]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/hpsa.c
hpsa: remove 0x from queue depth print which is in decimal
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73 HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81 "Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85 "Use 'simple mode' rather than 'performant mode'");
86
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
129 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
135 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136 {0,}
137 };
138
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140
141 /* board_id = Subsystem Device ID & Vendor ID
142 * product = Marketing Name for the board
143 * access = Address of the struct of function pointers
144 */
145 static struct board_type products[] = {
146 {0x3241103C, "Smart Array P212", &SA5_access},
147 {0x3243103C, "Smart Array P410", &SA5_access},
148 {0x3245103C, "Smart Array P410i", &SA5_access},
149 {0x3247103C, "Smart Array P411", &SA5_access},
150 {0x3249103C, "Smart Array P812", &SA5_access},
151 {0x324A103C, "Smart Array P712m", &SA5_access},
152 {0x324B103C, "Smart Array P711m", &SA5_access},
153 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154 {0x3350103C, "Smart Array P222", &SA5_access},
155 {0x3351103C, "Smart Array P420", &SA5_access},
156 {0x3352103C, "Smart Array P421", &SA5_access},
157 {0x3353103C, "Smart Array P822", &SA5_access},
158 {0x3354103C, "Smart Array P420i", &SA5_access},
159 {0x3355103C, "Smart Array P220i", &SA5_access},
160 {0x3356103C, "Smart Array P721m", &SA5_access},
161 {0x1921103C, "Smart Array P830i", &SA5_access},
162 {0x1922103C, "Smart Array P430", &SA5_access},
163 {0x1923103C, "Smart Array P431", &SA5_access},
164 {0x1924103C, "Smart Array P830", &SA5_access},
165 {0x1926103C, "Smart Array P731m", &SA5_access},
166 {0x1928103C, "Smart Array P230i", &SA5_access},
167 {0x1929103C, "Smart Array P530", &SA5_access},
168 {0x21BD103C, "Smart Array", &SA5_access},
169 {0x21BE103C, "Smart Array", &SA5_access},
170 {0x21BF103C, "Smart Array", &SA5_access},
171 {0x21C0103C, "Smart Array", &SA5_access},
172 {0x21C1103C, "Smart Array", &SA5_access},
173 {0x21C2103C, "Smart Array", &SA5_access},
174 {0x21C3103C, "Smart Array", &SA5_access},
175 {0x21C4103C, "Smart Array", &SA5_access},
176 {0x21C5103C, "Smart Array", &SA5_access},
177 {0x21C6103C, "Smart Array", &SA5_access},
178 {0x21C7103C, "Smart Array", &SA5_access},
179 {0x21C8103C, "Smart Array", &SA5_access},
180 {0x21C9103C, "Smart Array", &SA5_access},
181 {0x21CA103C, "Smart Array", &SA5_access},
182 {0x21CB103C, "Smart Array", &SA5_access},
183 {0x21CC103C, "Smart Array", &SA5_access},
184 {0x21CD103C, "Smart Array", &SA5_access},
185 {0x21CE103C, "Smart Array", &SA5_access},
186 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193
194 static int number_of_controllers;
195
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 static void lock_and_start_io(struct ctlr_info *h);
200 static void start_io(struct ctlr_info *h, unsigned long *flags);
201
202 #ifdef CONFIG_COMPAT
203 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
204 void __user *arg);
205 #endif
206
207 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
208 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
211 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
213 int cmd_type);
214 #define VPD_PAGE (1 << 8)
215
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219 unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
226
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229 struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231 struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234 int nsgs, int min_blocks, u32 *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239 u64 *cfg_offset);
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244 int wait_for_ready);
245 static inline void finish_cmd(struct CommandList *c);
246 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 u8 *scsi3addr);
254
255 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
256 {
257 unsigned long *priv = shost_priv(sdev->host);
258 return (struct ctlr_info *) *priv;
259 }
260
261 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
262 {
263 unsigned long *priv = shost_priv(sh);
264 return (struct ctlr_info *) *priv;
265 }
266
267 static int check_for_unit_attention(struct ctlr_info *h,
268 struct CommandList *c)
269 {
270 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
271 return 0;
272
273 switch (c->err_info->SenseInfo[12]) {
274 case STATE_CHANGED:
275 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
276 "detected, command retried\n", h->ctlr);
277 break;
278 case LUN_FAILED:
279 dev_warn(&h->pdev->dev,
280 HPSA "%d: LUN failure detected\n", h->ctlr);
281 break;
282 case REPORT_LUNS_CHANGED:
283 dev_warn(&h->pdev->dev,
284 HPSA "%d: report LUN data changed\n", h->ctlr);
285 /*
286 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
287 * target (array) devices.
288 */
289 break;
290 case POWER_OR_RESET:
291 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
292 "or device reset detected\n", h->ctlr);
293 break;
294 case UNIT_ATTENTION_CLEARED:
295 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
296 "cleared by another initiator\n", h->ctlr);
297 break;
298 default:
299 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
300 "unit attention detected\n", h->ctlr);
301 break;
302 }
303 return 1;
304 }
305
306 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
307 {
308 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
309 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
310 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
311 return 0;
312 dev_warn(&h->pdev->dev, HPSA "device busy");
313 return 1;
314 }
315
316 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
317 struct device_attribute *attr,
318 const char *buf, size_t count)
319 {
320 int status, len;
321 struct ctlr_info *h;
322 struct Scsi_Host *shost = class_to_shost(dev);
323 char tmpbuf[10];
324
325 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
326 return -EACCES;
327 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
328 strncpy(tmpbuf, buf, len);
329 tmpbuf[len] = '\0';
330 if (sscanf(tmpbuf, "%d", &status) != 1)
331 return -EINVAL;
332 h = shost_to_hba(shost);
333 h->acciopath_status = !!status;
334 dev_warn(&h->pdev->dev,
335 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
336 h->acciopath_status ? "enabled" : "disabled");
337 return count;
338 }
339
340 static ssize_t host_store_raid_offload_debug(struct device *dev,
341 struct device_attribute *attr,
342 const char *buf, size_t count)
343 {
344 int debug_level, len;
345 struct ctlr_info *h;
346 struct Scsi_Host *shost = class_to_shost(dev);
347 char tmpbuf[10];
348
349 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
350 return -EACCES;
351 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
352 strncpy(tmpbuf, buf, len);
353 tmpbuf[len] = '\0';
354 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
355 return -EINVAL;
356 if (debug_level < 0)
357 debug_level = 0;
358 h = shost_to_hba(shost);
359 h->raid_offload_debug = debug_level;
360 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
361 h->raid_offload_debug);
362 return count;
363 }
364
365 static ssize_t host_store_rescan(struct device *dev,
366 struct device_attribute *attr,
367 const char *buf, size_t count)
368 {
369 struct ctlr_info *h;
370 struct Scsi_Host *shost = class_to_shost(dev);
371 h = shost_to_hba(shost);
372 hpsa_scan_start(h->scsi_host);
373 return count;
374 }
375
376 static ssize_t host_show_firmware_revision(struct device *dev,
377 struct device_attribute *attr, char *buf)
378 {
379 struct ctlr_info *h;
380 struct Scsi_Host *shost = class_to_shost(dev);
381 unsigned char *fwrev;
382
383 h = shost_to_hba(shost);
384 if (!h->hba_inquiry_data)
385 return 0;
386 fwrev = &h->hba_inquiry_data[32];
387 return snprintf(buf, 20, "%c%c%c%c\n",
388 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389 }
390
391 static ssize_t host_show_commands_outstanding(struct device *dev,
392 struct device_attribute *attr, char *buf)
393 {
394 struct Scsi_Host *shost = class_to_shost(dev);
395 struct ctlr_info *h = shost_to_hba(shost);
396
397 return snprintf(buf, 20, "%d\n",
398 atomic_read(&h->commands_outstanding));
399 }
400
401 static ssize_t host_show_transport_mode(struct device *dev,
402 struct device_attribute *attr, char *buf)
403 {
404 struct ctlr_info *h;
405 struct Scsi_Host *shost = class_to_shost(dev);
406
407 h = shost_to_hba(shost);
408 return snprintf(buf, 20, "%s\n",
409 h->transMethod & CFGTBL_Trans_Performant ?
410 "performant" : "simple");
411 }
412
413 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct ctlr_info *h;
417 struct Scsi_Host *shost = class_to_shost(dev);
418
419 h = shost_to_hba(shost);
420 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
421 (h->acciopath_status == 1) ? "enabled" : "disabled");
422 }
423
424 /* List of controllers which cannot be hard reset on kexec with reset_devices */
425 static u32 unresettable_controller[] = {
426 0x324a103C, /* Smart Array P712m */
427 0x324b103C, /* SmartArray P711m */
428 0x3223103C, /* Smart Array P800 */
429 0x3234103C, /* Smart Array P400 */
430 0x3235103C, /* Smart Array P400i */
431 0x3211103C, /* Smart Array E200i */
432 0x3212103C, /* Smart Array E200 */
433 0x3213103C, /* Smart Array E200i */
434 0x3214103C, /* Smart Array E200i */
435 0x3215103C, /* Smart Array E200i */
436 0x3237103C, /* Smart Array E500 */
437 0x323D103C, /* Smart Array P700m */
438 0x40800E11, /* Smart Array 5i */
439 0x409C0E11, /* Smart Array 6400 */
440 0x409D0E11, /* Smart Array 6400 EM */
441 0x40700E11, /* Smart Array 5300 */
442 0x40820E11, /* Smart Array 532 */
443 0x40830E11, /* Smart Array 5312 */
444 0x409A0E11, /* Smart Array 641 */
445 0x409B0E11, /* Smart Array 642 */
446 0x40910E11, /* Smart Array 6i */
447 };
448
449 /* List of controllers which cannot even be soft reset */
450 static u32 soft_unresettable_controller[] = {
451 0x40800E11, /* Smart Array 5i */
452 0x40700E11, /* Smart Array 5300 */
453 0x40820E11, /* Smart Array 532 */
454 0x40830E11, /* Smart Array 5312 */
455 0x409A0E11, /* Smart Array 641 */
456 0x409B0E11, /* Smart Array 642 */
457 0x40910E11, /* Smart Array 6i */
458 /* Exclude 640x boards. These are two pci devices in one slot
459 * which share a battery backed cache module. One controls the
460 * cache, the other accesses the cache through the one that controls
461 * it. If we reset the one controlling the cache, the other will
462 * likely not be happy. Just forbid resetting this conjoined mess.
463 * The 640x isn't really supported by hpsa anyway.
464 */
465 0x409C0E11, /* Smart Array 6400 */
466 0x409D0E11, /* Smart Array 6400 EM */
467 };
468
469 static int ctlr_is_hard_resettable(u32 board_id)
470 {
471 int i;
472
473 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
474 if (unresettable_controller[i] == board_id)
475 return 0;
476 return 1;
477 }
478
479 static int ctlr_is_soft_resettable(u32 board_id)
480 {
481 int i;
482
483 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
484 if (soft_unresettable_controller[i] == board_id)
485 return 0;
486 return 1;
487 }
488
489 static int ctlr_is_resettable(u32 board_id)
490 {
491 return ctlr_is_hard_resettable(board_id) ||
492 ctlr_is_soft_resettable(board_id);
493 }
494
495 static ssize_t host_show_resettable(struct device *dev,
496 struct device_attribute *attr, char *buf)
497 {
498 struct ctlr_info *h;
499 struct Scsi_Host *shost = class_to_shost(dev);
500
501 h = shost_to_hba(shost);
502 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
503 }
504
505 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
506 {
507 return (scsi3addr[3] & 0xC0) == 0x40;
508 }
509
510 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
511 "1(+0)ADM", "UNKNOWN"
512 };
513 #define HPSA_RAID_0 0
514 #define HPSA_RAID_4 1
515 #define HPSA_RAID_1 2 /* also used for RAID 10 */
516 #define HPSA_RAID_5 3 /* also used for RAID 50 */
517 #define HPSA_RAID_51 4
518 #define HPSA_RAID_6 5 /* also used for RAID 60 */
519 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
520 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
521
522 static ssize_t raid_level_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 ssize_t l = 0;
526 unsigned char rlevel;
527 struct ctlr_info *h;
528 struct scsi_device *sdev;
529 struct hpsa_scsi_dev_t *hdev;
530 unsigned long flags;
531
532 sdev = to_scsi_device(dev);
533 h = sdev_to_hba(sdev);
534 spin_lock_irqsave(&h->lock, flags);
535 hdev = sdev->hostdata;
536 if (!hdev) {
537 spin_unlock_irqrestore(&h->lock, flags);
538 return -ENODEV;
539 }
540
541 /* Is this even a logical drive? */
542 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
543 spin_unlock_irqrestore(&h->lock, flags);
544 l = snprintf(buf, PAGE_SIZE, "N/A\n");
545 return l;
546 }
547
548 rlevel = hdev->raid_level;
549 spin_unlock_irqrestore(&h->lock, flags);
550 if (rlevel > RAID_UNKNOWN)
551 rlevel = RAID_UNKNOWN;
552 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
553 return l;
554 }
555
556 static ssize_t lunid_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558 {
559 struct ctlr_info *h;
560 struct scsi_device *sdev;
561 struct hpsa_scsi_dev_t *hdev;
562 unsigned long flags;
563 unsigned char lunid[8];
564
565 sdev = to_scsi_device(dev);
566 h = sdev_to_hba(sdev);
567 spin_lock_irqsave(&h->lock, flags);
568 hdev = sdev->hostdata;
569 if (!hdev) {
570 spin_unlock_irqrestore(&h->lock, flags);
571 return -ENODEV;
572 }
573 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
574 spin_unlock_irqrestore(&h->lock, flags);
575 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
576 lunid[0], lunid[1], lunid[2], lunid[3],
577 lunid[4], lunid[5], lunid[6], lunid[7]);
578 }
579
580 static ssize_t unique_id_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct ctlr_info *h;
584 struct scsi_device *sdev;
585 struct hpsa_scsi_dev_t *hdev;
586 unsigned long flags;
587 unsigned char sn[16];
588
589 sdev = to_scsi_device(dev);
590 h = sdev_to_hba(sdev);
591 spin_lock_irqsave(&h->lock, flags);
592 hdev = sdev->hostdata;
593 if (!hdev) {
594 spin_unlock_irqrestore(&h->lock, flags);
595 return -ENODEV;
596 }
597 memcpy(sn, hdev->device_id, sizeof(sn));
598 spin_unlock_irqrestore(&h->lock, flags);
599 return snprintf(buf, 16 * 2 + 2,
600 "%02X%02X%02X%02X%02X%02X%02X%02X"
601 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
602 sn[0], sn[1], sn[2], sn[3],
603 sn[4], sn[5], sn[6], sn[7],
604 sn[8], sn[9], sn[10], sn[11],
605 sn[12], sn[13], sn[14], sn[15]);
606 }
607
608 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
609 struct device_attribute *attr, char *buf)
610 {
611 struct ctlr_info *h;
612 struct scsi_device *sdev;
613 struct hpsa_scsi_dev_t *hdev;
614 unsigned long flags;
615 int offload_enabled;
616
617 sdev = to_scsi_device(dev);
618 h = sdev_to_hba(sdev);
619 spin_lock_irqsave(&h->lock, flags);
620 hdev = sdev->hostdata;
621 if (!hdev) {
622 spin_unlock_irqrestore(&h->lock, flags);
623 return -ENODEV;
624 }
625 offload_enabled = hdev->offload_enabled;
626 spin_unlock_irqrestore(&h->lock, flags);
627 return snprintf(buf, 20, "%d\n", offload_enabled);
628 }
629
630 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
631 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
632 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
633 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
634 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
635 host_show_hp_ssd_smart_path_enabled, NULL);
636 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
637 host_show_hp_ssd_smart_path_status,
638 host_store_hp_ssd_smart_path_status);
639 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
640 host_store_raid_offload_debug);
641 static DEVICE_ATTR(firmware_revision, S_IRUGO,
642 host_show_firmware_revision, NULL);
643 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
644 host_show_commands_outstanding, NULL);
645 static DEVICE_ATTR(transport_mode, S_IRUGO,
646 host_show_transport_mode, NULL);
647 static DEVICE_ATTR(resettable, S_IRUGO,
648 host_show_resettable, NULL);
649
650 static struct device_attribute *hpsa_sdev_attrs[] = {
651 &dev_attr_raid_level,
652 &dev_attr_lunid,
653 &dev_attr_unique_id,
654 &dev_attr_hp_ssd_smart_path_enabled,
655 NULL,
656 };
657
658 static struct device_attribute *hpsa_shost_attrs[] = {
659 &dev_attr_rescan,
660 &dev_attr_firmware_revision,
661 &dev_attr_commands_outstanding,
662 &dev_attr_transport_mode,
663 &dev_attr_resettable,
664 &dev_attr_hp_ssd_smart_path_status,
665 &dev_attr_raid_offload_debug,
666 NULL,
667 };
668
669 static struct scsi_host_template hpsa_driver_template = {
670 .module = THIS_MODULE,
671 .name = HPSA,
672 .proc_name = HPSA,
673 .queuecommand = hpsa_scsi_queue_command,
674 .scan_start = hpsa_scan_start,
675 .scan_finished = hpsa_scan_finished,
676 .change_queue_depth = hpsa_change_queue_depth,
677 .this_id = -1,
678 .use_clustering = ENABLE_CLUSTERING,
679 .eh_abort_handler = hpsa_eh_abort_handler,
680 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
681 .ioctl = hpsa_ioctl,
682 .slave_alloc = hpsa_slave_alloc,
683 .slave_destroy = hpsa_slave_destroy,
684 #ifdef CONFIG_COMPAT
685 .compat_ioctl = hpsa_compat_ioctl,
686 #endif
687 .sdev_attrs = hpsa_sdev_attrs,
688 .shost_attrs = hpsa_shost_attrs,
689 .max_sectors = 8192,
690 .no_write_same = 1,
691 };
692
693
694 /* Enqueuing and dequeuing functions for cmdlists. */
695 static inline void addQ(struct list_head *list, struct CommandList *c)
696 {
697 list_add_tail(&c->list, list);
698 }
699
700 static inline u32 next_command(struct ctlr_info *h, u8 q)
701 {
702 u32 a;
703 struct reply_queue_buffer *rq = &h->reply_queue[q];
704
705 if (h->transMethod & CFGTBL_Trans_io_accel1)
706 return h->access.command_completed(h, q);
707
708 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
709 return h->access.command_completed(h, q);
710
711 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
712 a = rq->head[rq->current_entry];
713 rq->current_entry++;
714 atomic_dec(&h->commands_outstanding);
715 } else {
716 a = FIFO_EMPTY;
717 }
718 /* Check for wraparound */
719 if (rq->current_entry == h->max_commands) {
720 rq->current_entry = 0;
721 rq->wraparound ^= 1;
722 }
723 return a;
724 }
725
726 /*
727 * There are some special bits in the bus address of the
728 * command that we have to set for the controller to know
729 * how to process the command:
730 *
731 * Normal performant mode:
732 * bit 0: 1 means performant mode, 0 means simple mode.
733 * bits 1-3 = block fetch table entry
734 * bits 4-6 = command type (== 0)
735 *
736 * ioaccel1 mode:
737 * bit 0 = "performant mode" bit.
738 * bits 1-3 = block fetch table entry
739 * bits 4-6 = command type (== 110)
740 * (command type is needed because ioaccel1 mode
741 * commands are submitted through the same register as normal
742 * mode commands, so this is how the controller knows whether
743 * the command is normal mode or ioaccel1 mode.)
744 *
745 * ioaccel2 mode:
746 * bit 0 = "performant mode" bit.
747 * bits 1-4 = block fetch table entry (note extra bit)
748 * bits 4-6 = not needed, because ioaccel2 mode has
749 * a separate special register for submitting commands.
750 */
751
752 /* set_performant_mode: Modify the tag for cciss performant
753 * set bit 0 for pull model, bits 3-1 for block fetch
754 * register number
755 */
756 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
757 {
758 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
759 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
760 if (likely(h->msix_vector > 0))
761 c->Header.ReplyQueue =
762 raw_smp_processor_id() % h->nreply_queues;
763 }
764 }
765
766 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767 struct CommandList *c)
768 {
769 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
770
771 /* Tell the controller to post the reply to the queue for this
772 * processor. This seems to give the best I/O throughput.
773 */
774 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775 /* Set the bits in the address sent down to include:
776 * - performant mode bit (bit 0)
777 * - pull count (bits 1-3)
778 * - command type (bits 4-6)
779 */
780 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781 IOACCEL1_BUSADDR_CMDTYPE;
782 }
783
784 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785 struct CommandList *c)
786 {
787 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
788
789 /* Tell the controller to post the reply to the queue for this
790 * processor. This seems to give the best I/O throughput.
791 */
792 cp->reply_queue = smp_processor_id() % h->nreply_queues;
793 /* Set the bits in the address sent down to include:
794 * - performant mode bit not used in ioaccel mode 2
795 * - pull count (bits 0-3)
796 * - command type isn't needed for ioaccel2
797 */
798 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
799 }
800
801 static int is_firmware_flash_cmd(u8 *cdb)
802 {
803 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
804 }
805
806 /*
807 * During firmware flash, the heartbeat register may not update as frequently
808 * as it should. So we dial down lockup detection during firmware flash. and
809 * dial it back up when firmware flash completes.
810 */
811 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814 struct CommandList *c)
815 {
816 if (!is_firmware_flash_cmd(c->Request.CDB))
817 return;
818 atomic_inc(&h->firmware_flash_in_progress);
819 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
820 }
821
822 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823 struct CommandList *c)
824 {
825 if (is_firmware_flash_cmd(c->Request.CDB) &&
826 atomic_dec_and_test(&h->firmware_flash_in_progress))
827 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
828 }
829
830 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831 struct CommandList *c)
832 {
833 unsigned long flags;
834
835 switch (c->cmd_type) {
836 case CMD_IOACCEL1:
837 set_ioaccel1_performant_mode(h, c);
838 break;
839 case CMD_IOACCEL2:
840 set_ioaccel2_performant_mode(h, c);
841 break;
842 default:
843 set_performant_mode(h, c);
844 }
845 dial_down_lockup_detection_during_fw_flash(h, c);
846 spin_lock_irqsave(&h->lock, flags);
847 addQ(&h->reqQ, c);
848 h->Qdepth++;
849 start_io(h, &flags);
850 spin_unlock_irqrestore(&h->lock, flags);
851 }
852
853 static inline void removeQ(struct CommandList *c)
854 {
855 if (WARN_ON(list_empty(&c->list)))
856 return;
857 list_del_init(&c->list);
858 }
859
860 static inline int is_hba_lunid(unsigned char scsi3addr[])
861 {
862 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
863 }
864
865 static inline int is_scsi_rev_5(struct ctlr_info *h)
866 {
867 if (!h->hba_inquiry_data)
868 return 0;
869 if ((h->hba_inquiry_data[2] & 0x07) == 5)
870 return 1;
871 return 0;
872 }
873
874 static int hpsa_find_target_lun(struct ctlr_info *h,
875 unsigned char scsi3addr[], int bus, int *target, int *lun)
876 {
877 /* finds an unused bus, target, lun for a new physical device
878 * assumes h->devlock is held
879 */
880 int i, found = 0;
881 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
882
883 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
884
885 for (i = 0; i < h->ndevices; i++) {
886 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
887 __set_bit(h->dev[i]->target, lun_taken);
888 }
889
890 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891 if (i < HPSA_MAX_DEVICES) {
892 /* *bus = 1; */
893 *target = i;
894 *lun = 0;
895 found = 1;
896 }
897 return !found;
898 }
899
900 /* Add an entry into h->dev[] array. */
901 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902 struct hpsa_scsi_dev_t *device,
903 struct hpsa_scsi_dev_t *added[], int *nadded)
904 {
905 /* assumes h->devlock is held */
906 int n = h->ndevices;
907 int i;
908 unsigned char addr1[8], addr2[8];
909 struct hpsa_scsi_dev_t *sd;
910
911 if (n >= HPSA_MAX_DEVICES) {
912 dev_err(&h->pdev->dev, "too many devices, some will be "
913 "inaccessible.\n");
914 return -1;
915 }
916
917 /* physical devices do not have lun or target assigned until now. */
918 if (device->lun != -1)
919 /* Logical device, lun is already assigned. */
920 goto lun_assigned;
921
922 /* If this device a non-zero lun of a multi-lun device
923 * byte 4 of the 8-byte LUN addr will contain the logical
924 * unit no, zero otherwise.
925 */
926 if (device->scsi3addr[4] == 0) {
927 /* This is not a non-zero lun of a multi-lun device */
928 if (hpsa_find_target_lun(h, device->scsi3addr,
929 device->bus, &device->target, &device->lun) != 0)
930 return -1;
931 goto lun_assigned;
932 }
933
934 /* This is a non-zero lun of a multi-lun device.
935 * Search through our list and find the device which
936 * has the same 8 byte LUN address, excepting byte 4.
937 * Assign the same bus and target for this new LUN.
938 * Use the logical unit number from the firmware.
939 */
940 memcpy(addr1, device->scsi3addr, 8);
941 addr1[4] = 0;
942 for (i = 0; i < n; i++) {
943 sd = h->dev[i];
944 memcpy(addr2, sd->scsi3addr, 8);
945 addr2[4] = 0;
946 /* differ only in byte 4? */
947 if (memcmp(addr1, addr2, 8) == 0) {
948 device->bus = sd->bus;
949 device->target = sd->target;
950 device->lun = device->scsi3addr[4];
951 break;
952 }
953 }
954 if (device->lun == -1) {
955 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956 " suspect firmware bug or unsupported hardware "
957 "configuration.\n");
958 return -1;
959 }
960
961 lun_assigned:
962
963 h->dev[n] = device;
964 h->ndevices++;
965 added[*nadded] = device;
966 (*nadded)++;
967
968 /* initially, (before registering with scsi layer) we don't
969 * know our hostno and we don't want to print anything first
970 * time anyway (the scsi layer's inquiries will show that info)
971 */
972 /* if (hostno != -1) */
973 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974 scsi_device_type(device->devtype), hostno,
975 device->bus, device->target, device->lun);
976 return 0;
977 }
978
979 /* Update an entry in h->dev[] array. */
980 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981 int entry, struct hpsa_scsi_dev_t *new_entry)
982 {
983 /* assumes h->devlock is held */
984 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
985
986 /* Raid level changed. */
987 h->dev[entry]->raid_level = new_entry->raid_level;
988
989 /* Raid offload parameters changed. */
990 h->dev[entry]->offload_config = new_entry->offload_config;
991 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
992 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994 h->dev[entry]->raid_map = new_entry->raid_map;
995
996 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998 new_entry->target, new_entry->lun);
999 }
1000
1001 /* Replace an entry from h->dev[] array. */
1002 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003 int entry, struct hpsa_scsi_dev_t *new_entry,
1004 struct hpsa_scsi_dev_t *added[], int *nadded,
1005 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1006 {
1007 /* assumes h->devlock is held */
1008 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1009 removed[*nremoved] = h->dev[entry];
1010 (*nremoved)++;
1011
1012 /*
1013 * New physical devices won't have target/lun assigned yet
1014 * so we need to preserve the values in the slot we are replacing.
1015 */
1016 if (new_entry->target == -1) {
1017 new_entry->target = h->dev[entry]->target;
1018 new_entry->lun = h->dev[entry]->lun;
1019 }
1020
1021 h->dev[entry] = new_entry;
1022 added[*nadded] = new_entry;
1023 (*nadded)++;
1024 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026 new_entry->target, new_entry->lun);
1027 }
1028
1029 /* Remove an entry from h->dev[] array. */
1030 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1032 {
1033 /* assumes h->devlock is held */
1034 int i;
1035 struct hpsa_scsi_dev_t *sd;
1036
1037 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1038
1039 sd = h->dev[entry];
1040 removed[*nremoved] = h->dev[entry];
1041 (*nremoved)++;
1042
1043 for (i = entry; i < h->ndevices-1; i++)
1044 h->dev[i] = h->dev[i+1];
1045 h->ndevices--;
1046 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1048 sd->lun);
1049 }
1050
1051 #define SCSI3ADDR_EQ(a, b) ( \
1052 (a)[7] == (b)[7] && \
1053 (a)[6] == (b)[6] && \
1054 (a)[5] == (b)[5] && \
1055 (a)[4] == (b)[4] && \
1056 (a)[3] == (b)[3] && \
1057 (a)[2] == (b)[2] && \
1058 (a)[1] == (b)[1] && \
1059 (a)[0] == (b)[0])
1060
1061 static void fixup_botched_add(struct ctlr_info *h,
1062 struct hpsa_scsi_dev_t *added)
1063 {
1064 /* called when scsi_add_device fails in order to re-adjust
1065 * h->dev[] to match the mid layer's view.
1066 */
1067 unsigned long flags;
1068 int i, j;
1069
1070 spin_lock_irqsave(&h->lock, flags);
1071 for (i = 0; i < h->ndevices; i++) {
1072 if (h->dev[i] == added) {
1073 for (j = i; j < h->ndevices-1; j++)
1074 h->dev[j] = h->dev[j+1];
1075 h->ndevices--;
1076 break;
1077 }
1078 }
1079 spin_unlock_irqrestore(&h->lock, flags);
1080 kfree(added);
1081 }
1082
1083 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084 struct hpsa_scsi_dev_t *dev2)
1085 {
1086 /* we compare everything except lun and target as these
1087 * are not yet assigned. Compare parts likely
1088 * to differ first
1089 */
1090 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091 sizeof(dev1->scsi3addr)) != 0)
1092 return 0;
1093 if (memcmp(dev1->device_id, dev2->device_id,
1094 sizeof(dev1->device_id)) != 0)
1095 return 0;
1096 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1097 return 0;
1098 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1099 return 0;
1100 if (dev1->devtype != dev2->devtype)
1101 return 0;
1102 if (dev1->bus != dev2->bus)
1103 return 0;
1104 return 1;
1105 }
1106
1107 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108 struct hpsa_scsi_dev_t *dev2)
1109 {
1110 /* Device attributes that can change, but don't mean
1111 * that the device is a different device, nor that the OS
1112 * needs to be told anything about the change.
