]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/hpsa.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.20-160"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
158 */
159 static struct board_type products[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access},
161 {0x40800E11, "Smart Array 5i", &SA5B_access},
162 {0x40820E11, "Smart Array 532", &SA5B_access},
163 {0x40830E11, "Smart Array 5312", &SA5B_access},
164 {0x409A0E11, "Smart Array 641", &SA5A_access},
165 {0x409B0E11, "Smart Array 642", &SA5A_access},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 {0x40910E11, "Smart Array 6i", &SA5A_access},
169 {0x3225103C, "Smart Array P600", &SA5A_access},
170 {0x3223103C, "Smart Array P800", &SA5A_access},
171 {0x3234103C, "Smart Array P400", &SA5A_access},
172 {0x3235103C, "Smart Array P400i", &SA5A_access},
173 {0x3211103C, "Smart Array E200i", &SA5A_access},
174 {0x3212103C, "Smart Array E200", &SA5A_access},
175 {0x3213103C, "Smart Array E200i", &SA5A_access},
176 {0x3214103C, "Smart Array E200i", &SA5A_access},
177 {0x3215103C, "Smart Array E200i", &SA5A_access},
178 {0x3237103C, "Smart Array E500", &SA5A_access},
179 {0x323D103C, "Smart Array P700m", &SA5A_access},
180 {0x3241103C, "Smart Array P212", &SA5_access},
181 {0x3243103C, "Smart Array P410", &SA5_access},
182 {0x3245103C, "Smart Array P410i", &SA5_access},
183 {0x3247103C, "Smart Array P411", &SA5_access},
184 {0x3249103C, "Smart Array P812", &SA5_access},
185 {0x324A103C, "Smart Array P712m", &SA5_access},
186 {0x324B103C, "Smart Array P711m", &SA5_access},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access},
189 {0x3351103C, "Smart Array P420", &SA5_access},
190 {0x3352103C, "Smart Array P421", &SA5_access},
191 {0x3353103C, "Smart Array P822", &SA5_access},
192 {0x3354103C, "Smart Array P420i", &SA5_access},
193 {0x3355103C, "Smart Array P220i", &SA5_access},
194 {0x3356103C, "Smart Array P721m", &SA5_access},
195 {0x1920103C, "Smart Array P430i", &SA5_access},
196 {0x1921103C, "Smart Array P830i", &SA5_access},
197 {0x1922103C, "Smart Array P430", &SA5_access},
198 {0x1923103C, "Smart Array P431", &SA5_access},
199 {0x1924103C, "Smart Array P830", &SA5_access},
200 {0x1925103C, "Smart Array P831", &SA5_access},
201 {0x1926103C, "Smart Array P731m", &SA5_access},
202 {0x1928103C, "Smart Array P230i", &SA5_access},
203 {0x1929103C, "Smart Array P530", &SA5_access},
204 {0x21BD103C, "Smart Array P244br", &SA5_access},
205 {0x21BE103C, "Smart Array P741m", &SA5_access},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access},
209 {0x21C2103C, "Smart Array P440", &SA5_access},
210 {0x21C3103C, "Smart Array P441", &SA5_access},
211 {0x21C4103C, "Smart Array", &SA5_access},
212 {0x21C5103C, "Smart Array P841", &SA5_access},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access},
214 {0x21C7103C, "Smart HBA H240", &SA5_access},
215 {0x21C8103C, "Smart HBA H241", &SA5_access},
216 {0x21C9103C, "Smart Array", &SA5_access},
217 {0x21CA103C, "Smart Array P246br", &SA5_access},
218 {0x21CB103C, "Smart Array P840", &SA5_access},
219 {0x21CC103C, "Smart Array", &SA5_access},
220 {0x21CD103C, "Smart Array", &SA5_access},
221 {0x21CE103C, "Smart HBA", &SA5_access},
222 {0x05809005, "SmartHBA-SA", &SA5_access},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255 void __user *arg);
256
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259 void __user *arg);
260 #endif
261
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266 struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269 int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
273
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277 unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
284
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287 struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289 struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292 int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298 u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300 unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302 bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304 unsigned char lunaddr[],
305 int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307 int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322 struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324 unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327 struct hpsa_scsi_dev_t *dev,
328 unsigned char *scsi3addr);
329
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 {
332 unsigned long *priv = shost_priv(sdev->host);
333 return (struct ctlr_info *) *priv;
334 }
335
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 {
338 unsigned long *priv = shost_priv(sh);
339 return (struct ctlr_info *) *priv;
340 }
341
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 {
344 return c->scsi_cmd == SCSI_CMD_IDLE;
345 }
346
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 {
349 return c->reset_pending;
350 }
351
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 struct scsi_sense_hdr sshdr;
357 bool rc;
358
359 *sense_key = -1;
360 *asc = -1;
361 *ascq = -1;
362
363 if (sense_data_len < 1)
364 return;
365
366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 if (rc) {
368 *sense_key = sshdr.sense_key;
369 *asc = sshdr.asc;
370 *ascq = sshdr.ascq;
371 }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375 struct CommandList *c)
376 {
377 u8 sense_key, asc, ascq;
378 int sense_len;
379
380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 sense_len = sizeof(c->err_info->SenseInfo);
382 else
383 sense_len = c->err_info->SenseLen;
384
385 decode_sense_data(c->err_info->SenseInfo, sense_len,
386 &sense_key, &asc, &ascq);
387 if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 return 0;
389
390 switch (asc) {
391 case STATE_CHANGED:
392 dev_warn(&h->pdev->dev,
393 "%s: a state change detected, command retried\n",
394 h->devname);
395 break;
396 case LUN_FAILED:
397 dev_warn(&h->pdev->dev,
398 "%s: LUN failure detected\n", h->devname);
399 break;
400 case REPORT_LUNS_CHANGED:
401 dev_warn(&h->pdev->dev,
402 "%s: report LUN data changed\n", h->devname);
403 /*
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
406 */
407 break;
408 case POWER_OR_RESET:
409 dev_warn(&h->pdev->dev,
410 "%s: a power on or device reset detected\n",
411 h->devname);
412 break;
413 case UNIT_ATTENTION_CLEARED:
414 dev_warn(&h->pdev->dev,
415 "%s: unit attention cleared by another initiator\n",
416 h->devname);
417 break;
418 default:
419 dev_warn(&h->pdev->dev,
420 "%s: unknown unit attention detected\n",
421 h->devname);
422 break;
423 }
424 return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 return 0;
433 dev_warn(&h->pdev->dev, HPSA "device busy");
434 return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 int ld;
442 struct ctlr_info *h;
443 struct Scsi_Host *shost = class_to_shost(dev);
444
445 h = shost_to_hba(shost);
446 ld = lockup_detected(h);
447
448 return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 int status, len;
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458 char tmpbuf[10];
459
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 return -EACCES;
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
464 tmpbuf[len] = '\0';
465 if (sscanf(tmpbuf, "%d", &status) != 1)
466 return -EINVAL;
467 h = shost_to_hba(shost);
468 h->acciopath_status = !!status;
469 dev_warn(&h->pdev->dev,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h->acciopath_status ? "enabled" : "disabled");
472 return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 struct device_attribute *attr,
477 const char *buf, size_t count)
478 {
479 int debug_level, len;
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
482 char tmpbuf[10];
483
484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 return -EACCES;
486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 strncpy(tmpbuf, buf, len);
488 tmpbuf[len] = '\0';
489 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 return -EINVAL;
491 if (debug_level < 0)
492 debug_level = 0;
493 h = shost_to_hba(shost);
494 h->raid_offload_debug = debug_level;
495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 h->raid_offload_debug);
497 return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t count)
503 {
504 struct ctlr_info *h;
505 struct Scsi_Host *shost = class_to_shost(dev);
506 h = shost_to_hba(shost);
507 hpsa_scan_start(h->scsi_host);
508 return count;
509 }
510
511 static ssize_t host_show_firmware_revision(struct device *dev,
512 struct device_attribute *attr, char *buf)
513 {
514 struct ctlr_info *h;
515 struct Scsi_Host *shost = class_to_shost(dev);
516 unsigned char *fwrev;
517
518 h = shost_to_hba(shost);
519 if (!h->hba_inquiry_data)
520 return 0;
521 fwrev = &h->hba_inquiry_data[32];
522 return snprintf(buf, 20, "%c%c%c%c\n",
523 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
524 }
525
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct Scsi_Host *shost = class_to_shost(dev);
530 struct ctlr_info *h = shost_to_hba(shost);
531
532 return snprintf(buf, 20, "%d\n",
533 atomic_read(&h->commands_outstanding));
534 }
535
536 static ssize_t host_show_transport_mode(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct ctlr_info *h;
540 struct Scsi_Host *shost = class_to_shost(dev);
541
542 h = shost_to_hba(shost);
543 return snprintf(buf, 20, "%s\n",
544 h->transMethod & CFGTBL_Trans_Performant ?
545 "performant" : "simple");
546 }
547
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549 struct device_attribute *attr, char *buf)
550 {
551 struct ctlr_info *h;
552 struct Scsi_Host *shost = class_to_shost(dev);
553
554 h = shost_to_hba(shost);
555 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556 (h->acciopath_status == 1) ? "enabled" : "disabled");
557 }
558
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561 0x324a103C, /* Smart Array P712m */
562 0x324b103C, /* Smart Array P711m */
563 0x3223103C, /* Smart Array P800 */
564 0x3234103C, /* Smart Array P400 */
565 0x3235103C, /* Smart Array P400i */
566 0x3211103C, /* Smart Array E200i */
567 0x3212103C, /* Smart Array E200 */
568 0x3213103C, /* Smart Array E200i */
569 0x3214103C, /* Smart Array E200i */
570 0x3215103C, /* Smart Array E200i */
571 0x3237103C, /* Smart Array E500 */
572 0x323D103C, /* Smart Array P700m */
573 0x40800E11, /* Smart Array 5i */
574 0x409C0E11, /* Smart Array 6400 */
575 0x409D0E11, /* Smart Array 6400 EM */
576 0x40700E11, /* Smart Array 5300 */
577 0x40820E11, /* Smart Array 532 */
578 0x40830E11, /* Smart Array 5312 */
579 0x409A0E11, /* Smart Array 641 */
580 0x409B0E11, /* Smart Array 642 */
581 0x40910E11, /* Smart Array 6i */
582 };
583
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586 0x40800E11, /* Smart Array 5i */
587 0x40700E11, /* Smart Array 5300 */
588 0x40820E11, /* Smart Array 532 */
589 0x40830E11, /* Smart Array 5312 */
590 0x409A0E11, /* Smart Array 641 */
591 0x409B0E11, /* Smart Array 642 */
592 0x40910E11, /* Smart Array 6i */
593 /* Exclude 640x boards. These are two pci devices in one slot
594 * which share a battery backed cache module. One controls the
595 * cache, the other accesses the cache through the one that controls
596 * it. If we reset the one controlling the cache, the other will
597 * likely not be happy. Just forbid resetting this conjoined mess.
598 * The 640x isn't really supported by hpsa anyway.
599 */
600 0x409C0E11, /* Smart Array 6400 */
601 0x409D0E11, /* Smart Array 6400 EM */
602 };
603
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 {
606 int i;
607
608 for (i = 0; i < nelems; i++)
609 if (a[i] == board_id)
610 return 1;
611 return 0;
612 }
613
614 static int ctlr_is_hard_resettable(u32 board_id)
615 {
616 return !board_id_in_array(unresettable_controller,
617 ARRAY_SIZE(unresettable_controller), board_id);
618 }
619
620 static int ctlr_is_soft_resettable(u32 board_id)
621 {
622 return !board_id_in_array(soft_unresettable_controller,
623 ARRAY_SIZE(soft_unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_resettable(u32 board_id)
627 {
628 return ctlr_is_hard_resettable(board_id) ||
629 ctlr_is_soft_resettable(board_id);
630 }
631
632 static ssize_t host_show_resettable(struct device *dev,
633 struct device_attribute *attr, char *buf)
634 {
635 struct ctlr_info *h;
636 struct Scsi_Host *shost = class_to_shost(dev);
637
638 h = shost_to_hba(shost);
639 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
640 }
641
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 {
644 return (scsi3addr[3] & 0xC0) == 0x40;
645 }
646
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 };
650 #define HPSA_RAID_0 0
651 #define HPSA_RAID_4 1
652 #define HPSA_RAID_1 2 /* also used for RAID 10 */
653 #define HPSA_RAID_5 3 /* also used for RAID 50 */
654 #define HPSA_RAID_51 4
655 #define HPSA_RAID_6 5 /* also used for RAID 60 */
656 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 {
662 return !device->physical_device;
663 }
664
665 static ssize_t raid_level_show(struct device *dev,
666 struct device_attribute *attr, char *buf)
667 {
668 ssize_t l = 0;
669 unsigned char rlevel;
670 struct ctlr_info *h;
671 struct scsi_device *sdev;
672 struct hpsa_scsi_dev_t *hdev;
673 unsigned long flags;
674
675 sdev = to_scsi_device(dev);
676 h = sdev_to_hba(sdev);
677 spin_lock_irqsave(&h->lock, flags);
678 hdev = sdev->hostdata;
679 if (!hdev) {
680 spin_unlock_irqrestore(&h->lock, flags);
681 return -ENODEV;
682 }
683
684 /* Is this even a logical drive? */
685 if (!is_logical_device(hdev)) {
686 spin_unlock_irqrestore(&h->lock, flags);
687 l = snprintf(buf, PAGE_SIZE, "N/A\n");
688 return l;
689 }
690
691 rlevel = hdev->raid_level;
692 spin_unlock_irqrestore(&h->lock, flags);
693 if (rlevel > RAID_UNKNOWN)
694 rlevel = RAID_UNKNOWN;
695 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696 return l;
697 }
698
699 static ssize_t lunid_show(struct device *dev,
700 struct device_attribute *attr, char *buf)
701 {
702 struct ctlr_info *h;
703 struct scsi_device *sdev;
704 struct hpsa_scsi_dev_t *hdev;
705 unsigned long flags;
706 unsigned char lunid[8];
707
708 sdev = to_scsi_device(dev);
709 h = sdev_to_hba(sdev);
710 spin_lock_irqsave(&h->lock, flags);
711 hdev = sdev->hostdata;
712 if (!hdev) {
713 spin_unlock_irqrestore(&h->lock, flags);
714 return -ENODEV;
715 }
716 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717 spin_unlock_irqrestore(&h->lock, flags);
718 return snprintf(buf, 20, "0x%8phN\n", lunid);
719 }
720
721 static ssize_t unique_id_show(struct device *dev,
722 struct device_attribute *attr, char *buf)
723 {
724 struct ctlr_info *h;
725 struct scsi_device *sdev;
726 struct hpsa_scsi_dev_t *hdev;
727 unsigned long flags;
728 unsigned char sn[16];
729
730 sdev = to_scsi_device(dev);
731 h = sdev_to_hba(sdev);
732 spin_lock_irqsave(&h->lock, flags);
733 hdev = sdev->hostdata;
734 if (!hdev) {
735 spin_unlock_irqrestore(&h->lock, flags);
736 return -ENODEV;
737 }
738 memcpy(sn, hdev->device_id, sizeof(sn));
739 spin_unlock_irqrestore(&h->lock, flags);
740 return snprintf(buf, 16 * 2 + 2,
741 "%02X%02X%02X%02X%02X%02X%02X%02X"
742 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
743 sn[0], sn[1], sn[2], sn[3],
744 sn[4], sn[5], sn[6], sn[7],
745 sn[8], sn[9], sn[10], sn[11],
746 sn[12], sn[13], sn[14], sn[15]);
747 }
748
749 static ssize_t sas_address_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
751 {
752 struct ctlr_info *h;
753 struct scsi_device *sdev;
754 struct hpsa_scsi_dev_t *hdev;
755 unsigned long flags;
756 u64 sas_address;
757
758 sdev = to_scsi_device(dev);
759 h = sdev_to_hba(sdev);
760 spin_lock_irqsave(&h->lock, flags);
761 hdev = sdev->hostdata;
762 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763 spin_unlock_irqrestore(&h->lock, flags);
764 return -ENODEV;
765 }
766 sas_address = hdev->sas_address;
767 spin_unlock_irqrestore(&h->lock, flags);
768
769 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
770 }
771
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773 struct device_attribute *attr, char *buf)
774 {
775 struct ctlr_info *h;
776 struct scsi_device *sdev;
777 struct hpsa_scsi_dev_t *hdev;
778 unsigned long flags;
779 int offload_enabled;
780
781 sdev = to_scsi_device(dev);
782 h = sdev_to_hba(sdev);
783 spin_lock_irqsave(&h->lock, flags);
784 hdev = sdev->hostdata;
785 if (!hdev) {
786 spin_unlock_irqrestore(&h->lock, flags);
787 return -ENODEV;
788 }
789 offload_enabled = hdev->offload_enabled;
790 spin_unlock_irqrestore(&h->lock, flags);
791
792 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793 return snprintf(buf, 20, "%d\n", offload_enabled);
794 else
795 return snprintf(buf, 40, "%s\n",
796 "Not applicable for a controller");
797 }
798
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801 struct device_attribute *attr, char *buf)
802 {
803 struct ctlr_info *h;
804 struct scsi_device *sdev;
805 struct hpsa_scsi_dev_t *hdev;
806 unsigned long flags;
807 int i;
808 int output_len = 0;
809 u8 box;
810 u8 bay;
811 u8 path_map_index = 0;
812 char *active;
813 unsigned char phys_connector[2];
814
815 sdev = to_scsi_device(dev);
816 h = sdev_to_hba(sdev);
817 spin_lock_irqsave(&h->devlock, flags);
818 hdev = sdev->hostdata;
819 if (!hdev) {
820 spin_unlock_irqrestore(&h->devlock, flags);
821 return -ENODEV;
822 }
823
824 bay = hdev->bay;
825 for (i = 0; i < MAX_PATHS; i++) {
826 path_map_index = 1<<i;
827 if (i == hdev->active_path_index)
828 active = "Active";
829 else if (hdev->path_map & path_map_index)
830 active = "Inactive";
831 else
832 continue;
833
834 output_len += scnprintf(buf + output_len,
835 PAGE_SIZE - output_len,
836 "[%d:%d:%d:%d] %20.20s ",
837 h->scsi_host->host_no,
838 hdev->bus, hdev->target, hdev->lun,
839 scsi_device_type(hdev->devtype));
840
841 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842 output_len += scnprintf(buf + output_len,
843 PAGE_SIZE - output_len,
844 "%s\n", active);
845 continue;
846 }
847
848 box = hdev->box[i];
849 memcpy(&phys_connector, &hdev->phys_connector[i],
850 sizeof(phys_connector));
851 if (phys_connector[0] < '0')
852 phys_connector[0] = '0';
853 if (phys_connector[1] < '0')
854 phys_connector[1] = '0';
855 output_len += scnprintf(buf + output_len,
856 PAGE_SIZE - output_len,
857 "PORT: %.2s ",
858 phys_connector);
859 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860 hdev->expose_device) {
861 if (box == 0 || box == 0xFF) {
862 output_len += scnprintf(buf + output_len,
863 PAGE_SIZE - output_len,
864 "BAY: %hhu %s\n",
865 bay, active);
866 } else {
867 output_len += scnprintf(buf + output_len,
868 PAGE_SIZE - output_len,
869 "BOX: %hhu BAY: %hhu %s\n",
870 box, bay, active);
871 }
872 } else if (box != 0 && box != 0xFF) {
873 output_len += scnprintf(buf + output_len,
874 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875 box, active);
876 } else
877 output_len += scnprintf(buf + output_len,
878 PAGE_SIZE - output_len, "%s\n", active);
879 }
880
881 spin_unlock_irqrestore(&h->devlock, flags);
882 return output_len;
883 }
884
885 static ssize_t host_show_ctlr_num(struct device *dev,
886 struct device_attribute *attr, char *buf)
887 {
888 struct ctlr_info *h;
889 struct Scsi_Host *shost = class_to_shost(dev);
890
891 h = shost_to_hba(shost);
892 return snprintf(buf, 20, "%d\n", h->ctlr);
893 }
894
895 static ssize_t host_show_legacy_board(struct device *dev,
896 struct device_attribute *attr, char *buf)
897 {
898 struct ctlr_info *h;
899 struct Scsi_Host *shost = class_to_shost(dev);
900
901 h = shost_to_hba(shost);
902 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
903 }
904
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911 host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914 host_show_hp_ssd_smart_path_status,
915 host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917 host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919 host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921 host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923 host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925 host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927 host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929 host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931 host_show_legacy_board, NULL);
932
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934 &dev_attr_raid_level,
935 &dev_attr_lunid,
936 &dev_attr_unique_id,
937 &dev_attr_hp_ssd_smart_path_enabled,
938 &dev_attr_path_info,
939 &dev_attr_sas_address,
940 NULL,
941 };
942
943 static struct device_attribute *hpsa_shost_attrs[] = {
944 &dev_attr_rescan,
945 &dev_attr_firmware_revision,
946 &dev_attr_commands_outstanding,
947 &dev_attr_transport_mode,
948 &dev_attr_resettable,
949 &dev_attr_hp_ssd_smart_path_status,
950 &dev_attr_raid_offload_debug,
951 &dev_attr_lockup_detected,
952 &dev_attr_ctlr_num,
953 &dev_attr_legacy_board,
954 NULL,
955 };
956
957 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
958 HPSA_MAX_CONCURRENT_PASSTHRUS)
959
960 static struct scsi_host_template hpsa_driver_template = {
961 .module = THIS_MODULE,
962 .name = HPSA,
963 .proc_name = HPSA,
964 .queuecommand = hpsa_scsi_queue_command,
965 .scan_start = hpsa_scan_start,
966 .scan_finished = hpsa_scan_finished,
967 .change_queue_depth = hpsa_change_queue_depth,
968 .this_id = -1,
969 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 .ioctl = hpsa_ioctl,
971 .slave_alloc = hpsa_slave_alloc,
972 .slave_configure = hpsa_slave_configure,
973 .slave_destroy = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 .compat_ioctl = hpsa_compat_ioctl,
976 #endif
977 .sdev_attrs = hpsa_sdev_attrs,
978 .shost_attrs = hpsa_shost_attrs,
979 .max_sectors = 2048,
980 .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 u32 a;
986 struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988 if (h->transMethod & CFGTBL_Trans_io_accel1)
989 return h->access.command_completed(h, q);
990
991 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 return h->access.command_completed(h, q);
993
994 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 a = rq->head[rq->current_entry];
996 rq->current_entry++;
997 atomic_dec(&h->commands_outstanding);
998 } else {
999 a = FIFO_EMPTY;
1000 }
1001 /* Check for wraparound */
1002 if (rq->current_entry == h->max_commands) {
1003 rq->current_entry = 0;
1004 rq->wraparound ^= 1;
1005 }
1006 return a;
1007 }
1008
1009 /*
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1013 *
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1018 *
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1027 *
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1033 */
1034
1035 /*
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1039 */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 int reply_queue)
1043 {
1044 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 if (unlikely(!h->msix_vectors))
1047 return;
1048 c->Header.ReplyQueue = reply_queue;
1049 }
1050 }
1051
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 struct CommandList *c,
1054 int reply_queue)
1055 {
1056 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058 /*
1059 * Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1061 */
1062 cp->ReplyQueue = reply_queue;
1063 /*
1064 * Set the bits in the address sent down to include:
1065 * - performant mode bit (bit 0)
1066 * - pull count (bits 1-3)
1067 * - command type (bits 4-6)
1068 */
1069 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 struct CommandList *c,
1075 int reply_queue)
1076 {
1077 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080 /* Tell the controller to post the reply to the queue for this
1081 * processor. This seems to give the best I/O throughput.
1082 */
1083 cp->reply_queue = reply_queue;
1084 /* Set the bits in the address sent down to include:
1085 * - performant mode bit not used in ioaccel mode 2
1086 * - pull count (bits 0-3)
1087 * - command type isn't needed for ioaccel2
1088 */
1089 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 struct CommandList *c,
1094 int reply_queue)
1095 {
1096 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098 /*
1099 * Tell the controller to post the reply to the queue for this
1100 * processor. This seems to give the best I/O throughput.
1101 */
1102 cp->reply_queue = reply_queue;
1103 /*
1104 * Set the bits in the address sent down to include:
1105 * - performant mode bit not used in ioaccel mode 2
1106 * - pull count (bits 0-3)
1107 * - command type isn't needed for ioaccel2
1108 */
1109 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116
1117 /*
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should. So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1121 */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 struct CommandList *c)
1127 {
1128 if (!is_firmware_flash_cmd(c->Request.CDB))
1129 return;
1130 atomic_inc(&h->firmware_flash_in_progress);
1131 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 struct CommandList *c)
1136 {
1137 if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 struct CommandList *c, int reply_queue)
1144 {
1145 dial_down_lockup_detection_during_fw_flash(h, c);
1146 atomic_inc(&h->commands_outstanding);
1147
1148 reply_queue = h->reply_map[raw_smp_processor_id()];
1149 switch (c->cmd_type) {
1150 case CMD_IOACCEL1:
1151 set_ioaccel1_performant_mode(h, c, reply_queue);
1152 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 break;
1154 case CMD_IOACCEL2:
1155 set_ioaccel2_performant_mode(h, c, reply_queue);
1156 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 break;
1158 case IOACCEL2_TMF:
1159 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 break;
1162 default:
1163 set_performant_mode(h, c, reply_queue);
1164 h->access.submit_command(h, c);
1165 }
1166 }
1167
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 if (unlikely(hpsa_is_pending_event(c)))
1171 return finish_cmd(c);
1172
1173 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 if (!h->hba_inquiry_data)
1184 return 0;
1185 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 return 1;
1187 return 0;
1188 }
1189
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 /* finds an unused bus, target, lun for a new physical device
1194 * assumes h->devlock is held
1195 */
1196 int i, found = 0;
1197 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201 for (i = 0; i < h->ndevices; i++) {
1202 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 __set_bit(h->dev[i]->target, lun_taken);
1204 }
1205
1206 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 if (i < HPSA_MAX_DEVICES) {
1208 /* *bus = 1; */
1209 *target = i;
1210 *lun = 0;
1211 found = 1;
1212 }
1213 return !found;
1214 }
1215
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 char label[LABEL_SIZE];
1221
1222 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 return;
1224
1225 switch (dev->devtype) {
1226 case TYPE_RAID:
1227 snprintf(label, LABEL_SIZE, "controller");
1228 break;
1229 case TYPE_ENCLOSURE:
1230 snprintf(label, LABEL_SIZE, "enclosure");
1231 break;
1232 case TYPE_DISK:
1233 case TYPE_ZBC:
1234 if (dev->external)
1235 snprintf(label, LABEL_SIZE, "external");
1236 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 snprintf(label, LABEL_SIZE, "%s",
1238 raid_label[PHYSICAL_DRIVE]);
1239 else
1240 snprintf(label, LABEL_SIZE, "RAID-%s",
1241 dev->raid_level > RAID_UNKNOWN ? "?" :
1242 raid_label[dev->raid_level]);
1243 break;
1244 case TYPE_ROM:
1245 snprintf(label, LABEL_SIZE, "rom");
1246 break;
1247 case TYPE_TAPE:
1248 snprintf(label, LABEL_SIZE, "tape");
1249 break;
1250 case TYPE_MEDIUM_CHANGER:
1251 snprintf(label, LABEL_SIZE, "changer");
1252 break;
1253 default:
1254 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 break;
1256 }
1257
1258 dev_printk(level, &h->pdev->dev,
1259 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 description,
1262 scsi_device_type(dev->devtype),
1263 dev->vendor,
1264 dev->model,
1265 label,
1266 dev->offload_config ? '+' : '-',
1267 dev->offload_to_be_enabled ? '+' : '-',
1268 dev->expose_device);
1269 }
1270
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 struct hpsa_scsi_dev_t *device,
1274 struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 /* assumes h->devlock is held */
1277 int n = h->ndevices;
1278 int i;
1279 unsigned char addr1[8], addr2[8];
1280 struct hpsa_scsi_dev_t *sd;
1281
1282 if (n >= HPSA_MAX_DEVICES) {
1283 dev_err(&h->pdev->dev, "too many devices, some will be "
1284 "inaccessible.\n");
1285 return -1;
1286 }
1287
1288 /* physical devices do not have lun or target assigned until now. */
1289 if (device->lun != -1)
1290 /* Logical device, lun is already assigned. */
1291 goto lun_assigned;
1292
1293 /* If this device a non-zero lun of a multi-lun device
1294 * byte 4 of the 8-byte LUN addr will contain the logical
1295 * unit no, zero otherwise.
1296 */
1297 if (device->scsi3addr[4] == 0) {
1298 /* This is not a non-zero lun of a multi-lun device */
1299 if (hpsa_find_target_lun(h, device->scsi3addr,
1300 device->bus, &device->target, &device->lun) != 0)
1301 return -1;
1302 goto lun_assigned;
1303 }
1304
1305 /* This is a non-zero lun of a multi-lun device.
1306 * Search through our list and find the device which
1307 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 * Assign the same bus and target for this new LUN.
1309 * Use the logical unit number from the firmware.
1310 */
1311 memcpy(addr1, device->scsi3addr, 8);
1312 addr1[4] = 0;
1313 addr1[5] = 0;
1314 for (i = 0; i < n; i++) {
1315 sd = h->dev[i];
1316 memcpy(addr2, sd->scsi3addr, 8);
1317 addr2[4] = 0;
1318 addr2[5] = 0;
1319 /* differ only in byte 4 and 5? */
1320 if (memcmp(addr1, addr2, 8) == 0) {
1321 device->bus = sd->bus;
1322 device->target = sd->target;
1323 device->lun = device->scsi3addr[4];
1324 break;
1325 }
1326 }
1327 if (device->lun == -1) {
1328 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 " suspect firmware bug or unsupported hardware "
1330 "configuration.\n");
1331 return -1;
1332 }
1333
1334 lun_assigned:
1335
1336 h->dev[n] = device;
1337 h->ndevices++;
1338 added[*nadded] = device;
1339 (*nadded)++;
1340 hpsa_show_dev_msg(KERN_INFO, h, device,
1341 device->expose_device ? "added" : "masked");
1342 return 0;
1343 }
1344
1345 /*
1346 * Called during a scan operation.
1347 *
1348 * Update an entry in h->dev[] array.
1349 */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 /* assumes h->devlock is held */
1354 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356 /* Raid level changed. */
1357 h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359 /*
1360 * ioacccel_handle may have changed for a dual domain disk
1361 */
1362 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364 /* Raid offload parameters changed. Careful about the ordering. */
1365 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 /*
1367 * if drive is newly offload_enabled, we want to copy the
1368 * raid map data first. If previously offload_enabled and
1369 * offload_config were set, raid map data had better be
1370 * the same as it was before. If raid map data has changed
1371 * then it had better be the case that
1372 * h->dev[entry]->offload_enabled is currently 0.
1373 */
1374 h->dev[entry]->raid_map = new_entry->raid_map;
1375 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 }
1377 if (new_entry->offload_to_be_enabled) {
1378 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 }
1381 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 h->dev[entry]->offload_config = new_entry->offload_config;
1383 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386 /*
1387 * We can turn off ioaccel offload now, but need to delay turning
1388 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 * can't do that until all the devices are updated.
1390 */
1391 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393 /*
1394 * turn ioaccel off immediately if told to do so.
1395 */
1396 if (!new_entry->offload_to_be_enabled)
1397 h->dev[entry]->offload_enabled = 0;
1398
1399 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 int entry, struct hpsa_scsi_dev_t *new_entry,
1405 struct hpsa_scsi_dev_t *added[], int *nadded,
1406 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 /* assumes h->devlock is held */
1409 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 removed[*nremoved] = h->dev[entry];
1411 (*nremoved)++;
1412
1413 /*
1414 * New physical devices won't have target/lun assigned yet
1415 * so we need to preserve the values in the slot we are replacing.
1416 */
1417 if (new_entry->target == -1) {
1418 new_entry->target = h->dev[entry]->target;
1419 new_entry->lun = h->dev[entry]->lun;
1420 }
1421
1422 h->dev[entry] = new_entry;
1423 added[*nadded] = new_entry;
1424 (*nadded)++;
1425
1426 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 /* assumes h->devlock is held */
1434 int i;
1435 struct hpsa_scsi_dev_t *sd;
1436
1437 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439 sd = h->dev[entry];
1440 removed[*nremoved] = h->dev[entry];
1441 (*nremoved)++;
1442
1443 for (i = entry; i < h->ndevices-1; i++)
1444 h->dev[i] = h->dev[i+1];
1445 h->ndevices--;
1446 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 (a)[7] == (b)[7] && \
1451 (a)[6] == (b)[6] && \
1452 (a)[5] == (b)[5] && \
1453 (a)[4] == (b)[4] && \
1454 (a)[3] == (b)[3] && \
1455 (a)[2] == (b)[2] && \
1456 (a)[1] == (b)[1] && \
1457 (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 struct hpsa_scsi_dev_t *added)
1461 {
1462 /* called when scsi_add_device fails in order to re-adjust
1463 * h->dev[] to match the mid layer's view.
1464 */
1465 unsigned long flags;
1466 int i, j;
1467
1468 spin_lock_irqsave(&h->lock, flags);
1469 for (i = 0; i < h->ndevices; i++) {
1470 if (h->dev[i] == added) {
1471 for (j = i; j < h->ndevices-1; j++)
1472 h->dev[j] = h->dev[j+1];
1473 h->ndevices--;
1474 break;
1475 }
1476 }
1477 spin_unlock_irqrestore(&h->lock, flags);
1478 kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 struct hpsa_scsi_dev_t *dev2)
1483 {
1484 /* we compare everything except lun and target as these
1485 * are not yet assigned. Compare parts likely
1486 * to differ first
1487 */
1488 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 sizeof(dev1->scsi3addr)) != 0)
1490 return 0;
1491 if (memcmp(dev1->device_id, dev2->device_id,
1492 sizeof(dev1->device_id)) != 0)
1493 return 0;
1494 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 return 0;
1496 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 return 0;
1498 if (dev1->devtype != dev2->devtype)
1499 return 0;
1500 if (dev1->bus != dev2->bus)
1501 return 0;
1502 return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 struct hpsa_scsi_dev_t *dev2)
1507 {
1508 /* Device attributes that can change, but don't mean
1509 * that the device is a different device, nor that the OS
1510 * needs to be told anything about the change.
