTHRU32:
6545 return hpsa_ioctl32_passthru(dev, cmd, arg);
6546 case CCISS_BIG_PASSTHRU32:
6547 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6548
6549 default:
6550 return -ENOIOCTLCMD;
6551 }
6552 }
6553 #endif
6554
6555 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6556 {
6557 struct hpsa_pci_info pciinfo;
6558
6559 if (!argp)
6560 return -EINVAL;
6561 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6562 pciinfo.bus = h->pdev->bus->number;
6563 pciinfo.dev_fn = h->pdev->devfn;
6564 pciinfo.board_id = h->board_id;
6565 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6566 return -EFAULT;
6567 return 0;
6568 }
6569
6570 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6571 {
6572 DriverVer_type DriverVer;
6573 unsigned char vmaj, vmin, vsubmin;
6574 int rc;
6575
6576 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6577 &vmaj, &vmin, &vsubmin);
6578 if (rc != 3) {
6579 dev_info(&h->pdev->dev, "driver version string '%s' "
6580 "unrecognized.", HPSA_DRIVER_VERSION);
6581 vmaj = 0;
6582 vmin = 0;
6583 vsubmin = 0;
6584 }
6585 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6586 if (!argp)
6587 return -EINVAL;
6588 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6589 return -EFAULT;
6590 return 0;
6591 }
6592
6593 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6594 {
6595 IOCTL_Command_struct iocommand;
6596 struct CommandList *c;
6597 char *buff = NULL;
6598 u64 temp64;
6599 int rc = 0;
6600
6601 if (!argp)
6602 return -EINVAL;
6603 if (!capable(CAP_SYS_RAWIO))
6604 return -EPERM;
6605 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6606 return -EFAULT;
6607 if ((iocommand.buf_size < 1) &&
6608 (iocommand.Request.Type.Direction != XFER_NONE)) {
6609 return -EINVAL;
6610 }
6611 if (iocommand.buf_size > 0) {
6612 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6613 if (buff == NULL)
6614 return -ENOMEM;
6615 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6616 /* Copy the data into the buffer we created */
6617 if (copy_from_user(buff, iocommand.buf,
6618 iocommand.buf_size)) {
6619 rc = -EFAULT;
6620 goto out_kfree;
6621 }
6622 } else {
6623 memset(buff, 0, iocommand.buf_size);
6624 }
6625 }
6626 c = cmd_alloc(h);
6627
6628 /* Fill in the command type */
6629 c->cmd_type = CMD_IOCTL_PEND;
6630 c->scsi_cmd = SCSI_CMD_BUSY;
6631 /* Fill in Command Header */
6632 c->Header.ReplyQueue = 0; /* unused in simple mode */
6633 if (iocommand.buf_size > 0) { /* buffer to fill */
6634 c->Header.SGList = 1;
6635 c->Header.SGTotal = cpu_to_le16(1);
6636 } else { /* no buffers to fill */
6637 c->Header.SGList = 0;
6638 c->Header.SGTotal = cpu_to_le16(0);
6639 }
6640 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6641
6642 /* Fill in Request block */
6643 memcpy(&c->Request, &iocommand.Request,
6644 sizeof(c->Request));
6645
6646 /* Fill in the scatter gather information */
6647 if (iocommand.buf_size > 0) {
6648 temp64 = pci_map_single(h->pdev, buff,
6649 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6650 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6651 c->SG[0].Addr = cpu_to_le64(0);
6652 c->SG[0].Len = cpu_to_le32(0);
6653 rc = -ENOMEM;
6654 goto out;
6655 }
6656 c->SG[0].Addr = cpu_to_le64(temp64);
6657 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6658 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6659 }
6660 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6661 NO_TIMEOUT);
6662 if (iocommand.buf_size > 0)
6663 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6664 check_ioctl_unit_attention(h, c);
6665 if (rc) {
6666 rc = -EIO;
6667 goto out;
6668 }
6669
6670 /* Copy the error information out */
6671 memcpy(&iocommand.error_info, c->err_info,
6672 sizeof(iocommand.error_info));
6673 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6674 rc = -EFAULT;
6675 goto out;
6676 }
6677 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6678 iocommand.buf_size > 0) {
6679 /* Copy the data out of the buffer we created */
6680 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6681 rc = -EFAULT;
6682 goto out;
6683 }
6684 }
6685 out:
6686 cmd_free(h, c);
6687 out_kfree:
6688 kfree(buff);
6689 return rc;
6690 }
6691
6692 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6693 {
6694 BIG_IOCTL_Command_struct *ioc;
6695 struct CommandList *c;
6696 unsigned char **buff = NULL;
6697 int *buff_size = NULL;
6698 u64 temp64;
6699 BYTE sg_used = 0;
6700 int status = 0;
6701 u32 left;
6702 u32 sz;
6703 BYTE __user *data_ptr;
6704
6705 if (!argp)
6706 return -EINVAL;
6707 if (!capable(CAP_SYS_RAWIO))
6708 return -EPERM;
6709 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6710 if (!ioc) {
6711 status = -ENOMEM;
6712 goto cleanup1;
6713 }
6714 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6715 status = -EFAULT;
6716 goto cleanup1;
6717 }
6718 if ((ioc->buf_size < 1) &&
6719 (ioc->Request.Type.Direction != XFER_NONE)) {
6720 status = -EINVAL;
6721 goto cleanup1;
6722 }
6723 /* Check kmalloc limits using all SGs */
6724 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6725 status = -EINVAL;
6726 goto cleanup1;
6727 }
6728 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6729 status = -EINVAL;
6730 goto cleanup1;
6731 }
6732 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6733 if (!buff) {
6734 status = -ENOMEM;
6735 goto cleanup1;
6736 }
6737 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6738 if (!buff_size) {
6739 status = -ENOMEM;
6740 goto cleanup1;
6741 }
6742 left = ioc->buf_size;
6743 data_ptr = ioc->buf;
6744 while (left) {
6745 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6746 buff_size[sg_used] = sz;
6747 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6748 if (buff[sg_used] == NULL) {
6749 status = -ENOMEM;
6750 goto cleanup1;
6751 }
6752 if (ioc->Request.Type.Direction & XFER_WRITE) {
6753 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6754 status = -EFAULT;
6755 goto cleanup1;
6756 }
6757 } else
6758 memset(buff[sg_used], 0, sz);
6759 left -= sz;
6760 data_ptr += sz;
6761 sg_used++;
6762 }
6763 c = cmd_alloc(h);
6764
6765 c->cmd_type = CMD_IOCTL_PEND;
6766 c->scsi_cmd = SCSI_CMD_BUSY;
6767 c->Header.ReplyQueue = 0;
6768 c->Header.SGList = (u8) sg_used;
6769 c->Header.SGTotal = cpu_to_le16(sg_used);
6770 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6771 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6772 if (ioc->buf_size > 0) {
6773 int i;
6774 for (i = 0; i < sg_used; i++) {
6775 temp64 = pci_map_single(h->pdev, buff[i],
6776 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6777 if (dma_mapping_error(&h->pdev->dev,
6778 (dma_addr_t) temp64)) {
6779 c->SG[i].Addr = cpu_to_le64(0);
6780 c->SG[i].Len = cpu_to_le32(0);
6781 hpsa_pci_unmap(h->pdev, c, i,
6782 PCI_DMA_BIDIRECTIONAL);
6783 status = -ENOMEM;
6784 goto cleanup0;
6785 }
6786 c->SG[i].Addr = cpu_to_le64(temp64);
6787 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6788 c->SG[i].Ext = cpu_to_le32(0);
6789 }
6790 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6791 }
6792 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6793 NO_TIMEOUT);
6794 if (sg_used)
6795 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6796 check_ioctl_unit_attention(h, c);
6797 if (status) {
6798 status = -EIO;
6799 goto cleanup0;
6800 }
6801
6802 /* Copy the error information out */
6803 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6804 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6805 status = -EFAULT;
6806 goto cleanup0;
6807 }
6808 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6809 int i;
6810
6811 /* Copy the data out of the buffer we created */
6812 BYTE __user *ptr = ioc->buf;
6813 for (i = 0; i < sg_used; i++) {
6814 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6815 status = -EFAULT;
6816 goto cleanup0;
6817 }
6818 ptr += buff_size[i];
6819 }
6820 }
6821 status = 0;
6822 cleanup0:
6823 cmd_free(h, c);
6824 cleanup1:
6825 if (buff) {
6826 int i;
6827
6828 for (i = 0; i < sg_used; i++)
6829 kfree(buff[i]);
6830 kfree(buff);
6831 }
6832 kfree(buff_size);
6833 kfree(ioc);
6834 return status;
6835 }
6836
6837 static void check_ioctl_unit_attention(struct ctlr_info *h,
6838 struct CommandList *c)
6839 {
6840 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6841 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6842 (void) check_for_unit_attention(h, c);
6843 }
6844
6845 /*
6846 * ioctl
6847 */
6848 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6849 {
6850 struct ctlr_info *h;
6851 void __user *argp = (void __user *)arg;
6852 int rc;
6853
6854 h = sdev_to_hba(dev);
6855
6856 switch (cmd) {
6857 case CCISS_DEREGDISK:
6858 case CCISS_REGNEWDISK:
6859 case CCISS_REGNEWD:
6860 hpsa_scan_start(h->scsi_host);
6861 return 0;
6862 case CCISS_GETPCIINFO:
6863 return hpsa_getpciinfo_ioctl(h, argp);
6864 case CCISS_GETDRIVVER:
6865 return hpsa_getdrivver_ioctl(h, argp);
6866 case CCISS_PASSTHRU:
6867 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6868 return -EAGAIN;
6869 rc = hpsa_passthru_ioctl(h, argp);
6870 atomic_inc(&h->passthru_cmds_avail);
6871 return rc;
6872 case CCISS_BIG_PASSTHRU:
6873 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6874 return -EAGAIN;
6875 rc = hpsa_big_passthru_ioctl(h, argp);
6876 atomic_inc(&h->passthru_cmds_avail);
6877 return rc;
6878 default:
6879 return -ENOTTY;
6880 }
6881 }
6882
6883 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6884 u8 reset_type)
6885 {
6886 struct CommandList *c;
6887
6888 c = cmd_alloc(h);
6889
6890 /* fill_cmd can't fail here, no data buffer to map */
6891 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6892 RAID_CTLR_LUNID, TYPE_MSG);
6893 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6894 c->waiting = NULL;
6895 enqueue_cmd_and_start_io(h, c);
6896 /* Don't wait for completion, the reset won't complete. Don't free
6897 * the command either. This is the last command we will send before
6898 * re-initializing everything, so it doesn't matter and won't leak.
6899 */
6900 return;
6901 }
6902
6903 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6904 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6905 int cmd_type)
6906 {
6907 int pci_dir = XFER_NONE;
6908 u64 tag; /* for commands to be aborted */
6909
6910 c->cmd_type = CMD_IOCTL_PEND;
6911 c->scsi_cmd = SCSI_CMD_BUSY;
6912 c->Header.ReplyQueue = 0;
6913 if (buff != NULL && size > 0) {
6914 c->Header.SGList = 1;
6915 c->Header.SGTotal = cpu_to_le16(1);
6916 } else {
6917 c->Header.SGList = 0;
6918 c->Header.SGTotal = cpu_to_le16(0);
6919 }
6920 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6921
6922 if (cmd_type == TYPE_CMD) {
6923 switch (cmd) {
6924 case HPSA_INQUIRY:
6925 /* are we trying to read a vital product page */
6926 if (page_code & VPD_PAGE) {
6927 c->Request.CDB[1] = 0x01;
6928 c->Request.CDB[2] = (page_code & 0xff);
6929 }
6930 c->Request.CDBLen = 6;
6931 c->Request.type_attr_dir =
6932 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6933 c->Request.Timeout = 0;
6934 c->Request.CDB[0] = HPSA_INQUIRY;
6935 c->Request.CDB[4] = size & 0xFF;
6936 break;
6937 case HPSA_REPORT_LOG:
6938 case HPSA_REPORT_PHYS:
6939 /* Talking to controller so It's a physical command
6940 mode = 00 target = 0. Nothing to write.
