]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/isci/host.c
isci: add some type safety to the state machine interface
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / isci / host.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55 #include <linux/device.h>
56 #include <scsi/sas.h>
57 #include "host.h"
58 #include "isci.h"
59 #include "port.h"
60 #include "host.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69 #include "scu_unsolicited_frame.h"
70 #include "timers.h"
71
72 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
73
74 /**
75 * smu_dcc_get_max_ports() -
76 *
77 * This macro returns the maximum number of logical ports supported by the
78 * hardware. The caller passes in the value read from the device context
79 * capacity register and this macro will mash and shift the value appropriately.
80 */
81 #define smu_dcc_get_max_ports(dcc_value) \
82 (\
83 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
84 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
85 )
86
87 /**
88 * smu_dcc_get_max_task_context() -
89 *
90 * This macro returns the maximum number of task contexts supported by the
91 * hardware. The caller passes in the value read from the device context
92 * capacity register and this macro will mash and shift the value appropriately.
93 */
94 #define smu_dcc_get_max_task_context(dcc_value) \
95 (\
96 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
97 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
98 )
99
100 /**
101 * smu_dcc_get_max_remote_node_context() -
102 *
103 * This macro returns the maximum number of remote node contexts supported by
104 * the hardware. The caller passes in the value read from the device context
105 * capacity register and this macro will mash and shift the value appropriately.
106 */
107 #define smu_dcc_get_max_remote_node_context(dcc_value) \
108 (\
109 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
110 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
111 )
112
113
114 #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
115 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
116
117 /**
118 *
119 *
120 * The number of milliseconds to wait for a phy to start.
121 */
122 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
123
124 /**
125 *
126 *
127 * The number of milliseconds to wait while a given phy is consuming power
128 * before allowing another set of phys to consume power. Ultimately, this will
129 * be specified by OEM parameter.
130 */
131 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
132
133 /**
134 * NORMALIZE_PUT_POINTER() -
135 *
136 * This macro will normalize the completion queue put pointer so its value can
137 * be used as an array inde
138 */
139 #define NORMALIZE_PUT_POINTER(x) \
140 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
141
142
143 /**
144 * NORMALIZE_EVENT_POINTER() -
145 *
146 * This macro will normalize the completion queue event entry so its value can
147 * be used as an index.
148 */
149 #define NORMALIZE_EVENT_POINTER(x) \
150 (\
151 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
152 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
153 )
154
155 /**
156 * INCREMENT_COMPLETION_QUEUE_GET() -
157 *
158 * This macro will increment the controllers completion queue index value and
159 * possibly toggle the cycle bit if the completion queue index wraps back to 0.
160 */
161 #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
162 INCREMENT_QUEUE_GET(\
163 (index), \
164 (cycle), \
165 (controller)->completion_queue_entries, \
166 SMU_CQGR_CYCLE_BIT \
167 )
168
169 /**
170 * INCREMENT_EVENT_QUEUE_GET() -
171 *
172 * This macro will increment the controllers event queue index value and
173 * possibly toggle the event cycle bit if the event queue index wraps back to 0.
174 */
175 #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
176 INCREMENT_QUEUE_GET(\
177 (index), \
178 (cycle), \
179 (controller)->completion_event_entries, \
180 SMU_CQGR_EVENT_CYCLE_BIT \
181 )
182
183
184 /**
185 * NORMALIZE_GET_POINTER() -
186 *
187 * This macro will normalize the completion queue get pointer so its value can
188 * be used as an index into an array
189 */
190 #define NORMALIZE_GET_POINTER(x) \
191 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
192
193 /**
194 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
195 *
196 * This macro will normalize the completion queue cycle pointer so it matches
197 * the completion queue cycle bit
198 */
199 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
200 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
201
202 /**
203 * COMPLETION_QUEUE_CYCLE_BIT() -
204 *
205 * This macro will return the cycle bit of the completion queue entry
206 */
207 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
208
209 static bool scic_sds_controller_completion_queue_has_entries(
210 struct scic_sds_controller *scic)
211 {
212 u32 get_value = scic->completion_queue_get;
213 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
214
215 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
216 COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
217 return true;
218
219 return false;
220 }
221
222 static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
223 {
224 if (scic_sds_controller_completion_queue_has_entries(scic)) {
225 return true;
226 } else {
227 /*
228 * we have a spurious interrupt it could be that we have already
229 * emptied the completion queue from a previous interrupt */
230 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
231
232 /*
233 * There is a race in the hardware that could cause us not to be notified
234 * of an interrupt completion if we do not take this step. We will mask
235 * then unmask the interrupts so if there is another interrupt pending
236 * the clearing of the interrupt source we get the next interrupt message. */
237 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
238 writel(0, &scic->smu_registers->interrupt_mask);
239 }
240
241 return false;
242 }
243
244 irqreturn_t isci_msix_isr(int vec, void *data)
245 {
246 struct isci_host *ihost = data;
247
248 if (scic_sds_controller_isr(&ihost->sci))
249 tasklet_schedule(&ihost->completion_tasklet);
250
251 return IRQ_HANDLED;
252 }
253
254 static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
255 {
256 u32 interrupt_status;
257
258 interrupt_status =
259 readl(&scic->smu_registers->interrupt_status);
260 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
261
262 if (interrupt_status != 0) {
263 /*
264 * There is an error interrupt pending so let it through and handle
265 * in the callback */
266 return true;
267 }
268
269 /*
270 * There is a race in the hardware that could cause us not to be notified
271 * of an interrupt completion if we do not take this step. We will mask
272 * then unmask the error interrupts so if there was another interrupt
273 * pending we will be notified.
274 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
275 writel(0xff, &scic->smu_registers->interrupt_mask);
276 writel(0, &scic->smu_registers->interrupt_mask);
277
278 return false;
279 }
280
281 static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
282 u32 completion_entry)
283 {
284 u32 index;
285 struct scic_sds_request *io_request;
286
287 index = SCU_GET_COMPLETION_INDEX(completion_entry);
288 io_request = scic->io_request_table[index];
289
290 /* Make sure that we really want to process this IO request */
291 if (
292 (io_request != NULL)
293 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
294 && (
295 scic_sds_io_tag_get_sequence(io_request->io_tag)
296 == scic->io_request_sequence[index]
297 )
298 ) {
299 /* Yep this is a valid io request pass it along to the io request handler */
300 scic_sds_io_request_tc_completion(io_request, completion_entry);
301 }
302 }
303
304 static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
305 u32 completion_entry)
306 {
307 u32 index;
308 struct scic_sds_request *io_request;
309 struct scic_sds_remote_device *device;
310
311 index = SCU_GET_COMPLETION_INDEX(completion_entry);
312
313 switch (scu_get_command_request_type(completion_entry)) {
314 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
315 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
316 io_request = scic->io_request_table[index];
317 dev_warn(scic_to_dev(scic),
318 "%s: SCIC SDS Completion type SDMA %x for io request "
319 "%p\n",
320 __func__,
321 completion_entry,
322 io_request);
323 /* @todo For a post TC operation we need to fail the IO
324 * request
325 */
326 break;
327
328 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
329 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
330 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
331 device = scic->device_table[index];
332 dev_warn(scic_to_dev(scic),
333 "%s: SCIC SDS Completion type SDMA %x for remote "
334 "device %p\n",
335 __func__,
336 completion_entry,
337 device);
338 /* @todo For a port RNC operation we need to fail the
339 * device
340 */
341 break;
342
343 default:
344 dev_warn(scic_to_dev(scic),
345 "%s: SCIC SDS Completion unknown SDMA completion "
346 "type %x\n",
347 __func__,
348 completion_entry);
349 break;
350
351 }
352 }
353
354 static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
355 u32 completion_entry)
356 {
357 u32 index;
358 u32 frame_index;
359
360 struct isci_host *ihost = scic_to_ihost(scic);
361 struct scu_unsolicited_frame_header *frame_header;
362 struct scic_sds_phy *phy;
363 struct scic_sds_remote_device *device;
364
365 enum sci_status result = SCI_FAILURE;
366
367 frame_index = SCU_GET_FRAME_INDEX(completion_entry);
368
369 frame_header = scic->uf_control.buffers.array[frame_index].header;
370 scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
371
372 if (SCU_GET_FRAME_ERROR(completion_entry)) {
373 /*
374 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
375 * / this cause a problem? We expect the phy initialization will
376 * / fail if there is an error in the frame. */
377 scic_sds_controller_release_frame(scic, frame_index);
378 return;
379 }
380
381 if (frame_header->is_address_frame) {
382 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
383 phy = &ihost->phys[index].sci;
384 result = scic_sds_phy_frame_handler(phy, frame_index);
385 } else {
386
387 index = SCU_GET_COMPLETION_INDEX(completion_entry);
388
389 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
390 /*
391 * This is a signature fis or a frame from a direct attached SATA
392 * device that has not yet been created. In either case forwared
393 * the frame to the PE and let it take care of the frame data. */
394 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
395 phy = &ihost->phys[index].sci;
396 result = scic_sds_phy_frame_handler(phy, frame_index);
397 } else {
398 if (index < scic->remote_node_entries)
399 device = scic->device_table[index];
400 else
401 device = NULL;
402
403 if (device != NULL)
404 result = scic_sds_remote_device_frame_handler(device, frame_index);
405 else
406 scic_sds_controller_release_frame(scic, frame_index);
407 }
408 }
409
410 if (result != SCI_SUCCESS) {
411 /*
412 * / @todo Is there any reason to report some additional error message
413 * / when we get this failure notifiction? */
414 }
415 }
416
417 static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
418 u32 completion_entry)
419 {
420 struct isci_host *ihost = scic_to_ihost(scic);
421 struct scic_sds_request *io_request;
422 struct scic_sds_remote_device *device;
423 struct scic_sds_phy *phy;
424 u32 index;
425