1511 */
1512 if (dev1->raid_level != dev2->raid_level)
1513 return 1;
1514 if (dev1->offload_config != dev2->offload_config)
1515 return 1;
1516 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 return 1;
1518 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 if (dev1->queue_depth != dev2->queue_depth)
1520 return 1;
1521 /*
1522 * This can happen for dual domain devices. An active
1523 * path change causes the ioaccel handle to change
1524 *
1525 * for example note the handle differences between p0 and p1
1526 * Device WWN ,WWN hash,Handle
1527 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 */
1530 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 return 1;
1532 return 0;
1533 }
1534
1535 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index. If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1542 */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 int *index)
1546 {
1547 int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 if (needle == NULL)
1553 return DEVICE_NOT_FOUND;
1554
1555 for (i = 0; i < haystack_size; i++) {
1556 if (haystack[i] == NULL) /* previously removed. */
1557 continue;
1558 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 *index = i;
1560 if (device_is_the_same(needle, haystack[i])) {
1561 if (device_updated(needle, haystack[i]))
1562 return DEVICE_UPDATED;
1563 return DEVICE_SAME;
1564 } else {
1565 /* Keep offline devices offline */
1566 if (needle->volume_offline)
1567 return DEVICE_NOT_FOUND;
1568 return DEVICE_CHANGED;
1569 }
1570 }
1571 }
1572 *index = -1;
1573 return DEVICE_NOT_FOUND;
1574 }
1575
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 unsigned char scsi3addr[])
1578 {
1579 struct offline_device_entry *device;
1580 unsigned long flags;
1581
1582 /* Check to see if device is already on the list */
1583 spin_lock_irqsave(&h->offline_device_lock, flags);
1584 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 if (memcmp(device->scsi3addr, scsi3addr,
1586 sizeof(device->scsi3addr)) == 0) {
1587 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 return;
1589 }
1590 }
1591 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593 /* Device is not on the list, add it. */
1594 device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 if (!device)
1596 return;
1597
1598 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 spin_lock_irqsave(&h->offline_device_lock, flags);
1600 list_add_tail(&device->offline_list, &h->offline_device_list);
1601 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 struct hpsa_scsi_dev_t *sd)
1607 {
1608 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 dev_info(&h->pdev->dev,
1610 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 h->scsi_host->host_no,
1612 sd->bus, sd->target, sd->lun);
1613 switch (sd->volume_offline) {
1614 case HPSA_LV_OK:
1615 break;
1616 case HPSA_LV_UNDERGOING_ERASE:
1617 dev_info(&h->pdev->dev,
1618 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 h->scsi_host->host_no,
1620 sd->bus, sd->target, sd->lun);
1621 break;
1622 case HPSA_LV_NOT_AVAILABLE:
1623 dev_info(&h->pdev->dev,
1624 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 h->scsi_host->host_no,
1626 sd->bus, sd->target, sd->lun);
1627 break;
1628 case HPSA_LV_UNDERGOING_RPI:
1629 dev_info(&h->pdev->dev,
1630 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 h->scsi_host->host_no,
1632 sd->bus, sd->target, sd->lun);
1633 break;
1634 case HPSA_LV_PENDING_RPI:
1635 dev_info(&h->pdev->dev,
1636 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 h->scsi_host->host_no,
1638 sd->bus, sd->target, sd->lun);
1639 break;
1640 case HPSA_LV_ENCRYPTED_NO_KEY:
1641 dev_info(&h->pdev->dev,
1642 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 h->scsi_host->host_no,
1644 sd->bus, sd->target, sd->lun);
1645 break;
1646 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 dev_info(&h->pdev->dev,
1648 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 h->scsi_host->host_no,
1650 sd->bus, sd->target, sd->lun);
1651 break;
1652 case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 dev_info(&h->pdev->dev,
1654 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 h->scsi_host->host_no,
1656 sd->bus, sd->target, sd->lun);
1657 break;
1658 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 dev_info(&h->pdev->dev,
1660 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 h->scsi_host->host_no,
1662 sd->bus, sd->target, sd->lun);
1663 break;
1664 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 dev_info(&h->pdev->dev,
1666 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 h->scsi_host->host_no,
1668 sd->bus, sd->target, sd->lun);
1669 break;
1670 case HPSA_LV_PENDING_ENCRYPTION:
1671 dev_info(&h->pdev->dev,
1672 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 h->scsi_host->host_no,
1674 sd->bus, sd->target, sd->lun);
1675 break;
1676 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 dev_info(&h->pdev->dev,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 h->scsi_host->host_no,
1680 sd->bus, sd->target, sd->lun);
1681 break;
1682 }
1683 }
1684
1685 /*
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1688 */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 struct raid_map_data *map = &logical_drive->raid_map;
1694 struct raid_map_disk_data *dd = &map->data[0];
1695 int i, j;
1696 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 le16_to_cpu(map->metadata_disks_per_row);
1698 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 le16_to_cpu(map->layout_map_count) *
1700 total_disks_per_row;
1701 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 total_disks_per_row;
1703 int qdepth;
1704
1705 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708 logical_drive->nphysical_disks = nraid_map_entries;
1709
1710 qdepth = 0;
1711 for (i = 0; i < nraid_map_entries; i++) {
1712 logical_drive->phys_disk[i] = NULL;
1713 if (!logical_drive->offload_config)
1714 continue;
1715 for (j = 0; j < ndevices; j++) {
1716 if (dev[j] == NULL)
1717 continue;
1718 if (dev[j]->devtype != TYPE_DISK &&
1719 dev[j]->devtype != TYPE_ZBC)
1720 continue;
1721 if (is_logical_device(dev[j]))
1722 continue;
1723 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 continue;
1725
1726 logical_drive->phys_disk[i] = dev[j];
1727 if (i < nphys_disk)
1728 qdepth = min(h->nr_cmds, qdepth +
1729 logical_drive->phys_disk[i]->queue_depth);
1730 break;
1731 }
1732
1733 /*
1734 * This can happen if a physical drive is removed and
1735 * the logical drive is degraded. In that case, the RAID
1736 * map data will refer to a physical disk which isn't actually
1737 * present. And in that case offload_enabled should already
1738 * be 0, but we'll turn it off here just in case
1739 */
1740 if (!logical_drive->phys_disk[i]) {
1741 dev_warn(&h->pdev->dev,
1742 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 __func__,
1744 h->scsi_host->host_no, logical_drive->bus,
1745 logical_drive->target, logical_drive->lun);
1746 logical_drive->offload_enabled = 0;
1747 logical_drive->offload_to_be_enabled = 0;
1748 logical_drive->queue_depth = 8;
1749 }
1750 }
1751 if (nraid_map_entries)
1752 /*
1753 * This is correct for reads, too high for full stripe writes,
1754 * way too high for partial stripe writes
1755 */
1756 logical_drive->queue_depth = qdepth;
1757 else {
1758 if (logical_drive->external)
1759 logical_drive->queue_depth = EXTERNAL_QD;
1760 else
1761 logical_drive->queue_depth = h->nr_cmds;
1762 }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 int i;
1769
1770 for (i = 0; i < ndevices; i++) {
1771 if (dev[i] == NULL)
1772 continue;
1773 if (dev[i]->devtype != TYPE_DISK &&
1774 dev[i]->devtype != TYPE_ZBC)
1775 continue;
1776 if (!is_logical_device(dev[i]))
1777 continue;
1778
1779 /*
1780 * If offload is currently enabled, the RAID map and
1781 * phys_disk[] assignment *better* not be changing
1782 * because we would be changing ioaccel phsy_disk[] pointers
1783 * on a ioaccel volume processing I/O requests.
1784 *
1785 * If an ioaccel volume status changed, initially because it was
1786 * re-configured and thus underwent a transformation, or
1787 * a drive failed, we would have received a state change
1788 * request and ioaccel should have been turned off. When the
1789 * transformation completes, we get another state change
1790 * request to turn ioaccel back on. In this case, we need
1791 * to update the ioaccel information.
1792 *
1793 * Thus: If it is not currently enabled, but will be after
1794 * the scan completes, make sure the ioaccel pointers
1795 * are up to date.
1796 */
1797
1798 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 int rc = 0;
1806
1807 if (!h->scsi_host)
1808 return 1;
1809
1810 if (is_logical_device(device)) /* RAID */
1811 rc = scsi_add_device(h->scsi_host, device->bus,
1812 device->target, device->lun);
1813 else /* HBA */
1814 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816 return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 struct hpsa_scsi_dev_t *dev)
1821 {
1822 int i;
1823 int count = 0;
1824
1825 for (i = 0; i < h->nr_cmds; i++) {
1826 struct CommandList *c = h->cmd_pool + i;
1827 int refcount = atomic_inc_return(&c->refcount);
1828
1829 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 dev->scsi3addr)) {
1831 unsigned long flags;
1832
1833 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1834 if (!hpsa_is_cmd_idle(c))
1835 ++count;
1836 spin_unlock_irqrestore(&h->lock, flags);
1837 }
1838
1839 cmd_free(h, c);
1840 }
1841
1842 return count;
1843 }
1844
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 struct hpsa_scsi_dev_t *device)
1847 {
1848 int cmds = 0;
1849 int waits = 0;
1850
1851 while (1) {
1852 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 if (cmds == 0)
1854 break;
1855 if (++waits > 20)
1856 break;
1857 msleep(1000);
1858 }
1859
1860 if (waits > 20)
1861 dev_warn(&h->pdev->dev,
1862 "%s: removing device with %d outstanding commands!\n",
1863 __func__, cmds);
1864 }
1865
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 struct hpsa_scsi_dev_t *device)
1868 {
1869 struct scsi_device *sdev = NULL;
1870
1871 if (!h->scsi_host)
1872 return;
1873
1874 /*
1875 * Allow for commands to drain
1876 */
1877 device->removed = 1;
1878 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880 if (is_logical_device(device)) { /* RAID */
1881 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 device->target, device->lun);
1883 if (sdev) {
1884 scsi_remove_device(sdev);
1885 scsi_device_put(sdev);
1886 } else {
1887 /*
1888 * We don't expect to get here. Future commands
1889 * to this device will get a selection timeout as
1890 * if the device were gone.
1891 */
1892 hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 "didn't find device for removal.");
1894 }
1895 } else { /* HBA */
1896
1897 hpsa_remove_sas_device(device);
1898 }
1899 }
1900
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 /* sd contains scsi3 addresses and devtypes, and inquiry
1905 * data. This function takes what's in sd to be the current
1906 * reality and updates h->dev[] to reflect that reality.
1907 */
1908 int i, entry, device_change, changes = 0;
1909 struct hpsa_scsi_dev_t *csd;
1910 unsigned long flags;
1911 struct hpsa_scsi_dev_t **added, **removed;
1912 int nadded, nremoved;
1913
1914 /*
1915 * A reset can cause a device status to change
1916 * re-schedule the scan to see what happened.
1917 */
1918 spin_lock_irqsave(&h->reset_lock, flags);
1919 if (h->reset_in_progress) {
1920 h->drv_req_rescan = 1;
1921 spin_unlock_irqrestore(&h->reset_lock, flags);
1922 return;
1923 }
1924 spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928
1929 if (!added || !removed) {
1930 dev_warn(&h->pdev->dev, "out of memory in "
1931 "adjust_hpsa_scsi_table\n");
1932 goto free_and_out;
1933 }
1934
1935 spin_lock_irqsave(&h->devlock, flags);
1936
1937 /* find any devices in h->dev[] that are not in
1938 * sd[] and remove them from h->dev[], and for any
1939 * devices which have changed, remove the old device
1940 * info and add the new device info.
1941 * If minor device attributes change, just update
1942 * the existing device structure.
1943 */
1944 i = 0;
1945 nremoved = 0;
1946 nadded = 0;
1947 while (i < h->ndevices) {
1948 csd = h->dev[i];
1949 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 if (device_change == DEVICE_NOT_FOUND) {
1951 changes++;
1952 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 continue; /* remove ^^^, hence i not incremented */
1954 } else if (device_change == DEVICE_CHANGED) {
1955 changes++;
1956 hpsa_scsi_replace_entry(h, i, sd[entry],
1957 added, &nadded, removed, &nremoved);
1958 /* Set it to NULL to prevent it from being freed
1959 * at the bottom of hpsa_update_scsi_devices()
1960 */
1961 sd[entry] = NULL;
1962 } else if (device_change == DEVICE_UPDATED) {
1963 hpsa_scsi_update_entry(h, i, sd[entry]);
1964 }
1965 i++;
1966 }
1967
1968 /* Now, make sure every device listed in sd[] is also
1969 * listed in h->dev[], adding them if they aren't found
1970 */
1971
1972 for (i = 0; i < nsds; i++) {
1973 if (!sd[i]) /* if already added above. */
1974 continue;
1975
1976 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 * as the SCSI mid-layer does not handle such devices well.
1978 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 * at 160Hz, and prevents the system from coming up.
1980 */
1981 if (sd[i]->volume_offline) {
1982 hpsa_show_volume_status(h, sd[i]);
1983 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 continue;
1985 }
1986
1987 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 h->ndevices, &entry);
1989 if (device_change == DEVICE_NOT_FOUND) {
1990 changes++;
1991 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 break;
1993 sd[i] = NULL; /* prevent from being freed later. */
1994 } else if (device_change == DEVICE_CHANGED) {
1995 /* should never happen... */
1996 changes++;
1997 dev_warn(&h->pdev->dev,
1998 "device unexpectedly changed.\n");
1999 /* but if it does happen, we just ignore that device */
2000 }
2001 }
2002 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004 /*
2005 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 * any logical drives that need it enabled.
2007 *
2008 * The raid map should be current by now.
2009 *
2010 * We are updating the device list used for I/O requests.
2011 */
2012 for (i = 0; i < h->ndevices; i++) {
2013 if (h->dev[i] == NULL)
2014 continue;
2015 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 }
2017
2018 spin_unlock_irqrestore(&h->devlock, flags);
2019
2020 /* Monitor devices which are in one of several NOT READY states to be
2021 * brought online later. This must be done without holding h->devlock,
2022 * so don't touch h->dev[]
2023 */
2024 for (i = 0; i < nsds; i++) {
2025 if (!sd[i]) /* if already added above. */
2026 continue;
2027 if (sd[i]->volume_offline)
2028 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 }
2030
2031 /* Don't notify scsi mid layer of any changes the first time through
2032 * (or if there are no changes) scsi_scan_host will do it later the
2033 * first time through.
2034 */
2035 if (!changes)
2036 goto free_and_out;
2037
2038 /* Notify scsi mid layer of any removed devices */
2039 for (i = 0; i < nremoved; i++) {
2040 if (removed[i] == NULL)
2041 continue;
2042 if (removed[i]->expose_device)
2043 hpsa_remove_device(h, removed[i]);
2044 kfree(removed[i]);
2045 removed[i] = NULL;
2046 }
2047
2048 /* Notify scsi mid layer of any added devices */
2049 for (i = 0; i < nadded; i++) {
2050 int rc = 0;
2051
2052 if (added[i] == NULL)
2053 continue;
2054 if (!(added[i]->expose_device))
2055 continue;
2056 rc = hpsa_add_device(h, added[i]);
2057 if (!rc)
2058 continue;
2059 dev_warn(&h->pdev->dev,
2060 "addition failed %d, device not added.", rc);
2061 /* now we have to remove it from h->dev,
2062 * since it didn't get added to scsi mid layer
2063 */
2064 fixup_botched_add(h, added[i]);
2065 h->drv_req_rescan = 1;
2066 }
2067
2068 free_and_out:
2069 kfree(added);
2070 kfree(removed);
2071 }
2072
2073 /*
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2076 */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 int bus, int target, int lun)
2079 {
2080 int i;
2081 struct hpsa_scsi_dev_t *sd;
2082
2083 for (i = 0; i < h->ndevices; i++) {
2084 sd = h->dev[i];
2085 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 return sd;
2087 }
2088 return NULL;
2089 }
2090
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 struct hpsa_scsi_dev_t *sd = NULL;
2094 unsigned long flags;
2095 struct ctlr_info *h;
2096
2097 h = sdev_to_hba(sdev);
2098 spin_lock_irqsave(&h->devlock, flags);
2099 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 struct scsi_target *starget;
2101 struct sas_rphy *rphy;
2102
2103 starget = scsi_target(sdev);
2104 rphy = target_to_rphy(starget);
2105 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 if (sd) {
2107 sd->target = sdev_id(sdev);
2108 sd->lun = sdev->lun;
2109 }
2110 }
2111 if (!sd)
2112 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 sdev_id(sdev), sdev->lun);
2114
2115 if (sd && sd->expose_device) {
2116 atomic_set(&sd->ioaccel_cmds_out, 0);
2117 sdev->hostdata = sd;
2118 } else
2119 sdev->hostdata = NULL;
2120 spin_unlock_irqrestore(&h->devlock, flags);
2121 return 0;
2122 }
2123
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 struct hpsa_scsi_dev_t *sd;
2128 int queue_depth;
2129
2130 sd = sdev->hostdata;
2131 sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133 if (sd) {
2134 if (sd->external)
2135 queue_depth = EXTERNAL_QD;
2136 else
2137 queue_depth = sd->queue_depth != 0 ?
2138 sd->queue_depth : sdev->host->can_queue;
2139 } else
2140 queue_depth = sdev->host->can_queue;
2141
2142 scsi_change_queue_depth(sdev, queue_depth);
2143
2144 return 0;
2145 }
2146
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 /* nothing to do. */
2150 }
2151
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 int i;
2155
2156 if (!h->ioaccel2_cmd_sg_list)
2157 return;
2158 for (i = 0; i < h->nr_cmds; i++) {
2159 kfree(h->ioaccel2_cmd_sg_list[i]);
2160 h->ioaccel2_cmd_sg_list[i] = NULL;
2161 }
2162 kfree(h->ioaccel2_cmd_sg_list);
2163 h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 int i;
2169
2170 if (h->chainsize <= 0)
2171 return 0;
2172
2173 h->ioaccel2_cmd_sg_list =
2174 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 GFP_KERNEL);
2176 if (!h->ioaccel2_cmd_sg_list)
2177 return -ENOMEM;
2178 for (i = 0; i < h->nr_cmds; i++) {
2179 h->ioaccel2_cmd_sg_list[i] =
2180 kmalloc_array(h->maxsgentries,
2181 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 GFP_KERNEL);
2183 if (!h->ioaccel2_cmd_sg_list[i])
2184 goto clean;
2185 }
2186 return 0;
2187
2188 clean:
2189 hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 return -ENOMEM;
2191 }
2192
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 int i;
2196
2197 if (!h->cmd_sg_list)
2198 return;
2199 for (i = 0; i < h->nr_cmds; i++) {
2200 kfree(h->cmd_sg_list[i]);
2201 h->cmd_sg_list[i] = NULL;
2202 }
2203 kfree(h->cmd_sg_list);
2204 h->cmd_sg_list = NULL;
2205 }
2206
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 int i;
2210
2211 if (h->chainsize <= 0)
2212 return 0;
2213
2214 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 GFP_KERNEL);
2216 if (!h->cmd_sg_list)
2217 return -ENOMEM;
2218
2219 for (i = 0; i < h->nr_cmds; i++) {
2220 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 sizeof(*h->cmd_sg_list[i]),
2222 GFP_KERNEL);
2223 if (!h->cmd_sg_list[i])
2224 goto clean;
2225
2226 }
2227 return 0;
2228
2229 clean:
2230 hpsa_free_sg_chain_blocks(h);
2231 return -ENOMEM;
2232 }
2233
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237 struct ioaccel2_sg_element *chain_block;
2238 u64 temp64;
2239 u32 chain_size;
2240
2241 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 chain_size = le32_to_cpu(cp->sg[0].length);
2243 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244 DMA_TO_DEVICE);
2245 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 /* prevent subsequent unmapping */
2247 cp->sg->address = 0;
2248 return -1;
2249 }
2250 cp->sg->address = cpu_to_le64(temp64);
2251 return 0;
2252 }
2253
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 struct io_accel2_cmd *cp)
2256 {
2257 struct ioaccel2_sg_element *chain_sg;
2258 u64 temp64;
2259 u32 chain_size;
2260
2261 chain_sg = cp->sg;
2262 temp64 = le64_to_cpu(chain_sg->address);
2263 chain_size = le32_to_cpu(cp->sg[0].length);
2264 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 struct CommandList *c)
2269 {
2270 struct SGDescriptor *chain_sg, *chain_block;
2271 u64 temp64;
2272 u32 chain_len;
2273
2274 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 chain_block = h->cmd_sg_list[c->cmdindex];
2276 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 chain_len = sizeof(*chain_sg) *
2278 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 chain_sg->Len = cpu_to_le32(chain_len);
2280 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281 DMA_TO_DEVICE);
2282 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 /* prevent subsequent unmapping */
2284 chain_sg->Addr = cpu_to_le64(0);
2285 return -1;
2286 }
2287 chain_sg->Addr = cpu_to_le64(temp64);
2288 return 0;
2289 }
2290
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 struct CommandList *c)
2293 {
2294 struct SGDescriptor *chain_sg;
2295
2296 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 return;
2298
2299 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303
2304
2305 /* Decode the various types of errors on ioaccel2 path.
2306 * Return 1 for any error that should generate a RAID path retry.
2307 * Return 0 for errors that don't require a RAID path retry.
2308 */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 struct CommandList *c,
2311 struct scsi_cmnd *cmd,
2312 struct io_accel2_cmd *c2,
2313 struct hpsa_scsi_dev_t *dev)
2314 {
2315 int data_len;
2316 int retry = 0;
2317 u32 ioaccel2_resid = 0;
2318
2319 switch (c2->error_data.serv_response) {
2320 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 switch (c2->error_data.status) {
2322 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 break;
2324 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 if (c2->error_data.data_present !=
2327 IOACCEL2_SENSE_DATA_PRESENT) {
2328 memset(cmd->sense_buffer, 0,
2329 SCSI_SENSE_BUFFERSIZE);
2330 break;
2331 }
2332 /* copy the sense data */
2333 data_len = c2->error_data.sense_data_len;
2334 if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 data_len = SCSI_SENSE_BUFFERSIZE;
2336 if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 data_len =
2338 sizeof(c2->error_data.sense_data_buff);
2339 memcpy(cmd->sense_buffer,
2340 c2->error_data.sense_data_buff, data_len);
2341 retry = 1;
2342 break;
2343 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 retry = 1;
2345 break;
2346 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 retry = 1;
2348 break;
2349 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 retry = 1;
2351 break;
2352 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 retry = 1;
2354 break;
2355 default:
2356 retry = 1;
2357 break;
2358 }
2359 break;
2360 case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 switch (c2->error_data.status) {
2362 case IOACCEL2_STATUS_SR_IO_ERROR:
2363 case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 case IOACCEL2_STATUS_SR_OVERRUN:
2365 retry = 1;
2366 break;
2367 case IOACCEL2_STATUS_SR_UNDERRUN:
2368 cmd->result = (DID_OK << 16); /* host byte */
2369 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370 ioaccel2_resid = get_unaligned_le32(
2371 &c2->error_data.resid_cnt[0]);
2372 scsi_set_resid(cmd, ioaccel2_resid);
2373 break;
2374 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377 /*
2378 * Did an HBA disk disappear? We will eventually
2379 * get a state change event from the controller but
2380 * in the meantime, we need to tell the OS that the
2381 * HBA disk is no longer there and stop I/O
2382 * from going down. This allows the potential re-insert
2383 * of the disk to get the same device node.
2384 */
2385 if (dev->physical_device && dev->expose_device) {
2386 cmd->result = DID_NO_CONNECT << 16;
2387 dev->removed = 1;
2388 h->drv_req_rescan = 1;
2389 dev_warn(&h->pdev->dev,
2390 "%s: device is gone!\n", __func__);
2391 } else
2392 /*
2393 * Retry by sending down the RAID path.
2394 * We will get an event from ctlr to
2395 * trigger rescan regardless.
2396 */
2397 retry = 1;
2398 break;
2399 default:
2400 retry = 1;
2401 }
2402 break;
2403 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 break;
2405 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 break;
2407 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 retry = 1;
2409 break;
2410 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 break;
2412 default:
2413 retry = 1;
2414 break;
2415 }
2416
2417 return retry; /* retry on raid path? */
2418 }
2419
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 struct CommandList *c)
2422 {
2423 bool do_wake = false;
2424
2425 /*
2426 * Reset c->scsi_cmd here so that the reset handler will know
2427 * this command has completed. Then, check to see if the handler is
2428 * waiting for this command, and, if so, wake it.
2429 */
2430 c->scsi_cmd = SCSI_CMD_IDLE;
2431 mb(); /* Declare command idle before checking for pending events. */
2432 if (c->reset_pending) {
2433 unsigned long flags;
2434 struct hpsa_scsi_dev_t *dev;
2435
2436 /*
2437 * There appears to be a reset pending; lock the lock and
2438 * reconfirm. If so, then decrement the count of outstanding
2439 * commands and wake the reset command if this is the last one.
2440 */
2441 spin_lock_irqsave(&h->lock, flags);
2442 dev = c->reset_pending; /* Re-fetch under the lock. */
2443 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 do_wake = true;
2445 c->reset_pending = NULL;
2446 spin_unlock_irqrestore(&h->lock, flags);
2447 }
2448
2449 if (do_wake)
2450 wake_up_all(&h->event_sync_wait_queue);
2451 }
2452
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 struct CommandList *c)
2455 {
2456 hpsa_cmd_resolve_events(h, c);
2457 cmd_tagged_free(h, c);
2458 }
2459
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463 hpsa_cmd_resolve_and_free(h, c);
2464 if (cmd && cmd->scsi_done)
2465 cmd->scsi_done(cmd);
2466 }
2467
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 struct CommandList *c, struct scsi_cmnd *cmd,
2476 struct hpsa_scsi_dev_t *dev)
2477 {
2478 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479
2480 /* check for good status */
2481 if (likely(c2->error_data.serv_response == 0 &&
2482 c2->error_data.status == 0))
2483 return hpsa_cmd_free_and_done(h, c, cmd);
2484
2485 /*
2486 * Any RAID offload error results in retry which will use
2487 * the normal I/O path so the controller can handle whatever is
2488 * wrong.
2489 */
2490 if (is_logical_device(dev) &&
2491 c2->error_data.serv_response ==
2492 IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 if (c2->error_data.status ==
2494 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 dev->offload_enabled = 0;
2496 dev->offload_to_be_enabled = 0;
2497 }
2498
2499 return hpsa_retry_cmd(h, c);
2500 }
2501
2502 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 return hpsa_retry_cmd(h, c);
2504
2505 return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 struct CommandList *cp)
2511 {
2512 u8 tmf_status = cp->err_info->ScsiStatus;
2513
2514 switch (tmf_status) {
2515 case CISS_TMF_COMPLETE:
2516 /*
2517 * CISS_TMF_COMPLETE never happens, instead,
2518 * ei->CommandStatus == 0 for this case.
2519 */
2520 case CISS_TMF_SUCCESS:
2521 return 0;
2522 case CISS_TMF_INVALID_FRAME:
2523 case CISS_TMF_NOT_SUPPORTED:
2524 case CISS_TMF_FAILED:
2525 case CISS_TMF_WRONG_LUN:
2526 case CISS_TMF_OVERLAPPED_TAG:
2527 break;
2528 default:
2529 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 tmf_status);
2531 break;
2532 }
2533 return -tmf_status;
2534 }
2535
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538 struct scsi_cmnd *cmd;
2539 struct ctlr_info *h;
2540 struct ErrorInfo *ei;
2541 struct hpsa_scsi_dev_t *dev;
2542 struct io_accel2_cmd *c2;
2543
2544 u8 sense_key;
2545 u8 asc; /* additional sense code */
2546 u8 ascq; /* additional sense code qualifier */
2547 unsigned long sense_data_size;
2548
2549 ei = cp->err_info;
2550 cmd = cp->scsi_cmd;
2551 h = cp->h;
2552
2553 if (!cmd->device) {
2554 cmd->result = DID_NO_CONNECT << 16;
2555 return hpsa_cmd_free_and_done(h, cp, cmd);
2556 }
2557
2558 dev = cmd->device->hostdata;
2559 if (!dev) {
2560 cmd->result = DID_NO_CONNECT << 16;
2561 return hpsa_cmd_free_and_done(h, cp, cmd);
2562 }
2563 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564
2565 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 if ((cp->cmd_type == CMD_SCSI) &&
2567 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 hpsa_unmap_sg_chain_block(h, cp);
2569
2570 if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573
2574 cmd->result = (DID_OK << 16); /* host byte */
2575 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2576
2577 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 if (dev->physical_device && dev->expose_device &&
2579 dev->removed) {
2580 cmd->result = DID_NO_CONNECT << 16;
2581 return hpsa_cmd_free_and_done(h, cp, cmd);
2582 }
2583 if (likely(cp->phys_disk != NULL))
2584 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585 }
2586
2587 /*
2588 * We check for lockup status here as it may be set for
2589 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 * fail_all_oustanding_cmds()
2591 */
2592 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 /* DID_NO_CONNECT will prevent a retry */
2594 cmd->result = DID_NO_CONNECT << 16;
2595 return hpsa_cmd_free_and_done(h, cp, cmd);
2596 }
2597
2598 if ((unlikely(hpsa_is_pending_event(cp))))
2599 if (cp->reset_pending)
2600 return hpsa_cmd_free_and_done(h, cp, cmd);
2601
2602 if (cp->cmd_type == CMD_IOACCEL2)
2603 return process_ioaccel2_completion(h, cp, cmd, dev);
2604
2605 scsi_set_resid(cmd, ei->ResidualCnt);
2606 if (ei->CommandStatus == 0)
2607 return hpsa_cmd_free_and_done(h, cp, cmd);
2608
2609 /* For I/O accelerator commands, copy over some fields to the normal
2610 * CISS header used below for error handling.
2611 */
2612 if (cp->cmd_type == CMD_IOACCEL1) {
2613 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 cp->Header.SGList = scsi_sg_count(cmd);
2615 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 cp->Header.tag = c->tag;
2619 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621
2622 /* Any RAID offload error results in retry which will use
2623 * the normal I/O path so the controller can handle whatever's
2624 * wrong.
2625 */
2626 if (is_logical_device(dev)) {
2627 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 dev->offload_enabled = 0;
2629 return hpsa_retry_cmd(h, cp);
2630 }
2631 }
2632
2633 /* an error has occurred */
2634 switch (ei->CommandStatus) {
2635
2636 case CMD_TARGET_STATUS:
2637 cmd->result |= ei->ScsiStatus;
2638 /* copy the sense data */
2639 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 else
2642 sense_data_size = sizeof(ei->SenseInfo);
2643 if (ei->SenseLen < sense_data_size)
2644 sense_data_size = ei->SenseLen;
2645 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 if (ei->ScsiStatus)
2647 decode_sense_data(ei->SenseInfo, sense_data_size,
2648 &sense_key, &asc, &ascq);
2649 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 switch (sense_key) {
2651 case ABORTED_COMMAND:
2652 cmd->result |= DID_SOFT_ERROR << 16;
2653 break;
2654 case UNIT_ATTENTION:
2655 if (asc == 0x3F && ascq == 0x0E)
2656 h->drv_req_rescan = 1;
2657 break;
2658 case ILLEGAL_REQUEST:
2659 if (asc == 0x25 && ascq == 0x00) {
2660 dev->removed = 1;
2661 cmd->result = DID_NO_CONNECT << 16;
2662 }
2663 break;
2664 }
2665 break;
2666 }
2667 /* Problem was not a check condition
2668 * Pass it up to the upper layers...
2669 */
2670 if (ei->ScsiStatus) {
2671 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2672 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2673 "Returning result: 0x%x\n",
2674 cp, ei->ScsiStatus,
2675 sense_key, asc, ascq,
2676 cmd->result);
2677 } else { /* scsi status is zero??? How??? */
2678 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2679 "Returning no connection.\n", cp),
2680
2681 /* Ordinarily, this case should never happen,
2682 * but there is a bug in some released firmware
2683 * revisions that allows it to happen if, for
2684 * example, a 4100 backplane loses power and
2685 * the tape drive is in it. We assume that
2686 * it's a fatal error of some kind because we
2687 * can't show that it wasn't. We will make it
2688 * look like selection timeout since that is
2689 * the most common reason for this to occur,
2690 * and it's severe enough.
2691 */
2692
2693 cmd->result = DID_NO_CONNECT << 16;
2694 }
2695 break;
2696
2697 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2698 break;
2699 case CMD_DATA_OVERRUN:
2700 dev_warn(&h->pdev->dev,
2701 "CDB %16phN data overrun\n", cp->Request.CDB);
2702 break;
2703 case CMD_INVALID: {
2704 /* print_bytes(cp, sizeof(*cp), 1, 0);
2705 print_cmd(cp); */
2706 /* We get CMD_INVALID if you address a non-existent device
2707 * instead of a selection timeout (no response). You will
2708 * see this if you yank out a drive, then try to access it.
2709 * This is kind of a shame because it means that any other
2710 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2711 * missing target. */
2712 cmd->result = DID_NO_CONNECT << 16;
2713 }
2714 break;
2715 case CMD_PROTOCOL_ERR:
2716 cmd->result = DID_ERROR << 16;
2717 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2718 cp->Request.CDB);
2719 break;
2720 case CMD_HARDWARE_ERR:
2721 cmd->result = DID_ERROR << 16;
2722 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2723 cp->Request.CDB);
2724 break;
2725 case CMD_CONNECTION_LOST:
2726 cmd->result = DID_ERROR << 16;
2727 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2728 cp->Request.CDB);
2729 break;
2730 case CMD_ABORTED:
2731 cmd->result = DID_ABORT << 16;
2732 break;
2733 case CMD_ABORT_FAILED:
2734 cmd->result = DID_ERROR << 16;
2735 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2736 cp->Request.CDB);
2737 break;
2738 case CMD_UNSOLICITED_ABORT:
2739 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2740 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2741 cp->Request.CDB);
2742 break;
2743 case CMD_TIMEOUT:
2744 cmd->result = DID_TIME_OUT << 16;
2745 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2746 cp->Request.CDB);
2747 break;
2748 case CMD_UNABORTABLE:
2749 cmd->result = DID_ERROR << 16;
2750 dev_warn(&h->pdev->dev, "Command unabortable\n");
2751 break;
2752 case CMD_TMF_STATUS:
2753 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2754 cmd->result = DID_ERROR << 16;
2755 break;
2756 case CMD_IOACCEL_DISABLED:
2757 /* This only handles the direct pass-through case since RAID
2758 * offload is handled above. Just attempt a retry.