6941 */
6942 c->Request.CDBLen = 12;
6943 c->Request.type_attr_dir =
6944 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6945 c->Request.Timeout = 0;
6946 c->Request.CDB[0] = cmd;
6947 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6948 c->Request.CDB[7] = (size >> 16) & 0xFF;
6949 c->Request.CDB[8] = (size >> 8) & 0xFF;
6950 c->Request.CDB[9] = size & 0xFF;
6951 break;
6952 case BMIC_SENSE_DIAG_OPTIONS:
6953 c->Request.CDBLen = 16;
6954 c->Request.type_attr_dir =
6955 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6956 c->Request.Timeout = 0;
6957 /* Spec says this should be BMIC_WRITE */
6958 c->Request.CDB[0] = BMIC_READ;
6959 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6960 break;
6961 case BMIC_SET_DIAG_OPTIONS:
6962 c->Request.CDBLen = 16;
6963 c->Request.type_attr_dir =
6964 TYPE_ATTR_DIR(cmd_type,
6965 ATTR_SIMPLE, XFER_WRITE);
6966 c->Request.Timeout = 0;
6967 c->Request.CDB[0] = BMIC_WRITE;
6968 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6969 break;
6970 case HPSA_CACHE_FLUSH:
6971 c->Request.CDBLen = 12;
6972 c->Request.type_attr_dir =
6973 TYPE_ATTR_DIR(cmd_type,
6974 ATTR_SIMPLE, XFER_WRITE);
6975 c->Request.Timeout = 0;
6976 c->Request.CDB[0] = BMIC_WRITE;
6977 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6978 c->Request.CDB[7] = (size >> 8) & 0xFF;
6979 c->Request.CDB[8] = size & 0xFF;
6980 break;
6981 case TEST_UNIT_READY:
6982 c->Request.CDBLen = 6;
6983 c->Request.type_attr_dir =
6984 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6985 c->Request.Timeout = 0;
6986 break;
6987 case HPSA_GET_RAID_MAP:
6988 c->Request.CDBLen = 12;
6989 c->Request.type_attr_dir =
6990 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6991 c->Request.Timeout = 0;
6992 c->Request.CDB[0] = HPSA_CISS_READ;
6993 c->Request.CDB[1] = cmd;
6994 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6995 c->Request.CDB[7] = (size >> 16) & 0xFF;
6996 c->Request.CDB[8] = (size >> 8) & 0xFF;
6997 c->Request.CDB[9] = size & 0xFF;
6998 break;
6999 case BMIC_SENSE_CONTROLLER_PARAMETERS:
7000 c->Request.CDBLen = 10;
7001 c->Request.type_attr_dir =
7002 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7003 c->Request.Timeout = 0;
7004 c->Request.CDB[0] = BMIC_READ;
7005 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7006 c->Request.CDB[7] = (size >> 16) & 0xFF;
7007 c->Request.CDB[8] = (size >> 8) & 0xFF;
7008 break;
7009 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7010 c->Request.CDBLen = 10;
7011 c->Request.type_attr_dir =
7012 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7013 c->Request.Timeout = 0;
7014 c->Request.CDB[0] = BMIC_READ;
7015 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7016 c->Request.CDB[7] = (size >> 16) & 0xFF;
7017 c->Request.CDB[8] = (size >> 8) & 0XFF;
7018 break;
7019 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7020 c->Request.CDBLen = 10;
7021 c->Request.type_attr_dir =
7022 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7023 c->Request.Timeout = 0;
7024 c->Request.CDB[0] = BMIC_READ;
7025 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7026 c->Request.CDB[7] = (size >> 16) & 0xFF;
7027 c->Request.CDB[8] = (size >> 8) & 0XFF;
7028 break;
7029 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7030 c->Request.CDBLen = 10;
7031 c->Request.type_attr_dir =
7032 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7033 c->Request.Timeout = 0;
7034 c->Request.CDB[0] = BMIC_READ;
7035 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7036 c->Request.CDB[7] = (size >> 16) & 0xFF;
7037 c->Request.CDB[8] = (size >> 8) & 0XFF;
7038 break;
7039 case BMIC_IDENTIFY_CONTROLLER:
7040 c->Request.CDBLen = 10;
7041 c->Request.type_attr_dir =
7042 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7043 c->Request.Timeout = 0;
7044 c->Request.CDB[0] = BMIC_READ;
7045 c->Request.CDB[1] = 0;
7046 c->Request.CDB[2] = 0;
7047 c->Request.CDB[3] = 0;
7048 c->Request.CDB[4] = 0;
7049 c->Request.CDB[5] = 0;
7050 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7051 c->Request.CDB[7] = (size >> 16) & 0xFF;
7052 c->Request.CDB[8] = (size >> 8) & 0XFF;
7053 c->Request.CDB[9] = 0;
7054 break;
7055 default:
7056 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7057 BUG();
7058 return -1;
7059 }
7060 } else if (cmd_type == TYPE_MSG) {
7061 switch (cmd) {
7062
7063 case HPSA_PHYS_TARGET_RESET:
7064 c->Request.CDBLen = 16;
7065 c->Request.type_attr_dir =
7066 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7067 c->Request.Timeout = 0; /* Don't time out */
7068 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7069 c->Request.CDB[0] = HPSA_RESET;
7070 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7071 /* Physical target reset needs no control bytes 4-7*/
7072 c->Request.CDB[4] = 0x00;
7073 c->Request.CDB[5] = 0x00;
7074 c->Request.CDB[6] = 0x00;
7075 c->Request.CDB[7] = 0x00;
7076 break;
7077 case HPSA_DEVICE_RESET_MSG:
7078 c->Request.CDBLen = 16;
7079 c->Request.type_attr_dir =
7080 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7081 c->Request.Timeout = 0; /* Don't time out */
7082 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7083 c->Request.CDB[0] = cmd;
7084 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7085 /* If bytes 4-7 are zero, it means reset the */
7086 /* LunID device */
7087 c->Request.CDB[4] = 0x00;
7088 c->Request.CDB[5] = 0x00;
7089 c->Request.CDB[6] = 0x00;
7090 c->Request.CDB[7] = 0x00;
7091 break;
7092 case HPSA_ABORT_MSG:
7093 memcpy(&tag, buff, sizeof(tag));
7094 dev_dbg(&h->pdev->dev,
7095 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7096 tag, c->Header.tag);
7097 c->Request.CDBLen = 16;
7098 c->Request.type_attr_dir =
7099 TYPE_ATTR_DIR(cmd_type,
7100 ATTR_SIMPLE, XFER_WRITE);
7101 c->Request.Timeout = 0; /* Don't time out */
7102 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7103 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7104 c->Request.CDB[2] = 0x00; /* reserved */
7105 c->Request.CDB[3] = 0x00; /* reserved */
7106 /* Tag to abort goes in CDB[4]-CDB[11] */
7107 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7108 c->Request.CDB[12] = 0x00; /* reserved */
7109 c->Request.CDB[13] = 0x00; /* reserved */
7110 c->Request.CDB[14] = 0x00; /* reserved */
7111 c->Request.CDB[15] = 0x00; /* reserved */
7112 break;
7113 default:
7114 dev_warn(&h->pdev->dev, "unknown message type %d\n",
7115 cmd);
7116 BUG();
7117 }
7118 } else {
7119 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7120 BUG();
7121 }
7122
7123 switch (GET_DIR(c->Request.type_attr_dir)) {
7124 case XFER_READ:
7125 pci_dir = PCI_DMA_FROMDEVICE;
7126 break;
7127 case XFER_WRITE:
7128 pci_dir = PCI_DMA_TODEVICE;
7129 break;
7130 case XFER_NONE:
7131 pci_dir = PCI_DMA_NONE;
7132 break;
7133 default:
7134 pci_dir = PCI_DMA_BIDIRECTIONAL;
7135 }
7136 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7137 return -1;
7138 return 0;
7139 }
7140
7141 /*
7142 * Map (physical) PCI mem into (virtual) kernel space
7143 */
7144 static void __iomem *remap_pci_mem(ulong base, ulong size)
7145 {
7146 ulong page_base = ((ulong) base) & PAGE_MASK;
7147 ulong page_offs = ((ulong) base) - page_base;
7148 void __iomem *page_remapped = ioremap_nocache(page_base,
7149 page_offs + size);
7150
7151 return page_remapped ? (page_remapped + page_offs) : NULL;
7152 }
7153
7154 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7155 {
7156 return h->access.command_completed(h, q);
7157 }
7158
7159 static inline bool interrupt_pending(struct ctlr_info *h)
7160 {
7161 return h->access.intr_pending(h);
7162 }
7163
7164 static inline long interrupt_not_for_us(struct ctlr_info *h)
7165 {
7166 return (h->access.intr_pending(h) == 0) ||
7167 (h->interrupts_enabled == 0);
7168 }
7169
7170 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7171 u32 raw_tag)
7172 {
7173 if (unlikely(tag_index >= h->nr_cmds)) {
7174 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7175 return 1;
7176 }
7177 return 0;
7178 }
7179
7180 static inline void finish_cmd(struct CommandList *c)
7181 {
7182 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7183 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7184 || c->cmd_type == CMD_IOACCEL2))
7185 complete_scsi_command(c);
7186 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7187 complete(c->waiting);
7188 }
7189
7190 /* process completion of an indexed ("direct lookup") command */
7191 static inline void process_indexed_cmd(struct ctlr_info *h,
7192 u32 raw_tag)
7193 {
7194 u32 tag_index;
7195 struct CommandList *c;
7196
7197 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7198 if (!bad_tag(h, tag_index, raw_tag)) {
7199 c = h->cmd_pool + tag_index;
7200 finish_cmd(c);
7201 }
7202 }
7203
7204 /* Some controllers, like p400, will give us one interrupt
7205 * after a soft reset, even if we turned interrupts off.
7206 * Only need to check for this in the hpsa_xxx_discard_completions
7207 * functions.
7208 */
7209 static int ignore_bogus_interrupt(struct ctlr_info *h)
7210 {
7211 if (likely(!reset_devices))
7212 return 0;
7213
7214 if (likely(h->interrupts_enabled))
7215 return 0;
7216
7217 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7218 "(known firmware bug.) Ignoring.\n");
7219
7220 return 1;
7221 }
7222
7223 /*
7224 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7225 * Relies on (h-q[x] == x) being true for x such that
7226 * 0 <= x < MAX_REPLY_QUEUES.
7227 */
7228 static struct ctlr_info *queue_to_hba(u8 *queue)
7229 {
7230 return container_of((queue - *queue), struct ctlr_info, q[0]);
7231 }
7232
7233 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7234 {
7235 struct ctlr_info *h = queue_to_hba(queue);
7236 u8 q = *(u8 *) queue;
7237 u32 raw_tag;
7238
7239 if (ignore_bogus_interrupt(h))
7240 return IRQ_NONE;
7241
7242 if (interrupt_not_for_us(h))
7243 return IRQ_NONE;
7244 h->last_intr_timestamp = get_jiffies_64();
7245 while (interrupt_pending(h)) {
7246 raw_tag = get_next_completion(h, q);
7247 while (raw_tag != FIFO_EMPTY)
7248 raw_tag = next_command(h, q);
7249 }
7250 return IRQ_HANDLED;
7251 }
7252
7253 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7254 {
7255 struct ctlr_info *h = queue_to_hba(queue);
7256 u32 raw_tag;
7257 u8 q = *(u8 *) queue;
7258
7259 if (ignore_bogus_interrupt(h))
7260 return IRQ_NONE;
7261
7262 h->last_intr_timestamp = get_jiffies_64();
7263 raw_tag = get_next_completion(h, q);
7264 while (raw_tag != FIFO_EMPTY)
7265 raw_tag = next_command(h, q);
7266 return IRQ_HANDLED;
7267 }
7268
7269 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7270 {
7271 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7272 u32 raw_tag;
7273 u8 q = *(u8 *) queue;
7274
7275 if (interrupt_not_for_us(h))
7276 return IRQ_NONE;
7277 h->last_intr_timestamp = get_jiffies_64();
7278 while (interrupt_pending(h)) {
7279 raw_tag = get_next_completion(h, q);
7280 while (raw_tag != FIFO_EMPTY) {
7281 process_indexed_cmd(h, raw_tag);
7282 raw_tag = next_command(h, q);
7283 }
7284 }
7285 return IRQ_HANDLED;
7286 }
7287
7288 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7289 {
7290 struct ctlr_info *h = queue_to_hba(queue);
7291 u32 raw_tag;
7292 u8 q = *(u8 *) queue;
7293
7294 h->last_intr_timestamp = get_jiffies_64();
7295 raw_tag = get_next_completion(h, q);
7296 while (raw_tag != FIFO_EMPTY) {
7297 process_indexed_cmd(h, raw_tag);
7298 raw_tag = next_command(h, q);
7299 }
7300 return IRQ_HANDLED;
7301 }
7302
7303 /* Send a message CDB to the firmware. Careful, this only works
7304 * in simple mode, not performant mode due to the tag lookup.
7305 * We only ever use this immediately after a controller reset.
7306 */
7307 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7308 unsigned char type)
7309 {
7310 struct Command {
7311 struct CommandListHeader CommandHeader;
7312 struct RequestBlock Request;
7313 struct ErrDescriptor ErrorDescriptor;
7314 };
7315 struct Command *cmd;
7316 static const size_t cmd_sz = sizeof(*cmd) +
7317 sizeof(cmd->ErrorDescriptor);
7318 dma_addr_t paddr64;
7319 __le32 paddr32;
7320 u32 tag;
7321 void __iomem *vaddr;
7322 int i, err;
7323
7324 vaddr = pci_ioremap_bar(pdev, 0);
7325 if (vaddr == NULL)
7326 return -ENOMEM;
7327
7328 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7329 * CCISS commands, so they must be allocated from the lower 4GiB of
7330 * memory.
7331 */
7332 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7333 if (err) {
7334 iounmap(vaddr);
7335 return err;
7336 }
7337
7338 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7339 if (cmd == NULL) {
7340 iounmap(vaddr);
7341 return -ENOMEM;
7342 }
7343
7344 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7345 * although there's no guarantee, we assume that the address is at
7346 * least 4-byte aligned (most likely, it's page-aligned).
7347 */
7348 paddr32 = cpu_to_le32(paddr64);
7349
7350 cmd->CommandHeader.ReplyQueue = 0;
7351 cmd->CommandHeader.SGList = 0;
7352 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7353 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7354 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7355
7356 cmd->Request.CDBLen = 16;
7357 cmd->Request.type_attr_dir =
7358 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7359 cmd->Request.Timeout = 0; /* Don't time out */
7360 cmd->Request.CDB[0] = opcode;
7361 cmd->Request.CDB[1] = type;
7362 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7363 cmd->ErrorDescriptor.Addr =
7364 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7365 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7366
7367 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7368
7369 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7370 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7371 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7372 break;
7373 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7374 }
7375
7376 iounmap(vaddr);
7377
7378 /* we leak the DMA buffer here ... no choice since the controller could
7379 * still complete the command.
7380 */
7381 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7382 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7383 opcode, type);
7384 return -ETIMEDOUT;
7385 }
7386
7387 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7388
7389 if (tag & HPSA_ERROR_BIT) {
7390 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7391 opcode, type);
7392 return -EIO;
7393 }
7394
7395 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7396 opcode, type);
7397 return 0;
7398 }
7399
7400 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7401
7402 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7403 void __iomem *vaddr, u32 use_doorbell)
7404 {
7405
7406 if (use_doorbell) {
7407 /* For everything after the P600, the PCI power state method
7408 * of resetting the controller doesn't work, so we have this
7409 * other way using the doorbell register.