1113 */
1114 if (dev1->raid_level != dev2->raid_level)
1115 return 1;
1116 if (dev1->offload_config != dev2->offload_config)
1117 return 1;
1118 if (dev1->offload_enabled != dev2->offload_enabled)
1119 return 1;
1120 return 0;
1121 }
1122
1123 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1124 * and return needle location in *index. If scsi3addr matches, but not
1125 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1126 * location in *index.
1127 * In the case of a minor device attribute change, such as RAID level, just
1128 * return DEVICE_UPDATED, along with the updated device's location in index.
1129 * If needle not found, return DEVICE_NOT_FOUND.
1130 */
1131 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1133 int *index)
1134 {
1135 int i;
1136 #define DEVICE_NOT_FOUND 0
1137 #define DEVICE_CHANGED 1
1138 #define DEVICE_SAME 2
1139 #define DEVICE_UPDATED 3
1140 for (i = 0; i < haystack_size; i++) {
1141 if (haystack[i] == NULL) /* previously removed. */
1142 continue;
1143 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1144 *index = i;
1145 if (device_is_the_same(needle, haystack[i])) {
1146 if (device_updated(needle, haystack[i]))
1147 return DEVICE_UPDATED;
1148 return DEVICE_SAME;
1149 } else {
1150 /* Keep offline devices offline */
1151 if (needle->volume_offline)
1152 return DEVICE_NOT_FOUND;
1153 return DEVICE_CHANGED;
1154 }
1155 }
1156 }
1157 *index = -1;
1158 return DEVICE_NOT_FOUND;
1159 }
1160
1161 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162 unsigned char scsi3addr[])
1163 {
1164 struct offline_device_entry *device;
1165 unsigned long flags;
1166
1167 /* Check to see if device is already on the list */
1168 spin_lock_irqsave(&h->offline_device_lock, flags);
1169 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170 if (memcmp(device->scsi3addr, scsi3addr,
1171 sizeof(device->scsi3addr)) == 0) {
1172 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1173 return;
1174 }
1175 }
1176 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1177
1178 /* Device is not on the list, add it. */
1179 device = kmalloc(sizeof(*device), GFP_KERNEL);
1180 if (!device) {
1181 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1182 return;
1183 }
1184 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185 spin_lock_irqsave(&h->offline_device_lock, flags);
1186 list_add_tail(&device->offline_list, &h->offline_device_list);
1187 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1188 }
1189
1190 /* Print a message explaining various offline volume states */
1191 static void hpsa_show_volume_status(struct ctlr_info *h,
1192 struct hpsa_scsi_dev_t *sd)
1193 {
1194 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195 dev_info(&h->pdev->dev,
1196 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197 h->scsi_host->host_no,
1198 sd->bus, sd->target, sd->lun);
1199 switch (sd->volume_offline) {
1200 case HPSA_LV_OK:
1201 break;
1202 case HPSA_LV_UNDERGOING_ERASE:
1203 dev_info(&h->pdev->dev,
1204 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205 h->scsi_host->host_no,
1206 sd->bus, sd->target, sd->lun);
1207 break;
1208 case HPSA_LV_UNDERGOING_RPI:
1209 dev_info(&h->pdev->dev,
1210 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211 h->scsi_host->host_no,
1212 sd->bus, sd->target, sd->lun);
1213 break;
1214 case HPSA_LV_PENDING_RPI:
1215 dev_info(&h->pdev->dev,
1216 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217 h->scsi_host->host_no,
1218 sd->bus, sd->target, sd->lun);
1219 break;
1220 case HPSA_LV_ENCRYPTED_NO_KEY:
1221 dev_info(&h->pdev->dev,
1222 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223 h->scsi_host->host_no,
1224 sd->bus, sd->target, sd->lun);
1225 break;
1226 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227 dev_info(&h->pdev->dev,
1228 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229 h->scsi_host->host_no,
1230 sd->bus, sd->target, sd->lun);
1231 break;
1232 case HPSA_LV_UNDERGOING_ENCRYPTION:
1233 dev_info(&h->pdev->dev,
1234 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235 h->scsi_host->host_no,
1236 sd->bus, sd->target, sd->lun);
1237 break;
1238 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239 dev_info(&h->pdev->dev,
1240 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241 h->scsi_host->host_no,
1242 sd->bus, sd->target, sd->lun);
1243 break;
1244 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245 dev_info(&h->pdev->dev,
1246 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247 h->scsi_host->host_no,
1248 sd->bus, sd->target, sd->lun);
1249 break;
1250 case HPSA_LV_PENDING_ENCRYPTION:
1251 dev_info(&h->pdev->dev,
1252 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253 h->scsi_host->host_no,
1254 sd->bus, sd->target, sd->lun);
1255 break;
1256 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257 dev_info(&h->pdev->dev,
1258 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259 h->scsi_host->host_no,
1260 sd->bus, sd->target, sd->lun);
1261 break;
1262 }
1263 }
1264
1265 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1266 struct hpsa_scsi_dev_t *sd[], int nsds)
1267 {
1268 /* sd contains scsi3 addresses and devtypes, and inquiry
1269 * data. This function takes what's in sd to be the current
1270 * reality and updates h->dev[] to reflect that reality.
1271 */
1272 int i, entry, device_change, changes = 0;
1273 struct hpsa_scsi_dev_t *csd;
1274 unsigned long flags;
1275 struct hpsa_scsi_dev_t **added, **removed;
1276 int nadded, nremoved;
1277 struct Scsi_Host *sh = NULL;
1278
1279 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1281
1282 if (!added || !removed) {
1283 dev_warn(&h->pdev->dev, "out of memory in "
1284 "adjust_hpsa_scsi_table\n");
1285 goto free_and_out;
1286 }
1287
1288 spin_lock_irqsave(&h->devlock, flags);
1289
1290 /* find any devices in h->dev[] that are not in
1291 * sd[] and remove them from h->dev[], and for any
1292 * devices which have changed, remove the old device
1293 * info and add the new device info.
1294 * If minor device attributes change, just update
1295 * the existing device structure.
1296 */
1297 i = 0;
1298 nremoved = 0;
1299 nadded = 0;
1300 while (i < h->ndevices) {
1301 csd = h->dev[i];
1302 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303 if (device_change == DEVICE_NOT_FOUND) {
1304 changes++;
1305 hpsa_scsi_remove_entry(h, hostno, i,
1306 removed, &nremoved);
1307 continue; /* remove ^^^, hence i not incremented */
1308 } else if (device_change == DEVICE_CHANGED) {
1309 changes++;
1310 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311 added, &nadded, removed, &nremoved);
1312 /* Set it to NULL to prevent it from being freed
1313 * at the bottom of hpsa_update_scsi_devices()
1314 */
1315 sd[entry] = NULL;
1316 } else if (device_change == DEVICE_UPDATED) {
1317 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1318 }
1319 i++;
1320 }
1321
1322 /* Now, make sure every device listed in sd[] is also
1323 * listed in h->dev[], adding them if they aren't found
1324 */
1325
1326 for (i = 0; i < nsds; i++) {
1327 if (!sd[i]) /* if already added above. */
1328 continue;
1329
1330 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331 * as the SCSI mid-layer does not handle such devices well.
1332 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333 * at 160Hz, and prevents the system from coming up.
1334 */
1335 if (sd[i]->volume_offline) {
1336 hpsa_show_volume_status(h, sd[i]);
1337 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338 h->scsi_host->host_no,
1339 sd[i]->bus, sd[i]->target, sd[i]->lun);
1340 continue;
1341 }
1342
1343 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344 h->ndevices, &entry);
1345 if (device_change == DEVICE_NOT_FOUND) {
1346 changes++;
1347 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348 added, &nadded) != 0)
1349 break;
1350 sd[i] = NULL; /* prevent from being freed later. */
1351 } else if (device_change == DEVICE_CHANGED) {
1352 /* should never happen... */
1353 changes++;
1354 dev_warn(&h->pdev->dev,
1355 "device unexpectedly changed.\n");
1356 /* but if it does happen, we just ignore that device */
1357 }
1358 }
1359 spin_unlock_irqrestore(&h->devlock, flags);
1360
1361 /* Monitor devices which are in one of several NOT READY states to be
1362 * brought online later. This must be done without holding h->devlock,
1363 * so don't touch h->dev[]
1364 */
1365 for (i = 0; i < nsds; i++) {
1366 if (!sd[i]) /* if already added above. */
1367 continue;
1368 if (sd[i]->volume_offline)
1369 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1370 }
1371
1372 /* Don't notify scsi mid layer of any changes the first time through
1373 * (or if there are no changes) scsi_scan_host will do it later the
1374 * first time through.
1375 */
1376 if (hostno == -1 || !changes)
1377 goto free_and_out;
1378
1379 sh = h->scsi_host;
1380 /* Notify scsi mid layer of any removed devices */
1381 for (i = 0; i < nremoved; i++) {
1382 struct scsi_device *sdev =
1383 scsi_device_lookup(sh, removed[i]->bus,
1384 removed[i]->target, removed[i]->lun);
1385 if (sdev != NULL) {
1386 scsi_remove_device(sdev);
1387 scsi_device_put(sdev);
1388 } else {
1389 /* We don't expect to get here.
1390 * future cmds to this device will get selection
1391 * timeout as if the device was gone.
1392 */
1393 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394 " for removal.", hostno, removed[i]->bus,
1395 removed[i]->target, removed[i]->lun);
1396 }
1397 kfree(removed[i]);
1398 removed[i] = NULL;
1399 }
1400
1401 /* Notify scsi mid layer of any added devices */
1402 for (i = 0; i < nadded; i++) {
1403 if (scsi_add_device(sh, added[i]->bus,
1404 added[i]->target, added[i]->lun) == 0)
1405 continue;
1406 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407 "device not added.\n", hostno, added[i]->bus,
1408 added[i]->target, added[i]->lun);
1409 /* now we have to remove it from h->dev,
1410 * since it didn't get added to scsi mid layer
1411 */
1412 fixup_botched_add(h, added[i]);
1413 }
1414
1415 free_and_out:
1416 kfree(added);
1417 kfree(removed);
1418 }
1419
1420 /*
1421 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1422 * Assume's h->devlock is held.
1423 */
1424 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425 int bus, int target, int lun)
1426 {
1427 int i;
1428 struct hpsa_scsi_dev_t *sd;
1429
1430 for (i = 0; i < h->ndevices; i++) {
1431 sd = h->dev[i];
1432 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1433 return sd;
1434 }
1435 return NULL;
1436 }
1437
1438 /* link sdev->hostdata to our per-device structure. */
1439 static int hpsa_slave_alloc(struct scsi_device *sdev)
1440 {
1441 struct hpsa_scsi_dev_t *sd;
1442 unsigned long flags;
1443 struct ctlr_info *h;
1444
1445 h = sdev_to_hba(sdev);
1446 spin_lock_irqsave(&h->devlock, flags);
1447 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448 sdev_id(sdev), sdev->lun);
1449 if (sd != NULL)
1450 sdev->hostdata = sd;
1451 spin_unlock_irqrestore(&h->devlock, flags);
1452 return 0;
1453 }
1454
1455 static void hpsa_slave_destroy(struct scsi_device *sdev)
1456 {
1457 /* nothing to do. */
1458 }
1459
1460 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1461 {
1462 int i;
1463
1464 if (!h->cmd_sg_list)
1465 return;
1466 for (i = 0; i < h->nr_cmds; i++) {
1467 kfree(h->cmd_sg_list[i]);
1468 h->cmd_sg_list[i] = NULL;
1469 }
1470 kfree(h->cmd_sg_list);
1471 h->cmd_sg_list = NULL;
1472 }
1473
1474 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1475 {
1476 int i;
1477
1478 if (h->chainsize <= 0)
1479 return 0;
1480
1481 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1482 GFP_KERNEL);
1483 if (!h->cmd_sg_list)
1484 return -ENOMEM;
1485 for (i = 0; i < h->nr_cmds; i++) {
1486 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487 h->chainsize, GFP_KERNEL);
1488 if (!h->cmd_sg_list[i])
1489 goto clean;
1490 }
1491 return 0;
1492
1493 clean:
1494 hpsa_free_sg_chain_blocks(h);
1495 return -ENOMEM;
1496 }
1497
1498 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1499 struct CommandList *c)
1500 {
1501 struct SGDescriptor *chain_sg, *chain_block;
1502 u64 temp64;
1503 u32 chain_len;
1504
1505 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1506 chain_block = h->cmd_sg_list[c->cmdindex];
1507 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1508 chain_len = sizeof(*chain_sg) *
1509 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1510 chain_sg->Len = cpu_to_le32(chain_len);
1511 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1512 PCI_DMA_TODEVICE);
1513 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1514 /* prevent subsequent unmapping */
1515 chain_sg->Addr = cpu_to_le64(0);
1516 return -1;
1517 }
1518 chain_sg->Addr = cpu_to_le64(temp64);
1519 return 0;
1520 }
1521
1522 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523 struct CommandList *c)
1524 {
1525 struct SGDescriptor *chain_sg;
1526
1527 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1528 return;
1529
1530 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1531 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1532 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1533 }
1534
1535
1536 /* Decode the various types of errors on ioaccel2 path.
1537 * Return 1 for any error that should generate a RAID path retry.
1538 * Return 0 for errors that don't require a RAID path retry.
1539 */
1540 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1541 struct CommandList *c,
1542 struct scsi_cmnd *cmd,
1543 struct io_accel2_cmd *c2)
1544 {
1545 int data_len;
1546 int retry = 0;
1547
1548 switch (c2->error_data.serv_response) {
1549 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1550 switch (c2->error_data.status) {
1551 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1552 break;
1553 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1554 dev_warn(&h->pdev->dev,
1555 "%s: task complete with check condition.\n",
1556 "HP SSD Smart Path");
1557 cmd->result |= SAM_STAT_CHECK_CONDITION;
1558 if (c2->error_data.data_present !=
1559 IOACCEL2_SENSE_DATA_PRESENT) {
1560 memset(cmd->sense_buffer, 0,
1561 SCSI_SENSE_BUFFERSIZE);
1562 break;
1563 }
1564 /* copy the sense data */
1565 data_len = c2->error_data.sense_data_len;
1566 if (data_len > SCSI_SENSE_BUFFERSIZE)
1567 data_len = SCSI_SENSE_BUFFERSIZE;
1568 if (data_len > sizeof(c2->error_data.sense_data_buff))
1569 data_len =
1570 sizeof(c2->error_data.sense_data_buff);
1571 memcpy(cmd->sense_buffer,
1572 c2->error_data.sense_data_buff, data_len);
1573 retry = 1;
1574 break;
1575 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1576 dev_warn(&h->pdev->dev,
1577 "%s: task complete with BUSY status.\n",
1578 "HP SSD Smart Path");
1579 retry = 1;
1580 break;
1581 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1582 dev_warn(&h->pdev->dev,
1583 "%s: task complete with reservation conflict.\n",
1584 "HP SSD Smart Path");
1585 retry = 1;
1586 break;
1587 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1588 /* Make scsi midlayer do unlimited retries */
1589 cmd->result = DID_IMM_RETRY << 16;
1590 break;
1591 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1592 dev_warn(&h->pdev->dev,
1593 "%s: task complete with aborted status.\n",
1594 "HP SSD Smart Path");
1595 retry = 1;
1596 break;
1597 default:
1598 dev_warn(&h->pdev->dev,
1599 "%s: task complete with unrecognized status: 0x%02x\n",
1600 "HP SSD Smart Path", c2->error_data.status);
1601 retry = 1;
1602 break;
1603 }
1604 break;
1605 case IOACCEL2_SERV_RESPONSE_FAILURE:
1606 /* don't expect to get here. */
1607 dev_warn(&h->pdev->dev,
1608 "unexpected delivery or target failure, status = 0x%02x\n",
1609 c2->error_data.status);
1610 retry = 1;
1611 break;
1612 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1613 break;
1614 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1615 break;
1616 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1617 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1618 retry = 1;
1619 break;
1620 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1621 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1622 break;
1623 default:
1624 dev_warn(&h->pdev->dev,
1625 "%s: Unrecognized server response: 0x%02x\n",
1626 "HP SSD Smart Path",
1627 c2->error_data.serv_response);
1628 retry = 1;
1629 break;
1630 }
1631
1632 return retry; /* retry on raid path? */
1633 }
1634
1635 static void process_ioaccel2_completion(struct ctlr_info *h,
1636 struct CommandList *c, struct scsi_cmnd *cmd,
1637 struct hpsa_scsi_dev_t *dev)
1638 {
1639 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1640 int raid_retry = 0;
1641
1642 /* check for good status */
1643 if (likely(c2->error_data.serv_response == 0 &&
1644 c2->error_data.status == 0)) {
1645 cmd_free(h, c);
1646 cmd->scsi_done(cmd);
1647 return;
1648 }
1649
1650 /* Any RAID offload error results in retry which will use
1651 * the normal I/O path so the controller can handle whatever's
1652 * wrong.
1653 */
1654 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1655 c2->error_data.serv_response ==
1656 IOACCEL2_SERV_RESPONSE_FAILURE) {
1657 dev->offload_enabled = 0;
1658 h->drv_req_rescan = 1; /* schedule controller for a rescan */
1659 cmd->result = DID_SOFT_ERROR << 16;
1660 cmd_free(h, c);
1661 cmd->scsi_done(cmd);
1662 return;
1663 }
1664 raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1665 /* If error found, disable Smart Path, schedule a rescan,
1666 * and force a retry on the standard path.
1667 */
1668 if (raid_retry) {
1669 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1670 "HP SSD Smart Path");
1671 dev->offload_enabled = 0; /* Disable Smart Path */
1672 h->drv_req_rescan = 1; /* schedule controller rescan */
1673 cmd->result = DID_SOFT_ERROR << 16;
1674 }
1675 cmd_free(h, c);
1676 cmd->scsi_done(cmd);
1677 }
1678
1679 static void complete_scsi_command(struct CommandList *cp)
1680 {
1681 struct scsi_cmnd *cmd;
1682 struct ctlr_info *h;
1683 struct ErrorInfo *ei;
1684 struct hpsa_scsi_dev_t *dev;
1685
1686 unsigned char sense_key;
1687 unsigned char asc; /* additional sense code */
1688 unsigned char ascq; /* additional sense code qualifier */
1689 unsigned long sense_data_size;
1690
1691 ei = cp->err_info;
1692 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1693 h = cp->h;
1694 dev = cmd->device->hostdata;
1695
1696 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1697 if ((cp->cmd_type == CMD_SCSI) &&
1698 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1699 hpsa_unmap_sg_chain_block(h, cp);
1700
1701 cmd->result = (DID_OK << 16); /* host byte */
1702 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1703
1704 if (cp->cmd_type == CMD_IOACCEL2)
1705 return process_ioaccel2_completion(h, cp, cmd, dev);
1706
1707 cmd->result |= ei->ScsiStatus;
1708
1709 scsi_set_resid(cmd, ei->ResidualCnt);
1710 if (ei->CommandStatus == 0) {
1711 cmd_free(h, cp);
1712 cmd->scsi_done(cmd);
1713 return;
1714 }
1715
1716 /* copy the sense data */
1717 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1718 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1719 else
1720 sense_data_size = sizeof(ei->SenseInfo);
1721 if (ei->SenseLen < sense_data_size)
1722 sense_data_size = ei->SenseLen;
1723
1724 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1725
1726 /* For I/O accelerator commands, copy over some fields to the normal
1727 * CISS header used below for error handling.
1728 */
1729 if (cp->cmd_type == CMD_IOACCEL1) {
1730 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1731 cp->Header.SGList = scsi_sg_count(cmd);
1732 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1733 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1734 IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735 cp->Header.tag = c->tag;
1736 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1737 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1738
1739 /* Any RAID offload error results in retry which will use
1740 * the normal I/O path so the controller can handle whatever's
1741 * wrong.
1742 */
1743 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1744 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1745 dev->offload_enabled = 0;
1746 cmd->result = DID_SOFT_ERROR << 16;
1747 cmd_free(h, cp);
1748 cmd->scsi_done(cmd);
1749 return;
1750 }
1751 }
1752
1753 /* an error has occurred */
1754 switch (ei->CommandStatus) {
1755
1756 case CMD_TARGET_STATUS:
1757 if (ei->ScsiStatus) {
1758 /* Get sense key */
1759 sense_key = 0xf & ei->SenseInfo[2];
1760 /* Get additional sense code */
1761 asc = ei->SenseInfo[12];
1762 /* Get addition sense code qualifier */
1763 ascq = ei->SenseInfo[13];
1764 }
1765 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1766 if (sense_key == ABORTED_COMMAND) {
1767 cmd->result |= DID_SOFT_ERROR << 16;
1768 break;
1769 }
1770 break;
1771 }
1772 /* Problem was not a check condition
1773 * Pass it up to the upper layers...
1774 */
1775 if (ei->ScsiStatus) {
1776 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1777 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1778 "Returning result: 0x%x\n",
1779 cp, ei->ScsiStatus,
1780 sense_key, asc, ascq,
1781 cmd->result);
1782 } else { /* scsi status is zero??? How??? */
1783 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1784 "Returning no connection.\n", cp),
1785
1786 /* Ordinarily, this case should never happen,
1787 * but there is a bug in some released firmware
1788 * revisions that allows it to happen if, for
1789 * example, a 4100 backplane loses power and
1790 * the tape drive is in it. We assume that
1791 * it's a fatal error of some kind because we
1792 * can't show that it wasn't. We will make it
1793 * look like selection timeout since that is
1794 * the most common reason for this to occur,
1795 * and it's severe enough.
1796 */
1797
1798 cmd->result = DID_NO_CONNECT << 16;
1799 }
1800 break;
1801
1802 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1803 break;
1804 case CMD_DATA_OVERRUN:
1805 dev_warn(&h->pdev->dev, "cp %p has"
1806 " completed with data overrun "
1807 "reported\n", cp);
1808 break;
1809 case CMD_INVALID: {
1810 /* print_bytes(cp, sizeof(*cp), 1, 0);
1811 print_cmd(cp); */
1812 /* We get CMD_INVALID if you address a non-existent device
1813 * instead of a selection timeout (no response). You will
1814 * see this if you yank out a drive, then try to access it.
1815 * This is kind of a shame because it means that any other
1816 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1817 * missing target. */
1818 cmd->result = DID_NO_CONNECT << 16;
1819 }
1820 break;
1821 case CMD_PROTOCOL_ERR:
1822 cmd->result = DID_ERROR << 16;
1823 dev_warn(&h->pdev->dev, "cp %p has "
1824 "protocol error\n", cp);
1825 break;
1826 case CMD_HARDWARE_ERR:
1827 cmd->result = DID_ERROR << 16;
1828 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1829 break;
1830 case CMD_CONNECTION_LOST:
1831 cmd->result = DID_ERROR << 16;
1832 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1833 break;
1834 case CMD_ABORTED:
1835 cmd->result = DID_ABORT << 16;
1836 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1837 cp, ei->ScsiStatus);
1838 break;
1839 case CMD_ABORT_FAILED:
1840 cmd->result = DID_ERROR << 16;
1841 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1842 break;
1843 case CMD_UNSOLICITED_ABORT:
1844 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1845 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1846 "abort\n", cp);
1847 break;
1848 case CMD_TIMEOUT:
1849 cmd->result = DID_TIME_OUT << 16;
1850 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1851 break;
1852 case CMD_UNABORTABLE:
1853 cmd->result = DID_ERROR << 16;
1854 dev_warn(&h->pdev->dev, "Command unabortable\n");
1855 break;
1856 case CMD_IOACCEL_DISABLED:
1857 /* This only handles the direct pass-through case since RAID
1858 * offload is handled above. Just attempt a retry.
1859 */
1860 cmd->result = DID_SOFT_ERROR << 16;
1861 dev_warn(&h->pdev->dev,
1862 "cp %p had HP SSD Smart Path error\n", cp);
1863 break;
1864 default:
1865 cmd->result = DID_ERROR << 16;
1866 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1867 cp, ei->CommandStatus);
1868 }
1869 cmd_free(h, cp);
1870 cmd->scsi_done(cmd);
1871 }
1872
1873 static void hpsa_pci_unmap(struct pci_dev *pdev,
1874 struct CommandList *c, int sg_used, int data_direction)
1875 {
1876 int i;
1877
1878 for (i = 0; i < sg_used; i++)
1879 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1880 le32_to_cpu(c->SG[i].Len),
1881 data_direction);
1882 }
1883
1884 static int hpsa_map_one(struct pci_dev *pdev,
1885 struct CommandList *cp,
1886 unsigned char *buf,
1887 size_t buflen,
1888 int data_direction)
1889 {
1890 u64 addr64;
1891
1892 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1893 cp->Header.SGList = 0;
1894 cp->Header.SGTotal = cpu_to_le16(0);
1895 return 0;
1896 }
1897
1898 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1899 if (dma_mapping_error(&pdev->dev, addr64)) {
1900 /* Prevent subsequent unmap of something never mapped */
1901 cp->Header.SGList = 0;
1902 cp->Header.SGTotal = cpu_to_le16(0);
1903 return -1;
1904 }
1905 cp->SG[0].Addr = cpu_to_le64(addr64);
1906 cp->SG[0].Len = cpu_to_le32(buflen);
1907 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1908 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
1909 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1910 return 0;
1911 }
1912
1913 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1914 struct CommandList *c)
1915 {
1916 DECLARE_COMPLETION_ONSTACK(wait);
1917
1918 c->waiting = &wait;
1919 enqueue_cmd_and_start_io(h, c);
1920 wait_for_completion(&wait);
1921 }
1922
1923 static u32 lockup_detected(struct ctlr_info *h)
1924 {
1925 int cpu;
1926 u32 rc, *lockup_detected;
1927
1928 cpu = get_cpu();
1929 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1930 rc = *lockup_detected;
1931 put_cpu();
1932 return rc;
1933 }
1934
1935 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1936 struct CommandList *c)
1937 {
1938 /* If controller lockup detected, fake a hardware error. */
1939 if (unlikely(lockup_detected(h)))
1940 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1941 else
1942 hpsa_scsi_do_simple_cmd_core(h, c);
1943 }
1944
1945 #define MAX_DRIVER_CMD_RETRIES 25
1946 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1947 struct CommandList *c, int data_direction)
1948 {
1949 int backoff_time = 10, retry_count = 0;
1950
1951 do {
1952 memset(c->err_info, 0, sizeof(*c->err_info));
1953 hpsa_scsi_do_simple_cmd_core(h, c);
1954 retry_count++;
1955 if (retry_count > 3) {
1956 msleep(backoff_time);
1957 if (backoff_time < 1000)
1958 backoff_time *= 2;
1959 }
1960 } while ((check_for_unit_attention(h, c) ||
1961 check_for_busy(h, c)) &&
1962 retry_count <= MAX_DRIVER_CMD_RETRIES);
1963 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1964 }
1965
1966 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1967 struct CommandList *c)
1968 {
1969 const u8 *cdb = c->Request.CDB;
1970 const u8 *lun = c->Header.LUN.LunAddrBytes;
1971
1972 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1973 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1974 txt, lun[0], lun[1], lun[2], lun[3],
1975 lun[4], lun[5], lun[6], lun[7],
1976 cdb[0], cdb[1], cdb[2], cdb[3],
1977 cdb[4], cdb[5], cdb[6], cdb[7],
1978 cdb[8], cdb[9], cdb[10], cdb[11],
1979 cdb[12], cdb[13], cdb[14], cdb[15]);
1980 }
1981
1982 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1983 struct CommandList *cp)
1984 {
1985 const struct ErrorInfo *ei = cp->err_info;
1986 struct device *d = &cp->h->pdev->dev;
1987 const u8 *sd = ei->SenseInfo;
1988
1989 switch (ei->CommandStatus) {
1990 case CMD_TARGET_STATUS:
1991 hpsa_print_cmd(h, "SCSI status", cp);
1992 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1993 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1994 sd[2] & 0x0f, sd[12], sd[13]);
1995 else
1996 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1997 if (ei->ScsiStatus == 0)
1998 dev_warn(d, "SCSI status is abnormally zero. "
1999 "(probably indicates selection timeout "
2000 "reported incorrectly due to a known "
2001 "firmware bug, circa July, 2001.)\n");
2002 break;
2003 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2004 break;
2005 case CMD_DATA_OVERRUN:
2006 hpsa_print_cmd(h, "overrun condition", cp);
2007 break;
2008 case CMD_INVALID: {
2009 /* controller unfortunately reports SCSI passthru's
2010 * to non-existent targets as invalid commands.