426 index = SCU_GET_COMPLETION_INDEX(completion_entry);
427
428 switch (scu_get_event_type(completion_entry)) {
429 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
430 /* / @todo The driver did something wrong and we need to fix the condtion. */
431 dev_err(scic_to_dev(scic),
432 "%s: SCIC Controller 0x%p received SMU command error "
433 "0x%x\n",
434 __func__,
435 scic,
436 completion_entry);
437 break;
438
439 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
440 case SCU_EVENT_TYPE_SMU_ERROR:
441 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
442 /*
443 * / @todo This is a hardware failure and its likely that we want to
444 * / reset the controller. */
445 dev_err(scic_to_dev(scic),
446 "%s: SCIC Controller 0x%p received fatal controller "
447 "event 0x%x\n",
448 __func__,
449 scic,
450 completion_entry);
451 break;
452
453 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
454 io_request = scic->io_request_table[index];
455 scic_sds_io_request_event_handler(io_request, completion_entry);
456 break;
457
458 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
459 switch (scu_get_event_specifier(completion_entry)) {
460 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
461 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
462 io_request = scic->io_request_table[index];
463 if (io_request != NULL)
464 scic_sds_io_request_event_handler(io_request, completion_entry);
465 else
466 dev_warn(scic_to_dev(scic),
467 "%s: SCIC Controller 0x%p received "
468 "event 0x%x for io request object "
469 "that doesnt exist.\n",
470 __func__,
471 scic,
472 completion_entry);
473
474 break;
475
476 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
477 device = scic->device_table[index];
478 if (device != NULL)
479 scic_sds_remote_device_event_handler(device, completion_entry);
480 else
481 dev_warn(scic_to_dev(scic),
482 "%s: SCIC Controller 0x%p received "
483 "event 0x%x for remote device object "
484 "that doesnt exist.\n",
485 __func__,
486 scic,
487 completion_entry);
488
489 break;
490 }
491 break;
492
493 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
494 /*
495 * direct the broadcast change event to the phy first and then let
496 * the phy redirect the broadcast change to the port object */
497 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
498 /*
499 * direct error counter event to the phy object since that is where
500 * we get the event notification. This is a type 4 event. */
501 case SCU_EVENT_TYPE_OSSP_EVENT:
502 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
503 phy = &ihost->phys[index].sci;
504 scic_sds_phy_event_handler(phy, completion_entry);
505 break;
506
507 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
508 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
509 case SCU_EVENT_TYPE_RNC_OPS_MISC:
510 if (index < scic->remote_node_entries) {
511 device = scic->device_table[index];
512
513 if (device != NULL)
514 scic_sds_remote_device_event_handler(device, completion_entry);
515 } else
516 dev_err(scic_to_dev(scic),
517 "%s: SCIC Controller 0x%p received event 0x%x "
518 "for remote device object 0x%0x that doesnt "
519 "exist.\n",
520 __func__,
521 scic,
522 completion_entry,
523 index);
524
525 break;
526
527 default:
528 dev_warn(scic_to_dev(scic),
529 "%s: SCIC Controller received unknown event code %x\n",
530 __func__,
531 completion_entry);
532 break;
533 }
534 }
535
536
537
538 static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
539 {
540 u32 completion_count = 0;
541 u32 completion_entry;
542 u32 get_index;
543 u32 get_cycle;
544 u32 event_index;
545 u32 event_cycle;
546
547 dev_dbg(scic_to_dev(scic),
548 "%s: completion queue begining get:0x%08x\n",
549 __func__,
550 scic->completion_queue_get);
551
552 /* Get the component parts of the completion queue */
553 get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
554 get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
555
556 event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
557 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
558
559 while (
560 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
561 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
562 ) {
563 completion_count++;
564
565 completion_entry = scic->completion_queue[get_index];
566 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
567
568 dev_dbg(scic_to_dev(scic),
569 "%s: completion queue entry:0x%08x\n",
570 __func__,
571 completion_entry);
572
573 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
574 case SCU_COMPLETION_TYPE_TASK:
575 scic_sds_controller_task_completion(scic, completion_entry);
576 break;
577
578 case SCU_COMPLETION_TYPE_SDMA:
579 scic_sds_controller_sdma_completion(scic, completion_entry);
580 break;
581
582 case SCU_COMPLETION_TYPE_UFI:
583 scic_sds_controller_unsolicited_frame(scic, completion_entry);
584 break;
585
586 case SCU_COMPLETION_TYPE_EVENT:
587 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
588 scic_sds_controller_event_completion(scic, completion_entry);
589 break;
590
591 case SCU_COMPLETION_TYPE_NOTIFY:
592 /*
593 * Presently we do the same thing with a notify event that we do with the
594 * other event codes. */
595 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
596 scic_sds_controller_event_completion(scic, completion_entry);
597 break;
598
599 default:
600 dev_warn(scic_to_dev(scic),
601 "%s: SCIC Controller received unknown "
602 "completion type %x\n",
603 __func__,
604 completion_entry);
605 break;
606 }
607 }
608
609 /* Update the get register if we completed one or more entries */
610 if (completion_count > 0) {
611 scic->completion_queue_get =
612 SMU_CQGR_GEN_BIT(ENABLE) |
613 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
614 event_cycle |
615 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
616 get_cycle |
617 SMU_CQGR_GEN_VAL(POINTER, get_index);
618
619 writel(scic->completion_queue_get,
620 &scic->smu_registers->completion_queue_get);
621
622 }
623
624 dev_dbg(scic_to_dev(scic),
625 "%s: completion queue ending get:0x%08x\n",
626 __func__,
627 scic->completion_queue_get);
628
629 }
630
631 static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
632 {
633 u32 interrupt_status;
634
635 interrupt_status =
636 readl(&scic->smu_registers->interrupt_status);
637
638 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
639 scic_sds_controller_completion_queue_has_entries(scic)) {
640
641 scic_sds_controller_process_completions(scic);
642 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
643 } else {
644 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
645 interrupt_status);
646
647 sci_base_state_machine_change_state(&scic->state_machine,
648 SCI_BASE_CONTROLLER_STATE_FAILED);
649
650 return;
651 }
652
653 /* If we dont process any completions I am not sure that we want to do this.
654 * We are in the middle of a hardware fault and should probably be reset.
655 */
656 writel(0, &scic->smu_registers->interrupt_mask);
657 }
658
659 irqreturn_t isci_intx_isr(int vec, void *data)
660 {
661 irqreturn_t ret = IRQ_NONE;
662 struct isci_host *ihost = data;
663 struct scic_sds_controller *scic = &ihost->sci;
664
665 if (scic_sds_controller_isr(scic)) {
666 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
667 tasklet_schedule(&ihost->completion_tasklet);
668 ret = IRQ_HANDLED;
669 } else if (scic_sds_controller_error_isr(scic)) {
670 spin_lock(&ihost->scic_lock);
671 scic_sds_controller_error_handler(scic);
672 spin_unlock(&ihost->scic_lock);
673 ret = IRQ_HANDLED;
674 }
675
676 return ret;
677 }
678
679 irqreturn_t isci_error_isr(int vec, void *data)
680 {
681 struct isci_host *ihost = data;
682
683 if (scic_sds_controller_error_isr(&ihost->sci))
684 scic_sds_controller_error_handler(&ihost->sci);
685
686 return IRQ_HANDLED;
687 }
688
689 /**
690 * isci_host_start_complete() - This function is called by the core library,
691 * through the ISCI Module, to indicate controller start status.
692 * @isci_host: This parameter specifies the ISCI host object
693 * @completion_status: This parameter specifies the completion status from the
694 * core library.
695 *
696 */
697 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
698 {
699 if (completion_status != SCI_SUCCESS)
700 dev_info(&ihost->pdev->dev,
701 "controller start timed out, continuing...\n");
702 isci_host_change_state(ihost, isci_ready);
703 clear_bit(IHOST_START_PENDING, &ihost->flags);
704 wake_up(&ihost->eventq);
705 }
706
707 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
708 {
709 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
710
711 if (test_bit(IHOST_START_PENDING, &ihost->flags))
712 return 0;
713
714 /* todo: use sas_flush_discovery once it is upstream */
715 scsi_flush_work(shost);
716
717 scsi_flush_work(shost);
718
719 dev_dbg(&ihost->pdev->dev,
720 "%s: ihost->status = %d, time = %ld\n",
721 __func__, isci_host_get_state(ihost), time);
722
723 return 1;
724
725 }
726
727 /**
728 * scic_controller_get_suggested_start_timeout() - This method returns the
729 * suggested scic_controller_start() timeout amount. The user is free to
730 * use any timeout value, but this method provides the suggested minimum
731 * start timeout value. The returned value is based upon empirical
732 * information determined as a result of interoperability testing.
733 * @controller: the handle to the controller object for which to return the
734 * suggested start timeout.
735 *
736 * This method returns the number of milliseconds for the suggested start
737 * operation timeout.
738 */
739 static u32 scic_controller_get_suggested_start_timeout(
740 struct scic_sds_controller *sc)
741 {
742 /* Validate the user supplied parameters. */
743 if (sc == NULL)
744 return 0;
745
746 /*
747 * The suggested minimum timeout value for a controller start operation:
748 *
749 * Signature FIS Timeout
750 * + Phy Start Timeout
751 * + Number of Phy Spin Up Intervals
752 * ---------------------------------
753 * Number of milliseconds for the controller start operation.
754 *
755 * NOTE: The number of phy spin up intervals will be equivalent
756 * to the number of phys divided by the number phys allowed
757 * per interval - 1 (once OEM parameters are supported).
758 * Currently we assume only 1 phy per interval. */
759
760 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
761 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
762 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
763 }
764
765 static void scic_controller_enable_interrupts(
766 struct scic_sds_controller *scic)
767 {
768 BUG_ON(scic->smu_registers == NULL);
769 writel(0, &scic->smu_registers->interrupt_mask);
770 }
771
772 void scic_controller_disable_interrupts(
773 struct scic_sds_controller *scic)
774 {
775 BUG_ON(scic->smu_registers == NULL);
776 writel(0xffffffff, &scic->smu_registers->interrupt_mask);
777 }
778
779 static void scic_sds_controller_enable_port_task_scheduler(
780 struct scic_sds_controller *scic)
781 {
782 u32 port_task_scheduler_value;
783
784 port_task_scheduler_value =
785 readl(&scic->scu_registers->peg0.ptsg.control);
786 port_task_scheduler_value |=
787 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
788 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
789 writel(port_task_scheduler_value,
790 &scic->scu_registers->peg0.ptsg.control);
791 }
792
793 static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
794 {
795 u32 task_assignment;
796
797 /*
798 * Assign all the TCs to function 0
799 * TODO: Do we actually need to read this register to write it back?