7410 */
7411 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7412 writel(use_doorbell, vaddr + SA5_DOORBELL);
7413
7414 /* PMC hardware guys tell us we need a 10 second delay after
7415 * doorbell reset and before any attempt to talk to the board
7416 * at all to ensure that this actually works and doesn't fall
7417 * over in some weird corner cases.
7418 */
7419 msleep(10000);
7420 } else { /* Try to do it the PCI power state way */
7421
7422 /* Quoting from the Open CISS Specification: "The Power
7423 * Management Control/Status Register (CSR) controls the power
7424 * state of the device. The normal operating state is D0,
7425 * CSR=00h. The software off state is D3, CSR=03h. To reset
7426 * the controller, place the interface device in D3 then to D0,
7427 * this causes a secondary PCI reset which will reset the
7428 * controller." */
7429
7430 int rc = 0;
7431
7432 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7433
7434 /* enter the D3hot power management state */
7435 rc = pci_set_power_state(pdev, PCI_D3hot);
7436 if (rc)
7437 return rc;
7438
7439 msleep(500);
7440
7441 /* enter the D0 power management state */
7442 rc = pci_set_power_state(pdev, PCI_D0);
7443 if (rc)
7444 return rc;
7445
7446 /*
7447 * The P600 requires a small delay when changing states.
7448 * Otherwise we may think the board did not reset and we bail.
7449 * This for kdump only and is particular to the P600.
7450 */
7451 msleep(500);
7452 }
7453 return 0;
7454 }
7455
7456 static void init_driver_version(char *driver_version, int len)
7457 {
7458 memset(driver_version, 0, len);
7459 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7460 }
7461
7462 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7463 {
7464 char *driver_version;
7465 int i, size = sizeof(cfgtable->driver_version);
7466
7467 driver_version = kmalloc(size, GFP_KERNEL);
7468 if (!driver_version)
7469 return -ENOMEM;
7470
7471 init_driver_version(driver_version, size);
7472 for (i = 0; i < size; i++)
7473 writeb(driver_version[i], &cfgtable->driver_version[i]);
7474 kfree(driver_version);
7475 return 0;
7476 }
7477
7478 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7479 unsigned char *driver_ver)
7480 {
7481 int i;
7482
7483 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7484 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7485 }
7486
7487 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7488 {
7489
7490 char *driver_ver, *old_driver_ver;
7491 int rc, size = sizeof(cfgtable->driver_version);
7492
7493 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7494 if (!old_driver_ver)
7495 return -ENOMEM;
7496 driver_ver = old_driver_ver + size;
7497
7498 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7499 * should have been changed, otherwise we know the reset failed.
7500 */
7501 init_driver_version(old_driver_ver, size);
7502 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7503 rc = !memcmp(driver_ver, old_driver_ver, size);
7504 kfree(old_driver_ver);
7505 return rc;
7506 }
7507 /* This does a hard reset of the controller using PCI power management
7508 * states or the using the doorbell register.
7509 */
7510 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7511 {
7512 u64 cfg_offset;
7513 u32 cfg_base_addr;
7514 u64 cfg_base_addr_index;
7515 void __iomem *vaddr;
7516 unsigned long paddr;
7517 u32 misc_fw_support;
7518 int rc;
7519 struct CfgTable __iomem *cfgtable;
7520 u32 use_doorbell;
7521 u16 command_register;
7522
7523 /* For controllers as old as the P600, this is very nearly
7524 * the same thing as
7525 *
7526 * pci_save_state(pci_dev);
7527 * pci_set_power_state(pci_dev, PCI_D3hot);
7528 * pci_set_power_state(pci_dev, PCI_D0);
7529 * pci_restore_state(pci_dev);
7530 *
7531 * For controllers newer than the P600, the pci power state
7532 * method of resetting doesn't work so we have another way
7533 * using the doorbell register.
7534 */
7535
7536 if (!ctlr_is_resettable(board_id)) {
7537 dev_warn(&pdev->dev, "Controller not resettable\n");
7538 return -ENODEV;
7539 }
7540
7541 /* if controller is soft- but not hard resettable... */
7542 if (!ctlr_is_hard_resettable(board_id))
7543 return -ENOTSUPP; /* try soft reset later. */
7544
7545 /* Save the PCI command register */
7546 pci_read_config_word(pdev, 4, &command_register);
7547 pci_save_state(pdev);
7548
7549 /* find the first memory BAR, so we can find the cfg table */
7550 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7551 if (rc)
7552 return rc;
7553 vaddr = remap_pci_mem(paddr, 0x250);
7554 if (!vaddr)
7555 return -ENOMEM;
7556
7557 /* find cfgtable in order to check if reset via doorbell is supported */
7558 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7559 &cfg_base_addr_index, &cfg_offset);
7560 if (rc)
7561 goto unmap_vaddr;
7562 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7563 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7564 if (!cfgtable) {
7565 rc = -ENOMEM;
7566 goto unmap_vaddr;
7567 }
7568 rc = write_driver_ver_to_cfgtable(cfgtable);
7569 if (rc)
7570 goto unmap_cfgtable;
7571
7572 /* If reset via doorbell register is supported, use that.
7573 * There are two such methods. Favor the newest method.
7574 */
7575 misc_fw_support = readl(&cfgtable->misc_fw_support);
7576 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7577 if (use_doorbell) {
7578 use_doorbell = DOORBELL_CTLR_RESET2;
7579 } else {
7580 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7581 if (use_doorbell) {
7582 dev_warn(&pdev->dev,
7583 "Soft reset not supported. Firmware update is required.\n");
7584 rc = -ENOTSUPP; /* try soft reset */
7585 goto unmap_cfgtable;
7586 }
7587 }
7588
7589 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7590 if (rc)
7591 goto unmap_cfgtable;
7592
7593 pci_restore_state(pdev);
7594 pci_write_config_word(pdev, 4, command_register);
7595
7596 /* Some devices (notably the HP Smart Array 5i Controller)
7597 need a little pause here */
7598 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7599
7600 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7601 if (rc) {
7602 dev_warn(&pdev->dev,
7603 "Failed waiting for board to become ready after hard reset\n");
7604 goto unmap_cfgtable;
7605 }
7606
7607 rc = controller_reset_failed(vaddr);
7608 if (rc < 0)
7609 goto unmap_cfgtable;
7610 if (rc) {
7611 dev_warn(&pdev->dev, "Unable to successfully reset "
7612 "controller. Will try soft reset.\n");
7613 rc = -ENOTSUPP;
7614 } else {
7615 dev_info(&pdev->dev, "board ready after hard reset.\n");
7616 }
7617
7618 unmap_cfgtable:
7619 iounmap(cfgtable);
7620
7621 unmap_vaddr:
7622 iounmap(vaddr);
7623 return rc;
7624 }
7625
7626 /*
7627 * We cannot read the structure directly, for portability we must use
7628 * the io functions.
7629 * This is for debug only.
7630 */
7631 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7632 {
7633 #ifdef HPSA_DEBUG
7634 int i;
7635 char temp_name[17];
7636
7637 dev_info(dev, "Controller Configuration information\n");
7638 dev_info(dev, "------------------------------------\n");
7639 for (i = 0; i < 4; i++)
7640 temp_name[i] = readb(&(tb->Signature[i]));
7641 temp_name[4] = '\0';
7642 dev_info(dev, " Signature = %s\n", temp_name);
7643 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7644 dev_info(dev, " Transport methods supported = 0x%x\n",
7645 readl(&(tb->TransportSupport)));
7646 dev_info(dev, " Transport methods active = 0x%x\n",
7647 readl(&(tb->TransportActive)));
7648 dev_info(dev, " Requested transport Method = 0x%x\n",
7649 readl(&(tb->HostWrite.TransportRequest)));
7650 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7651 readl(&(tb->HostWrite.CoalIntDelay)));
7652 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7653 readl(&(tb->HostWrite.CoalIntCount)));
7654 dev_info(dev, " Max outstanding commands = %d\n",
7655 readl(&(tb->CmdsOutMax)));
7656 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7657 for (i = 0; i < 16; i++)
7658 temp_name[i] = readb(&(tb->ServerName[i]));
7659 temp_name[16] = '\0';
7660 dev_info(dev, " Server Name = %s\n", temp_name);
7661 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7662 readl(&(tb->HeartBeat)));
7663 #endif /* HPSA_DEBUG */
7664 }
7665
7666 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7667 {
7668 int i, offset, mem_type, bar_type;
7669
7670 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7671 return 0;
7672 offset = 0;
7673 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7674 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7675 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7676 offset += 4;
7677 else {
7678 mem_type = pci_resource_flags(pdev, i) &
7679 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7680 switch (mem_type) {
7681 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7682 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7683 offset += 4; /* 32 bit */
7684 break;
7685 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7686 offset += 8;
7687 break;
7688 default: /* reserved in PCI 2.2 */
7689 dev_warn(&pdev->dev,
7690 "base address is invalid\n");
7691 return -1;
7692 break;
7693 }
7694 }
7695 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7696 return i + 1;
7697 }
7698 return -1;
7699 }
7700
7701 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7702 {
7703 pci_free_irq_vectors(h->pdev);
7704 h->msix_vectors = 0;
7705 }
7706
7707 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7708 * controllers that are capable. If not, we use legacy INTx mode.
7709 */
7710 static int hpsa_interrupt_mode(struct ctlr_info *h)
7711 {
7712 unsigned int flags = PCI_IRQ_LEGACY;
7713 int ret;
7714
7715 /* Some boards advertise MSI but don't really support it */
7716 switch (h->board_id) {
7717 case 0x40700E11:
7718 case 0x40800E11:
7719 case 0x40820E11:
7720 case 0x40830E11:
7721 break;
7722 default:
7723 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7724 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7725 if (ret > 0) {
7726 h->msix_vectors = ret;
7727 return 0;
7728 }
7729
7730 flags |= PCI_IRQ_MSI;
7731 break;
7732 }
7733
7734 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7735 if (ret < 0)
7736 return ret;
7737 return 0;
7738 }
7739
7740 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7741 {
7742 int i;
7743 u32 subsystem_vendor_id, subsystem_device_id;
7744
7745 subsystem_vendor_id = pdev->subsystem_vendor;
7746 subsystem_device_id = pdev->subsystem_device;
7747 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7748 subsystem_vendor_id;
7749
7750 for (i = 0; i < ARRAY_SIZE(products); i++)
7751 if (*board_id == products[i].board_id)
7752 return i;
7753
7754 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7755 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7756 !hpsa_allow_any) {
7757 dev_warn(&pdev->dev, "unrecognized board ID: "
7758 "0x%08x, ignoring.\n", *board_id);
7759 return -ENODEV;
7760 }
7761 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7762 }
7763
7764 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7765 unsigned long *memory_bar)
7766 {
7767 int i;
7768
7769 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7770 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7771 /* addressing mode bits already removed */
7772 *memory_bar = pci_resource_start(pdev, i);
7773 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7774 *memory_bar);
7775 return 0;
7776 }
7777 dev_warn(&pdev->dev, "no memory BAR found\n");
7778 return -ENODEV;
7779 }
7780
7781 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7782 int wait_for_ready)
7783 {
7784 int i, iterations;
7785 u32 scratchpad;
7786 if (wait_for_ready)
7787 iterations = HPSA_BOARD_READY_ITERATIONS;
7788 else
7789 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7790
7791 for (i = 0; i < iterations; i++) {
7792 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7793 if (wait_for_ready) {
7794 if (scratchpad == HPSA_FIRMWARE_READY)
7795 return 0;
7796 } else {
7797 if (scratchpad != HPSA_FIRMWARE_READY)
7798 return 0;
7799 }
7800 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7801 }
7802 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7803 return -ENODEV;
7804 }
7805
7806 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7807 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7808 u64 *cfg_offset)
7809 {
7810 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7811 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7812 *cfg_base_addr &= (u32) 0x0000ffff;
7813 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7814 if (*cfg_base_addr_index == -1) {
7815 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7816 return -ENODEV;
7817 }
7818 return 0;
7819 }
7820
7821 static void hpsa_free_cfgtables(struct ctlr_info *h)
7822 {
7823 if (h->transtable) {
7824 iounmap(h->transtable);
7825 h->transtable = NULL;
7826 }
7827 if (h->cfgtable) {
7828 iounmap(h->cfgtable);
7829 h->cfgtable = NULL;
7830 }
7831 }
7832
7833 /* Find and map CISS config table and transfer table
7834 + * several items must be unmapped (freed) later
7835 + * */
7836 static int hpsa_find_cfgtables(struct ctlr_info *h)
7837 {
7838 u64 cfg_offset;
7839 u32 cfg_base_addr;
7840 u64 cfg_base_addr_index;
7841 u32 trans_offset;
7842 int rc;
7843
7844 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7845 &cfg_base_addr_index, &cfg_offset);
7846 if (rc)
7847 return rc;
7848 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7849 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7850 if (!h->cfgtable) {
7851 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7852 return -ENOMEM;
7853 }
7854 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7855 if (rc)
7856 return rc;
7857 /* Find performant mode table. */
7858 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7859 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7860 cfg_base_addr_index)+cfg_offset+trans_offset,
7861 sizeof(*h->transtable));
7862 if (!h->transtable) {
7863 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7864 hpsa_free_cfgtables(h);
7865 return -ENOMEM;
7866 }
7867 return 0;
7868 }
7869
7870 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7871 {
7872 #define MIN_MAX_COMMANDS 16
7873 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7874
7875 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7876
7877 /* Limit commands in memory limited kdump scenario. */
7878 if (reset_devices && h->max_commands > 32)
7879 h->max_commands = 32;
7880
7881 if (h->max_commands < MIN_MAX_COMMANDS) {
7882 dev_warn(&h->pdev->dev,
7883 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7884 h->max_commands,
7885 MIN_MAX_COMMANDS);
7886 h->max_commands = MIN_MAX_COMMANDS;
7887 }
7888 }
7889
7890 /* If the controller reports that the total max sg entries is greater than 512,
7891 * then we know that chained SG blocks work. (Original smart arrays did not
7892 * support chained SG blocks and would return zero for max sg entries.)