2011 */
2012 hpsa_print_cmd(h, "invalid command", cp);
2013 dev_warn(d, "probably means device no longer present\n");
2014 }
2015 break;
2016 case CMD_PROTOCOL_ERR:
2017 hpsa_print_cmd(h, "protocol error", cp);
2018 break;
2019 case CMD_HARDWARE_ERR:
2020 hpsa_print_cmd(h, "hardware error", cp);
2021 break;
2022 case CMD_CONNECTION_LOST:
2023 hpsa_print_cmd(h, "connection lost", cp);
2024 break;
2025 case CMD_ABORTED:
2026 hpsa_print_cmd(h, "aborted", cp);
2027 break;
2028 case CMD_ABORT_FAILED:
2029 hpsa_print_cmd(h, "abort failed", cp);
2030 break;
2031 case CMD_UNSOLICITED_ABORT:
2032 hpsa_print_cmd(h, "unsolicited abort", cp);
2033 break;
2034 case CMD_TIMEOUT:
2035 hpsa_print_cmd(h, "timed out", cp);
2036 break;
2037 case CMD_UNABORTABLE:
2038 hpsa_print_cmd(h, "unabortable", cp);
2039 break;
2040 default:
2041 hpsa_print_cmd(h, "unknown status", cp);
2042 dev_warn(d, "Unknown command status %x\n",
2043 ei->CommandStatus);
2044 }
2045 }
2046
2047 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2048 u16 page, unsigned char *buf,
2049 unsigned char bufsize)
2050 {
2051 int rc = IO_OK;
2052 struct CommandList *c;
2053 struct ErrorInfo *ei;
2054
2055 c = cmd_special_alloc(h);
2056
2057 if (c == NULL) { /* trouble... */
2058 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2059 return -ENOMEM;
2060 }
2061
2062 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2063 page, scsi3addr, TYPE_CMD)) {
2064 rc = -1;
2065 goto out;
2066 }
2067 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2068 ei = c->err_info;
2069 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2070 hpsa_scsi_interpret_error(h, c);
2071 rc = -1;
2072 }
2073 out:
2074 cmd_special_free(h, c);
2075 return rc;
2076 }
2077
2078 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2079 unsigned char *scsi3addr, unsigned char page,
2080 struct bmic_controller_parameters *buf, size_t bufsize)
2081 {
2082 int rc = IO_OK;
2083 struct CommandList *c;
2084 struct ErrorInfo *ei;
2085
2086 c = cmd_special_alloc(h);
2087
2088 if (c == NULL) { /* trouble... */
2089 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2090 return -ENOMEM;
2091 }
2092
2093 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2094 page, scsi3addr, TYPE_CMD)) {
2095 rc = -1;
2096 goto out;
2097 }
2098 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2099 ei = c->err_info;
2100 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2101 hpsa_scsi_interpret_error(h, c);
2102 rc = -1;
2103 }
2104 out:
2105 cmd_special_free(h, c);
2106 return rc;
2107 }
2108
2109 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2110 u8 reset_type)
2111 {
2112 int rc = IO_OK;
2113 struct CommandList *c;
2114 struct ErrorInfo *ei;
2115
2116 c = cmd_special_alloc(h);
2117
2118 if (c == NULL) { /* trouble... */
2119 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2120 return -ENOMEM;
2121 }
2122
2123 /* fill_cmd can't fail here, no data buffer to map. */
2124 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2125 scsi3addr, TYPE_MSG);
2126 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2127 hpsa_scsi_do_simple_cmd_core(h, c);
2128 /* no unmap needed here because no data xfer. */
2129
2130 ei = c->err_info;
2131 if (ei->CommandStatus != 0) {
2132 hpsa_scsi_interpret_error(h, c);
2133 rc = -1;
2134 }
2135 cmd_special_free(h, c);
2136 return rc;
2137 }
2138
2139 static void hpsa_get_raid_level(struct ctlr_info *h,
2140 unsigned char *scsi3addr, unsigned char *raid_level)
2141 {
2142 int rc;
2143 unsigned char *buf;
2144
2145 *raid_level = RAID_UNKNOWN;
2146 buf = kzalloc(64, GFP_KERNEL);
2147 if (!buf)
2148 return;
2149 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2150 if (rc == 0)
2151 *raid_level = buf[8];
2152 if (*raid_level > RAID_UNKNOWN)
2153 *raid_level = RAID_UNKNOWN;
2154 kfree(buf);
2155 return;
2156 }
2157
2158 #define HPSA_MAP_DEBUG
2159 #ifdef HPSA_MAP_DEBUG
2160 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2161 struct raid_map_data *map_buff)
2162 {
2163 struct raid_map_disk_data *dd = &map_buff->data[0];
2164 int map, row, col;
2165 u16 map_cnt, row_cnt, disks_per_row;
2166
2167 if (rc != 0)
2168 return;
2169
2170 /* Show details only if debugging has been activated. */
2171 if (h->raid_offload_debug < 2)
2172 return;
2173
2174 dev_info(&h->pdev->dev, "structure_size = %u\n",
2175 le32_to_cpu(map_buff->structure_size));
2176 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2177 le32_to_cpu(map_buff->volume_blk_size));
2178 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2179 le64_to_cpu(map_buff->volume_blk_cnt));
2180 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2181 map_buff->phys_blk_shift);
2182 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2183 map_buff->parity_rotation_shift);
2184 dev_info(&h->pdev->dev, "strip_size = %u\n",
2185 le16_to_cpu(map_buff->strip_size));
2186 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2187 le64_to_cpu(map_buff->disk_starting_blk));
2188 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2189 le64_to_cpu(map_buff->disk_blk_cnt));
2190 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2191 le16_to_cpu(map_buff->data_disks_per_row));
2192 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2193 le16_to_cpu(map_buff->metadata_disks_per_row));
2194 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2195 le16_to_cpu(map_buff->row_cnt));
2196 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2197 le16_to_cpu(map_buff->layout_map_count));
2198 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2199 le16_to_cpu(map_buff->flags));
2200 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2201 le16_to_cpu(map_buff->flags) &
2202 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2203 dev_info(&h->pdev->dev, "dekindex = %u\n",
2204 le16_to_cpu(map_buff->dekindex));
2205 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2206 for (map = 0; map < map_cnt; map++) {
2207 dev_info(&h->pdev->dev, "Map%u:\n", map);
2208 row_cnt = le16_to_cpu(map_buff->row_cnt);
2209 for (row = 0; row < row_cnt; row++) {
2210 dev_info(&h->pdev->dev, " Row%u:\n", row);
2211 disks_per_row =
2212 le16_to_cpu(map_buff->data_disks_per_row);
2213 for (col = 0; col < disks_per_row; col++, dd++)
2214 dev_info(&h->pdev->dev,
2215 " D%02u: h=0x%04x xor=%u,%u\n",
2216 col, dd->ioaccel_handle,
2217 dd->xor_mult[0], dd->xor_mult[1]);
2218 disks_per_row =
2219 le16_to_cpu(map_buff->metadata_disks_per_row);
2220 for (col = 0; col < disks_per_row; col++, dd++)
2221 dev_info(&h->pdev->dev,
2222 " M%02u: h=0x%04x xor=%u,%u\n",
2223 col, dd->ioaccel_handle,
2224 dd->xor_mult[0], dd->xor_mult[1]);
2225 }
2226 }
2227 }
2228 #else
2229 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2230 __attribute__((unused)) int rc,
2231 __attribute__((unused)) struct raid_map_data *map_buff)
2232 {
2233 }
2234 #endif
2235
2236 static int hpsa_get_raid_map(struct ctlr_info *h,
2237 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2238 {
2239 int rc = 0;
2240 struct CommandList *c;
2241 struct ErrorInfo *ei;
2242
2243 c = cmd_special_alloc(h);
2244 if (c == NULL) {
2245 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2246 return -ENOMEM;
2247 }
2248 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2249 sizeof(this_device->raid_map), 0,
2250 scsi3addr, TYPE_CMD)) {
2251 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2252 cmd_special_free(h, c);
2253 return -ENOMEM;
2254 }
2255 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2256 ei = c->err_info;
2257 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2258 hpsa_scsi_interpret_error(h, c);
2259 cmd_special_free(h, c);
2260 return -1;
2261 }
2262 cmd_special_free(h, c);
2263
2264 /* @todo in the future, dynamically allocate RAID map memory */
2265 if (le32_to_cpu(this_device->raid_map.structure_size) >
2266 sizeof(this_device->raid_map)) {
2267 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2268 rc = -1;
2269 }
2270 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2271 return rc;
2272 }
2273
2274 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2275 unsigned char scsi3addr[], u8 page)
2276 {
2277 int rc;
2278 int i;
2279 int pages;
2280 unsigned char *buf, bufsize;
2281
2282 buf = kzalloc(256, GFP_KERNEL);
2283 if (!buf)
2284 return 0;
2285
2286 /* Get the size of the page list first */
2287 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2288 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2289 buf, HPSA_VPD_HEADER_SZ);
2290 if (rc != 0)
2291 goto exit_unsupported;
2292 pages = buf[3];
2293 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2294 bufsize = pages + HPSA_VPD_HEADER_SZ;
2295 else
2296 bufsize = 255;
2297
2298 /* Get the whole VPD page list */
2299 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2300 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2301 buf, bufsize);
2302 if (rc != 0)
2303 goto exit_unsupported;
2304
2305 pages = buf[3];
2306 for (i = 1; i <= pages; i++)
2307 if (buf[3 + i] == page)
2308 goto exit_supported;
2309 exit_unsupported:
2310 kfree(buf);
2311 return 0;
2312 exit_supported:
2313 kfree(buf);
2314 return 1;
2315 }
2316
2317 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2318 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2319 {
2320 int rc;
2321 unsigned char *buf;
2322 u8 ioaccel_status;
2323
2324 this_device->offload_config = 0;
2325 this_device->offload_enabled = 0;
2326
2327 buf = kzalloc(64, GFP_KERNEL);
2328 if (!buf)
2329 return;
2330 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2331 goto out;
2332 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2333 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2334 if (rc != 0)
2335 goto out;
2336
2337 #define IOACCEL_STATUS_BYTE 4
2338 #define OFFLOAD_CONFIGURED_BIT 0x01
2339 #define OFFLOAD_ENABLED_BIT 0x02
2340 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2341 this_device->offload_config =
2342 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2343 if (this_device->offload_config) {
2344 this_device->offload_enabled =
2345 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2346 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2347 this_device->offload_enabled = 0;
2348 }
2349 out:
2350 kfree(buf);
2351 return;
2352 }
2353
2354 /* Get the device id from inquiry page 0x83 */
2355 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2356 unsigned char *device_id, int buflen)
2357 {
2358 int rc;
2359 unsigned char *buf;
2360
2361 if (buflen > 16)
2362 buflen = 16;
2363 buf = kzalloc(64, GFP_KERNEL);
2364 if (!buf)
2365 return -ENOMEM;
2366 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2367 if (rc == 0)
2368 memcpy(device_id, &buf[8], buflen);
2369 kfree(buf);
2370 return rc != 0;
2371 }
2372
2373 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2374 struct ReportLUNdata *buf, int bufsize,
2375 int extended_response)
2376 {
2377 int rc = IO_OK;
2378 struct CommandList *c;
2379 unsigned char scsi3addr[8];
2380 struct ErrorInfo *ei;
2381
2382 c = cmd_special_alloc(h);
2383 if (c == NULL) { /* trouble... */
2384 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2385 return -1;
2386 }
2387 /* address the controller */
2388 memset(scsi3addr, 0, sizeof(scsi3addr));
2389 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2390 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2391 rc = -1;
2392 goto out;
2393 }
2394 if (extended_response)
2395 c->Request.CDB[1] = extended_response;
2396 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2397 ei = c->err_info;
2398 if (ei->CommandStatus != 0 &&
2399 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2400 hpsa_scsi_interpret_error(h, c);
2401 rc = -1;
2402 } else {
2403 if (buf->extended_response_flag != extended_response) {
2404 dev_err(&h->pdev->dev,
2405 "report luns requested format %u, got %u\n",
2406 extended_response,
2407 buf->extended_response_flag);
2408 rc = -1;
2409 }
2410 }
2411 out:
2412 cmd_special_free(h, c);
2413 return rc;
2414 }
2415
2416 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2417 struct ReportLUNdata *buf,
2418 int bufsize, int extended_response)
2419 {
2420 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2421 }
2422
2423 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2424 struct ReportLUNdata *buf, int bufsize)
2425 {
2426 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2427 }
2428
2429 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2430 int bus, int target, int lun)
2431 {
2432 device->bus = bus;
2433 device->target = target;
2434 device->lun = lun;
2435 }
2436
2437 /* Use VPD inquiry to get details of volume status */
2438 static int hpsa_get_volume_status(struct ctlr_info *h,
2439 unsigned char scsi3addr[])
2440 {
2441 int rc;
2442 int status;
2443 int size;
2444 unsigned char *buf;
2445
2446 buf = kzalloc(64, GFP_KERNEL);
2447 if (!buf)
2448 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2449
2450 /* Does controller have VPD for logical volume status? */
2451 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2452 goto exit_failed;
2453
2454 /* Get the size of the VPD return buffer */
2455 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2456 buf, HPSA_VPD_HEADER_SZ);
2457 if (rc != 0)
2458 goto exit_failed;
2459 size = buf[3];
2460
2461 /* Now get the whole VPD buffer */
2462 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2463 buf, size + HPSA_VPD_HEADER_SZ);
2464 if (rc != 0)
2465 goto exit_failed;
2466 status = buf[4]; /* status byte */
2467
2468 kfree(buf);
2469 return status;
2470 exit_failed:
2471 kfree(buf);
2472 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2473 }
2474
2475 /* Determine offline status of a volume.
2476 * Return either:
2477 * 0 (not offline)
2478 * 0xff (offline for unknown reasons)
2479 * # (integer code indicating one of several NOT READY states
2480 * describing why a volume is to be kept offline)
2481 */
2482 static int hpsa_volume_offline(struct ctlr_info *h,
2483 unsigned char scsi3addr[])
2484 {
2485 struct CommandList *c;
2486 unsigned char *sense, sense_key, asc, ascq;
2487 int ldstat = 0;
2488 u16 cmd_status;
2489 u8 scsi_status;
2490 #define ASC_LUN_NOT_READY 0x04
2491 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2492 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2493
2494 c = cmd_alloc(h);
2495 if (!c)
2496 return 0;
2497 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2498 hpsa_scsi_do_simple_cmd_core(h, c);
2499 sense = c->err_info->SenseInfo;
2500 sense_key = sense[2];
2501 asc = sense[12];
2502 ascq = sense[13];
2503 cmd_status = c->err_info->CommandStatus;
2504 scsi_status = c->err_info->ScsiStatus;
2505 cmd_free(h, c);
2506 /* Is the volume 'not ready'? */
2507 if (cmd_status != CMD_TARGET_STATUS ||
2508 scsi_status != SAM_STAT_CHECK_CONDITION ||
2509 sense_key != NOT_READY ||
2510 asc != ASC_LUN_NOT_READY) {
2511 return 0;
2512 }
2513
2514 /* Determine the reason for not ready state */
2515 ldstat = hpsa_get_volume_status(h, scsi3addr);
2516
2517 /* Keep volume offline in certain cases: */
2518 switch (ldstat) {
2519 case HPSA_LV_UNDERGOING_ERASE:
2520 case HPSA_LV_UNDERGOING_RPI:
2521 case HPSA_LV_PENDING_RPI:
2522 case HPSA_LV_ENCRYPTED_NO_KEY:
2523 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2524 case HPSA_LV_UNDERGOING_ENCRYPTION:
2525 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2526 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2527 return ldstat;
2528 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2529 /* If VPD status page isn't available,
2530 * use ASC/ASCQ to determine state
2531 */
2532 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2533 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2534 return ldstat;
2535 break;
2536 default:
2537 break;
2538 }
2539 return 0;
2540 }
2541
2542 static int hpsa_update_device_info(struct ctlr_info *h,
2543 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2544 unsigned char *is_OBDR_device)
2545 {
2546
2547 #define OBDR_SIG_OFFSET 43
2548 #define OBDR_TAPE_SIG "$DR-10"
2549 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2550 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2551
2552 unsigned char *inq_buff;
2553 unsigned char *obdr_sig;
2554
2555 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2556 if (!inq_buff)
2557 goto bail_out;
2558
2559 /* Do an inquiry to the device to see what it is. */
2560 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2561 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2562 /* Inquiry failed (msg printed already) */
2563 dev_err(&h->pdev->dev,
2564 "hpsa_update_device_info: inquiry failed\n");
2565 goto bail_out;
2566 }
2567
2568 this_device->devtype = (inq_buff[0] & 0x1f);
2569 memcpy(this_device->scsi3addr, scsi3addr, 8);
2570 memcpy(this_device->vendor, &inq_buff[8],
2571 sizeof(this_device->vendor));
2572 memcpy(this_device->model, &inq_buff[16],
2573 sizeof(this_device->model));
2574 memset(this_device->device_id, 0,
2575 sizeof(this_device->device_id));
2576 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2577 sizeof(this_device->device_id));
2578
2579 if (this_device->devtype == TYPE_DISK &&
2580 is_logical_dev_addr_mode(scsi3addr)) {
2581 int volume_offline;
2582
2583 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2584 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2585 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2586 volume_offline = hpsa_volume_offline(h, scsi3addr);
2587 if (volume_offline < 0 || volume_offline > 0xff)
2588 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2589 this_device->volume_offline = volume_offline & 0xff;
2590 } else {
2591 this_device->raid_level = RAID_UNKNOWN;
2592 this_device->offload_config = 0;
2593 this_device->offload_enabled = 0;
2594 this_device->volume_offline = 0;
2595 }
2596
2597 if (is_OBDR_device) {
2598 /* See if this is a One-Button-Disaster-Recovery device
2599 * by looking for "$DR-10" at offset 43 in inquiry data.
2600 */
2601 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2602 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2603 strncmp(obdr_sig, OBDR_TAPE_SIG,
2604 OBDR_SIG_LEN) == 0);
2605 }
2606
2607 kfree(inq_buff);
2608 return 0;
2609
2610 bail_out:
2611 kfree(inq_buff);
2612 return 1;
2613 }
2614
2615 static unsigned char *ext_target_model[] = {
2616 "MSA2012",
2617 "MSA2024",
2618 "MSA2312",
2619 "MSA2324",
2620 "P2000 G3 SAS",
2621 "MSA 2040 SAS",
2622 NULL,
2623 };
2624
2625 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2626 {
2627 int i;
2628
2629 for (i = 0; ext_target_model[i]; i++)
2630 if (strncmp(device->model, ext_target_model[i],
2631 strlen(ext_target_model[i])) == 0)
2632 return 1;
2633 return 0;
2634 }
2635
2636 /* Helper function to assign bus, target, lun mapping of devices.
2637 * Puts non-external target logical volumes on bus 0, external target logical
2638 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2639 * Logical drive target and lun are assigned at this time, but
2640 * physical device lun and target assignment are deferred (assigned
2641 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2642 */
2643 static void figure_bus_target_lun(struct ctlr_info *h,
2644 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2645 {
2646 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2647
2648 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2649 /* physical device, target and lun filled in later */
2650 if (is_hba_lunid(lunaddrbytes))
2651 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2652 else
2653 /* defer target, lun assignment for physical devices */
2654 hpsa_set_bus_target_lun(device, 2, -1, -1);
2655 return;
2656 }
2657 /* It's a logical device */
2658 if (is_ext_target(h, device)) {
2659 /* external target way, put logicals on bus 1
2660 * and match target/lun numbers box
2661 * reports, other smart array, bus 0, target 0, match lunid
2662 */
2663 hpsa_set_bus_target_lun(device,
2664 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2665 return;
2666 }
2667 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2668 }
2669
2670 /*
2671 * If there is no lun 0 on a target, linux won't find any devices.
2672 * For the external targets (arrays), we have to manually detect the enclosure
2673 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2674 * it for some reason. *tmpdevice is the target we're adding,
2675 * this_device is a pointer into the current element of currentsd[]
2676 * that we're building up in update_scsi_devices(), below.
2677 * lunzerobits is a bitmap that tracks which targets already have a
2678 * lun 0 assigned.
2679 * Returns 1 if an enclosure was added, 0 if not.
2680 */
2681 static int add_ext_target_dev(struct ctlr_info *h,
2682 struct hpsa_scsi_dev_t *tmpdevice,
2683 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2684 unsigned long lunzerobits[], int *n_ext_target_devs)
2685 {
2686 unsigned char scsi3addr[8];
2687
2688 if (test_bit(tmpdevice->target, lunzerobits))
2689 return 0; /* There is already a lun 0 on this target. */
2690
2691 if (!is_logical_dev_addr_mode(lunaddrbytes))
2692 return 0; /* It's the logical targets that may lack lun 0. */
2693
2694 if (!is_ext_target(h, tmpdevice))
2695 return 0; /* Only external target devices have this problem. */
2696
2697 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2698 return 0;
2699
2700 memset(scsi3addr, 0, 8);
2701 scsi3addr[3] = tmpdevice->target;
2702 if (is_hba_lunid(scsi3addr))
2703 return 0; /* Don't add the RAID controller here. */
2704
2705 if (is_scsi_rev_5(h))
2706 return 0; /* p1210m doesn't need to do this. */
2707
2708 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2709 dev_warn(&h->pdev->dev, "Maximum number of external "
2710 "target devices exceeded. Check your hardware "
2711 "configuration.");
2712 return 0;
2713 }
2714
2715 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2716 return 0;
2717 (*n_ext_target_devs)++;
2718 hpsa_set_bus_target_lun(this_device,
2719 tmpdevice->bus, tmpdevice->target, 0);
2720 set_bit(tmpdevice->target, lunzerobits);
2721 return 1;
2722 }
2723
2724 /*
2725 * Get address of physical disk used for an ioaccel2 mode command:
2726 * 1. Extract ioaccel2 handle from the command.
2727 * 2. Find a matching ioaccel2 handle from list of physical disks.
2728 * 3. Return:
2729 * 1 and set scsi3addr to address of matching physical
2730 * 0 if no matching physical disk was found.
2731 */
2732 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2733 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2734 {
2735 struct ReportExtendedLUNdata *physicals = NULL;
2736 int responsesize = 24; /* size of physical extended response */
2737 int extended = 2; /* flag forces reporting 'other dev info'. */
2738 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2739 u32 nphysicals = 0; /* number of reported physical devs */
2740 int found = 0; /* found match (1) or not (0) */
2741 u32 find; /* handle we need to match */
2742 int i;
2743 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2744 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2745 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2746 __le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2747 __le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2748
2749 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2750 return 0; /* no match */
2751
2752 /* point to the ioaccel2 device handle */
2753 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2754 if (c2a == NULL)
2755 return 0; /* no match */
2756
2757 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2758 if (scmd == NULL)
2759 return 0; /* no match */
2760
2761 d = scmd->device->hostdata;
2762 if (d == NULL)
2763 return 0; /* no match */
2764
2765 it_nexus = cpu_to_le32(d->ioaccel_handle);
2766 scsi_nexus = c2a->scsi_nexus;
2767 find = le32_to_cpu(c2a->scsi_nexus);
2768
2769 if (h->raid_offload_debug > 0)
2770 dev_info(&h->pdev->dev,
2771 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2772 __func__, scsi_nexus,
2773 d->device_id[0], d->device_id[1], d->device_id[2],
2774 d->device_id[3], d->device_id[4], d->device_id[5],
2775 d->device_id[6], d->device_id[7], d->device_id[8],
2776 d->device_id[9], d->device_id[10], d->device_id[11],
2777 d->device_id[12], d->device_id[13], d->device_id[14],
2778 d->device_id[15]);
2779
2780 /* Get the list of physical devices */
2781 physicals = kzalloc(reportsize, GFP_KERNEL);
2782 if (physicals == NULL)
2783 return 0;
2784 if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2785 reportsize, extended)) {
2786 dev_err(&h->pdev->dev,
2787 "Can't lookup %s device handle: report physical LUNs failed.\n",
2788 "HP SSD Smart Path");
2789 kfree(physicals);
2790 return 0;
2791 }
2792 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2793 responsesize;
2794
2795 /* find ioaccel2 handle in list of physicals: */
2796 for (i = 0; i < nphysicals; i++) {
2797 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2798
2799 /* handle is in bytes 28-31 of each lun */
2800 if (entry->ioaccel_handle != find)
2801 continue; /* didn't match */
2802 found = 1;
2803 memcpy(scsi3addr, entry->lunid, 8);
2804 if (h->raid_offload_debug > 0)
2805 dev_info(&h->pdev->dev,
2806 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2807 __func__, find,
2808 entry->ioaccel_handle, scsi3addr);
2809 break; /* found it */
2810 }
2811
2812 kfree(physicals);
2813 if (found)
2814 return 1;
2815 else
2816 return 0;
2817
2818 }
2819 /*
2820 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2821 * logdev. The number of luns in physdev and logdev are returned in
2822 * *nphysicals and *nlogicals, respectively.
2823 * Returns 0 on success, -1 otherwise.
2824 */
2825 static int hpsa_gather_lun_info(struct ctlr_info *h,
2826 int reportphyslunsize, int reportloglunsize,
2827 struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2828 struct ReportLUNdata *logdev, u32 *nlogicals)
2829 {
2830 int physical_entry_size = 8;
2831
2832 *physical_mode = 0;
2833
2834 /* For I/O accelerator mode we need to read physical device handles */
2835 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2836 h->transMethod & CFGTBL_Trans_io_accel2) {
2837 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2838 physical_entry_size = 24;
2839 }
2840 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2841 *physical_mode)) {
2842 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2843 return -1;
2844 }
2845 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2846 physical_entry_size;
2847 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2848 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2849 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2850 *nphysicals - HPSA_MAX_PHYS_LUN);
2851 *nphysicals = HPSA_MAX_PHYS_LUN;
2852 }
2853 if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2854 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2855 return -1;
2856 }
2857 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2858 /* Reject Logicals in excess of our max capability. */
2859 if (*nlogicals > HPSA_MAX_LUN) {
2860 dev_warn(&h->pdev->dev,
2861 "maximum logical LUNs (%d) exceeded. "
2862 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2863 *nlogicals - HPSA_MAX_LUN);
2864 *nlogicals = HPSA_MAX_LUN;
2865 }
2866 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2867 dev_warn(&h->pdev->dev,
2868 "maximum logical + physical LUNs (%d) exceeded. "
2869 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2870 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2871 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2872 }
2873 return 0;
2874 }
2875
2876 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2877 int i, int nphysicals, int nlogicals,
2878 struct ReportExtendedLUNdata *physdev_list,
2879 struct ReportLUNdata *logdev_list)
2880 {
2881 /* Helper function, figure out where the LUN ID info is coming from
2882 * given index i, lists of physical and logical devices, where in
2883 * the list the raid controller is supposed to appear (first or last)
2884 */
2885
2886 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2887 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2888
2889 if (i == raid_ctlr_position)
2890 return RAID_CTLR_LUNID;
2891
2892 if (i < logicals_start)
2893 return &physdev_list->LUN[i -
2894 (raid_ctlr_position == 0)].lunid[0];
2895
2896 if (i < last_device)
2897 return &logdev_list->LUN[i - nphysicals -
2898 (raid_ctlr_position == 0)][0];
2899 BUG();
2900 return NULL;
2901 }
2902
2903 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2904 {
2905 int rc;
2906 int hba_mode_enabled;
2907 struct bmic_controller_parameters *ctlr_params;
2908 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2909 GFP_KERNEL);
2910
2911 if (!ctlr_params)
2912 return -ENOMEM;
2913 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2914 sizeof(struct bmic_controller_parameters));
2915 if (rc) {
2916 kfree(ctlr_params);
2917 return rc;
2918 }
2919
2920 hba_mode_enabled =
2921 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2922 kfree(ctlr_params);
2923 return hba_mode_enabled;
2924 }
2925
2926 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2927 {
2928 /* the idea here is we could get notified
2929 * that some devices have changed, so we do a report
2930 * physical luns and report logical luns cmd, and adjust
2931 * our list of devices accordingly.
2932 *
2933 * The scsi3addr's of devices won't change so long as the
2934 * adapter is not reset. That means we can rescan and
2935 * tell which devices we already know about, vs. new
2936 * devices, vs. disappearing devices.
2937 */
2938 struct ReportExtendedLUNdata *physdev_list = NULL;
2939 struct ReportLUNdata *logdev_list = NULL;
2940 u32 nphysicals = 0;
2941 u32 nlogicals = 0;
2942 int physical_mode = 0;
2943 u32 ndev_allocated = 0;
2944 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2945 int ncurrent = 0;
2946 int i, n_ext_target_devs, ndevs_to_allocate;
2947 int raid_ctlr_position;
2948 int rescan_hba_mode;
2949 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2950
2951 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2952 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2953 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2954 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2955
2956 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2957 dev_err(&h->pdev->dev, "out of memory\n");
2958 goto out;
2959 }
2960 memset(lunzerobits, 0, sizeof(lunzerobits));
2961
2962 rescan_hba_mode = hpsa_hba_mode_enabled(h);
2963 if (rescan_hba_mode < 0)
2964 goto out;
2965
2966 if (!h->hba_mode_enabled && rescan_hba_mode)
2967 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2968 else if (h->hba_mode_enabled && !rescan_hba_mode)
2969 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2970
2971 h->hba_mode_enabled = rescan_hba_mode;
2972
2973 if (hpsa_gather_lun_info(h,
2974 sizeof(*physdev_list), sizeof(*logdev_list),
2975 (struct ReportLUNdata *) physdev_list, &nphysicals,
2976 &physical_mode, logdev_list, &nlogicals))
2977 goto out;
2978
2979 /* We might see up to the maximum number of logical and physical disks
2980 * plus external target devices, and a device for the local RAID
2981 * controller.
2982 */
2983 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2984
2985 /* Allocate the per device structures */
2986 for (i = 0; i < ndevs_to_allocate; i++) {
2987 if (i >= HPSA_MAX_DEVICES) {
2988 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2989 " %d devices ignored.\n", HPSA_MAX_DEVICES,
2990 ndevs_to_allocate - HPSA_MAX_DEVICES);
2991 break;
2992 }
2993
2994 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2995 if (!currentsd[i]) {
2996 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2997 __FILE__, __LINE__);
2998 goto out;
2999 }
3000 ndev_allocated++;
3001 }
3002
3003 if (is_scsi_rev_5(h))
3004 raid_ctlr_position = 0;
3005 else
3006 raid_ctlr_position = nphysicals + nlogicals;
3007
3008 /* adjust our table of devices */
3009 n_ext_target_devs = 0;
3010 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3011 u8 *lunaddrbytes, is_OBDR = 0;
3012
3013 /* Figure out where the LUN ID info is coming from */
3014 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3015 i, nphysicals, nlogicals, physdev_list, logdev_list);
3016 /* skip masked physical devices. */
3017 if (lunaddrbytes[3] & 0xC0 &&
3018 i < nphysicals + (raid_ctlr_position == 0))
3019 continue;
3020
3021 /* Get device type, vendor, model, device id */
3022 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3023 &is_OBDR))
3024 continue; /* skip it if we can't talk to it. */
3025 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3026 this_device = currentsd[ncurrent];
3027
3028 /*
3029 * For external target devices, we have to insert a LUN 0 which
3030 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3031 * is nonetheless an enclosure device there. We have to
3032 * present that otherwise linux won't find anything if
3033 * there is no lun 0.