800 */
801
802 task_assignment =
803 readl(&scic->smu_registers->task_context_assignment[0]);
804
805 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
806 (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
807 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
808
809 writel(task_assignment,
810 &scic->smu_registers->task_context_assignment[0]);
811
812 }
813
814 static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
815 {
816 u32 index;
817 u32 completion_queue_control_value;
818 u32 completion_queue_get_value;
819 u32 completion_queue_put_value;
820
821 scic->completion_queue_get = 0;
822
823 completion_queue_control_value = (
824 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
825 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
826 );
827
828 writel(completion_queue_control_value,
829 &scic->smu_registers->completion_queue_control);
830
831
832 /* Set the completion queue get pointer and enable the queue */
833 completion_queue_get_value = (
834 (SMU_CQGR_GEN_VAL(POINTER, 0))
835 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
836 | (SMU_CQGR_GEN_BIT(ENABLE))
837 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
838 );
839
840 writel(completion_queue_get_value,
841 &scic->smu_registers->completion_queue_get);
842
843 /* Set the completion queue put pointer */
844 completion_queue_put_value = (
845 (SMU_CQPR_GEN_VAL(POINTER, 0))
846 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
847 );
848
849 writel(completion_queue_put_value,
850 &scic->smu_registers->completion_queue_put);
851
852 /* Initialize the cycle bit of the completion queue entries */
853 for (index = 0; index < scic->completion_queue_entries; index++) {
854 /*
855 * If get.cycle_bit != completion_queue.cycle_bit
856 * its not a valid completion queue entry
857 * so at system start all entries are invalid */
858 scic->completion_queue[index] = 0x80000000;
859 }
860 }
861
862 static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
863 {
864 u32 frame_queue_control_value;
865 u32 frame_queue_get_value;
866 u32 frame_queue_put_value;
867
868 /* Write the queue size */
869 frame_queue_control_value =
870 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
871 scic->uf_control.address_table.count);
872
873 writel(frame_queue_control_value,
874 &scic->scu_registers->sdma.unsolicited_frame_queue_control);
875
876 /* Setup the get pointer for the unsolicited frame queue */
877 frame_queue_get_value = (
878 SCU_UFQGP_GEN_VAL(POINTER, 0)
879 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
880 );
881
882 writel(frame_queue_get_value,
883 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
884 /* Setup the put pointer for the unsolicited frame queue */
885 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
886 writel(frame_queue_put_value,
887 &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
888 }
889
890 /**
891 * This method will attempt to transition into the ready state for the
892 * controller and indicate that the controller start operation has completed
893 * if all criteria are met.
894 * @scic: This parameter indicates the controller object for which
895 * to transition to ready.
896 * @status: This parameter indicates the status value to be pass into the call
897 * to scic_cb_controller_start_complete().
898 *
899 * none.
900 */
901 static void scic_sds_controller_transition_to_ready(
902 struct scic_sds_controller *scic,
903 enum sci_status status)
904 {
905 struct isci_host *ihost = scic_to_ihost(scic);
906
907 if (scic->state_machine.current_state_id ==
908 SCI_BASE_CONTROLLER_STATE_STARTING) {
909 /*
910 * We move into the ready state, because some of the phys/ports
911 * may be up and operational.
912 */
913 sci_base_state_machine_change_state(&scic->state_machine,
914 SCI_BASE_CONTROLLER_STATE_READY);
915
916 isci_host_start_complete(ihost, status);
917 }
918 }
919
920 static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
921 {
922 isci_timer_stop(scic->phy_startup_timer);
923
924 scic->phy_startup_timer_pending = false;
925 }
926
927 static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
928 {
929 isci_timer_start(scic->phy_startup_timer,
930 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
931
932 scic->phy_startup_timer_pending = true;
933 }
934
935 static bool is_phy_starting(struct scic_sds_phy *sci_phy)
936 {
937 enum scic_sds_phy_states state;
938
939 state = sci_phy->state_machine.current_state_id;
940 switch (state) {
941 case SCI_BASE_PHY_STATE_STARTING:
942 case SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL:
943 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
944 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF:
945 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
946 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
947 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
948 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
949 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
950 case SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL:
951 return true;
952 default:
953 return false;
954 }
955 }
956
957 /**
958 * scic_sds_controller_start_next_phy - start phy
959 * @scic: controller
960 *
961 * If all the phys have been started, then attempt to transition the
962 * controller to the READY state and inform the user
963 * (scic_cb_controller_start_complete()).
964 */
965 static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
966 {
967 struct isci_host *ihost = scic_to_ihost(scic);
968 struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
969 struct scic_sds_phy *sci_phy;
970 enum sci_status status;
971
972 status = SCI_SUCCESS;
973
974 if (scic->phy_startup_timer_pending)
975 return status;
976
977 if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
978 bool is_controller_start_complete = true;
979 u32 state;
980 u8 index;
981
982 for (index = 0; index < SCI_MAX_PHYS; index++) {
983 sci_phy = &ihost->phys[index].sci;
984 state = sci_phy->state_machine.current_state_id;
985
986 if (!phy_get_non_dummy_port(sci_phy))
987 continue;
988
989 /* The controller start operation is complete iff:
990 * - all links have been given an opportunity to start
991 * - have no indication of a connected device
992 * - have an indication of a connected device and it has
993 * finished the link training process.
994 */
995 if ((sci_phy->is_in_link_training == false &&
996 state == SCI_BASE_PHY_STATE_INITIAL) ||
997 (sci_phy->is_in_link_training == false &&
998 state == SCI_BASE_PHY_STATE_STOPPED) ||
999 (sci_phy->is_in_link_training == true &&
1000 is_phy_starting(sci_phy))) {
1001 is_controller_start_complete = false;
1002 break;
1003 }
1004 }
1005
1006 /*
1007 * The controller has successfully finished the start process.
1008 * Inform the SCI Core user and transition to the READY state. */
1009 if (is_controller_start_complete == true) {
1010 scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
1011 scic_sds_controller_phy_timer_stop(scic);
1012 }
1013 } else {
1014 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
1015
1016 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1017 if (phy_get_non_dummy_port(sci_phy) == NULL) {
1018 scic->next_phy_to_start++;
1019
1020 /* Caution recursion ahead be forwarned
1021 *
1022 * The PHY was never added to a PORT in MPC mode
1023 * so start the next phy in sequence This phy
1024 * will never go link up and will not draw power
1025 * the OEM parameters either configured the phy
1026 * incorrectly for the PORT or it was never
1027 * assigned to a PORT
1028 */
1029 return scic_sds_controller_start_next_phy(scic);
1030 }
1031 }
1032
1033 status = scic_sds_phy_start(sci_phy);
1034
1035 if (status == SCI_SUCCESS) {
1036 scic_sds_controller_phy_timer_start(scic);
1037 } else {
1038 dev_warn(scic_to_dev(scic),
1039 "%s: Controller stop operation failed "
1040 "to stop phy %d because of status "
1041 "%d.\n",
1042 __func__,
1043 ihost->phys[scic->next_phy_to_start].sci.phy_index,
1044 status);
1045 }
1046
1047 scic->next_phy_to_start++;
1048 }
1049
1050 return status;
1051 }
1052
1053 static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
1054 {
1055 struct scic_sds_controller *scic = _scic;
1056 enum sci_status status;
1057
1058 scic->phy_startup_timer_pending = false;
1059 status = SCI_FAILURE;
1060 while (status != SCI_SUCCESS)
1061 status = scic_sds_controller_start_next_phy(scic);
1062 }
1063
1064 static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1065 u32 timeout)
1066 {
1067 struct isci_host *ihost = scic_to_ihost(scic);
1068 enum sci_status result;
1069 u16 index;
1070
1071 if (scic->state_machine.current_state_id !=
1072 SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1073 dev_warn(scic_to_dev(scic),
1074 "SCIC Controller start operation requested in "
1075 "invalid state\n");
1076 return SCI_FAILURE_INVALID_STATE;
1077 }
1078
1079 /* Build the TCi free pool */
1080 sci_pool_initialize(scic->tci_pool);
1081 for (index = 0; index < scic->task_context_entries; index++)
1082 sci_pool_put(scic->tci_pool, index);
1083
1084 /* Build the RNi free pool */
1085 scic_sds_remote_node_table_initialize(
1086 &scic->available_remote_nodes,
1087 scic->remote_node_entries);
1088
1089 /*
1090 * Before anything else lets make sure we will not be
1091 * interrupted by the hardware.
1092 */
1093 scic_controller_disable_interrupts(scic);
1094
1095 /* Enable the port task scheduler */
1096 scic_sds_controller_enable_port_task_scheduler(scic);
1097
1098 /* Assign all the task entries to scic physical function */
1099 scic_sds_controller_assign_task_entries(scic);
1100
1101 /* Now initialize the completion queue */
1102 scic_sds_controller_initialize_completion_queue(scic);
1103
1104 /* Initialize the unsolicited frame queue for use */
1105 scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1106
1107 /* Start all of the ports on this controller */
1108 for (index = 0; index < scic->logical_port_entries; index++) {
1109 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1110
1111 result = scic_sds_port_start(sci_port);
1112 if (result)
1113 return result;
1114 }
1115
1116 scic_sds_controller_start_next_phy(scic);
1117
1118 isci_timer_start(scic->timeout_timer, timeout);
1119
1120 sci_base_state_machine_change_state(&scic->state_machine,
1121 SCI_BASE_CONTROLLER_STATE_STARTING);
1122
1123 return SCI_SUCCESS;
1124 }
1125
1126 void isci_host_scan_start(struct Scsi_Host *shost)
1127 {
1128 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1129 unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
1130
1131 set_bit(IHOST_START_PENDING, &ihost->flags);
1132
1133 spin_lock_irq(&ihost->scic_lock);
1134 scic_controller_start(&ihost->sci, tmo);
1135 scic_controller_enable_interrupts(&ihost->sci);
1136 spin_unlock_irq(&ihost->scic_lock);
1137 }
1138
1139 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1140 {
1141 isci_host_change_state(ihost, isci_stopped);
1142 scic_controller_disable_interrupts(&ihost->sci);
1143 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1144 wake_up(&ihost->eventq);
1145 }
1146
1147 static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1148 {
1149 /* Empty out the completion queue */
1150 if (scic_sds_controller_completion_queue_has_entries(scic))
1151 scic_sds_controller_process_completions(scic);
1152
1153 /* Clear the interrupt and enable all interrupts again */
1154 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1155 /* Could we write the value of SMU_ISR_COMPLETION? */
1156 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1157 writel(0, &scic->smu_registers->interrupt_mask);
1158 }
1159
1160 /**
1161 * isci_host_completion_routine() - This function is the delayed service
1162 * routine that calls the sci core library's completion handler. It's
1163 * scheduled as a tasklet from the interrupt service routine when interrupts
1164 * in use, or set as the timeout function in polled mode.
1165 * @data: This parameter specifies the ISCI host object
1166 *
1167 */
1168 static void isci_host_completion_routine(unsigned long data)
1169 {
1170 struct isci_host *isci_host = (struct isci_host *)data;
1171 struct list_head completed_request_list;
1172 struct list_head errored_request_list;
1173 struct list_head *current_position;
1174 struct list_head *next_position;
1175 struct isci_request *request;
1176 struct isci_request *next_request;
1177 struct sas_task *task;
1178
1179 INIT_LIST_HEAD(&completed_request_list);
1180 INIT_LIST_HEAD(&errored_request_list);
1181
1182 spin_lock_irq(&isci_host->scic_lock);
1183
1184 scic_sds_controller_completion_handler(&isci_host->sci);
1185
1186 /* Take the lists of completed I/Os from the host. */
1187
1188 list_splice_init(&isci_host->requests_to_complete,
1189 &completed_request_list);
1190
1191 /* Take the list of errored I/Os from the host. */
1192 list_splice_init(&isci_host->requests_to_errorback,
1193 &errored_request_list);
1194
1195 spin_unlock_irq(&isci_host->scic_lock);
1196
1197 /* Process any completions in the lists. */
1198 list_for_each_safe(current_position, next_position,
1199 &completed_request_list) {
1200
1201 request = list_entry(current_position, struct isci_request,
1202 completed_node);
1203 task = isci_request_access_task(request);
1204
1205 /* Normal notification (task_done) */
1206 dev_dbg(&isci_host->pdev->dev,
1207 "%s: Normal - request/task = %p/%p\n",
1208 __func__,
1209 request,
1210 task);
1211
1212 /* Return the task to libsas */
1213 if (task != NULL) {
1214
1215 task->lldd_task = NULL;
1216 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1217
1218 /* If the task is already in the abort path,
1219 * the task_done callback cannot be called.