2759 */
2760 cmd->result = DID_SOFT_ERROR << 16;
2761 dev_warn(&h->pdev->dev,
2762 "cp %p had HP SSD Smart Path error\n", cp);
2763 break;
2764 default:
2765 cmd->result = DID_ERROR << 16;
2766 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2767 cp, ei->CommandStatus);
2768 }
2769
2770 return hpsa_cmd_free_and_done(h, cp, cmd);
2771 }
2772
2773 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2774 int sg_used, enum dma_data_direction data_direction)
2775 {
2776 int i;
2777
2778 for (i = 0; i < sg_used; i++)
2779 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2780 le32_to_cpu(c->SG[i].Len),
2781 data_direction);
2782 }
2783
2784 static int hpsa_map_one(struct pci_dev *pdev,
2785 struct CommandList *cp,
2786 unsigned char *buf,
2787 size_t buflen,
2788 enum dma_data_direction data_direction)
2789 {
2790 u64 addr64;
2791
2792 if (buflen == 0 || data_direction == DMA_NONE) {
2793 cp->Header.SGList = 0;
2794 cp->Header.SGTotal = cpu_to_le16(0);
2795 return 0;
2796 }
2797
2798 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2799 if (dma_mapping_error(&pdev->dev, addr64)) {
2800 /* Prevent subsequent unmap of something never mapped */
2801 cp->Header.SGList = 0;
2802 cp->Header.SGTotal = cpu_to_le16(0);
2803 return -1;
2804 }
2805 cp->SG[0].Addr = cpu_to_le64(addr64);
2806 cp->SG[0].Len = cpu_to_le32(buflen);
2807 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2808 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2809 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2810 return 0;
2811 }
2812
2813 #define NO_TIMEOUT ((unsigned long) -1)
2814 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2815 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2816 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2817 {
2818 DECLARE_COMPLETION_ONSTACK(wait);
2819
2820 c->waiting = &wait;
2821 __enqueue_cmd_and_start_io(h, c, reply_queue);
2822 if (timeout_msecs == NO_TIMEOUT) {
2823 /* TODO: get rid of this no-timeout thing */
2824 wait_for_completion_io(&wait);
2825 return IO_OK;
2826 }
2827 if (!wait_for_completion_io_timeout(&wait,
2828 msecs_to_jiffies(timeout_msecs))) {
2829 dev_warn(&h->pdev->dev, "Command timed out.\n");
2830 return -ETIMEDOUT;
2831 }
2832 return IO_OK;
2833 }
2834
2835 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2836 int reply_queue, unsigned long timeout_msecs)
2837 {
2838 if (unlikely(lockup_detected(h))) {
2839 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2840 return IO_OK;
2841 }
2842 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2843 }
2844
2845 static u32 lockup_detected(struct ctlr_info *h)
2846 {
2847 int cpu;
2848 u32 rc, *lockup_detected;
2849
2850 cpu = get_cpu();
2851 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2852 rc = *lockup_detected;
2853 put_cpu();
2854 return rc;
2855 }
2856
2857 #define MAX_DRIVER_CMD_RETRIES 25
2858 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2859 struct CommandList *c, enum dma_data_direction data_direction,
2860 unsigned long timeout_msecs)
2861 {
2862 int backoff_time = 10, retry_count = 0;
2863 int rc;
2864
2865 do {
2866 memset(c->err_info, 0, sizeof(*c->err_info));
2867 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2868 timeout_msecs);
2869 if (rc)
2870 break;
2871 retry_count++;
2872 if (retry_count > 3) {
2873 msleep(backoff_time);
2874 if (backoff_time < 1000)
2875 backoff_time *= 2;
2876 }
2877 } while ((check_for_unit_attention(h, c) ||
2878 check_for_busy(h, c)) &&
2879 retry_count <= MAX_DRIVER_CMD_RETRIES);
2880 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2881 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2882 rc = -EIO;
2883 return rc;
2884 }
2885
2886 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2887 struct CommandList *c)
2888 {
2889 const u8 *cdb = c->Request.CDB;
2890 const u8 *lun = c->Header.LUN.LunAddrBytes;
2891
2892 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2893 txt, lun, cdb);
2894 }
2895
2896 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2897 struct CommandList *cp)
2898 {
2899 const struct ErrorInfo *ei = cp->err_info;
2900 struct device *d = &cp->h->pdev->dev;
2901 u8 sense_key, asc, ascq;
2902 int sense_len;
2903
2904 switch (ei->CommandStatus) {
2905 case CMD_TARGET_STATUS:
2906 if (ei->SenseLen > sizeof(ei->SenseInfo))
2907 sense_len = sizeof(ei->SenseInfo);
2908 else
2909 sense_len = ei->SenseLen;
2910 decode_sense_data(ei->SenseInfo, sense_len,
2911 &sense_key, &asc, &ascq);
2912 hpsa_print_cmd(h, "SCSI status", cp);
2913 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2914 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2915 sense_key, asc, ascq);
2916 else
2917 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2918 if (ei->ScsiStatus == 0)
2919 dev_warn(d, "SCSI status is abnormally zero. "
2920 "(probably indicates selection timeout "
2921 "reported incorrectly due to a known "
2922 "firmware bug, circa July, 2001.)\n");
2923 break;
2924 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2925 break;
2926 case CMD_DATA_OVERRUN:
2927 hpsa_print_cmd(h, "overrun condition", cp);
2928 break;
2929 case CMD_INVALID: {
2930 /* controller unfortunately reports SCSI passthru's
2931 * to non-existent targets as invalid commands.
2932 */
2933 hpsa_print_cmd(h, "invalid command", cp);
2934 dev_warn(d, "probably means device no longer present\n");
2935 }
2936 break;
2937 case CMD_PROTOCOL_ERR:
2938 hpsa_print_cmd(h, "protocol error", cp);
2939 break;
2940 case CMD_HARDWARE_ERR:
2941 hpsa_print_cmd(h, "hardware error", cp);
2942 break;
2943 case CMD_CONNECTION_LOST:
2944 hpsa_print_cmd(h, "connection lost", cp);
2945 break;
2946 case CMD_ABORTED:
2947 hpsa_print_cmd(h, "aborted", cp);
2948 break;
2949 case CMD_ABORT_FAILED:
2950 hpsa_print_cmd(h, "abort failed", cp);
2951 break;
2952 case CMD_UNSOLICITED_ABORT:
2953 hpsa_print_cmd(h, "unsolicited abort", cp);
2954 break;
2955 case CMD_TIMEOUT:
2956 hpsa_print_cmd(h, "timed out", cp);
2957 break;
2958 case CMD_UNABORTABLE:
2959 hpsa_print_cmd(h, "unabortable", cp);
2960 break;
2961 case CMD_CTLR_LOCKUP:
2962 hpsa_print_cmd(h, "controller lockup detected", cp);
2963 break;
2964 default:
2965 hpsa_print_cmd(h, "unknown status", cp);
2966 dev_warn(d, "Unknown command status %x\n",
2967 ei->CommandStatus);
2968 }
2969 }
2970
2971 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2972 u8 page, u8 *buf, size_t bufsize)
2973 {
2974 int rc = IO_OK;
2975 struct CommandList *c;
2976 struct ErrorInfo *ei;
2977
2978 c = cmd_alloc(h);
2979 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2980 page, scsi3addr, TYPE_CMD)) {
2981 rc = -1;
2982 goto out;
2983 }
2984 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2985 NO_TIMEOUT);
2986 if (rc)
2987 goto out;
2988 ei = c->err_info;
2989 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2990 hpsa_scsi_interpret_error(h, c);
2991 rc = -1;
2992 }
2993 out:
2994 cmd_free(h, c);
2995 return rc;
2996 }
2997
2998 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2999 u8 *scsi3addr)
3000 {
3001 u8 *buf;
3002 u64 sa = 0;
3003 int rc = 0;
3004
3005 buf = kzalloc(1024, GFP_KERNEL);
3006 if (!buf)
3007 return 0;
3008
3009 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3010 buf, 1024);
3011
3012 if (rc)
3013 goto out;
3014
3015 sa = get_unaligned_be64(buf+12);
3016
3017 out:
3018 kfree(buf);
3019 return sa;
3020 }
3021
3022 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3023 u16 page, unsigned char *buf,
3024 unsigned char bufsize)
3025 {
3026 int rc = IO_OK;
3027 struct CommandList *c;
3028 struct ErrorInfo *ei;
3029
3030 c = cmd_alloc(h);
3031
3032 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3033 page, scsi3addr, TYPE_CMD)) {
3034 rc = -1;
3035 goto out;
3036 }
3037 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3038 NO_TIMEOUT);
3039 if (rc)
3040 goto out;
3041 ei = c->err_info;
3042 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3043 hpsa_scsi_interpret_error(h, c);
3044 rc = -1;
3045 }
3046 out:
3047 cmd_free(h, c);
3048 return rc;
3049 }
3050
3051 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3052 u8 reset_type, int reply_queue)
3053 {
3054 int rc = IO_OK;
3055 struct CommandList *c;
3056 struct ErrorInfo *ei;
3057
3058 c = cmd_alloc(h);
3059
3060
3061 /* fill_cmd can't fail here, no data buffer to map. */
3062 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3063 scsi3addr, TYPE_MSG);
3064 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3065 if (rc) {
3066 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3067 goto out;
3068 }
3069 /* no unmap needed here because no data xfer. */
3070
3071 ei = c->err_info;
3072 if (ei->CommandStatus != 0) {
3073 hpsa_scsi_interpret_error(h, c);
3074 rc = -1;
3075 }
3076 out:
3077 cmd_free(h, c);
3078 return rc;
3079 }
3080
3081 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3082 struct hpsa_scsi_dev_t *dev,
3083 unsigned char *scsi3addr)
3084 {
3085 int i;
3086 bool match = false;
3087 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3088 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3089
3090 if (hpsa_is_cmd_idle(c))
3091 return false;
3092
3093 switch (c->cmd_type) {
3094 case CMD_SCSI:
3095 case CMD_IOCTL_PEND:
3096 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3097 sizeof(c->Header.LUN.LunAddrBytes));
3098 break;
3099
3100 case CMD_IOACCEL1:
3101 case CMD_IOACCEL2:
3102 if (c->phys_disk == dev) {
3103 /* HBA mode match */
3104 match = true;
3105 } else {
3106 /* Possible RAID mode -- check each phys dev. */
3107 /* FIXME: Do we need to take out a lock here? If
3108 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3109 * instead. */
3110 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111 /* FIXME: an alternate test might be
3112 *
3113 * match = dev->phys_disk[i]->ioaccel_handle
3114 * == c2->scsi_nexus; */
3115 match = dev->phys_disk[i] == c->phys_disk;
3116 }
3117 }
3118 break;
3119
3120 case IOACCEL2_TMF:
3121 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3122 match = dev->phys_disk[i]->ioaccel_handle ==
3123 le32_to_cpu(ac->it_nexus);
3124 }
3125 break;
3126
3127 case 0: /* The command is in the middle of being initialized. */
3128 match = false;
3129 break;
3130
3131 default:
3132 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3133 c->cmd_type);
3134 BUG();
3135 }
3136
3137 return match;
3138 }
3139
3140 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3141 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3142 {
3143 int i;
3144 int rc = 0;
3145
3146 /* We can really only handle one reset at a time */
3147 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3148 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3149 return -EINTR;
3150 }
3151
3152 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3153
3154 for (i = 0; i < h->nr_cmds; i++) {
3155 struct CommandList *c = h->cmd_pool + i;
3156 int refcount = atomic_inc_return(&c->refcount);
3157
3158 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3159 unsigned long flags;
3160
3161 /*
3162 * Mark the target command as having a reset pending,
3163 * then lock a lock so that the command cannot complete
3164 * while we're considering it. If the command is not
3165 * idle then count it; otherwise revoke the event.
3166 */
3167 c->reset_pending = dev;
3168 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3169 if (!hpsa_is_cmd_idle(c))
3170 atomic_inc(&dev->reset_cmds_out);
3171 else
3172 c->reset_pending = NULL;
3173 spin_unlock_irqrestore(&h->lock, flags);
3174 }
3175
3176 cmd_free(h, c);
3177 }
3178
3179 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3180 if (!rc)
3181 wait_event(h->event_sync_wait_queue,
3182 atomic_read(&dev->reset_cmds_out) == 0 ||
3183 lockup_detected(h));
3184
3185 if (unlikely(lockup_detected(h))) {
3186 dev_warn(&h->pdev->dev,
3187 "Controller lockup detected during reset wait\n");
3188 rc = -ENODEV;
3189 }
3190
3191 if (unlikely(rc))
3192 atomic_set(&dev->reset_cmds_out, 0);
3193 else
3194 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3195
3196 mutex_unlock(&h->reset_mutex);
3197 return rc;
3198 }
3199
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 int rc;
3204 unsigned char *buf;
3205
3206 *raid_level = RAID_UNKNOWN;
3207 buf = kzalloc(64, GFP_KERNEL);
3208 if (!buf)
3209 return;
3210
3211 if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 goto exit;
3214
3215 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218 if (rc == 0)
3219 *raid_level = buf[8];
3220 if (*raid_level > RAID_UNKNOWN)
3221 *raid_level = RAID_UNKNOWN;
3222 exit:
3223 kfree(buf);
3224 return;
3225 }
3226
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 struct raid_map_data *map_buff)
3231 {
3232 struct raid_map_disk_data *dd = &map_buff->data[0];
3233 int map, row, col;
3234 u16 map_cnt, row_cnt, disks_per_row;
3235
3236 if (rc != 0)
3237 return;
3238
3239 /* Show details only if debugging has been activated. */
3240 if (h->raid_offload_debug < 2)
3241 return;
3242
3243 dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 le32_to_cpu(map_buff->structure_size));
3245 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 le32_to_cpu(map_buff->volume_blk_size));
3247 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 le64_to_cpu(map_buff->volume_blk_cnt));
3249 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 map_buff->phys_blk_shift);
3251 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 map_buff->parity_rotation_shift);
3253 dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 le16_to_cpu(map_buff->strip_size));
3255 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 le64_to_cpu(map_buff->disk_starting_blk));
3257 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 le64_to_cpu(map_buff->disk_blk_cnt));
3259 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 le16_to_cpu(map_buff->data_disks_per_row));
3261 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 le16_to_cpu(map_buff->metadata_disks_per_row));
3263 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 le16_to_cpu(map_buff->row_cnt));
3265 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 le16_to_cpu(map_buff->layout_map_count));
3267 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 le16_to_cpu(map_buff->flags));
3269 dev_info(&h->pdev->dev, "encryption = %s\n",
3270 le16_to_cpu(map_buff->flags) &
3271 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3272 dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 le16_to_cpu(map_buff->dekindex));
3274 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 for (map = 0; map < map_cnt; map++) {
3276 dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 for (row = 0; row < row_cnt; row++) {
3279 dev_info(&h->pdev->dev, " Row%u:\n", row);
3280 disks_per_row =
3281 le16_to_cpu(map_buff->data_disks_per_row);
3282 for (col = 0; col < disks_per_row; col++, dd++)
3283 dev_info(&h->pdev->dev,
3284 " D%02u: h=0x%04x xor=%u,%u\n",
3285 col, dd->ioaccel_handle,
3286 dd->xor_mult[0], dd->xor_mult[1]);
3287 disks_per_row =
3288 le16_to_cpu(map_buff->metadata_disks_per_row);
3289 for (col = 0; col < disks_per_row; col++, dd++)
3290 dev_info(&h->pdev->dev,
3291 " M%02u: h=0x%04x xor=%u,%u\n",
3292 col, dd->ioaccel_handle,
3293 dd->xor_mult[0], dd->xor_mult[1]);
3294 }
3295 }
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 __attribute__((unused)) int rc,
3300 __attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 int rc = 0;
3309 struct CommandList *c;
3310 struct ErrorInfo *ei;
3311
3312 c = cmd_alloc(h);
3313
3314 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 sizeof(this_device->raid_map), 0,
3316 scsi3addr, TYPE_CMD)) {
3317 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 cmd_free(h, c);
3319 return -1;
3320 }
3321 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 NO_TIMEOUT);
3323 if (rc)
3324 goto out;
3325 ei = c->err_info;
3326 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 hpsa_scsi_interpret_error(h, c);
3328 rc = -1;
3329 goto out;
3330 }
3331 cmd_free(h, c);
3332
3333 /* @todo in the future, dynamically allocate RAID map memory */
3334 if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 sizeof(this_device->raid_map)) {
3336 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 rc = -1;
3338 }
3339 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 return rc;
3341 out:
3342 cmd_free(h, c);
3343 return rc;
3344 }
3345
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 unsigned char scsi3addr[], u16 bmic_device_index,
3348 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 int rc = IO_OK;
3351 struct CommandList *c;
3352 struct ErrorInfo *ei;
3353
3354 c = cmd_alloc(h);
3355
3356 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 0, RAID_CTLR_LUNID, TYPE_CMD);
3358 if (rc)
3359 goto out;
3360
3361 c->Request.CDB[2] = bmic_device_index & 0xff;
3362 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 NO_TIMEOUT);
3366 if (rc)
3367 goto out;
3368 ei = c->err_info;
3369 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 hpsa_scsi_interpret_error(h, c);
3371 rc = -1;
3372 }
3373 out:
3374 cmd_free(h, c);
3375 return rc;
3376 }
3377
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 int rc = IO_OK;
3382 struct CommandList *c;
3383 struct ErrorInfo *ei;
3384
3385 c = cmd_alloc(h);
3386
3387 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 0, RAID_CTLR_LUNID, TYPE_CMD);
3389 if (rc)
3390 goto out;
3391
3392 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 NO_TIMEOUT);
3394 if (rc)
3395 goto out;
3396 ei = c->err_info;
3397 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 hpsa_scsi_interpret_error(h, c);
3399 rc = -1;
3400 }
3401 out:
3402 cmd_free(h, c);
3403 return rc;
3404 }
3405
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 unsigned char scsi3addr[], u16 bmic_device_index,
3408 struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 int rc = IO_OK;
3411 struct CommandList *c;
3412 struct ErrorInfo *ei;
3413
3414 c = cmd_alloc(h);
3415 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 0, RAID_CTLR_LUNID, TYPE_CMD);
3417 if (rc)
3418 goto out;
3419
3420 c->Request.CDB[2] = bmic_device_index & 0xff;
3421 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 NO_TIMEOUT);
3425 ei = c->err_info;
3426 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 hpsa_scsi_interpret_error(h, c);
3428 rc = -1;
3429 }
3430 out:
3431 cmd_free(h, c);
3432
3433 return rc;
3434 }
3435
3436 /*
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3441 */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 unsigned char *scsi3addr,
3444 struct ReportExtendedLUNdata *rlep, int rle_index,
3445 struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 int rc = -1;
3448 struct CommandList *c = NULL;
3449 struct ErrorInfo *ei = NULL;
3450 struct bmic_sense_storage_box_params *bssbp = NULL;
3451 struct bmic_identify_physical_device *id_phys = NULL;
3452 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3453 u16 bmic_device_index = 0;
3454
3455 encl_dev->eli =
3456 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3457
3458 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3459
3460 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3461 rc = IO_OK;
3462 goto out;
3463 }
3464
3465 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3466 rc = IO_OK;
3467 goto out;
3468 }
3469
3470 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3471 if (!bssbp)
3472 goto out;
3473
3474 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3475 if (!id_phys)
3476 goto out;
3477
3478 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3479 id_phys, sizeof(*id_phys));
3480 if (rc) {
3481 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3482 __func__, encl_dev->external, bmic_device_index);
3483 goto out;
3484 }
3485
3486 c = cmd_alloc(h);
3487
3488 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3489 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3490
3491 if (rc)
3492 goto out;
3493
3494 if (id_phys->phys_connector[1] == 'E')
3495 c->Request.CDB[5] = id_phys->box_index;
3496 else
3497 c->Request.CDB[5] = 0;
3498
3499 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3500 NO_TIMEOUT);
3501 if (rc)
3502 goto out;
3503
3504 ei = c->err_info;
3505 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3506 rc = -1;
3507 goto out;
3508 }
3509
3510 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3511 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3512 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3513
3514 rc = IO_OK;
3515 out:
3516 kfree(bssbp);
3517 kfree(id_phys);
3518
3519 if (c)
3520 cmd_free(h, c);
3521
3522 if (rc != IO_OK)
3523 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3524 "Error, could not get enclosure information");
3525 }
3526
3527 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3528 unsigned char *scsi3addr)
3529 {
3530 struct ReportExtendedLUNdata *physdev;
3531 u32 nphysicals;
3532 u64 sa = 0;
3533 int i;
3534
3535 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3536 if (!physdev)
3537 return 0;
3538
3539 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3540 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3541 kfree(physdev);
3542 return 0;
3543 }
3544 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3545
3546 for (i = 0; i < nphysicals; i++)
3547 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3548 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3549 break;
3550 }
3551
3552 kfree(physdev);
3553
3554 return sa;
3555 }
3556
3557 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3558 struct hpsa_scsi_dev_t *dev)
3559 {
3560 int rc;
3561 u64 sa = 0;
3562
3563 if (is_hba_lunid(scsi3addr)) {
3564 struct bmic_sense_subsystem_info *ssi;
3565
3566 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3567 if (!ssi)
3568 return;
3569
3570 rc = hpsa_bmic_sense_subsystem_information(h,
3571 scsi3addr, 0, ssi, sizeof(*ssi));
3572 if (rc == 0) {
3573 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3574 h->sas_address = sa;
3575 }
3576
3577 kfree(ssi);
3578 } else
3579 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3580
3581 dev->sas_address = sa;
3582 }
3583
3584 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3585 struct ReportExtendedLUNdata *physdev)
3586 {
3587 u32 nphysicals;
3588 int i;
3589
3590 if (h->discovery_polling)
3591 return;
3592
3593 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3594
3595 for (i = 0; i < nphysicals; i++) {
3596 if (physdev->LUN[i].device_type ==
3597 BMIC_DEVICE_TYPE_CONTROLLER
3598 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3599 dev_info(&h->pdev->dev,
3600 "External controller present, activate discovery polling and disable rld caching\n");
3601 hpsa_disable_rld_caching(h);
3602 h->discovery_polling = 1;
3603 break;
3604 }
3605 }
3606 }
3607
3608 /* Get a device id from inquiry page 0x83 */
3609 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3610 unsigned char scsi3addr[], u8 page)
3611 {
3612 int rc;
3613 int i;
3614 int pages;
3615 unsigned char *buf, bufsize;
3616
3617 buf = kzalloc(256, GFP_KERNEL);
3618 if (!buf)
3619 return false;
3620
3621 /* Get the size of the page list first */
3622 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624 buf, HPSA_VPD_HEADER_SZ);
3625 if (rc != 0)
3626 goto exit_unsupported;
3627 pages = buf[3];
3628 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3629 bufsize = pages + HPSA_VPD_HEADER_SZ;
3630 else
3631 bufsize = 255;
3632
3633 /* Get the whole VPD page list */
3634 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3635 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3636 buf, bufsize);
3637 if (rc != 0)
3638 goto exit_unsupported;
3639
3640 pages = buf[3];
3641 for (i = 1; i <= pages; i++)
3642 if (buf[3 + i] == page)
3643 goto exit_supported;
3644 exit_unsupported:
3645 kfree(buf);
3646 return false;
3647 exit_supported:
3648 kfree(buf);
3649 return true;
3650 }
3651
3652 /*
3653 * Called during a scan operation.
3654 * Sets ioaccel status on the new device list, not the existing device list
3655 *
3656 * The device list used during I/O will be updated later in
3657 * adjust_hpsa_scsi_table.
3658 */
3659 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3660 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3661 {
3662 int rc;
3663 unsigned char *buf;
3664 u8 ioaccel_status;
3665
3666 this_device->offload_config = 0;
3667 this_device->offload_enabled = 0;
3668 this_device->offload_to_be_enabled = 0;
3669
3670 buf = kzalloc(64, GFP_KERNEL);
3671 if (!buf)
3672 return;
3673 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3674 goto out;
3675 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3676 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3677 if (rc != 0)
3678 goto out;
3679
3680 #define IOACCEL_STATUS_BYTE 4
3681 #define OFFLOAD_CONFIGURED_BIT 0x01
3682 #define OFFLOAD_ENABLED_BIT 0x02
3683 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3684 this_device->offload_config =
3685 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3686 if (this_device->offload_config) {
3687 this_device->offload_to_be_enabled =
3688 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3689 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3690 this_device->offload_to_be_enabled = 0;
3691 }
3692
3693 out:
3694 kfree(buf);
3695 return;
3696 }
3697
3698 /* Get the device id from inquiry page 0x83 */
3699 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3700 unsigned char *device_id, int index, int buflen)
3701 {
3702 int rc;
3703 unsigned char *buf;
3704
3705 /* Does controller have VPD for device id? */
3706 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3707 return 1; /* not supported */
3708
3709 buf = kzalloc(64, GFP_KERNEL);
3710 if (!buf)
3711 return -ENOMEM;
3712
3713 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3714 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3715 if (rc == 0) {
3716 if (buflen > 16)
3717 buflen = 16;
3718 memcpy(device_id, &buf[8], buflen);
3719 }
3720
3721 kfree(buf);
3722
3723 return rc; /*0 - got id, otherwise, didn't */
3724 }
3725
3726 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3727 void *buf, int bufsize,
3728 int extended_response)
3729 {
3730 int rc = IO_OK;
3731 struct CommandList *c;
3732 unsigned char scsi3addr[8];
3733 struct ErrorInfo *ei;
3734
3735 c = cmd_alloc(h);
3736
3737 /* address the controller */
3738 memset(scsi3addr, 0, sizeof(scsi3addr));
3739 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3740 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3741 rc = -EAGAIN;
3742 goto out;
3743 }
3744 if (extended_response)
3745 c->Request.CDB[1] = extended_response;
3746 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3747 NO_TIMEOUT);
3748 if (rc)
3749 goto out;
3750 ei = c->err_info;
3751 if (ei->CommandStatus != 0 &&
3752 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3753 hpsa_scsi_interpret_error(h, c);
3754 rc = -EIO;
3755 } else {
3756 struct ReportLUNdata *rld = buf;
3757
3758 if (rld->extended_response_flag != extended_response) {
3759 if (!h->legacy_board) {
3760 dev_err(&h->pdev->dev,
3761 "report luns requested format %u, got %u\n",
3762 extended_response,
3763 rld->extended_response_flag);
3764 rc = -EINVAL;
3765 } else
3766 rc = -EOPNOTSUPP;
3767 }
3768 }
3769 out:
3770 cmd_free(h, c);
3771 return rc;
3772 }
3773
3774 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3775 struct ReportExtendedLUNdata *buf, int bufsize)
3776 {
3777 int rc;
3778 struct ReportLUNdata *lbuf;
3779
3780 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3781 HPSA_REPORT_PHYS_EXTENDED);
3782 if (!rc || rc != -EOPNOTSUPP)
3783 return rc;
3784
3785 /* REPORT PHYS EXTENDED is not supported */
3786 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3787 if (!lbuf)
3788 return -ENOMEM;
3789
3790 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3791 if (!rc) {
3792 int i;
3793 u32 nphys;
3794
3795 /* Copy ReportLUNdata header */
3796 memcpy(buf, lbuf, 8);
3797 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3798 for (i = 0; i < nphys; i++)
3799 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3800 }
3801 kfree(lbuf);
3802 return rc;
3803 }
3804
3805 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3806 struct ReportLUNdata *buf, int bufsize)
3807 {
3808 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3809 }
3810
3811 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3812 int bus, int target, int lun)
3813 {
3814 device->bus = bus;
3815 device->target = target;
3816 device->lun = lun;
3817 }
3818
3819 /* Use VPD inquiry to get details of volume status */
3820 static int hpsa_get_volume_status(struct ctlr_info *h,
3821 unsigned char scsi3addr[])
3822 {
3823 int rc;
3824 int status;
3825 int size;
3826 unsigned char *buf;
3827
3828 buf = kzalloc(64, GFP_KERNEL);
3829 if (!buf)
3830 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3831
3832 /* Does controller have VPD for logical volume status? */
3833 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3834 goto exit_failed;
3835
3836 /* Get the size of the VPD return buffer */
3837 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3838 buf, HPSA_VPD_HEADER_SZ);
3839 if (rc != 0)
3840 goto exit_failed;
3841 size = buf[3];
3842
3843 /* Now get the whole VPD buffer */
3844 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3845 buf, size + HPSA_VPD_HEADER_SZ);
3846 if (rc != 0)
3847 goto exit_failed;
3848 status = buf[4]; /* status byte */
3849
3850 kfree(buf);
3851 return status;
3852 exit_failed:
3853 kfree(buf);
3854 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3855 }
3856
3857 /* Determine offline status of a volume.
3858 * Return either:
3859 * 0 (not offline)
3860 * 0xff (offline for unknown reasons)
3861 * # (integer code indicating one of several NOT READY states
3862 * describing why a volume is to be kept offline)
3863 */
3864 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3865 unsigned char scsi3addr[])
3866 {
3867 struct CommandList *c;
3868 unsigned char *sense;
3869 u8 sense_key, asc, ascq;
3870 int sense_len;
3871 int rc, ldstat = 0;
3872 u16 cmd_status;
3873 u8 scsi_status;
3874 #define ASC_LUN_NOT_READY 0x04
3875 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3876 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3877
3878 c = cmd_alloc(h);
3879
3880 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3881 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3882 NO_TIMEOUT);
3883 if (rc) {
3884 cmd_free(h, c);
3885 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3886 }
3887 sense = c->err_info->SenseInfo;
3888 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3889 sense_len = sizeof(c->err_info->SenseInfo);
3890 else
3891 sense_len = c->err_info->SenseLen;
3892 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3893 cmd_status = c->err_info->CommandStatus;
3894 scsi_status = c->err_info->ScsiStatus;
3895 cmd_free(h, c);
3896
3897 /* Determine the reason for not ready state */
3898 ldstat = hpsa_get_volume_status(h, scsi3addr);
3899
3900 /* Keep volume offline in certain cases: */
3901 switch (ldstat) {
3902 case HPSA_LV_FAILED:
3903 case HPSA_LV_UNDERGOING_ERASE:
3904 case HPSA_LV_NOT_AVAILABLE:
3905 case HPSA_LV_UNDERGOING_RPI:
3906 case HPSA_LV_PENDING_RPI:
3907 case HPSA_LV_ENCRYPTED_NO_KEY:
3908 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3909 case HPSA_LV_UNDERGOING_ENCRYPTION:
3910 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3911 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3912 return ldstat;
3913 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3914 /* If VPD status page isn't available,
3915 * use ASC/ASCQ to determine state
3916 */
3917 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3918 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3919 return ldstat;
3920 break;
3921 default:
3922 break;
3923 }
3924 return HPSA_LV_OK;
3925 }
3926
3927 static int hpsa_update_device_info(struct ctlr_info *h,
3928 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3929 unsigned char *is_OBDR_device)
3930 {
3931
3932 #define OBDR_SIG_OFFSET 43
3933 #define OBDR_TAPE_SIG "$DR-10"
3934 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3935 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3936
3937 unsigned char *inq_buff;
3938 unsigned char *obdr_sig;
3939 int rc = 0;
3940
3941 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3942 if (!inq_buff) {
3943 rc = -ENOMEM;
3944 goto bail_out;
3945 }
3946
3947 /* Do an inquiry to the device to see what it is. */
3948 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3949 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3950 dev_err(&h->pdev->dev,
3951 "%s: inquiry failed, device will be skipped.\n",
3952 __func__);
3953 rc = HPSA_INQUIRY_FAILED;
3954 goto bail_out;
3955 }
3956
3957 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3958 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3959
3960 this_device->devtype = (inq_buff[0] & 0x1f);
3961 memcpy(this_device->scsi3addr, scsi3addr, 8);
3962 memcpy(this_device->vendor, &inq_buff[8],
3963 sizeof(this_device->vendor));
3964 memcpy(this_device->model, &inq_buff[16],
3965 sizeof(this_device->model));
3966 this_device->rev = inq_buff[2];
3967 memset(this_device->device_id, 0,
3968 sizeof(this_device->device_id));
3969 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3970 sizeof(this_device->device_id)) < 0) {
3971 dev_err(&h->pdev->dev,
3972 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3973 h->ctlr, __func__,
3974 h->scsi_host->host_no,
3975 this_device->bus, this_device->target,
3976 this_device->lun,
3977 scsi_device_type(this_device->devtype),
3978 this_device->model);
3979 rc = HPSA_LV_FAILED;
3980 goto bail_out;
3981 }
3982
3983 if ((this_device->devtype == TYPE_DISK ||
3984 this_device->devtype == TYPE_ZBC) &&
3985 is_logical_dev_addr_mode(scsi3addr)) {
3986 unsigned char volume_offline;
3987
3988 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3989 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3990 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3991 volume_offline = hpsa_volume_offline(h, scsi3addr);
3992 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3993 h->legacy_board) {
3994 /*
3995 * Legacy boards might not support volume status
3996 */
3997 dev_info(&h->pdev->dev,
3998 "C0:T%d:L%d Volume status not available, assuming online.\n",
3999 this_device->target, this_device->lun);
4000 volume_offline = 0;
4001 }
4002 this_device->volume_offline = volume_offline;
4003 if (volume_offline == HPSA_LV_FAILED) {
4004 rc = HPSA_LV_FAILED;
4005 dev_err(&h->pdev->dev,
4006 "%s: LV failed, device will be skipped.\n",
4007 __func__);
4008 goto bail_out;
4009 }
4010 } else {
4011 this_device->raid_level = RAID_UNKNOWN;
4012 this_device->offload_config = 0;
4013 this_device->offload_enabled = 0;
4014 this_device->offload_to_be_enabled = 0;
4015 this_device->hba_ioaccel_enabled = 0;
4016 this_device->volume_offline = 0;
4017 this_device->queue_depth = h->nr_cmds;
4018 }
4019
4020 if (this_device->external)
4021 this_device->queue_depth = EXTERNAL_QD;
4022
4023 if (is_OBDR_device) {
4024 /* See if this is a One-Button-Disaster-Recovery device
4025 * by looking for "$DR-10" at offset 43 in inquiry data.
4026 */
4027 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029 strncmp(obdr_sig, OBDR_TAPE_SIG,
4030 OBDR_SIG_LEN) == 0);
4031 }
4032 kfree(inq_buff);
4033 return 0;
4034
4035 bail_out:
4036 kfree(inq_buff);
4037 return rc;
4038 }
4039
4040 /*
4041 * Helper function to assign bus, target, lun mapping of devices.
4042 * Logical drive target and lun are assigned at this time, but
4043 * physical device lun and target assignment are deferred (assigned
4044 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049 u32 lunid = get_unaligned_le32(lunaddrbytes);
4050
4051 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052 /* physical device, target and lun filled in later */
4053 if (is_hba_lunid(lunaddrbytes)) {
4054 int bus = HPSA_HBA_BUS;
4055
4056 if (!device->rev)
4057 bus = HPSA_LEGACY_HBA_BUS;
4058 hpsa_set_bus_target_lun(device,
4059 bus, 0, lunid & 0x3fff);
4060 } else
4061 /* defer target, lun assignment for physical devices */
4062 hpsa_set_bus_target_lun(device,
4063 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064 return;
4065 }
4066 /* It's a logical device */
4067 if (device->external) {
4068 hpsa_set_bus_target_lun(device,
4069 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070 lunid & 0x00ff);
4071 return;
4072 }
4073 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074 0, lunid & 0x3fff);
4075 }
4076
4077 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078 int i, int nphysicals, int nlocal_logicals)
4079 {
4080 /* In report logicals, local logicals are listed first,
4081 * then any externals.
4082 */
4083 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084
4085 if (i == raid_ctlr_position)
4086 return 0;
4087
4088 if (i < logicals_start)
4089 return 0;
4090
4091 /* i is in logicals range, but still within local logicals */
4092 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093 return 0;
4094
4095 return 1; /* it's an external lun */
4096 }
4097
4098 /*
4099 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4100 * logdev. The number of luns in physdev and logdev are returned in
4101 * *nphysicals and *nlogicals, respectively.
4102 * Returns 0 on success, -1 otherwise.