3034 */
3035 if (add_ext_target_dev(h, tmpdevice, this_device,
3036 lunaddrbytes, lunzerobits,
3037 &n_ext_target_devs)) {
3038 ncurrent++;
3039 this_device = currentsd[ncurrent];
3040 }
3041
3042 *this_device = *tmpdevice;
3043
3044 switch (this_device->devtype) {
3045 case TYPE_ROM:
3046 /* We don't *really* support actual CD-ROM devices,
3047 * just "One Button Disaster Recovery" tape drive
3048 * which temporarily pretends to be a CD-ROM drive.
3049 * So we check that the device is really an OBDR tape
3050 * device by checking for "$DR-10" in bytes 43-48 of
3051 * the inquiry data.
3052 */
3053 if (is_OBDR)
3054 ncurrent++;
3055 break;
3056 case TYPE_DISK:
3057 if (h->hba_mode_enabled) {
3058 /* never use raid mapper in HBA mode */
3059 this_device->offload_enabled = 0;
3060 ncurrent++;
3061 break;
3062 } else if (h->acciopath_status) {
3063 if (i >= nphysicals) {
3064 ncurrent++;
3065 break;
3066 }
3067 } else {
3068 if (i < nphysicals)
3069 break;
3070 ncurrent++;
3071 break;
3072 }
3073 if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3074 memcpy(&this_device->ioaccel_handle,
3075 &lunaddrbytes[20],
3076 sizeof(this_device->ioaccel_handle));
3077 ncurrent++;
3078 }
3079 break;
3080 case TYPE_TAPE:
3081 case TYPE_MEDIUM_CHANGER:
3082 ncurrent++;
3083 break;
3084 case TYPE_RAID:
3085 /* Only present the Smartarray HBA as a RAID controller.
3086 * If it's a RAID controller other than the HBA itself
3087 * (an external RAID controller, MSA500 or similar)
3088 * don't present it.
3089 */
3090 if (!is_hba_lunid(lunaddrbytes))
3091 break;
3092 ncurrent++;
3093 break;
3094 default:
3095 break;
3096 }
3097 if (ncurrent >= HPSA_MAX_DEVICES)
3098 break;
3099 }
3100 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3101 out:
3102 kfree(tmpdevice);
3103 for (i = 0; i < ndev_allocated; i++)
3104 kfree(currentsd[i]);
3105 kfree(currentsd);
3106 kfree(physdev_list);
3107 kfree(logdev_list);
3108 }
3109
3110 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3111 * dma mapping and fills in the scatter gather entries of the
3112 * hpsa command, cp.
3113 */
3114 static int hpsa_scatter_gather(struct ctlr_info *h,
3115 struct CommandList *cp,
3116 struct scsi_cmnd *cmd)
3117 {
3118 unsigned int len;
3119 struct scatterlist *sg;
3120 u64 addr64;
3121 int use_sg, i, sg_index, chained;
3122 struct SGDescriptor *curr_sg;
3123
3124 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3125
3126 use_sg = scsi_dma_map(cmd);
3127 if (use_sg < 0)
3128 return use_sg;
3129
3130 if (!use_sg)
3131 goto sglist_finished;
3132
3133 curr_sg = cp->SG;
3134 chained = 0;
3135 sg_index = 0;
3136 scsi_for_each_sg(cmd, sg, use_sg, i) {
3137 if (i == h->max_cmd_sg_entries - 1 &&
3138 use_sg > h->max_cmd_sg_entries) {
3139 chained = 1;
3140 curr_sg = h->cmd_sg_list[cp->cmdindex];
3141 sg_index = 0;
3142 }
3143 addr64 = (u64) sg_dma_address(sg);
3144 len = sg_dma_len(sg);
3145 curr_sg->Addr = cpu_to_le64(addr64);
3146 curr_sg->Len = cpu_to_le32(len);
3147 curr_sg->Ext = cpu_to_le32(0);
3148 curr_sg++;
3149 }
3150 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3151
3152 if (use_sg + chained > h->maxSG)
3153 h->maxSG = use_sg + chained;
3154
3155 if (chained) {
3156 cp->Header.SGList = h->max_cmd_sg_entries;
3157 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3158 if (hpsa_map_sg_chain_block(h, cp)) {
3159 scsi_dma_unmap(cmd);
3160 return -1;
3161 }
3162 return 0;
3163 }
3164
3165 sglist_finished:
3166
3167 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3168 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3169 return 0;
3170 }
3171
3172 #define IO_ACCEL_INELIGIBLE (1)
3173 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3174 {
3175 int is_write = 0;
3176 u32 block;
3177 u32 block_cnt;
3178
3179 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3180 switch (cdb[0]) {
3181 case WRITE_6:
3182 case WRITE_12:
3183 is_write = 1;
3184 case READ_6:
3185 case READ_12:
3186 if (*cdb_len == 6) {
3187 block = (((u32) cdb[2]) << 8) | cdb[3];
3188 block_cnt = cdb[4];
3189 } else {
3190 BUG_ON(*cdb_len != 12);
3191 block = (((u32) cdb[2]) << 24) |
3192 (((u32) cdb[3]) << 16) |
3193 (((u32) cdb[4]) << 8) |
3194 cdb[5];
3195 block_cnt =
3196 (((u32) cdb[6]) << 24) |
3197 (((u32) cdb[7]) << 16) |
3198 (((u32) cdb[8]) << 8) |
3199 cdb[9];
3200 }
3201 if (block_cnt > 0xffff)
3202 return IO_ACCEL_INELIGIBLE;
3203
3204 cdb[0] = is_write ? WRITE_10 : READ_10;
3205 cdb[1] = 0;
3206 cdb[2] = (u8) (block >> 24);
3207 cdb[3] = (u8) (block >> 16);
3208 cdb[4] = (u8) (block >> 8);
3209 cdb[5] = (u8) (block);
3210 cdb[6] = 0;
3211 cdb[7] = (u8) (block_cnt >> 8);
3212 cdb[8] = (u8) (block_cnt);
3213 cdb[9] = 0;
3214 *cdb_len = 10;
3215 break;
3216 }
3217 return 0;
3218 }
3219
3220 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3221 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3222 u8 *scsi3addr)
3223 {
3224 struct scsi_cmnd *cmd = c->scsi_cmd;
3225 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3226 unsigned int len;
3227 unsigned int total_len = 0;
3228 struct scatterlist *sg;
3229 u64 addr64;
3230 int use_sg, i;
3231 struct SGDescriptor *curr_sg;
3232 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3233
3234 /* TODO: implement chaining support */
3235 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3236 return IO_ACCEL_INELIGIBLE;
3237
3238 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3239
3240 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3241 return IO_ACCEL_INELIGIBLE;
3242
3243 c->cmd_type = CMD_IOACCEL1;
3244
3245 /* Adjust the DMA address to point to the accelerated command buffer */
3246 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3247 (c->cmdindex * sizeof(*cp));
3248 BUG_ON(c->busaddr & 0x0000007F);
3249
3250 use_sg = scsi_dma_map(cmd);
3251 if (use_sg < 0)
3252 return use_sg;
3253
3254 if (use_sg) {
3255 curr_sg = cp->SG;
3256 scsi_for_each_sg(cmd, sg, use_sg, i) {
3257 addr64 = (u64) sg_dma_address(sg);
3258 len = sg_dma_len(sg);
3259 total_len += len;
3260 curr_sg->Addr = cpu_to_le64(addr64);
3261 curr_sg->Len = cpu_to_le32(len);
3262 curr_sg->Ext = cpu_to_le32(0);
3263 curr_sg++;
3264 }
3265 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3266
3267 switch (cmd->sc_data_direction) {
3268 case DMA_TO_DEVICE:
3269 control |= IOACCEL1_CONTROL_DATA_OUT;
3270 break;
3271 case DMA_FROM_DEVICE:
3272 control |= IOACCEL1_CONTROL_DATA_IN;
3273 break;
3274 case DMA_NONE:
3275 control |= IOACCEL1_CONTROL_NODATAXFER;
3276 break;
3277 default:
3278 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3279 cmd->sc_data_direction);
3280 BUG();
3281 break;
3282 }
3283 } else {
3284 control |= IOACCEL1_CONTROL_NODATAXFER;
3285 }
3286
3287 c->Header.SGList = use_sg;
3288 /* Fill out the command structure to submit */
3289 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3290 cp->transfer_len = cpu_to_le32(total_len);
3291 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3292 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3293 cp->control = cpu_to_le32(control);
3294 memcpy(cp->CDB, cdb, cdb_len);
3295 memcpy(cp->CISS_LUN, scsi3addr, 8);
3296 /* Tag was already set at init time. */
3297 enqueue_cmd_and_start_io(h, c);
3298 return 0;
3299 }
3300
3301 /*
3302 * Queue a command directly to a device behind the controller using the
3303 * I/O accelerator path.
3304 */
3305 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3306 struct CommandList *c)
3307 {
3308 struct scsi_cmnd *cmd = c->scsi_cmd;
3309 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3310
3311 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3312 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3313 }
3314
3315 /*
3316 * Set encryption parameters for the ioaccel2 request
3317 */
3318 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3319 struct CommandList *c, struct io_accel2_cmd *cp)
3320 {
3321 struct scsi_cmnd *cmd = c->scsi_cmd;
3322 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3323 struct raid_map_data *map = &dev->raid_map;
3324 u64 first_block;
3325
3326 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3327
3328 /* Are we doing encryption on this device */
3329 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3330 return;
3331 /* Set the data encryption key index. */
3332 cp->dekindex = map->dekindex;
3333
3334 /* Set the encryption enable flag, encoded into direction field. */
3335 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3336
3337 /* Set encryption tweak values based on logical block address
3338 * If block size is 512, tweak value is LBA.
3339 * For other block sizes, tweak is (LBA * block size)/ 512)
3340 */
3341 switch (cmd->cmnd[0]) {
3342 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3343 case WRITE_6:
3344 case READ_6:
3345 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3346 break;
3347 case WRITE_10:
3348 case READ_10:
3349 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3350 case WRITE_12:
3351 case READ_12:
3352 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3353 break;
3354 case WRITE_16:
3355 case READ_16:
3356 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3357 break;
3358 default:
3359 dev_err(&h->pdev->dev,
3360 "ERROR: %s: size (0x%x) not supported for encryption\n",
3361 __func__, cmd->cmnd[0]);
3362 BUG();
3363 break;
3364 }
3365
3366 if (le32_to_cpu(map->volume_blk_size) != 512)
3367 first_block = first_block *
3368 le32_to_cpu(map->volume_blk_size)/512;
3369
3370 cp->tweak_lower = cpu_to_le32(first_block);
3371 cp->tweak_upper = cpu_to_le32(first_block >> 32);
3372 }
3373
3374 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3375 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3376 u8 *scsi3addr)
3377 {
3378 struct scsi_cmnd *cmd = c->scsi_cmd;
3379 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3380 struct ioaccel2_sg_element *curr_sg;
3381 int use_sg, i;
3382 struct scatterlist *sg;
3383 u64 addr64;
3384 u32 len;
3385 u32 total_len = 0;
3386
3387 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3388 return IO_ACCEL_INELIGIBLE;
3389
3390 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3391 return IO_ACCEL_INELIGIBLE;
3392 c->cmd_type = CMD_IOACCEL2;
3393 /* Adjust the DMA address to point to the accelerated command buffer */
3394 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3395 (c->cmdindex * sizeof(*cp));
3396 BUG_ON(c->busaddr & 0x0000007F);
3397
3398 memset(cp, 0, sizeof(*cp));
3399 cp->IU_type = IOACCEL2_IU_TYPE;
3400
3401 use_sg = scsi_dma_map(cmd);
3402 if (use_sg < 0)
3403 return use_sg;
3404
3405 if (use_sg) {
3406 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3407 curr_sg = cp->sg;
3408 scsi_for_each_sg(cmd, sg, use_sg, i) {
3409 addr64 = (u64) sg_dma_address(sg);
3410 len = sg_dma_len(sg);
3411 total_len += len;
3412 curr_sg->address = cpu_to_le64(addr64);
3413 curr_sg->length = cpu_to_le32(len);
3414 curr_sg->reserved[0] = 0;
3415 curr_sg->reserved[1] = 0;
3416 curr_sg->reserved[2] = 0;
3417 curr_sg->chain_indicator = 0;
3418 curr_sg++;
3419 }
3420
3421 switch (cmd->sc_data_direction) {
3422 case DMA_TO_DEVICE:
3423 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3424 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3425 break;
3426 case DMA_FROM_DEVICE:
3427 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3428 cp->direction |= IOACCEL2_DIR_DATA_IN;
3429 break;
3430 case DMA_NONE:
3431 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3432 cp->direction |= IOACCEL2_DIR_NO_DATA;
3433 break;
3434 default:
3435 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3436 cmd->sc_data_direction);
3437 BUG();
3438 break;
3439 }
3440 } else {
3441 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3442 cp->direction |= IOACCEL2_DIR_NO_DATA;
3443 }
3444
3445 /* Set encryption parameters, if necessary */
3446 set_encrypt_ioaccel2(h, c, cp);
3447
3448 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3449 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
3450 DIRECT_LOOKUP_BIT);
3451 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3452
3453 /* fill in sg elements */
3454 cp->sg_count = (u8) use_sg;
3455
3456 cp->data_len = cpu_to_le32(total_len);
3457 cp->err_ptr = cpu_to_le64(c->busaddr +
3458 offsetof(struct io_accel2_cmd, error_data));
3459 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3460
3461 enqueue_cmd_and_start_io(h, c);
3462 return 0;
3463 }
3464
3465 /*
3466 * Queue a command to the correct I/O accelerator path.
3467 */
3468 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3469 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3470 u8 *scsi3addr)
3471 {
3472 if (h->transMethod & CFGTBL_Trans_io_accel1)
3473 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3474 cdb, cdb_len, scsi3addr);
3475 else
3476 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3477 cdb, cdb_len, scsi3addr);
3478 }
3479
3480 static void raid_map_helper(struct raid_map_data *map,
3481 int offload_to_mirror, u32 *map_index, u32 *current_group)
3482 {
3483 if (offload_to_mirror == 0) {
3484 /* use physical disk in the first mirrored group. */
3485 *map_index %= le16_to_cpu(map->data_disks_per_row);
3486 return;
3487 }
3488 do {
3489 /* determine mirror group that *map_index indicates */
3490 *current_group = *map_index /
3491 le16_to_cpu(map->data_disks_per_row);
3492 if (offload_to_mirror == *current_group)
3493 continue;
3494 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3495 /* select map index from next group */
3496 *map_index += le16_to_cpu(map->data_disks_per_row);
3497 (*current_group)++;
3498 } else {
3499 /* select map index from first group */
3500 *map_index %= le16_to_cpu(map->data_disks_per_row);
3501 *current_group = 0;
3502 }
3503 } while (offload_to_mirror != *current_group);
3504 }
3505
3506 /*
3507 * Attempt to perform offload RAID mapping for a logical volume I/O.
3508 */
3509 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3510 struct CommandList *c)
3511 {
3512 struct scsi_cmnd *cmd = c->scsi_cmd;
3513 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3514 struct raid_map_data *map = &dev->raid_map;
3515 struct raid_map_disk_data *dd = &map->data[0];
3516 int is_write = 0;
3517 u32 map_index;
3518 u64 first_block, last_block;
3519 u32 block_cnt;
3520 u32 blocks_per_row;
3521 u64 first_row, last_row;
3522 u32 first_row_offset, last_row_offset;
3523 u32 first_column, last_column;
3524 u64 r0_first_row, r0_last_row;
3525 u32 r5or6_blocks_per_row;
3526 u64 r5or6_first_row, r5or6_last_row;
3527 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3528 u32 r5or6_first_column, r5or6_last_column;
3529 u32 total_disks_per_row;
3530 u32 stripesize;
3531 u32 first_group, last_group, current_group;
3532 u32 map_row;
3533 u32 disk_handle;
3534 u64 disk_block;
3535 u32 disk_block_cnt;
3536 u8 cdb[16];
3537 u8 cdb_len;
3538 u16 strip_size;
3539 #if BITS_PER_LONG == 32
3540 u64 tmpdiv;
3541 #endif
3542 int offload_to_mirror;
3543
3544 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3545
3546 /* check for valid opcode, get LBA and block count */
3547 switch (cmd->cmnd[0]) {
3548 case WRITE_6:
3549 is_write = 1;
3550 case READ_6:
3551 first_block =
3552 (((u64) cmd->cmnd[2]) << 8) |
3553 cmd->cmnd[3];
3554 block_cnt = cmd->cmnd[4];
3555 if (block_cnt == 0)
3556 block_cnt = 256;
3557 break;
3558 case WRITE_10:
3559 is_write = 1;
3560 case READ_10:
3561 first_block =
3562 (((u64) cmd->cmnd[2]) << 24) |
3563 (((u64) cmd->cmnd[3]) << 16) |
3564 (((u64) cmd->cmnd[4]) << 8) |
3565 cmd->cmnd[5];
3566 block_cnt =
3567 (((u32) cmd->cmnd[7]) << 8) |
3568 cmd->cmnd[8];
3569 break;
3570 case WRITE_12:
3571 is_write = 1;
3572 case READ_12:
3573 first_block =
3574 (((u64) cmd->cmnd[2]) << 24) |
3575 (((u64) cmd->cmnd[3]) << 16) |
3576 (((u64) cmd->cmnd[4]) << 8) |
3577 cmd->cmnd[5];
3578 block_cnt =
3579 (((u32) cmd->cmnd[6]) << 24) |
3580 (((u32) cmd->cmnd[7]) << 16) |
3581 (((u32) cmd->cmnd[8]) << 8) |
3582 cmd->cmnd[9];
3583 break;
3584 case WRITE_16:
3585 is_write = 1;
3586 case READ_16:
3587 first_block =
3588 (((u64) cmd->cmnd[2]) << 56) |
3589 (((u64) cmd->cmnd[3]) << 48) |
3590 (((u64) cmd->cmnd[4]) << 40) |
3591 (((u64) cmd->cmnd[5]) << 32) |
3592 (((u64) cmd->cmnd[6]) << 24) |
3593 (((u64) cmd->cmnd[7]) << 16) |
3594 (((u64) cmd->cmnd[8]) << 8) |
3595 cmd->cmnd[9];
3596 block_cnt =
3597 (((u32) cmd->cmnd[10]) << 24) |
3598 (((u32) cmd->cmnd[11]) << 16) |
3599 (((u32) cmd->cmnd[12]) << 8) |
3600 cmd->cmnd[13];
3601 break;
3602 default:
3603 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3604 }
3605 last_block = first_block + block_cnt - 1;
3606
3607 /* check for write to non-RAID-0 */
3608 if (is_write && dev->raid_level != 0)
3609 return IO_ACCEL_INELIGIBLE;
3610
3611 /* check for invalid block or wraparound */
3612 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3613 last_block < first_block)
3614 return IO_ACCEL_INELIGIBLE;
3615
3616 /* calculate stripe information for the request */
3617 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3618 le16_to_cpu(map->strip_size);
3619 strip_size = le16_to_cpu(map->strip_size);
3620 #if BITS_PER_LONG == 32
3621 tmpdiv = first_block;
3622 (void) do_div(tmpdiv, blocks_per_row);
3623 first_row = tmpdiv;
3624 tmpdiv = last_block;
3625 (void) do_div(tmpdiv, blocks_per_row);
3626 last_row = tmpdiv;
3627 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3628 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3629 tmpdiv = first_row_offset;
3630 (void) do_div(tmpdiv, strip_size);
3631 first_column = tmpdiv;
3632 tmpdiv = last_row_offset;
3633 (void) do_div(tmpdiv, strip_size);
3634 last_column = tmpdiv;
3635 #else
3636 first_row = first_block / blocks_per_row;
3637 last_row = last_block / blocks_per_row;
3638 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3639 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3640 first_column = first_row_offset / strip_size;
3641 last_column = last_row_offset / strip_size;
3642 #endif
3643
3644 /* if this isn't a single row/column then give to the controller */
3645 if ((first_row != last_row) || (first_column != last_column))
3646 return IO_ACCEL_INELIGIBLE;
3647
3648 /* proceeding with driver mapping */
3649 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3650 le16_to_cpu(map->metadata_disks_per_row);
3651 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3652 le16_to_cpu(map->row_cnt);
3653 map_index = (map_row * total_disks_per_row) + first_column;
3654
3655 switch (dev->raid_level) {
3656 case HPSA_RAID_0:
3657 break; /* nothing special to do */
3658 case HPSA_RAID_1:
3659 /* Handles load balance across RAID 1 members.
3660 * (2-drive R1 and R10 with even # of drives.)
3661 * Appropriate for SSDs, not optimal for HDDs
3662 */
3663 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3664 if (dev->offload_to_mirror)
3665 map_index += le16_to_cpu(map->data_disks_per_row);
3666 dev->offload_to_mirror = !dev->offload_to_mirror;
3667 break;
3668 case HPSA_RAID_ADM:
3669 /* Handles N-way mirrors (R1-ADM)
3670 * and R10 with # of drives divisible by 3.)
3671 */
3672 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3673
3674 offload_to_mirror = dev->offload_to_mirror;
3675 raid_map_helper(map, offload_to_mirror,
3676 &map_index, &current_group);
3677 /* set mirror group to use next time */
3678 offload_to_mirror =
3679 (offload_to_mirror >=
3680 le16_to_cpu(map->layout_map_count) - 1)
3681 ? 0 : offload_to_mirror + 1;
3682 dev->offload_to_mirror = offload_to_mirror;
3683 /* Avoid direct use of dev->offload_to_mirror within this
3684 * function since multiple threads might simultaneously
3685 * increment it beyond the range of dev->layout_map_count -1.
3686 */
3687 break;
3688 case HPSA_RAID_5:
3689 case HPSA_RAID_6:
3690 if (le16_to_cpu(map->layout_map_count) <= 1)
3691 break;
3692
3693 /* Verify first and last block are in same RAID group */
3694 r5or6_blocks_per_row =
3695 le16_to_cpu(map->strip_size) *
3696 le16_to_cpu(map->data_disks_per_row);
3697 BUG_ON(r5or6_blocks_per_row == 0);
3698 stripesize = r5or6_blocks_per_row *
3699 le16_to_cpu(map->layout_map_count);
3700 #if BITS_PER_LONG == 32
3701 tmpdiv = first_block;
3702 first_group = do_div(tmpdiv, stripesize);
3703 tmpdiv = first_group;
3704 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3705 first_group = tmpdiv;
3706 tmpdiv = last_block;
3707 last_group = do_div(tmpdiv, stripesize);
3708 tmpdiv = last_group;
3709 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3710 last_group = tmpdiv;
3711 #else
3712 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3713 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3714 #endif
3715 if (first_group != last_group)
3716 return IO_ACCEL_INELIGIBLE;
3717
3718 /* Verify request is in a single row of RAID 5/6 */
3719 #if BITS_PER_LONG == 32
3720 tmpdiv = first_block;
3721 (void) do_div(tmpdiv, stripesize);
3722 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3723 tmpdiv = last_block;
3724 (void) do_div(tmpdiv, stripesize);
3725 r5or6_last_row = r0_last_row = tmpdiv;
3726 #else
3727 first_row = r5or6_first_row = r0_first_row =
3728 first_block / stripesize;
3729 r5or6_last_row = r0_last_row = last_block / stripesize;
3730 #endif
3731 if (r5or6_first_row != r5or6_last_row)
3732 return IO_ACCEL_INELIGIBLE;
3733
3734
3735 /* Verify request is in a single column */
3736 #if BITS_PER_LONG == 32
3737 tmpdiv = first_block;
3738 first_row_offset = do_div(tmpdiv, stripesize);
3739 tmpdiv = first_row_offset;
3740 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3741 r5or6_first_row_offset = first_row_offset;
3742 tmpdiv = last_block;
3743 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3744 tmpdiv = r5or6_last_row_offset;
3745 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3746 tmpdiv = r5or6_first_row_offset;
3747 (void) do_div(tmpdiv, map->strip_size);
3748 first_column = r5or6_first_column = tmpdiv;
3749 tmpdiv = r5or6_last_row_offset;
3750 (void) do_div(tmpdiv, map->strip_size);
3751 r5or6_last_column = tmpdiv;
3752 #else
3753 first_row_offset = r5or6_first_row_offset =
3754 (u32)((first_block % stripesize) %
3755 r5or6_blocks_per_row);
3756
3757 r5or6_last_row_offset =
3758 (u32)((last_block % stripesize) %
3759 r5or6_blocks_per_row);
3760
3761 first_column = r5or6_first_column =
3762 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3763 r5or6_last_column =
3764 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3765 #endif
3766 if (r5or6_first_column != r5or6_last_column)
3767 return IO_ACCEL_INELIGIBLE;
3768
3769 /* Request is eligible */
3770 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3771 le16_to_cpu(map->row_cnt);
3772
3773 map_index = (first_group *
3774 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3775 (map_row * total_disks_per_row) + first_column;
3776 break;
3777 default:
3778 return IO_ACCEL_INELIGIBLE;
3779 }
3780
3781 disk_handle = dd[map_index].ioaccel_handle;
3782 disk_block = le64_to_cpu(map->disk_starting_blk) +
3783 first_row * le16_to_cpu(map->strip_size) +
3784 (first_row_offset - first_column *
3785 le16_to_cpu(map->strip_size));
3786 disk_block_cnt = block_cnt;
3787
3788 /* handle differing logical/physical block sizes */
3789 if (map->phys_blk_shift) {
3790 disk_block <<= map->phys_blk_shift;
3791 disk_block_cnt <<= map->phys_blk_shift;
3792 }
3793 BUG_ON(disk_block_cnt > 0xffff);
3794
3795 /* build the new CDB for the physical disk I/O */
3796 if (disk_block > 0xffffffff) {
3797 cdb[0] = is_write ? WRITE_16 : READ_16;
3798 cdb[1] = 0;
3799 cdb[2] = (u8) (disk_block >> 56);
3800 cdb[3] = (u8) (disk_block >> 48);
3801 cdb[4] = (u8) (disk_block >> 40);
3802 cdb[5] = (u8) (disk_block >> 32);
3803 cdb[6] = (u8) (disk_block >> 24);
3804 cdb[7] = (u8) (disk_block >> 16);
3805 cdb[8] = (u8) (disk_block >> 8);
3806 cdb[9] = (u8) (disk_block);
3807 cdb[10] = (u8) (disk_block_cnt >> 24);
3808 cdb[11] = (u8) (disk_block_cnt >> 16);
3809 cdb[12] = (u8) (disk_block_cnt >> 8);
3810 cdb[13] = (u8) (disk_block_cnt);
3811 cdb[14] = 0;
3812 cdb[15] = 0;
3813 cdb_len = 16;
3814 } else {
3815 cdb[0] = is_write ? WRITE_10 : READ_10;
3816 cdb[1] = 0;
3817 cdb[2] = (u8) (disk_block >> 24);
3818 cdb[3] = (u8) (disk_block >> 16);
3819 cdb[4] = (u8) (disk_block >> 8);
3820 cdb[5] = (u8) (disk_block);
3821 cdb[6] = 0;
3822 cdb[7] = (u8) (disk_block_cnt >> 8);
3823 cdb[8] = (u8) (disk_block_cnt);
3824 cdb[9] = 0;
3825 cdb_len = 10;
3826 }
3827 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3828 dev->scsi3addr);
3829 }
3830
3831 /*
3832 * Running in struct Scsi_Host->host_lock less mode using LLD internal
3833 * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3834 */
3835 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3836 {
3837 struct ctlr_info *h;
3838 struct hpsa_scsi_dev_t *dev;
3839 unsigned char scsi3addr[8];
3840 struct CommandList *c;
3841 int rc = 0;
3842
3843 /* Get the ptr to our adapter structure out of cmd->host. */
3844 h = sdev_to_hba(cmd->device);
3845 dev = cmd->device->hostdata;
3846 if (!dev) {
3847 cmd->result = DID_NO_CONNECT << 16;
3848 cmd->scsi_done(cmd);
3849 return 0;
3850 }
3851 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3852
3853 if (unlikely(lockup_detected(h))) {
3854 cmd->result = DID_ERROR << 16;
3855 cmd->scsi_done(cmd);
3856 return 0;
3857 }
3858 c = cmd_alloc(h);
3859 if (c == NULL) { /* trouble... */
3860 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3861 return SCSI_MLQUEUE_HOST_BUSY;
3862 }
3863
3864 /* Fill in the command list header */
3865 /* save c in case we have to abort it */
3866 cmd->host_scribble = (unsigned char *) c;
3867
3868 c->cmd_type = CMD_SCSI;
3869 c->scsi_cmd = cmd;
3870
3871 /* Call alternate submit routine for I/O accelerated commands.
3872 * Retries always go down the normal I/O path.