1220 */
1221 task->task_done(task);
1222 }
1223 }
1224 /* Free the request object. */
1225 isci_request_free(isci_host, request);
1226 }
1227 list_for_each_entry_safe(request, next_request, &errored_request_list,
1228 completed_node) {
1229
1230 task = isci_request_access_task(request);
1231
1232 /* Use sas_task_abort */
1233 dev_warn(&isci_host->pdev->dev,
1234 "%s: Error - request/task = %p/%p\n",
1235 __func__,
1236 request,
1237 task);
1238
1239 if (task != NULL) {
1240
1241 /* Put the task into the abort path if it's not there
1242 * already.
1243 */
1244 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1245 sas_task_abort(task);
1246
1247 } else {
1248 /* This is a case where the request has completed with a
1249 * status such that it needed further target servicing,
1250 * but the sas_task reference has already been removed
1251 * from the request. Since it was errored, it was not
1252 * being aborted, so there is nothing to do except free
1253 * it.
1254 */
1255
1256 spin_lock_irq(&isci_host->scic_lock);
1257 /* Remove the request from the remote device's list
1258 * of pending requests.
1259 */
1260 list_del_init(&request->dev_node);
1261 spin_unlock_irq(&isci_host->scic_lock);
1262
1263 /* Free the request object. */
1264 isci_request_free(isci_host, request);
1265 }
1266 }
1267
1268 }
1269
1270 /**
1271 * scic_controller_stop() - This method will stop an individual controller
1272 * object.This method will invoke the associated user callback upon
1273 * completion. The completion callback is called when the following
1274 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1275 * controller has been quiesced. This method will ensure that all IO
1276 * requests are quiesced, phys are stopped, and all additional operation by
1277 * the hardware is halted.
1278 * @controller: the handle to the controller object to stop.
1279 * @timeout: This parameter specifies the number of milliseconds in which the
1280 * stop operation should complete.
1281 *
1282 * The controller must be in the STARTED or STOPPED state. Indicate if the
1283 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1284 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1285 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1286 * controller is not either in the STARTED or STOPPED states.
1287 */
1288 static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1289 u32 timeout)
1290 {
1291 if (scic->state_machine.current_state_id !=
1292 SCI_BASE_CONTROLLER_STATE_READY) {
1293 dev_warn(scic_to_dev(scic),
1294 "SCIC Controller stop operation requested in "
1295 "invalid state\n");
1296 return SCI_FAILURE_INVALID_STATE;
1297 }
1298
1299 isci_timer_start(scic->timeout_timer, timeout);
1300 sci_base_state_machine_change_state(&scic->state_machine,
1301 SCI_BASE_CONTROLLER_STATE_STOPPING);
1302 return SCI_SUCCESS;
1303 }
1304
1305 /**
1306 * scic_controller_reset() - This method will reset the supplied core
1307 * controller regardless of the state of said controller. This operation is
1308 * considered destructive. In other words, all current operations are wiped
1309 * out. No IO completions for outstanding devices occur. Outstanding IO
1310 * requests are not aborted or completed at the actual remote device.
1311 * @controller: the handle to the controller object to reset.
1312 *
1313 * Indicate if the controller reset method succeeded or failed in some way.
1314 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1315 * the controller reset operation is unable to complete.
1316 */
1317 static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1318 {
1319 switch (scic->state_machine.current_state_id) {
1320 case SCI_BASE_CONTROLLER_STATE_RESET:
1321 case SCI_BASE_CONTROLLER_STATE_READY:
1322 case SCI_BASE_CONTROLLER_STATE_STOPPED:
1323 case SCI_BASE_CONTROLLER_STATE_FAILED:
1324 /*
1325 * The reset operation is not a graceful cleanup, just
1326 * perform the state transition.
1327 */
1328 sci_base_state_machine_change_state(&scic->state_machine,
1329 SCI_BASE_CONTROLLER_STATE_RESETTING);
1330 return SCI_SUCCESS;
1331 default:
1332 dev_warn(scic_to_dev(scic),
1333 "SCIC Controller reset operation requested in "
1334 "invalid state\n");
1335 return SCI_FAILURE_INVALID_STATE;
1336 }
1337 }
1338
1339 void isci_host_deinit(struct isci_host *ihost)
1340 {
1341 int i;
1342
1343 isci_host_change_state(ihost, isci_stopping);
1344 for (i = 0; i < SCI_MAX_PORTS; i++) {
1345 struct isci_port *iport = &ihost->ports[i];
1346 struct isci_remote_device *idev, *d;
1347
1348 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1349 isci_remote_device_change_state(idev, isci_stopping);
1350 isci_remote_device_stop(ihost, idev);
1351 }
1352 }
1353
1354 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1355
1356 spin_lock_irq(&ihost->scic_lock);
1357 scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
1358 spin_unlock_irq(&ihost->scic_lock);
1359
1360 wait_for_stop(ihost);
1361 scic_controller_reset(&ihost->sci);
1362 isci_timer_list_destroy(ihost);
1363 }
1364
1365 static void __iomem *scu_base(struct isci_host *isci_host)
1366 {
1367 struct pci_dev *pdev = isci_host->pdev;
1368 int id = isci_host->id;
1369
1370 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1371 }
1372
1373 static void __iomem *smu_base(struct isci_host *isci_host)
1374 {
1375 struct pci_dev *pdev = isci_host->pdev;
1376 int id = isci_host->id;
1377
1378 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1379 }
1380
1381 static void isci_user_parameters_get(
1382 struct isci_host *isci_host,
1383 union scic_user_parameters *scic_user_params)
1384 {
1385 struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1386 int i;
1387
1388 for (i = 0; i < SCI_MAX_PHYS; i++) {
1389 struct sci_phy_user_params *u_phy = &u->phys[i];
1390
1391 u_phy->max_speed_generation = phy_gen;
1392
1393 /* we are not exporting these for now */
1394 u_phy->align_insertion_frequency = 0x7f;
1395 u_phy->in_connection_align_insertion_frequency = 0xff;
1396 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1397 }
1398
1399 u->stp_inactivity_timeout = stp_inactive_to;
1400 u->ssp_inactivity_timeout = ssp_inactive_to;
1401 u->stp_max_occupancy_timeout = stp_max_occ_to;
1402 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1403 u->no_outbound_task_timeout = no_outbound_task_to;
1404 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1405 }
1406
1407 static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
1408 {
1409 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1410
1411 sci_base_state_machine_change_state(&scic->state_machine,
1412 SCI_BASE_CONTROLLER_STATE_RESET);
1413 }
1414
1415 static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
1416 {
1417 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1418
1419 isci_timer_stop(scic->timeout_timer);
1420 }
1421
1422 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1423 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1424 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1425 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1426 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1427 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1428
1429 /**
1430 * scic_controller_set_interrupt_coalescence() - This method allows the user to
1431 * configure the interrupt coalescence.
1432 * @controller: This parameter represents the handle to the controller object
1433 * for which its interrupt coalesce register is overridden.
1434 * @coalesce_number: Used to control the number of entries in the Completion
1435 * Queue before an interrupt is generated. If the number of entries exceed
1436 * this number, an interrupt will be generated. The valid range of the input
1437 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1438 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1439 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1440 * interrupt coalescing timeout.
1441 *
1442 * Indicate if the user successfully set the interrupt coalesce parameters.