4103 */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106 struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110 return -1;
4111 }
4112 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116 *nphysicals = HPSA_MAX_PHYS_LUN;
4117 }
4118 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120 return -1;
4121 }
4122 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123 /* Reject Logicals in excess of our max capability. */
4124 if (*nlogicals > HPSA_MAX_LUN) {
4125 dev_warn(&h->pdev->dev,
4126 "maximum logical LUNs (%d) exceeded. "
4127 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4128 *nlogicals - HPSA_MAX_LUN);
4129 *nlogicals = HPSA_MAX_LUN;
4130 }
4131 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132 dev_warn(&h->pdev->dev,
4133 "maximum logical + physical LUNs (%d) exceeded. "
4134 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137 }
4138 return 0;
4139 }
4140
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142 int i, int nphysicals, int nlogicals,
4143 struct ReportExtendedLUNdata *physdev_list,
4144 struct ReportLUNdata *logdev_list)
4145 {
4146 /* Helper function, figure out where the LUN ID info is coming from
4147 * given index i, lists of physical and logical devices, where in
4148 * the list the raid controller is supposed to appear (first or last)
4149 */
4150
4151 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153
4154 if (i == raid_ctlr_position)
4155 return RAID_CTLR_LUNID;
4156
4157 if (i < logicals_start)
4158 return &physdev_list->LUN[i -
4159 (raid_ctlr_position == 0)].lunid[0];
4160
4161 if (i < last_device)
4162 return &logdev_list->LUN[i - nphysicals -
4163 (raid_ctlr_position == 0)][0];
4164 BUG();
4165 return NULL;
4166 }
4167
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170 struct hpsa_scsi_dev_t *dev,
4171 struct ReportExtendedLUNdata *rlep, int rle_index,
4172 struct bmic_identify_physical_device *id_phys)
4173 {
4174 int rc;
4175 struct ext_report_lun_entry *rle;
4176
4177 rle = &rlep->LUN[rle_index];
4178
4179 dev->ioaccel_handle = rle->ioaccel_handle;
4180 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181 dev->hba_ioaccel_enabled = 1;
4182 memset(id_phys, 0, sizeof(*id_phys));
4183 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185 sizeof(*id_phys));
4186 if (!rc)
4187 /* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4190 dev->queue_depth =
4191 le16_to_cpu(id_phys->current_queue_depth_limit) -
4192 DRIVE_CMDS_RESERVED_FOR_FW;
4193 else
4194 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195 }
4196
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198 struct ReportExtendedLUNdata *rlep, int rle_index,
4199 struct bmic_identify_physical_device *id_phys)
4200 {
4201 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202
4203 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204 this_device->hba_ioaccel_enabled = 1;
4205
4206 memcpy(&this_device->active_path_index,
4207 &id_phys->active_path_number,
4208 sizeof(this_device->active_path_index));
4209 memcpy(&this_device->path_map,
4210 &id_phys->redundant_path_present_map,
4211 sizeof(this_device->path_map));
4212 memcpy(&this_device->box,
4213 &id_phys->alternate_paths_phys_box_on_port,
4214 sizeof(this_device->box));
4215 memcpy(&this_device->phys_connector,
4216 &id_phys->alternate_paths_phys_connector,
4217 sizeof(this_device->phys_connector));
4218 memcpy(&this_device->bay,
4219 &id_phys->phys_bay_in_box,
4220 sizeof(this_device->bay));
4221 }
4222
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225 struct bmic_identify_controller *id_ctlr,
4226 u32 *nlocals)
4227 {
4228 int rc;
4229
4230 if (!id_ctlr) {
4231 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232 __func__);
4233 return -ENOMEM;
4234 }
4235 memset(id_ctlr, 0, sizeof(*id_ctlr));
4236 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237 if (!rc)
4238 if (id_ctlr->configured_logical_drive_count < 255)
4239 *nlocals = id_ctlr->configured_logical_drive_count;
4240 else
4241 *nlocals = le16_to_cpu(
4242 id_ctlr->extended_logical_unit_count);
4243 else
4244 *nlocals = -1;
4245 return rc;
4246 }
4247
4248 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249 {
4250 struct bmic_identify_physical_device *id_phys;
4251 bool is_spare = false;
4252 int rc;
4253
4254 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255 if (!id_phys)
4256 return false;
4257
4258 rc = hpsa_bmic_id_physical_device(h,
4259 lunaddrbytes,
4260 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261 id_phys, sizeof(*id_phys));
4262 if (rc == 0)
4263 is_spare = (id_phys->more_flags >> 6) & 0x01;
4264
4265 kfree(id_phys);
4266 return is_spare;
4267 }
4268
4269 #define RPL_DEV_FLAG_NON_DISK 0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4272
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4274
4275 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276 struct ext_report_lun_entry *rle)
4277 {
4278 u8 device_flags;
4279 u8 device_type;
4280
4281 if (!MASKED_DEVICE(lunaddrbytes))
4282 return false;
4283
4284 device_flags = rle->device_flags;
4285 device_type = rle->device_type;
4286
4287 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289 return false;
4290 return true;
4291 }
4292
4293 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294 return false;
4295
4296 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297 return false;
4298
4299 /*
4300 * Spares may be spun down, we do not want to
4301 * do an Inquiry to a RAID set spare drive as
4302 * that would have them spun up, that is a
4303 * performance hit because I/O to the RAID device
4304 * stops while the spin up occurs which can take
4305 * over 50 seconds.
4306 */
4307 if (hpsa_is_disk_spare(h, lunaddrbytes))
4308 return true;
4309
4310 return false;
4311 }
4312
4313 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314 {
4315 /* the idea here is we could get notified
4316 * that some devices have changed, so we do a report
4317 * physical luns and report logical luns cmd, and adjust
4318 * our list of devices accordingly.
4319 *
4320 * The scsi3addr's of devices won't change so long as the
4321 * adapter is not reset. That means we can rescan and
4322 * tell which devices we already know about, vs. new
4323 * devices, vs. disappearing devices.
4324 */
4325 struct ReportExtendedLUNdata *physdev_list = NULL;
4326 struct ReportLUNdata *logdev_list = NULL;
4327 struct bmic_identify_physical_device *id_phys = NULL;
4328 struct bmic_identify_controller *id_ctlr = NULL;
4329 u32 nphysicals = 0;
4330 u32 nlogicals = 0;
4331 u32 nlocal_logicals = 0;
4332 u32 ndev_allocated = 0;
4333 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334 int ncurrent = 0;
4335 int i, n_ext_target_devs, ndevs_to_allocate;
4336 int raid_ctlr_position;
4337 bool physical_device;
4338 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339
4340 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346
4347 if (!currentsd || !physdev_list || !logdev_list ||
4348 !tmpdevice || !id_phys || !id_ctlr) {
4349 dev_err(&h->pdev->dev, "out of memory\n");
4350 goto out;
4351 }
4352 memset(lunzerobits, 0, sizeof(lunzerobits));
4353
4354 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355
4356 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357 logdev_list, &nlogicals)) {
4358 h->drv_req_rescan = 1;
4359 goto out;
4360 }
4361
4362 /* Set number of local logicals (non PTRAID) */
4363 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364 dev_warn(&h->pdev->dev,
4365 "%s: Can't determine number of local logical devices.\n",
4366 __func__);
4367 }
4368
4369 /* We might see up to the maximum number of logical and physical disks
4370 * plus external target devices, and a device for the local RAID
4371 * controller.
4372 */
4373 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374
4375 hpsa_ext_ctrl_present(h, physdev_list);
4376
4377 /* Allocate the per device structures */
4378 for (i = 0; i < ndevs_to_allocate; i++) {
4379 if (i >= HPSA_MAX_DEVICES) {
4380 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4382 ndevs_to_allocate - HPSA_MAX_DEVICES);
4383 break;
4384 }
4385
4386 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387 if (!currentsd[i]) {
4388 h->drv_req_rescan = 1;
4389 goto out;
4390 }
4391 ndev_allocated++;
4392 }
4393
4394 if (is_scsi_rev_5(h))
4395 raid_ctlr_position = 0;
4396 else
4397 raid_ctlr_position = nphysicals + nlogicals;
4398
4399 /* adjust our table of devices */
4400 n_ext_target_devs = 0;
4401 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402 u8 *lunaddrbytes, is_OBDR = 0;
4403 int rc = 0;
4404 int phys_dev_index = i - (raid_ctlr_position == 0);
4405 bool skip_device = false;
4406
4407 memset(tmpdevice, 0, sizeof(*tmpdevice));
4408
4409 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410
4411 /* Figure out where the LUN ID info is coming from */
4412 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413 i, nphysicals, nlogicals, physdev_list, logdev_list);
4414
4415 /* Determine if this is a lun from an external target array */
4416 tmpdevice->external =
4417 figure_external_status(h, raid_ctlr_position, i,
4418 nphysicals, nlocal_logicals);
4419
4420 /*
4421 * Skip over some devices such as a spare.
4422 */
4423 if (!tmpdevice->external && physical_device) {
4424 skip_device = hpsa_skip_device(h, lunaddrbytes,
4425 &physdev_list->LUN[phys_dev_index]);
4426 if (skip_device)
4427 continue;
4428 }
4429
4430 /* Get device type, vendor, model, device id, raid_map */
4431 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432 &is_OBDR);
4433 if (rc == -ENOMEM) {
4434 dev_warn(&h->pdev->dev,
4435 "Out of memory, rescan deferred.\n");
4436 h->drv_req_rescan = 1;
4437 goto out;
4438 }
4439 if (rc) {
4440 h->drv_req_rescan = 1;
4441 continue;
4442 }
4443
4444 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445 this_device = currentsd[ncurrent];
4446
4447 *this_device = *tmpdevice;
4448 this_device->physical_device = physical_device;
4449
4450 /*
4451 * Expose all devices except for physical devices that
4452 * are masked.
4453 */
4454 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455 this_device->expose_device = 0;
4456 else
4457 this_device->expose_device = 1;
4458
4459
4460 /*
4461 * Get the SAS address for physical devices that are exposed.
4462 */
4463 if (this_device->physical_device && this_device->expose_device)
4464 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465
4466 switch (this_device->devtype) {
4467 case TYPE_ROM:
4468 /* We don't *really* support actual CD-ROM devices,
4469 * just "One Button Disaster Recovery" tape drive
4470 * which temporarily pretends to be a CD-ROM drive.
4471 * So we check that the device is really an OBDR tape
4472 * device by checking for "$DR-10" in bytes 43-48 of
4473 * the inquiry data.
4474 */
4475 if (is_OBDR)
4476 ncurrent++;
4477 break;
4478 case TYPE_DISK:
4479 case TYPE_ZBC:
4480 if (this_device->physical_device) {
4481 /* The disk is in HBA mode. */
4482 /* Never use RAID mapper in HBA mode. */
4483 this_device->offload_enabled = 0;
4484 hpsa_get_ioaccel_drive_info(h, this_device,
4485 physdev_list, phys_dev_index, id_phys);
4486 hpsa_get_path_info(this_device,
4487 physdev_list, phys_dev_index, id_phys);
4488 }
4489 ncurrent++;
4490 break;
4491 case TYPE_TAPE:
4492 case TYPE_MEDIUM_CHANGER:
4493 ncurrent++;
4494 break;
4495 case TYPE_ENCLOSURE:
4496 if (!this_device->external)
4497 hpsa_get_enclosure_info(h, lunaddrbytes,
4498 physdev_list, phys_dev_index,
4499 this_device);
4500 ncurrent++;
4501 break;
4502 case TYPE_RAID:
4503 /* Only present the Smartarray HBA as a RAID controller.
4504 * If it's a RAID controller other than the HBA itself
4505 * (an external RAID controller, MSA500 or similar)
4506 * don't present it.
4507 */
4508 if (!is_hba_lunid(lunaddrbytes))
4509 break;
4510 ncurrent++;
4511 break;
4512 default:
4513 break;
4514 }
4515 if (ncurrent >= HPSA_MAX_DEVICES)
4516 break;
4517 }
4518
4519 if (h->sas_host == NULL) {
4520 int rc = 0;
4521
4522 rc = hpsa_add_sas_host(h);
4523 if (rc) {
4524 dev_warn(&h->pdev->dev,
4525 "Could not add sas host %d\n", rc);
4526 goto out;
4527 }
4528 }
4529
4530 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531 out:
4532 kfree(tmpdevice);
4533 for (i = 0; i < ndev_allocated; i++)
4534 kfree(currentsd[i]);
4535 kfree(currentsd);
4536 kfree(physdev_list);
4537 kfree(logdev_list);
4538 kfree(id_ctlr);
4539 kfree(id_phys);
4540 }
4541
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543 struct scatterlist *sg)
4544 {
4545 u64 addr64 = (u64) sg_dma_address(sg);
4546 unsigned int len = sg_dma_len(sg);
4547
4548 desc->Addr = cpu_to_le64(addr64);
4549 desc->Len = cpu_to_le32(len);
4550 desc->Ext = 0;
4551 }
4552
4553 /*
4554 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555 * dma mapping and fills in the scatter gather entries of the
4556 * hpsa command, cp.
4557 */
4558 static int hpsa_scatter_gather(struct ctlr_info *h,
4559 struct CommandList *cp,
4560 struct scsi_cmnd *cmd)
4561 {
4562 struct scatterlist *sg;
4563 int use_sg, i, sg_limit, chained, last_sg;
4564 struct SGDescriptor *curr_sg;
4565
4566 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567
4568 use_sg = scsi_dma_map(cmd);
4569 if (use_sg < 0)
4570 return use_sg;
4571
4572 if (!use_sg)
4573 goto sglist_finished;
4574
4575 /*
4576 * If the number of entries is greater than the max for a single list,
4577 * then we have a chained list; we will set up all but one entry in the
4578 * first list (the last entry is saved for link information);
4579 * otherwise, we don't have a chained list and we'll set up at each of
4580 * the entries in the one list.
4581 */
4582 curr_sg = cp->SG;
4583 chained = use_sg > h->max_cmd_sg_entries;
4584 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585 last_sg = scsi_sg_count(cmd) - 1;
4586 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587 hpsa_set_sg_descriptor(curr_sg, sg);
4588 curr_sg++;
4589 }
4590
4591 if (chained) {
4592 /*
4593 * Continue with the chained list. Set curr_sg to the chained
4594 * list. Modify the limit to the total count less the entries
4595 * we've already set up. Resume the scan at the list entry
4596 * where the previous loop left off.
4597 */
4598 curr_sg = h->cmd_sg_list[cp->cmdindex];
4599 sg_limit = use_sg - sg_limit;
4600 for_each_sg(sg, sg, sg_limit, i) {
4601 hpsa_set_sg_descriptor(curr_sg, sg);
4602 curr_sg++;
4603 }
4604 }
4605
4606 /* Back the pointer up to the last entry and mark it as "last". */
4607 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608
4609 if (use_sg + chained > h->maxSG)
4610 h->maxSG = use_sg + chained;
4611
4612 if (chained) {
4613 cp->Header.SGList = h->max_cmd_sg_entries;
4614 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615 if (hpsa_map_sg_chain_block(h, cp)) {
4616 scsi_dma_unmap(cmd);
4617 return -1;
4618 }
4619 return 0;
4620 }
4621
4622 sglist_finished:
4623
4624 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4625 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626 return 0;
4627 }
4628
4629 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630 u8 *cdb, int cdb_len,
4631 const char *func)
4632 {
4633 dev_warn(&h->pdev->dev,
4634 "%s: Blocking zero-length request: CDB:%*phN\n",
4635 func, cdb_len, cdb);
4636 }
4637
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8 *cdb)
4641 {
4642 u32 block_cnt;
4643
4644 /* Block zero-length transfer sizes on certain commands. */
4645 switch (cdb[0]) {
4646 case READ_10:
4647 case WRITE_10:
4648 case VERIFY: /* 0x2F */
4649 case WRITE_VERIFY: /* 0x2E */
4650 block_cnt = get_unaligned_be16(&cdb[7]);
4651 break;
4652 case READ_12:
4653 case WRITE_12:
4654 case VERIFY_12: /* 0xAF */
4655 case WRITE_VERIFY_12: /* 0xAE */
4656 block_cnt = get_unaligned_be32(&cdb[6]);
4657 break;
4658 case READ_16:
4659 case WRITE_16:
4660 case VERIFY_16: /* 0x8F */
4661 block_cnt = get_unaligned_be32(&cdb[10]);
4662 break;
4663 default:
4664 return false;
4665 }
4666
4667 return block_cnt == 0;
4668 }
4669
4670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671 {
4672 int is_write = 0;
4673 u32 block;
4674 u32 block_cnt;
4675
4676 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677 switch (cdb[0]) {
4678 case WRITE_6:
4679 case WRITE_12:
4680 is_write = 1;
4681 /* fall through */
4682 case READ_6:
4683 case READ_12:
4684 if (*cdb_len == 6) {
4685 block = (((cdb[1] & 0x1F) << 16) |
4686 (cdb[2] << 8) |
4687 cdb[3]);
4688 block_cnt = cdb[4];
4689 if (block_cnt == 0)
4690 block_cnt = 256;
4691 } else {
4692 BUG_ON(*cdb_len != 12);
4693 block = get_unaligned_be32(&cdb[2]);
4694 block_cnt = get_unaligned_be32(&cdb[6]);
4695 }
4696 if (block_cnt > 0xffff)
4697 return IO_ACCEL_INELIGIBLE;
4698
4699 cdb[0] = is_write ? WRITE_10 : READ_10;
4700 cdb[1] = 0;
4701 cdb[2] = (u8) (block >> 24);
4702 cdb[3] = (u8) (block >> 16);
4703 cdb[4] = (u8) (block >> 8);
4704 cdb[5] = (u8) (block);
4705 cdb[6] = 0;
4706 cdb[7] = (u8) (block_cnt >> 8);
4707 cdb[8] = (u8) (block_cnt);
4708 cdb[9] = 0;
4709 *cdb_len = 10;
4710 break;
4711 }
4712 return 0;
4713 }
4714
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719 struct scsi_cmnd *cmd = c->scsi_cmd;
4720 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721 unsigned int len;
4722 unsigned int total_len = 0;
4723 struct scatterlist *sg;
4724 u64 addr64;
4725 int use_sg, i;
4726 struct SGDescriptor *curr_sg;
4727 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728
4729 /* TODO: implement chaining support */
4730 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 return IO_ACCEL_INELIGIBLE;
4733 }
4734
4735 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736
4737 if (is_zero_length_transfer(cdb)) {
4738 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 return IO_ACCEL_INELIGIBLE;
4741 }
4742
4743 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744 atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 return IO_ACCEL_INELIGIBLE;
4746 }
4747
4748 c->cmd_type = CMD_IOACCEL1;
4749
4750 /* Adjust the DMA address to point to the accelerated command buffer */
4751 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752 (c->cmdindex * sizeof(*cp));
4753 BUG_ON(c->busaddr & 0x0000007F);
4754
4755 use_sg = scsi_dma_map(cmd);
4756 if (use_sg < 0) {
4757 atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 return use_sg;
4759 }
4760
4761 if (use_sg) {
4762 curr_sg = cp->SG;
4763 scsi_for_each_sg(cmd, sg, use_sg, i) {
4764 addr64 = (u64) sg_dma_address(sg);
4765 len = sg_dma_len(sg);
4766 total_len += len;
4767 curr_sg->Addr = cpu_to_le64(addr64);
4768 curr_sg->Len = cpu_to_le32(len);
4769 curr_sg->Ext = cpu_to_le32(0);
4770 curr_sg++;
4771 }
4772 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773
4774 switch (cmd->sc_data_direction) {
4775 case DMA_TO_DEVICE:
4776 control |= IOACCEL1_CONTROL_DATA_OUT;
4777 break;
4778 case DMA_FROM_DEVICE:
4779 control |= IOACCEL1_CONTROL_DATA_IN;
4780 break;
4781 case DMA_NONE:
4782 control |= IOACCEL1_CONTROL_NODATAXFER;
4783 break;
4784 default:
4785 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786 cmd->sc_data_direction);
4787 BUG();
4788 break;
4789 }
4790 } else {
4791 control |= IOACCEL1_CONTROL_NODATAXFER;
4792 }
4793
4794 c->Header.SGList = use_sg;
4795 /* Fill out the command structure to submit */
4796 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797 cp->transfer_len = cpu_to_le32(total_len);
4798 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800 cp->control = cpu_to_le32(control);
4801 memcpy(cp->CDB, cdb, cdb_len);
4802 memcpy(cp->CISS_LUN, scsi3addr, 8);
4803 /* Tag was already set at init time. */
4804 enqueue_cmd_and_start_io(h, c);
4805 return 0;
4806 }
4807
4808 /*
4809 * Queue a command directly to a device behind the controller using the
4810 * I/O accelerator path.
4811 */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813 struct CommandList *c)
4814 {
4815 struct scsi_cmnd *cmd = c->scsi_cmd;
4816 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817
4818 if (!dev)
4819 return -1;
4820
4821 c->phys_disk = dev;
4822
4823 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826
4827 /*
4828 * Set encryption parameters for the ioaccel2 request
4829 */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831 struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833 struct scsi_cmnd *cmd = c->scsi_cmd;
4834 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835 struct raid_map_data *map = &dev->raid_map;
4836 u64 first_block;
4837
4838 /* Are we doing encryption on this device */
4839 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840 return;
4841 /* Set the data encryption key index. */
4842 cp->dekindex = map->dekindex;
4843
4844 /* Set the encryption enable flag, encoded into direction field. */
4845 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846
4847 /* Set encryption tweak values based on logical block address
4848 * If block size is 512, tweak value is LBA.
4849 * For other block sizes, tweak is (LBA * block size)/ 512)
4850 */
4851 switch (cmd->cmnd[0]) {
4852 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853 case READ_6:
4854 case WRITE_6:
4855 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856 (cmd->cmnd[2] << 8) |
4857 cmd->cmnd[3]);
4858 break;
4859 case WRITE_10:
4860 case READ_10:
4861 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862 case WRITE_12:
4863 case READ_12:
4864 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865 break;
4866 case WRITE_16:
4867 case READ_16:
4868 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869 break;
4870 default:
4871 dev_err(&h->pdev->dev,
4872 "ERROR: %s: size (0x%x) not supported for encryption\n",
4873 __func__, cmd->cmnd[0]);
4874 BUG();
4875 break;
4876 }
4877
4878 if (le32_to_cpu(map->volume_blk_size) != 512)
4879 first_block = first_block *
4880 le32_to_cpu(map->volume_blk_size)/512;
4881
4882 cp->tweak_lower = cpu_to_le32(first_block);
4883 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 struct scsi_cmnd *cmd = c->scsi_cmd;
4891 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892 struct ioaccel2_sg_element *curr_sg;
4893 int use_sg, i;
4894 struct scatterlist *sg;
4895 u64 addr64;
4896 u32 len;
4897 u32 total_len = 0;
4898
4899 if (!cmd->device)
4900 return -1;
4901
4902 if (!cmd->device->hostdata)
4903 return -1;
4904
4905 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906
4907 if (is_zero_length_transfer(cdb)) {
4908 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909 atomic_dec(&phys_disk->ioaccel_cmds_out);
4910 return IO_ACCEL_INELIGIBLE;
4911 }
4912
4913 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 return IO_ACCEL_INELIGIBLE;
4916 }
4917
4918 c->cmd_type = CMD_IOACCEL2;
4919 /* Adjust the DMA address to point to the accelerated command buffer */
4920 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921 (c->cmdindex * sizeof(*cp));
4922 BUG_ON(c->busaddr & 0x0000007F);
4923
4924 memset(cp, 0, sizeof(*cp));
4925 cp->IU_type = IOACCEL2_IU_TYPE;
4926
4927 use_sg = scsi_dma_map(cmd);
4928 if (use_sg < 0) {
4929 atomic_dec(&phys_disk->ioaccel_cmds_out);
4930 return use_sg;
4931 }
4932
4933 if (use_sg) {
4934 curr_sg = cp->sg;
4935 if (use_sg > h->ioaccel_maxsg) {
4936 addr64 = le64_to_cpu(
4937 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938 curr_sg->address = cpu_to_le64(addr64);
4939 curr_sg->length = 0;
4940 curr_sg->reserved[0] = 0;
4941 curr_sg->reserved[1] = 0;
4942 curr_sg->reserved[2] = 0;
4943 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4944
4945 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946 }
4947 scsi_for_each_sg(cmd, sg, use_sg, i) {
4948 addr64 = (u64) sg_dma_address(sg);
4949 len = sg_dma_len(sg);
4950 total_len += len;
4951 curr_sg->address = cpu_to_le64(addr64);
4952 curr_sg->length = cpu_to_le32(len);
4953 curr_sg->reserved[0] = 0;
4954 curr_sg->reserved[1] = 0;
4955 curr_sg->reserved[2] = 0;
4956 curr_sg->chain_indicator = 0;
4957 curr_sg++;
4958 }
4959
4960 /*
4961 * Set the last s/g element bit
4962 */
4963 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4964
4965 switch (cmd->sc_data_direction) {
4966 case DMA_TO_DEVICE:
4967 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4968 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4969 break;
4970 case DMA_FROM_DEVICE:
4971 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972 cp->direction |= IOACCEL2_DIR_DATA_IN;
4973 break;
4974 case DMA_NONE:
4975 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976 cp->direction |= IOACCEL2_DIR_NO_DATA;
4977 break;
4978 default:
4979 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4980 cmd->sc_data_direction);
4981 BUG();
4982 break;
4983 }
4984 } else {
4985 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4986 cp->direction |= IOACCEL2_DIR_NO_DATA;
4987 }
4988
4989 /* Set encryption parameters, if necessary */
4990 set_encrypt_ioaccel2(h, c, cp);
4991
4992 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4993 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4994 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4995
4996 cp->data_len = cpu_to_le32(total_len);
4997 cp->err_ptr = cpu_to_le64(c->busaddr +
4998 offsetof(struct io_accel2_cmd, error_data));
4999 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5000
5001 /* fill in sg elements */
5002 if (use_sg > h->ioaccel_maxsg) {
5003 cp->sg_count = 1;
5004 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5005 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5006 atomic_dec(&phys_disk->ioaccel_cmds_out);
5007 scsi_dma_unmap(cmd);
5008 return -1;
5009 }
5010 } else
5011 cp->sg_count = (u8) use_sg;
5012
5013 enqueue_cmd_and_start_io(h, c);
5014 return 0;
5015 }
5016
5017 /*
5018 * Queue a command to the correct I/O accelerator path.
5019 */
5020 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5021 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5022 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5023 {
5024 if (!c->scsi_cmd->device)
5025 return -1;
5026
5027 if (!c->scsi_cmd->device->hostdata)
5028 return -1;
5029
5030 /* Try to honor the device's queue depth */
5031 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5032 phys_disk->queue_depth) {
5033 atomic_dec(&phys_disk->ioaccel_cmds_out);
5034 return IO_ACCEL_INELIGIBLE;
5035 }
5036 if (h->transMethod & CFGTBL_Trans_io_accel1)
5037 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5038 cdb, cdb_len, scsi3addr,
5039 phys_disk);
5040 else
5041 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5042 cdb, cdb_len, scsi3addr,
5043 phys_disk);
5044 }
5045
5046 static void raid_map_helper(struct raid_map_data *map,
5047 int offload_to_mirror, u32 *map_index, u32 *current_group)
5048 {
5049 if (offload_to_mirror == 0) {
5050 /* use physical disk in the first mirrored group. */
5051 *map_index %= le16_to_cpu(map->data_disks_per_row);
5052 return;
5053 }
5054 do {
5055 /* determine mirror group that *map_index indicates */
5056 *current_group = *map_index /
5057 le16_to_cpu(map->data_disks_per_row);
5058 if (offload_to_mirror == *current_group)
5059 continue;
5060 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5061 /* select map index from next group */
5062 *map_index += le16_to_cpu(map->data_disks_per_row);
5063 (*current_group)++;
5064 } else {
5065 /* select map index from first group */
5066 *map_index %= le16_to_cpu(map->data_disks_per_row);
5067 *current_group = 0;
5068 }
5069 } while (offload_to_mirror != *current_group);
5070 }
5071
5072 /*
5073 * Attempt to perform offload RAID mapping for a logical volume I/O.
5074 */
5075 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5076 struct CommandList *c)
5077 {
5078 struct scsi_cmnd *cmd = c->scsi_cmd;
5079 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5080 struct raid_map_data *map = &dev->raid_map;
5081 struct raid_map_disk_data *dd = &map->data[0];
5082 int is_write = 0;
5083 u32 map_index;
5084 u64 first_block, last_block;
5085 u32 block_cnt;
5086 u32 blocks_per_row;
5087 u64 first_row, last_row;
5088 u32 first_row_offset, last_row_offset;
5089 u32 first_column, last_column;
5090 u64 r0_first_row, r0_last_row;
5091 u32 r5or6_blocks_per_row;
5092 u64 r5or6_first_row, r5or6_last_row;
5093 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5094 u32 r5or6_first_column, r5or6_last_column;
5095 u32 total_disks_per_row;
5096 u32 stripesize;
5097 u32 first_group, last_group, current_group;
5098 u32 map_row;
5099 u32 disk_handle;
5100 u64 disk_block;
5101 u32 disk_block_cnt;
5102 u8 cdb[16];
5103 u8 cdb_len;
5104 u16 strip_size;
5105 #if BITS_PER_LONG == 32
5106 u64 tmpdiv;
5107 #endif
5108 int offload_to_mirror;
5109
5110 if (!dev)
5111 return -1;
5112
5113 /* check for valid opcode, get LBA and block count */
5114 switch (cmd->cmnd[0]) {
5115 case WRITE_6:
5116 is_write = 1;
5117 /* fall through */
5118 case READ_6:
5119 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120 (cmd->cmnd[2] << 8) |
5121 cmd->cmnd[3]);
5122 block_cnt = cmd->cmnd[4];
5123 if (block_cnt == 0)
5124 block_cnt = 256;
5125 break;
5126 case WRITE_10:
5127 is_write = 1;
5128 /* fall through */
5129 case READ_10:
5130 first_block =
5131 (((u64) cmd->cmnd[2]) << 24) |
5132 (((u64) cmd->cmnd[3]) << 16) |
5133 (((u64) cmd->cmnd[4]) << 8) |
5134 cmd->cmnd[5];
5135 block_cnt =
5136 (((u32) cmd->cmnd[7]) << 8) |
5137 cmd->cmnd[8];
5138 break;
5139 case WRITE_12:
5140 is_write = 1;
5141 /* fall through */
5142 case READ_12:
5143 first_block =
5144 (((u64) cmd->cmnd[2]) << 24) |
5145 (((u64) cmd->cmnd[3]) << 16) |
5146 (((u64) cmd->cmnd[4]) << 8) |
5147 cmd->cmnd[5];
5148 block_cnt =
5149 (((u32) cmd->cmnd[6]) << 24) |
5150 (((u32) cmd->cmnd[7]) << 16) |
5151 (((u32) cmd->cmnd[8]) << 8) |
5152 cmd->cmnd[9];
5153 break;
5154 case WRITE_16:
5155 is_write = 1;
5156 /* fall through */
5157 case READ_16:
5158 first_block =
5159 (((u64) cmd->cmnd[2]) << 56) |
5160 (((u64) cmd->cmnd[3]) << 48) |
5161 (((u64) cmd->cmnd[4]) << 40) |
5162 (((u64) cmd->cmnd[5]) << 32) |
5163 (((u64) cmd->cmnd[6]) << 24) |
5164 (((u64) cmd->cmnd[7]) << 16) |
5165 (((u64) cmd->cmnd[8]) << 8) |
5166 cmd->cmnd[9];
5167 block_cnt =
5168 (((u32) cmd->cmnd[10]) << 24) |
5169 (((u32) cmd->cmnd[11]) << 16) |
5170 (((u32) cmd->cmnd[12]) << 8) |
5171 cmd->cmnd[13];
5172 break;
5173 default:
5174 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175 }
5176 last_block = first_block + block_cnt - 1;
5177
5178 /* check for write to non-RAID-0 */
5179 if (is_write && dev->raid_level != 0)
5180 return IO_ACCEL_INELIGIBLE;
5181
5182 /* check for invalid block or wraparound */
5183 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184 last_block < first_block)
5185 return IO_ACCEL_INELIGIBLE;
5186
5187 /* calculate stripe information for the request */
5188 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189 le16_to_cpu(map->strip_size);
5190 strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192 tmpdiv = first_block;
5193 (void) do_div(tmpdiv, blocks_per_row);
5194 first_row = tmpdiv;
5195 tmpdiv = last_block;
5196 (void) do_div(tmpdiv, blocks_per_row);
5197 last_row = tmpdiv;
5198 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200 tmpdiv = first_row_offset;
5201 (void) do_div(tmpdiv, strip_size);
5202 first_column = tmpdiv;
5203 tmpdiv = last_row_offset;
5204 (void) do_div(tmpdiv, strip_size);
5205 last_column = tmpdiv;
5206 #else
5207 first_row = first_block / blocks_per_row;
5208 last_row = last_block / blocks_per_row;
5209 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211 first_column = first_row_offset / strip_size;
5212 last_column = last_row_offset / strip_size;
5213 #endif
5214
5215 /* if this isn't a single row/column then give to the controller */
5216 if ((first_row != last_row) || (first_column != last_column))
5217 return IO_ACCEL_INELIGIBLE;
5218
5219 /* proceeding with driver mapping */
5220 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221 le16_to_cpu(map->metadata_disks_per_row);
5222 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223 le16_to_cpu(map->row_cnt);
5224 map_index = (map_row * total_disks_per_row) + first_column;
5225
5226 switch (dev->raid_level) {
5227 case HPSA_RAID_0:
5228 break; /* nothing special to do */
5229 case HPSA_RAID_1:
5230 /* Handles load balance across RAID 1 members.
5231 * (2-drive R1 and R10 with even # of drives.)
5232 * Appropriate for SSDs, not optimal for HDDs
5233 */
5234 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235 if (dev->offload_to_mirror)
5236 map_index += le16_to_cpu(map->data_disks_per_row);
5237 dev->offload_to_mirror = !dev->offload_to_mirror;
5238 break;
5239 case HPSA_RAID_ADM:
5240 /* Handles N-way mirrors (R1-ADM)
5241 * and R10 with # of drives divisible by 3.)
5242 */
5243 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244
5245 offload_to_mirror = dev->offload_to_mirror;
5246 raid_map_helper(map, offload_to_mirror,
5247 &map_index, &current_group);
5248 /* set mirror group to use next time */
5249 offload_to_mirror =
5250 (offload_to_mirror >=
5251 le16_to_cpu(map->layout_map_count) - 1)
5252 ? 0 : offload_to_mirror + 1;
5253 dev->offload_to_mirror = offload_to_mirror;
5254 /* Avoid direct use of dev->offload_to_mirror within this
5255 * function since multiple threads might simultaneously
5256 * increment it beyond the range of dev->layout_map_count -1.