3873 */
3874 if (likely(cmd->retries == 0 &&
3875 cmd->request->cmd_type == REQ_TYPE_FS &&
3876 h->acciopath_status)) {
3877 if (dev->offload_enabled) {
3878 rc = hpsa_scsi_ioaccel_raid_map(h, c);
3879 if (rc == 0)
3880 return 0; /* Sent on ioaccel path */
3881 if (rc < 0) { /* scsi_dma_map failed. */
3882 cmd_free(h, c);
3883 return SCSI_MLQUEUE_HOST_BUSY;
3884 }
3885 } else if (dev->ioaccel_handle) {
3886 rc = hpsa_scsi_ioaccel_direct_map(h, c);
3887 if (rc == 0)
3888 return 0; /* Sent on direct map path */
3889 if (rc < 0) { /* scsi_dma_map failed. */
3890 cmd_free(h, c);
3891 return SCSI_MLQUEUE_HOST_BUSY;
3892 }
3893 }
3894 }
3895
3896 c->Header.ReplyQueue = 0; /* unused in simple mode */
3897 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3898 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3899 DIRECT_LOOKUP_BIT);
3900
3901 /* Fill in the request block... */
3902
3903 c->Request.Timeout = 0;
3904 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3905 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3906 c->Request.CDBLen = cmd->cmd_len;
3907 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3908 switch (cmd->sc_data_direction) {
3909 case DMA_TO_DEVICE:
3910 c->Request.type_attr_dir =
3911 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3912 break;
3913 case DMA_FROM_DEVICE:
3914 c->Request.type_attr_dir =
3915 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3916 break;
3917 case DMA_NONE:
3918 c->Request.type_attr_dir =
3919 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3920 break;
3921 case DMA_BIDIRECTIONAL:
3922 /* This can happen if a buggy application does a scsi passthru
3923 * and sets both inlen and outlen to non-zero. ( see
3924 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3925 */
3926
3927 c->Request.type_attr_dir =
3928 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3929 /* This is technically wrong, and hpsa controllers should
3930 * reject it with CMD_INVALID, which is the most correct
3931 * response, but non-fibre backends appear to let it
3932 * slide by, and give the same results as if this field
3933 * were set correctly. Either way is acceptable for
3934 * our purposes here.
3935 */
3936
3937 break;
3938
3939 default:
3940 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3941 cmd->sc_data_direction);
3942 BUG();
3943 break;
3944 }
3945
3946 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3947 cmd_free(h, c);
3948 return SCSI_MLQUEUE_HOST_BUSY;
3949 }
3950 enqueue_cmd_and_start_io(h, c);
3951 /* the cmd'll come back via intr handler in complete_scsi_command() */
3952 return 0;
3953 }
3954
3955 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3956 {
3957 unsigned long flags;
3958
3959 /*
3960 * Don't let rescans be initiated on a controller known
3961 * to be locked up. If the controller locks up *during*
3962 * a rescan, that thread is probably hosed, but at least
3963 * we can prevent new rescan threads from piling up on a
3964 * locked up controller.
3965 */
3966 if (unlikely(lockup_detected(h))) {
3967 spin_lock_irqsave(&h->scan_lock, flags);
3968 h->scan_finished = 1;
3969 wake_up_all(&h->scan_wait_queue);
3970 spin_unlock_irqrestore(&h->scan_lock, flags);
3971 return 1;
3972 }
3973 return 0;
3974 }
3975
3976 static void hpsa_scan_start(struct Scsi_Host *sh)
3977 {
3978 struct ctlr_info *h = shost_to_hba(sh);
3979 unsigned long flags;
3980
3981 if (do_not_scan_if_controller_locked_up(h))
3982 return;
3983
3984 /* wait until any scan already in progress is finished. */
3985 while (1) {
3986 spin_lock_irqsave(&h->scan_lock, flags);
3987 if (h->scan_finished)
3988 break;
3989 spin_unlock_irqrestore(&h->scan_lock, flags);
3990 wait_event(h->scan_wait_queue, h->scan_finished);
3991 /* Note: We don't need to worry about a race between this
3992 * thread and driver unload because the midlayer will
3993 * have incremented the reference count, so unload won't
3994 * happen if we're in here.
3995 */
3996 }
3997 h->scan_finished = 0; /* mark scan as in progress */
3998 spin_unlock_irqrestore(&h->scan_lock, flags);
3999
4000 if (do_not_scan_if_controller_locked_up(h))
4001 return;
4002
4003 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4004
4005 spin_lock_irqsave(&h->scan_lock, flags);
4006 h->scan_finished = 1; /* mark scan as finished. */
4007 wake_up_all(&h->scan_wait_queue);
4008 spin_unlock_irqrestore(&h->scan_lock, flags);
4009 }
4010
4011 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4012 {
4013 struct ctlr_info *h = sdev_to_hba(sdev);
4014
4015 if (qdepth < 1)
4016 qdepth = 1;
4017 else
4018 if (qdepth > h->nr_cmds)
4019 qdepth = h->nr_cmds;
4020 scsi_change_queue_depth(sdev, qdepth);
4021 return sdev->queue_depth;
4022 }
4023
4024 static int hpsa_scan_finished(struct Scsi_Host *sh,
4025 unsigned long elapsed_time)
4026 {
4027 struct ctlr_info *h = shost_to_hba(sh);
4028 unsigned long flags;
4029 int finished;
4030
4031 spin_lock_irqsave(&h->scan_lock, flags);
4032 finished = h->scan_finished;
4033 spin_unlock_irqrestore(&h->scan_lock, flags);
4034 return finished;
4035 }
4036
4037 static void hpsa_unregister_scsi(struct ctlr_info *h)
4038 {
4039 /* we are being forcibly unloaded, and may not refuse. */
4040 scsi_remove_host(h->scsi_host);
4041 scsi_host_put(h->scsi_host);
4042 h->scsi_host = NULL;
4043 }
4044
4045 static int hpsa_register_scsi(struct ctlr_info *h)
4046 {
4047 struct Scsi_Host *sh;
4048 int error;
4049
4050 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4051 if (sh == NULL)
4052 goto fail;
4053
4054 sh->io_port = 0;
4055 sh->n_io_port = 0;
4056 sh->this_id = -1;
4057 sh->max_channel = 3;
4058 sh->max_cmd_len = MAX_COMMAND_SIZE;
4059 sh->max_lun = HPSA_MAX_LUN;
4060 sh->max_id = HPSA_MAX_LUN;
4061 sh->can_queue = h->nr_cmds;
4062 if (h->hba_mode_enabled)
4063 sh->cmd_per_lun = 7;
4064 else
4065 sh->cmd_per_lun = h->nr_cmds;
4066 sh->sg_tablesize = h->maxsgentries;
4067 h->scsi_host = sh;
4068 sh->hostdata[0] = (unsigned long) h;
4069 sh->irq = h->intr[h->intr_mode];
4070 sh->unique_id = sh->irq;
4071 error = scsi_add_host(sh, &h->pdev->dev);
4072 if (error)
4073 goto fail_host_put;
4074 scsi_scan_host(sh);
4075 return 0;
4076
4077 fail_host_put:
4078 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4079 " failed for controller %d\n", __func__, h->ctlr);
4080 scsi_host_put(sh);
4081 return error;
4082 fail:
4083 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4084 " failed for controller %d\n", __func__, h->ctlr);
4085 return -ENOMEM;
4086 }
4087
4088 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4089 unsigned char lunaddr[])
4090 {
4091 int rc;
4092 int count = 0;
4093 int waittime = 1; /* seconds */
4094 struct CommandList *c;
4095
4096 c = cmd_special_alloc(h);
4097 if (!c) {
4098 dev_warn(&h->pdev->dev, "out of memory in "
4099 "wait_for_device_to_become_ready.\n");
4100 return IO_ERROR;
4101 }
4102
4103 /* Send test unit ready until device ready, or give up. */
4104 while (count < HPSA_TUR_RETRY_LIMIT) {
4105
4106 /* Wait for a bit. do this first, because if we send
4107 * the TUR right away, the reset will just abort it.
4108 */
4109 msleep(1000 * waittime);
4110 count++;
4111 rc = 0; /* Device ready. */
4112
4113 /* Increase wait time with each try, up to a point. */
4114 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4115 waittime = waittime * 2;
4116
4117 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4118 (void) fill_cmd(c, TEST_UNIT_READY, h,
4119 NULL, 0, 0, lunaddr, TYPE_CMD);
4120 hpsa_scsi_do_simple_cmd_core(h, c);
4121 /* no unmap needed here because no data xfer. */
4122
4123 if (c->err_info->CommandStatus == CMD_SUCCESS)
4124 break;
4125
4126 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4127 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4128 (c->err_info->SenseInfo[2] == NO_SENSE ||
4129 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4130 break;
4131
4132 dev_warn(&h->pdev->dev, "waiting %d secs "
4133 "for device to become ready.\n", waittime);
4134 rc = 1; /* device not ready. */
4135 }
4136
4137 if (rc)
4138 dev_warn(&h->pdev->dev, "giving up on device.\n");
4139 else
4140 dev_warn(&h->pdev->dev, "device is ready.\n");
4141
4142 cmd_special_free(h, c);
4143 return rc;
4144 }
4145
4146 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4147 * complaining. Doing a host- or bus-reset can't do anything good here.
4148 */
4149 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4150 {
4151 int rc;
4152 struct ctlr_info *h;
4153 struct hpsa_scsi_dev_t *dev;
4154
4155 /* find the controller to which the command to be aborted was sent */
4156 h = sdev_to_hba(scsicmd->device);
4157 if (h == NULL) /* paranoia */
4158 return FAILED;
4159 dev = scsicmd->device->hostdata;
4160 if (!dev) {
4161 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4162 "device lookup failed.\n");
4163 return FAILED;
4164 }
4165 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4166 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4167 /* send a reset to the SCSI LUN which the command was sent to */
4168 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4169 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4170 return SUCCESS;
4171
4172 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4173 return FAILED;
4174 }
4175
4176 static void swizzle_abort_tag(u8 *tag)
4177 {
4178 u8 original_tag[8];
4179
4180 memcpy(original_tag, tag, 8);
4181 tag[0] = original_tag[3];
4182 tag[1] = original_tag[2];
4183 tag[2] = original_tag[1];
4184 tag[3] = original_tag[0];
4185 tag[4] = original_tag[7];
4186 tag[5] = original_tag[6];
4187 tag[6] = original_tag[5];
4188 tag[7] = original_tag[4];
4189 }
4190
4191 static void hpsa_get_tag(struct ctlr_info *h,
4192 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4193 {
4194 u64 tag;
4195 if (c->cmd_type == CMD_IOACCEL1) {
4196 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4197 &h->ioaccel_cmd_pool[c->cmdindex];
4198 tag = le64_to_cpu(cm1->tag);
4199 *tagupper = cpu_to_le32(tag >> 32);
4200 *taglower = cpu_to_le32(tag);
4201 return;
4202 }
4203 if (c->cmd_type == CMD_IOACCEL2) {
4204 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4205 &h->ioaccel2_cmd_pool[c->cmdindex];
4206 /* upper tag not used in ioaccel2 mode */
4207 memset(tagupper, 0, sizeof(*tagupper));
4208 *taglower = cm2->Tag;
4209 return;
4210 }
4211 tag = le64_to_cpu(c->Header.tag);
4212 *tagupper = cpu_to_le32(tag >> 32);
4213 *taglower = cpu_to_le32(tag);
4214 }
4215
4216 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4217 struct CommandList *abort, int swizzle)
4218 {
4219 int rc = IO_OK;
4220 struct CommandList *c;
4221 struct ErrorInfo *ei;
4222 __le32 tagupper, taglower;
4223
4224 c = cmd_special_alloc(h);
4225 if (c == NULL) { /* trouble... */
4226 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4227 return -ENOMEM;
4228 }
4229
4230 /* fill_cmd can't fail here, no buffer to map */
4231 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4232 0, 0, scsi3addr, TYPE_MSG);
4233 if (swizzle)
4234 swizzle_abort_tag(&c->Request.CDB[4]);
4235 hpsa_scsi_do_simple_cmd_core(h, c);
4236 hpsa_get_tag(h, abort, &taglower, &tagupper);
4237 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4238 __func__, tagupper, taglower);
4239 /* no unmap needed here because no data xfer. */
4240
4241 ei = c->err_info;
4242 switch (ei->CommandStatus) {
4243 case CMD_SUCCESS:
4244 break;
4245 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4246 rc = -1;
4247 break;
4248 default:
4249 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4250 __func__, tagupper, taglower);
4251 hpsa_scsi_interpret_error(h, c);
4252 rc = -1;
4253 break;
4254 }
4255 cmd_special_free(h, c);
4256 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4257 __func__, tagupper, taglower);
4258 return rc;
4259 }
4260
4261 /*
4262 * hpsa_find_cmd_in_queue
4263 *
4264 * Used to determine whether a command (find) is still present
4265 * in queue_head. Optionally excludes the last element of queue_head.
4266 *
4267 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4268 * not yet been submitted, and so can be aborted by the driver without
4269 * sending an abort to the hardware.
4270 *
4271 * Returns pointer to command if found in queue, NULL otherwise.
4272 */
4273 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4274 struct scsi_cmnd *find, struct list_head *queue_head)
4275 {
4276 unsigned long flags;
4277 struct CommandList *c = NULL; /* ptr into cmpQ */
4278
4279 if (!find)
4280 return NULL;
4281 spin_lock_irqsave(&h->lock, flags);
4282 list_for_each_entry(c, queue_head, list) {
4283 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4284 continue;
4285 if (c->scsi_cmd == find) {
4286 spin_unlock_irqrestore(&h->lock, flags);
4287 return c;
4288 }
4289 }
4290 spin_unlock_irqrestore(&h->lock, flags);
4291 return NULL;
4292 }
4293
4294 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4295 u8 *tag, struct list_head *queue_head)
4296 {
4297 unsigned long flags;
4298 struct CommandList *c;
4299
4300 spin_lock_irqsave(&h->lock, flags);
4301 list_for_each_entry(c, queue_head, list) {
4302 if (memcmp(&c->Header.tag, tag, 8) != 0)
4303 continue;
4304 spin_unlock_irqrestore(&h->lock, flags);
4305 return c;
4306 }
4307 spin_unlock_irqrestore(&h->lock, flags);
4308 return NULL;
4309 }
4310
4311 /* ioaccel2 path firmware cannot handle abort task requests.
4312 * Change abort requests to physical target reset, and send to the
4313 * address of the physical disk used for the ioaccel 2 command.
4314 * Return 0 on success (IO_OK)
4315 * -1 on failure
4316 */
4317
4318 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4319 unsigned char *scsi3addr, struct CommandList *abort)
4320 {
4321 int rc = IO_OK;
4322 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4323 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4324 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4325 unsigned char *psa = &phys_scsi3addr[0];
4326
4327 /* Get a pointer to the hpsa logical device. */
4328 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4329 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4330 if (dev == NULL) {
4331 dev_warn(&h->pdev->dev,
4332 "Cannot abort: no device pointer for command.\n");
4333 return -1; /* not abortable */
4334 }
4335
4336 if (h->raid_offload_debug > 0)
4337 dev_info(&h->pdev->dev,
4338 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4339 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4340 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4341 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4342
4343 if (!dev->offload_enabled) {
4344 dev_warn(&h->pdev->dev,
4345 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4346 return -1; /* not abortable */
4347 }
4348
4349 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4350 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4351 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4352 return -1; /* not abortable */
4353 }
4354
4355 /* send the reset */
4356 if (h->raid_offload_debug > 0)
4357 dev_info(&h->pdev->dev,
4358 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4359 psa[0], psa[1], psa[2], psa[3],
4360 psa[4], psa[5], psa[6], psa[7]);
4361 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4362 if (rc != 0) {
4363 dev_warn(&h->pdev->dev,
4364 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4365 psa[0], psa[1], psa[2], psa[3],
4366 psa[4], psa[5], psa[6], psa[7]);
4367 return rc; /* failed to reset */
4368 }
4369
4370 /* wait for device to recover */
4371 if (wait_for_device_to_become_ready(h, psa) != 0) {
4372 dev_warn(&h->pdev->dev,
4373 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374 psa[0], psa[1], psa[2], psa[3],
4375 psa[4], psa[5], psa[6], psa[7]);
4376 return -1; /* failed to recover */
4377 }
4378
4379 /* device recovered */
4380 dev_info(&h->pdev->dev,
4381 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4382 psa[0], psa[1], psa[2], psa[3],
4383 psa[4], psa[5], psa[6], psa[7]);
4384
4385 return rc; /* success */
4386 }
4387
4388 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4389 * tell which kind we're dealing with, so we send the abort both ways. There
4390 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4391 * way we construct our tags but we check anyway in case the assumptions which
4392 * make this true someday become false.
4393 */
4394 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4395 unsigned char *scsi3addr, struct CommandList *abort)
4396 {
4397 u8 swizzled_tag[8];
4398 struct CommandList *c;
4399 int rc = 0, rc2 = 0;
4400
4401 /* ioccelerator mode 2 commands should be aborted via the
4402 * accelerated path, since RAID path is unaware of these commands,
4403 * but underlying firmware can't handle abort TMF.
4404 * Change abort to physical device reset.
4405 */
4406 if (abort->cmd_type == CMD_IOACCEL2)
4407 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4408
4409 /* we do not expect to find the swizzled tag in our queue, but
4410 * check anyway just to be sure the assumptions which make this
4411 * the case haven't become wrong.
4412 */
4413 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4414 swizzle_abort_tag(swizzled_tag);
4415 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4416 if (c != NULL) {
4417 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4418 return hpsa_send_abort(h, scsi3addr, abort, 0);
4419 }
4420 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4421
4422 /* if the command is still in our queue, we can't conclude that it was
4423 * aborted (it might have just completed normally) but in any case
4424 * we don't need to try to abort it another way.
4425 */
4426 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4427 if (c)
4428 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4429 return rc && rc2;
4430 }
4431
4432 /* Send an abort for the specified command.
4433 * If the device and controller support it,
4434 * send a task abort request.
4435 */
4436 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4437 {
4438
4439 int i, rc;
4440 struct ctlr_info *h;
4441 struct hpsa_scsi_dev_t *dev;
4442 struct CommandList *abort; /* pointer to command to be aborted */
4443 struct CommandList *found;
4444 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4445 char msg[256]; /* For debug messaging. */
4446 int ml = 0;
4447 __le32 tagupper, taglower;
4448
4449 /* Find the controller of the command to be aborted */
4450 h = sdev_to_hba(sc->device);
4451 if (WARN(h == NULL,
4452 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4453 return FAILED;
4454
4455 /* Check that controller supports some kind of task abort */
4456 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4457 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4458 return FAILED;
4459
4460 memset(msg, 0, sizeof(msg));
4461 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4462 h->scsi_host->host_no, sc->device->channel,
4463 sc->device->id, sc->device->lun);
4464
4465 /* Find the device of the command to be aborted */
4466 dev = sc->device->hostdata;
4467 if (!dev) {
4468 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4469 msg);
4470 return FAILED;
4471 }
4472
4473 /* Get SCSI command to be aborted */
4474 abort = (struct CommandList *) sc->host_scribble;
4475 if (abort == NULL) {
4476 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4477 msg);
4478 return FAILED;
4479 }
4480 hpsa_get_tag(h, abort, &taglower, &tagupper);
4481 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4482 as = (struct scsi_cmnd *) abort->scsi_cmd;
4483 if (as != NULL)
4484 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4485 as->cmnd[0], as->serial_number);
4486 dev_dbg(&h->pdev->dev, "%s\n", msg);
4487 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4488 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4489
4490 /* Search reqQ to See if command is queued but not submitted,
4491 * if so, complete the command with aborted status and remove
4492 * it from the reqQ.
4493 */
4494 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4495 if (found) {
4496 found->err_info->CommandStatus = CMD_ABORTED;
4497 finish_cmd(found);
4498 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4499 msg);
4500 return SUCCESS;
4501 }
4502
4503 /* not in reqQ, if also not in cmpQ, must have already completed */
4504 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4505 if (!found) {
4506 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4507 msg);
4508 return SUCCESS;
4509 }
4510
4511 /*
4512 * Command is in flight, or possibly already completed
4513 * by the firmware (but not to the scsi mid layer) but we can't
4514 * distinguish which. Send the abort down.
4515 */
4516 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4517 if (rc != 0) {
4518 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4519 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4520 h->scsi_host->host_no,
4521 dev->bus, dev->target, dev->lun);
4522 return FAILED;
4523 }
4524 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4525
4526 /* If the abort(s) above completed and actually aborted the
4527 * command, then the command to be aborted should already be
4528 * completed. If not, wait around a bit more to see if they
4529 * manage to complete normally.
4530 */
4531 #define ABORT_COMPLETE_WAIT_SECS 30
4532 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4533 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4534 if (!found)
4535 return SUCCESS;
4536 msleep(100);
4537 }
4538 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4539 msg, ABORT_COMPLETE_WAIT_SECS);
4540 return FAILED;
4541 }
4542
4543
4544 /*
4545 * For operations that cannot sleep, a command block is allocated at init,
4546 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4547 * which ones are free or in use. Lock must be held when calling this.
4548 * cmd_free() is the complement.
4549 */
4550 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4551 {
4552 struct CommandList *c;
4553 int i;
4554 union u64bit temp64;
4555 dma_addr_t cmd_dma_handle, err_dma_handle;
4556 int loopcount;
4557
4558 /* There is some *extremely* small but non-zero chance that that
4559 * multiple threads could get in here, and one thread could
4560 * be scanning through the list of bits looking for a free
4561 * one, but the free ones are always behind him, and other
4562 * threads sneak in behind him and eat them before he can
4563 * get to them, so that while there is always a free one, a
4564 * very unlucky thread might be starved anyway, never able to
4565 * beat the other threads. In reality, this happens so
4566 * infrequently as to be indistinguishable from never.
4567 */
4568
4569 loopcount = 0;
4570 do {
4571 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4572 if (i == h->nr_cmds)
4573 i = 0;
4574 loopcount++;
4575 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4576 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4577 loopcount < 10);
4578
4579 /* Thread got starved? We do not expect this to ever happen. */
4580 if (loopcount >= 10)
4581 return NULL;
4582
4583 c = h->cmd_pool + i;
4584 memset(c, 0, sizeof(*c));
4585 cmd_dma_handle = h->cmd_pool_dhandle
4586 + i * sizeof(*c);
4587 c->err_info = h->errinfo_pool + i;
4588 memset(c->err_info, 0, sizeof(*c->err_info));
4589 err_dma_handle = h->errinfo_pool_dhandle
4590 + i * sizeof(*c->err_info);
4591
4592 c->cmdindex = i;
4593
4594 INIT_LIST_HEAD(&c->list);
4595 c->busaddr = (u32) cmd_dma_handle;
4596 temp64.val = (u64) err_dma_handle;
4597 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4598 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4599
4600 c->h = h;
4601 return c;
4602 }
4603
4604 /* For operations that can wait for kmalloc to possibly sleep,
4605 * this routine can be called. Lock need not be held to call
4606 * cmd_special_alloc. cmd_special_free() is the complement.