1443 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1444 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1445 */
1446 static enum sci_status scic_controller_set_interrupt_coalescence(
1447 struct scic_sds_controller *scic_controller,
1448 u32 coalesce_number,
1449 u32 coalesce_timeout)
1450 {
1451 u8 timeout_encode = 0;
1452 u32 min = 0;
1453 u32 max = 0;
1454
1455 /* Check if the input parameters fall in the range. */
1456 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1457 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1458
1459 /*
1460 * Defined encoding for interrupt coalescing timeout:
1461 * Value Min Max Units
1462 * ----- --- --- -----
1463 * 0 - - Disabled
1464 * 1 13.3 20.0 ns
1465 * 2 26.7 40.0
1466 * 3 53.3 80.0
1467 * 4 106.7 160.0
1468 * 5 213.3 320.0
1469 * 6 426.7 640.0
1470 * 7 853.3 1280.0
1471 * 8 1.7 2.6 us
1472 * 9 3.4 5.1
1473 * 10 6.8 10.2
1474 * 11 13.7 20.5
1475 * 12 27.3 41.0
1476 * 13 54.6 81.9
1477 * 14 109.2 163.8
1478 * 15 218.5 327.7
1479 * 16 436.9 655.4
1480 * 17 873.8 1310.7
1481 * 18 1.7 2.6 ms
1482 * 19 3.5 5.2
1483 * 20 7.0 10.5
1484 * 21 14.0 21.0
1485 * 22 28.0 41.9
1486 * 23 55.9 83.9
1487 * 24 111.8 167.8
1488 * 25 223.7 335.5
1489 * 26 447.4 671.1
1490 * 27 894.8 1342.2
1491 * 28 1.8 2.7 s
1492 * Others Undefined */
1493
1494 /*
1495 * Use the table above to decide the encode of interrupt coalescing timeout
1496 * value for register writing. */
1497 if (coalesce_timeout == 0)
1498 timeout_encode = 0;
1499 else{
1500 /* make the timeout value in unit of (10 ns). */
1501 coalesce_timeout = coalesce_timeout * 100;
1502 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1503 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1504
1505 /* get the encode of timeout for register writing. */
1506 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1507 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1508 timeout_encode++) {
1509 if (min <= coalesce_timeout && max > coalesce_timeout)
1510 break;
1511 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1512 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1513 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1514 break;
1515 else{
1516 timeout_encode++;
1517 break;
1518 }
1519 } else {
1520 max = max * 2;
1521 min = min * 2;
1522 }
1523 }
1524
1525 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1526 /* the value is out of range. */
1527 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1528 }
1529
1530 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1531 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1532 &scic_controller->smu_registers->interrupt_coalesce_control);
1533
1534
1535 scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1536 scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1537
1538 return SCI_SUCCESS;
1539 }
1540
1541
1542 static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
1543 {
1544 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1545
1546 /* set the default interrupt coalescence number and timeout value. */
1547 scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1548 }
1549
1550 static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
1551 {
1552 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1553
1554 /* disable interrupt coalescence. */
1555 scic_controller_set_interrupt_coalescence(scic, 0, 0);
1556 }
1557
1558 static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1559 {
1560 u32 index;
1561 enum sci_status status;
1562 enum sci_status phy_status;
1563 struct isci_host *ihost = scic_to_ihost(scic);
1564
1565 status = SCI_SUCCESS;
1566
1567 for (index = 0; index < SCI_MAX_PHYS; index++) {
1568 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1569
1570 if (phy_status != SCI_SUCCESS &&
1571 phy_status != SCI_FAILURE_INVALID_STATE) {
1572 status = SCI_FAILURE;
1573
1574 dev_warn(scic_to_dev(scic),
1575 "%s: Controller stop operation failed to stop "
1576 "phy %d because of status %d.\n",
1577 __func__,
1578 ihost->phys[index].sci.phy_index, phy_status);
1579 }
1580 }
1581
1582 return status;
1583 }
1584
1585 static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1586 {
1587 u32 index;
1588 enum sci_status port_status;
1589 enum sci_status status = SCI_SUCCESS;
1590 struct isci_host *ihost = scic_to_ihost(scic);
1591
1592 for (index = 0; index < scic->logical_port_entries; index++) {
1593 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1594
1595 port_status = scic_sds_port_stop(sci_port);
1596
1597 if ((port_status != SCI_SUCCESS) &&
1598 (port_status != SCI_FAILURE_INVALID_STATE)) {
1599 status = SCI_FAILURE;
1600
1601 dev_warn(scic_to_dev(scic),
1602 "%s: Controller stop operation failed to "
1603 "stop port %d because of status %d.\n",
1604 __func__,
1605 sci_port->logical_port_index,
1606 port_status);
1607 }
1608 }
1609
1610 return status;
1611 }
1612
1613 static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1614 {
1615 u32 index;
1616 enum sci_status status;
1617 enum sci_status device_status;
1618
1619 status = SCI_SUCCESS;
1620
1621 for (index = 0; index < scic->remote_node_entries; index++) {
1622 if (scic->device_table[index] != NULL) {
1623 /* / @todo What timeout value do we want to provide to this request? */
1624 device_status = scic_remote_device_stop(scic->device_table[index], 0);
1625
1626 if ((device_status != SCI_SUCCESS) &&
1627 (device_status != SCI_FAILURE_INVALID_STATE)) {
1628 dev_warn(scic_to_dev(scic),
1629 "%s: Controller stop operation failed "
1630 "to stop device 0x%p because of "
1631 "status %d.\n",
1632 __func__,
1633 scic->device_table[index], device_status);
1634 }
1635 }
1636 }
1637
1638 return status;
1639 }
1640
1641 static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1642 {
1643 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1644
1645 /* Stop all of the components for this controller */
1646 scic_sds_controller_stop_phys(scic);
1647 scic_sds_controller_stop_ports(scic);
1648 scic_sds_controller_stop_devices(scic);
1649 }
1650
1651 static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1652 {
1653 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1654
1655 isci_timer_stop(scic->timeout_timer);
1656 }
1657
1658
1659 /**
1660 * scic_sds_controller_reset_hardware() -
1661 *
1662 * This method will reset the controller hardware.
1663 */
1664 static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1665 {
1666 /* Disable interrupts so we dont take any spurious interrupts */
1667 scic_controller_disable_interrupts(scic);
1668
1669 /* Reset the SCU */
1670 writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1671
1672 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1673 udelay(1000);
1674
1675 /* The write to the CQGR clears the CQP */
1676 writel(0x00000000, &scic->smu_registers->completion_queue_get);
1677
1678 /* The write to the UFQGP clears the UFQPR */
1679 writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1680 }
1681
1682 static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1683 {
1684 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
1685
1686 scic_sds_controller_reset_hardware(scic);
1687 sci_base_state_machine_change_state(&scic->state_machine,
1688 SCI_BASE_CONTROLLER_STATE_RESET);
1689 }
1690
1691 static const struct sci_base_state scic_sds_controller_state_table[] = {
1692 [SCI_BASE_CONTROLLER_STATE_INITIAL] = {
1693 .enter_state = scic_sds_controller_initial_state_enter,
1694 },
1695 [SCI_BASE_CONTROLLER_STATE_RESET] = {},
1696 [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
1697 [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
1698 [SCI_BASE_CONTROLLER_STATE_STARTING] = {
1699 .exit_state = scic_sds_controller_starting_state_exit,
1700 },
1701 [SCI_BASE_CONTROLLER_STATE_READY] = {
1702 .enter_state = scic_sds_controller_ready_state_enter,
1703 .exit_state = scic_sds_controller_ready_state_exit,
1704 },
1705 [SCI_BASE_CONTROLLER_STATE_RESETTING] = {
1706 .enter_state = scic_sds_controller_resetting_state_enter,
1707 },
1708 [SCI_BASE_CONTROLLER_STATE_STOPPING] = {
1709 .enter_state = scic_sds_controller_stopping_state_enter,
1710 .exit_state = scic_sds_controller_stopping_state_exit,
1711 },
1712 [SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
1713 [SCI_BASE_CONTROLLER_STATE_FAILED] = {}
1714 };
1715
1716 static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1717 {
1718 /* these defaults are overridden by the platform / firmware */
1719 struct isci_host *ihost = scic_to_ihost(scic);
1720 u16 index;
1721
1722 /* Default to APC mode. */
1723 scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1724
1725 /* Default to APC mode. */
1726 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1727
1728 /* Default to no SSC operation. */
1729 scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1730
1731 /* Initialize all of the port parameter information to narrow ports. */
1732 for (index = 0; index < SCI_MAX_PORTS; index++) {
1733 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1734 }
1735
1736 /* Initialize all of the phy parameter information. */
1737 for (index = 0; index < SCI_MAX_PHYS; index++) {
1738 /* Default to 6G (i.e. Gen 3) for now. */
1739 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1740
1741 /* the frequencies cannot be 0 */
1742 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1743 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1744 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1745
1746 /*
1747 * Previous Vitesse based expanders had a arbitration issue that
1748 * is worked around by having the upper 32-bits of SAS address
1749 * with a value greater then the Vitesse company identifier.
1750 * Hence, usage of 0x5FCFFFFF. */
1751 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1752 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1753 }
1754
1755 scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1756 scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1757 scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1758 scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1759 scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1760 }
1761
1762
1763
1764 /**
1765 * scic_controller_construct() - This method will attempt to construct a
1766 * controller object utilizing the supplied parameter information.
1767 * @c: This parameter specifies the controller to be constructed.
1768 * @scu_base: mapped base address of the scu registers
1769 * @smu_base: mapped base address of the smu registers
1770 *
1771 * Indicate if the controller was successfully constructed or if it failed in
1772 * some way. SCI_SUCCESS This value is returned if the controller was
1773 * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1774 * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1775 * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1776 * This value is returned if the controller does not support the supplied type.
1777 * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1778 * controller does not support the supplied initialization data version.
1779 */
1780 static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1781 void __iomem *scu_base,
1782 void __iomem *smu_base)
1783 {
1784 struct isci_host *ihost = scic_to_ihost(scic);
1785 u8 i;
1786
1787 sci_base_state_machine_construct(&scic->state_machine,
1788 scic_sds_controller_state_table,
1789 SCI_BASE_CONTROLLER_STATE_INITIAL);
1790
1791 sci_base_state_machine_start(&scic->state_machine);
1792
1793 scic->scu_registers = scu_base;
1794 scic->smu_registers = smu_base;
1795
1796 scic_sds_port_configuration_agent_construct(&scic->port_agent);
1797
1798 /* Construct the ports for this controller */
1799 for (i = 0; i < SCI_MAX_PORTS; i++)
1800 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1801 scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1802
1803 /* Construct the phys for this controller */
1804 for (i = 0; i < SCI_MAX_PHYS; i++) {
1805 /* Add all the PHYs to the dummy port */
1806 scic_sds_phy_construct(&ihost->phys[i].sci,
1807 &ihost->ports[SCI_MAX_PORTS].sci, i);
1808 }
1809
1810 scic->invalid_phy_mask = 0;
1811
1812 /* Set the default maximum values */
1813 scic->completion_event_entries = SCU_EVENT_COUNT;
1814 scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
1815 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
1816 scic->logical_port_entries = SCI_MAX_PORTS;
1817 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
1818 scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
1819 scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1820
1821 /* Initialize the User and OEM parameters to default values. */
1822 scic_sds_controller_set_default_config_parameters(scic);
1823
1824 return scic_controller_reset(scic);
1825 }
1826
1827 int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1828 {
1829 int i;
1830
1831 for (i = 0; i < SCI_MAX_PORTS; i++)
1832 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1833 return -EINVAL;
1834
1835 for (i = 0; i < SCI_MAX_PHYS; i++)
1836 if (oem->phys[i].sas_address.high == 0 &&
1837 oem->phys[i].sas_address.low == 0)
1838 return -EINVAL;
1839
1840 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1841 for (i = 0; i < SCI_MAX_PHYS; i++)
1842 if (oem->ports[i].phy_mask != 0)
1843 return -EINVAL;
1844 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1845 u8 phy_mask = 0;
1846
1847 for (i = 0; i < SCI_MAX_PHYS; i++)
1848 phy_mask |= oem->ports[i].phy_mask;
1849
1850 if (phy_mask == 0)
1851 return -EINVAL;
1852 } else
1853 return -EINVAL;
1854
1855 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1856 return -EINVAL;
1857
1858 return 0;
1859 }
1860
1861 static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1862 union scic_oem_parameters *scic_parms)
1863 {
1864 u32 state = scic->state_machine.current_state_id;
1865
1866 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
1867 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
1868 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1869
1870 if (scic_oem_parameters_validate(&scic_parms->sds1))
1871 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1872 scic->oem_parameters.sds1 = scic_parms->sds1;
1873
1874 return SCI_SUCCESS;
1875 }
1876
1877 return SCI_FAILURE_INVALID_STATE;
1878 }
1879
1880 void scic_oem_parameters_get(
1881 struct scic_sds_controller *scic,
1882 union scic_oem_parameters *scic_parms)
1883 {
1884 memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1885 }
1886
1887 static void scic_sds_controller_timeout_handler(void *_scic)
1888 {
1889 struct scic_sds_controller *scic = _scic;
1890 struct isci_host *ihost = scic_to_ihost(scic);
1891 struct sci_base_state_machine *sm = &scic->state_machine;
1892
1893 if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
1894 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
1895 else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
1896 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
1897 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1898 } else /* / @todo Now what do we want to do in this case? */
1899 dev_err(scic_to_dev(scic),
1900 "%s: Controller timer fired when controller was not "
1901 "in a state being timed.\n",
1902 __func__);
1903 }
1904
1905 static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
1906 {
1907 struct isci_host *ihost = scic_to_ihost(scic);
1908
1909 scic->phy_startup_timer = isci_timer_create(ihost,
1910 scic,
1911 scic_sds_controller_phy_startup_timeout_handler);
1912
1913 if (scic->phy_startup_timer == NULL)
1914 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
1915 else {
1916 scic->next_phy_to_start = 0;
1917 scic->phy_startup_timer_pending = false;
1918 }
1919
1920 return SCI_SUCCESS;
1921 }
1922
1923 static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic)
1924 {
1925 isci_timer_start(scic->power_control.timer,
1926 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1927
1928 scic->power_control.timer_started = true;
1929 }
1930
1931 static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic)
1932 {
1933 if (scic->power_control.timer_started) {
1934 isci_timer_stop(scic->power_control.timer);
1935 scic->power_control.timer_started = false;
1936 }
1937 }
1938
1939 static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic)
1940 {
1941 scic_sds_controller_power_control_timer_stop(scic);
1942 scic_sds_controller_power_control_timer_start(scic);
1943 }
1944
1945 static void scic_sds_controller_power_control_timer_handler(
1946 void *controller)
1947 {
1948 struct scic_sds_controller *scic;
1949
1950 scic = (struct scic_sds_controller *)controller;
1951
1952 scic->power_control.phys_granted_power = 0;
1953
1954 if (scic->power_control.phys_waiting == 0) {
1955 scic->power_control.timer_started = false;
1956 } else {
1957 struct scic_sds_phy *sci_phy = NULL;
1958 u8 i;
1959
1960 for (i = 0;
1961 (i < SCI_MAX_PHYS)
1962 && (scic->power_control.phys_waiting != 0);
1963 i++) {
1964 if (scic->power_control.requesters[i] != NULL) {
1965 if (scic->power_control.phys_granted_power <
1966 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1967 sci_phy = scic->power_control.requesters[i];
1968 scic->power_control.requesters[i] = NULL;
1969 scic->power_control.phys_waiting--;
1970 scic->power_control.phys_granted_power++;
1971 scic_sds_phy_consume_power_handler(sci_phy);
1972 } else {
1973 break;
1974 }
1975 }
1976 }
1977
1978 /*
1979 * It doesn't matter if the power list is empty, we need to start the
1980 * timer in case another phy becomes ready.