7893 */
7894 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7895 {
7896 return h->maxsgentries > 512;
7897 }
7898
7899 /* Interrogate the hardware for some limits:
7900 * max commands, max SG elements without chaining, and with chaining,
7901 * SG chain block size, etc.
7902 */
7903 static void hpsa_find_board_params(struct ctlr_info *h)
7904 {
7905 hpsa_get_max_perf_mode_cmds(h);
7906 h->nr_cmds = h->max_commands;
7907 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7908 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7909 if (hpsa_supports_chained_sg_blocks(h)) {
7910 /* Limit in-command s/g elements to 32 save dma'able memory. */
7911 h->max_cmd_sg_entries = 32;
7912 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7913 h->maxsgentries--; /* save one for chain pointer */
7914 } else {
7915 /*
7916 * Original smart arrays supported at most 31 s/g entries
7917 * embedded inline in the command (trying to use more
7918 * would lock up the controller)
7919 */
7920 h->max_cmd_sg_entries = 31;
7921 h->maxsgentries = 31; /* default to traditional values */
7922 h->chainsize = 0;
7923 }
7924
7925 /* Find out what task management functions are supported and cache */
7926 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7927 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7928 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7929 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7930 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7931 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7932 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7933 }
7934
7935 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7936 {
7937 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7938 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7939 return false;
7940 }
7941 return true;
7942 }
7943
7944 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7945 {
7946 u32 driver_support;
7947
7948 driver_support = readl(&(h->cfgtable->driver_support));
7949 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7950 #ifdef CONFIG_X86
7951 driver_support |= ENABLE_SCSI_PREFETCH;
7952 #endif
7953 driver_support |= ENABLE_UNIT_ATTN;
7954 writel(driver_support, &(h->cfgtable->driver_support));
7955 }
7956
7957 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7958 * in a prefetch beyond physical memory.
7959 */
7960 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7961 {
7962 u32 dma_prefetch;
7963
7964 if (h->board_id != 0x3225103C)
7965 return;
7966 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7967 dma_prefetch |= 0x8000;
7968 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7969 }
7970
7971 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7972 {
7973 int i;
7974 u32 doorbell_value;
7975 unsigned long flags;
7976 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7977 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7978 spin_lock_irqsave(&h->lock, flags);
7979 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7980 spin_unlock_irqrestore(&h->lock, flags);
7981 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7982 goto done;
7983 /* delay and try again */
7984 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7985 }
7986 return -ENODEV;
7987 done:
7988 return 0;
7989 }
7990
7991 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7992 {
7993 int i;
7994 u32 doorbell_value;
7995 unsigned long flags;
7996
7997 /* under certain very rare conditions, this can take awhile.
7998 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7999 * as we enter this code.)
8000 */
8001 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
8002 if (h->remove_in_progress)
8003 goto done;
8004 spin_lock_irqsave(&h->lock, flags);
8005 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8006 spin_unlock_irqrestore(&h->lock, flags);
8007 if (!(doorbell_value & CFGTBL_ChangeReq))
8008 goto done;
8009 /* delay and try again */
8010 msleep(MODE_CHANGE_WAIT_INTERVAL);
8011 }
8012 return -ENODEV;
8013 done:
8014 return 0;
8015 }
8016
8017 /* return -ENODEV or other reason on error, 0 on success */
8018 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8019 {
8020 u32 trans_support;
8021
8022 trans_support = readl(&(h->cfgtable->TransportSupport));
8023 if (!(trans_support & SIMPLE_MODE))
8024 return -ENOTSUPP;
8025
8026 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8027
8028 /* Update the field, and then ring the doorbell */
8029 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8030 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8031 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8032 if (hpsa_wait_for_mode_change_ack(h))
8033 goto error;
8034 print_cfg_table(&h->pdev->dev, h->cfgtable);
8035 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8036 goto error;
8037 h->transMethod = CFGTBL_Trans_Simple;
8038 return 0;
8039 error:
8040 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8041 return -ENODEV;
8042 }
8043
8044 /* free items allocated or mapped by hpsa_pci_init */
8045 static void hpsa_free_pci_init(struct ctlr_info *h)
8046 {
8047 hpsa_free_cfgtables(h); /* pci_init 4 */
8048 iounmap(h->vaddr); /* pci_init 3 */
8049 h->vaddr = NULL;
8050 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8051 /*
8052 * call pci_disable_device before pci_release_regions per
8053 * Documentation/PCI/pci.txt
8054 */
8055 pci_disable_device(h->pdev); /* pci_init 1 */
8056 pci_release_regions(h->pdev); /* pci_init 2 */
8057 }
8058
8059 /* several items must be freed later */
8060 static int hpsa_pci_init(struct ctlr_info *h)
8061 {
8062 int prod_index, err;
8063
8064 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8065 if (prod_index < 0)
8066 return prod_index;
8067 h->product_name = products[prod_index].product_name;
8068 h->access = *(products[prod_index].access);
8069
8070 h->needs_abort_tags_swizzled =
8071 ctlr_needs_abort_tags_swizzled(h->board_id);
8072
8073 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8074 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8075
8076 err = pci_enable_device(h->pdev);
8077 if (err) {
8078 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8079 pci_disable_device(h->pdev);
8080 return err;
8081 }
8082
8083 err = pci_request_regions(h->pdev, HPSA);
8084 if (err) {
8085 dev_err(&h->pdev->dev,
8086 "failed to obtain PCI resources\n");
8087 pci_disable_device(h->pdev);
8088 return err;
8089 }
8090
8091 pci_set_master(h->pdev);
8092
8093 err = hpsa_interrupt_mode(h);
8094 if (err)
8095 goto clean1;
8096 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8097 if (err)
8098 goto clean2; /* intmode+region, pci */
8099 h->vaddr = remap_pci_mem(h->paddr, 0x250);
8100 if (!h->vaddr) {
8101 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8102 err = -ENOMEM;
8103 goto clean2; /* intmode+region, pci */
8104 }
8105 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8106 if (err)
8107 goto clean3; /* vaddr, intmode+region, pci */
8108 err = hpsa_find_cfgtables(h);
8109 if (err)
8110 goto clean3; /* vaddr, intmode+region, pci */
8111 hpsa_find_board_params(h);
8112
8113 if (!hpsa_CISS_signature_present(h)) {
8114 err = -ENODEV;
8115 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
8116 }
8117 hpsa_set_driver_support_bits(h);
8118 hpsa_p600_dma_prefetch_quirk(h);
8119 err = hpsa_enter_simple_mode(h);
8120 if (err)
8121 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
8122 return 0;
8123
8124 clean4: /* cfgtables, vaddr, intmode+region, pci */
8125 hpsa_free_cfgtables(h);
8126 clean3: /* vaddr, intmode+region, pci */
8127 iounmap(h->vaddr);
8128 h->vaddr = NULL;
8129 clean2: /* intmode+region, pci */
8130 hpsa_disable_interrupt_mode(h);
8131 clean1:
8132 /*
8133 * call pci_disable_device before pci_release_regions per
8134 * Documentation/PCI/pci.txt
8135 */
8136 pci_disable_device(h->pdev);
8137 pci_release_regions(h->pdev);
8138 return err;
8139 }
8140
8141 static void hpsa_hba_inquiry(struct ctlr_info *h)
8142 {
8143 int rc;
8144
8145 #define HBA_INQUIRY_BYTE_COUNT 64
8146 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8147 if (!h->hba_inquiry_data)
8148 return;
8149 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8150 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8151 if (rc != 0) {
8152 kfree(h->hba_inquiry_data);
8153 h->hba_inquiry_data = NULL;
8154 }
8155 }
8156
8157 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8158 {
8159 int rc, i;
8160 void __iomem *vaddr;
8161
8162 if (!reset_devices)
8163 return 0;
8164
8165 /* kdump kernel is loading, we don't know in which state is
8166 * the pci interface. The dev->enable_cnt is equal zero
8167 * so we call enable+disable, wait a while and switch it on.
8168 */
8169 rc = pci_enable_device(pdev);
8170 if (rc) {
8171 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8172 return -ENODEV;
8173 }
8174 pci_disable_device(pdev);
8175 msleep(260); /* a randomly chosen number */
8176 rc = pci_enable_device(pdev);
8177 if (rc) {
8178 dev_warn(&pdev->dev, "failed to enable device.\n");
8179 return -ENODEV;
8180 }
8181
8182 pci_set_master(pdev);
8183
8184 vaddr = pci_ioremap_bar(pdev, 0);
8185 if (vaddr == NULL) {
8186 rc = -ENOMEM;
8187 goto out_disable;
8188 }
8189 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8190 iounmap(vaddr);
8191
8192 /* Reset the controller with a PCI power-cycle or via doorbell */
8193 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8194
8195 /* -ENOTSUPP here means we cannot reset the controller
8196 * but it's already (and still) up and running in
8197 * "performant mode". Or, it might be 640x, which can't reset
8198 * due to concerns about shared bbwc between 6402/6404 pair.
8199 */
8200 if (rc)
8201 goto out_disable;
8202
8203 /* Now try to get the controller to respond to a no-op */
8204 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8205 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8206 if (hpsa_noop(pdev) == 0)
8207 break;
8208 else
8209 dev_warn(&pdev->dev, "no-op failed%s\n",
8210 (i < 11 ? "; re-trying" : ""));
8211 }
8212
8213 out_disable:
8214
8215 pci_disable_device(pdev);
8216 return rc;
8217 }
8218
8219 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8220 {
8221 kfree(h->cmd_pool_bits);
8222 h->cmd_pool_bits = NULL;
8223 if (h->cmd_pool) {
8224 pci_free_consistent(h->pdev,
8225 h->nr_cmds * sizeof(struct CommandList),
8226 h->cmd_pool,
8227 h->cmd_pool_dhandle);
8228 h->cmd_pool = NULL;
8229 h->cmd_pool_dhandle = 0;
8230 }
8231 if (h->errinfo_pool) {
8232 pci_free_consistent(h->pdev,
8233 h->nr_cmds * sizeof(struct ErrorInfo),
8234 h->errinfo_pool,
8235 h->errinfo_pool_dhandle);
8236 h->errinfo_pool = NULL;
8237 h->errinfo_pool_dhandle = 0;
8238 }
8239 }
8240
8241 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8242 {
8243 h->cmd_pool_bits = kzalloc(
8244 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8245 sizeof(unsigned long), GFP_KERNEL);
8246 h->cmd_pool = pci_alloc_consistent(h->pdev,
8247 h->nr_cmds * sizeof(*h->cmd_pool),
8248 &(h->cmd_pool_dhandle));
8249 h->errinfo_pool = pci_alloc_consistent(h->pdev,
8250 h->nr_cmds * sizeof(*h->errinfo_pool),
8251 &(h->errinfo_pool_dhandle));
8252 if ((h->cmd_pool_bits == NULL)
8253 || (h->cmd_pool == NULL)
8254 || (h->errinfo_pool == NULL)) {
8255 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8256 goto clean_up;
8257 }
8258 hpsa_preinitialize_commands(h);
8259 return 0;
8260 clean_up:
8261 hpsa_free_cmd_pool(h);
8262 return -ENOMEM;
8263 }
8264
8265 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8266 static void hpsa_free_irqs(struct ctlr_info *h)
8267 {
8268 int i;
8269
8270 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8271 /* Single reply queue, only one irq to free */
8272 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8273 h->q[h->intr_mode] = 0;
8274 return;
8275 }
8276
8277 for (i = 0; i < h->msix_vectors; i++) {
8278 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8279 h->q[i] = 0;
8280 }
8281 for (; i < MAX_REPLY_QUEUES; i++)
8282 h->q[i] = 0;
8283 }
8284
8285 /* returns 0 on success; cleans up and returns -Enn on error */
8286 static int hpsa_request_irqs(struct ctlr_info *h,
8287 irqreturn_t (*msixhandler)(int, void *),
8288 irqreturn_t (*intxhandler)(int, void *))
8289 {
8290 int rc, i;
8291
8292 /*
8293 * initialize h->q[x] = x so that interrupt handlers know which
8294 * queue to process.