5257 */
5258 break;
5259 case HPSA_RAID_5:
5260 case HPSA_RAID_6:
5261 if (le16_to_cpu(map->layout_map_count) <= 1)
5262 break;
5263
5264 /* Verify first and last block are in same RAID group */
5265 r5or6_blocks_per_row =
5266 le16_to_cpu(map->strip_size) *
5267 le16_to_cpu(map->data_disks_per_row);
5268 BUG_ON(r5or6_blocks_per_row == 0);
5269 stripesize = r5or6_blocks_per_row *
5270 le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272 tmpdiv = first_block;
5273 first_group = do_div(tmpdiv, stripesize);
5274 tmpdiv = first_group;
5275 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5276 first_group = tmpdiv;
5277 tmpdiv = last_block;
5278 last_group = do_div(tmpdiv, stripesize);
5279 tmpdiv = last_group;
5280 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5281 last_group = tmpdiv;
5282 #else
5283 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286 if (first_group != last_group)
5287 return IO_ACCEL_INELIGIBLE;
5288
5289 /* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291 tmpdiv = first_block;
5292 (void) do_div(tmpdiv, stripesize);
5293 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294 tmpdiv = last_block;
5295 (void) do_div(tmpdiv, stripesize);
5296 r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298 first_row = r5or6_first_row = r0_first_row =
5299 first_block / stripesize;
5300 r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302 if (r5or6_first_row != r5or6_last_row)
5303 return IO_ACCEL_INELIGIBLE;
5304
5305
5306 /* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308 tmpdiv = first_block;
5309 first_row_offset = do_div(tmpdiv, stripesize);
5310 tmpdiv = first_row_offset;
5311 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312 r5or6_first_row_offset = first_row_offset;
5313 tmpdiv = last_block;
5314 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315 tmpdiv = r5or6_last_row_offset;
5316 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317 tmpdiv = r5or6_first_row_offset;
5318 (void) do_div(tmpdiv, map->strip_size);
5319 first_column = r5or6_first_column = tmpdiv;
5320 tmpdiv = r5or6_last_row_offset;
5321 (void) do_div(tmpdiv, map->strip_size);
5322 r5or6_last_column = tmpdiv;
5323 #else
5324 first_row_offset = r5or6_first_row_offset =
5325 (u32)((first_block % stripesize) %
5326 r5or6_blocks_per_row);
5327
5328 r5or6_last_row_offset =
5329 (u32)((last_block % stripesize) %
5330 r5or6_blocks_per_row);
5331
5332 first_column = r5or6_first_column =
5333 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334 r5or6_last_column =
5335 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337 if (r5or6_first_column != r5or6_last_column)
5338 return IO_ACCEL_INELIGIBLE;
5339
5340 /* Request is eligible */
5341 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342 le16_to_cpu(map->row_cnt);
5343
5344 map_index = (first_group *
5345 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346 (map_row * total_disks_per_row) + first_column;
5347 break;
5348 default:
5349 return IO_ACCEL_INELIGIBLE;
5350 }
5351
5352 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353 return IO_ACCEL_INELIGIBLE;
5354
5355 c->phys_disk = dev->phys_disk[map_index];
5356 if (!c->phys_disk)
5357 return IO_ACCEL_INELIGIBLE;
5358
5359 disk_handle = dd[map_index].ioaccel_handle;
5360 disk_block = le64_to_cpu(map->disk_starting_blk) +
5361 first_row * le16_to_cpu(map->strip_size) +
5362 (first_row_offset - first_column *
5363 le16_to_cpu(map->strip_size));
5364 disk_block_cnt = block_cnt;
5365
5366 /* handle differing logical/physical block sizes */
5367 if (map->phys_blk_shift) {
5368 disk_block <<= map->phys_blk_shift;
5369 disk_block_cnt <<= map->phys_blk_shift;
5370 }
5371 BUG_ON(disk_block_cnt > 0xffff);
5372
5373 /* build the new CDB for the physical disk I/O */
5374 if (disk_block > 0xffffffff) {
5375 cdb[0] = is_write ? WRITE_16 : READ_16;
5376 cdb[1] = 0;
5377 cdb[2] = (u8) (disk_block >> 56);
5378 cdb[3] = (u8) (disk_block >> 48);
5379 cdb[4] = (u8) (disk_block >> 40);
5380 cdb[5] = (u8) (disk_block >> 32);
5381 cdb[6] = (u8) (disk_block >> 24);
5382 cdb[7] = (u8) (disk_block >> 16);
5383 cdb[8] = (u8) (disk_block >> 8);
5384 cdb[9] = (u8) (disk_block);
5385 cdb[10] = (u8) (disk_block_cnt >> 24);
5386 cdb[11] = (u8) (disk_block_cnt >> 16);
5387 cdb[12] = (u8) (disk_block_cnt >> 8);
5388 cdb[13] = (u8) (disk_block_cnt);
5389 cdb[14] = 0;
5390 cdb[15] = 0;
5391 cdb_len = 16;
5392 } else {
5393 cdb[0] = is_write ? WRITE_10 : READ_10;
5394 cdb[1] = 0;
5395 cdb[2] = (u8) (disk_block >> 24);
5396 cdb[3] = (u8) (disk_block >> 16);
5397 cdb[4] = (u8) (disk_block >> 8);
5398 cdb[5] = (u8) (disk_block);
5399 cdb[6] = 0;
5400 cdb[7] = (u8) (disk_block_cnt >> 8);
5401 cdb[8] = (u8) (disk_block_cnt);
5402 cdb[9] = 0;
5403 cdb_len = 10;
5404 }
5405 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406 dev->scsi3addr,
5407 dev->phys_disk[map_index]);
5408 }
5409
5410 /*
5411 * Submit commands down the "normal" RAID stack path
5412 * All callers to hpsa_ciss_submit must check lockup_detected
5413 * beforehand, before (opt.) and after calling cmd_alloc
5414 */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416 struct CommandList *c, struct scsi_cmnd *cmd,
5417 unsigned char scsi3addr[])
5418 {
5419 cmd->host_scribble = (unsigned char *) c;
5420 c->cmd_type = CMD_SCSI;
5421 c->scsi_cmd = cmd;
5422 c->Header.ReplyQueue = 0; /* unused in simple mode */
5423 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5424 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425
5426 /* Fill in the request block... */
5427
5428 c->Request.Timeout = 0;
5429 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430 c->Request.CDBLen = cmd->cmd_len;
5431 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432 switch (cmd->sc_data_direction) {
5433 case DMA_TO_DEVICE:
5434 c->Request.type_attr_dir =
5435 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436 break;
5437 case DMA_FROM_DEVICE:
5438 c->Request.type_attr_dir =
5439 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440 break;
5441 case DMA_NONE:
5442 c->Request.type_attr_dir =
5443 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444 break;
5445 case DMA_BIDIRECTIONAL:
5446 /* This can happen if a buggy application does a scsi passthru
5447 * and sets both inlen and outlen to non-zero. ( see
5448 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449 */
5450
5451 c->Request.type_attr_dir =
5452 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453 /* This is technically wrong, and hpsa controllers should
5454 * reject it with CMD_INVALID, which is the most correct
5455 * response, but non-fibre backends appear to let it
5456 * slide by, and give the same results as if this field
5457 * were set correctly. Either way is acceptable for
5458 * our purposes here.
5459 */
5460
5461 break;
5462
5463 default:
5464 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465 cmd->sc_data_direction);
5466 BUG();
5467 break;
5468 }
5469
5470 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471 hpsa_cmd_resolve_and_free(h, c);
5472 return SCSI_MLQUEUE_HOST_BUSY;
5473 }
5474 enqueue_cmd_and_start_io(h, c);
5475 /* the cmd'll come back via intr handler in complete_scsi_command() */
5476 return 0;
5477 }
5478
5479 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5480 struct CommandList *c)
5481 {
5482 dma_addr_t cmd_dma_handle, err_dma_handle;
5483
5484 /* Zero out all of commandlist except the last field, refcount */
5485 memset(c, 0, offsetof(struct CommandList, refcount));
5486 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5487 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488 c->err_info = h->errinfo_pool + index;
5489 memset(c->err_info, 0, sizeof(*c->err_info));
5490 err_dma_handle = h->errinfo_pool_dhandle
5491 + index * sizeof(*c->err_info);
5492 c->cmdindex = index;
5493 c->busaddr = (u32) cmd_dma_handle;
5494 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5495 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5496 c->h = h;
5497 c->scsi_cmd = SCSI_CMD_IDLE;
5498 }
5499
5500 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5501 {
5502 int i;
5503
5504 for (i = 0; i < h->nr_cmds; i++) {
5505 struct CommandList *c = h->cmd_pool + i;
5506
5507 hpsa_cmd_init(h, i, c);
5508 atomic_set(&c->refcount, 0);
5509 }
5510 }
5511
5512 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5513 struct CommandList *c)
5514 {
5515 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5516
5517 BUG_ON(c->cmdindex != index);
5518
5519 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5520 memset(c->err_info, 0, sizeof(*c->err_info));
5521 c->busaddr = (u32) cmd_dma_handle;
5522 }
5523
5524 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5525 struct CommandList *c, struct scsi_cmnd *cmd,
5526 unsigned char *scsi3addr)
5527 {
5528 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5529 int rc = IO_ACCEL_INELIGIBLE;
5530
5531 if (!dev)
5532 return SCSI_MLQUEUE_HOST_BUSY;
5533
5534 cmd->host_scribble = (unsigned char *) c;
5535
5536 if (dev->offload_enabled) {
5537 hpsa_cmd_init(h, c->cmdindex, c);
5538 c->cmd_type = CMD_SCSI;
5539 c->scsi_cmd = cmd;
5540 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5541 if (rc < 0) /* scsi_dma_map failed. */
5542 rc = SCSI_MLQUEUE_HOST_BUSY;
5543 } else if (dev->hba_ioaccel_enabled) {
5544 hpsa_cmd_init(h, c->cmdindex, c);
5545 c->cmd_type = CMD_SCSI;
5546 c->scsi_cmd = cmd;
5547 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5548 if (rc < 0) /* scsi_dma_map failed. */
5549 rc = SCSI_MLQUEUE_HOST_BUSY;
5550 }
5551 return rc;
5552 }
5553
5554 static void hpsa_command_resubmit_worker(struct work_struct *work)
5555 {
5556 struct scsi_cmnd *cmd;
5557 struct hpsa_scsi_dev_t *dev;
5558 struct CommandList *c = container_of(work, struct CommandList, work);
5559
5560 cmd = c->scsi_cmd;
5561 dev = cmd->device->hostdata;
5562 if (!dev) {
5563 cmd->result = DID_NO_CONNECT << 16;
5564 return hpsa_cmd_free_and_done(c->h, c, cmd);
5565 }
5566 if (c->reset_pending)
5567 return hpsa_cmd_free_and_done(c->h, c, cmd);
5568 if (c->cmd_type == CMD_IOACCEL2) {
5569 struct ctlr_info *h = c->h;
5570 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5571 int rc;
5572
5573 if (c2->error_data.serv_response ==
5574 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5575 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5576 if (rc == 0)
5577 return;
5578 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5579 /*
5580 * If we get here, it means dma mapping failed.
5581 * Try again via scsi mid layer, which will
5582 * then get SCSI_MLQUEUE_HOST_BUSY.
5583 */
5584 cmd->result = DID_IMM_RETRY << 16;
5585 return hpsa_cmd_free_and_done(h, c, cmd);
5586 }
5587 /* else, fall thru and resubmit down CISS path */
5588 }
5589 }
5590 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5591 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5592 /*
5593 * If we get here, it means dma mapping failed. Try
5594 * again via scsi mid layer, which will then get
5595 * SCSI_MLQUEUE_HOST_BUSY.
5596 *
5597 * hpsa_ciss_submit will have already freed c
5598 * if it encountered a dma mapping failure.
5599 */
5600 cmd->result = DID_IMM_RETRY << 16;
5601 cmd->scsi_done(cmd);
5602 }
5603 }
5604
5605 /* Running in struct Scsi_Host->host_lock less mode */
5606 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5607 {
5608 struct ctlr_info *h;
5609 struct hpsa_scsi_dev_t *dev;
5610 unsigned char scsi3addr[8];
5611 struct CommandList *c;
5612 int rc = 0;
5613
5614 /* Get the ptr to our adapter structure out of cmd->host. */
5615 h = sdev_to_hba(cmd->device);
5616
5617 BUG_ON(cmd->request->tag < 0);
5618
5619 dev = cmd->device->hostdata;
5620 if (!dev) {
5621 cmd->result = DID_NO_CONNECT << 16;
5622 cmd->scsi_done(cmd);
5623 return 0;
5624 }
5625
5626 if (dev->removed) {
5627 cmd->result = DID_NO_CONNECT << 16;
5628 cmd->scsi_done(cmd);
5629 return 0;
5630 }
5631
5632 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5633
5634 if (unlikely(lockup_detected(h))) {
5635 cmd->result = DID_NO_CONNECT << 16;
5636 cmd->scsi_done(cmd);
5637 return 0;
5638 }
5639 c = cmd_tagged_alloc(h, cmd);
5640
5641 /*
5642 * Call alternate submit routine for I/O accelerated commands.
5643 * Retries always go down the normal I/O path.
5644 */
5645 if (likely(cmd->retries == 0 &&
5646 !blk_rq_is_passthrough(cmd->request) &&
5647 h->acciopath_status)) {
5648 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5649 if (rc == 0)
5650 return 0;
5651 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5652 hpsa_cmd_resolve_and_free(h, c);
5653 return SCSI_MLQUEUE_HOST_BUSY;
5654 }
5655 }
5656 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5657 }
5658
5659 static void hpsa_scan_complete(struct ctlr_info *h)
5660 {
5661 unsigned long flags;
5662
5663 spin_lock_irqsave(&h->scan_lock, flags);
5664 h->scan_finished = 1;
5665 wake_up(&h->scan_wait_queue);
5666 spin_unlock_irqrestore(&h->scan_lock, flags);
5667 }
5668
5669 static void hpsa_scan_start(struct Scsi_Host *sh)
5670 {
5671 struct ctlr_info *h = shost_to_hba(sh);
5672 unsigned long flags;
5673
5674 /*
5675 * Don't let rescans be initiated on a controller known to be locked
5676 * up. If the controller locks up *during* a rescan, that thread is
5677 * probably hosed, but at least we can prevent new rescan threads from
5678 * piling up on a locked up controller.
5679 */
5680 if (unlikely(lockup_detected(h)))
5681 return hpsa_scan_complete(h);
5682
5683 /*
5684 * If a scan is already waiting to run, no need to add another
5685 */
5686 spin_lock_irqsave(&h->scan_lock, flags);
5687 if (h->scan_waiting) {
5688 spin_unlock_irqrestore(&h->scan_lock, flags);
5689 return;
5690 }
5691
5692 spin_unlock_irqrestore(&h->scan_lock, flags);
5693
5694 /* wait until any scan already in progress is finished. */
5695 while (1) {
5696 spin_lock_irqsave(&h->scan_lock, flags);
5697 if (h->scan_finished)
5698 break;
5699 h->scan_waiting = 1;
5700 spin_unlock_irqrestore(&h->scan_lock, flags);
5701 wait_event(h->scan_wait_queue, h->scan_finished);
5702 /* Note: We don't need to worry about a race between this
5703 * thread and driver unload because the midlayer will
5704 * have incremented the reference count, so unload won't
5705 * happen if we're in here.
5706 */
5707 }
5708 h->scan_finished = 0; /* mark scan as in progress */
5709 h->scan_waiting = 0;
5710 spin_unlock_irqrestore(&h->scan_lock, flags);
5711
5712 if (unlikely(lockup_detected(h)))
5713 return hpsa_scan_complete(h);
5714
5715 /*
5716 * Do the scan after a reset completion
5717 */
5718 spin_lock_irqsave(&h->reset_lock, flags);
5719 if (h->reset_in_progress) {
5720 h->drv_req_rescan = 1;
5721 spin_unlock_irqrestore(&h->reset_lock, flags);
5722 hpsa_scan_complete(h);
5723 return;
5724 }
5725 spin_unlock_irqrestore(&h->reset_lock, flags);
5726
5727 hpsa_update_scsi_devices(h);
5728
5729 hpsa_scan_complete(h);
5730 }
5731
5732 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5733 {
5734 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5735
5736 if (!logical_drive)
5737 return -ENODEV;
5738
5739 if (qdepth < 1)
5740 qdepth = 1;
5741 else if (qdepth > logical_drive->queue_depth)
5742 qdepth = logical_drive->queue_depth;
5743
5744 return scsi_change_queue_depth(sdev, qdepth);
5745 }
5746
5747 static int hpsa_scan_finished(struct Scsi_Host *sh,
5748 unsigned long elapsed_time)
5749 {
5750 struct ctlr_info *h = shost_to_hba(sh);
5751 unsigned long flags;
5752 int finished;
5753
5754 spin_lock_irqsave(&h->scan_lock, flags);
5755 finished = h->scan_finished;
5756 spin_unlock_irqrestore(&h->scan_lock, flags);
5757 return finished;
5758 }
5759
5760 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5761 {
5762 struct Scsi_Host *sh;
5763
5764 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5765 if (sh == NULL) {
5766 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5767 return -ENOMEM;
5768 }
5769
5770 sh->io_port = 0;
5771 sh->n_io_port = 0;
5772 sh->this_id = -1;
5773 sh->max_channel = 3;
5774 sh->max_cmd_len = MAX_COMMAND_SIZE;
5775 sh->max_lun = HPSA_MAX_LUN;
5776 sh->max_id = HPSA_MAX_LUN;
5777 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5778 sh->cmd_per_lun = sh->can_queue;
5779 sh->sg_tablesize = h->maxsgentries;
5780 sh->transportt = hpsa_sas_transport_template;
5781 sh->hostdata[0] = (unsigned long) h;
5782 sh->irq = pci_irq_vector(h->pdev, 0);
5783 sh->unique_id = sh->irq;
5784
5785 h->scsi_host = sh;
5786 return 0;
5787 }
5788
5789 static int hpsa_scsi_add_host(struct ctlr_info *h)
5790 {
5791 int rv;
5792
5793 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5794 if (rv) {
5795 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5796 return rv;
5797 }
5798 scsi_scan_host(h->scsi_host);
5799 return 0;
5800 }
5801
5802 /*
5803 * The block layer has already gone to the trouble of picking out a unique,
5804 * small-integer tag for this request. We use an offset from that value as
5805 * an index to select our command block. (The offset allows us to reserve the
5806 * low-numbered entries for our own uses.)
5807 */
5808 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5809 {
5810 int idx = scmd->request->tag;
5811
5812 if (idx < 0)
5813 return idx;
5814
5815 /* Offset to leave space for internal cmds. */
5816 return idx += HPSA_NRESERVED_CMDS;
5817 }
5818
5819 /*
5820 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5821 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5822 */
5823 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5824 struct CommandList *c, unsigned char lunaddr[],
5825 int reply_queue)
5826 {
5827 int rc;
5828
5829 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5830 (void) fill_cmd(c, TEST_UNIT_READY, h,
5831 NULL, 0, 0, lunaddr, TYPE_CMD);
5832 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5833 if (rc)
5834 return rc;
5835 /* no unmap needed here because no data xfer. */
5836
5837 /* Check if the unit is already ready. */
5838 if (c->err_info->CommandStatus == CMD_SUCCESS)
5839 return 0;
5840
5841 /*
5842 * The first command sent after reset will receive "unit attention" to
5843 * indicate that the LUN has been reset...this is actually what we're
5844 * looking for (but, success is good too).
5845 */
5846 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5847 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5848 (c->err_info->SenseInfo[2] == NO_SENSE ||
5849 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5850 return 0;
5851
5852 return 1;
5853 }
5854
5855 /*
5856 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5857 * returns zero when the unit is ready, and non-zero when giving up.
5858 */
5859 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5860 struct CommandList *c,
5861 unsigned char lunaddr[], int reply_queue)
5862 {
5863 int rc;
5864 int count = 0;
5865 int waittime = 1; /* seconds */
5866
5867 /* Send test unit ready until device ready, or give up. */
5868 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5869
5870 /*
5871 * Wait for a bit. do this first, because if we send
5872 * the TUR right away, the reset will just abort it.
5873 */
5874 msleep(1000 * waittime);
5875
5876 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5877 if (!rc)
5878 break;
5879
5880 /* Increase wait time with each try, up to a point. */
5881 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5882 waittime *= 2;
5883
5884 dev_warn(&h->pdev->dev,
5885 "waiting %d secs for device to become ready.\n",
5886 waittime);
5887 }
5888
5889 return rc;
5890 }
5891
5892 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5893 unsigned char lunaddr[],
5894 int reply_queue)
5895 {
5896 int first_queue;
5897 int last_queue;
5898 int rq;
5899 int rc = 0;
5900 struct CommandList *c;
5901
5902 c = cmd_alloc(h);
5903
5904 /*
5905 * If no specific reply queue was requested, then send the TUR
5906 * repeatedly, requesting a reply on each reply queue; otherwise execute
5907 * the loop exactly once using only the specified queue.
5908 */
5909 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5910 first_queue = 0;
5911 last_queue = h->nreply_queues - 1;
5912 } else {
5913 first_queue = reply_queue;
5914 last_queue = reply_queue;
5915 }
5916
5917 for (rq = first_queue; rq <= last_queue; rq++) {
5918 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5919 if (rc)
5920 break;
5921 }
5922
5923 if (rc)
5924 dev_warn(&h->pdev->dev, "giving up on device.\n");
5925 else
5926 dev_warn(&h->pdev->dev, "device is ready.\n");
5927
5928 cmd_free(h, c);
5929 return rc;
5930 }
5931
5932 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5933 * complaining. Doing a host- or bus-reset can't do anything good here.
5934 */
5935 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5936 {
5937 int rc = SUCCESS;
5938 struct ctlr_info *h;
5939 struct hpsa_scsi_dev_t *dev;
5940 u8 reset_type;
5941 char msg[48];
5942 unsigned long flags;
5943
5944 /* find the controller to which the command to be aborted was sent */
5945 h = sdev_to_hba(scsicmd->device);
5946 if (h == NULL) /* paranoia */
5947 return FAILED;
5948
5949 spin_lock_irqsave(&h->reset_lock, flags);
5950 h->reset_in_progress = 1;
5951 spin_unlock_irqrestore(&h->reset_lock, flags);
5952
5953 if (lockup_detected(h)) {
5954 rc = FAILED;
5955 goto return_reset_status;
5956 }
5957
5958 dev = scsicmd->device->hostdata;
5959 if (!dev) {
5960 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5961 rc = FAILED;
5962 goto return_reset_status;
5963 }
5964
5965 if (dev->devtype == TYPE_ENCLOSURE) {
5966 rc = SUCCESS;
5967 goto return_reset_status;
5968 }
5969
5970 /* if controller locked up, we can guarantee command won't complete */
5971 if (lockup_detected(h)) {
5972 snprintf(msg, sizeof(msg),
5973 "cmd %d RESET FAILED, lockup detected",
5974 hpsa_get_cmd_index(scsicmd));
5975 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976 rc = FAILED;
5977 goto return_reset_status;
5978 }
5979
5980 /* this reset request might be the result of a lockup; check */
5981 if (detect_controller_lockup(h)) {
5982 snprintf(msg, sizeof(msg),
5983 "cmd %d RESET FAILED, new lockup detected",
5984 hpsa_get_cmd_index(scsicmd));
5985 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5986 rc = FAILED;
5987 goto return_reset_status;
5988 }
5989
5990 /* Do not attempt on controller */
5991 if (is_hba_lunid(dev->scsi3addr)) {
5992 rc = SUCCESS;
5993 goto return_reset_status;
5994 }
5995
5996 if (is_logical_dev_addr_mode(dev->scsi3addr))
5997 reset_type = HPSA_DEVICE_RESET_MSG;
5998 else
5999 reset_type = HPSA_PHYS_TARGET_RESET;
6000
6001 sprintf(msg, "resetting %s",
6002 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6003 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6004
6005 /* send a reset to the SCSI LUN which the command was sent to */
6006 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
6007 DEFAULT_REPLY_QUEUE);
6008 if (rc == 0)
6009 rc = SUCCESS;
6010 else
6011 rc = FAILED;
6012
6013 sprintf(msg, "reset %s %s",
6014 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6015 rc == SUCCESS ? "completed successfully" : "failed");
6016 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6017
6018 return_reset_status:
6019 spin_lock_irqsave(&h->reset_lock, flags);
6020 h->reset_in_progress = 0;
6021 spin_unlock_irqrestore(&h->reset_lock, flags);
6022 return rc;
6023 }
6024
6025 /*
6026 * For operations with an associated SCSI command, a command block is allocated
6027 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6028 * block request tag as an index into a table of entries. cmd_tagged_free() is
6029 * the complement, although cmd_free() may be called instead.
6030 */
6031 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6032 struct scsi_cmnd *scmd)
6033 {
6034 int idx = hpsa_get_cmd_index(scmd);
6035 struct CommandList *c = h->cmd_pool + idx;
6036
6037 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6038 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6039 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6040 /* The index value comes from the block layer, so if it's out of
6041 * bounds, it's probably not our bug.
6042 */
6043 BUG();
6044 }
6045
6046 atomic_inc(&c->refcount);
6047 if (unlikely(!hpsa_is_cmd_idle(c))) {
6048 /*
6049 * We expect that the SCSI layer will hand us a unique tag
6050 * value. Thus, there should never be a collision here between
6051 * two requests...because if the selected command isn't idle
6052 * then someone is going to be very disappointed.
6053 */
6054 dev_err(&h->pdev->dev,
6055 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6056 idx);
6057 if (c->scsi_cmd != NULL)
6058 scsi_print_command(c->scsi_cmd);
6059 scsi_print_command(scmd);
6060 }
6061
6062 hpsa_cmd_partial_init(h, idx, c);
6063 return c;
6064 }
6065
6066 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6067 {
6068 /*
6069 * Release our reference to the block. We don't need to do anything
6070 * else to free it, because it is accessed by index.
6071 */
6072 (void)atomic_dec(&c->refcount);
6073 }
6074
6075 /*
6076 * For operations that cannot sleep, a command block is allocated at init,
6077 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6078 * which ones are free or in use. Lock must be held when calling this.
6079 * cmd_free() is the complement.
6080 * This function never gives up and returns NULL. If it hangs,
6081 * another thread must call cmd_free() to free some tags.
6082 */
6083
6084 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6085 {
6086 struct CommandList *c;
6087 int refcount, i;
6088 int offset = 0;
6089
6090 /*
6091 * There is some *extremely* small but non-zero chance that that
6092 * multiple threads could get in here, and one thread could
6093 * be scanning through the list of bits looking for a free
6094 * one, but the free ones are always behind him, and other
6095 * threads sneak in behind him and eat them before he can
6096 * get to them, so that while there is always a free one, a
6097 * very unlucky thread might be starved anyway, never able to
6098 * beat the other threads. In reality, this happens so
6099 * infrequently as to be indistinguishable from never.
6100 *
6101 * Note that we start allocating commands before the SCSI host structure
6102 * is initialized. Since the search starts at bit zero, this
6103 * all works, since we have at least one command structure available;
6104 * however, it means that the structures with the low indexes have to be
6105 * reserved for driver-initiated requests, while requests from the block
6106 * layer will use the higher indexes.
6107 */
6108
6109 for (;;) {
6110 i = find_next_zero_bit(h->cmd_pool_bits,
6111 HPSA_NRESERVED_CMDS,
6112 offset);
6113 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6114 offset = 0;
6115 continue;
6116 }
6117 c = h->cmd_pool + i;
6118 refcount = atomic_inc_return(&c->refcount);
6119 if (unlikely(refcount > 1)) {
6120 cmd_free(h, c); /* already in use */
6121 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6122 continue;
6123 }
6124 set_bit(i & (BITS_PER_LONG - 1),
6125 h->cmd_pool_bits + (i / BITS_PER_LONG));
6126 break; /* it's ours now. */
6127 }
6128 hpsa_cmd_partial_init(h, i, c);
6129 return c;
6130 }
6131
6132 /*
6133 * This is the complementary operation to cmd_alloc(). Note, however, in some
6134 * corner cases it may also be used to free blocks allocated by
6135 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6136 * the clear-bit is harmless.
6137 */
6138 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6139 {
6140 if (atomic_dec_and_test(&c->refcount)) {
6141 int i;
6142
6143 i = c - h->cmd_pool;
6144 clear_bit(i & (BITS_PER_LONG - 1),
6145 h->cmd_pool_bits + (i / BITS_PER_LONG));
6146 }
6147 }
6148
6149 #ifdef CONFIG_COMPAT
6150
6151 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6152 void __user *arg)
6153 {
6154 IOCTL32_Command_struct __user *arg32 =
6155 (IOCTL32_Command_struct __user *) arg;
6156 IOCTL_Command_struct arg64;
6157 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6158 int err;
6159 u32 cp;
6160
6161 memset(&arg64, 0, sizeof(arg64));
6162 err = 0;
6163 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6164 sizeof(arg64.LUN_info));
6165 err |= copy_from_user(&arg64.Request, &arg32->Request,
6166 sizeof(arg64.Request));
6167 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6168 sizeof(arg64.error_info));
6169 err |= get_user(arg64.buf_size, &arg32->buf_size);
6170 err |= get_user(cp, &arg32->buf);
6171 arg64.buf = compat_ptr(cp);
6172 err |= copy_to_user(p, &arg64, sizeof(arg64));
6173
6174 if (err)
6175 return -EFAULT;
6176
6177 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6178 if (err)
6179 return err;
6180 err |= copy_in_user(&arg32->error_info, &p->error_info,
6181 sizeof(arg32->error_info));
6182 if (err)
6183 return -EFAULT;
6184 return err;
6185 }
6186
6187 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6188 unsigned int cmd, void __user *arg)
6189 {
6190 BIG_IOCTL32_Command_struct __user *arg32 =
6191 (BIG_IOCTL32_Command_struct __user *) arg;
6192 BIG_IOCTL_Command_struct arg64;
6193 BIG_IOCTL_Command_struct __user *p =
6194 compat_alloc_user_space(sizeof(arg64));
6195 int err;
6196 u32 cp;
6197
6198 memset(&arg64, 0, sizeof(arg64));
6199 err = 0;
6200 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6201 sizeof(arg64.LUN_info));
6202 err |= copy_from_user(&arg64.Request, &arg32->Request,
6203 sizeof(arg64.Request));
6204 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6205 sizeof(arg64.error_info));
6206 err |= get_user(arg64.buf_size, &arg32->buf_size);
6207 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6208 err |= get_user(cp, &arg32->buf);
6209 arg64.buf = compat_ptr(cp);
6210 err |= copy_to_user(p, &arg64, sizeof(arg64));
6211
6212 if (err)
6213 return -EFAULT;
6214
6215 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6216 if (err)
6217 return err;
6218 err |= copy_in_user(&arg32->error_info, &p->error_info,
6219 sizeof(arg32->error_info));
6220 if (err)
6221 return -EFAULT;
6222 return err;
6223 }
6224
6225 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6226 void __user *arg)
6227 {
6228 switch (cmd) {
6229 case CCISS_GETPCIINFO:
6230 case CCISS_GETINTINFO:
6231 case CCISS_SETINTINFO:
6232 case CCISS_GETNODENAME:
6233 case CCISS_SETNODENAME:
6234 case CCISS_GETHEARTBEAT:
6235 case CCISS_GETBUSTYPES:
6236 case CCISS_GETFIRMVER:
6237 case CCISS_GETDRIVVER:
6238 case CCISS_REVALIDVOLS:
6239 case CCISS_DEREGDISK:
6240 case CCISS_REGNEWDISK:
6241 case CCISS_REGNEWD:
6242 case CCISS_RESCANDISK:
6243 case CCISS_GETLUNINFO:
6244 return hpsa_ioctl(dev, cmd, arg);
6245
6246 case CCISS_PASSTHRU32:
6247 return hpsa_ioctl32_passthru(dev, cmd, arg);
6248 case CCISS_BIG_PASSTHRU32:
6249 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6250
6251 default:
6252 return -ENOIOCTLCMD;
6253 }
6254 }
6255 #endif
6256
6257 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6258 {
6259 struct hpsa_pci_info pciinfo;
6260
6261 if (!argp)
6262 return -EINVAL;
6263 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6264 pciinfo.bus = h->pdev->bus->number;
6265 pciinfo.dev_fn = h->pdev->devfn;
6266 pciinfo.board_id = h->board_id;
6267 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6268 return -EFAULT;
6269 return 0;
6270 }
6271
6272 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6273 {
6274 DriverVer_type DriverVer;
6275 unsigned char vmaj, vmin, vsubmin;
6276 int rc;
6277
6278 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6279 &vmaj, &vmin, &vsubmin);
6280 if (rc != 3) {
6281 dev_info(&h->pdev->dev, "driver version string '%s' "
6282 "unrecognized.", HPSA_DRIVER_VERSION);
6283 vmaj = 0;
6284 vmin = 0;
6285 vsubmin = 0;
6286 }
6287 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6288 if (!argp)
6289 return -EINVAL;
6290 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6291 return -EFAULT;
6292 return 0;
6293 }
6294
6295 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296 {
6297 IOCTL_Command_struct iocommand;
6298 struct CommandList *c;
6299 char *buff = NULL;
6300 u64 temp64;
6301 int rc = 0;
6302
6303 if (!argp)
6304 return -EINVAL;
6305 if (!capable(CAP_SYS_RAWIO))
6306 return -EPERM;
6307 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6308 return -EFAULT;
6309 if ((iocommand.buf_size < 1) &&
6310 (iocommand.Request.Type.Direction != XFER_NONE)) {
6311 return -EINVAL;
6312 }
6313 if (iocommand.buf_size > 0) {
6314 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6315 if (buff == NULL)
6316 return -ENOMEM;
6317 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6318 /* Copy the data into the buffer we created */
6319 if (copy_from_user(buff, iocommand.buf,
6320 iocommand.buf_size)) {
6321 rc = -EFAULT;
6322 goto out_kfree;
6323 }
6324 } else {
6325 memset(buff, 0, iocommand.buf_size);
6326 }
6327 }
6328 c = cmd_alloc(h);
6329
6330 /* Fill in the command type */
6331 c->cmd_type = CMD_IOCTL_PEND;
6332 c->scsi_cmd = SCSI_CMD_BUSY;
6333 /* Fill in Command Header */
6334 c->Header.ReplyQueue = 0; /* unused in simple mode */
6335 if (iocommand.buf_size > 0) { /* buffer to fill */
6336 c->Header.SGList = 1;
6337 c->Header.SGTotal = cpu_to_le16(1);
6338 } else { /* no buffers to fill */
6339 c->Header.SGList = 0;
6340 c->Header.SGTotal = cpu_to_le16(0);
6341 }
6342 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6343
6344 /* Fill in Request block */
6345 memcpy(&c->Request, &iocommand.Request,
6346 sizeof(c->Request));
6347
6348 /* Fill in the scatter gather information */
6349 if (iocommand.buf_size > 0) {
6350 temp64 = dma_map_single(&h->pdev->dev, buff,
6351 iocommand.buf_size, DMA_BIDIRECTIONAL);
6352 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6353 c->SG[0].Addr = cpu_to_le64(0);
6354 c->SG[0].Len = cpu_to_le32(0);
6355 rc = -ENOMEM;
6356 goto out;
6357 }
6358 c->SG[0].Addr = cpu_to_le64(temp64);
6359 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6360 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6361 }
6362 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6363 NO_TIMEOUT);
6364 if (iocommand.buf_size > 0)
6365 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6366 check_ioctl_unit_attention(h, c);
6367 if (rc) {
6368 rc = -EIO;
6369 goto out;
6370 }
6371
6372 /* Copy the error information out */
6373 memcpy(&iocommand.error_info, c->err_info,
6374 sizeof(iocommand.error_info));
6375 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6376 rc = -EFAULT;
6377 goto out;
6378 }
6379 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6380 iocommand.buf_size > 0) {
6381 /* Copy the data out of the buffer we created */
6382 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6383 rc = -EFAULT;
6384 goto out;
6385 }
6386 }
6387 out:
6388 cmd_free(h, c);
6389 out_kfree:
6390 kfree(buff);
6391 return rc;
6392 }
6393
6394 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6395 {
6396 BIG_IOCTL_Command_struct *ioc;
6397 struct CommandList *c;
6398 unsigned char **buff = NULL;
6399 int *buff_size = NULL;
6400 u64 temp64;
6401 BYTE sg_used = 0;
6402 int status = 0;
6403 u32 left;
6404 u32 sz;
6405 BYTE __user *data_ptr;
6406
6407 if (!argp)
6408 return -EINVAL;
6409 if (!capable(CAP_SYS_RAWIO))
6410 return -EPERM;
6411 ioc = vmemdup_user(argp, sizeof(*ioc));
6412 if (IS_ERR(ioc)) {
6413 status = PTR_ERR(ioc);
6414 goto cleanup1;
6415 }
6416 if ((ioc->buf_size < 1) &&
6417 (ioc->Request.Type.Direction != XFER_NONE)) {
6418 status = -EINVAL;
6419 goto cleanup1;
6420 }
6421 /* Check kmalloc limits using all SGs */
6422 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6423 status = -EINVAL;
6424 goto cleanup1;
6425 }
6426 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6427 status = -EINVAL;
6428 goto cleanup1;
6429 }
6430 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6431 if (!buff) {
6432 status = -ENOMEM;
6433 goto cleanup1;
6434 }
6435 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6436 if (!buff_size) {
6437 status = -ENOMEM;
6438 goto cleanup1;
6439 }
6440 left = ioc->buf_size;
6441 data_ptr = ioc->buf;
6442 while (left) {
6443 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6444 buff_size[sg_used] = sz;
6445 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6446 if (buff[sg_used] == NULL) {
6447 status = -ENOMEM;
6448 goto cleanup1;
6449 }
6450 if (ioc->Request.Type.Direction & XFER_WRITE) {
6451 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6452 status = -EFAULT;
6453 goto cleanup1;
6454 }
6455 } else
6456 memset(buff[sg_used], 0, sz);
6457 left -= sz;
6458 data_ptr += sz;
6459 sg_used++;
6460 }
6461 c = cmd_alloc(h);
6462
6463 c->cmd_type = CMD_IOCTL_PEND;
6464 c->scsi_cmd = SCSI_CMD_BUSY;
6465 c->Header.ReplyQueue = 0;
6466 c->Header.SGList = (u8) sg_used;
6467 c->Header.SGTotal = cpu_to_le16(sg_used);
6468 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6469 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6470 if (ioc->buf_size > 0) {
6471 int i;
6472 for (i = 0; i < sg_used; i++) {
6473 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6474 buff_size[i], DMA_BIDIRECTIONAL);
6475 if (dma_mapping_error(&h->pdev->dev,
6476 (dma_addr_t) temp64)) {
6477 c->SG[i].Addr = cpu_to_le64(0);
6478 c->SG[i].Len = cpu_to_le32(0);
6479 hpsa_pci_unmap(h->pdev, c, i,
6480 DMA_BIDIRECTIONAL);
6481 status = -ENOMEM;
6482 goto cleanup0;
6483 }
6484 c->SG[i].Addr = cpu_to_le64(temp64);
6485 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6486 c->SG[i].Ext = cpu_to_le32(0);
6487 }
6488 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6489 }
6490 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6491 NO_TIMEOUT);
6492 if (sg_used)
6493 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6494 check_ioctl_unit_attention(h, c);
6495 if (status) {
6496 status = -EIO;
6497 goto cleanup0;
6498 }
6499
6500 /* Copy the error information out */
6501 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6502 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6503 status = -EFAULT;
6504 goto cleanup0;
6505 }
6506 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6507 int i;
6508
6509 /* Copy the data out of the buffer we created */
6510 BYTE __user *ptr = ioc->buf;
6511 for (i = 0; i < sg_used; i++) {
6512 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6513 status = -EFAULT;
6514 goto cleanup0;
6515 }
6516 ptr += buff_size[i];
6517 }
6518 }
6519 status = 0;
6520 cleanup0:
6521 cmd_free(h, c);
6522 cleanup1:
6523 if (buff) {
6524 int i;
6525
6526 for (i = 0; i < sg_used; i++)
6527 kfree(buff[i]);
6528 kfree(buff);
6529 }
6530 kfree(buff_size);
6531 kvfree(ioc);
6532 return status;
6533 }
6534
6535 static void check_ioctl_unit_attention(struct ctlr_info *h,
6536 struct CommandList *c)
6537 {
6538 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6539 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6540 (void) check_for_unit_attention(h, c);
6541 }
6542
6543 /*
6544 * ioctl
6545 */
6546 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6547 void __user *arg)
6548 {
6549 struct ctlr_info *h;
6550 void __user *argp = (void __user *)arg;
6551 int rc;
6552
6553 h = sdev_to_hba(dev);
6554
6555 switch (cmd) {
6556 case CCISS_DEREGDISK:
6557 case CCISS_REGNEWDISK:
6558 case CCISS_REGNEWD:
6559 hpsa_scan_start(h->scsi_host);
6560 return 0;
6561 case CCISS_GETPCIINFO:
6562 return hpsa_getpciinfo_ioctl(h, argp);
6563 case CCISS_GETDRIVVER:
6564 return hpsa_getdrivver_ioctl(h, argp);
6565 case CCISS_PASSTHRU:
6566 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6567 return -EAGAIN;
6568 rc = hpsa_passthru_ioctl(h, argp);
6569 atomic_inc(&h->passthru_cmds_avail);
6570 return rc;
6571 case CCISS_BIG_PASSTHRU:
6572 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6573 return -EAGAIN;
6574 rc = hpsa_big_passthru_ioctl(h, argp);
6575 atomic_inc(&h->passthru_cmds_avail);
6576 return rc;
6577 default:
6578 return -ENOTTY;
6579 }
6580 }
6581
6582 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6583 u8 reset_type)
6584 {
6585 struct CommandList *c;
6586
6587 c = cmd_alloc(h);
6588
6589 /* fill_cmd can't fail here, no data buffer to map */
6590 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6591 RAID_CTLR_LUNID, TYPE_MSG);
6592 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6593 c->waiting = NULL;
6594 enqueue_cmd_and_start_io(h, c);
6595 /* Don't wait for completion, the reset won't complete. Don't free
6596 * the command either. This is the last command we will send before
6597 * re-initializing everything, so it doesn't matter and won't leak.