1981 */
1982 scic_sds_controller_power_control_timer_start(scic);
1983 }
1984 }
1985
1986 /**
1987 * This method inserts the phy in the stagger spinup control queue.
1988 * @scic:
1989 *
1990 *
1991 */
1992 void scic_sds_controller_power_control_queue_insert(
1993 struct scic_sds_controller *scic,
1994 struct scic_sds_phy *sci_phy)
1995 {
1996 BUG_ON(sci_phy == NULL);
1997
1998 if (scic->power_control.phys_granted_power <
1999 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
2000 scic->power_control.phys_granted_power++;
2001 scic_sds_phy_consume_power_handler(sci_phy);
2002
2003 /*
2004 * stop and start the power_control timer. When the timer fires, the
2005 * no_of_phys_granted_power will be set to 0
2006 */
2007 scic_sds_controller_power_control_timer_restart(scic);
2008 } else {
2009 /* Add the phy in the waiting list */
2010 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
2011 scic->power_control.phys_waiting++;
2012 }
2013 }
2014
2015 /**
2016 * This method removes the phy from the stagger spinup control queue.
2017 * @scic:
2018 *
2019 *
2020 */
2021 void scic_sds_controller_power_control_queue_remove(
2022 struct scic_sds_controller *scic,
2023 struct scic_sds_phy *sci_phy)
2024 {
2025 BUG_ON(sci_phy == NULL);
2026
2027 if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2028 scic->power_control.phys_waiting--;
2029 }
2030
2031 scic->power_control.requesters[sci_phy->phy_index] = NULL;
2032 }
2033
2034 #define AFE_REGISTER_WRITE_DELAY 10
2035
2036 /* Initialize the AFE for this phy index. We need to read the AFE setup from
2037 * the OEM parameters
2038 */
2039 static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2040 {
2041 const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2042 u32 afe_status;
2043 u32 phy_id;
2044
2045 /* Clear DFX Status registers */
2046 writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2047 udelay(AFE_REGISTER_WRITE_DELAY);
2048
2049 if (is_b0()) {
2050 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2051 * Timer, PM Stagger Timer */
2052 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2053 udelay(AFE_REGISTER_WRITE_DELAY);
2054 }
2055
2056 /* Configure bias currents to normal */
2057 if (is_a0())
2058 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2059 else if (is_a2())
2060 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2061 else if (is_b0())
2062 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2063
2064 udelay(AFE_REGISTER_WRITE_DELAY);
2065
2066 /* Enable PLL */
2067 if (is_b0())
2068 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2069 else
2070 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2071
2072 udelay(AFE_REGISTER_WRITE_DELAY);
2073
2074 /* Wait for the PLL to lock */
2075 do {
2076 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2077 udelay(AFE_REGISTER_WRITE_DELAY);
2078 } while ((afe_status & 0x00001000) == 0);
2079
2080 if (is_a0() || is_a2()) {
2081 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2082 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2083 udelay(AFE_REGISTER_WRITE_DELAY);
2084 }
2085
2086 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2087 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2088
2089 if (is_b0()) {
2090 /* Configure transmitter SSC parameters */
2091 writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2092 udelay(AFE_REGISTER_WRITE_DELAY);
2093 } else {
2094 /*
2095 * All defaults, except the Receive Word Alignament/Comma Detect
2096 * Enable....(0xe800) */
2097 writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2098 udelay(AFE_REGISTER_WRITE_DELAY);
2099
2100 writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2101 udelay(AFE_REGISTER_WRITE_DELAY);
2102 }
2103
2104 /*
2105 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2106 * & increase TX int & ext bias 20%....(0xe85c) */
2107 if (is_a0())
2108 writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2109 else if (is_a2())
2110 writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2111 else {
2112 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2113 writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2114 udelay(AFE_REGISTER_WRITE_DELAY);
2115
2116 /*
2117 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2118 * & increase TX int & ext bias 20%....(0xe85c) */
2119 writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2120 }
2121 udelay(AFE_REGISTER_WRITE_DELAY);
2122
2123 if (is_a0() || is_a2()) {
2124 /* Enable TX equalization (0xe824) */
2125 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2126 udelay(AFE_REGISTER_WRITE_DELAY);
2127 }
2128
2129 /*
2130 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2131 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2132 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2133 udelay(AFE_REGISTER_WRITE_DELAY);
2134
2135 /* Leave DFE/FFE on */
2136 if (is_a0())
2137 writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2138 else if (is_a2())
2139 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2140 else {
2141 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2142 udelay(AFE_REGISTER_WRITE_DELAY);
2143 /* Enable TX equalization (0xe824) */
2144 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2145 }
2146 udelay(AFE_REGISTER_WRITE_DELAY);
2147
2148 writel(oem_phy->afe_tx_amp_control0,
2149 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2150 udelay(AFE_REGISTER_WRITE_DELAY);
2151
2152 writel(oem_phy->afe_tx_amp_control1,
2153 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2154 udelay(AFE_REGISTER_WRITE_DELAY);
2155
2156 writel(oem_phy->afe_tx_amp_control2,
2157 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2158 udelay(AFE_REGISTER_WRITE_DELAY);
2159
2160 writel(oem_phy->afe_tx_amp_control3,
2161 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2162 udelay(AFE_REGISTER_WRITE_DELAY);
2163 }
2164
2165 /* Transfer control to the PEs */
2166 writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2167 udelay(AFE_REGISTER_WRITE_DELAY);
2168 }
2169
2170 static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2171 enum sci_controller_mode operating_mode)
2172 {
2173 enum sci_status status = SCI_SUCCESS;
2174
2175 if ((scic->state_machine.current_state_id ==
2176 SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
2177 (scic->state_machine.current_state_id ==
2178 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
2179 switch (operating_mode) {
2180 case SCI_MODE_SPEED:
2181 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
2182 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
2183 scic->uf_control.buffers.count =
2184 SCU_UNSOLICITED_FRAME_COUNT;
2185 scic->completion_event_entries = SCU_EVENT_COUNT;
2186 scic->completion_queue_entries =
2187 SCU_COMPLETION_QUEUE_COUNT;
2188 break;
2189
2190 case SCI_MODE_SIZE:
2191 scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
2192 scic->task_context_entries = SCI_MIN_IO_REQUESTS;
2193 scic->uf_control.buffers.count =
2194 SCU_MIN_UNSOLICITED_FRAMES;
2195 scic->completion_event_entries = SCU_MIN_EVENTS;
2196 scic->completion_queue_entries =
2197 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2198 break;
2199
2200 default:
2201 status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2202 break;
2203 }
2204 } else
2205 status = SCI_FAILURE_INVALID_STATE;
2206
2207 return status;
2208 }
2209
2210 static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2211 {
2212 struct isci_host *ihost = scic_to_ihost(scic);
2213 scic->power_control.timer = isci_timer_create(ihost,
2214 scic,
2215 scic_sds_controller_power_control_timer_handler);
2216
2217 memset(scic->power_control.requesters, 0,
2218 sizeof(scic->power_control.requesters));
2219
2220 scic->power_control.phys_waiting = 0;
2221 scic->power_control.phys_granted_power = 0;
2222 }
2223
2224 static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2225 {
2226 struct sci_base_state_machine *sm = &scic->state_machine;
2227 enum sci_status result = SCI_SUCCESS;
2228 struct isci_host *ihost = scic_to_ihost(scic);
2229 u32 index, state;
2230
2231 if (scic->state_machine.current_state_id !=
2232 SCI_BASE_CONTROLLER_STATE_RESET) {
2233 dev_warn(scic_to_dev(scic),
2234 "SCIC Controller initialize operation requested "
2235 "in invalid state\n");
2236 return SCI_FAILURE_INVALID_STATE;
2237 }
2238
2239 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
2240
2241 scic->timeout_timer = isci_timer_create(ihost, scic,
2242 scic_sds_controller_timeout_handler);
2243
2244 scic_sds_controller_initialize_phy_startup(scic);
2245
2246 scic_sds_controller_initialize_power_control(scic);
2247
2248 /*
2249 * There is nothing to do here for B0 since we do not have to
2250 * program the AFE registers.