4607 */
4608 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4609 {
4610 struct CommandList *c;
4611 dma_addr_t cmd_dma_handle, err_dma_handle;
4612
4613 c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4614 if (c == NULL)
4615 return NULL;
4616
4617 c->cmd_type = CMD_SCSI;
4618 c->cmdindex = -1;
4619
4620 c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4621 &err_dma_handle);
4622
4623 if (c->err_info == NULL) {
4624 pci_free_consistent(h->pdev,
4625 sizeof(*c), c, cmd_dma_handle);
4626 return NULL;
4627 }
4628
4629 INIT_LIST_HEAD(&c->list);
4630 c->busaddr = (u32) cmd_dma_handle;
4631 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4632 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4633
4634 c->h = h;
4635 return c;
4636 }
4637
4638 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4639 {
4640 int i;
4641
4642 i = c - h->cmd_pool;
4643 clear_bit(i & (BITS_PER_LONG - 1),
4644 h->cmd_pool_bits + (i / BITS_PER_LONG));
4645 }
4646
4647 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4648 {
4649 pci_free_consistent(h->pdev, sizeof(*c->err_info),
4650 c->err_info,
4651 (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4652 pci_free_consistent(h->pdev, sizeof(*c),
4653 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4654 }
4655
4656 #ifdef CONFIG_COMPAT
4657
4658 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4659 void __user *arg)
4660 {
4661 IOCTL32_Command_struct __user *arg32 =
4662 (IOCTL32_Command_struct __user *) arg;
4663 IOCTL_Command_struct arg64;
4664 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4665 int err;
4666 u32 cp;
4667
4668 memset(&arg64, 0, sizeof(arg64));
4669 err = 0;
4670 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4671 sizeof(arg64.LUN_info));
4672 err |= copy_from_user(&arg64.Request, &arg32->Request,
4673 sizeof(arg64.Request));
4674 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4675 sizeof(arg64.error_info));
4676 err |= get_user(arg64.buf_size, &arg32->buf_size);
4677 err |= get_user(cp, &arg32->buf);
4678 arg64.buf = compat_ptr(cp);
4679 err |= copy_to_user(p, &arg64, sizeof(arg64));
4680
4681 if (err)
4682 return -EFAULT;
4683
4684 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4685 if (err)
4686 return err;
4687 err |= copy_in_user(&arg32->error_info, &p->error_info,
4688 sizeof(arg32->error_info));
4689 if (err)
4690 return -EFAULT;
4691 return err;
4692 }
4693
4694 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4695 int cmd, void __user *arg)
4696 {
4697 BIG_IOCTL32_Command_struct __user *arg32 =
4698 (BIG_IOCTL32_Command_struct __user *) arg;
4699 BIG_IOCTL_Command_struct arg64;
4700 BIG_IOCTL_Command_struct __user *p =
4701 compat_alloc_user_space(sizeof(arg64));
4702 int err;
4703 u32 cp;
4704
4705 memset(&arg64, 0, sizeof(arg64));
4706 err = 0;
4707 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4708 sizeof(arg64.LUN_info));
4709 err |= copy_from_user(&arg64.Request, &arg32->Request,
4710 sizeof(arg64.Request));
4711 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4712 sizeof(arg64.error_info));
4713 err |= get_user(arg64.buf_size, &arg32->buf_size);
4714 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4715 err |= get_user(cp, &arg32->buf);
4716 arg64.buf = compat_ptr(cp);
4717 err |= copy_to_user(p, &arg64, sizeof(arg64));
4718
4719 if (err)
4720 return -EFAULT;
4721
4722 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4723 if (err)
4724 return err;
4725 err |= copy_in_user(&arg32->error_info, &p->error_info,
4726 sizeof(arg32->error_info));
4727 if (err)
4728 return -EFAULT;
4729 return err;
4730 }
4731
4732 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4733 {
4734 switch (cmd) {
4735 case CCISS_GETPCIINFO:
4736 case CCISS_GETINTINFO:
4737 case CCISS_SETINTINFO:
4738 case CCISS_GETNODENAME:
4739 case CCISS_SETNODENAME:
4740 case CCISS_GETHEARTBEAT:
4741 case CCISS_GETBUSTYPES:
4742 case CCISS_GETFIRMVER:
4743 case CCISS_GETDRIVVER:
4744 case CCISS_REVALIDVOLS:
4745 case CCISS_DEREGDISK:
4746 case CCISS_REGNEWDISK:
4747 case CCISS_REGNEWD:
4748 case CCISS_RESCANDISK:
4749 case CCISS_GETLUNINFO:
4750 return hpsa_ioctl(dev, cmd, arg);
4751
4752 case CCISS_PASSTHRU32:
4753 return hpsa_ioctl32_passthru(dev, cmd, arg);
4754 case CCISS_BIG_PASSTHRU32:
4755 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4756
4757 default:
4758 return -ENOIOCTLCMD;
4759 }
4760 }
4761 #endif
4762
4763 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4764 {
4765 struct hpsa_pci_info pciinfo;
4766
4767 if (!argp)
4768 return -EINVAL;
4769 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4770 pciinfo.bus = h->pdev->bus->number;
4771 pciinfo.dev_fn = h->pdev->devfn;
4772 pciinfo.board_id = h->board_id;
4773 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4774 return -EFAULT;
4775 return 0;
4776 }
4777
4778 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4779 {
4780 DriverVer_type DriverVer;
4781 unsigned char vmaj, vmin, vsubmin;
4782 int rc;
4783
4784 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4785 &vmaj, &vmin, &vsubmin);
4786 if (rc != 3) {
4787 dev_info(&h->pdev->dev, "driver version string '%s' "
4788 "unrecognized.", HPSA_DRIVER_VERSION);
4789 vmaj = 0;
4790 vmin = 0;
4791 vsubmin = 0;
4792 }
4793 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4794 if (!argp)
4795 return -EINVAL;
4796 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4797 return -EFAULT;
4798 return 0;
4799 }
4800
4801 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4802 {
4803 IOCTL_Command_struct iocommand;
4804 struct CommandList *c;
4805 char *buff = NULL;
4806 u64 temp64;
4807 int rc = 0;
4808
4809 if (!argp)
4810 return -EINVAL;
4811 if (!capable(CAP_SYS_RAWIO))
4812 return -EPERM;
4813 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4814 return -EFAULT;
4815 if ((iocommand.buf_size < 1) &&
4816 (iocommand.Request.Type.Direction != XFER_NONE)) {
4817 return -EINVAL;
4818 }
4819 if (iocommand.buf_size > 0) {
4820 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4821 if (buff == NULL)
4822 return -EFAULT;
4823 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4824 /* Copy the data into the buffer we created */
4825 if (copy_from_user(buff, iocommand.buf,
4826 iocommand.buf_size)) {
4827 rc = -EFAULT;
4828 goto out_kfree;
4829 }
4830 } else {
4831 memset(buff, 0, iocommand.buf_size);
4832 }
4833 }
4834 c = cmd_special_alloc(h);
4835 if (c == NULL) {
4836 rc = -ENOMEM;
4837 goto out_kfree;
4838 }
4839 /* Fill in the command type */
4840 c->cmd_type = CMD_IOCTL_PEND;
4841 /* Fill in Command Header */
4842 c->Header.ReplyQueue = 0; /* unused in simple mode */
4843 if (iocommand.buf_size > 0) { /* buffer to fill */
4844 c->Header.SGList = 1;
4845 c->Header.SGTotal = cpu_to_le16(1);
4846 } else { /* no buffers to fill */
4847 c->Header.SGList = 0;
4848 c->Header.SGTotal = cpu_to_le16(0);
4849 }
4850 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4851 /* use the kernel address the cmd block for tag */
4852 c->Header.tag = cpu_to_le64(c->busaddr);
4853
4854 /* Fill in Request block */
4855 memcpy(&c->Request, &iocommand.Request,
4856 sizeof(c->Request));
4857
4858 /* Fill in the scatter gather information */
4859 if (iocommand.buf_size > 0) {
4860 temp64 = pci_map_single(h->pdev, buff,
4861 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4862 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4863 c->SG[0].Addr = cpu_to_le64(0);
4864 c->SG[0].Len = cpu_to_le32(0);
4865 rc = -ENOMEM;
4866 goto out;
4867 }
4868 c->SG[0].Addr = cpu_to_le64(temp64);
4869 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4870 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4871 }
4872 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4873 if (iocommand.buf_size > 0)
4874 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4875 check_ioctl_unit_attention(h, c);
4876
4877 /* Copy the error information out */
4878 memcpy(&iocommand.error_info, c->err_info,
4879 sizeof(iocommand.error_info));
4880 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4881 rc = -EFAULT;
4882 goto out;
4883 }
4884 if ((iocommand.Request.Type.Direction & XFER_READ) &&
4885 iocommand.buf_size > 0) {
4886 /* Copy the data out of the buffer we created */
4887 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4888 rc = -EFAULT;
4889 goto out;
4890 }
4891 }
4892 out:
4893 cmd_special_free(h, c);
4894 out_kfree:
4895 kfree(buff);
4896 return rc;
4897 }
4898
4899 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4900 {
4901 BIG_IOCTL_Command_struct *ioc;
4902 struct CommandList *c;
4903 unsigned char **buff = NULL;
4904 int *buff_size = NULL;
4905 u64 temp64;
4906 BYTE sg_used = 0;
4907 int status = 0;
4908 u32 left;
4909 u32 sz;
4910 BYTE __user *data_ptr;
4911
4912 if (!argp)
4913 return -EINVAL;
4914 if (!capable(CAP_SYS_RAWIO))
4915 return -EPERM;
4916 ioc = (BIG_IOCTL_Command_struct *)
4917 kmalloc(sizeof(*ioc), GFP_KERNEL);
4918 if (!ioc) {
4919 status = -ENOMEM;
4920 goto cleanup1;
4921 }
4922 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4923 status = -EFAULT;
4924 goto cleanup1;
4925 }
4926 if ((ioc->buf_size < 1) &&
4927 (ioc->Request.Type.Direction != XFER_NONE)) {
4928 status = -EINVAL;
4929 goto cleanup1;
4930 }
4931 /* Check kmalloc limits using all SGs */
4932 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4933 status = -EINVAL;
4934 goto cleanup1;
4935 }
4936 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4937 status = -EINVAL;
4938 goto cleanup1;
4939 }
4940 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4941 if (!buff) {
4942 status = -ENOMEM;
4943 goto cleanup1;
4944 }
4945 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4946 if (!buff_size) {
4947 status = -ENOMEM;
4948 goto cleanup1;
4949 }
4950 left = ioc->buf_size;
4951 data_ptr = ioc->buf;
4952 while (left) {
4953 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4954 buff_size[sg_used] = sz;
4955 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4956 if (buff[sg_used] == NULL) {
4957 status = -ENOMEM;
4958 goto cleanup1;
4959 }
4960 if (ioc->Request.Type.Direction & XFER_WRITE) {
4961 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4962 status = -EFAULT;
4963 goto cleanup1;
4964 }
4965 } else
4966 memset(buff[sg_used], 0, sz);
4967 left -= sz;
4968 data_ptr += sz;
4969 sg_used++;
4970 }
4971 c = cmd_special_alloc(h);
4972 if (c == NULL) {
4973 status = -ENOMEM;
4974 goto cleanup1;
4975 }
4976 c->cmd_type = CMD_IOCTL_PEND;
4977 c->Header.ReplyQueue = 0;
4978 c->Header.SGList = (u8) sg_used;
4979 c->Header.SGTotal = cpu_to_le16(sg_used);
4980 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
4981 c->Header.tag = cpu_to_le64(c->busaddr);
4982 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4983 if (ioc->buf_size > 0) {
4984 int i;
4985 for (i = 0; i < sg_used; i++) {
4986 temp64 = pci_map_single(h->pdev, buff[i],
4987 buff_size[i], PCI_DMA_BIDIRECTIONAL);
4988 if (dma_mapping_error(&h->pdev->dev,
4989 (dma_addr_t) temp64)) {
4990 c->SG[i].Addr = cpu_to_le64(0);
4991 c->SG[i].Len = cpu_to_le32(0);
4992 hpsa_pci_unmap(h->pdev, c, i,
4993 PCI_DMA_BIDIRECTIONAL);
4994 status = -ENOMEM;
4995 goto cleanup0;
4996 }
4997 c->SG[i].Addr = cpu_to_le64(temp64);
4998 c->SG[i].Len = cpu_to_le32(buff_size[i]);
4999 c->SG[i].Ext = cpu_to_le32(0);
5000 }
5001 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5002 }
5003 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5004 if (sg_used)
5005 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5006 check_ioctl_unit_attention(h, c);
5007 /* Copy the error information out */
5008 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5009 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5010 status = -EFAULT;
5011 goto cleanup0;
5012 }
5013 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5014 int i;
5015
5016 /* Copy the data out of the buffer we created */
5017 BYTE __user *ptr = ioc->buf;
5018 for (i = 0; i < sg_used; i++) {
5019 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5020 status = -EFAULT;
5021 goto cleanup0;
5022 }
5023 ptr += buff_size[i];
5024 }
5025 }
5026 status = 0;
5027 cleanup0:
5028 cmd_special_free(h, c);
5029 cleanup1:
5030 if (buff) {
5031 int i;
5032
5033 for (i = 0; i < sg_used; i++)
5034 kfree(buff[i]);
5035 kfree(buff);
5036 }
5037 kfree(buff_size);
5038 kfree(ioc);
5039 return status;
5040 }
5041
5042 static void check_ioctl_unit_attention(struct ctlr_info *h,
5043 struct CommandList *c)
5044 {
5045 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5046 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5047 (void) check_for_unit_attention(h, c);
5048 }
5049
5050 static int increment_passthru_count(struct ctlr_info *h)
5051 {
5052 unsigned long flags;
5053
5054 spin_lock_irqsave(&h->passthru_count_lock, flags);
5055 if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5056 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5057 return -1;
5058 }
5059 h->passthru_count++;
5060 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5061 return 0;
5062 }
5063
5064 static void decrement_passthru_count(struct ctlr_info *h)
5065 {
5066 unsigned long flags;
5067
5068 spin_lock_irqsave(&h->passthru_count_lock, flags);
5069 if (h->passthru_count <= 0) {
5070 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5071 /* not expecting to get here. */
5072 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5073 return;
5074 }
5075 h->passthru_count--;
5076 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5077 }
5078
5079 /*
5080 * ioctl
5081 */
5082 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5083 {
5084 struct ctlr_info *h;
5085 void __user *argp = (void __user *)arg;
5086 int rc;
5087
5088 h = sdev_to_hba(dev);
5089
5090 switch (cmd) {
5091 case CCISS_DEREGDISK:
5092 case CCISS_REGNEWDISK:
5093 case CCISS_REGNEWD:
5094 hpsa_scan_start(h->scsi_host);
5095 return 0;
5096 case CCISS_GETPCIINFO:
5097 return hpsa_getpciinfo_ioctl(h, argp);
5098 case CCISS_GETDRIVVER:
5099 return hpsa_getdrivver_ioctl(h, argp);
5100 case CCISS_PASSTHRU:
5101 if (increment_passthru_count(h))
5102 return -EAGAIN;
5103 rc = hpsa_passthru_ioctl(h, argp);
5104 decrement_passthru_count(h);
5105 return rc;
5106 case CCISS_BIG_PASSTHRU:
5107 if (increment_passthru_count(h))
5108 return -EAGAIN;
5109 rc = hpsa_big_passthru_ioctl(h, argp);
5110 decrement_passthru_count(h);
5111 return rc;
5112 default:
5113 return -ENOTTY;
5114 }
5115 }
5116
5117 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5118 u8 reset_type)
5119 {
5120 struct CommandList *c;
5121
5122 c = cmd_alloc(h);
5123 if (!c)
5124 return -ENOMEM;
5125 /* fill_cmd can't fail here, no data buffer to map */
5126 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5127 RAID_CTLR_LUNID, TYPE_MSG);
5128 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5129 c->waiting = NULL;
5130 enqueue_cmd_and_start_io(h, c);
5131 /* Don't wait for completion, the reset won't complete. Don't free
5132 * the command either. This is the last command we will send before
5133 * re-initializing everything, so it doesn't matter and won't leak.
5134 */
5135 return 0;
5136 }
5137
5138 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5139 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5140 int cmd_type)
5141 {
5142 int pci_dir = XFER_NONE;
5143 struct CommandList *a; /* for commands to be aborted */
5144
5145 c->cmd_type = CMD_IOCTL_PEND;
5146 c->Header.ReplyQueue = 0;
5147 if (buff != NULL && size > 0) {
5148 c->Header.SGList = 1;
5149 c->Header.SGTotal = cpu_to_le16(1);
5150 } else {
5151 c->Header.SGList = 0;
5152 c->Header.SGTotal = cpu_to_le16(0);
5153 }
5154 c->Header.tag = cpu_to_le64(c->busaddr);
5155 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5156
5157 if (cmd_type == TYPE_CMD) {
5158 switch (cmd) {
5159 case HPSA_INQUIRY:
5160 /* are we trying to read a vital product page */
5161 if (page_code & VPD_PAGE) {
5162 c->Request.CDB[1] = 0x01;
5163 c->Request.CDB[2] = (page_code & 0xff);
5164 }
5165 c->Request.CDBLen = 6;
5166 c->Request.type_attr_dir =
5167 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5168 c->Request.Timeout = 0;
5169 c->Request.CDB[0] = HPSA_INQUIRY;
5170 c->Request.CDB[4] = size & 0xFF;
5171 break;
5172 case HPSA_REPORT_LOG:
5173 case HPSA_REPORT_PHYS:
5174 /* Talking to controller so It's a physical command
5175 mode = 00 target = 0. Nothing to write.
5176 */
5177 c->Request.CDBLen = 12;
5178 c->Request.type_attr_dir =
5179 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5180 c->Request.Timeout = 0;
5181 c->Request.CDB[0] = cmd;
5182 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5183 c->Request.CDB[7] = (size >> 16) & 0xFF;
5184 c->Request.CDB[8] = (size >> 8) & 0xFF;
5185 c->Request.CDB[9] = size & 0xFF;
5186 break;
5187 case HPSA_CACHE_FLUSH:
5188 c->Request.CDBLen = 12;
5189 c->Request.type_attr_dir =
5190 TYPE_ATTR_DIR(cmd_type,
5191 ATTR_SIMPLE, XFER_WRITE);
5192 c->Request.Timeout = 0;
5193 c->Request.CDB[0] = BMIC_WRITE;
5194 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5195 c->Request.CDB[7] = (size >> 8) & 0xFF;
5196 c->Request.CDB[8] = size & 0xFF;
5197 break;
5198 case TEST_UNIT_READY:
5199 c->Request.CDBLen = 6;
5200 c->Request.type_attr_dir =
5201 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5202 c->Request.Timeout = 0;
5203 break;
5204 case HPSA_GET_RAID_MAP:
5205 c->Request.CDBLen = 12;
5206 c->Request.type_attr_dir =
5207 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5208 c->Request.Timeout = 0;
5209 c->Request.CDB[0] = HPSA_CISS_READ;
5210 c->Request.CDB[1] = cmd;
5211 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5212 c->Request.CDB[7] = (size >> 16) & 0xFF;
5213 c->Request.CDB[8] = (size >> 8) & 0xFF;
5214 c->Request.CDB[9] = size & 0xFF;
5215 break;
5216 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5217 c->Request.CDBLen = 10;
5218 c->Request.type_attr_dir =
5219 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5220 c->Request.Timeout = 0;
5221 c->Request.CDB[0] = BMIC_READ;
5222 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5223 c->Request.CDB[7] = (size >> 16) & 0xFF;
5224 c->Request.CDB[8] = (size >> 8) & 0xFF;
5225 break;
5226 default:
5227 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5228 BUG();
5229 return -1;
5230 }
5231 } else if (cmd_type == TYPE_MSG) {
5232 switch (cmd) {
5233
5234 case HPSA_DEVICE_RESET_MSG:
5235 c->Request.CDBLen = 16;
5236 c->Request.type_attr_dir =
5237 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5238 c->Request.Timeout = 0; /* Don't time out */
5239 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5240 c->Request.CDB[0] = cmd;
5241 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5242 /* If bytes 4-7 are zero, it means reset the */
5243 /* LunID device */
5244 c->Request.CDB[4] = 0x00;
5245 c->Request.CDB[5] = 0x00;
5246 c->Request.CDB[6] = 0x00;
5247 c->Request.CDB[7] = 0x00;
5248 break;
5249 case HPSA_ABORT_MSG:
5250 a = buff; /* point to command to be aborted */
5251 dev_dbg(&h->pdev->dev,
5252 "Abort Tag:0x%016llx request Tag:0x%016llx",
5253 a->Header.tag, c->Header.tag);
5254 c->Request.CDBLen = 16;
5255 c->Request.type_attr_dir =
5256 TYPE_ATTR_DIR(cmd_type,
5257 ATTR_SIMPLE, XFER_WRITE);
5258 c->Request.Timeout = 0; /* Don't time out */
5259 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5260 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5261 c->Request.CDB[2] = 0x00; /* reserved */
5262 c->Request.CDB[3] = 0x00; /* reserved */
5263 /* Tag to abort goes in CDB[4]-CDB[11] */
5264 memcpy(&c->Request.CDB[4], &a->Header.tag,
5265 sizeof(a->Header.tag));
5266 c->Request.CDB[12] = 0x00; /* reserved */
5267 c->Request.CDB[13] = 0x00; /* reserved */
5268 c->Request.CDB[14] = 0x00; /* reserved */
5269 c->Request.CDB[15] = 0x00; /* reserved */
5270 break;
5271 default:
5272 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5273 cmd);
5274 BUG();
5275 }
5276 } else {
5277 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5278 BUG();
5279 }
5280
5281 switch (GET_DIR(c->Request.type_attr_dir)) {
5282 case XFER_READ:
5283 pci_dir = PCI_DMA_FROMDEVICE;
5284 break;
5285 case XFER_WRITE:
5286 pci_dir = PCI_DMA_TODEVICE;
5287 break;
5288 case XFER_NONE:
5289 pci_dir = PCI_DMA_NONE;
5290 break;
5291 default:
5292 pci_dir = PCI_DMA_BIDIRECTIONAL;
5293 }
5294 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5295 return -1;
5296 return 0;
5297 }
5298
5299 /*
5300 * Map (physical) PCI mem into (virtual) kernel space
5301 */
5302 static void __iomem *remap_pci_mem(ulong base, ulong size)
5303 {
5304 ulong page_base = ((ulong) base) & PAGE_MASK;
5305 ulong page_offs = ((ulong) base) - page_base;
5306 void __iomem *page_remapped = ioremap_nocache(page_base,
5307 page_offs + size);
5308
5309 return page_remapped ? (page_remapped + page_offs) : NULL;
5310 }
5311
5312 /* Takes cmds off the submission queue and sends them to the hardware,
5313 * then puts them on the queue of cmds waiting for completion.
5314 * Assumes h->lock is held
5315 */
5316 static void start_io(struct ctlr_info *h, unsigned long *flags)
5317 {
5318 struct CommandList *c;
5319
5320 while (!list_empty(&h->reqQ)) {
5321 c = list_entry(h->reqQ.next, struct CommandList, list);
5322 /* can't do anything if fifo is full */
5323 if ((h->access.fifo_full(h))) {
5324 h->fifo_recently_full = 1;
5325 dev_warn(&h->pdev->dev, "fifo full\n");
5326 break;
5327 }
5328 h->fifo_recently_full = 0;
5329
5330 /* Get the first entry from the Request Q */
5331 removeQ(c);
5332 h->Qdepth--;
5333
5334 /* Put job onto the completed Q */
5335 addQ(&h->cmpQ, c);
5336 atomic_inc(&h->commands_outstanding);
5337 spin_unlock_irqrestore(&h->lock, *flags);
5338 /* Tell the controller execute command */
5339 h->access.submit_command(h, c);
5340 spin_lock_irqsave(&h->lock, *flags);
5341 }
5342 }
5343
5344 static void lock_and_start_io(struct ctlr_info *h)
5345 {
5346 unsigned long flags;
5347
5348 spin_lock_irqsave(&h->lock, flags);
5349 start_io(h, &flags);
5350 spin_unlock_irqrestore(&h->lock, flags);
5351 }
5352
5353 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5354 {
5355 return h->access.command_completed(h, q);
5356 }
5357
5358 static inline bool interrupt_pending(struct ctlr_info *h)
5359 {
5360 return h->access.intr_pending(h);
5361 }
5362
5363 static inline long interrupt_not_for_us(struct ctlr_info *h)
5364 {
5365 return (h->access.intr_pending(h) == 0) ||
5366 (h->interrupts_enabled == 0);
5367 }
5368
5369 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5370 u32 raw_tag)
5371 {
5372 if (unlikely(tag_index >= h->nr_cmds)) {
5373 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5374 return 1;
5375 }
5376 return 0;
5377 }
5378
5379 static inline void finish_cmd(struct CommandList *c)
5380 {
5381 unsigned long flags;
5382 int io_may_be_stalled = 0;
5383 struct ctlr_info *h = c->h;
5384 int count;
5385
5386 spin_lock_irqsave(&h->lock, flags);
5387 removeQ(c);
5388
5389 /*
5390 * Check for possibly stalled i/o.
5391 *
5392 * If a fifo_full condition is encountered, requests will back up
5393 * in h->reqQ. This queue is only emptied out by start_io which is
5394 * only called when a new i/o request comes in. If no i/o's are
5395 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5396 * start_io from here if we detect such a danger.
5397 *
5398 * Normally, we shouldn't hit this case, but pounding on the
5399 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5400 * commands_outstanding is low. We want to avoid calling
5401 * start_io from in here as much as possible, and esp. don't
5402 * want to get in a cycle where we call start_io every time
5403 * through here.
5404 */
5405 count = atomic_read(&h->commands_outstanding);
5406 spin_unlock_irqrestore(&h->lock, flags);
5407 if (unlikely(h->fifo_recently_full) && count < 5)
5408 io_may_be_stalled = 1;
5409
5410 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5411 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5412 || c->cmd_type == CMD_IOACCEL2))
5413 complete_scsi_command(c);
5414 else if (c->cmd_type == CMD_IOCTL_PEND)
5415 complete(c->waiting);
5416 if (unlikely(io_may_be_stalled))
5417 lock_and_start_io(h);
5418 }
5419
5420 static inline u32 hpsa_tag_contains_index(u32 tag)
5421 {
5422 return tag & DIRECT_LOOKUP_BIT;
5423 }
5424
5425 static inline u32 hpsa_tag_to_index(u32 tag)
5426 {
5427 return tag >> DIRECT_LOOKUP_SHIFT;
5428 }
5429
5430
5431 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5432 {
5433 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5434 #define HPSA_SIMPLE_ERROR_BITS 0x03
5435 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5436 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5437 return tag & ~HPSA_PERF_ERROR_BITS;
5438 }
5439
5440 /* process completion of an indexed ("direct lookup") command */
5441 static inline void process_indexed_cmd(struct ctlr_info *h,
5442 u32 raw_tag)
5443 {
5444 u32 tag_index;
5445 struct CommandList *c;
5446
5447 tag_index = hpsa_tag_to_index(raw_tag);
5448 if (!bad_tag(h, tag_index, raw_tag)) {
5449 c = h->cmd_pool + tag_index;
5450 finish_cmd(c);
5451 }
5452 }
5453
5454 /* process completion of a non-indexed command */
5455 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5456 u32 raw_tag)
5457 {
5458 u32 tag;
5459 struct CommandList *c = NULL;
5460 unsigned long flags;
5461
5462 tag = hpsa_tag_discard_error_bits(h, raw_tag);
5463 spin_lock_irqsave(&h->lock, flags);
5464 list_for_each_entry(c, &h->cmpQ, list) {
5465 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5466 spin_unlock_irqrestore(&h->lock, flags);
5467 finish_cmd(c);
5468 return;
5469 }
5470 }
5471 spin_unlock_irqrestore(&h->lock, flags);
5472 bad_tag(h, h->nr_cmds + 1, raw_tag);
5473 }
5474
5475 /* Some controllers, like p400, will give us one interrupt
5476 * after a soft reset, even if we turned interrupts off.
5477 * Only need to check for this in the hpsa_xxx_discard_completions
5478 * functions.
5479 */
5480 static int ignore_bogus_interrupt(struct ctlr_info *h)
5481 {
5482 if (likely(!reset_devices))
5483 return 0;
5484
5485 if (likely(h->interrupts_enabled))
5486 return 0;
5487
5488 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5489 "(known firmware bug.) Ignoring.\n");
5490
5491 return 1;
5492 }
5493
5494 /*
5495 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5496 * Relies on (h-q[x] == x) being true for x such that
5497 * 0 <= x < MAX_REPLY_QUEUES.
5498 */
5499 static struct ctlr_info *queue_to_hba(u8 *queue)
5500 {
5501 return container_of((queue - *queue), struct ctlr_info, q[0]);
5502 }
5503
5504 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5505 {
5506 struct ctlr_info *h = queue_to_hba(queue);
5507 u8 q = *(u8 *) queue;
5508 u32 raw_tag;
5509
5510 if (ignore_bogus_interrupt(h))
5511 return IRQ_NONE;
5512
5513 if (interrupt_not_for_us(h))
5514 return IRQ_NONE;
5515 h->last_intr_timestamp = get_jiffies_64();
5516 while (interrupt_pending(h)) {
5517 raw_tag = get_next_completion(h, q);
5518 while (raw_tag != FIFO_EMPTY)
5519 raw_tag = next_command(h, q);
5520 }
5521 return IRQ_HANDLED;
5522 }
5523
5524 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5525 {
5526 struct ctlr_info *h = queue_to_hba(queue);
5527 u32 raw_tag;
5528 u8 q = *(u8 *) queue;
5529
5530 if (ignore_bogus_interrupt(h))
5531 return IRQ_NONE;
5532
5533 h->last_intr_timestamp = get_jiffies_64();
5534 raw_tag = get_next_completion(h, q);
5535 while (raw_tag != FIFO_EMPTY)
5536 raw_tag = next_command(h, q);
5537 return IRQ_HANDLED;
5538 }
5539
5540 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5541 {
5542 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5543 u32 raw_tag;
5544 u8 q = *(u8 *) queue;
5545
5546 if (interrupt_not_for_us(h))
5547 return IRQ_NONE;
5548 h->last_intr_timestamp = get_jiffies_64();
5549 while (interrupt_pending(h)) {
5550 raw_tag = get_next_completion(h, q);
5551 while (raw_tag != FIFO_EMPTY) {
5552 if (likely(hpsa_tag_contains_index(raw_tag)))
5553 process_indexed_cmd(h, raw_tag);
5554 else
5555 process_nonindexed_cmd(h, raw_tag);
5556 raw_tag = next_command(h, q);
5557 }
5558 }
5559 return IRQ_HANDLED;
5560 }
5561
5562 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5563 {
5564 struct ctlr_info *h = queue_to_hba(queue);
5565 u32 raw_tag;
5566 u8 q = *(u8 *) queue;
5567
5568 h->last_intr_timestamp = get_jiffies_64();
5569 raw_tag = get_next_completion(h, q);
5570 while (raw_tag != FIFO_EMPTY) {
5571 if (likely(hpsa_tag_contains_index(raw_tag)))
5572 process_indexed_cmd(h, raw_tag);
5573 else
5574 process_nonindexed_cmd(h, raw_tag);
5575 raw_tag = next_command(h, q);
5576 }
5577 return IRQ_HANDLED;
5578 }
5579
5580 /* Send a message CDB to the firmware. Careful, this only works
5581 * in simple mode, not performant mode due to the tag lookup.
5582 * We only ever use this immediately after a controller reset.
5583 */
5584 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5585 unsigned char type)
5586 {
5587 struct Command {
5588 struct CommandListHeader CommandHeader;
5589 struct RequestBlock Request;
5590 struct ErrDescriptor ErrorDescriptor;
5591 };
5592 struct Command *cmd;
5593 static const size_t cmd_sz = sizeof(*cmd) +
5594 sizeof(cmd->ErrorDescriptor);
5595 dma_addr_t paddr64;
5596 __le32 paddr32;
5597 u32 tag;
5598 void __iomem *vaddr;
5599 int i, err;
5600
5601 vaddr = pci_ioremap_bar(pdev, 0);
5602 if (vaddr == NULL)
5603 return -ENOMEM;
5604
5605 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5606 * CCISS commands, so they must be allocated from the lower 4GiB of
5607 * memory.
5608 */
5609 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5610 if (err) {
5611 iounmap(vaddr);
5612 return -ENOMEM;
5613 }
5614
5615 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5616 if (cmd == NULL) {
5617 iounmap(vaddr);
5618 return -ENOMEM;
5619 }
5620
5621 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5622 * although there's no guarantee, we assume that the address is at
5623 * least 4-byte aligned (most likely, it's page-aligned).
5624 */
5625 paddr32 = cpu_to_le32(paddr64);
5626
5627 cmd->CommandHeader.ReplyQueue = 0;
5628 cmd->CommandHeader.SGList = 0;
5629 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5630 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5631 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5632
5633 cmd->Request.CDBLen = 16;
5634 cmd->Request.type_attr_dir =
5635 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5636 cmd->Request.Timeout = 0; /* Don't time out */
5637 cmd->Request.CDB[0] = opcode;
5638 cmd->Request.CDB[1] = type;
5639 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5640 cmd->ErrorDescriptor.Addr =
5641 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5642 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5643
5644 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5645
5646 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5647 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5648 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5649 break;
5650 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5651 }
5652
5653 iounmap(vaddr);
5654
5655 /* we leak the DMA buffer here ... no choice since the controller could
5656 * still complete the command.
5657 */
5658 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5659 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5660 opcode, type);
5661 return -ETIMEDOUT;
5662 }
5663
5664 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5665
5666 if (tag & HPSA_ERROR_BIT) {
5667 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5668 opcode, type);
5669 return -EIO;
5670 }
5671
5672 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5673 opcode, type);
5674 return 0;
5675 }
5676
5677 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5678
5679 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5680 void __iomem *vaddr, u32 use_doorbell)
5681 {
5682
5683 if (use_doorbell) {
5684 /* For everything after the P600, the PCI power state method
5685 * of resetting the controller doesn't work, so we have this
5686 * other way using the doorbell register.
5687 */
5688 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5689 writel(use_doorbell, vaddr + SA5_DOORBELL);
5690
5691 /* PMC hardware guys tell us we need a 10 second delay after
5692 * doorbell reset and before any attempt to talk to the board
5693 * at all to ensure that this actually works and doesn't fall
5694 * over in some weird corner cases.
5695 */
5696 msleep(10000);
5697 } else { /* Try to do it the PCI power state way */
5698
5699 /* Quoting from the Open CISS Specification: "The Power
5700 * Management Control/Status Register (CSR) controls the power
5701 * state of the device. The normal operating state is D0,
5702 * CSR=00h. The software off state is D3, CSR=03h. To reset
5703 * the controller, place the interface device in D3 then to D0,
5704 * this causes a secondary PCI reset which will reset the
5705 * controller." */
5706
5707 int rc = 0;
5708
5709 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5710
5711 /* enter the D3hot power management state */
5712 rc = pci_set_power_state(pdev, PCI_D3hot);
5713 if (rc)
5714 return rc;
5715
5716 msleep(500);
5717
5718 /* enter the D0 power management state */
5719 rc = pci_set_power_state(pdev, PCI_D0);
5720 if (rc)
5721 return rc;
5722
5723 /*
5724 * The P600 requires a small delay when changing states.
5725 * Otherwise we may think the board did not reset and we bail.
5726 * This for kdump only and is particular to the P600.
5727 */
5728 msleep(500);
5729 }
5730 return 0;
5731 }
5732
5733 static void init_driver_version(char *driver_version, int len)
5734 {
5735 memset(driver_version, 0, len);
5736 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5737 }
5738
5739 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5740 {
5741 char *driver_version;
5742 int i, size = sizeof(cfgtable->driver_version);
5743
5744 driver_version = kmalloc(size, GFP_KERNEL);
5745 if (!driver_version)
5746 return -ENOMEM;
5747
5748 init_driver_version(driver_version, size);
5749 for (i = 0; i < size; i++)
5750 writeb(driver_version[i], &cfgtable->driver_version[i]);
5751 kfree(driver_version);
5752 return 0;
5753 }
5754
5755 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5756 unsigned char *driver_ver)
5757 {
5758 int i;
5759
5760 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5761 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5762 }
5763
5764 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5765 {
5766
5767 char *driver_ver, *old_driver_ver;
5768 int rc, size = sizeof(cfgtable->driver_version);
5769
5770 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5771 if (!old_driver_ver)
5772 return -ENOMEM;
5773 driver_ver = old_driver_ver + size;
5774
5775 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5776 * should have been changed, otherwise we know the reset failed.