6598 */
6599 return;
6600 }
6601
6602 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6603 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6604 int cmd_type)
6605 {
6606 enum dma_data_direction dir = DMA_NONE;
6607
6608 c->cmd_type = CMD_IOCTL_PEND;
6609 c->scsi_cmd = SCSI_CMD_BUSY;
6610 c->Header.ReplyQueue = 0;
6611 if (buff != NULL && size > 0) {
6612 c->Header.SGList = 1;
6613 c->Header.SGTotal = cpu_to_le16(1);
6614 } else {
6615 c->Header.SGList = 0;
6616 c->Header.SGTotal = cpu_to_le16(0);
6617 }
6618 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6619
6620 if (cmd_type == TYPE_CMD) {
6621 switch (cmd) {
6622 case HPSA_INQUIRY:
6623 /* are we trying to read a vital product page */
6624 if (page_code & VPD_PAGE) {
6625 c->Request.CDB[1] = 0x01;
6626 c->Request.CDB[2] = (page_code & 0xff);
6627 }
6628 c->Request.CDBLen = 6;
6629 c->Request.type_attr_dir =
6630 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631 c->Request.Timeout = 0;
6632 c->Request.CDB[0] = HPSA_INQUIRY;
6633 c->Request.CDB[4] = size & 0xFF;
6634 break;
6635 case RECEIVE_DIAGNOSTIC:
6636 c->Request.CDBLen = 6;
6637 c->Request.type_attr_dir =
6638 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639 c->Request.Timeout = 0;
6640 c->Request.CDB[0] = cmd;
6641 c->Request.CDB[1] = 1;
6642 c->Request.CDB[2] = 1;
6643 c->Request.CDB[3] = (size >> 8) & 0xFF;
6644 c->Request.CDB[4] = size & 0xFF;
6645 break;
6646 case HPSA_REPORT_LOG:
6647 case HPSA_REPORT_PHYS:
6648 /* Talking to controller so It's a physical command
6649 mode = 00 target = 0. Nothing to write.
6650 */
6651 c->Request.CDBLen = 12;
6652 c->Request.type_attr_dir =
6653 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6654 c->Request.Timeout = 0;
6655 c->Request.CDB[0] = cmd;
6656 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6657 c->Request.CDB[7] = (size >> 16) & 0xFF;
6658 c->Request.CDB[8] = (size >> 8) & 0xFF;
6659 c->Request.CDB[9] = size & 0xFF;
6660 break;
6661 case BMIC_SENSE_DIAG_OPTIONS:
6662 c->Request.CDBLen = 16;
6663 c->Request.type_attr_dir =
6664 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6665 c->Request.Timeout = 0;
6666 /* Spec says this should be BMIC_WRITE */
6667 c->Request.CDB[0] = BMIC_READ;
6668 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6669 break;
6670 case BMIC_SET_DIAG_OPTIONS:
6671 c->Request.CDBLen = 16;
6672 c->Request.type_attr_dir =
6673 TYPE_ATTR_DIR(cmd_type,
6674 ATTR_SIMPLE, XFER_WRITE);
6675 c->Request.Timeout = 0;
6676 c->Request.CDB[0] = BMIC_WRITE;
6677 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6678 break;
6679 case HPSA_CACHE_FLUSH:
6680 c->Request.CDBLen = 12;
6681 c->Request.type_attr_dir =
6682 TYPE_ATTR_DIR(cmd_type,
6683 ATTR_SIMPLE, XFER_WRITE);
6684 c->Request.Timeout = 0;
6685 c->Request.CDB[0] = BMIC_WRITE;
6686 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6687 c->Request.CDB[7] = (size >> 8) & 0xFF;
6688 c->Request.CDB[8] = size & 0xFF;
6689 break;
6690 case TEST_UNIT_READY:
6691 c->Request.CDBLen = 6;
6692 c->Request.type_attr_dir =
6693 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6694 c->Request.Timeout = 0;
6695 break;
6696 case HPSA_GET_RAID_MAP:
6697 c->Request.CDBLen = 12;
6698 c->Request.type_attr_dir =
6699 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6700 c->Request.Timeout = 0;
6701 c->Request.CDB[0] = HPSA_CISS_READ;
6702 c->Request.CDB[1] = cmd;
6703 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6704 c->Request.CDB[7] = (size >> 16) & 0xFF;
6705 c->Request.CDB[8] = (size >> 8) & 0xFF;
6706 c->Request.CDB[9] = size & 0xFF;
6707 break;
6708 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6709 c->Request.CDBLen = 10;
6710 c->Request.type_attr_dir =
6711 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 c->Request.Timeout = 0;
6713 c->Request.CDB[0] = BMIC_READ;
6714 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6715 c->Request.CDB[7] = (size >> 16) & 0xFF;
6716 c->Request.CDB[8] = (size >> 8) & 0xFF;
6717 break;
6718 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6719 c->Request.CDBLen = 10;
6720 c->Request.type_attr_dir =
6721 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722 c->Request.Timeout = 0;
6723 c->Request.CDB[0] = BMIC_READ;
6724 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6725 c->Request.CDB[7] = (size >> 16) & 0xFF;
6726 c->Request.CDB[8] = (size >> 8) & 0XFF;
6727 break;
6728 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6729 c->Request.CDBLen = 10;
6730 c->Request.type_attr_dir =
6731 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732 c->Request.Timeout = 0;
6733 c->Request.CDB[0] = BMIC_READ;
6734 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6735 c->Request.CDB[7] = (size >> 16) & 0xFF;
6736 c->Request.CDB[8] = (size >> 8) & 0XFF;
6737 break;
6738 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6739 c->Request.CDBLen = 10;
6740 c->Request.type_attr_dir =
6741 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6742 c->Request.Timeout = 0;
6743 c->Request.CDB[0] = BMIC_READ;
6744 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6745 c->Request.CDB[7] = (size >> 16) & 0xFF;
6746 c->Request.CDB[8] = (size >> 8) & 0XFF;
6747 break;
6748 case BMIC_IDENTIFY_CONTROLLER:
6749 c->Request.CDBLen = 10;
6750 c->Request.type_attr_dir =
6751 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6752 c->Request.Timeout = 0;
6753 c->Request.CDB[0] = BMIC_READ;
6754 c->Request.CDB[1] = 0;
6755 c->Request.CDB[2] = 0;
6756 c->Request.CDB[3] = 0;
6757 c->Request.CDB[4] = 0;
6758 c->Request.CDB[5] = 0;
6759 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6760 c->Request.CDB[7] = (size >> 16) & 0xFF;
6761 c->Request.CDB[8] = (size >> 8) & 0XFF;
6762 c->Request.CDB[9] = 0;
6763 break;
6764 default:
6765 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6766 BUG();
6767 }
6768 } else if (cmd_type == TYPE_MSG) {
6769 switch (cmd) {
6770
6771 case HPSA_PHYS_TARGET_RESET:
6772 c->Request.CDBLen = 16;
6773 c->Request.type_attr_dir =
6774 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6775 c->Request.Timeout = 0; /* Don't time out */
6776 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6777 c->Request.CDB[0] = HPSA_RESET;
6778 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6779 /* Physical target reset needs no control bytes 4-7*/
6780 c->Request.CDB[4] = 0x00;
6781 c->Request.CDB[5] = 0x00;
6782 c->Request.CDB[6] = 0x00;
6783 c->Request.CDB[7] = 0x00;
6784 break;
6785 case HPSA_DEVICE_RESET_MSG:
6786 c->Request.CDBLen = 16;
6787 c->Request.type_attr_dir =
6788 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6789 c->Request.Timeout = 0; /* Don't time out */
6790 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6791 c->Request.CDB[0] = cmd;
6792 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6793 /* If bytes 4-7 are zero, it means reset the */
6794 /* LunID device */
6795 c->Request.CDB[4] = 0x00;
6796 c->Request.CDB[5] = 0x00;
6797 c->Request.CDB[6] = 0x00;
6798 c->Request.CDB[7] = 0x00;
6799 break;
6800 default:
6801 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6802 cmd);
6803 BUG();
6804 }
6805 } else {
6806 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6807 BUG();
6808 }
6809
6810 switch (GET_DIR(c->Request.type_attr_dir)) {
6811 case XFER_READ:
6812 dir = DMA_FROM_DEVICE;
6813 break;
6814 case XFER_WRITE:
6815 dir = DMA_TO_DEVICE;
6816 break;
6817 case XFER_NONE:
6818 dir = DMA_NONE;
6819 break;
6820 default:
6821 dir = DMA_BIDIRECTIONAL;
6822 }
6823 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6824 return -1;
6825 return 0;
6826 }
6827
6828 /*
6829 * Map (physical) PCI mem into (virtual) kernel space
6830 */
6831 static void __iomem *remap_pci_mem(ulong base, ulong size)
6832 {
6833 ulong page_base = ((ulong) base) & PAGE_MASK;
6834 ulong page_offs = ((ulong) base) - page_base;
6835 void __iomem *page_remapped = ioremap_nocache(page_base,
6836 page_offs + size);
6837
6838 return page_remapped ? (page_remapped + page_offs) : NULL;
6839 }
6840
6841 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6842 {
6843 return h->access.command_completed(h, q);
6844 }
6845
6846 static inline bool interrupt_pending(struct ctlr_info *h)
6847 {
6848 return h->access.intr_pending(h);
6849 }
6850
6851 static inline long interrupt_not_for_us(struct ctlr_info *h)
6852 {
6853 return (h->access.intr_pending(h) == 0) ||
6854 (h->interrupts_enabled == 0);
6855 }
6856
6857 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6858 u32 raw_tag)
6859 {
6860 if (unlikely(tag_index >= h->nr_cmds)) {
6861 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6862 return 1;
6863 }
6864 return 0;
6865 }
6866
6867 static inline void finish_cmd(struct CommandList *c)
6868 {
6869 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6870 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6871 || c->cmd_type == CMD_IOACCEL2))
6872 complete_scsi_command(c);
6873 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6874 complete(c->waiting);
6875 }
6876
6877 /* process completion of an indexed ("direct lookup") command */
6878 static inline void process_indexed_cmd(struct ctlr_info *h,
6879 u32 raw_tag)
6880 {
6881 u32 tag_index;
6882 struct CommandList *c;
6883
6884 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6885 if (!bad_tag(h, tag_index, raw_tag)) {
6886 c = h->cmd_pool + tag_index;
6887 finish_cmd(c);
6888 }
6889 }
6890
6891 /* Some controllers, like p400, will give us one interrupt
6892 * after a soft reset, even if we turned interrupts off.
6893 * Only need to check for this in the hpsa_xxx_discard_completions
6894 * functions.
6895 */
6896 static int ignore_bogus_interrupt(struct ctlr_info *h)
6897 {
6898 if (likely(!reset_devices))
6899 return 0;
6900
6901 if (likely(h->interrupts_enabled))
6902 return 0;
6903
6904 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6905 "(known firmware bug.) Ignoring.\n");
6906
6907 return 1;
6908 }
6909
6910 /*
6911 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6912 * Relies on (h-q[x] == x) being true for x such that
6913 * 0 <= x < MAX_REPLY_QUEUES.
6914 */
6915 static struct ctlr_info *queue_to_hba(u8 *queue)
6916 {
6917 return container_of((queue - *queue), struct ctlr_info, q[0]);
6918 }
6919
6920 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6921 {
6922 struct ctlr_info *h = queue_to_hba(queue);
6923 u8 q = *(u8 *) queue;
6924 u32 raw_tag;
6925
6926 if (ignore_bogus_interrupt(h))
6927 return IRQ_NONE;
6928
6929 if (interrupt_not_for_us(h))
6930 return IRQ_NONE;
6931 h->last_intr_timestamp = get_jiffies_64();
6932 while (interrupt_pending(h)) {
6933 raw_tag = get_next_completion(h, q);
6934 while (raw_tag != FIFO_EMPTY)
6935 raw_tag = next_command(h, q);
6936 }
6937 return IRQ_HANDLED;
6938 }
6939
6940 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6941 {
6942 struct ctlr_info *h = queue_to_hba(queue);
6943 u32 raw_tag;
6944 u8 q = *(u8 *) queue;
6945
6946 if (ignore_bogus_interrupt(h))
6947 return IRQ_NONE;
6948
6949 h->last_intr_timestamp = get_jiffies_64();
6950 raw_tag = get_next_completion(h, q);
6951 while (raw_tag != FIFO_EMPTY)
6952 raw_tag = next_command(h, q);
6953 return IRQ_HANDLED;
6954 }
6955
6956 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6957 {
6958 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6959 u32 raw_tag;
6960 u8 q = *(u8 *) queue;
6961
6962 if (interrupt_not_for_us(h))
6963 return IRQ_NONE;
6964 h->last_intr_timestamp = get_jiffies_64();
6965 while (interrupt_pending(h)) {
6966 raw_tag = get_next_completion(h, q);
6967 while (raw_tag != FIFO_EMPTY) {
6968 process_indexed_cmd(h, raw_tag);
6969 raw_tag = next_command(h, q);
6970 }
6971 }
6972 return IRQ_HANDLED;
6973 }
6974
6975 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6976 {
6977 struct ctlr_info *h = queue_to_hba(queue);
6978 u32 raw_tag;
6979 u8 q = *(u8 *) queue;
6980
6981 h->last_intr_timestamp = get_jiffies_64();
6982 raw_tag = get_next_completion(h, q);
6983 while (raw_tag != FIFO_EMPTY) {
6984 process_indexed_cmd(h, raw_tag);
6985 raw_tag = next_command(h, q);
6986 }
6987 return IRQ_HANDLED;
6988 }
6989
6990 /* Send a message CDB to the firmware. Careful, this only works
6991 * in simple mode, not performant mode due to the tag lookup.
6992 * We only ever use this immediately after a controller reset.
6993 */
6994 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6995 unsigned char type)
6996 {
6997 struct Command {
6998 struct CommandListHeader CommandHeader;
6999 struct RequestBlock Request;
7000 struct ErrDescriptor ErrorDescriptor;
7001 };
7002 struct Command *cmd;
7003 static const size_t cmd_sz = sizeof(*cmd) +
7004 sizeof(cmd->ErrorDescriptor);
7005 dma_addr_t paddr64;
7006 __le32 paddr32;
7007 u32 tag;
7008 void __iomem *vaddr;
7009 int i, err;
7010
7011 vaddr = pci_ioremap_bar(pdev, 0);
7012 if (vaddr == NULL)
7013 return -ENOMEM;
7014
7015 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7016 * CCISS commands, so they must be allocated from the lower 4GiB of
7017 * memory.
7018 */
7019 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7020 if (err) {
7021 iounmap(vaddr);
7022 return err;
7023 }
7024
7025 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7026 if (cmd == NULL) {
7027 iounmap(vaddr);
7028 return -ENOMEM;
7029 }
7030
7031 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7032 * although there's no guarantee, we assume that the address is at
7033 * least 4-byte aligned (most likely, it's page-aligned).
7034 */
7035 paddr32 = cpu_to_le32(paddr64);
7036
7037 cmd->CommandHeader.ReplyQueue = 0;
7038 cmd->CommandHeader.SGList = 0;
7039 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7040 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7041 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7042
7043 cmd->Request.CDBLen = 16;
7044 cmd->Request.type_attr_dir =
7045 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7046 cmd->Request.Timeout = 0; /* Don't time out */
7047 cmd->Request.CDB[0] = opcode;
7048 cmd->Request.CDB[1] = type;
7049 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7050 cmd->ErrorDescriptor.Addr =
7051 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7052 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7053
7054 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7055
7056 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7057 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7058 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7059 break;
7060 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7061 }
7062
7063 iounmap(vaddr);
7064
7065 /* we leak the DMA buffer here ... no choice since the controller could
7066 * still complete the command.
7067 */
7068 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7069 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7070 opcode, type);
7071 return -ETIMEDOUT;
7072 }
7073
7074 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7075
7076 if (tag & HPSA_ERROR_BIT) {
7077 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7078 opcode, type);
7079 return -EIO;
7080 }
7081
7082 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7083 opcode, type);
7084 return 0;
7085 }
7086
7087 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7088
7089 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7090 void __iomem *vaddr, u32 use_doorbell)
7091 {
7092
7093 if (use_doorbell) {
7094 /* For everything after the P600, the PCI power state method
7095 * of resetting the controller doesn't work, so we have this
7096 * other way using the doorbell register.
7097 */
7098 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7099 writel(use_doorbell, vaddr + SA5_DOORBELL);
7100
7101 /* PMC hardware guys tell us we need a 10 second delay after
7102 * doorbell reset and before any attempt to talk to the board
7103 * at all to ensure that this actually works and doesn't fall
7104 * over in some weird corner cases.
7105 */
7106 msleep(10000);
7107 } else { /* Try to do it the PCI power state way */
7108
7109 /* Quoting from the Open CISS Specification: "The Power
7110 * Management Control/Status Register (CSR) controls the power
7111 * state of the device. The normal operating state is D0,
7112 * CSR=00h. The software off state is D3, CSR=03h. To reset
7113 * the controller, place the interface device in D3 then to D0,
7114 * this causes a secondary PCI reset which will reset the
7115 * controller." */
7116
7117 int rc = 0;
7118
7119 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7120
7121 /* enter the D3hot power management state */
7122 rc = pci_set_power_state(pdev, PCI_D3hot);
7123 if (rc)
7124 return rc;
7125
7126 msleep(500);
7127
7128 /* enter the D0 power management state */
7129 rc = pci_set_power_state(pdev, PCI_D0);
7130 if (rc)
7131 return rc;
7132
7133 /*
7134 * The P600 requires a small delay when changing states.
7135 * Otherwise we may think the board did not reset and we bail.
7136 * This for kdump only and is particular to the P600.
7137 */
7138 msleep(500);
7139 }
7140 return 0;
7141 }
7142
7143 static void init_driver_version(char *driver_version, int len)
7144 {
7145 memset(driver_version, 0, len);
7146 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7147 }
7148
7149 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7150 {
7151 char *driver_version;
7152 int i, size = sizeof(cfgtable->driver_version);
7153
7154 driver_version = kmalloc(size, GFP_KERNEL);
7155 if (!driver_version)
7156 return -ENOMEM;
7157
7158 init_driver_version(driver_version, size);
7159 for (i = 0; i < size; i++)
7160 writeb(driver_version[i], &cfgtable->driver_version[i]);
7161 kfree(driver_version);
7162 return 0;
7163 }
7164
7165 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7166 unsigned char *driver_ver)
7167 {
7168 int i;
7169
7170 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7171 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7172 }
7173
7174 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7175 {
7176
7177 char *driver_ver, *old_driver_ver;
7178 int rc, size = sizeof(cfgtable->driver_version);
7179
7180 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7181 if (!old_driver_ver)
7182 return -ENOMEM;
7183 driver_ver = old_driver_ver + size;
7184
7185 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7186 * should have been changed, otherwise we know the reset failed.
7187 */
7188 init_driver_version(old_driver_ver, size);
7189 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7190 rc = !memcmp(driver_ver, old_driver_ver, size);
7191 kfree(old_driver_ver);
7192 return rc;
7193 }
7194 /* This does a hard reset of the controller using PCI power management
7195 * states or the using the doorbell register.
7196 */
7197 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7198 {
7199 u64 cfg_offset;
7200 u32 cfg_base_addr;
7201 u64 cfg_base_addr_index;
7202 void __iomem *vaddr;
7203 unsigned long paddr;
7204 u32 misc_fw_support;
7205 int rc;
7206 struct CfgTable __iomem *cfgtable;
7207 u32 use_doorbell;
7208 u16 command_register;
7209
7210 /* For controllers as old as the P600, this is very nearly
7211 * the same thing as
7212 *
7213 * pci_save_state(pci_dev);
7214 * pci_set_power_state(pci_dev, PCI_D3hot);
7215 * pci_set_power_state(pci_dev, PCI_D0);
7216 * pci_restore_state(pci_dev);
7217 *
7218 * For controllers newer than the P600, the pci power state
7219 * method of resetting doesn't work so we have another way
7220 * using the doorbell register.
7221 */
7222
7223 if (!ctlr_is_resettable(board_id)) {
7224 dev_warn(&pdev->dev, "Controller not resettable\n");
7225 return -ENODEV;
7226 }
7227
7228 /* if controller is soft- but not hard resettable... */
7229 if (!ctlr_is_hard_resettable(board_id))
7230 return -ENOTSUPP; /* try soft reset later. */
7231
7232 /* Save the PCI command register */
7233 pci_read_config_word(pdev, 4, &command_register);
7234 pci_save_state(pdev);
7235
7236 /* find the first memory BAR, so we can find the cfg table */
7237 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7238 if (rc)
7239 return rc;
7240 vaddr = remap_pci_mem(paddr, 0x250);
7241 if (!vaddr)
7242 return -ENOMEM;
7243
7244 /* find cfgtable in order to check if reset via doorbell is supported */
7245 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7246 &cfg_base_addr_index, &cfg_offset);
7247 if (rc)
7248 goto unmap_vaddr;
7249 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7250 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7251 if (!cfgtable) {
7252 rc = -ENOMEM;
7253 goto unmap_vaddr;
7254 }
7255 rc = write_driver_ver_to_cfgtable(cfgtable);
7256 if (rc)
7257 goto unmap_cfgtable;
7258
7259 /* If reset via doorbell register is supported, use that.
7260 * There are two such methods. Favor the newest method.
7261 */
7262 misc_fw_support = readl(&cfgtable->misc_fw_support);
7263 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7264 if (use_doorbell) {
7265 use_doorbell = DOORBELL_CTLR_RESET2;
7266 } else {
7267 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7268 if (use_doorbell) {
7269 dev_warn(&pdev->dev,
7270 "Soft reset not supported. Firmware update is required.\n");
7271 rc = -ENOTSUPP; /* try soft reset */
7272 goto unmap_cfgtable;
7273 }
7274 }
7275
7276 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7277 if (rc)
7278 goto unmap_cfgtable;
7279
7280 pci_restore_state(pdev);
7281 pci_write_config_word(pdev, 4, command_register);
7282
7283 /* Some devices (notably the HP Smart Array 5i Controller)
7284 need a little pause here */
7285 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7286
7287 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7288 if (rc) {
7289 dev_warn(&pdev->dev,
7290 "Failed waiting for board to become ready after hard reset\n");
7291 goto unmap_cfgtable;
7292 }
7293
7294 rc = controller_reset_failed(vaddr);
7295 if (rc < 0)
7296 goto unmap_cfgtable;
7297 if (rc) {
7298 dev_warn(&pdev->dev, "Unable to successfully reset "
7299 "controller. Will try soft reset.\n");
7300 rc = -ENOTSUPP;
7301 } else {
7302 dev_info(&pdev->dev, "board ready after hard reset.\n");
7303 }
7304
7305 unmap_cfgtable:
7306 iounmap(cfgtable);
7307
7308 unmap_vaddr:
7309 iounmap(vaddr);
7310 return rc;
7311 }
7312
7313 /*
7314 * We cannot read the structure directly, for portability we must use
7315 * the io functions.
7316 * This is for debug only.
7317 */
7318 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7319 {
7320 #ifdef HPSA_DEBUG
7321 int i;
7322 char temp_name[17];
7323
7324 dev_info(dev, "Controller Configuration information\n");
7325 dev_info(dev, "------------------------------------\n");
7326 for (i = 0; i < 4; i++)
7327 temp_name[i] = readb(&(tb->Signature[i]));
7328 temp_name[4] = '\0';
7329 dev_info(dev, " Signature = %s\n", temp_name);
7330 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7331 dev_info(dev, " Transport methods supported = 0x%x\n",
7332 readl(&(tb->TransportSupport)));
7333 dev_info(dev, " Transport methods active = 0x%x\n",
7334 readl(&(tb->TransportActive)));
7335 dev_info(dev, " Requested transport Method = 0x%x\n",
7336 readl(&(tb->HostWrite.TransportRequest)));
7337 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7338 readl(&(tb->HostWrite.CoalIntDelay)));
7339 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7340 readl(&(tb->HostWrite.CoalIntCount)));
7341 dev_info(dev, " Max outstanding commands = %d\n",
7342 readl(&(tb->CmdsOutMax)));
7343 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7344 for (i = 0; i < 16; i++)
7345 temp_name[i] = readb(&(tb->ServerName[i]));
7346 temp_name[16] = '\0';
7347 dev_info(dev, " Server Name = %s\n", temp_name);
7348 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7349 readl(&(tb->HeartBeat)));
7350 #endif /* HPSA_DEBUG */
7351 }
7352
7353 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7354 {
7355 int i, offset, mem_type, bar_type;
7356
7357 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7358 return 0;
7359 offset = 0;
7360 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7361 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7362 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7363 offset += 4;
7364 else {
7365 mem_type = pci_resource_flags(pdev, i) &
7366 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7367 switch (mem_type) {
7368 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7369 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7370 offset += 4; /* 32 bit */
7371 break;
7372 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7373 offset += 8;
7374 break;
7375 default: /* reserved in PCI 2.2 */
7376 dev_warn(&pdev->dev,
7377 "base address is invalid\n");
7378 return -1;
7379 break;
7380 }
7381 }
7382 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7383 return i + 1;
7384 }
7385 return -1;
7386 }
7387
7388 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7389 {
7390 pci_free_irq_vectors(h->pdev);
7391 h->msix_vectors = 0;
7392 }
7393
7394 static void hpsa_setup_reply_map(struct ctlr_info *h)
7395 {
7396 const struct cpumask *mask;
7397 unsigned int queue, cpu;
7398
7399 for (queue = 0; queue < h->msix_vectors; queue++) {
7400 mask = pci_irq_get_affinity(h->pdev, queue);
7401 if (!mask)
7402 goto fallback;
7403
7404 for_each_cpu(cpu, mask)
7405 h->reply_map[cpu] = queue;
7406 }
7407 return;
7408
7409 fallback:
7410 for_each_possible_cpu(cpu)
7411 h->reply_map[cpu] = 0;
7412 }
7413
7414 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7415 * controllers that are capable. If not, we use legacy INTx mode.
7416 */
7417 static int hpsa_interrupt_mode(struct ctlr_info *h)
7418 {
7419 unsigned int flags = PCI_IRQ_LEGACY;
7420 int ret;
7421
7422 /* Some boards advertise MSI but don't really support it */
7423 switch (h->board_id) {
7424 case 0x40700E11:
7425 case 0x40800E11:
7426 case 0x40820E11:
7427 case 0x40830E11:
7428 break;
7429 default:
7430 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7431 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7432 if (ret > 0) {
7433 h->msix_vectors = ret;
7434 return 0;
7435 }
7436
7437 flags |= PCI_IRQ_MSI;
7438 break;
7439 }
7440
7441 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7442 if (ret < 0)
7443 return ret;
7444 return 0;
7445 }
7446
7447 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7448 bool *legacy_board)
7449 {
7450 int i;
7451 u32 subsystem_vendor_id, subsystem_device_id;
7452
7453 subsystem_vendor_id = pdev->subsystem_vendor;
7454 subsystem_device_id = pdev->subsystem_device;
7455 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7456 subsystem_vendor_id;
7457
7458 if (legacy_board)
7459 *legacy_board = false;
7460 for (i = 0; i < ARRAY_SIZE(products); i++)
7461 if (*board_id == products[i].board_id) {
7462 if (products[i].access != &SA5A_access &&
7463 products[i].access != &SA5B_access)
7464 return i;
7465 dev_warn(&pdev->dev,
7466 "legacy board ID: 0x%08x\n",
7467 *board_id);
7468 if (legacy_board)
7469 *legacy_board = true;
7470 return i;
7471 }
7472
7473 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7474 if (legacy_board)
7475 *legacy_board = true;
7476 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7477 }
7478
7479 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7480 unsigned long *memory_bar)
7481 {
7482 int i;
7483
7484 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7485 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7486 /* addressing mode bits already removed */
7487 *memory_bar = pci_resource_start(pdev, i);
7488 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7489 *memory_bar);
7490 return 0;
7491 }
7492 dev_warn(&pdev->dev, "no memory BAR found\n");
7493 return -ENODEV;
7494 }
7495
7496 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7497 int wait_for_ready)
7498 {
7499 int i, iterations;
7500 u32 scratchpad;
7501 if (wait_for_ready)
7502 iterations = HPSA_BOARD_READY_ITERATIONS;
7503 else
7504 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7505
7506 for (i = 0; i < iterations; i++) {
7507 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7508 if (wait_for_ready) {
7509 if (scratchpad == HPSA_FIRMWARE_READY)
7510 return 0;
7511 } else {
7512 if (scratchpad != HPSA_FIRMWARE_READY)
7513 return 0;
7514 }
7515 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7516 }
7517 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7518 return -ENODEV;
7519 }
7520
7521 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7522 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7523 u64 *cfg_offset)
7524 {
7525 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7526 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7527 *cfg_base_addr &= (u32) 0x0000ffff;
7528 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7529 if (*cfg_base_addr_index == -1) {
7530 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7531 return -ENODEV;
7532 }
7533 return 0;
7534 }
7535
7536 static void hpsa_free_cfgtables(struct ctlr_info *h)
7537 {
7538 if (h->transtable) {
7539 iounmap(h->transtable);
7540 h->transtable = NULL;
7541 }
7542 if (h->cfgtable) {
7543 iounmap(h->cfgtable);
7544 h->cfgtable = NULL;
7545 }
7546 }
7547
7548 /* Find and map CISS config table and transfer table
7549 + * several items must be unmapped (freed) later
7550 + * */
7551 static int hpsa_find_cfgtables(struct ctlr_info *h)
7552 {
7553 u64 cfg_offset;
7554 u32 cfg_base_addr;
7555 u64 cfg_base_addr_index;
7556 u32 trans_offset;
7557 int rc;
7558
7559 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7560 &cfg_base_addr_index, &cfg_offset);
7561 if (rc)
7562 return rc;
7563 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7564 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7565 if (!h->cfgtable) {
7566 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7567 return -ENOMEM;
7568 }
7569 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7570 if (rc)
7571 return rc;
7572 /* Find performant mode table. */
7573 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7574 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7575 cfg_base_addr_index)+cfg_offset+trans_offset,
7576 sizeof(*h->transtable));
7577 if (!h->transtable) {
7578 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7579 hpsa_free_cfgtables(h);
7580 return -ENOMEM;
7581 }
7582 return 0;
7583 }
7584
7585 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7586 {
7587 #define MIN_MAX_COMMANDS 16
7588 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7589
7590 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7591
7592 /* Limit commands in memory limited kdump scenario. */
7593 if (reset_devices && h->max_commands > 32)
7594 h->max_commands = 32;
7595
7596 if (h->max_commands < MIN_MAX_COMMANDS) {
7597 dev_warn(&h->pdev->dev,
7598 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7599 h->max_commands,
7600 MIN_MAX_COMMANDS);
7601 h->max_commands = MIN_MAX_COMMANDS;
7602 }
7603 }
7604
7605 /* If the controller reports that the total max sg entries is greater than 512,
7606 * then we know that chained SG blocks work. (Original smart arrays did not
7607 * support chained SG blocks and would return zero for max sg entries.)
7608 */
7609 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7610 {
7611 return h->maxsgentries > 512;
7612 }
7613
7614 /* Interrogate the hardware for some limits:
7615 * max commands, max SG elements without chaining, and with chaining,
7616 * SG chain block size, etc.