8295 */
8296 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8297 h->q[i] = (u8) i;
8298
8299 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8300 /* If performant mode and MSI-X, use multiple reply queues */
8301 for (i = 0; i < h->msix_vectors; i++) {
8302 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8303 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8304 0, h->intrname[i],
8305 &h->q[i]);
8306 if (rc) {
8307 int j;
8308
8309 dev_err(&h->pdev->dev,
8310 "failed to get irq %d for %s\n",
8311 pci_irq_vector(h->pdev, i), h->devname);
8312 for (j = 0; j < i; j++) {
8313 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8314 h->q[j] = 0;
8315 }
8316 for (; j < MAX_REPLY_QUEUES; j++)
8317 h->q[j] = 0;
8318 return rc;
8319 }
8320 }
8321 } else {
8322 /* Use single reply pool */
8323 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8324 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8325 h->msix_vectors ? "x" : "");
8326 rc = request_irq(pci_irq_vector(h->pdev, 0),
8327 msixhandler, 0,
8328 h->intrname[0],
8329 &h->q[h->intr_mode]);
8330 } else {
8331 sprintf(h->intrname[h->intr_mode],
8332 "%s-intx", h->devname);
8333 rc = request_irq(pci_irq_vector(h->pdev, 0),
8334 intxhandler, IRQF_SHARED,
8335 h->intrname[0],
8336 &h->q[h->intr_mode]);
8337 }
8338 }
8339 if (rc) {
8340 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8341 pci_irq_vector(h->pdev, 0), h->devname);
8342 hpsa_free_irqs(h);
8343 return -ENODEV;
8344 }
8345 return 0;
8346 }
8347
8348 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8349 {
8350 int rc;
8351 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8352
8353 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8354 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8355 if (rc) {
8356 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8357 return rc;
8358 }
8359
8360 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8361 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8362 if (rc) {
8363 dev_warn(&h->pdev->dev, "Board failed to become ready "
8364 "after soft reset.\n");
8365 return rc;
8366 }
8367
8368 return 0;
8369 }
8370
8371 static void hpsa_free_reply_queues(struct ctlr_info *h)
8372 {
8373 int i;
8374
8375 for (i = 0; i < h->nreply_queues; i++) {
8376 if (!h->reply_queue[i].head)
8377 continue;
8378 pci_free_consistent(h->pdev,
8379 h->reply_queue_size,
8380 h->reply_queue[i].head,
8381 h->reply_queue[i].busaddr);
8382 h->reply_queue[i].head = NULL;
8383 h->reply_queue[i].busaddr = 0;
8384 }
8385 h->reply_queue_size = 0;
8386 }
8387
8388 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8389 {
8390 hpsa_free_performant_mode(h); /* init_one 7 */
8391 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8392 hpsa_free_cmd_pool(h); /* init_one 5 */
8393 hpsa_free_irqs(h); /* init_one 4 */
8394 scsi_host_put(h->scsi_host); /* init_one 3 */
8395 h->scsi_host = NULL; /* init_one 3 */
8396 hpsa_free_pci_init(h); /* init_one 2_5 */
8397 free_percpu(h->lockup_detected); /* init_one 2 */
8398 h->lockup_detected = NULL; /* init_one 2 */
8399 if (h->resubmit_wq) {
8400 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8401 h->resubmit_wq = NULL;
8402 }
8403 if (h->rescan_ctlr_wq) {
8404 destroy_workqueue(h->rescan_ctlr_wq);
8405 h->rescan_ctlr_wq = NULL;
8406 }
8407 kfree(h); /* init_one 1 */
8408 }
8409
8410 /* Called when controller lockup detected. */
8411 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8412 {
8413 int i, refcount;
8414 struct CommandList *c;
8415 int failcount = 0;
8416
8417 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8418 for (i = 0; i < h->nr_cmds; i++) {
8419 c = h->cmd_pool + i;
8420 refcount = atomic_inc_return(&c->refcount);
8421 if (refcount > 1) {
8422 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8423 finish_cmd(c);
8424 atomic_dec(&h->commands_outstanding);
8425 failcount++;
8426 }
8427 cmd_free(h, c);
8428 }
8429 dev_warn(&h->pdev->dev,
8430 "failed %d commands in fail_all\n", failcount);
8431 }
8432
8433 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8434 {
8435 int cpu;
8436
8437 for_each_online_cpu(cpu) {
8438 u32 *lockup_detected;
8439 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8440 *lockup_detected = value;
8441 }
8442 wmb(); /* be sure the per-cpu variables are out to memory */
8443 }
8444
8445 static void controller_lockup_detected(struct ctlr_info *h)
8446 {
8447 unsigned long flags;
8448 u32 lockup_detected;
8449
8450 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8451 spin_lock_irqsave(&h->lock, flags);
8452 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8453 if (!lockup_detected) {
8454 /* no heartbeat, but controller gave us a zero. */
8455 dev_warn(&h->pdev->dev,
8456 "lockup detected after %d but scratchpad register is zero\n",
8457 h->heartbeat_sample_interval / HZ);
8458 lockup_detected = 0xffffffff;
8459 }
8460 set_lockup_detected_for_all_cpus(h, lockup_detected);
8461 spin_unlock_irqrestore(&h->lock, flags);
8462 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8463 lockup_detected, h->heartbeat_sample_interval / HZ);
8464 pci_disable_device(h->pdev);
8465 fail_all_outstanding_cmds(h);
8466 }
8467
8468 static int detect_controller_lockup(struct ctlr_info *h)
8469 {
8470 u64 now;
8471 u32 heartbeat;
8472 unsigned long flags;
8473
8474 now = get_jiffies_64();
8475 /* If we've received an interrupt recently, we're ok. */
8476 if (time_after64(h->last_intr_timestamp +
8477 (h->heartbeat_sample_interval), now))
8478 return false;
8479
8480 /*
8481 * If we've already checked the heartbeat recently, we're ok.
8482 * This could happen if someone sends us a signal. We
8483 * otherwise don't care about signals in this thread.
8484 */
8485 if (time_after64(h->last_heartbeat_timestamp +
8486 (h->heartbeat_sample_interval), now))
8487 return false;
8488
8489 /* If heartbeat has not changed since we last looked, we're not ok. */
8490 spin_lock_irqsave(&h->lock, flags);
8491 heartbeat = readl(&h->cfgtable->HeartBeat);
8492 spin_unlock_irqrestore(&h->lock, flags);
8493 if (h->last_heartbeat == heartbeat) {
8494 controller_lockup_detected(h);
8495 return true;
8496 }
8497
8498 /* We're ok. */
8499 h->last_heartbeat = heartbeat;
8500 h->last_heartbeat_timestamp = now;
8501 return false;
8502 }
8503
8504 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8505 {
8506 int i;
8507 char *event_type;
8508
8509 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8510 return;
8511
8512 /* Ask the controller to clear the events we're handling. */
8513 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8514 | CFGTBL_Trans_io_accel2)) &&
8515 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8516 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8517
8518 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8519 event_type = "state change";
8520 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8521 event_type = "configuration change";
8522 /* Stop sending new RAID offload reqs via the IO accelerator */
8523 scsi_block_requests(h->scsi_host);
8524 for (i = 0; i < h->ndevices; i++) {
8525 h->dev[i]->offload_enabled = 0;
8526 h->dev[i]->offload_to_be_enabled = 0;
8527 }
8528 hpsa_drain_accel_commands(h);
8529 /* Set 'accelerator path config change' bit */
8530 dev_warn(&h->pdev->dev,
8531 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8532 h->events, event_type);
8533 writel(h->events, &(h->cfgtable->clear_event_notify));
8534 /* Set the "clear event notify field update" bit 6 */
8535 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8536 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8537 hpsa_wait_for_clear_event_notify_ack(h);
8538 scsi_unblock_requests(h->scsi_host);
8539 } else {
8540 /* Acknowledge controller notification events. */
8541 writel(h->events, &(h->cfgtable->clear_event_notify));
8542 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8543 hpsa_wait_for_clear_event_notify_ack(h);
8544 #if 0
8545 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8546 hpsa_wait_for_mode_change_ack(h);
8547 #endif
8548 }
8549 return;
8550 }
8551
8552 /* Check a register on the controller to see if there are configuration
8553 * changes (added/changed/removed logical drives, etc.) which mean that
8554 * we should rescan the controller for devices.
8555 * Also check flag for driver-initiated rescan.
8556 */
8557 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8558 {
8559 if (h->drv_req_rescan) {
8560 h->drv_req_rescan = 0;
8561 return 1;
8562 }
8563
8564 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8565 return 0;
8566
8567 h->events = readl(&(h->cfgtable->event_notify));
8568 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8569 }
8570
8571 /*
8572 * Check if any of the offline devices have become ready
8573 */
8574 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8575 {
8576 unsigned long flags;
8577 struct offline_device_entry *d;
8578 struct list_head *this, *tmp;
8579
8580 spin_lock_irqsave(&h->offline_device_lock, flags);
8581 list_for_each_safe(this, tmp, &h->offline_device_list) {
8582 d = list_entry(this, struct offline_device_entry,
8583 offline_list);
8584 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8585 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8586 spin_lock_irqsave(&h->offline_device_lock, flags);
8587 list_del(&d->offline_list);
8588 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589 return 1;
8590 }
8591 spin_lock_irqsave(&h->offline_device_lock, flags);
8592 }
8593 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8594 return 0;
8595 }
8596
8597 static int hpsa_luns_changed(struct ctlr_info *h)
8598 {
8599 int rc = 1; /* assume there are changes */
8600 struct ReportLUNdata *logdev = NULL;
8601
8602 /* if we can't find out if lun data has changed,
8603 * assume that it has.
8604 */
8605
8606 if (!h->lastlogicals)
8607 return rc;
8608
8609 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8610 if (!logdev)
8611 return rc;
8612
8613 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8614 dev_warn(&h->pdev->dev,
8615 "report luns failed, can't track lun changes.\n");
8616 goto out;
8617 }
8618 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8619 dev_info(&h->pdev->dev,
8620 "Lun changes detected.\n");
8621 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8622 goto out;
8623 } else
8624 rc = 0; /* no changes detected. */
8625 out:
8626 kfree(logdev);
8627 return rc;
8628 }
8629
8630 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8631 {
8632 unsigned long flags;
8633 struct ctlr_info *h = container_of(to_delayed_work(work),
8634 struct ctlr_info, rescan_ctlr_work);
8635
8636
8637 if (h->remove_in_progress)
8638 return;
8639
8640 /*
8641 * Do the scan after the reset
8642 */
8643 if (h->reset_in_progress) {
8644 h->drv_req_rescan = 1;
8645 return;
8646 }
8647
8648 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8649 scsi_host_get(h->scsi_host);
8650 hpsa_ack_ctlr_events(h);
8651 hpsa_scan_start(h->scsi_host);
8652 scsi_host_put(h->scsi_host);
8653 } else if (h->discovery_polling) {
8654 hpsa_disable_rld_caching(h);
8655 if (hpsa_luns_changed(h)) {
8656 struct Scsi_Host *sh = NULL;
8657
8658 dev_info(&h->pdev->dev,
8659 "driver discovery polling rescan.\n");
8660 sh = scsi_host_get(h->scsi_host);
8661 if (sh != NULL) {
8662 hpsa_scan_start(sh);
8663 scsi_host_put(sh);
8664 }
8665 }
8666 }
8667 spin_lock_irqsave(&h->lock, flags);
8668 if (!h->remove_in_progress)
8669 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8670 h->heartbeat_sample_interval);
8671 spin_unlock_irqrestore(&h->lock, flags);
8672 }
8673
8674 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8675 {
8676 unsigned long flags;
8677 struct ctlr_info *h = container_of(to_delayed_work(work),
8678 struct ctlr_info, monitor_ctlr_work);
8679
8680 detect_controller_lockup(h);
8681 if (lockup_detected(h))
8682 return;
8683
8684 spin_lock_irqsave(&h->lock, flags);
8685 if (!h->remove_in_progress)
8686 schedule_delayed_work(&h->monitor_ctlr_work,
8687 h->heartbeat_sample_interval);
8688 spin_unlock_irqrestore(&h->lock, flags);
8689 }
8690
8691 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8692 char *name)
8693 {
8694 struct workqueue_struct *wq = NULL;
8695
8696 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8697 if (!wq)
8698 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8699
8700 return wq;
8701 }
8702
8703 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8704 {
8705 int dac, rc;
8706 struct ctlr_info *h;
8707 int try_soft_reset = 0;
8708 unsigned long flags;
8709 u32 board_id;
8710
8711 if (number_of_controllers == 0)
8712 printk(KERN_INFO DRIVER_NAME "\n");
8713
8714 rc = hpsa_lookup_board_id(pdev, &board_id);
8715 if (rc < 0) {
8716 dev_warn(&pdev->dev, "Board ID not found\n");
8717 return rc;
8718 }
8719
8720 rc = hpsa_init_reset_devices(pdev, board_id);
8721 if (rc) {
8722 if (rc != -ENOTSUPP)
8723 return rc;
8724 /* If the reset fails in a particular way (it has no way to do
8725 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8726 * a soft reset once we get the controller configured up to the
8727 * point that it can accept a command.
8728 */
8729 try_soft_reset = 1;
8730 rc = 0;
8731 }
8732
8733 reinit_after_soft_reset:
8734
8735 /* Command structures must be aligned on a 32-byte boundary because
8736 * the 5 lower bits of the address are used by the hardware. and by
8737 * the driver. See comments in hpsa.h for more info.
8738 */
8739 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8740 h = kzalloc(sizeof(*h), GFP_KERNEL);
8741 if (!h) {
8742 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8743 return -ENOMEM;
8744 }
8745
8746 h->pdev = pdev;
8747
8748 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8749 INIT_LIST_HEAD(&h->offline_device_list);
8750 spin_lock_init(&h->lock);
8751 spin_lock_init(&h->offline_device_lock);
8752 spin_lock_init(&h->scan_lock);
8753 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8754 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8755
8756 /* Allocate and clear per-cpu variable lockup_detected */
8757 h->lockup_detected = alloc_percpu(u32);
8758 if (!h->lockup_detected) {
8759 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8760 rc = -ENOMEM;
8761 goto clean1; /* aer/h */
8762 }
8763 set_lockup_detected_for_all_cpus(h, 0);
8764
8765 rc = hpsa_pci_init(h);
8766 if (rc)
8767 goto clean2; /* lu, aer/h */
8768
8769 /* relies on h-> settings made by hpsa_pci_init, including
8770 * interrupt_mode h->intr */
8771 rc = hpsa_scsi_host_alloc(h);
8772 if (rc)
8773 goto clean2_5; /* pci, lu, aer/h */
8774
8775 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8776 h->ctlr = number_of_controllers;
8777 number_of_controllers++;
8778
8779 /* configure PCI DMA stuff */
8780 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8781 if (rc == 0) {
8782 dac = 1;
8783 } else {
8784 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8785 if (rc == 0) {
8786 dac = 0;
8787 } else {
8788 dev_err(&pdev->dev, "no suitable DMA available\n");
8789 goto clean3; /* shost, pci, lu, aer/h */
8790 }
8791 }
8792
8793 /* make sure the board interrupts are off */
8794 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8795
8796 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8797 if (rc)
8798 goto clean3; /* shost, pci, lu, aer/h */
8799 rc = hpsa_alloc_cmd_pool(h);
8800 if (rc)
8801 goto clean4; /* irq, shost, pci, lu, aer/h */
8802 rc = hpsa_alloc_sg_chain_blocks(h);
8803 if (rc)
8804 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8805 init_waitqueue_head(&h->scan_wait_queue);
8806 init_waitqueue_head(&h->abort_cmd_wait_queue);
8807 init_waitqueue_head(&h->event_sync_wait_queue);
8808 mutex_init(&h->reset_mutex);
8809 h->scan_finished = 1; /* no scan currently in progress */
8810 h->scan_waiting = 0;
8811
8812 pci_set_drvdata(pdev, h);
8813 h->ndevices = 0;
8814
8815 spin_lock_init(&h->devlock);
8816 rc = hpsa_put_ctlr_into_performant_mode(h);
8817 if (rc)
8818 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8819
8820 /* create the resubmit workqueue */
8821 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8822 if (!h->rescan_ctlr_wq) {
8823 rc = -ENOMEM;
8824 goto clean7;
8825 }
8826
8827 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8828 if (!h->resubmit_wq) {
8829 rc = -ENOMEM;
8830 goto clean7; /* aer/h */
8831 }
8832
8833 /*
8834 * At this point, the controller is ready to take commands.