5777 */
5778 init_driver_version(old_driver_ver, size);
5779 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5780 rc = !memcmp(driver_ver, old_driver_ver, size);
5781 kfree(old_driver_ver);
5782 return rc;
5783 }
5784 /* This does a hard reset of the controller using PCI power management
5785 * states or the using the doorbell register.
5786 */
5787 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5788 {
5789 u64 cfg_offset;
5790 u32 cfg_base_addr;
5791 u64 cfg_base_addr_index;
5792 void __iomem *vaddr;
5793 unsigned long paddr;
5794 u32 misc_fw_support;
5795 int rc;
5796 struct CfgTable __iomem *cfgtable;
5797 u32 use_doorbell;
5798 u32 board_id;
5799 u16 command_register;
5800
5801 /* For controllers as old as the P600, this is very nearly
5802 * the same thing as
5803 *
5804 * pci_save_state(pci_dev);
5805 * pci_set_power_state(pci_dev, PCI_D3hot);
5806 * pci_set_power_state(pci_dev, PCI_D0);
5807 * pci_restore_state(pci_dev);
5808 *
5809 * For controllers newer than the P600, the pci power state
5810 * method of resetting doesn't work so we have another way
5811 * using the doorbell register.
5812 */
5813
5814 rc = hpsa_lookup_board_id(pdev, &board_id);
5815 if (rc < 0 || !ctlr_is_resettable(board_id)) {
5816 dev_warn(&pdev->dev, "Not resetting device.\n");
5817 return -ENODEV;
5818 }
5819
5820 /* if controller is soft- but not hard resettable... */
5821 if (!ctlr_is_hard_resettable(board_id))
5822 return -ENOTSUPP; /* try soft reset later. */
5823
5824 /* Save the PCI command register */
5825 pci_read_config_word(pdev, 4, &command_register);
5826 pci_save_state(pdev);
5827
5828 /* find the first memory BAR, so we can find the cfg table */
5829 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5830 if (rc)
5831 return rc;
5832 vaddr = remap_pci_mem(paddr, 0x250);
5833 if (!vaddr)
5834 return -ENOMEM;
5835
5836 /* find cfgtable in order to check if reset via doorbell is supported */
5837 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5838 &cfg_base_addr_index, &cfg_offset);
5839 if (rc)
5840 goto unmap_vaddr;
5841 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5842 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5843 if (!cfgtable) {
5844 rc = -ENOMEM;
5845 goto unmap_vaddr;
5846 }
5847 rc = write_driver_ver_to_cfgtable(cfgtable);
5848 if (rc)
5849 goto unmap_cfgtable;
5850
5851 /* If reset via doorbell register is supported, use that.
5852 * There are two such methods. Favor the newest method.
5853 */
5854 misc_fw_support = readl(&cfgtable->misc_fw_support);
5855 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5856 if (use_doorbell) {
5857 use_doorbell = DOORBELL_CTLR_RESET2;
5858 } else {
5859 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5860 if (use_doorbell) {
5861 dev_warn(&pdev->dev, "Soft reset not supported. "
5862 "Firmware update is required.\n");
5863 rc = -ENOTSUPP; /* try soft reset */
5864 goto unmap_cfgtable;
5865 }
5866 }
5867
5868 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5869 if (rc)
5870 goto unmap_cfgtable;
5871
5872 pci_restore_state(pdev);
5873 pci_write_config_word(pdev, 4, command_register);
5874
5875 /* Some devices (notably the HP Smart Array 5i Controller)
5876 need a little pause here */
5877 msleep(HPSA_POST_RESET_PAUSE_MSECS);
5878
5879 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5880 if (rc) {
5881 dev_warn(&pdev->dev,
5882 "failed waiting for board to become ready "
5883 "after hard reset\n");
5884 goto unmap_cfgtable;
5885 }
5886
5887 rc = controller_reset_failed(vaddr);
5888 if (rc < 0)
5889 goto unmap_cfgtable;
5890 if (rc) {
5891 dev_warn(&pdev->dev, "Unable to successfully reset "
5892 "controller. Will try soft reset.\n");
5893 rc = -ENOTSUPP;
5894 } else {
5895 dev_info(&pdev->dev, "board ready after hard reset.\n");
5896 }
5897
5898 unmap_cfgtable:
5899 iounmap(cfgtable);
5900
5901 unmap_vaddr:
5902 iounmap(vaddr);
5903 return rc;
5904 }
5905
5906 /*
5907 * We cannot read the structure directly, for portability we must use
5908 * the io functions.
5909 * This is for debug only.
5910 */
5911 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5912 {
5913 #ifdef HPSA_DEBUG
5914 int i;
5915 char temp_name[17];
5916
5917 dev_info(dev, "Controller Configuration information\n");
5918 dev_info(dev, "------------------------------------\n");
5919 for (i = 0; i < 4; i++)
5920 temp_name[i] = readb(&(tb->Signature[i]));
5921 temp_name[4] = '\0';
5922 dev_info(dev, " Signature = %s\n", temp_name);
5923 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
5924 dev_info(dev, " Transport methods supported = 0x%x\n",
5925 readl(&(tb->TransportSupport)));
5926 dev_info(dev, " Transport methods active = 0x%x\n",
5927 readl(&(tb->TransportActive)));
5928 dev_info(dev, " Requested transport Method = 0x%x\n",
5929 readl(&(tb->HostWrite.TransportRequest)));
5930 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
5931 readl(&(tb->HostWrite.CoalIntDelay)));
5932 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
5933 readl(&(tb->HostWrite.CoalIntCount)));
5934 dev_info(dev, " Max outstanding commands = %d\n",
5935 readl(&(tb->CmdsOutMax)));
5936 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5937 for (i = 0; i < 16; i++)
5938 temp_name[i] = readb(&(tb->ServerName[i]));
5939 temp_name[16] = '\0';
5940 dev_info(dev, " Server Name = %s\n", temp_name);
5941 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
5942 readl(&(tb->HeartBeat)));
5943 #endif /* HPSA_DEBUG */
5944 }
5945
5946 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5947 {
5948 int i, offset, mem_type, bar_type;
5949
5950 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5951 return 0;
5952 offset = 0;
5953 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5954 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5955 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5956 offset += 4;
5957 else {
5958 mem_type = pci_resource_flags(pdev, i) &
5959 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5960 switch (mem_type) {
5961 case PCI_BASE_ADDRESS_MEM_TYPE_32:
5962 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5963 offset += 4; /* 32 bit */
5964 break;
5965 case PCI_BASE_ADDRESS_MEM_TYPE_64:
5966 offset += 8;
5967 break;
5968 default: /* reserved in PCI 2.2 */
5969 dev_warn(&pdev->dev,
5970 "base address is invalid\n");
5971 return -1;
5972 break;
5973 }
5974 }
5975 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5976 return i + 1;
5977 }
5978 return -1;
5979 }
5980
5981 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5982 * controllers that are capable. If not, we use IO-APIC mode.
5983 */
5984
5985 static void hpsa_interrupt_mode(struct ctlr_info *h)
5986 {
5987 #ifdef CONFIG_PCI_MSI
5988 int err, i;
5989 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5990
5991 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5992 hpsa_msix_entries[i].vector = 0;
5993 hpsa_msix_entries[i].entry = i;
5994 }
5995
5996 /* Some boards advertise MSI but don't really support it */
5997 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5998 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5999 goto default_int_mode;
6000 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6001 dev_info(&h->pdev->dev, "MSIX\n");
6002 h->msix_vector = MAX_REPLY_QUEUES;
6003 if (h->msix_vector > num_online_cpus())
6004 h->msix_vector = num_online_cpus();
6005 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6006 1, h->msix_vector);
6007 if (err < 0) {
6008 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6009 h->msix_vector = 0;
6010 goto single_msi_mode;
6011 } else if (err < h->msix_vector) {
6012 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6013 "available\n", err);
6014 }
6015 h->msix_vector = err;
6016 for (i = 0; i < h->msix_vector; i++)
6017 h->intr[i] = hpsa_msix_entries[i].vector;
6018 return;
6019 }
6020 single_msi_mode:
6021 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6022 dev_info(&h->pdev->dev, "MSI\n");
6023 if (!pci_enable_msi(h->pdev))
6024 h->msi_vector = 1;
6025 else
6026 dev_warn(&h->pdev->dev, "MSI init failed\n");
6027 }
6028 default_int_mode:
6029 #endif /* CONFIG_PCI_MSI */
6030 /* if we get here we're going to use the default interrupt mode */
6031 h->intr[h->intr_mode] = h->pdev->irq;
6032 }
6033
6034 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6035 {
6036 int i;
6037 u32 subsystem_vendor_id, subsystem_device_id;
6038
6039 subsystem_vendor_id = pdev->subsystem_vendor;
6040 subsystem_device_id = pdev->subsystem_device;
6041 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6042 subsystem_vendor_id;
6043
6044 for (i = 0; i < ARRAY_SIZE(products); i++)
6045 if (*board_id == products[i].board_id)
6046 return i;
6047
6048 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6049 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6050 !hpsa_allow_any) {
6051 dev_warn(&pdev->dev, "unrecognized board ID: "
6052 "0x%08x, ignoring.\n", *board_id);
6053 return -ENODEV;
6054 }
6055 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6056 }
6057
6058 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6059 unsigned long *memory_bar)
6060 {
6061 int i;
6062
6063 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6064 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6065 /* addressing mode bits already removed */
6066 *memory_bar = pci_resource_start(pdev, i);
6067 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6068 *memory_bar);
6069 return 0;
6070 }
6071 dev_warn(&pdev->dev, "no memory BAR found\n");
6072 return -ENODEV;
6073 }
6074
6075 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6076 int wait_for_ready)
6077 {
6078 int i, iterations;
6079 u32 scratchpad;
6080 if (wait_for_ready)
6081 iterations = HPSA_BOARD_READY_ITERATIONS;
6082 else
6083 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6084
6085 for (i = 0; i < iterations; i++) {
6086 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6087 if (wait_for_ready) {
6088 if (scratchpad == HPSA_FIRMWARE_READY)
6089 return 0;
6090 } else {
6091 if (scratchpad != HPSA_FIRMWARE_READY)
6092 return 0;
6093 }
6094 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6095 }
6096 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6097 return -ENODEV;
6098 }
6099
6100 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6101 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6102 u64 *cfg_offset)
6103 {
6104 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6105 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6106 *cfg_base_addr &= (u32) 0x0000ffff;
6107 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6108 if (*cfg_base_addr_index == -1) {
6109 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6110 return -ENODEV;
6111 }
6112 return 0;
6113 }
6114
6115 static int hpsa_find_cfgtables(struct ctlr_info *h)
6116 {
6117 u64 cfg_offset;
6118 u32 cfg_base_addr;
6119 u64 cfg_base_addr_index;
6120 u32 trans_offset;
6121 int rc;
6122
6123 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6124 &cfg_base_addr_index, &cfg_offset);
6125 if (rc)
6126 return rc;
6127 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6128 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6129 if (!h->cfgtable)
6130 return -ENOMEM;
6131 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6132 if (rc)
6133 return rc;
6134 /* Find performant mode table. */
6135 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6136 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6137 cfg_base_addr_index)+cfg_offset+trans_offset,
6138 sizeof(*h->transtable));
6139 if (!h->transtable)
6140 return -ENOMEM;
6141 return 0;
6142 }
6143
6144 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6145 {
6146 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6147
6148 /* Limit commands in memory limited kdump scenario. */
6149 if (reset_devices && h->max_commands > 32)
6150 h->max_commands = 32;
6151
6152 if (h->max_commands < 16) {
6153 dev_warn(&h->pdev->dev, "Controller reports "
6154 "max supported commands of %d, an obvious lie. "
6155 "Using 16. Ensure that firmware is up to date.\n",
6156 h->max_commands);
6157 h->max_commands = 16;
6158 }
6159 }
6160
6161 /* Interrogate the hardware for some limits:
6162 * max commands, max SG elements without chaining, and with chaining,
6163 * SG chain block size, etc.
6164 */
6165 static void hpsa_find_board_params(struct ctlr_info *h)
6166 {
6167 hpsa_get_max_perf_mode_cmds(h);
6168 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6169 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6170 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6171 /*
6172 * Limit in-command s/g elements to 32 save dma'able memory.
6173 * Howvever spec says if 0, use 31
6174 */
6175 h->max_cmd_sg_entries = 31;
6176 if (h->maxsgentries > 512) {
6177 h->max_cmd_sg_entries = 32;
6178 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6179 h->maxsgentries--; /* save one for chain pointer */
6180 } else {
6181 h->chainsize = 0;
6182 h->maxsgentries = 31; /* default to traditional values */
6183 }
6184
6185 /* Find out what task management functions are supported and cache */
6186 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6187 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6188 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6189 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6190 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6191 }
6192
6193 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6194 {
6195 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6196 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6197 return false;
6198 }
6199 return true;
6200 }
6201
6202 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6203 {
6204 u32 driver_support;
6205
6206 driver_support = readl(&(h->cfgtable->driver_support));
6207 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6208 #ifdef CONFIG_X86
6209 driver_support |= ENABLE_SCSI_PREFETCH;
6210 #endif
6211 driver_support |= ENABLE_UNIT_ATTN;
6212 writel(driver_support, &(h->cfgtable->driver_support));
6213 }
6214
6215 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6216 * in a prefetch beyond physical memory.
6217 */
6218 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6219 {
6220 u32 dma_prefetch;
6221
6222 if (h->board_id != 0x3225103C)
6223 return;
6224 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6225 dma_prefetch |= 0x8000;
6226 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6227 }
6228
6229 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6230 {
6231 int i;
6232 u32 doorbell_value;
6233 unsigned long flags;
6234 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6235 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6236 spin_lock_irqsave(&h->lock, flags);
6237 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6238 spin_unlock_irqrestore(&h->lock, flags);
6239 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6240 break;
6241 /* delay and try again */
6242 msleep(20);
6243 }
6244 }
6245
6246 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6247 {
6248 int i;
6249 u32 doorbell_value;
6250 unsigned long flags;
6251
6252 /* under certain very rare conditions, this can take awhile.
6253 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6254 * as we enter this code.)
6255 */
6256 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6257 spin_lock_irqsave(&h->lock, flags);
6258 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6259 spin_unlock_irqrestore(&h->lock, flags);
6260 if (!(doorbell_value & CFGTBL_ChangeReq))
6261 break;
6262 /* delay and try again */
6263 usleep_range(10000, 20000);
6264 }
6265 }
6266
6267 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6268 {
6269 u32 trans_support;
6270
6271 trans_support = readl(&(h->cfgtable->TransportSupport));
6272 if (!(trans_support & SIMPLE_MODE))
6273 return -ENOTSUPP;
6274
6275 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6276
6277 /* Update the field, and then ring the doorbell */
6278 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6279 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6280 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6281 hpsa_wait_for_mode_change_ack(h);
6282 print_cfg_table(&h->pdev->dev, h->cfgtable);
6283 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6284 goto error;
6285 h->transMethod = CFGTBL_Trans_Simple;
6286 return 0;
6287 error:
6288 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6289 return -ENODEV;
6290 }
6291
6292 static int hpsa_pci_init(struct ctlr_info *h)
6293 {
6294 int prod_index, err;
6295
6296 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6297 if (prod_index < 0)
6298 return -ENODEV;
6299 h->product_name = products[prod_index].product_name;
6300 h->access = *(products[prod_index].access);
6301
6302 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6303 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6304
6305 err = pci_enable_device(h->pdev);
6306 if (err) {
6307 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6308 return err;
6309 }
6310
6311 err = pci_request_regions(h->pdev, HPSA);
6312 if (err) {
6313 dev_err(&h->pdev->dev,
6314 "cannot obtain PCI resources, aborting\n");
6315 return err;
6316 }
6317
6318 pci_set_master(h->pdev);
6319
6320 hpsa_interrupt_mode(h);
6321 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6322 if (err)
6323 goto err_out_free_res;
6324 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6325 if (!h->vaddr) {
6326 err = -ENOMEM;
6327 goto err_out_free_res;
6328 }
6329 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6330 if (err)
6331 goto err_out_free_res;
6332 err = hpsa_find_cfgtables(h);
6333 if (err)
6334 goto err_out_free_res;
6335 hpsa_find_board_params(h);
6336
6337 if (!hpsa_CISS_signature_present(h)) {
6338 err = -ENODEV;
6339 goto err_out_free_res;
6340 }
6341 hpsa_set_driver_support_bits(h);
6342 hpsa_p600_dma_prefetch_quirk(h);
6343 err = hpsa_enter_simple_mode(h);
6344 if (err)
6345 goto err_out_free_res;
6346 return 0;
6347
6348 err_out_free_res:
6349 if (h->transtable)
6350 iounmap(h->transtable);
6351 if (h->cfgtable)
6352 iounmap(h->cfgtable);
6353 if (h->vaddr)
6354 iounmap(h->vaddr);
6355 pci_disable_device(h->pdev);
6356 pci_release_regions(h->pdev);
6357 return err;
6358 }
6359
6360 static void hpsa_hba_inquiry(struct ctlr_info *h)
6361 {
6362 int rc;
6363
6364 #define HBA_INQUIRY_BYTE_COUNT 64
6365 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6366 if (!h->hba_inquiry_data)
6367 return;
6368 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6369 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6370 if (rc != 0) {
6371 kfree(h->hba_inquiry_data);
6372 h->hba_inquiry_data = NULL;
6373 }
6374 }
6375
6376 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6377 {
6378 int rc, i;
6379 void __iomem *vaddr;
6380
6381 if (!reset_devices)
6382 return 0;
6383
6384 /* kdump kernel is loading, we don't know in which state is
6385 * the pci interface. The dev->enable_cnt is equal zero
6386 * so we call enable+disable, wait a while and switch it on.
6387 */
6388 rc = pci_enable_device(pdev);
6389 if (rc) {
6390 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6391 return -ENODEV;
6392 }
6393 pci_disable_device(pdev);
6394 msleep(260); /* a randomly chosen number */
6395 rc = pci_enable_device(pdev);
6396 if (rc) {
6397 dev_warn(&pdev->dev, "failed to enable device.\n");
6398 return -ENODEV;
6399 }
6400
6401 pci_set_master(pdev);
6402
6403 vaddr = pci_ioremap_bar(pdev, 0);
6404 if (vaddr == NULL) {
6405 rc = -ENOMEM;
6406 goto out_disable;
6407 }
6408 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6409 iounmap(vaddr);
6410
6411 /* Reset the controller with a PCI power-cycle or via doorbell */
6412 rc = hpsa_kdump_hard_reset_controller(pdev);
6413
6414 /* -ENOTSUPP here means we cannot reset the controller
6415 * but it's already (and still) up and running in
6416 * "performant mode". Or, it might be 640x, which can't reset
6417 * due to concerns about shared bbwc between 6402/6404 pair.
6418 */
6419 if (rc) {
6420 if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
6421 rc = -ENODEV;
6422 goto out_disable;
6423 }
6424
6425 /* Now try to get the controller to respond to a no-op */
6426 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6427 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6428 if (hpsa_noop(pdev) == 0)
6429 break;
6430 else
6431 dev_warn(&pdev->dev, "no-op failed%s\n",
6432 (i < 11 ? "; re-trying" : ""));
6433 }
6434
6435 out_disable:
6436
6437 pci_disable_device(pdev);
6438 return rc;
6439 }
6440
6441 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6442 {
6443 h->cmd_pool_bits = kzalloc(
6444 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6445 sizeof(unsigned long), GFP_KERNEL);
6446 h->cmd_pool = pci_alloc_consistent(h->pdev,
6447 h->nr_cmds * sizeof(*h->cmd_pool),
6448 &(h->cmd_pool_dhandle));
6449 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6450 h->nr_cmds * sizeof(*h->errinfo_pool),
6451 &(h->errinfo_pool_dhandle));
6452 if ((h->cmd_pool_bits == NULL)
6453 || (h->cmd_pool == NULL)
6454 || (h->errinfo_pool == NULL)) {
6455 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6456 return -ENOMEM;
6457 }
6458 return 0;
6459 }
6460
6461 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6462 {
6463 kfree(h->cmd_pool_bits);
6464 if (h->cmd_pool)
6465 pci_free_consistent(h->pdev,
6466 h->nr_cmds * sizeof(struct CommandList),
6467 h->cmd_pool, h->cmd_pool_dhandle);
6468 if (h->ioaccel2_cmd_pool)
6469 pci_free_consistent(h->pdev,
6470 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6471 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6472 if (h->errinfo_pool)
6473 pci_free_consistent(h->pdev,
6474 h->nr_cmds * sizeof(struct ErrorInfo),
6475 h->errinfo_pool,
6476 h->errinfo_pool_dhandle);
6477 if (h->ioaccel_cmd_pool)
6478 pci_free_consistent(h->pdev,
6479 h->nr_cmds * sizeof(struct io_accel1_cmd),
6480 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6481 }
6482
6483 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6484 {
6485 int i, cpu;
6486
6487 cpu = cpumask_first(cpu_online_mask);
6488 for (i = 0; i < h->msix_vector; i++) {
6489 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6490 cpu = cpumask_next(cpu, cpu_online_mask);
6491 }
6492 }
6493
6494 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6495 static void hpsa_free_irqs(struct ctlr_info *h)
6496 {
6497 int i;
6498
6499 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6500 /* Single reply queue, only one irq to free */
6501 i = h->intr_mode;
6502 irq_set_affinity_hint(h->intr[i], NULL);
6503 free_irq(h->intr[i], &h->q[i]);
6504 return;
6505 }
6506
6507 for (i = 0; i < h->msix_vector; i++) {
6508 irq_set_affinity_hint(h->intr[i], NULL);
6509 free_irq(h->intr[i], &h->q[i]);
6510 }
6511 for (; i < MAX_REPLY_QUEUES; i++)
6512 h->q[i] = 0;
6513 }
6514
6515 static int hpsa_request_irq(struct ctlr_info *h,
6516 irqreturn_t (*msixhandler)(int, void *),
6517 irqreturn_t (*intxhandler)(int, void *))
6518 {
6519 int rc, i;
6520
6521 /*
6522 * initialize h->q[x] = x so that interrupt handlers know which
6523 * queue to process.
6524 */
6525 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6526 h->q[i] = (u8) i;
6527
6528 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6529 /* If performant mode and MSI-X, use multiple reply queues */
6530 for (i = 0; i < h->msix_vector; i++) {
6531 rc = request_irq(h->intr[i], msixhandler,
6532 0, h->devname,
6533 &h->q[i]);
6534 if (rc) {
6535 int j;
6536
6537 dev_err(&h->pdev->dev,
6538 "failed to get irq %d for %s\n",
6539 h->intr[i], h->devname);
6540 for (j = 0; j < i; j++) {
6541 free_irq(h->intr[j], &h->q[j]);
6542 h->q[j] = 0;
6543 }
6544 for (; j < MAX_REPLY_QUEUES; j++)
6545 h->q[j] = 0;
6546 return rc;
6547 }
6548 }
6549 hpsa_irq_affinity_hints(h);
6550 } else {
6551 /* Use single reply pool */
6552 if (h->msix_vector > 0 || h->msi_vector) {
6553 rc = request_irq(h->intr[h->intr_mode],
6554 msixhandler, 0, h->devname,
6555 &h->q[h->intr_mode]);
6556 } else {
6557 rc = request_irq(h->intr[h->intr_mode],
6558 intxhandler, IRQF_SHARED, h->devname,
6559 &h->q[h->intr_mode]);
6560 }
6561 }
6562 if (rc) {
6563 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6564 h->intr[h->intr_mode], h->devname);
6565 return -ENODEV;
6566 }
6567 return 0;
6568 }
6569
6570 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6571 {
6572 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6573 HPSA_RESET_TYPE_CONTROLLER)) {
6574 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6575 return -EIO;
6576 }
6577
6578 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6579 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6580 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6581 return -1;
6582 }
6583
6584 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6585 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6586 dev_warn(&h->pdev->dev, "Board failed to become ready "
6587 "after soft reset.\n");
6588 return -1;
6589 }
6590
6591 return 0;
6592 }
6593
6594 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6595 {
6596 hpsa_free_irqs(h);
6597 #ifdef CONFIG_PCI_MSI
6598 if (h->msix_vector) {
6599 if (h->pdev->msix_enabled)
6600 pci_disable_msix(h->pdev);
6601 } else if (h->msi_vector) {
6602 if (h->pdev->msi_enabled)
6603 pci_disable_msi(h->pdev);
6604 }
6605 #endif /* CONFIG_PCI_MSI */
6606 }
6607
6608 static void hpsa_free_reply_queues(struct ctlr_info *h)
6609 {
6610 int i;
6611
6612 for (i = 0; i < h->nreply_queues; i++) {
6613 if (!h->reply_queue[i].head)
6614 continue;
6615 pci_free_consistent(h->pdev, h->reply_queue_size,
6616 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6617 h->reply_queue[i].head = NULL;
6618 h->reply_queue[i].busaddr = 0;
6619 }
6620 }
6621
6622 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6623 {
6624 hpsa_free_irqs_and_disable_msix(h);
6625 hpsa_free_sg_chain_blocks(h);
6626 hpsa_free_cmd_pool(h);
6627 kfree(h->ioaccel1_blockFetchTable);
6628 kfree(h->blockFetchTable);
6629 hpsa_free_reply_queues(h);
6630 if (h->vaddr)
6631 iounmap(h->vaddr);
6632 if (h->transtable)
6633 iounmap(h->transtable);
6634 if (h->cfgtable)
6635 iounmap(h->cfgtable);
6636 pci_disable_device(h->pdev);
6637 pci_release_regions(h->pdev);
6638 kfree(h);
6639 }
6640
6641 /* Called when controller lockup detected. */
6642 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6643 {
6644 struct CommandList *c = NULL;
6645
6646 assert_spin_locked(&h->lock);
6647 /* Mark all outstanding commands as failed and complete them. */
6648 while (!list_empty(list)) {
6649 c = list_entry(list->next, struct CommandList, list);
6650 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6651 finish_cmd(c);
6652 }
6653 }
6654
6655 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6656 {
6657 int i, cpu;
6658
6659 cpu = cpumask_first(cpu_online_mask);
6660 for (i = 0; i < num_online_cpus(); i++) {
6661 u32 *lockup_detected;
6662 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6663 *lockup_detected = value;
6664 cpu = cpumask_next(cpu, cpu_online_mask);
6665 }
6666 wmb(); /* be sure the per-cpu variables are out to memory */
6667 }
6668
6669 static void controller_lockup_detected(struct ctlr_info *h)
6670 {
6671 unsigned long flags;
6672 u32 lockup_detected;
6673
6674 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6675 spin_lock_irqsave(&h->lock, flags);
6676 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6677 if (!lockup_detected) {
6678 /* no heartbeat, but controller gave us a zero. */
6679 dev_warn(&h->pdev->dev,
6680 "lockup detected but scratchpad register is zero\n");
6681 lockup_detected = 0xffffffff;
6682 }
6683 set_lockup_detected_for_all_cpus(h, lockup_detected);
6684 spin_unlock_irqrestore(&h->lock, flags);
6685 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6686 lockup_detected);
6687 pci_disable_device(h->pdev);
6688 spin_lock_irqsave(&h->lock, flags);
6689 fail_all_cmds_on_list(h, &h->cmpQ);
6690 fail_all_cmds_on_list(h, &h->reqQ);
6691 spin_unlock_irqrestore(&h->lock, flags);
6692 }
6693
6694 static void detect_controller_lockup(struct ctlr_info *h)
6695 {
6696 u64 now;
6697 u32 heartbeat;
6698 unsigned long flags;
6699
6700 now = get_jiffies_64();
6701 /* If we've received an interrupt recently, we're ok. */
6702 if (time_after64(h->last_intr_timestamp +
6703 (h->heartbeat_sample_interval), now))
6704 return;
6705
6706 /*
6707 * If we've already checked the heartbeat recently, we're ok.
6708 * This could happen if someone sends us a signal. We
6709 * otherwise don't care about signals in this thread.
6710 */
6711 if (time_after64(h->last_heartbeat_timestamp +
6712 (h->heartbeat_sample_interval), now))
6713 return;
6714
6715 /* If heartbeat has not changed since we last looked, we're not ok. */
6716 spin_lock_irqsave(&h->lock, flags);
6717 heartbeat = readl(&h->cfgtable->HeartBeat);
6718 spin_unlock_irqrestore(&h->lock, flags);
6719 if (h->last_heartbeat == heartbeat) {
6720 controller_lockup_detected(h);
6721 return;
6722 }
6723
6724 /* We're ok. */
6725 h->last_heartbeat = heartbeat;
6726 h->last_heartbeat_timestamp = now;
6727 }
6728
6729 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6730 {
6731 int i;
6732 char *event_type;
6733
6734 /* Clear the driver-requested rescan flag */
6735 h->drv_req_rescan = 0;
6736
6737 /* Ask the controller to clear the events we're handling. */
6738 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6739 | CFGTBL_Trans_io_accel2)) &&
6740 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6741 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6742
6743 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6744 event_type = "state change";
6745 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6746 event_type = "configuration change";
6747 /* Stop sending new RAID offload reqs via the IO accelerator */
6748 scsi_block_requests(h->scsi_host);
6749 for (i = 0; i < h->ndevices; i++)
6750 h->dev[i]->offload_enabled = 0;
6751 hpsa_drain_accel_commands(h);
6752 /* Set 'accelerator path config change' bit */
6753 dev_warn(&h->pdev->dev,
6754 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6755 h->events, event_type);
6756 writel(h->events, &(h->cfgtable->clear_event_notify));
6757 /* Set the "clear event notify field update" bit 6 */
6758 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6759 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6760 hpsa_wait_for_clear_event_notify_ack(h);
6761 scsi_unblock_requests(h->scsi_host);
6762 } else {
6763 /* Acknowledge controller notification events. */
6764 writel(h->events, &(h->cfgtable->clear_event_notify));
6765 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6766 hpsa_wait_for_clear_event_notify_ack(h);
6767 #if 0
6768 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6769 hpsa_wait_for_mode_change_ack(h);
6770 #endif
6771 }
6772 return;
6773 }
6774
6775 /* Check a register on the controller to see if there are configuration
6776 * changes (added/changed/removed logical drives, etc.) which mean that
6777 * we should rescan the controller for devices.