7617 */
7618 static void hpsa_find_board_params(struct ctlr_info *h)
7619 {
7620 hpsa_get_max_perf_mode_cmds(h);
7621 h->nr_cmds = h->max_commands;
7622 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7623 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7624 if (hpsa_supports_chained_sg_blocks(h)) {
7625 /* Limit in-command s/g elements to 32 save dma'able memory. */
7626 h->max_cmd_sg_entries = 32;
7627 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7628 h->maxsgentries--; /* save one for chain pointer */
7629 } else {
7630 /*
7631 * Original smart arrays supported at most 31 s/g entries
7632 * embedded inline in the command (trying to use more
7633 * would lock up the controller)
7634 */
7635 h->max_cmd_sg_entries = 31;
7636 h->maxsgentries = 31; /* default to traditional values */
7637 h->chainsize = 0;
7638 }
7639
7640 /* Find out what task management functions are supported and cache */
7641 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7642 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7643 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7644 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7645 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7646 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7647 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7648 }
7649
7650 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7651 {
7652 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7653 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7654 return false;
7655 }
7656 return true;
7657 }
7658
7659 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7660 {
7661 u32 driver_support;
7662
7663 driver_support = readl(&(h->cfgtable->driver_support));
7664 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7665 #ifdef CONFIG_X86
7666 driver_support |= ENABLE_SCSI_PREFETCH;
7667 #endif
7668 driver_support |= ENABLE_UNIT_ATTN;
7669 writel(driver_support, &(h->cfgtable->driver_support));
7670 }
7671
7672 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7673 * in a prefetch beyond physical memory.
7674 */
7675 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7676 {
7677 u32 dma_prefetch;
7678
7679 if (h->board_id != 0x3225103C)
7680 return;
7681 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7682 dma_prefetch |= 0x8000;
7683 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7684 }
7685
7686 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7687 {
7688 int i;
7689 u32 doorbell_value;
7690 unsigned long flags;
7691 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7692 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7693 spin_lock_irqsave(&h->lock, flags);
7694 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695 spin_unlock_irqrestore(&h->lock, flags);
7696 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7697 goto done;
7698 /* delay and try again */
7699 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7700 }
7701 return -ENODEV;
7702 done:
7703 return 0;
7704 }
7705
7706 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7707 {
7708 int i;
7709 u32 doorbell_value;
7710 unsigned long flags;
7711
7712 /* under certain very rare conditions, this can take awhile.
7713 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714 * as we enter this code.)
7715 */
7716 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7717 if (h->remove_in_progress)
7718 goto done;
7719 spin_lock_irqsave(&h->lock, flags);
7720 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7721 spin_unlock_irqrestore(&h->lock, flags);
7722 if (!(doorbell_value & CFGTBL_ChangeReq))
7723 goto done;
7724 /* delay and try again */
7725 msleep(MODE_CHANGE_WAIT_INTERVAL);
7726 }
7727 return -ENODEV;
7728 done:
7729 return 0;
7730 }
7731
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7734 {
7735 u32 trans_support;
7736
7737 trans_support = readl(&(h->cfgtable->TransportSupport));
7738 if (!(trans_support & SIMPLE_MODE))
7739 return -ENOTSUPP;
7740
7741 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7742
7743 /* Update the field, and then ring the doorbell */
7744 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7745 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7746 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7747 if (hpsa_wait_for_mode_change_ack(h))
7748 goto error;
7749 print_cfg_table(&h->pdev->dev, h->cfgtable);
7750 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7751 goto error;
7752 h->transMethod = CFGTBL_Trans_Simple;
7753 return 0;
7754 error:
7755 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7756 return -ENODEV;
7757 }
7758
7759 /* free items allocated or mapped by hpsa_pci_init */
7760 static void hpsa_free_pci_init(struct ctlr_info *h)
7761 {
7762 hpsa_free_cfgtables(h); /* pci_init 4 */
7763 iounmap(h->vaddr); /* pci_init 3 */
7764 h->vaddr = NULL;
7765 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7766 /*
7767 * call pci_disable_device before pci_release_regions per
7768 * Documentation/PCI/pci.txt
7769 */
7770 pci_disable_device(h->pdev); /* pci_init 1 */
7771 pci_release_regions(h->pdev); /* pci_init 2 */
7772 }
7773
7774 /* several items must be freed later */
7775 static int hpsa_pci_init(struct ctlr_info *h)
7776 {
7777 int prod_index, err;
7778 bool legacy_board;
7779
7780 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7781 if (prod_index < 0)
7782 return prod_index;
7783 h->product_name = products[prod_index].product_name;
7784 h->access = *(products[prod_index].access);
7785 h->legacy_board = legacy_board;
7786 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7787 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7788
7789 err = pci_enable_device(h->pdev);
7790 if (err) {
7791 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7792 pci_disable_device(h->pdev);
7793 return err;
7794 }
7795
7796 err = pci_request_regions(h->pdev, HPSA);
7797 if (err) {
7798 dev_err(&h->pdev->dev,
7799 "failed to obtain PCI resources\n");
7800 pci_disable_device(h->pdev);
7801 return err;
7802 }
7803
7804 pci_set_master(h->pdev);
7805
7806 err = hpsa_interrupt_mode(h);
7807 if (err)
7808 goto clean1;
7809
7810 /* setup mapping between CPU and reply queue */
7811 hpsa_setup_reply_map(h);
7812
7813 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7814 if (err)
7815 goto clean2; /* intmode+region, pci */
7816 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7817 if (!h->vaddr) {
7818 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7819 err = -ENOMEM;
7820 goto clean2; /* intmode+region, pci */
7821 }
7822 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7823 if (err)
7824 goto clean3; /* vaddr, intmode+region, pci */
7825 err = hpsa_find_cfgtables(h);
7826 if (err)
7827 goto clean3; /* vaddr, intmode+region, pci */
7828 hpsa_find_board_params(h);
7829
7830 if (!hpsa_CISS_signature_present(h)) {
7831 err = -ENODEV;
7832 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7833 }
7834 hpsa_set_driver_support_bits(h);
7835 hpsa_p600_dma_prefetch_quirk(h);
7836 err = hpsa_enter_simple_mode(h);
7837 if (err)
7838 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7839 return 0;
7840
7841 clean4: /* cfgtables, vaddr, intmode+region, pci */
7842 hpsa_free_cfgtables(h);
7843 clean3: /* vaddr, intmode+region, pci */
7844 iounmap(h->vaddr);
7845 h->vaddr = NULL;
7846 clean2: /* intmode+region, pci */
7847 hpsa_disable_interrupt_mode(h);
7848 clean1:
7849 /*
7850 * call pci_disable_device before pci_release_regions per
7851 * Documentation/PCI/pci.txt
7852 */
7853 pci_disable_device(h->pdev);
7854 pci_release_regions(h->pdev);
7855 return err;
7856 }
7857
7858 static void hpsa_hba_inquiry(struct ctlr_info *h)
7859 {
7860 int rc;
7861
7862 #define HBA_INQUIRY_BYTE_COUNT 64
7863 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7864 if (!h->hba_inquiry_data)
7865 return;
7866 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7867 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7868 if (rc != 0) {
7869 kfree(h->hba_inquiry_data);
7870 h->hba_inquiry_data = NULL;
7871 }
7872 }
7873
7874 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7875 {
7876 int rc, i;
7877 void __iomem *vaddr;
7878
7879 if (!reset_devices)
7880 return 0;
7881
7882 /* kdump kernel is loading, we don't know in which state is
7883 * the pci interface. The dev->enable_cnt is equal zero
7884 * so we call enable+disable, wait a while and switch it on.
7885 */
7886 rc = pci_enable_device(pdev);
7887 if (rc) {
7888 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7889 return -ENODEV;
7890 }
7891 pci_disable_device(pdev);
7892 msleep(260); /* a randomly chosen number */
7893 rc = pci_enable_device(pdev);
7894 if (rc) {
7895 dev_warn(&pdev->dev, "failed to enable device.\n");
7896 return -ENODEV;
7897 }
7898
7899 pci_set_master(pdev);
7900
7901 vaddr = pci_ioremap_bar(pdev, 0);
7902 if (vaddr == NULL) {
7903 rc = -ENOMEM;
7904 goto out_disable;
7905 }
7906 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7907 iounmap(vaddr);
7908
7909 /* Reset the controller with a PCI power-cycle or via doorbell */
7910 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7911
7912 /* -ENOTSUPP here means we cannot reset the controller
7913 * but it's already (and still) up and running in
7914 * "performant mode". Or, it might be 640x, which can't reset
7915 * due to concerns about shared bbwc between 6402/6404 pair.
7916 */
7917 if (rc)
7918 goto out_disable;
7919
7920 /* Now try to get the controller to respond to a no-op */
7921 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7922 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7923 if (hpsa_noop(pdev) == 0)
7924 break;
7925 else
7926 dev_warn(&pdev->dev, "no-op failed%s\n",
7927 (i < 11 ? "; re-trying" : ""));
7928 }
7929
7930 out_disable:
7931
7932 pci_disable_device(pdev);
7933 return rc;
7934 }
7935
7936 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7937 {
7938 kfree(h->cmd_pool_bits);
7939 h->cmd_pool_bits = NULL;
7940 if (h->cmd_pool) {
7941 dma_free_coherent(&h->pdev->dev,
7942 h->nr_cmds * sizeof(struct CommandList),
7943 h->cmd_pool,
7944 h->cmd_pool_dhandle);
7945 h->cmd_pool = NULL;
7946 h->cmd_pool_dhandle = 0;
7947 }
7948 if (h->errinfo_pool) {
7949 dma_free_coherent(&h->pdev->dev,
7950 h->nr_cmds * sizeof(struct ErrorInfo),
7951 h->errinfo_pool,
7952 h->errinfo_pool_dhandle);
7953 h->errinfo_pool = NULL;
7954 h->errinfo_pool_dhandle = 0;
7955 }
7956 }
7957
7958 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7959 {
7960 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7961 sizeof(unsigned long),
7962 GFP_KERNEL);
7963 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7964 h->nr_cmds * sizeof(*h->cmd_pool),
7965 &h->cmd_pool_dhandle, GFP_KERNEL);
7966 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7967 h->nr_cmds * sizeof(*h->errinfo_pool),
7968 &h->errinfo_pool_dhandle, GFP_KERNEL);
7969 if ((h->cmd_pool_bits == NULL)
7970 || (h->cmd_pool == NULL)
7971 || (h->errinfo_pool == NULL)) {
7972 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7973 goto clean_up;
7974 }
7975 hpsa_preinitialize_commands(h);
7976 return 0;
7977 clean_up:
7978 hpsa_free_cmd_pool(h);
7979 return -ENOMEM;
7980 }
7981
7982 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7983 static void hpsa_free_irqs(struct ctlr_info *h)
7984 {
7985 int i;
7986
7987 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7988 /* Single reply queue, only one irq to free */
7989 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7990 h->q[h->intr_mode] = 0;
7991 return;
7992 }
7993
7994 for (i = 0; i < h->msix_vectors; i++) {
7995 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7996 h->q[i] = 0;
7997 }
7998 for (; i < MAX_REPLY_QUEUES; i++)
7999 h->q[i] = 0;
8000 }
8001
8002 /* returns 0 on success; cleans up and returns -Enn on error */
8003 static int hpsa_request_irqs(struct ctlr_info *h,
8004 irqreturn_t (*msixhandler)(int, void *),
8005 irqreturn_t (*intxhandler)(int, void *))
8006 {
8007 int rc, i;
8008
8009 /*
8010 * initialize h->q[x] = x so that interrupt handlers know which
8011 * queue to process.
8012 */
8013 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8014 h->q[i] = (u8) i;
8015
8016 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8017 /* If performant mode and MSI-X, use multiple reply queues */
8018 for (i = 0; i < h->msix_vectors; i++) {
8019 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8020 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8021 0, h->intrname[i],
8022 &h->q[i]);
8023 if (rc) {
8024 int j;
8025
8026 dev_err(&h->pdev->dev,
8027 "failed to get irq %d for %s\n",
8028 pci_irq_vector(h->pdev, i), h->devname);
8029 for (j = 0; j < i; j++) {
8030 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8031 h->q[j] = 0;
8032 }
8033 for (; j < MAX_REPLY_QUEUES; j++)
8034 h->q[j] = 0;
8035 return rc;
8036 }
8037 }
8038 } else {
8039 /* Use single reply pool */
8040 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8041 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8042 h->msix_vectors ? "x" : "");
8043 rc = request_irq(pci_irq_vector(h->pdev, 0),
8044 msixhandler, 0,
8045 h->intrname[0],
8046 &h->q[h->intr_mode]);
8047 } else {
8048 sprintf(h->intrname[h->intr_mode],
8049 "%s-intx", h->devname);
8050 rc = request_irq(pci_irq_vector(h->pdev, 0),
8051 intxhandler, IRQF_SHARED,
8052 h->intrname[0],
8053 &h->q[h->intr_mode]);
8054 }
8055 }
8056 if (rc) {
8057 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8058 pci_irq_vector(h->pdev, 0), h->devname);
8059 hpsa_free_irqs(h);
8060 return -ENODEV;
8061 }
8062 return 0;
8063 }
8064
8065 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8066 {
8067 int rc;
8068 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8069
8070 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8071 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8072 if (rc) {
8073 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8074 return rc;
8075 }
8076
8077 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8078 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8079 if (rc) {
8080 dev_warn(&h->pdev->dev, "Board failed to become ready "
8081 "after soft reset.\n");
8082 return rc;
8083 }
8084
8085 return 0;
8086 }
8087
8088 static void hpsa_free_reply_queues(struct ctlr_info *h)
8089 {
8090 int i;
8091
8092 for (i = 0; i < h->nreply_queues; i++) {
8093 if (!h->reply_queue[i].head)
8094 continue;
8095 dma_free_coherent(&h->pdev->dev,
8096 h->reply_queue_size,
8097 h->reply_queue[i].head,
8098 h->reply_queue[i].busaddr);
8099 h->reply_queue[i].head = NULL;
8100 h->reply_queue[i].busaddr = 0;
8101 }
8102 h->reply_queue_size = 0;
8103 }
8104
8105 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8106 {
8107 hpsa_free_performant_mode(h); /* init_one 7 */
8108 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8109 hpsa_free_cmd_pool(h); /* init_one 5 */
8110 hpsa_free_irqs(h); /* init_one 4 */
8111 scsi_host_put(h->scsi_host); /* init_one 3 */
8112 h->scsi_host = NULL; /* init_one 3 */
8113 hpsa_free_pci_init(h); /* init_one 2_5 */
8114 free_percpu(h->lockup_detected); /* init_one 2 */
8115 h->lockup_detected = NULL; /* init_one 2 */
8116 if (h->resubmit_wq) {
8117 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8118 h->resubmit_wq = NULL;
8119 }
8120 if (h->rescan_ctlr_wq) {
8121 destroy_workqueue(h->rescan_ctlr_wq);
8122 h->rescan_ctlr_wq = NULL;
8123 }
8124 kfree(h); /* init_one 1 */
8125 }
8126
8127 /* Called when controller lockup detected. */
8128 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8129 {
8130 int i, refcount;
8131 struct CommandList *c;
8132 int failcount = 0;
8133
8134 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8135 for (i = 0; i < h->nr_cmds; i++) {
8136 c = h->cmd_pool + i;
8137 refcount = atomic_inc_return(&c->refcount);
8138 if (refcount > 1) {
8139 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8140 finish_cmd(c);
8141 atomic_dec(&h->commands_outstanding);
8142 failcount++;
8143 }
8144 cmd_free(h, c);
8145 }
8146 dev_warn(&h->pdev->dev,
8147 "failed %d commands in fail_all\n", failcount);
8148 }
8149
8150 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8151 {
8152 int cpu;
8153
8154 for_each_online_cpu(cpu) {
8155 u32 *lockup_detected;
8156 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8157 *lockup_detected = value;
8158 }
8159 wmb(); /* be sure the per-cpu variables are out to memory */
8160 }
8161
8162 static void controller_lockup_detected(struct ctlr_info *h)
8163 {
8164 unsigned long flags;
8165 u32 lockup_detected;
8166
8167 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8168 spin_lock_irqsave(&h->lock, flags);
8169 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8170 if (!lockup_detected) {
8171 /* no heartbeat, but controller gave us a zero. */
8172 dev_warn(&h->pdev->dev,
8173 "lockup detected after %d but scratchpad register is zero\n",
8174 h->heartbeat_sample_interval / HZ);
8175 lockup_detected = 0xffffffff;
8176 }
8177 set_lockup_detected_for_all_cpus(h, lockup_detected);
8178 spin_unlock_irqrestore(&h->lock, flags);
8179 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8180 lockup_detected, h->heartbeat_sample_interval / HZ);
8181 if (lockup_detected == 0xffff0000) {
8182 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8183 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8184 }
8185 pci_disable_device(h->pdev);
8186 fail_all_outstanding_cmds(h);
8187 }
8188
8189 static int detect_controller_lockup(struct ctlr_info *h)
8190 {
8191 u64 now;
8192 u32 heartbeat;
8193 unsigned long flags;
8194
8195 now = get_jiffies_64();
8196 /* If we've received an interrupt recently, we're ok. */
8197 if (time_after64(h->last_intr_timestamp +
8198 (h->heartbeat_sample_interval), now))
8199 return false;
8200
8201 /*
8202 * If we've already checked the heartbeat recently, we're ok.
8203 * This could happen if someone sends us a signal. We
8204 * otherwise don't care about signals in this thread.
8205 */
8206 if (time_after64(h->last_heartbeat_timestamp +
8207 (h->heartbeat_sample_interval), now))
8208 return false;
8209
8210 /* If heartbeat has not changed since we last looked, we're not ok. */
8211 spin_lock_irqsave(&h->lock, flags);
8212 heartbeat = readl(&h->cfgtable->HeartBeat);
8213 spin_unlock_irqrestore(&h->lock, flags);
8214 if (h->last_heartbeat == heartbeat) {
8215 controller_lockup_detected(h);
8216 return true;
8217 }
8218
8219 /* We're ok. */
8220 h->last_heartbeat = heartbeat;
8221 h->last_heartbeat_timestamp = now;
8222 return false;
8223 }
8224
8225 /*
8226 * Set ioaccel status for all ioaccel volumes.
8227 *
8228 * Called from monitor controller worker (hpsa_event_monitor_worker)
8229 *
8230 * A Volume (or Volumes that comprise an Array set may be undergoing a
8231 * transformation, so we will be turning off ioaccel for all volumes that
8232 * make up the Array.
8233 */
8234 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8235 {
8236 int rc;
8237 int i;
8238 u8 ioaccel_status;
8239 unsigned char *buf;
8240 struct hpsa_scsi_dev_t *device;
8241
8242 if (!h)
8243 return;
8244
8245 buf = kmalloc(64, GFP_KERNEL);
8246 if (!buf)
8247 return;
8248
8249 /*
8250 * Run through current device list used during I/O requests.
8251 */
8252 for (i = 0; i < h->ndevices; i++) {
8253 device = h->dev[i];
8254
8255 if (!device)
8256 continue;
8257 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8258 HPSA_VPD_LV_IOACCEL_STATUS))
8259 continue;
8260
8261 memset(buf, 0, 64);
8262
8263 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8264 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8265 buf, 64);
8266 if (rc != 0)
8267 continue;
8268
8269 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8270 device->offload_config =
8271 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8272 if (device->offload_config)
8273 device->offload_to_be_enabled =
8274 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8275
8276 /*
8277 * Immediately turn off ioaccel for any volume the
8278 * controller tells us to. Some of the reasons could be:
8279 * transformation - change to the LVs of an Array.
8280 * degraded volume - component failure
8281 *
8282 * If ioaccel is to be re-enabled, re-enable later during the
8283 * scan operation so the driver can get a fresh raidmap
8284 * before turning ioaccel back on.
8285 *
8286 */
8287 if (!device->offload_to_be_enabled)
8288 device->offload_enabled = 0;
8289 }
8290
8291 kfree(buf);
8292 }
8293
8294 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8295 {
8296 char *event_type;
8297
8298 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8299 return;
8300
8301 /* Ask the controller to clear the events we're handling. */
8302 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8303 | CFGTBL_Trans_io_accel2)) &&
8304 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8305 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8306
8307 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8308 event_type = "state change";
8309 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8310 event_type = "configuration change";
8311 /* Stop sending new RAID offload reqs via the IO accelerator */
8312 scsi_block_requests(h->scsi_host);
8313 hpsa_set_ioaccel_status(h);
8314 hpsa_drain_accel_commands(h);
8315 /* Set 'accelerator path config change' bit */
8316 dev_warn(&h->pdev->dev,
8317 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8318 h->events, event_type);
8319 writel(h->events, &(h->cfgtable->clear_event_notify));
8320 /* Set the "clear event notify field update" bit 6 */
8321 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8322 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8323 hpsa_wait_for_clear_event_notify_ack(h);
8324 scsi_unblock_requests(h->scsi_host);
8325 } else {
8326 /* Acknowledge controller notification events. */
8327 writel(h->events, &(h->cfgtable->clear_event_notify));
8328 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8329 hpsa_wait_for_clear_event_notify_ack(h);
8330 }
8331 return;
8332 }
8333
8334 /* Check a register on the controller to see if there are configuration
8335 * changes (added/changed/removed logical drives, etc.) which mean that
8336 * we should rescan the controller for devices.
8337 * Also check flag for driver-initiated rescan.
8338 */
8339 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8340 {
8341 if (h->drv_req_rescan) {
8342 h->drv_req_rescan = 0;
8343 return 1;
8344 }
8345
8346 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8347 return 0;
8348
8349 h->events = readl(&(h->cfgtable->event_notify));
8350 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8351 }
8352
8353 /*
8354 * Check if any of the offline devices have become ready
8355 */
8356 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8357 {
8358 unsigned long flags;
8359 struct offline_device_entry *d;
8360 struct list_head *this, *tmp;
8361
8362 spin_lock_irqsave(&h->offline_device_lock, flags);
8363 list_for_each_safe(this, tmp, &h->offline_device_list) {
8364 d = list_entry(this, struct offline_device_entry,
8365 offline_list);
8366 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8367 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8368 spin_lock_irqsave(&h->offline_device_lock, flags);
8369 list_del(&d->offline_list);
8370 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8371 return 1;
8372 }
8373 spin_lock_irqsave(&h->offline_device_lock, flags);
8374 }
8375 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8376 return 0;
8377 }
8378
8379 static int hpsa_luns_changed(struct ctlr_info *h)
8380 {
8381 int rc = 1; /* assume there are changes */
8382 struct ReportLUNdata *logdev = NULL;
8383
8384 /* if we can't find out if lun data has changed,
8385 * assume that it has.
8386 */
8387
8388 if (!h->lastlogicals)
8389 return rc;
8390
8391 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8392 if (!logdev)
8393 return rc;
8394
8395 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8396 dev_warn(&h->pdev->dev,
8397 "report luns failed, can't track lun changes.\n");
8398 goto out;
8399 }
8400 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8401 dev_info(&h->pdev->dev,
8402 "Lun changes detected.\n");
8403 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8404 goto out;
8405 } else
8406 rc = 0; /* no changes detected. */
8407 out:
8408 kfree(logdev);
8409 return rc;
8410 }
8411
8412 static void hpsa_perform_rescan(struct ctlr_info *h)
8413 {
8414 struct Scsi_Host *sh = NULL;
8415 unsigned long flags;
8416
8417 /*
8418 * Do the scan after the reset
8419 */
8420 spin_lock_irqsave(&h->reset_lock, flags);
8421 if (h->reset_in_progress) {
8422 h->drv_req_rescan = 1;
8423 spin_unlock_irqrestore(&h->reset_lock, flags);
8424 return;
8425 }
8426 spin_unlock_irqrestore(&h->reset_lock, flags);
8427
8428 sh = scsi_host_get(h->scsi_host);
8429 if (sh != NULL) {
8430 hpsa_scan_start(sh);
8431 scsi_host_put(sh);
8432 h->drv_req_rescan = 0;
8433 }
8434 }
8435
8436 /*
8437 * watch for controller events
8438 */
8439 static void hpsa_event_monitor_worker(struct work_struct *work)
8440 {
8441 struct ctlr_info *h = container_of(to_delayed_work(work),
8442 struct ctlr_info, event_monitor_work);
8443 unsigned long flags;
8444
8445 spin_lock_irqsave(&h->lock, flags);
8446 if (h->remove_in_progress) {
8447 spin_unlock_irqrestore(&h->lock, flags);
8448 return;
8449 }
8450 spin_unlock_irqrestore(&h->lock, flags);
8451
8452 if (hpsa_ctlr_needs_rescan(h)) {
8453 hpsa_ack_ctlr_events(h);
8454 hpsa_perform_rescan(h);
8455 }
8456
8457 spin_lock_irqsave(&h->lock, flags);
8458 if (!h->remove_in_progress)
8459 schedule_delayed_work(&h->event_monitor_work,
8460 HPSA_EVENT_MONITOR_INTERVAL);
8461 spin_unlock_irqrestore(&h->lock, flags);
8462 }
8463
8464 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8465 {
8466 unsigned long flags;
8467 struct ctlr_info *h = container_of(to_delayed_work(work),
8468 struct ctlr_info, rescan_ctlr_work);
8469
8470 spin_lock_irqsave(&h->lock, flags);
8471 if (h->remove_in_progress) {
8472 spin_unlock_irqrestore(&h->lock, flags);
8473 return;
8474 }
8475 spin_unlock_irqrestore(&h->lock, flags);
8476
8477 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8478 hpsa_perform_rescan(h);
8479 } else if (h->discovery_polling) {
8480 if (hpsa_luns_changed(h)) {
8481 dev_info(&h->pdev->dev,
8482 "driver discovery polling rescan.\n");
8483 hpsa_perform_rescan(h);
8484 }
8485 }
8486 spin_lock_irqsave(&h->lock, flags);
8487 if (!h->remove_in_progress)
8488 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8489 h->heartbeat_sample_interval);
8490 spin_unlock_irqrestore(&h->lock, flags);
8491 }
8492
8493 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8494 {
8495 unsigned long flags;
8496 struct ctlr_info *h = container_of(to_delayed_work(work),
8497 struct ctlr_info, monitor_ctlr_work);
8498
8499 detect_controller_lockup(h);
8500 if (lockup_detected(h))
8501 return;
8502
8503 spin_lock_irqsave(&h->lock, flags);
8504 if (!h->remove_in_progress)
8505 schedule_delayed_work(&h->monitor_ctlr_work,
8506 h->heartbeat_sample_interval);
8507 spin_unlock_irqrestore(&h->lock, flags);
8508 }
8509
8510 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8511 char *name)
8512 {
8513 struct workqueue_struct *wq = NULL;
8514
8515 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8516 if (!wq)
8517 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8518
8519 return wq;
8520 }
8521
8522 static void hpda_free_ctlr_info(struct ctlr_info *h)
8523 {
8524 kfree(h->reply_map);
8525 kfree(h);
8526 }
8527
8528 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8529 {
8530 struct ctlr_info *h;
8531
8532 h = kzalloc(sizeof(*h), GFP_KERNEL);
8533 if (!h)
8534 return NULL;
8535
8536 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8537 if (!h->reply_map) {
8538 kfree(h);
8539 return NULL;
8540 }
8541 return h;
8542 }
8543
8544 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8545 {
8546 int dac, rc;
8547 struct ctlr_info *h;
8548 int try_soft_reset = 0;
8549 unsigned long flags;
8550 u32 board_id;
8551
8552 if (number_of_controllers == 0)
8553 printk(KERN_INFO DRIVER_NAME "\n");
8554
8555 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8556 if (rc < 0) {
8557 dev_warn(&pdev->dev, "Board ID not found\n");
8558 return rc;
8559 }
8560
8561 rc = hpsa_init_reset_devices(pdev, board_id);
8562 if (rc) {
8563 if (rc != -ENOTSUPP)
8564 return rc;
8565 /* If the reset fails in a particular way (it has no way to do
8566 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8567 * a soft reset once we get the controller configured up to the
8568 * point that it can accept a command.
8569 */
8570 try_soft_reset = 1;
8571 rc = 0;
8572 }
8573
8574 reinit_after_soft_reset:
8575
8576 /* Command structures must be aligned on a 32-byte boundary because
8577 * the 5 lower bits of the address are used by the hardware. and by
8578 * the driver. See comments in hpsa.h for more info.
8579 */
8580 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8581 h = hpda_alloc_ctlr_info();
8582 if (!h) {
8583 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8584 return -ENOMEM;
8585 }
8586
8587 h->pdev = pdev;
8588
8589 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8590 INIT_LIST_HEAD(&h->offline_device_list);
8591 spin_lock_init(&h->lock);
8592 spin_lock_init(&h->offline_device_lock);
8593 spin_lock_init(&h->scan_lock);
8594 spin_lock_init(&h->reset_lock);
8595 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8596
8597 /* Allocate and clear per-cpu variable lockup_detected */
8598 h->lockup_detected = alloc_percpu(u32);
8599 if (!h->lockup_detected) {
8600 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8601 rc = -ENOMEM;
8602 goto clean1; /* aer/h */
8603 }
8604 set_lockup_detected_for_all_cpus(h, 0);
8605
8606 rc = hpsa_pci_init(h);
8607 if (rc)
8608 goto clean2; /* lu, aer/h */
8609
8610 /* relies on h-> settings made by hpsa_pci_init, including
8611 * interrupt_mode h->intr */
8612 rc = hpsa_scsi_host_alloc(h);
8613 if (rc)
8614 goto clean2_5; /* pci, lu, aer/h */
8615
8616 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8617 h->ctlr = number_of_controllers;
8618 number_of_controllers++;
8619
8620 /* configure PCI DMA stuff */
8621 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8622 if (rc == 0) {
8623 dac = 1;
8624 } else {
8625 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8626 if (rc == 0) {
8627 dac = 0;
8628 } else {
8629 dev_err(&pdev->dev, "no suitable DMA available\n");
8630 goto clean3; /* shost, pci, lu, aer/h */
8631 }
8632 }
8633
8634 /* make sure the board interrupts are off */
8635 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8636
8637 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8638 if (rc)
8639 goto clean3; /* shost, pci, lu, aer/h */
8640 rc = hpsa_alloc_cmd_pool(h);
8641 if (rc)
8642 goto clean4; /* irq, shost, pci, lu, aer/h */
8643 rc = hpsa_alloc_sg_chain_blocks(h);
8644 if (rc)
8645 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8646 init_waitqueue_head(&h->scan_wait_queue);
8647 init_waitqueue_head(&h->event_sync_wait_queue);
8648 mutex_init(&h->reset_mutex);
8649 h->scan_finished = 1; /* no scan currently in progress */
8650 h->scan_waiting = 0;
8651
8652 pci_set_drvdata(pdev, h);
8653 h->ndevices = 0;
8654
8655 spin_lock_init(&h->devlock);
8656 rc = hpsa_put_ctlr_into_performant_mode(h);
8657 if (rc)
8658 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8659
8660 /* create the resubmit workqueue */
8661 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8662 if (!h->rescan_ctlr_wq) {
8663 rc = -ENOMEM;
8664 goto clean7;
8665 }
8666
8667 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8668 if (!h->resubmit_wq) {
8669 rc = -ENOMEM;
8670 goto clean7; /* aer/h */
8671 }
8672
8673 /*
8674 * At this point, the controller is ready to take commands.
8675 * Now, if reset_devices and the hard reset didn't work, try
8676 * the soft reset and see if that works.
8677 */
8678 if (try_soft_reset) {
8679
8680 /* This is kind of gross. We may or may not get a completion
8681 * from the soft reset command, and if we do, then the value
8682 * from the fifo may or may not be valid. So, we wait 10 secs
8683 * after the reset throwing away any completions we get during
8684 * that time. Unregister the interrupt handler and register
8685 * fake ones to scoop up any residual completions.
8686 */
8687 spin_lock_irqsave(&h->lock, flags);
8688 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8689 spin_unlock_irqrestore(&h->lock, flags);
8690 hpsa_free_irqs(h);
8691 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8692 hpsa_intx_discard_completions);
8693 if (rc) {
8694 dev_warn(&h->pdev->dev,
8695 "Failed to request_irq after soft reset.\n");
8696 /*
8697 * cannot goto clean7 or free_irqs will be called
8698 * again. Instead, do its work
8699 */
8700 hpsa_free_performant_mode(h); /* clean7 */
8701 hpsa_free_sg_chain_blocks(h); /* clean6 */
8702 hpsa_free_cmd_pool(h); /* clean5 */
8703 /*
8704 * skip hpsa_free_irqs(h) clean4 since that
8705 * was just called before request_irqs failed
8706 */
8707 goto clean3;
8708 }
8709
8710 rc = hpsa_kdump_soft_reset(h);
8711 if (rc)
8712 /* Neither hard nor soft reset worked, we're hosed. */
8713 goto clean7;
8714
8715 dev_info(&h->pdev->dev, "Board READY.\n");
8716 dev_info(&h->pdev->dev,
8717 "Waiting for stale completions to drain.\n");
8718 h->access.set_intr_mask(h, HPSA_INTR_ON);
8719 msleep(10000);
8720 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8721
8722 rc = controller_reset_failed(h->cfgtable);
8723 if (rc)
8724 dev_info(&h->pdev->dev,
8725 "Soft reset appears to have failed.\n");
8726
8727 /* since the controller's reset, we have to go back and re-init
8728 * everything. Easiest to just forget what we've done and do it
8729 * all over again.