8835 * Now, if reset_devices and the hard reset didn't work, try
8836 * the soft reset and see if that works.
8837 */
8838 if (try_soft_reset) {
8839
8840 /* This is kind of gross. We may or may not get a completion
8841 * from the soft reset command, and if we do, then the value
8842 * from the fifo may or may not be valid. So, we wait 10 secs
8843 * after the reset throwing away any completions we get during
8844 * that time. Unregister the interrupt handler and register
8845 * fake ones to scoop up any residual completions.
8846 */
8847 spin_lock_irqsave(&h->lock, flags);
8848 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8849 spin_unlock_irqrestore(&h->lock, flags);
8850 hpsa_free_irqs(h);
8851 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8852 hpsa_intx_discard_completions);
8853 if (rc) {
8854 dev_warn(&h->pdev->dev,
8855 "Failed to request_irq after soft reset.\n");
8856 /*
8857 * cannot goto clean7 or free_irqs will be called
8858 * again. Instead, do its work
8859 */
8860 hpsa_free_performant_mode(h); /* clean7 */
8861 hpsa_free_sg_chain_blocks(h); /* clean6 */
8862 hpsa_free_cmd_pool(h); /* clean5 */
8863 /*
8864 * skip hpsa_free_irqs(h) clean4 since that
8865 * was just called before request_irqs failed
8866 */
8867 goto clean3;
8868 }
8869
8870 rc = hpsa_kdump_soft_reset(h);
8871 if (rc)
8872 /* Neither hard nor soft reset worked, we're hosed. */
8873 goto clean7;
8874
8875 dev_info(&h->pdev->dev, "Board READY.\n");
8876 dev_info(&h->pdev->dev,
8877 "Waiting for stale completions to drain.\n");
8878 h->access.set_intr_mask(h, HPSA_INTR_ON);
8879 msleep(10000);
8880 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8881
8882 rc = controller_reset_failed(h->cfgtable);
8883 if (rc)
8884 dev_info(&h->pdev->dev,
8885 "Soft reset appears to have failed.\n");
8886
8887 /* since the controller's reset, we have to go back and re-init
8888 * everything. Easiest to just forget what we've done and do it
8889 * all over again.
8890 */
8891 hpsa_undo_allocations_after_kdump_soft_reset(h);
8892 try_soft_reset = 0;
8893 if (rc)
8894 /* don't goto clean, we already unallocated */
8895 return -ENODEV;
8896
8897 goto reinit_after_soft_reset;
8898 }
8899
8900 /* Enable Accelerated IO path at driver layer */
8901 h->acciopath_status = 1;
8902 /* Disable discovery polling.*/
8903 h->discovery_polling = 0;
8904
8905
8906 /* Turn the interrupts on so we can service requests */
8907 h->access.set_intr_mask(h, HPSA_INTR_ON);
8908
8909 hpsa_hba_inquiry(h);
8910
8911 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8912 if (!h->lastlogicals)
8913 dev_info(&h->pdev->dev,
8914 "Can't track change to report lun data\n");
8915
8916 /* hook into SCSI subsystem */
8917 rc = hpsa_scsi_add_host(h);
8918 if (rc)
8919 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8920
8921 /* Monitor the controller for firmware lockups */
8922 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8923 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8924 schedule_delayed_work(&h->monitor_ctlr_work,
8925 h->heartbeat_sample_interval);
8926 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8927 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8928 h->heartbeat_sample_interval);
8929 return 0;
8930
8931 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8932 hpsa_free_performant_mode(h);
8933 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8934 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8935 hpsa_free_sg_chain_blocks(h);
8936 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8937 hpsa_free_cmd_pool(h);
8938 clean4: /* irq, shost, pci, lu, aer/h */
8939 hpsa_free_irqs(h);
8940 clean3: /* shost, pci, lu, aer/h */
8941 scsi_host_put(h->scsi_host);
8942 h->scsi_host = NULL;
8943 clean2_5: /* pci, lu, aer/h */
8944 hpsa_free_pci_init(h);
8945 clean2: /* lu, aer/h */
8946 if (h->lockup_detected) {
8947 free_percpu(h->lockup_detected);
8948 h->lockup_detected = NULL;
8949 }
8950 clean1: /* wq/aer/h */
8951 if (h->resubmit_wq) {
8952 destroy_workqueue(h->resubmit_wq);
8953 h->resubmit_wq = NULL;
8954 }
8955 if (h->rescan_ctlr_wq) {
8956 destroy_workqueue(h->rescan_ctlr_wq);
8957 h->rescan_ctlr_wq = NULL;
8958 }
8959 kfree(h);
8960 return rc;
8961 }
8962
8963 static void hpsa_flush_cache(struct ctlr_info *h)
8964 {
8965 char *flush_buf;
8966 struct CommandList *c;
8967 int rc;
8968
8969 if (unlikely(lockup_detected(h)))
8970 return;
8971 flush_buf = kzalloc(4, GFP_KERNEL);
8972 if (!flush_buf)
8973 return;
8974
8975 c = cmd_alloc(h);
8976
8977 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8978 RAID_CTLR_LUNID, TYPE_CMD)) {
8979 goto out;
8980 }
8981 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8982 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8983 if (rc)
8984 goto out;
8985 if (c->err_info->CommandStatus != 0)
8986 out:
8987 dev_warn(&h->pdev->dev,
8988 "error flushing cache on controller\n");
8989 cmd_free(h, c);
8990 kfree(flush_buf);
8991 }
8992
8993 /* Make controller gather fresh report lun data each time we
8994 * send down a report luns request
8995 */
8996 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8997 {
8998 u32 *options;
8999 struct CommandList *c;
9000 int rc;
9001
9002 /* Don't bother trying to set diag options if locked up */
9003 if (unlikely(h->lockup_detected))
9004 return;
9005
9006 options = kzalloc(sizeof(*options), GFP_KERNEL);
9007 if (!options)
9008 return;
9009
9010 c = cmd_alloc(h);
9011
9012 /* first, get the current diag options settings */
9013 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9014 RAID_CTLR_LUNID, TYPE_CMD))
9015 goto errout;
9016
9017 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9018 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9019 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9020 goto errout;
9021
9022 /* Now, set the bit for disabling the RLD caching */
9023 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9024
9025 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9026 RAID_CTLR_LUNID, TYPE_CMD))
9027 goto errout;
9028
9029 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9030 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9031 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9032 goto errout;
9033
9034 /* Now verify that it got set: */
9035 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9036 RAID_CTLR_LUNID, TYPE_CMD))
9037 goto errout;
9038
9039 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9040 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9041 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9042 goto errout;
9043
9044 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9045 goto out;
9046
9047 errout:
9048 dev_err(&h->pdev->dev,
9049 "Error: failed to disable report lun data caching.\n");
9050 out:
9051 cmd_free(h, c);
9052 kfree(options);
9053 }
9054
9055 static void hpsa_shutdown(struct pci_dev *pdev)
9056 {
9057 struct ctlr_info *h;
9058
9059 h = pci_get_drvdata(pdev);
9060 /* Turn board interrupts off and send the flush cache command
9061 * sendcmd will turn off interrupt, and send the flush...
9062 * To write all data in the battery backed cache to disks
9063 */
9064 hpsa_flush_cache(h);
9065 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9066 hpsa_free_irqs(h); /* init_one 4 */
9067 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9068 }
9069
9070 static void hpsa_free_device_info(struct ctlr_info *h)
9071 {
9072 int i;
9073
9074 for (i = 0; i < h->ndevices; i++) {
9075 kfree(h->dev[i]);
9076 h->dev[i] = NULL;
9077 }
9078 }
9079
9080 static void hpsa_remove_one(struct pci_dev *pdev)
9081 {
9082 struct ctlr_info *h;
9083 unsigned long flags;
9084
9085 if (pci_get_drvdata(pdev) == NULL) {
9086 dev_err(&pdev->dev, "unable to remove device\n");
9087 return;
9088 }
9089 h = pci_get_drvdata(pdev);
9090
9091 /* Get rid of any controller monitoring work items */
9092 spin_lock_irqsave(&h->lock, flags);
9093 h->remove_in_progress = 1;
9094 spin_unlock_irqrestore(&h->lock, flags);
9095 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9096 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9097 destroy_workqueue(h->rescan_ctlr_wq);
9098 destroy_workqueue(h->resubmit_wq);
9099
9100 /*
9101 * Call before disabling interrupts.
9102 * scsi_remove_host can trigger I/O operations especially
9103 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9104 * operations which cannot complete and will hang the system.
9105 */
9106 if (h->scsi_host)
9107 scsi_remove_host(h->scsi_host); /* init_one 8 */
9108 /* includes hpsa_free_irqs - init_one 4 */
9109 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9110 hpsa_shutdown(pdev);
9111
9112 hpsa_free_device_info(h); /* scan */
9113
9114 kfree(h->hba_inquiry_data); /* init_one 10 */
9115 h->hba_inquiry_data = NULL; /* init_one 10 */
9116 hpsa_free_ioaccel2_sg_chain_blocks(h);
9117 hpsa_free_performant_mode(h); /* init_one 7 */
9118 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9119 hpsa_free_cmd_pool(h); /* init_one 5 */
9120 kfree(h->lastlogicals);
9121
9122 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9123
9124 scsi_host_put(h->scsi_host); /* init_one 3 */
9125 h->scsi_host = NULL; /* init_one 3 */
9126
9127 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9128 hpsa_free_pci_init(h); /* init_one 2.5 */
9129
9130 free_percpu(h->lockup_detected); /* init_one 2 */
9131 h->lockup_detected = NULL; /* init_one 2 */
9132 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9133
9134 hpsa_delete_sas_host(h);
9135
9136 kfree(h); /* init_one 1 */
9137 }
9138
9139 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9140 __attribute__((unused)) pm_message_t state)
9141 {
9142 return -ENOSYS;
9143 }
9144
9145 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9146 {
9147 return -ENOSYS;
9148 }
9149
9150 static struct pci_driver hpsa_pci_driver = {
9151 .name = HPSA,
9152 .probe = hpsa_init_one,
9153 .remove = hpsa_remove_one,
9154 .id_table = hpsa_pci_device_id, /* id_table */
9155 .shutdown = hpsa_shutdown,
9156 .suspend = hpsa_suspend,
9157 .resume = hpsa_resume,
9158 };
9159
9160 /* Fill in bucket_map[], given nsgs (the max number of
9161 * scatter gather elements supported) and bucket[],
9162 * which is an array of 8 integers. The bucket[] array
9163 * contains 8 different DMA transfer sizes (in 16
9164 * byte increments) which the controller uses to fetch
9165 * commands. This function fills in bucket_map[], which
9166 * maps a given number of scatter gather elements to one of
9167 * the 8 DMA transfer sizes. The point of it is to allow the
9168 * controller to only do as much DMA as needed to fetch the
9169 * command, with the DMA transfer size encoded in the lower
9170 * bits of the command address.
9171 */
9172 static void calc_bucket_map(int bucket[], int num_buckets,
9173 int nsgs, int min_blocks, u32 *bucket_map)
9174 {
9175 int i, j, b, size;
9176
9177 /* Note, bucket_map must have nsgs+1 entries. */
9178 for (i = 0; i <= nsgs; i++) {
9179 /* Compute size of a command with i SG entries */
9180 size = i + min_blocks;
9181 b = num_buckets; /* Assume the biggest bucket */
9182 /* Find the bucket that is just big enough */
9183 for (j = 0; j < num_buckets; j++) {
9184 if (bucket[j] >= size) {
9185 b = j;
9186 break;
9187 }
9188 }
9189 /* for a command with i SG entries, use bucket b. */
9190 bucket_map[i] = b;
9191 }
9192 }
9193
9194 /*
9195 * return -ENODEV on err, 0 on success (or no action)
9196 * allocates numerous items that must be freed later
9197 */
9198 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9199 {
9200 int i;
9201 unsigned long register_value;
9202 unsigned long transMethod = CFGTBL_Trans_Performant |
9203 (trans_support & CFGTBL_Trans_use_short_tags) |
9204 CFGTBL_Trans_enable_directed_msix |
9205 (trans_support & (CFGTBL_Trans_io_accel1 |
9206 CFGTBL_Trans_io_accel2));
9207 struct access_method access = SA5_performant_access;
9208
9209 /* This is a bit complicated. There are 8 registers on
9210 * the controller which we write to to tell it 8 different
9211 * sizes of commands which there may be. It's a way of
9212 * reducing the DMA done to fetch each command. Encoded into
9213 * each command's tag are 3 bits which communicate to the controller
9214 * which of the eight sizes that command fits within. The size of
9215 * each command depends on how many scatter gather entries there are.