2251 * / @todo The AFE settings are supposed to be correct for the B0 but
2252 * / presently they seem to be wrong. */
2253 scic_sds_controller_afe_initialization(scic);
2254
2255 if (result == SCI_SUCCESS) {
2256 u32 status;
2257 u32 terminate_loop;
2258
2259 /* Take the hardware out of reset */
2260 writel(0, &scic->smu_registers->soft_reset_control);
2261
2262 /*
2263 * / @todo Provide meaningfull error code for hardware failure
2264 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2265 result = SCI_FAILURE;
2266 terminate_loop = 100;
2267
2268 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2269 /* Loop until the hardware reports success */
2270 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2271 status = readl(&scic->smu_registers->control_status);
2272
2273 if ((status & SCU_RAM_INIT_COMPLETED) ==
2274 SCU_RAM_INIT_COMPLETED)
2275 result = SCI_SUCCESS;
2276 }
2277 }
2278
2279 if (result == SCI_SUCCESS) {
2280 u32 max_supported_ports;
2281 u32 max_supported_devices;
2282 u32 max_supported_io_requests;
2283 u32 device_context_capacity;
2284
2285 /*
2286 * Determine what are the actaul device capacities that the
2287 * hardware will support */
2288 device_context_capacity =
2289 readl(&scic->smu_registers->device_context_capacity);
2290
2291
2292 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2293 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2294 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2295
2296 /*
2297 * Make all PEs that are unassigned match up with the
2298 * logical ports
2299 */
2300 for (index = 0; index < max_supported_ports; index++) {
2301 struct scu_port_task_scheduler_group_registers __iomem
2302 *ptsg = &scic->scu_registers->peg0.ptsg;
2303
2304 writel(index, &ptsg->protocol_engine[index]);
2305 }
2306
2307 /* Record the smaller of the two capacity values */
2308 scic->logical_port_entries =
2309 min(max_supported_ports, scic->logical_port_entries);
2310
2311 scic->task_context_entries =
2312 min(max_supported_io_requests,
2313 scic->task_context_entries);
2314
2315 scic->remote_node_entries =
2316 min(max_supported_devices, scic->remote_node_entries);
2317
2318 /*
2319 * Now that we have the correct hardware reported minimum values
2320 * build the MDL for the controller. Default to a performance
2321 * configuration.
2322 */
2323 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2324 }
2325
2326 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2327 if (result == SCI_SUCCESS) {
2328 u32 dma_configuration;
2329
2330 /* Configure the payload DMA */
2331 dma_configuration =
2332 readl(&scic->scu_registers->sdma.pdma_configuration);
2333 dma_configuration |=
2334 SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2335 writel(dma_configuration,
2336 &scic->scu_registers->sdma.pdma_configuration);
2337
2338 /* Configure the control DMA */
2339 dma_configuration =
2340 readl(&scic->scu_registers->sdma.cdma_configuration);
2341 dma_configuration |=
2342 SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2343 writel(dma_configuration,
2344 &scic->scu_registers->sdma.cdma_configuration);
2345 }
2346
2347 /*
2348 * Initialize the PHYs before the PORTs because the PHY registers
2349 * are accessed during the port initialization.
2350 */
2351 if (result == SCI_SUCCESS) {
2352 /* Initialize the phys */
2353 for (index = 0;
2354 (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2355 index++) {
2356 result = scic_sds_phy_initialize(
2357 &ihost->phys[index].sci,
2358 &scic->scu_registers->peg0.pe[index].tl,
2359 &scic->scu_registers->peg0.pe[index].ll);
2360 }
2361 }
2362
2363 if (result == SCI_SUCCESS) {
2364 /* Initialize the logical ports */
2365 for (index = 0;
2366 (index < scic->logical_port_entries) &&
2367 (result == SCI_SUCCESS);
2368 index++) {
2369 result = scic_sds_port_initialize(
2370 &ihost->ports[index].sci,
2371 &scic->scu_registers->peg0.ptsg.port[index],
2372 &scic->scu_registers->peg0.ptsg.protocol_engine,
2373 &scic->scu_registers->peg0.viit[index]);
2374 }
2375 }
2376
2377 if (result == SCI_SUCCESS)
2378 result = scic_sds_port_configuration_agent_initialize(
2379 scic,
2380 &scic->port_agent);
2381
2382 /* Advance the controller state machine */
2383 if (result == SCI_SUCCESS)
2384 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
2385 else
2386 state = SCI_BASE_CONTROLLER_STATE_FAILED;
2387 sci_base_state_machine_change_state(sm, state);
2388
2389 return result;
2390 }
2391
2392 static enum sci_status scic_user_parameters_set(
2393 struct scic_sds_controller *scic,
2394 union scic_user_parameters *scic_parms)
2395 {
2396 u32 state = scic->state_machine.current_state_id;
2397
2398 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
2399 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
2400 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
2401 u16 index;
2402
2403 /*
2404 * Validate the user parameters. If they are not legal, then
2405 * return a failure.
2406 */
2407 for (index = 0; index < SCI_MAX_PHYS; index++) {
2408 struct sci_phy_user_params *user_phy;
2409
2410 user_phy = &scic_parms->sds1.phys[index];
2411
2412 if (!((user_phy->max_speed_generation <=
2413 SCIC_SDS_PARM_MAX_SPEED) &&
2414 (user_phy->max_speed_generation >
2415 SCIC_SDS_PARM_NO_SPEED)))
2416 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2417
2418 if (user_phy->in_connection_align_insertion_frequency <
2419 3)
2420 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2421
2422 if ((user_phy->in_connection_align_insertion_frequency <
2423 3) ||
2424 (user_phy->align_insertion_frequency == 0) ||
2425 (user_phy->
2426 notify_enable_spin_up_insertion_frequency ==
2427 0))
2428 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2429 }
2430
2431 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2432 (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2433 (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2434 (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2435 (scic_parms->sds1.no_outbound_task_timeout == 0))
2436 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2437
2438 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2439
2440 return SCI_SUCCESS;
2441 }
2442
2443 return SCI_FAILURE_INVALID_STATE;
2444 }
2445
2446 static int scic_controller_mem_init(struct scic_sds_controller *scic)
2447 {
2448 struct device *dev = scic_to_dev(scic);
2449 dma_addr_t dma_handle;
2450 enum sci_status result;
2451
2452 scic->completion_queue = dmam_alloc_coherent(dev,
2453 scic->completion_queue_entries * sizeof(u32),
2454 &dma_handle, GFP_KERNEL);
2455 if (!scic->completion_queue)
2456 return -ENOMEM;
2457
2458 writel(lower_32_bits(dma_handle),
2459 &scic->smu_registers->completion_queue_lower);
2460 writel(upper_32_bits(dma_handle),
2461 &scic->smu_registers->completion_queue_upper);
2462
2463 scic->remote_node_context_table = dmam_alloc_coherent(dev,
2464 scic->remote_node_entries *
2465 sizeof(union scu_remote_node_context),
2466 &dma_handle, GFP_KERNEL);
2467 if (!scic->remote_node_context_table)
2468 return -ENOMEM;
2469
2470 writel(lower_32_bits(dma_handle),
2471 &scic->smu_registers->remote_node_context_lower);
2472 writel(upper_32_bits(dma_handle),
2473 &scic->smu_registers->remote_node_context_upper);
2474
2475 scic->task_context_table = dmam_alloc_coherent(dev,
2476 scic->task_context_entries *
2477 sizeof(struct scu_task_context),
2478 &dma_handle, GFP_KERNEL);
2479 if (!scic->task_context_table)
2480 return -ENOMEM;
2481
2482 writel(lower_32_bits(dma_handle),
2483 &scic->smu_registers->host_task_table_lower);
2484 writel(upper_32_bits(dma_handle),
2485 &scic->smu_registers->host_task_table_upper);
2486
2487 result = scic_sds_unsolicited_frame_control_construct(scic);
2488 if (result)
2489 return result;
2490
2491 /*
2492 * Inform the silicon as to the location of the UF headers and
2493 * address table.
2494 */
2495 writel(lower_32_bits(scic->uf_control.headers.physical_address),
2496 &scic->scu_registers->sdma.uf_header_base_address_lower);
2497 writel(upper_32_bits(scic->uf_control.headers.physical_address),
2498 &scic->scu_registers->sdma.uf_header_base_address_upper);
2499
2500 writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2501 &scic->scu_registers->sdma.uf_address_table_lower);
2502 writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2503 &scic->scu_registers->sdma.uf_address_table_upper);
2504
2505 return 0;
2506 }
2507
2508 int isci_host_init(struct isci_host *isci_host)
2509 {
2510 int err = 0, i;
2511 enum sci_status status;
2512 union scic_oem_parameters oem;
2513 union scic_user_parameters scic_user_params;
2514 struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
2515
2516 isci_timer_list_construct(isci_host);
2517
2518 spin_lock_init(&isci_host->state_lock);
2519 spin_lock_init(&isci_host->scic_lock);
2520 spin_lock_init(&isci_host->queue_lock);
2521 init_waitqueue_head(&isci_host->eventq);
2522
2523 isci_host_change_state(isci_host, isci_starting);
2524 isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2525
2526 status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
2527 smu_base(isci_host));
2528
2529 if (status != SCI_SUCCESS) {
2530 dev_err(&isci_host->pdev->dev,
2531 "%s: scic_controller_construct failed - status = %x\n",
2532 __func__,
2533 status);
2534 return -ENODEV;
2535 }
2536
2537 isci_host->sas_ha.dev = &isci_host->pdev->dev;
2538 isci_host->sas_ha.lldd_ha = isci_host;
2539
2540 /*
2541 * grab initial values stored in the controller object for OEM and USER
2542 * parameters
2543 */
2544 isci_user_parameters_get(isci_host, &scic_user_params);
2545 status = scic_user_parameters_set(&isci_host->sci,
2546 &scic_user_params);
2547 if (status != SCI_SUCCESS) {
2548 dev_warn(&isci_host->pdev->dev,
2549 "%s: scic_user_parameters_set failed\n",
2550 __func__);
2551 return -ENODEV;
2552 }
2553
2554 scic_oem_parameters_get(&isci_host->sci, &oem);
2555
2556 /* grab any OEM parameters specified in orom */
2557 if (pci_info->orom) {
2558 status = isci_parse_oem_parameters(&oem,
2559 pci_info->orom,
2560 isci_host->id);
2561 if (status != SCI_SUCCESS) {
2562 dev_warn(&isci_host->pdev->dev,
2563 "parsing firmware oem parameters failed\n");
2564 return -EINVAL;
2565 }
2566 }
2567
2568 status = scic_oem_parameters_set(&isci_host->sci, &oem);
2569 if (status != SCI_SUCCESS) {
2570 dev_warn(&isci_host->pdev->dev,
2571 "%s: scic_oem_parameters_set failed\n",
2572 __func__);
2573 return -ENODEV;
2574 }
2575
2576 tasklet_init(&isci_host->completion_tasklet,
2577 isci_host_completion_routine, (unsigned long)isci_host);
2578
2579 INIT_LIST_HEAD(&isci_host->requests_to_complete);
2580 INIT_LIST_HEAD(&isci_host->requests_to_errorback);
2581
2582 spin_lock_irq(&isci_host->scic_lock);
2583 status = scic_controller_initialize(&isci_host->sci);
2584 spin_unlock_irq(&isci_host->scic_lock);
2585 if (status != SCI_SUCCESS) {
2586 dev_warn(&isci_host->pdev->dev,
2587 "%s: scic_controller_initialize failed -"
2588 " status = 0x%x\n",
2589 __func__, status);
2590 return -ENODEV;
2591 }
2592
2593 err = scic_controller_mem_init(&isci_host->sci);
2594 if (err)
2595 return err;
2596
2597 isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
2598 sizeof(struct isci_request),
2599 SLAB_HWCACHE_ALIGN, 0);
2600
2601 if (!isci_host->dma_pool)
2602 return -ENOMEM;
2603
2604 for (i = 0; i < SCI_MAX_PORTS; i++)
2605 isci_port_init(&isci_host->ports[i], isci_host, i);
2606
2607 for (i = 0; i < SCI_MAX_PHYS; i++)
2608 isci_phy_init(&isci_host->phys[i], isci_host, i);
2609
2610 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2611 struct isci_remote_device *idev = &isci_host->devices[i];
2612
2613 INIT_LIST_HEAD(&idev->reqs_in_process);
2614 INIT_LIST_HEAD(&idev->node);
2615 spin_lock_init(&idev->state_lock);
2616 }
2617
2618 return 0;
2619 }
2620
2621 void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2622 struct scic_sds_port *port, struct scic_sds_phy *phy)
2623 {
2624 switch (scic->state_machine.current_state_id) {
2625 case SCI_BASE_CONTROLLER_STATE_STARTING:
2626 scic_sds_controller_phy_timer_stop(scic);
2627 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2628 port, phy);
2629 scic_sds_controller_start_next_phy(scic);
2630 break;
2631 case SCI_BASE_CONTROLLER_STATE_READY:
2632 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2633 port, phy);
2634 break;
2635 default:
2636 dev_dbg(scic_to_dev(scic),
2637 "%s: SCIC Controller linkup event from phy %d in "
2638 "unexpected state %d\n", __func__, phy->phy_index,
2639 scic->state_machine.current_state_id);
2640 }
2641 }
2642
2643 void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2644 struct scic_sds_port *port, struct scic_sds_phy *phy)
2645 {
2646 switch (scic->state_machine.current_state_id) {
2647 case SCI_BASE_CONTROLLER_STATE_STARTING:
2648 case SCI_BASE_CONTROLLER_STATE_READY:
2649 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2650 port, phy);
2651 break;
2652 default:
2653 dev_dbg(scic_to_dev(scic),
2654 "%s: SCIC Controller linkdown event from phy %d in "
2655 "unexpected state %d\n",
2656 __func__,
2657 phy->phy_index,
2658 scic->state_machine.current_state_id);
2659 }
2660 }
2661
2662 /**
2663 * This is a helper method to determine if any remote devices on this
2664 * controller are still in the stopping state.