8730 */
8731 hpsa_undo_allocations_after_kdump_soft_reset(h);
8732 try_soft_reset = 0;
8733 if (rc)
8734 /* don't goto clean, we already unallocated */
8735 return -ENODEV;
8736
8737 goto reinit_after_soft_reset;
8738 }
8739
8740 /* Enable Accelerated IO path at driver layer */
8741 h->acciopath_status = 1;
8742 /* Disable discovery polling.*/
8743 h->discovery_polling = 0;
8744
8745
8746 /* Turn the interrupts on so we can service requests */
8747 h->access.set_intr_mask(h, HPSA_INTR_ON);
8748
8749 hpsa_hba_inquiry(h);
8750
8751 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8752 if (!h->lastlogicals)
8753 dev_info(&h->pdev->dev,
8754 "Can't track change to report lun data\n");
8755
8756 /* hook into SCSI subsystem */
8757 rc = hpsa_scsi_add_host(h);
8758 if (rc)
8759 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8760
8761 /* Monitor the controller for firmware lockups */
8762 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8763 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8764 schedule_delayed_work(&h->monitor_ctlr_work,
8765 h->heartbeat_sample_interval);
8766 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8767 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8768 h->heartbeat_sample_interval);
8769 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8770 schedule_delayed_work(&h->event_monitor_work,
8771 HPSA_EVENT_MONITOR_INTERVAL);
8772 return 0;
8773
8774 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8775 hpsa_free_performant_mode(h);
8776 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8777 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8778 hpsa_free_sg_chain_blocks(h);
8779 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8780 hpsa_free_cmd_pool(h);
8781 clean4: /* irq, shost, pci, lu, aer/h */
8782 hpsa_free_irqs(h);
8783 clean3: /* shost, pci, lu, aer/h */
8784 scsi_host_put(h->scsi_host);
8785 h->scsi_host = NULL;
8786 clean2_5: /* pci, lu, aer/h */
8787 hpsa_free_pci_init(h);
8788 clean2: /* lu, aer/h */
8789 if (h->lockup_detected) {
8790 free_percpu(h->lockup_detected);
8791 h->lockup_detected = NULL;
8792 }
8793 clean1: /* wq/aer/h */
8794 if (h->resubmit_wq) {
8795 destroy_workqueue(h->resubmit_wq);
8796 h->resubmit_wq = NULL;
8797 }
8798 if (h->rescan_ctlr_wq) {
8799 destroy_workqueue(h->rescan_ctlr_wq);
8800 h->rescan_ctlr_wq = NULL;
8801 }
8802 kfree(h);
8803 return rc;
8804 }
8805
8806 static void hpsa_flush_cache(struct ctlr_info *h)
8807 {
8808 char *flush_buf;
8809 struct CommandList *c;
8810 int rc;
8811
8812 if (unlikely(lockup_detected(h)))
8813 return;
8814 flush_buf = kzalloc(4, GFP_KERNEL);
8815 if (!flush_buf)
8816 return;
8817
8818 c = cmd_alloc(h);
8819
8820 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8821 RAID_CTLR_LUNID, TYPE_CMD)) {
8822 goto out;
8823 }
8824 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8825 DEFAULT_TIMEOUT);
8826 if (rc)
8827 goto out;
8828 if (c->err_info->CommandStatus != 0)
8829 out:
8830 dev_warn(&h->pdev->dev,
8831 "error flushing cache on controller\n");
8832 cmd_free(h, c);
8833 kfree(flush_buf);
8834 }
8835
8836 /* Make controller gather fresh report lun data each time we
8837 * send down a report luns request
8838 */
8839 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8840 {
8841 u32 *options;
8842 struct CommandList *c;
8843 int rc;
8844
8845 /* Don't bother trying to set diag options if locked up */
8846 if (unlikely(h->lockup_detected))
8847 return;
8848
8849 options = kzalloc(sizeof(*options), GFP_KERNEL);
8850 if (!options)
8851 return;
8852
8853 c = cmd_alloc(h);
8854
8855 /* first, get the current diag options settings */
8856 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8857 RAID_CTLR_LUNID, TYPE_CMD))
8858 goto errout;
8859
8860 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8861 NO_TIMEOUT);
8862 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8863 goto errout;
8864
8865 /* Now, set the bit for disabling the RLD caching */
8866 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8867
8868 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8869 RAID_CTLR_LUNID, TYPE_CMD))
8870 goto errout;
8871
8872 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8873 NO_TIMEOUT);
8874 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8875 goto errout;
8876
8877 /* Now verify that it got set: */
8878 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8879 RAID_CTLR_LUNID, TYPE_CMD))
8880 goto errout;
8881
8882 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8883 NO_TIMEOUT);
8884 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8885 goto errout;
8886
8887 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8888 goto out;
8889
8890 errout:
8891 dev_err(&h->pdev->dev,
8892 "Error: failed to disable report lun data caching.\n");
8893 out:
8894 cmd_free(h, c);
8895 kfree(options);
8896 }
8897
8898 static void __hpsa_shutdown(struct pci_dev *pdev)
8899 {
8900 struct ctlr_info *h;
8901
8902 h = pci_get_drvdata(pdev);
8903 /* Turn board interrupts off and send the flush cache command
8904 * sendcmd will turn off interrupt, and send the flush...
8905 * To write all data in the battery backed cache to disks
8906 */
8907 hpsa_flush_cache(h);
8908 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8909 hpsa_free_irqs(h); /* init_one 4 */
8910 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8911 }
8912
8913 static void hpsa_shutdown(struct pci_dev *pdev)
8914 {
8915 __hpsa_shutdown(pdev);
8916 pci_disable_device(pdev);
8917 }
8918
8919 static void hpsa_free_device_info(struct ctlr_info *h)
8920 {
8921 int i;
8922
8923 for (i = 0; i < h->ndevices; i++) {
8924 kfree(h->dev[i]);
8925 h->dev[i] = NULL;
8926 }
8927 }
8928
8929 static void hpsa_remove_one(struct pci_dev *pdev)
8930 {
8931 struct ctlr_info *h;
8932 unsigned long flags;
8933
8934 if (pci_get_drvdata(pdev) == NULL) {
8935 dev_err(&pdev->dev, "unable to remove device\n");
8936 return;
8937 }
8938 h = pci_get_drvdata(pdev);
8939
8940 /* Get rid of any controller monitoring work items */
8941 spin_lock_irqsave(&h->lock, flags);
8942 h->remove_in_progress = 1;
8943 spin_unlock_irqrestore(&h->lock, flags);
8944 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8945 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8946 cancel_delayed_work_sync(&h->event_monitor_work);
8947 destroy_workqueue(h->rescan_ctlr_wq);
8948 destroy_workqueue(h->resubmit_wq);
8949
8950 hpsa_delete_sas_host(h);
8951
8952 /*
8953 * Call before disabling interrupts.
8954 * scsi_remove_host can trigger I/O operations especially
8955 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8956 * operations which cannot complete and will hang the system.
8957 */
8958 if (h->scsi_host)
8959 scsi_remove_host(h->scsi_host); /* init_one 8 */
8960 /* includes hpsa_free_irqs - init_one 4 */
8961 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8962 __hpsa_shutdown(pdev);
8963
8964 hpsa_free_device_info(h); /* scan */
8965
8966 kfree(h->hba_inquiry_data); /* init_one 10 */
8967 h->hba_inquiry_data = NULL; /* init_one 10 */
8968 hpsa_free_ioaccel2_sg_chain_blocks(h);
8969 hpsa_free_performant_mode(h); /* init_one 7 */
8970 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8971 hpsa_free_cmd_pool(h); /* init_one 5 */
8972 kfree(h->lastlogicals);
8973
8974 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8975
8976 scsi_host_put(h->scsi_host); /* init_one 3 */
8977 h->scsi_host = NULL; /* init_one 3 */
8978
8979 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8980 hpsa_free_pci_init(h); /* init_one 2.5 */
8981
8982 free_percpu(h->lockup_detected); /* init_one 2 */
8983 h->lockup_detected = NULL; /* init_one 2 */
8984 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8985
8986 hpda_free_ctlr_info(h); /* init_one 1 */
8987 }
8988
8989 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8990 __attribute__((unused)) pm_message_t state)
8991 {
8992 return -ENOSYS;
8993 }
8994
8995 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8996 {
8997 return -ENOSYS;
8998 }
8999
9000 static struct pci_driver hpsa_pci_driver = {
9001 .name = HPSA,
9002 .probe = hpsa_init_one,
9003 .remove = hpsa_remove_one,
9004 .id_table = hpsa_pci_device_id, /* id_table */
9005 .shutdown = hpsa_shutdown,
9006 .suspend = hpsa_suspend,
9007 .resume = hpsa_resume,
9008 };
9009
9010 /* Fill in bucket_map[], given nsgs (the max number of
9011 * scatter gather elements supported) and bucket[],
9012 * which is an array of 8 integers. The bucket[] array
9013 * contains 8 different DMA transfer sizes (in 16
9014 * byte increments) which the controller uses to fetch
9015 * commands. This function fills in bucket_map[], which
9016 * maps a given number of scatter gather elements to one of
9017 * the 8 DMA transfer sizes. The point of it is to allow the
9018 * controller to only do as much DMA as needed to fetch the
9019 * command, with the DMA transfer size encoded in the lower
9020 * bits of the command address.
9021 */
9022 static void calc_bucket_map(int bucket[], int num_buckets,
9023 int nsgs, int min_blocks, u32 *bucket_map)
9024 {
9025 int i, j, b, size;
9026
9027 /* Note, bucket_map must have nsgs+1 entries. */
9028 for (i = 0; i <= nsgs; i++) {
9029 /* Compute size of a command with i SG entries */
9030 size = i + min_blocks;
9031 b = num_buckets; /* Assume the biggest bucket */
9032 /* Find the bucket that is just big enough */
9033 for (j = 0; j < num_buckets; j++) {
9034 if (bucket[j] >= size) {
9035 b = j;
9036 break;
9037 }
9038 }
9039 /* for a command with i SG entries, use bucket b. */
9040 bucket_map[i] = b;
9041 }
9042 }
9043
9044 /*
9045 * return -ENODEV on err, 0 on success (or no action)
9046 * allocates numerous items that must be freed later
9047 */
9048 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9049 {
9050 int i;
9051 unsigned long register_value;
9052 unsigned long transMethod = CFGTBL_Trans_Performant |
9053 (trans_support & CFGTBL_Trans_use_short_tags) |
9054 CFGTBL_Trans_enable_directed_msix |
9055 (trans_support & (CFGTBL_Trans_io_accel1 |
9056 CFGTBL_Trans_io_accel2));
9057 struct access_method access = SA5_performant_access;
9058
9059 /* This is a bit complicated. There are 8 registers on
9060 * the controller which we write to to tell it 8 different
9061 * sizes of commands which there may be. It's a way of
9062 * reducing the DMA done to fetch each command. Encoded into
9063 * each command's tag are 3 bits which communicate to the controller
9064 * which of the eight sizes that command fits within. The size of
9065 * each command depends on how many scatter gather entries there are.
9066 * Each SG entry requires 16 bytes. The eight registers are programmed
9067 * with the number of 16-byte blocks a command of that size requires.
9068 * The smallest command possible requires 5 such 16 byte blocks.
9069 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9070 * blocks. Note, this only extends to the SG entries contained
9071 * within the command block, and does not extend to chained blocks
9072 * of SG elements. bft[] contains the eight values we write to
9073 * the registers. They are not evenly distributed, but have more
9074 * sizes for small commands, and fewer sizes for larger commands.
9075 */
9076 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9077 #define MIN_IOACCEL2_BFT_ENTRY 5
9078 #define HPSA_IOACCEL2_HEADER_SZ 4
9079 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9080 13, 14, 15, 16, 17, 18, 19,
9081 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9082 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9083 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9084 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9085 16 * MIN_IOACCEL2_BFT_ENTRY);
9086 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9087 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9088 /* 5 = 1 s/g entry or 4k
9089 * 6 = 2 s/g entry or 8k
9090 * 8 = 4 s/g entry or 16k
9091 * 10 = 6 s/g entry or 24k
9092 */
9093
9094 /* If the controller supports either ioaccel method then
9095 * we can also use the RAID stack submit path that does not
9096 * perform the superfluous readl() after each command submission.
9097 */
9098 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9099 access = SA5_performant_access_no_read;
9100
9101 /* Controller spec: zero out this buffer. */
9102 for (i = 0; i < h->nreply_queues; i++)
9103 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9104
9105 bft[7] = SG_ENTRIES_IN_CMD + 4;
9106 calc_bucket_map(bft, ARRAY_SIZE(bft),
9107 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9108 for (i = 0; i < 8; i++)
9109 writel(bft[i], &h->transtable->BlockFetch[i]);
9110
9111 /* size of controller ring buffer */
9112 writel(h->max_commands, &h->transtable->RepQSize);
9113 writel(h->nreply_queues, &h->transtable->RepQCount);
9114 writel(0, &h->transtable->RepQCtrAddrLow32);
9115 writel(0, &h->transtable->RepQCtrAddrHigh32);
9116
9117 for (i = 0; i < h->nreply_queues; i++) {
9118 writel(0, &h->transtable->RepQAddr[i].upper);
9119 writel(h->reply_queue[i].busaddr,
9120 &h->transtable->RepQAddr[i].lower);
9121 }
9122
9123 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9124 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9125 /*
9126 * enable outbound interrupt coalescing in accelerator mode;
9127 */
9128 if (trans_support & CFGTBL_Trans_io_accel1) {
9129 access = SA5_ioaccel_mode1_access;
9130 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9131 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9132 } else
9133 if (trans_support & CFGTBL_Trans_io_accel2)
9134 access = SA5_ioaccel_mode2_access;
9135 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9136 if (hpsa_wait_for_mode_change_ack(h)) {
9137 dev_err(&h->pdev->dev,
9138 "performant mode problem - doorbell timeout\n");
9139 return -ENODEV;
9140 }
9141 register_value = readl(&(h->cfgtable->TransportActive));
9142 if (!(register_value & CFGTBL_Trans_Performant)) {
9143 dev_err(&h->pdev->dev,
9144 "performant mode problem - transport not active\n");
9145 return -ENODEV;
9146 }
9147 /* Change the access methods to the performant access methods */
9148 h->access = access;
9149 h->transMethod = transMethod;
9150
9151 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9152 (trans_support & CFGTBL_Trans_io_accel2)))
9153 return 0;
9154
9155 if (trans_support & CFGTBL_Trans_io_accel1) {
9156 /* Set up I/O accelerator mode */
9157 for (i = 0; i < h->nreply_queues; i++) {
9158 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9159 h->reply_queue[i].current_entry =
9160 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9161 }
9162 bft[7] = h->ioaccel_maxsg + 8;
9163 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9164 h->ioaccel1_blockFetchTable);
9165
9166 /* initialize all reply queue entries to unused */
9167 for (i = 0; i < h->nreply_queues; i++)
9168 memset(h->reply_queue[i].head,
9169 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9170 h->reply_queue_size);
9171
9172 /* set all the constant fields in the accelerator command
9173 * frames once at init time to save CPU cycles later.
9174 */
9175 for (i = 0; i < h->nr_cmds; i++) {
9176 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9177
9178 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9179 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9180 (i * sizeof(struct ErrorInfo)));
9181 cp->err_info_len = sizeof(struct ErrorInfo);
9182 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9183 cp->host_context_flags =
9184 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9185 cp->timeout_sec = 0;
9186 cp->ReplyQueue = 0;
9187 cp->tag =
9188 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9189 cp->host_addr =
9190 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9191 (i * sizeof(struct io_accel1_cmd)));
9192 }
9193 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9194 u64 cfg_offset, cfg_base_addr_index;
9195 u32 bft2_offset, cfg_base_addr;
9196 int rc;
9197
9198 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9199 &cfg_base_addr_index, &cfg_offset);
9200 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9201 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9202 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9203 4, h->ioaccel2_blockFetchTable);
9204 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9205 BUILD_BUG_ON(offsetof(struct CfgTable,
9206 io_accel_request_size_offset) != 0xb8);
9207 h->ioaccel2_bft2_regs =
9208 remap_pci_mem(pci_resource_start(h->pdev,
9209 cfg_base_addr_index) +
9210 cfg_offset + bft2_offset,
9211 ARRAY_SIZE(bft2) *
9212 sizeof(*h->ioaccel2_bft2_regs));
9213 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9214 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9215 }
9216 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9217 if (hpsa_wait_for_mode_change_ack(h)) {
9218 dev_err(&h->pdev->dev,
9219 "performant mode problem - enabling ioaccel mode\n");
9220 return -ENODEV;
9221 }
9222 return 0;
9223 }
9224
9225 /* Free ioaccel1 mode command blocks and block fetch table */
9226 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9227 {
9228 if (h->ioaccel_cmd_pool) {
9229 pci_free_consistent(h->pdev,
9230 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9231 h->ioaccel_cmd_pool,
9232 h->ioaccel_cmd_pool_dhandle);
9233 h->ioaccel_cmd_pool = NULL;
9234 h->ioaccel_cmd_pool_dhandle = 0;
9235 }
9236 kfree(h->ioaccel1_blockFetchTable);
9237 h->ioaccel1_blockFetchTable = NULL;
9238 }
9239
9240 /* Allocate ioaccel1 mode command blocks and block fetch table */
9241 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9242 {
9243 h->ioaccel_maxsg =
9244 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9246 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9247
9248 /* Command structures must be aligned on a 128-byte boundary
9249 * because the 7 lower bits of the address are used by the
9250 * hardware.
9251 */
9252 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9253 IOACCEL1_COMMANDLIST_ALIGNMENT);
9254 h->ioaccel_cmd_pool =
9255 dma_alloc_coherent(&h->pdev->dev,
9256 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9257 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9258
9259 h->ioaccel1_blockFetchTable =
9260 kmalloc(((h->ioaccel_maxsg + 1) *
9261 sizeof(u32)), GFP_KERNEL);
9262
9263 if ((h->ioaccel_cmd_pool == NULL) ||
9264 (h->ioaccel1_blockFetchTable == NULL))
9265 goto clean_up;
9266
9267 memset(h->ioaccel_cmd_pool, 0,
9268 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9269 return 0;
9270
9271 clean_up:
9272 hpsa_free_ioaccel1_cmd_and_bft(h);
9273 return -ENOMEM;
9274 }
9275
9276 /* Free ioaccel2 mode command blocks and block fetch table */
9277 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9278 {
9279 hpsa_free_ioaccel2_sg_chain_blocks(h);
9280
9281 if (h->ioaccel2_cmd_pool) {
9282 pci_free_consistent(h->pdev,
9283 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9284 h->ioaccel2_cmd_pool,
9285 h->ioaccel2_cmd_pool_dhandle);
9286 h->ioaccel2_cmd_pool = NULL;
9287 h->ioaccel2_cmd_pool_dhandle = 0;
9288 }
9289 kfree(h->ioaccel2_blockFetchTable);
9290 h->ioaccel2_blockFetchTable = NULL;
9291 }
9292
9293 /* Allocate ioaccel2 mode command blocks and block fetch table */
9294 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9295 {
9296 int rc;
9297
9298 /* Allocate ioaccel2 mode command blocks and block fetch table */
9299
9300 h->ioaccel_maxsg =
9301 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9302 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9303 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9304
9305 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9306 IOACCEL2_COMMANDLIST_ALIGNMENT);
9307 h->ioaccel2_cmd_pool =
9308 dma_alloc_coherent(&h->pdev->dev,
9309 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9310 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9311
9312 h->ioaccel2_blockFetchTable =
9313 kmalloc(((h->ioaccel_maxsg + 1) *
9314 sizeof(u32)), GFP_KERNEL);
9315
9316 if ((h->ioaccel2_cmd_pool == NULL) ||
9317 (h->ioaccel2_blockFetchTable == NULL)) {
9318 rc = -ENOMEM;
9319 goto clean_up;
9320 }
9321
9322 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9323 if (rc)
9324 goto clean_up;
9325
9326 memset(h->ioaccel2_cmd_pool, 0,
9327 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9328 return 0;
9329
9330 clean_up:
9331 hpsa_free_ioaccel2_cmd_and_bft(h);
9332 return rc;
9333 }
9334
9335 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9336 static void hpsa_free_performant_mode(struct ctlr_info *h)
9337 {
9338 kfree(h->blockFetchTable);
9339 h->blockFetchTable = NULL;
9340 hpsa_free_reply_queues(h);
9341 hpsa_free_ioaccel1_cmd_and_bft(h);
9342 hpsa_free_ioaccel2_cmd_and_bft(h);
9343 }
9344
9345 /* return -ENODEV on error, 0 on success (or no action)
9346 * allocates numerous items that must be freed later
9347 */
9348 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9349 {
9350 u32 trans_support;
9351 unsigned long transMethod = CFGTBL_Trans_Performant |
9352 CFGTBL_Trans_use_short_tags;
9353 int i, rc;
9354
9355 if (hpsa_simple_mode)
9356 return 0;
9357
9358 trans_support = readl(&(h->cfgtable->TransportSupport));
9359 if (!(trans_support & PERFORMANT_MODE))
9360 return 0;
9361
9362 /* Check for I/O accelerator mode support */
9363 if (trans_support & CFGTBL_Trans_io_accel1) {
9364 transMethod |= CFGTBL_Trans_io_accel1 |
9365 CFGTBL_Trans_enable_directed_msix;
9366 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9367 if (rc)
9368 return rc;
9369 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9370 transMethod |= CFGTBL_Trans_io_accel2 |
9371 CFGTBL_Trans_enable_directed_msix;
9372 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9373 if (rc)
9374 return rc;
9375 }
9376
9377 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9378 hpsa_get_max_perf_mode_cmds(h);
9379 /* Performant mode ring buffer and supporting data structures */
9380 h->reply_queue_size = h->max_commands * sizeof(u64);
9381
9382 for (i = 0; i < h->nreply_queues; i++) {
9383 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9384 h->reply_queue_size,
9385 &h->reply_queue[i].busaddr,
9386 GFP_KERNEL);
9387 if (!h->reply_queue[i].head) {
9388 rc = -ENOMEM;
9389 goto clean1; /* rq, ioaccel */
9390 }
9391 h->reply_queue[i].size = h->max_commands;
9392 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9393 h->reply_queue[i].current_entry = 0;
9394 }
9395
9396 /* Need a block fetch table for performant mode */
9397 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9398 sizeof(u32)), GFP_KERNEL);
9399 if (!h->blockFetchTable) {
9400 rc = -ENOMEM;
9401 goto clean1; /* rq, ioaccel */
9402 }
9403
9404 rc = hpsa_enter_performant_mode(h, trans_support);
9405 if (rc)
9406 goto clean2; /* bft, rq, ioaccel */
9407 return 0;
9408
9409 clean2: /* bft, rq, ioaccel */
9410 kfree(h->blockFetchTable);
9411 h->blockFetchTable = NULL;
9412 clean1: /* rq, ioaccel */
9413 hpsa_free_reply_queues(h);
9414 hpsa_free_ioaccel1_cmd_and_bft(h);
9415 hpsa_free_ioaccel2_cmd_and_bft(h);
9416 return rc;
9417 }
9418
9419 static int is_accelerated_cmd(struct CommandList *c)
9420 {
9421 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9422 }
9423
9424 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9425 {
9426 struct CommandList *c = NULL;
9427 int i, accel_cmds_out;
9428 int refcount;
9429
9430 do { /* wait for all outstanding ioaccel commands to drain out */
9431 accel_cmds_out = 0;
9432 for (i = 0; i < h->nr_cmds; i++) {
9433 c = h->cmd_pool + i;
9434 refcount = atomic_inc_return(&c->refcount);
9435 if (refcount > 1) /* Command is allocated */
9436 accel_cmds_out += is_accelerated_cmd(c);
9437 cmd_free(h, c);
9438 }
9439 if (accel_cmds_out <= 0)
9440 break;
9441 msleep(100);
9442 } while (1);
9443 }
9444
9445 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9446 struct hpsa_sas_port *hpsa_sas_port)
9447 {
9448 struct hpsa_sas_phy *hpsa_sas_phy;
9449 struct sas_phy *phy;
9450
9451 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9452 if (!hpsa_sas_phy)
9453 return NULL;
9454
9455 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9456 hpsa_sas_port->next_phy_index);
9457 if (!phy) {
9458 kfree(hpsa_sas_phy);
9459 return NULL;
9460 }
9461
9462 hpsa_sas_port->next_phy_index++;
9463 hpsa_sas_phy->phy = phy;
9464 hpsa_sas_phy->parent_port = hpsa_sas_port;
9465
9466 return hpsa_sas_phy;
9467 }
9468
9469 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9470 {
9471 struct sas_phy *phy = hpsa_sas_phy->phy;
9472
9473 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9474 if (hpsa_sas_phy->added_to_port)
9475 list_del(&hpsa_sas_phy->phy_list_entry);
9476 sas_phy_delete(phy);
9477 kfree(hpsa_sas_phy);
9478 }
9479
9480 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9481 {
9482 int rc;
9483 struct hpsa_sas_port *hpsa_sas_port;
9484 struct sas_phy *phy;
9485 struct sas_identify *identify;
9486
9487 hpsa_sas_port = hpsa_sas_phy->parent_port;
9488 phy = hpsa_sas_phy->phy;
9489
9490 identify = &phy->identify;
9491 memset(identify, 0, sizeof(*identify));
9492 identify->sas_address = hpsa_sas_port->sas_address;
9493 identify->device_type = SAS_END_DEVICE;
9494 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9495 identify->target_port_protocols = SAS_PROTOCOL_STP;
9496 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9497 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9498 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9499 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9500 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9501
9502 rc = sas_phy_add(hpsa_sas_phy->phy);
9503 if (rc)
9504 return rc;
9505
9506 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9507 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9508 &hpsa_sas_port->phy_list_head);
9509 hpsa_sas_phy->added_to_port = true;
9510
9511 return 0;
9512 }
9513
9514 static int
9515 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9516 struct sas_rphy *rphy)
9517 {
9518 struct sas_identify *identify;
9519
9520 identify = &rphy->identify;
9521 identify->sas_address = hpsa_sas_port->sas_address;
9522 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9523 identify->target_port_protocols = SAS_PROTOCOL_STP;
9524
9525 return sas_rphy_add(rphy);
9526 }
9527
9528 static struct hpsa_sas_port
9529 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9530 u64 sas_address)
9531 {
9532 int rc;
9533 struct hpsa_sas_port *hpsa_sas_port;
9534 struct sas_port *port;
9535
9536 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9537 if (!hpsa_sas_port)
9538 return NULL;
9539
9540 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9541 hpsa_sas_port->parent_node = hpsa_sas_node;
9542
9543 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9544 if (!port)
9545 goto free_hpsa_port;
9546
9547 rc = sas_port_add(port);
9548 if (rc)
9549 goto free_sas_port;
9550
9551 hpsa_sas_port->port = port;
9552 hpsa_sas_port->sas_address = sas_address;
9553 list_add_tail(&hpsa_sas_port->port_list_entry,
9554 &hpsa_sas_node->port_list_head);
9555
9556 return hpsa_sas_port;
9557
9558 free_sas_port:
9559 sas_port_free(port);
9560 free_hpsa_port:
9561 kfree(hpsa_sas_port);
9562
9563 return NULL;
9564 }
9565
9566 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9567 {
9568 struct hpsa_sas_phy *hpsa_sas_phy;
9569 struct hpsa_sas_phy *next;
9570
9571 list_for_each_entry_safe(hpsa_sas_phy, next,
9572 &hpsa_sas_port->phy_list_head, phy_list_entry)
9573 hpsa_free_sas_phy(hpsa_sas_phy);
9574
9575 sas_port_delete(hpsa_sas_port->port);
9576 list_del(&hpsa_sas_port->port_list_entry);
9577 kfree(hpsa_sas_port);
9578 }
9579
9580 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9581 {
9582 struct hpsa_sas_node *hpsa_sas_node;
9583
9584 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9585 if (hpsa_sas_node) {
9586 hpsa_sas_node->parent_dev = parent_dev;
9587 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9588 }
9589
9590 return hpsa_sas_node;
9591 }
9592
9593 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9594 {
9595 struct hpsa_sas_port *hpsa_sas_port;
9596 struct hpsa_sas_port *next;
9597
9598 if (!hpsa_sas_node)
9599 return;
9600
9601 list_for_each_entry_safe(hpsa_sas_port, next,
9602 &hpsa_sas_node->port_list_head, port_list_entry)
9603 hpsa_free_sas_port(hpsa_sas_port);
9604
9605 kfree(hpsa_sas_node);
9606 }
9607
9608 static struct hpsa_scsi_dev_t
9609 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9610 struct sas_rphy *rphy)
9611 {
9612 int i;
9613 struct hpsa_scsi_dev_t *device;
9614
9615 for (i = 0; i < h->ndevices; i++) {
9616 device = h->dev[i];
9617 if (!device->sas_port)
9618 continue;
9619 if (device->sas_port->rphy == rphy)
9620 return device;
9621 }
9622
9623 return NULL;
9624 }
9625
9626 static int hpsa_add_sas_host(struct ctlr_info *h)
9627 {
9628 int rc;
9629 struct device *parent_dev;
9630 struct hpsa_sas_node *hpsa_sas_node;
9631 struct hpsa_sas_port *hpsa_sas_port;
9632 struct hpsa_sas_phy *hpsa_sas_phy;
9633
9634 parent_dev = &h->scsi_host->shost_dev;
9635
9636 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9637 if (!hpsa_sas_node)
9638 return -ENOMEM;
9639
9640 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9641 if (!hpsa_sas_port) {
9642 rc = -ENODEV;
9643 goto free_sas_node;
9644 }
9645
9646 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9647 if (!hpsa_sas_phy) {
9648 rc = -ENODEV;
9649 goto free_sas_port;
9650 }
9651
9652 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9653 if (rc)
9654 goto free_sas_phy;
9655
9656 h->sas_host = hpsa_sas_node;
9657
9658 return 0;
9659
9660 free_sas_phy:
9661 hpsa_free_sas_phy(hpsa_sas_phy);
9662 free_sas_port:
9663 hpsa_free_sas_port(hpsa_sas_port);
9664 free_sas_node:
9665 hpsa_free_sas_node(hpsa_sas_node);
9666
9667 return rc;
9668 }
9669
9670 static void hpsa_delete_sas_host(struct ctlr_info *h)
9671 {
9672 hpsa_free_sas_node(h->sas_host);
9673 }
9674
9675 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9676 struct hpsa_scsi_dev_t *device)
9677 {
9678 int rc;
9679 struct hpsa_sas_port *hpsa_sas_port;
9680 struct sas_rphy *rphy;
9681
9682 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9683 if (!hpsa_sas_port)
9684 return -ENOMEM;
9685
9686 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9687 if (!rphy) {
9688 rc = -ENODEV;
9689 goto free_sas_port;
9690 }
9691
9692 hpsa_sas_port->rphy = rphy;
9693 device->sas_port = hpsa_sas_port;
9694
9695 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9696 if (rc)
9697 goto free_sas_port;
9698
9699 return 0;
9700
9701 free_sas_port:
9702 hpsa_free_sas_port(hpsa_sas_port);
9703 device->sas_port = NULL;
9704
9705 return rc;
9706 }
9707
9708 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9709 {
9710 if (device->sas_port) {
9711 hpsa_free_sas_port(device->sas_port);
9712 device->sas_port = NULL;
9713 }
9714 }
9715
9716 static int
9717 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9718 {
9719 return 0;
9720 }
9721
9722 static int
9723 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9724 {
9725 struct Scsi_Host *shost = phy_to_shost(rphy);
9726 struct ctlr_info *h;
9727 struct hpsa_scsi_dev_t *sd;
9728
9729 if (!shost)
9730 return -ENXIO;
9731
9732 h = shost_to_hba(shost);
9733
9734 if (!h)
9735 return -ENXIO;
9736
9737 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9738 if (!sd)
9739 return -ENXIO;
9740
9741 *identifier = sd->eli;
9742
9743 return 0;
9744 }
9745
9746 static int
9747 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9748 {
9749 return -ENXIO;
9750 }
9751
9752 static int
9753 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9754 {
9755 return 0;
9756 }
9757
9758 static int
9759 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9760 {
9761 return 0;
9762 }
9763
9764 static int
9765 hpsa_sas_phy_setup(struct sas_phy *phy)
9766 {
9767 return 0;
9768 }
9769
9770 static void
9771 hpsa_sas_phy_release(struct sas_phy *phy)
9772 {
9773 }
9774
9775 static int
9776 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9777 {
9778 return -EINVAL;
9779 }
9780
9781 static struct sas_function_template hpsa_sas_transport_functions = {
9782 .get_linkerrors = hpsa_sas_get_linkerrors,
9783 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9784 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9785 .phy_reset = hpsa_sas_phy_reset,
9786 .phy_enable = hpsa_sas_phy_enable,
9787 .phy_setup = hpsa_sas_phy_setup,
9788 .phy_release = hpsa_sas_phy_release,
9789 .set_phy_speed = hpsa_sas_phy_speed,
9790 };
9791
9792 /*
9793 * This is it. Register the PCI driver information for the cards we control
9794 * the OS will call our registered routines when it finds one of our cards.
9795 */
9796 static int __init hpsa_init(void)
9797 {
9798 int rc;
9799
9800 hpsa_sas_transport_template =
9801 sas_attach_transport(&hpsa_sas_transport_functions);
9802 if (!hpsa_sas_transport_template)
9803 return -ENODEV;
9804
9805 rc = pci_register_driver(&hpsa_pci_driver);
9806
9807 if (rc)
9808 sas_release_transport(hpsa_sas_transport_template);
9809
9810 return rc;
9811 }
9812
9813 static void __exit hpsa_cleanup(void)
9814 {
9815 pci_unregister_driver(&hpsa_pci_driver);
9816 sas_release_transport(hpsa_sas_transport_template);
9817 }
9818
9819 static void __attribute__((unused)) verify_offsets(void)
9820 {
9821 #define VERIFY_OFFSET(member, offset) \
9822 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9823
9824 VERIFY_OFFSET(structure_size, 0);
9825 VERIFY_OFFSET(volume_blk_size, 4);
9826 VERIFY_OFFSET(volume_blk_cnt, 8);
9827 VERIFY_OFFSET(phys_blk_shift, 16);
9828 VERIFY_OFFSET(parity_rotation_shift, 17);
9829 VERIFY_OFFSET(strip_size, 18);
9830 VERIFY_OFFSET(disk_starting_blk, 20);
9831 VERIFY_OFFSET(disk_blk_cnt, 28);
9832 VERIFY_OFFSET(data_disks_per_row, 36);
9833 VERIFY_OFFSET(metadata_disks_per_row, 38);
9834 VERIFY_OFFSET(row_cnt, 40);
9835 VERIFY_OFFSET(layout_map_count, 42);
9836 VERIFY_OFFSET(flags, 44);
9837 VERIFY_OFFSET(dekindex, 46);
9838 /* VERIFY_OFFSET(reserved, 48 */
9839 VERIFY_OFFSET(data, 64);
9840
9841 #undef VERIFY_OFFSET
9842
9843 #define VERIFY_OFFSET(member, offset) \
9844 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9845
9846 VERIFY_OFFSET(IU_type, 0);
9847 VERIFY_OFFSET(direction, 1);
9848 VERIFY_OFFSET(reply_queue, 2);
9849 /* VERIFY_OFFSET(reserved1, 3); */
9850 VERIFY_OFFSET(scsi_nexus, 4);
9851 VERIFY_OFFSET(Tag, 8);
9852 VERIFY_OFFSET(cdb, 16);
9853 VERIFY_OFFSET(cciss_lun, 32);
9854 VERIFY_OFFSET(data_len, 40);
9855 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9856 VERIFY_OFFSET(sg_count, 45);
9857 /* VERIFY_OFFSET(reserved3 */
9858 VERIFY_OFFSET(err_ptr, 48);
9859 VERIFY_OFFSET(err_len, 56);
9860 /* VERIFY_OFFSET(reserved4 */
9861 VERIFY_OFFSET(sg, 64);
9862
9863 #undef VERIFY_OFFSET
9864
9865 #define VERIFY_OFFSET(member, offset) \
9866 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9867
9868 VERIFY_OFFSET(dev_handle, 0x00);
9869 VERIFY_OFFSET(reserved1, 0x02);
9870 VERIFY_OFFSET(function, 0x03);
9871 VERIFY_OFFSET(reserved2, 0x04);
9872 VERIFY_OFFSET(err_info, 0x0C);
9873 VERIFY_OFFSET(reserved3, 0x10);
9874 VERIFY_OFFSET(err_info_len, 0x12);
9875 VERIFY_OFFSET(reserved4, 0x13);
9876 VERIFY_OFFSET(sgl_offset, 0x14);
9877 VERIFY_OFFSET(reserved5, 0x15);
9878 VERIFY_OFFSET(transfer_len, 0x1C);
9879 VERIFY_OFFSET(reserved6, 0x20);
9880 VERIFY_OFFSET(io_flags, 0x24);
9881 VERIFY_OFFSET(reserved7, 0x26);
9882 VERIFY_OFFSET(LUN, 0x34);
9883 VERIFY_OFFSET(control, 0x3C);
9884 VERIFY_OFFSET(CDB, 0x40);
9885 VERIFY_OFFSET(reserved8, 0x50);
9886 VERIFY_OFFSET(host_context_flags, 0x60);
9887 VERIFY_OFFSET(timeout_sec, 0x62);
9888 VERIFY_OFFSET(ReplyQueue, 0x64);
9889 VERIFY_OFFSET(reserved9, 0x65);
9890 VERIFY_OFFSET(tag, 0x68);
9891 VERIFY_OFFSET(host_addr, 0x70);
9892 VERIFY_OFFSET(CISS_LUN, 0x78);
9893 VERIFY_OFFSET(SG, 0x78 + 8);
9894 #undef VERIFY_OFFSET
9895 }
9896
9897 module_init(hpsa_init);
9898 module_exit(hpsa_cleanup);