9216 * Each SG entry requires 16 bytes. The eight registers are programmed
9217 * with the number of 16-byte blocks a command of that size requires.
9218 * The smallest command possible requires 5 such 16 byte blocks.
9219 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9220 * blocks. Note, this only extends to the SG entries contained
9221 * within the command block, and does not extend to chained blocks
9222 * of SG elements. bft[] contains the eight values we write to
9223 * the registers. They are not evenly distributed, but have more
9224 * sizes for small commands, and fewer sizes for larger commands.
9225 */
9226 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9227 #define MIN_IOACCEL2_BFT_ENTRY 5
9228 #define HPSA_IOACCEL2_HEADER_SZ 4
9229 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9230 13, 14, 15, 16, 17, 18, 19,
9231 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9232 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9233 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9234 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9235 16 * MIN_IOACCEL2_BFT_ENTRY);
9236 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9237 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9238 /* 5 = 1 s/g entry or 4k
9239 * 6 = 2 s/g entry or 8k
9240 * 8 = 4 s/g entry or 16k
9241 * 10 = 6 s/g entry or 24k
9242 */
9243
9244 /* If the controller supports either ioaccel method then
9245 * we can also use the RAID stack submit path that does not
9246 * perform the superfluous readl() after each command submission.
9247 */
9248 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9249 access = SA5_performant_access_no_read;
9250
9251 /* Controller spec: zero out this buffer. */
9252 for (i = 0; i < h->nreply_queues; i++)
9253 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9254
9255 bft[7] = SG_ENTRIES_IN_CMD + 4;
9256 calc_bucket_map(bft, ARRAY_SIZE(bft),
9257 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9258 for (i = 0; i < 8; i++)
9259 writel(bft[i], &h->transtable->BlockFetch[i]);
9260
9261 /* size of controller ring buffer */
9262 writel(h->max_commands, &h->transtable->RepQSize);
9263 writel(h->nreply_queues, &h->transtable->RepQCount);
9264 writel(0, &h->transtable->RepQCtrAddrLow32);
9265 writel(0, &h->transtable->RepQCtrAddrHigh32);
9266
9267 for (i = 0; i < h->nreply_queues; i++) {
9268 writel(0, &h->transtable->RepQAddr[i].upper);
9269 writel(h->reply_queue[i].busaddr,
9270 &h->transtable->RepQAddr[i].lower);
9271 }
9272
9273 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9274 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9275 /*
9276 * enable outbound interrupt coalescing in accelerator mode;
9277 */
9278 if (trans_support & CFGTBL_Trans_io_accel1) {
9279 access = SA5_ioaccel_mode1_access;
9280 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9281 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9282 } else
9283 if (trans_support & CFGTBL_Trans_io_accel2)
9284 access = SA5_ioaccel_mode2_access;
9285 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9286 if (hpsa_wait_for_mode_change_ack(h)) {
9287 dev_err(&h->pdev->dev,
9288 "performant mode problem - doorbell timeout\n");
9289 return -ENODEV;
9290 }
9291 register_value = readl(&(h->cfgtable->TransportActive));
9292 if (!(register_value & CFGTBL_Trans_Performant)) {
9293 dev_err(&h->pdev->dev,
9294 "performant mode problem - transport not active\n");
9295 return -ENODEV;
9296 }
9297 /* Change the access methods to the performant access methods */
9298 h->access = access;
9299 h->transMethod = transMethod;
9300
9301 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9302 (trans_support & CFGTBL_Trans_io_accel2)))
9303 return 0;
9304
9305 if (trans_support & CFGTBL_Trans_io_accel1) {
9306 /* Set up I/O accelerator mode */
9307 for (i = 0; i < h->nreply_queues; i++) {
9308 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9309 h->reply_queue[i].current_entry =
9310 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9311 }
9312 bft[7] = h->ioaccel_maxsg + 8;
9313 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9314 h->ioaccel1_blockFetchTable);
9315
9316 /* initialize all reply queue entries to unused */
9317 for (i = 0; i < h->nreply_queues; i++)
9318 memset(h->reply_queue[i].head,
9319 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9320 h->reply_queue_size);
9321
9322 /* set all the constant fields in the accelerator command
9323 * frames once at init time to save CPU cycles later.
9324 */
9325 for (i = 0; i < h->nr_cmds; i++) {
9326 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9327
9328 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9329 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9330 (i * sizeof(struct ErrorInfo)));
9331 cp->err_info_len = sizeof(struct ErrorInfo);
9332 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9333 cp->host_context_flags =
9334 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9335 cp->timeout_sec = 0;
9336 cp->ReplyQueue = 0;
9337 cp->tag =
9338 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9339 cp->host_addr =
9340 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9341 (i * sizeof(struct io_accel1_cmd)));
9342 }
9343 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9344 u64 cfg_offset, cfg_base_addr_index;
9345 u32 bft2_offset, cfg_base_addr;
9346 int rc;
9347
9348 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9349 &cfg_base_addr_index, &cfg_offset);
9350 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9351 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9352 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9353 4, h->ioaccel2_blockFetchTable);
9354 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9355 BUILD_BUG_ON(offsetof(struct CfgTable,
9356 io_accel_request_size_offset) != 0xb8);
9357 h->ioaccel2_bft2_regs =
9358 remap_pci_mem(pci_resource_start(h->pdev,
9359 cfg_base_addr_index) +
9360 cfg_offset + bft2_offset,
9361 ARRAY_SIZE(bft2) *
9362 sizeof(*h->ioaccel2_bft2_regs));
9363 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9364 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9365 }
9366 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9367 if (hpsa_wait_for_mode_change_ack(h)) {
9368 dev_err(&h->pdev->dev,
9369 "performant mode problem - enabling ioaccel mode\n");
9370 return -ENODEV;
9371 }
9372 return 0;
9373 }
9374
9375 /* Free ioaccel1 mode command blocks and block fetch table */
9376 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9377 {
9378 if (h->ioaccel_cmd_pool) {
9379 pci_free_consistent(h->pdev,
9380 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9381 h->ioaccel_cmd_pool,
9382 h->ioaccel_cmd_pool_dhandle);
9383 h->ioaccel_cmd_pool = NULL;
9384 h->ioaccel_cmd_pool_dhandle = 0;
9385 }
9386 kfree(h->ioaccel1_blockFetchTable);
9387 h->ioaccel1_blockFetchTable = NULL;
9388 }
9389
9390 /* Allocate ioaccel1 mode command blocks and block fetch table */
9391 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9392 {
9393 h->ioaccel_maxsg =
9394 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9395 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9396 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9397
9398 /* Command structures must be aligned on a 128-byte boundary
9399 * because the 7 lower bits of the address are used by the
9400 * hardware.
9401 */
9402 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9403 IOACCEL1_COMMANDLIST_ALIGNMENT);
9404 h->ioaccel_cmd_pool =
9405 pci_alloc_consistent(h->pdev,
9406 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9407 &(h->ioaccel_cmd_pool_dhandle));
9408
9409 h->ioaccel1_blockFetchTable =
9410 kmalloc(((h->ioaccel_maxsg + 1) *
9411 sizeof(u32)), GFP_KERNEL);
9412
9413 if ((h->ioaccel_cmd_pool == NULL) ||
9414 (h->ioaccel1_blockFetchTable == NULL))
9415 goto clean_up;
9416
9417 memset(h->ioaccel_cmd_pool, 0,
9418 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9419 return 0;
9420
9421 clean_up:
9422 hpsa_free_ioaccel1_cmd_and_bft(h);
9423 return -ENOMEM;
9424 }
9425
9426 /* Free ioaccel2 mode command blocks and block fetch table */
9427 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9428 {
9429 hpsa_free_ioaccel2_sg_chain_blocks(h);
9430
9431 if (h->ioaccel2_cmd_pool) {
9432 pci_free_consistent(h->pdev,
9433 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9434 h->ioaccel2_cmd_pool,
9435 h->ioaccel2_cmd_pool_dhandle);
9436 h->ioaccel2_cmd_pool = NULL;
9437 h->ioaccel2_cmd_pool_dhandle = 0;
9438 }
9439 kfree(h->ioaccel2_blockFetchTable);
9440 h->ioaccel2_blockFetchTable = NULL;
9441 }
9442
9443 /* Allocate ioaccel2 mode command blocks and block fetch table */
9444 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9445 {
9446 int rc;
9447
9448 /* Allocate ioaccel2 mode command blocks and block fetch table */
9449
9450 h->ioaccel_maxsg =
9451 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9452 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9453 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9454
9455 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9456 IOACCEL2_COMMANDLIST_ALIGNMENT);
9457 h->ioaccel2_cmd_pool =
9458 pci_alloc_consistent(h->pdev,
9459 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9460 &(h->ioaccel2_cmd_pool_dhandle));
9461
9462 h->ioaccel2_blockFetchTable =
9463 kmalloc(((h->ioaccel_maxsg + 1) *
9464 sizeof(u32)), GFP_KERNEL);
9465
9466 if ((h->ioaccel2_cmd_pool == NULL) ||
9467 (h->ioaccel2_blockFetchTable == NULL)) {
9468 rc = -ENOMEM;
9469 goto clean_up;
9470 }
9471
9472 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9473 if (rc)
9474 goto clean_up;
9475
9476 memset(h->ioaccel2_cmd_pool, 0,
9477 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9478 return 0;
9479
9480 clean_up:
9481 hpsa_free_ioaccel2_cmd_and_bft(h);
9482 return rc;
9483 }
9484
9485 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9486 static void hpsa_free_performant_mode(struct ctlr_info *h)
9487 {
9488 kfree(h->blockFetchTable);
9489 h->blockFetchTable = NULL;
9490 hpsa_free_reply_queues(h);
9491 hpsa_free_ioaccel1_cmd_and_bft(h);
9492 hpsa_free_ioaccel2_cmd_and_bft(h);
9493 }
9494
9495 /* return -ENODEV on error, 0 on success (or no action)
9496 * allocates numerous items that must be freed later
9497 */
9498 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9499 {
9500 u32 trans_support;
9501 unsigned long transMethod = CFGTBL_Trans_Performant |
9502 CFGTBL_Trans_use_short_tags;
9503 int i, rc;
9504
9505 if (hpsa_simple_mode)
9506 return 0;
9507
9508 trans_support = readl(&(h->cfgtable->TransportSupport));
9509 if (!(trans_support & PERFORMANT_MODE))
9510 return 0;
9511
9512 /* Check for I/O accelerator mode support */
9513 if (trans_support & CFGTBL_Trans_io_accel1) {
9514 transMethod |= CFGTBL_Trans_io_accel1 |
9515 CFGTBL_Trans_enable_directed_msix;
9516 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9517 if (rc)
9518 return rc;
9519 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9520 transMethod |= CFGTBL_Trans_io_accel2 |
9521 CFGTBL_Trans_enable_directed_msix;
9522 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9523 if (rc)
9524 return rc;
9525 }
9526
9527 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9528 hpsa_get_max_perf_mode_cmds(h);
9529 /* Performant mode ring buffer and supporting data structures */
9530 h->reply_queue_size = h->max_commands * sizeof(u64);
9531
9532 for (i = 0; i < h->nreply_queues; i++) {
9533 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9534 h->reply_queue_size,
9535 &(h->reply_queue[i].busaddr));
9536 if (!h->reply_queue[i].head) {
9537 rc = -ENOMEM;
9538 goto clean1; /* rq, ioaccel */
9539 }
9540 h->reply_queue[i].size = h->max_commands;
9541 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9542 h->reply_queue[i].current_entry = 0;
9543 }
9544
9545 /* Need a block fetch table for performant mode */
9546 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9547 sizeof(u32)), GFP_KERNEL);
9548 if (!h->blockFetchTable) {
9549 rc = -ENOMEM;
9550 goto clean1; /* rq, ioaccel */
9551 }
9552
9553 rc = hpsa_enter_performant_mode(h, trans_support);
9554 if (rc)
9555 goto clean2; /* bft, rq, ioaccel */
9556 return 0;
9557
9558 clean2: /* bft, rq, ioaccel */
9559 kfree(h->blockFetchTable);
9560 h->blockFetchTable = NULL;
9561 clean1: /* rq, ioaccel */
9562 hpsa_free_reply_queues(h);
9563 hpsa_free_ioaccel1_cmd_and_bft(h);
9564 hpsa_free_ioaccel2_cmd_and_bft(h);
9565 return rc;
9566 }
9567
9568 static int is_accelerated_cmd(struct CommandList *c)
9569 {
9570 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9571 }
9572