6778 * Also check flag for driver-initiated rescan.
6779 */
6780 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6781 {
6782 if (h->drv_req_rescan)
6783 return 1;
6784
6785 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6786 return 0;
6787
6788 h->events = readl(&(h->cfgtable->event_notify));
6789 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6790 }
6791
6792 /*
6793 * Check if any of the offline devices have become ready
6794 */
6795 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6796 {
6797 unsigned long flags;
6798 struct offline_device_entry *d;
6799 struct list_head *this, *tmp;
6800
6801 spin_lock_irqsave(&h->offline_device_lock, flags);
6802 list_for_each_safe(this, tmp, &h->offline_device_list) {
6803 d = list_entry(this, struct offline_device_entry,
6804 offline_list);
6805 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6806 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6807 spin_lock_irqsave(&h->offline_device_lock, flags);
6808 list_del(&d->offline_list);
6809 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6810 return 1;
6811 }
6812 spin_lock_irqsave(&h->offline_device_lock, flags);
6813 }
6814 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6815 return 0;
6816 }
6817
6818
6819 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6820 {
6821 unsigned long flags;
6822 struct ctlr_info *h = container_of(to_delayed_work(work),
6823 struct ctlr_info, monitor_ctlr_work);
6824 detect_controller_lockup(h);
6825 if (lockup_detected(h))
6826 return;
6827
6828 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6829 scsi_host_get(h->scsi_host);
6830 h->drv_req_rescan = 0;
6831 hpsa_ack_ctlr_events(h);
6832 hpsa_scan_start(h->scsi_host);
6833 scsi_host_put(h->scsi_host);
6834 }
6835
6836 spin_lock_irqsave(&h->lock, flags);
6837 if (h->remove_in_progress) {
6838 spin_unlock_irqrestore(&h->lock, flags);
6839 return;
6840 }
6841 schedule_delayed_work(&h->monitor_ctlr_work,
6842 h->heartbeat_sample_interval);
6843 spin_unlock_irqrestore(&h->lock, flags);
6844 }
6845
6846 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6847 {
6848 int dac, rc;
6849 struct ctlr_info *h;
6850 int try_soft_reset = 0;
6851 unsigned long flags;
6852
6853 if (number_of_controllers == 0)
6854 printk(KERN_INFO DRIVER_NAME "\n");
6855
6856 rc = hpsa_init_reset_devices(pdev);
6857 if (rc) {
6858 if (rc != -ENOTSUPP)
6859 return rc;
6860 /* If the reset fails in a particular way (it has no way to do
6861 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6862 * a soft reset once we get the controller configured up to the
6863 * point that it can accept a command.
6864 */
6865 try_soft_reset = 1;
6866 rc = 0;
6867 }
6868
6869 reinit_after_soft_reset:
6870
6871 /* Command structures must be aligned on a 32-byte boundary because
6872 * the 5 lower bits of the address are used by the hardware. and by
6873 * the driver. See comments in hpsa.h for more info.
6874 */
6875 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6876 h = kzalloc(sizeof(*h), GFP_KERNEL);
6877 if (!h)
6878 return -ENOMEM;
6879
6880 h->pdev = pdev;
6881 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6882 INIT_LIST_HEAD(&h->cmpQ);
6883 INIT_LIST_HEAD(&h->reqQ);
6884 INIT_LIST_HEAD(&h->offline_device_list);
6885 spin_lock_init(&h->lock);
6886 spin_lock_init(&h->offline_device_lock);
6887 spin_lock_init(&h->scan_lock);
6888 spin_lock_init(&h->passthru_count_lock);
6889
6890 /* Allocate and clear per-cpu variable lockup_detected */
6891 h->lockup_detected = alloc_percpu(u32);
6892 if (!h->lockup_detected) {
6893 rc = -ENOMEM;
6894 goto clean1;
6895 }
6896 set_lockup_detected_for_all_cpus(h, 0);
6897
6898 rc = hpsa_pci_init(h);
6899 if (rc != 0)
6900 goto clean1;
6901
6902 sprintf(h->devname, HPSA "%d", number_of_controllers);
6903 h->ctlr = number_of_controllers;
6904 number_of_controllers++;
6905
6906 /* configure PCI DMA stuff */
6907 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6908 if (rc == 0) {
6909 dac = 1;
6910 } else {
6911 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6912 if (rc == 0) {
6913 dac = 0;
6914 } else {
6915 dev_err(&pdev->dev, "no suitable DMA available\n");
6916 goto clean1;
6917 }
6918 }
6919
6920 /* make sure the board interrupts are off */
6921 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6922
6923 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6924 goto clean2;
6925 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6926 h->devname, pdev->device,
6927 h->intr[h->intr_mode], dac ? "" : " not");
6928 if (hpsa_allocate_cmd_pool(h))
6929 goto clean4;
6930 if (hpsa_allocate_sg_chain_blocks(h))
6931 goto clean4;
6932 init_waitqueue_head(&h->scan_wait_queue);
6933 h->scan_finished = 1; /* no scan currently in progress */
6934
6935 pci_set_drvdata(pdev, h);
6936 h->ndevices = 0;
6937 h->hba_mode_enabled = 0;
6938 h->scsi_host = NULL;
6939 spin_lock_init(&h->devlock);
6940 hpsa_put_ctlr_into_performant_mode(h);
6941
6942 /* At this point, the controller is ready to take commands.
6943 * Now, if reset_devices and the hard reset didn't work, try
6944 * the soft reset and see if that works.
6945 */
6946 if (try_soft_reset) {
6947
6948 /* This is kind of gross. We may or may not get a completion
6949 * from the soft reset command, and if we do, then the value
6950 * from the fifo may or may not be valid. So, we wait 10 secs
6951 * after the reset throwing away any completions we get during
6952 * that time. Unregister the interrupt handler and register
6953 * fake ones to scoop up any residual completions.
6954 */
6955 spin_lock_irqsave(&h->lock, flags);
6956 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6957 spin_unlock_irqrestore(&h->lock, flags);
6958 hpsa_free_irqs(h);
6959 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6960 hpsa_intx_discard_completions);
6961 if (rc) {
6962 dev_warn(&h->pdev->dev, "Failed to request_irq after "
6963 "soft reset.\n");
6964 goto clean4;
6965 }
6966
6967 rc = hpsa_kdump_soft_reset(h);
6968 if (rc)
6969 /* Neither hard nor soft reset worked, we're hosed. */
6970 goto clean4;
6971
6972 dev_info(&h->pdev->dev, "Board READY.\n");
6973 dev_info(&h->pdev->dev,
6974 "Waiting for stale completions to drain.\n");
6975 h->access.set_intr_mask(h, HPSA_INTR_ON);
6976 msleep(10000);
6977 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6978
6979 rc = controller_reset_failed(h->cfgtable);
6980 if (rc)
6981 dev_info(&h->pdev->dev,
6982 "Soft reset appears to have failed.\n");
6983
6984 /* since the controller's reset, we have to go back and re-init
6985 * everything. Easiest to just forget what we've done and do it
6986 * all over again.
6987 */
6988 hpsa_undo_allocations_after_kdump_soft_reset(h);
6989 try_soft_reset = 0;
6990 if (rc)
6991 /* don't go to clean4, we already unallocated */
6992 return -ENODEV;
6993
6994 goto reinit_after_soft_reset;
6995 }
6996
6997 /* Enable Accelerated IO path at driver layer */
6998 h->acciopath_status = 1;
6999
7000 h->drv_req_rescan = 0;
7001
7002 /* Turn the interrupts on so we can service requests */
7003 h->access.set_intr_mask(h, HPSA_INTR_ON);
7004
7005 hpsa_hba_inquiry(h);
7006 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7007
7008 /* Monitor the controller for firmware lockups */
7009 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7010 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7011 schedule_delayed_work(&h->monitor_ctlr_work,
7012 h->heartbeat_sample_interval);
7013 return 0;
7014
7015 clean4:
7016 hpsa_free_sg_chain_blocks(h);
7017 hpsa_free_cmd_pool(h);
7018 hpsa_free_irqs(h);
7019 clean2:
7020 clean1:
7021 if (h->lockup_detected)
7022 free_percpu(h->lockup_detected);
7023 kfree(h);
7024 return rc;
7025 }
7026
7027 static void hpsa_flush_cache(struct ctlr_info *h)
7028 {
7029 char *flush_buf;
7030 struct CommandList *c;
7031
7032 /* Don't bother trying to flush the cache if locked up */
7033 if (unlikely(lockup_detected(h)))
7034 return;
7035 flush_buf = kzalloc(4, GFP_KERNEL);
7036 if (!flush_buf)
7037 return;
7038
7039 c = cmd_special_alloc(h);
7040 if (!c) {
7041 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7042 goto out_of_memory;
7043 }
7044 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7045 RAID_CTLR_LUNID, TYPE_CMD)) {
7046 goto out;
7047 }
7048 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7049 if (c->err_info->CommandStatus != 0)
7050 out:
7051 dev_warn(&h->pdev->dev,
7052 "error flushing cache on controller\n");
7053 cmd_special_free(h, c);
7054 out_of_memory:
7055 kfree(flush_buf);
7056 }
7057
7058 static void hpsa_shutdown(struct pci_dev *pdev)
7059 {
7060 struct ctlr_info *h;
7061
7062 h = pci_get_drvdata(pdev);
7063 /* Turn board interrupts off and send the flush cache command
7064 * sendcmd will turn off interrupt, and send the flush...
7065 * To write all data in the battery backed cache to disks
7066 */
7067 hpsa_flush_cache(h);
7068 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7069 hpsa_free_irqs_and_disable_msix(h);
7070 }
7071
7072 static void hpsa_free_device_info(struct ctlr_info *h)
7073 {
7074 int i;
7075
7076 for (i = 0; i < h->ndevices; i++)
7077 kfree(h->dev[i]);
7078 }
7079
7080 static void hpsa_remove_one(struct pci_dev *pdev)
7081 {
7082 struct ctlr_info *h;
7083 unsigned long flags;
7084
7085 if (pci_get_drvdata(pdev) == NULL) {
7086 dev_err(&pdev->dev, "unable to remove device\n");
7087 return;
7088 }
7089 h = pci_get_drvdata(pdev);
7090
7091 /* Get rid of any controller monitoring work items */
7092 spin_lock_irqsave(&h->lock, flags);
7093 h->remove_in_progress = 1;
7094 cancel_delayed_work(&h->monitor_ctlr_work);
7095 spin_unlock_irqrestore(&h->lock, flags);
7096
7097 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7098 hpsa_shutdown(pdev);
7099 iounmap(h->vaddr);
7100 iounmap(h->transtable);
7101 iounmap(h->cfgtable);
7102 hpsa_free_device_info(h);
7103 hpsa_free_sg_chain_blocks(h);
7104 pci_free_consistent(h->pdev,
7105 h->nr_cmds * sizeof(struct CommandList),
7106 h->cmd_pool, h->cmd_pool_dhandle);
7107 pci_free_consistent(h->pdev,
7108 h->nr_cmds * sizeof(struct ErrorInfo),
7109 h->errinfo_pool, h->errinfo_pool_dhandle);
7110 hpsa_free_reply_queues(h);
7111 kfree(h->cmd_pool_bits);
7112 kfree(h->blockFetchTable);
7113 kfree(h->ioaccel1_blockFetchTable);
7114 kfree(h->ioaccel2_blockFetchTable);
7115 kfree(h->hba_inquiry_data);
7116 pci_disable_device(pdev);
7117 pci_release_regions(pdev);
7118 free_percpu(h->lockup_detected);
7119 kfree(h);
7120 }
7121
7122 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7123 __attribute__((unused)) pm_message_t state)
7124 {
7125 return -ENOSYS;
7126 }
7127
7128 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7129 {
7130 return -ENOSYS;
7131 }
7132
7133 static struct pci_driver hpsa_pci_driver = {
7134 .name = HPSA,
7135 .probe = hpsa_init_one,
7136 .remove = hpsa_remove_one,
7137 .id_table = hpsa_pci_device_id, /* id_table */
7138 .shutdown = hpsa_shutdown,
7139 .suspend = hpsa_suspend,
7140 .resume = hpsa_resume,
7141 };
7142
7143 /* Fill in bucket_map[], given nsgs (the max number of
7144 * scatter gather elements supported) and bucket[],
7145 * which is an array of 8 integers. The bucket[] array
7146 * contains 8 different DMA transfer sizes (in 16
7147 * byte increments) which the controller uses to fetch
7148 * commands. This function fills in bucket_map[], which
7149 * maps a given number of scatter gather elements to one of
7150 * the 8 DMA transfer sizes. The point of it is to allow the
7151 * controller to only do as much DMA as needed to fetch the
7152 * command, with the DMA transfer size encoded in the lower
7153 * bits of the command address.
7154 */
7155 static void calc_bucket_map(int bucket[], int num_buckets,
7156 int nsgs, int min_blocks, u32 *bucket_map)
7157 {
7158 int i, j, b, size;
7159
7160 /* Note, bucket_map must have nsgs+1 entries. */
7161 for (i = 0; i <= nsgs; i++) {
7162 /* Compute size of a command with i SG entries */
7163 size = i + min_blocks;
7164 b = num_buckets; /* Assume the biggest bucket */
7165 /* Find the bucket that is just big enough */
7166 for (j = 0; j < num_buckets; j++) {
7167 if (bucket[j] >= size) {
7168 b = j;
7169 break;
7170 }
7171 }
7172 /* for a command with i SG entries, use bucket b. */
7173 bucket_map[i] = b;
7174 }
7175 }
7176
7177 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7178 {
7179 int i;
7180 unsigned long register_value;
7181 unsigned long transMethod = CFGTBL_Trans_Performant |
7182 (trans_support & CFGTBL_Trans_use_short_tags) |
7183 CFGTBL_Trans_enable_directed_msix |
7184 (trans_support & (CFGTBL_Trans_io_accel1 |
7185 CFGTBL_Trans_io_accel2));
7186 struct access_method access = SA5_performant_access;
7187
7188 /* This is a bit complicated. There are 8 registers on
7189 * the controller which we write to to tell it 8 different
7190 * sizes of commands which there may be. It's a way of
7191 * reducing the DMA done to fetch each command. Encoded into
7192 * each command's tag are 3 bits which communicate to the controller
7193 * which of the eight sizes that command fits within. The size of
7194 * each command depends on how many scatter gather entries there are.
7195 * Each SG entry requires 16 bytes. The eight registers are programmed
7196 * with the number of 16-byte blocks a command of that size requires.
7197 * The smallest command possible requires 5 such 16 byte blocks.
7198 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7199 * blocks. Note, this only extends to the SG entries contained
7200 * within the command block, and does not extend to chained blocks
7201 * of SG elements. bft[] contains the eight values we write to
7202 * the registers. They are not evenly distributed, but have more
7203 * sizes for small commands, and fewer sizes for larger commands.
7204 */
7205 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7206 #define MIN_IOACCEL2_BFT_ENTRY 5
7207 #define HPSA_IOACCEL2_HEADER_SZ 4
7208 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7209 13, 14, 15, 16, 17, 18, 19,
7210 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7211 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7212 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7213 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7214 16 * MIN_IOACCEL2_BFT_ENTRY);
7215 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7216 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7217 /* 5 = 1 s/g entry or 4k
7218 * 6 = 2 s/g entry or 8k
7219 * 8 = 4 s/g entry or 16k
7220 * 10 = 6 s/g entry or 24k
7221 */
7222
7223 /* If the controller supports either ioaccel method then
7224 * we can also use the RAID stack submit path that does not
7225 * perform the superfluous readl() after each command submission.
7226 */
7227 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7228 access = SA5_performant_access_no_read;
7229
7230 /* Controller spec: zero out this buffer. */
7231 for (i = 0; i < h->nreply_queues; i++)
7232 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7233
7234 bft[7] = SG_ENTRIES_IN_CMD + 4;
7235 calc_bucket_map(bft, ARRAY_SIZE(bft),
7236 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7237 for (i = 0; i < 8; i++)
7238 writel(bft[i], &h->transtable->BlockFetch[i]);
7239
7240 /* size of controller ring buffer */
7241 writel(h->max_commands, &h->transtable->RepQSize);
7242 writel(h->nreply_queues, &h->transtable->RepQCount);
7243 writel(0, &h->transtable->RepQCtrAddrLow32);
7244 writel(0, &h->transtable->RepQCtrAddrHigh32);
7245
7246 for (i = 0; i < h->nreply_queues; i++) {
7247 writel(0, &h->transtable->RepQAddr[i].upper);
7248 writel(h->reply_queue[i].busaddr,
7249 &h->transtable->RepQAddr[i].lower);
7250 }
7251
7252 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7253 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7254 /*
7255 * enable outbound interrupt coalescing in accelerator mode;
7256 */
7257 if (trans_support & CFGTBL_Trans_io_accel1) {
7258 access = SA5_ioaccel_mode1_access;
7259 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7260 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7261 } else {
7262 if (trans_support & CFGTBL_Trans_io_accel2) {
7263 access = SA5_ioaccel_mode2_access;
7264 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7265 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7266 }
7267 }
7268 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7269 hpsa_wait_for_mode_change_ack(h);
7270 register_value = readl(&(h->cfgtable->TransportActive));
7271 if (!(register_value & CFGTBL_Trans_Performant)) {
7272 dev_warn(&h->pdev->dev, "unable to get board into"
7273 " performant mode\n");
7274 return;
7275 }
7276 /* Change the access methods to the performant access methods */
7277 h->access = access;
7278 h->transMethod = transMethod;
7279
7280 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7281 (trans_support & CFGTBL_Trans_io_accel2)))
7282 return;
7283
7284 if (trans_support & CFGTBL_Trans_io_accel1) {
7285 /* Set up I/O accelerator mode */
7286 for (i = 0; i < h->nreply_queues; i++) {
7287 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7288 h->reply_queue[i].current_entry =
7289 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7290 }
7291 bft[7] = h->ioaccel_maxsg + 8;
7292 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7293 h->ioaccel1_blockFetchTable);
7294
7295 /* initialize all reply queue entries to unused */
7296 for (i = 0; i < h->nreply_queues; i++)
7297 memset(h->reply_queue[i].head,
7298 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7299 h->reply_queue_size);
7300
7301 /* set all the constant fields in the accelerator command
7302 * frames once at init time to save CPU cycles later.
7303 */
7304 for (i = 0; i < h->nr_cmds; i++) {
7305 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7306
7307 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7308 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7309 (i * sizeof(struct ErrorInfo)));
7310 cp->err_info_len = sizeof(struct ErrorInfo);
7311 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7312 cp->host_context_flags =
7313 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7314 cp->timeout_sec = 0;
7315 cp->ReplyQueue = 0;
7316 cp->tag =
7317 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7318 DIRECT_LOOKUP_BIT);
7319 cp->host_addr =
7320 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7321 (i * sizeof(struct io_accel1_cmd)));
7322 }
7323 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7324 u64 cfg_offset, cfg_base_addr_index;
7325 u32 bft2_offset, cfg_base_addr;
7326 int rc;
7327
7328 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7329 &cfg_base_addr_index, &cfg_offset);
7330 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7331 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7332 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7333 4, h->ioaccel2_blockFetchTable);
7334 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7335 BUILD_BUG_ON(offsetof(struct CfgTable,
7336 io_accel_request_size_offset) != 0xb8);
7337 h->ioaccel2_bft2_regs =
7338 remap_pci_mem(pci_resource_start(h->pdev,
7339 cfg_base_addr_index) +
7340 cfg_offset + bft2_offset,
7341 ARRAY_SIZE(bft2) *
7342 sizeof(*h->ioaccel2_bft2_regs));
7343 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7344 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7345 }
7346 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7347 hpsa_wait_for_mode_change_ack(h);
7348 }
7349
7350 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7351 {
7352 h->ioaccel_maxsg =
7353 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7354 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7355 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7356
7357 /* Command structures must be aligned on a 128-byte boundary
7358 * because the 7 lower bits of the address are used by the
7359 * hardware.
7360 */
7361 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7362 IOACCEL1_COMMANDLIST_ALIGNMENT);
7363 h->ioaccel_cmd_pool =
7364 pci_alloc_consistent(h->pdev,
7365 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7366 &(h->ioaccel_cmd_pool_dhandle));
7367
7368 h->ioaccel1_blockFetchTable =
7369 kmalloc(((h->ioaccel_maxsg + 1) *
7370 sizeof(u32)), GFP_KERNEL);
7371
7372 if ((h->ioaccel_cmd_pool == NULL) ||
7373 (h->ioaccel1_blockFetchTable == NULL))
7374 goto clean_up;
7375
7376 memset(h->ioaccel_cmd_pool, 0,
7377 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7378 return 0;
7379
7380 clean_up:
7381 if (h->ioaccel_cmd_pool)
7382 pci_free_consistent(h->pdev,
7383 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7384 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7385 kfree(h->ioaccel1_blockFetchTable);
7386 return 1;
7387 }
7388
7389 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7390 {
7391 /* Allocate ioaccel2 mode command blocks and block fetch table */
7392
7393 h->ioaccel_maxsg =
7394 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7395 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7396 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7397
7398 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7399 IOACCEL2_COMMANDLIST_ALIGNMENT);
7400 h->ioaccel2_cmd_pool =
7401 pci_alloc_consistent(h->pdev,
7402 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7403 &(h->ioaccel2_cmd_pool_dhandle));
7404
7405 h->ioaccel2_blockFetchTable =
7406 kmalloc(((h->ioaccel_maxsg + 1) *
7407 sizeof(u32)), GFP_KERNEL);
7408
7409 if ((h->ioaccel2_cmd_pool == NULL) ||
7410 (h->ioaccel2_blockFetchTable == NULL))
7411 goto clean_up;
7412
7413 memset(h->ioaccel2_cmd_pool, 0,
7414 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7415 return 0;
7416
7417 clean_up:
7418 if (h->ioaccel2_cmd_pool)
7419 pci_free_consistent(h->pdev,
7420 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7421 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7422 kfree(h->ioaccel2_blockFetchTable);
7423 return 1;
7424 }
7425
7426 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7427 {
7428 u32 trans_support;
7429 unsigned long transMethod = CFGTBL_Trans_Performant |
7430 CFGTBL_Trans_use_short_tags;
7431 int i;
7432
7433 if (hpsa_simple_mode)
7434 return;
7435
7436 trans_support = readl(&(h->cfgtable->TransportSupport));
7437 if (!(trans_support & PERFORMANT_MODE))
7438 return;
7439
7440 /* Check for I/O accelerator mode support */
7441 if (trans_support & CFGTBL_Trans_io_accel1) {
7442 transMethod |= CFGTBL_Trans_io_accel1 |
7443 CFGTBL_Trans_enable_directed_msix;
7444 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7445 goto clean_up;
7446 } else {
7447 if (trans_support & CFGTBL_Trans_io_accel2) {
7448 transMethod |= CFGTBL_Trans_io_accel2 |
7449 CFGTBL_Trans_enable_directed_msix;
7450 if (ioaccel2_alloc_cmds_and_bft(h))
7451 goto clean_up;
7452 }
7453 }
7454
7455 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7456 hpsa_get_max_perf_mode_cmds(h);
7457 /* Performant mode ring buffer and supporting data structures */
7458 h->reply_queue_size = h->max_commands * sizeof(u64);
7459
7460 for (i = 0; i < h->nreply_queues; i++) {
7461 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7462 h->reply_queue_size,
7463 &(h->reply_queue[i].busaddr));
7464 if (!h->reply_queue[i].head)
7465 goto clean_up;
7466 h->reply_queue[i].size = h->max_commands;
7467 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7468 h->reply_queue[i].current_entry = 0;
7469 }
7470
7471 /* Need a block fetch table for performant mode */
7472 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7473 sizeof(u32)), GFP_KERNEL);
7474 if (!h->blockFetchTable)
7475 goto clean_up;
7476
7477 hpsa_enter_performant_mode(h, trans_support);
7478 return;
7479
7480 clean_up:
7481 hpsa_free_reply_queues(h);
7482 kfree(h->blockFetchTable);
7483 }
7484
7485 static int is_accelerated_cmd(struct CommandList *c)
7486 {
7487 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7488 }
7489
7490 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7491 {
7492 struct CommandList *c = NULL;
7493 unsigned long flags;
7494 int accel_cmds_out;
7495
7496 do { /* wait for all outstanding commands to drain out */
7497 accel_cmds_out = 0;
7498 spin_lock_irqsave(&h->lock, flags);
7499 list_for_each_entry(c, &h->cmpQ, list)
7500 accel_cmds_out += is_accelerated_cmd(c);
7501 list_for_each_entry(c, &h->reqQ, list)
7502 accel_cmds_out += is_accelerated_cmd(c);
7503 spin_unlock_irqrestore(&h->lock, flags);
7504 if (accel_cmds_out <= 0)
7505 break;
7506 msleep(100);
7507 } while (1);
7508 }
7509
7510 /*
7511 * This is it. Register the PCI driver information for the cards we control
7512 * the OS will call our registered routines when it finds one of our cards.
7513 */
7514 static int __init hpsa_init(void)
7515 {
7516 return pci_register_driver(&hpsa_pci_driver);
7517 }
7518
7519 static void __exit hpsa_cleanup(void)
7520 {
7521 pci_unregister_driver(&hpsa_pci_driver);
7522 }
7523
7524 static void __attribute__((unused)) verify_offsets(void)
7525 {
7526 #define VERIFY_OFFSET(member, offset) \
7527 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7528
7529 VERIFY_OFFSET(structure_size, 0);
7530 VERIFY_OFFSET(volume_blk_size, 4);
7531 VERIFY_OFFSET(volume_blk_cnt, 8);
7532 VERIFY_OFFSET(phys_blk_shift, 16);
7533 VERIFY_OFFSET(parity_rotation_shift, 17);
7534 VERIFY_OFFSET(strip_size, 18);
7535 VERIFY_OFFSET(disk_starting_blk, 20);
7536 VERIFY_OFFSET(disk_blk_cnt, 28);
7537 VERIFY_OFFSET(data_disks_per_row, 36);
7538 VERIFY_OFFSET(metadata_disks_per_row, 38);
7539 VERIFY_OFFSET(row_cnt, 40);
7540 VERIFY_OFFSET(layout_map_count, 42);
7541 VERIFY_OFFSET(flags, 44);
7542 VERIFY_OFFSET(dekindex, 46);
7543 /* VERIFY_OFFSET(reserved, 48 */
7544 VERIFY_OFFSET(data, 64);
7545
7546 #undef VERIFY_OFFSET
7547
7548 #define VERIFY_OFFSET(member, offset) \
7549 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7550
7551 VERIFY_OFFSET(IU_type, 0);
7552 VERIFY_OFFSET(direction, 1);
7553 VERIFY_OFFSET(reply_queue, 2);
7554 /* VERIFY_OFFSET(reserved1, 3); */
7555 VERIFY_OFFSET(scsi_nexus, 4);
7556 VERIFY_OFFSET(Tag, 8);
7557 VERIFY_OFFSET(cdb, 16);
7558 VERIFY_OFFSET(cciss_lun, 32);
7559 VERIFY_OFFSET(data_len, 40);
7560 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7561 VERIFY_OFFSET(sg_count, 45);
7562 /* VERIFY_OFFSET(reserved3 */
7563 VERIFY_OFFSET(err_ptr, 48);
7564 VERIFY_OFFSET(err_len, 56);
7565 /* VERIFY_OFFSET(reserved4 */
7566 VERIFY_OFFSET(sg, 64);
7567
7568 #undef VERIFY_OFFSET
7569
7570 #define VERIFY_OFFSET(member, offset) \
7571 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7572
7573 VERIFY_OFFSET(dev_handle, 0x00);
7574 VERIFY_OFFSET(reserved1, 0x02);
7575 VERIFY_OFFSET(function, 0x03);
7576 VERIFY_OFFSET(reserved2, 0x04);
7577 VERIFY_OFFSET(err_info, 0x0C);
7578 VERIFY_OFFSET(reserved3, 0x10);
7579 VERIFY_OFFSET(err_info_len, 0x12);
7580 VERIFY_OFFSET(reserved4, 0x13);
7581 VERIFY_OFFSET(sgl_offset, 0x14);
7582 VERIFY_OFFSET(reserved5, 0x15);
7583 VERIFY_OFFSET(transfer_len, 0x1C);
7584 VERIFY_OFFSET(reserved6, 0x20);
7585 VERIFY_OFFSET(io_flags, 0x24);
7586 VERIFY_OFFSET(reserved7, 0x26);
7587 VERIFY_OFFSET(LUN, 0x34);
7588 VERIFY_OFFSET(control, 0x3C);
7589 VERIFY_OFFSET(CDB, 0x40);
7590 VERIFY_OFFSET(reserved8, 0x50);
7591 VERIFY_OFFSET(host_context_flags, 0x60);
7592 VERIFY_OFFSET(timeout_sec, 0x62);
7593 VERIFY_OFFSET(ReplyQueue, 0x64);
7594 VERIFY_OFFSET(reserved9, 0x65);
7595 VERIFY_OFFSET(tag, 0x68);
7596 VERIFY_OFFSET(host_addr, 0x70);
7597 VERIFY_OFFSET(CISS_LUN, 0x78);
7598 VERIFY_OFFSET(SG, 0x78 + 8);
7599 #undef VERIFY_OFFSET
7600 }
7601
7602 module_init(hpsa_init);
7603 module_exit(hpsa_cleanup);