9573 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9574 {
9575 struct CommandList *c = NULL;
9576 int i, accel_cmds_out;
9577 int refcount;
9578
9579 do { /* wait for all outstanding ioaccel commands to drain out */
9580 accel_cmds_out = 0;
9581 for (i = 0; i < h->nr_cmds; i++) {
9582 c = h->cmd_pool + i;
9583 refcount = atomic_inc_return(&c->refcount);
9584 if (refcount > 1) /* Command is allocated */
9585 accel_cmds_out += is_accelerated_cmd(c);
9586 cmd_free(h, c);
9587 }
9588 if (accel_cmds_out <= 0)
9589 break;
9590 msleep(100);
9591 } while (1);
9592 }
9593
9594 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9595 struct hpsa_sas_port *hpsa_sas_port)
9596 {
9597 struct hpsa_sas_phy *hpsa_sas_phy;
9598 struct sas_phy *phy;
9599
9600 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9601 if (!hpsa_sas_phy)
9602 return NULL;
9603
9604 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9605 hpsa_sas_port->next_phy_index);
9606 if (!phy) {
9607 kfree(hpsa_sas_phy);
9608 return NULL;
9609 }
9610
9611 hpsa_sas_port->next_phy_index++;
9612 hpsa_sas_phy->phy = phy;
9613 hpsa_sas_phy->parent_port = hpsa_sas_port;
9614
9615 return hpsa_sas_phy;
9616 }
9617
9618 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9619 {
9620 struct sas_phy *phy = hpsa_sas_phy->phy;
9621
9622 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9623 sas_phy_free(phy);
9624 if (hpsa_sas_phy->added_to_port)
9625 list_del(&hpsa_sas_phy->phy_list_entry);
9626 kfree(hpsa_sas_phy);
9627 }
9628
9629 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9630 {
9631 int rc;
9632 struct hpsa_sas_port *hpsa_sas_port;
9633 struct sas_phy *phy;
9634 struct sas_identify *identify;
9635
9636 hpsa_sas_port = hpsa_sas_phy->parent_port;
9637 phy = hpsa_sas_phy->phy;
9638
9639 identify = &phy->identify;
9640 memset(identify, 0, sizeof(*identify));
9641 identify->sas_address = hpsa_sas_port->sas_address;
9642 identify->device_type = SAS_END_DEVICE;
9643 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9644 identify->target_port_protocols = SAS_PROTOCOL_STP;
9645 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9646 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9647 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9648 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9649 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9650
9651 rc = sas_phy_add(hpsa_sas_phy->phy);
9652 if (rc)
9653 return rc;
9654
9655 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9656 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9657 &hpsa_sas_port->phy_list_head);
9658 hpsa_sas_phy->added_to_port = true;
9659
9660 return 0;
9661 }
9662
9663 static int
9664 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9665 struct sas_rphy *rphy)
9666 {
9667 struct sas_identify *identify;
9668
9669 identify = &rphy->identify;
9670 identify->sas_address = hpsa_sas_port->sas_address;
9671 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9672 identify->target_port_protocols = SAS_PROTOCOL_STP;
9673
9674 return sas_rphy_add(rphy);
9675 }
9676
9677 static struct hpsa_sas_port
9678 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9679 u64 sas_address)
9680 {
9681 int rc;
9682 struct hpsa_sas_port *hpsa_sas_port;
9683 struct sas_port *port;
9684
9685 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9686 if (!hpsa_sas_port)
9687 return NULL;
9688
9689 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9690 hpsa_sas_port->parent_node = hpsa_sas_node;
9691
9692 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9693 if (!port)
9694 goto free_hpsa_port;
9695
9696 rc = sas_port_add(port);
9697 if (rc)
9698 goto free_sas_port;
9699
9700 hpsa_sas_port->port = port;
9701 hpsa_sas_port->sas_address = sas_address;
9702 list_add_tail(&hpsa_sas_port->port_list_entry,
9703 &hpsa_sas_node->port_list_head);
9704
9705 return hpsa_sas_port;
9706
9707 free_sas_port:
9708 sas_port_free(port);
9709 free_hpsa_port:
9710 kfree(hpsa_sas_port);
9711
9712 return NULL;
9713 }
9714
9715 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9716 {
9717 struct hpsa_sas_phy *hpsa_sas_phy;
9718 struct hpsa_sas_phy *next;
9719
9720 list_for_each_entry_safe(hpsa_sas_phy, next,
9721 &hpsa_sas_port->phy_list_head, phy_list_entry)
9722 hpsa_free_sas_phy(hpsa_sas_phy);
9723
9724 sas_port_delete(hpsa_sas_port->port);
9725 list_del(&hpsa_sas_port->port_list_entry);
9726 kfree(hpsa_sas_port);
9727 }
9728
9729 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9730 {
9731 struct hpsa_sas_node *hpsa_sas_node;
9732
9733 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9734 if (hpsa_sas_node) {
9735 hpsa_sas_node->parent_dev = parent_dev;
9736 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9737 }
9738
9739 return hpsa_sas_node;
9740 }
9741
9742 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9743 {
9744 struct hpsa_sas_port *hpsa_sas_port;
9745 struct hpsa_sas_port *next;
9746
9747 if (!hpsa_sas_node)
9748 return;
9749
9750 list_for_each_entry_safe(hpsa_sas_port, next,
9751 &hpsa_sas_node->port_list_head, port_list_entry)
9752 hpsa_free_sas_port(hpsa_sas_port);
9753
9754 kfree(hpsa_sas_node);
9755 }
9756
9757 static struct hpsa_scsi_dev_t
9758 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9759 struct sas_rphy *rphy)
9760 {
9761 int i;
9762 struct hpsa_scsi_dev_t *device;
9763
9764 for (i = 0; i < h->ndevices; i++) {
9765 device = h->dev[i];
9766 if (!device->sas_port)
9767 continue;
9768 if (device->sas_port->rphy == rphy)
9769 return device;
9770 }
9771
9772 return NULL;
9773 }
9774
9775 static int hpsa_add_sas_host(struct ctlr_info *h)
9776 {
9777 int rc;
9778 struct device *parent_dev;
9779 struct hpsa_sas_node *hpsa_sas_node;
9780 struct hpsa_sas_port *hpsa_sas_port;
9781 struct hpsa_sas_phy *hpsa_sas_phy;
9782
9783 parent_dev = &h->scsi_host->shost_gendev;
9784
9785 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9786 if (!hpsa_sas_node)
9787 return -ENOMEM;
9788
9789 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9790 if (!hpsa_sas_port) {
9791 rc = -ENODEV;
9792 goto free_sas_node;
9793 }
9794
9795 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9796 if (!hpsa_sas_phy) {
9797 rc = -ENODEV;
9798 goto free_sas_port;
9799 }
9800
9801 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9802 if (rc)
9803 goto free_sas_phy;
9804
9805 h->sas_host = hpsa_sas_node;
9806
9807 return 0;
9808
9809 free_sas_phy:
9810 hpsa_free_sas_phy(hpsa_sas_phy);
9811 free_sas_port:
9812 hpsa_free_sas_port(hpsa_sas_port);
9813 free_sas_node:
9814 hpsa_free_sas_node(hpsa_sas_node);
9815
9816 return rc;
9817 }
9818
9819 static void hpsa_delete_sas_host(struct ctlr_info *h)
9820 {
9821 hpsa_free_sas_node(h->sas_host);
9822 }
9823
9824 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9825 struct hpsa_scsi_dev_t *device)
9826 {
9827 int rc;
9828 struct hpsa_sas_port *hpsa_sas_port;
9829 struct sas_rphy *rphy;
9830
9831 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9832 if (!hpsa_sas_port)
9833 return -ENOMEM;
9834
9835 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9836 if (!rphy) {
9837 rc = -ENODEV;
9838 goto free_sas_port;
9839 }
9840
9841 hpsa_sas_port->rphy = rphy;
9842 device->sas_port = hpsa_sas_port;
9843
9844 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9845 if (rc)
9846 goto free_sas_port;
9847
9848 return 0;
9849
9850 free_sas_port:
9851 hpsa_free_sas_port(hpsa_sas_port);
9852 device->sas_port = NULL;
9853
9854 return rc;
9855 }
9856
9857 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9858 {
9859 if (device->sas_port) {
9860 hpsa_free_sas_port(device->sas_port);
9861 device->sas_port = NULL;
9862 }
9863 }
9864
9865 static int
9866 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9867 {
9868 return 0;
9869 }
9870
9871 static int
9872 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9873 {
9874 *identifier = 0;
9875 return 0;
9876 }
9877
9878 static int
9879 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9880 {
9881 return -ENXIO;
9882 }
9883
9884 static int
9885 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9886 {
9887 return 0;
9888 }
9889
9890 static int
9891 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9892 {
9893 return 0;
9894 }
9895
9896 static int
9897 hpsa_sas_phy_setup(struct sas_phy *phy)
9898 {
9899 return 0;
9900 }
9901
9902 static void
9903 hpsa_sas_phy_release(struct sas_phy *phy)
9904 {
9905 }
9906
9907 static int
9908 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9909 {
9910 return -EINVAL;
9911 }
9912
9913 /* SMP = Serial Management Protocol */
9914 static int
9915 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9916 struct request *req)
9917 {
9918 return -EINVAL;
9919 }
9920
9921 static struct sas_function_template hpsa_sas_transport_functions = {
9922 .get_linkerrors = hpsa_sas_get_linkerrors,
9923 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9924 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9925 .phy_reset = hpsa_sas_phy_reset,
9926 .phy_enable = hpsa_sas_phy_enable,
9927 .phy_setup = hpsa_sas_phy_setup,
9928 .phy_release = hpsa_sas_phy_release,
9929 .set_phy_speed = hpsa_sas_phy_speed,
9930 .smp_handler = hpsa_sas_smp_handler,
9931 };
9932
9933 /*
9934 * This is it. Register the PCI driver information for the cards we control
9935 * the OS will call our registered routines when it finds one of our cards.
9936 */
9937 static int __init hpsa_init(void)
9938 {
9939 int rc;
9940
9941 hpsa_sas_transport_template =
9942 sas_attach_transport(&hpsa_sas_transport_functions);
9943 if (!hpsa_sas_transport_template)
9944 return -ENODEV;
9945
9946 rc = pci_register_driver(&hpsa_pci_driver);
9947
9948 if (rc)
9949 sas_release_transport(hpsa_sas_transport_template);
9950
9951 return rc;
9952 }
9953
9954 static void __exit hpsa_cleanup(void)
9955 {
9956 pci_unregister_driver(&hpsa_pci_driver);
9957 sas_release_transport(hpsa_sas_transport_template);
9958 }
9959
9960 static void __attribute__((unused)) verify_offsets(void)
9961 {
9962 #define VERIFY_OFFSET(member, offset) \
9963 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9964
9965 VERIFY_OFFSET(structure_size, 0);
9966 VERIFY_OFFSET(volume_blk_size, 4);
9967 VERIFY_OFFSET(volume_blk_cnt, 8);
9968 VERIFY_OFFSET(phys_blk_shift, 16);
9969 VERIFY_OFFSET(parity_rotation_shift, 17);
9970 VERIFY_OFFSET(strip_size, 18);
9971 VERIFY_OFFSET(disk_starting_blk, 20);
9972 VERIFY_OFFSET(disk_blk_cnt, 28);
9973 VERIFY_OFFSET(data_disks_per_row, 36);
9974 VERIFY_OFFSET(metadata_disks_per_row, 38);
9975 VERIFY_OFFSET(row_cnt, 40);
9976 VERIFY_OFFSET(layout_map_count, 42);
9977 VERIFY_OFFSET(flags, 44);
9978 VERIFY_OFFSET(dekindex, 46);
9979 /* VERIFY_OFFSET(reserved, 48 */
9980 VERIFY_OFFSET(data, 64);
9981
9982 #undef VERIFY_OFFSET
9983
9984 #define VERIFY_OFFSET(member, offset) \
9985 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9986
9987 VERIFY_OFFSET(IU_type, 0);
9988 VERIFY_OFFSET(direction, 1);
9989 VERIFY_OFFSET(reply_queue, 2);
9990 /* VERIFY_OFFSET(reserved1, 3); */
9991 VERIFY_OFFSET(scsi_nexus, 4);
9992 VERIFY_OFFSET(Tag, 8);
9993 VERIFY_OFFSET(cdb, 16);
9994 VERIFY_OFFSET(cciss_lun, 32);
9995 VERIFY_OFFSET(data_len, 40);
9996 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9997 VERIFY_OFFSET(sg_count, 45);
9998 /* VERIFY_OFFSET(reserved3 */
9999 VERIFY_OFFSET(err_ptr, 48);
10000 VERIFY_OFFSET(err_len, 56);
10001 /* VERIFY_OFFSET(reserved4 */
10002 VERIFY_OFFSET(sg, 64);
10003
10004 #undef VERIFY_OFFSET
10005
10006 #define VERIFY_OFFSET(member, offset) \
10007 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10008
10009 VERIFY_OFFSET(dev_handle, 0x00);
10010 VERIFY_OFFSET(reserved1, 0x02);
10011 VERIFY_OFFSET(function, 0x03);
10012 VERIFY_OFFSET(reserved2, 0x04);
10013 VERIFY_OFFSET(err_info, 0x0C);
10014 VERIFY_OFFSET(reserved3, 0x10);
10015 VERIFY_OFFSET(err_info_len, 0x12);
10016 VERIFY_OFFSET(reserved4, 0x13);
10017 VERIFY_OFFSET(sgl_offset, 0x14);
10018 VERIFY_OFFSET(reserved5, 0x15);
10019 VERIFY_OFFSET(transfer_len, 0x1C);
10020 VERIFY_OFFSET(reserved6, 0x20);
10021 VERIFY_OFFSET(io_flags, 0x24);
10022 VERIFY_OFFSET(reserved7, 0x26);
10023 VERIFY_OFFSET(LUN, 0x34);
10024 VERIFY_OFFSET(control, 0x3C);
10025 VERIFY_OFFSET(CDB, 0x40);
10026 VERIFY_OFFSET(reserved8, 0x50);
10027 VERIFY_OFFSET(host_context_flags, 0x60);
10028 VERIFY_OFFSET(timeout_sec, 0x62);
10029 VERIFY_OFFSET(ReplyQueue, 0x64);
10030 VERIFY_OFFSET(reserved9, 0x65);
10031 VERIFY_OFFSET(tag, 0x68);
10032 VERIFY_OFFSET(host_addr, 0x70);
10033 VERIFY_OFFSET(CISS_LUN, 0x78);
10034 VERIFY_OFFSET(SG, 0x78 + 8);
10035 #undef VERIFY_OFFSET
10036 }
10037
10038 module_init(hpsa_init);
10039 module_exit(hpsa_cleanup);