2665 *
2666 */
2667 static bool scic_sds_controller_has_remote_devices_stopping(
2668 struct scic_sds_controller *controller)
2669 {
2670 u32 index;
2671
2672 for (index = 0; index < controller->remote_node_entries; index++) {
2673 if ((controller->device_table[index] != NULL) &&
2674 (controller->device_table[index]->state_machine.current_state_id
2675 == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
2676 return true;
2677 }
2678
2679 return false;
2680 }
2681
2682 /**
2683 * This method is called by the remote device to inform the controller
2684 * object that the remote device has stopped.
2685 */
2686 void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2687 struct scic_sds_remote_device *sci_dev)
2688 {
2689 if (scic->state_machine.current_state_id !=
2690 SCI_BASE_CONTROLLER_STATE_STOPPING) {
2691 dev_dbg(scic_to_dev(scic),
2692 "SCIC Controller 0x%p remote device stopped event "
2693 "from device 0x%p in unexpected state %d\n",
2694 scic, sci_dev,
2695 scic->state_machine.current_state_id);
2696 return;
2697 }
2698
2699 if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
2700 sci_base_state_machine_change_state(&scic->state_machine,
2701 SCI_BASE_CONTROLLER_STATE_STOPPED);
2702 }
2703 }
2704
2705 /**
2706 * This method will write to the SCU PCP register the request value. The method
2707 * is used to suspend/resume ports, devices, and phys.
2708 * @scic:
2709 *
2710 *
2711 */
2712 void scic_sds_controller_post_request(
2713 struct scic_sds_controller *scic,
2714 u32 request)
2715 {
2716 dev_dbg(scic_to_dev(scic),
2717 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2718 __func__,
2719 scic,
2720 request);
2721
2722 writel(request, &scic->smu_registers->post_context_port);
2723 }
2724
2725 /**
2726 * This method will copy the soft copy of the task context into the physical
2727 * memory accessible by the controller.
2728 * @scic: This parameter specifies the controller for which to copy
2729 * the task context.
2730 * @sci_req: This parameter specifies the request for which the task
2731 * context is being copied.
2732 *
2733 * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2734 * the physical memory version of the task context. Thus, all subsequent
2735 * updates to the task context are performed in the TC table (i.e. DMAable
2736 * memory). none
2737 */
2738 void scic_sds_controller_copy_task_context(
2739 struct scic_sds_controller *scic,
2740 struct scic_sds_request *sci_req)
2741 {
2742 struct scu_task_context *task_context_buffer;
2743
2744 task_context_buffer = scic_sds_controller_get_task_context_buffer(
2745 scic, sci_req->io_tag);
2746
2747 memcpy(task_context_buffer,
2748 sci_req->task_context_buffer,
2749 offsetof(struct scu_task_context, sgl_snapshot_ac));
2750
2751 /*
2752 * Now that the soft copy of the TC has been copied into the TC
2753 * table accessible by the silicon. Thus, any further changes to
2754 * the TC (e.g. TC termination) occur in the appropriate location. */
2755 sci_req->task_context_buffer = task_context_buffer;
2756 }
2757
2758 /**
2759 * This method returns the task context buffer for the given io tag.
2760 * @scic:
2761 * @io_tag:
2762 *
2763 * struct scu_task_context*
2764 */
2765 struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2766 struct scic_sds_controller *scic,
2767 u16 io_tag
2768 ) {
2769 u16 task_index = scic_sds_io_tag_get_index(io_tag);
2770
2771 if (task_index < scic->task_context_entries) {
2772 return &scic->task_context_table[task_index];
2773 }
2774
2775 return NULL;
2776 }
2777
2778 struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2779 u16 io_tag)
2780 {
2781 u16 task_index;
2782 u16 task_sequence;
2783
2784 task_index = scic_sds_io_tag_get_index(io_tag);
2785
2786 if (task_index < scic->task_context_entries) {
2787 if (scic->io_request_table[task_index] != NULL) {
2788 task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2789
2790 if (task_sequence == scic->io_request_sequence[task_index]) {
2791 return scic->io_request_table[task_index];
2792 }
2793 }
2794 }
2795
2796 return NULL;
2797 }
2798
2799 /**
2800 * This method allocates remote node index and the reserves the remote node
2801 * context space for use. This method can fail if there are no more remote
2802 * node index available.
2803 * @scic: This is the controller object which contains the set of
2804 * free remote node ids
2805 * @sci_dev: This is the device object which is requesting the a remote node
2806 * id
2807 * @node_id: This is the remote node id that is assinged to the device if one
2808 * is available
2809 *
2810 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2811 * node index available.
2812 */
2813 enum sci_status scic_sds_controller_allocate_remote_node_context(
2814 struct scic_sds_controller *scic,
2815 struct scic_sds_remote_device *sci_dev,
2816 u16 *node_id)
2817 {
2818 u16 node_index;
2819 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2820
2821 node_index = scic_sds_remote_node_table_allocate_remote_node(
2822 &scic->available_remote_nodes, remote_node_count
2823 );
2824
2825 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2826 scic->device_table[node_index] = sci_dev;
2827
2828 *node_id = node_index;
2829
2830 return SCI_SUCCESS;
2831 }
2832
2833 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2834 }
2835
2836 /**
2837 * This method frees the remote node index back to the available pool. Once
2838 * this is done the remote node context buffer is no longer valid and can
2839 * not be used.
2840 * @scic:
2841 * @sci_dev:
2842 * @node_id:
2843 *
2844 */
2845 void scic_sds_controller_free_remote_node_context(
2846 struct scic_sds_controller *scic,
2847 struct scic_sds_remote_device *sci_dev,
2848 u16 node_id)
2849 {
2850 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2851
2852 if (scic->device_table[node_id] == sci_dev) {
2853 scic->device_table[node_id] = NULL;
2854
2855 scic_sds_remote_node_table_release_remote_node_index(
2856 &scic->available_remote_nodes, remote_node_count, node_id
2857 );
2858 }
2859 }
2860
2861 /**
2862 * This method returns the union scu_remote_node_context for the specified remote
2863 * node id.
2864 * @scic:
2865 * @node_id:
2866 *
2867 * union scu_remote_node_context*
2868 */
2869 union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2870 struct scic_sds_controller *scic,
2871 u16 node_id
2872 ) {
2873 if (
2874 (node_id < scic->remote_node_entries)
2875 && (scic->device_table[node_id] != NULL)
2876 ) {
2877 return &scic->remote_node_context_table[node_id];
2878 }
2879
2880 return NULL;
2881 }
2882
2883 /**
2884 *
2885 * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2886 * constructed.
2887 * @frame_header: This is the frame header returned by the hardware.
2888 * @frame_buffer: This is the frame buffer returned by the hardware.
2889 *
2890 * This method will combind the frame header and frame buffer to create a SATA
2891 * D2H register FIS none
2892 */
2893 void scic_sds_controller_copy_sata_response(
2894 void *response_buffer,
2895 void *frame_header,
2896 void *frame_buffer)
2897 {
2898 memcpy(response_buffer, frame_header, sizeof(u32));
2899
2900 memcpy(response_buffer + sizeof(u32),
2901 frame_buffer,
2902 sizeof(struct dev_to_host_fis) - sizeof(u32));
2903 }
2904
2905 /**
2906 * This method releases the frame once this is done the frame is available for
2907 * re-use by the hardware. The data contained in the frame header and frame
2908 * buffer is no longer valid. The UF queue get pointer is only updated if UF
2909 * control indicates this is appropriate.
2910 * @scic:
2911 * @frame_index:
2912 *
2913 */
2914 void scic_sds_controller_release_frame(
2915 struct scic_sds_controller *scic,
2916 u32 frame_index)
2917 {
2918 if (scic_sds_unsolicited_frame_control_release_frame(
2919 &scic->uf_control, frame_index) == true)
2920 writel(scic->uf_control.get,
2921 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2922 }
2923
2924 /**
2925 * scic_controller_start_io() - This method is called by the SCI user to
2926 * send/start an IO request. If the method invocation is successful, then
2927 * the IO request has been queued to the hardware for processing.
2928 * @controller: the handle to the controller object for which to start an IO
2929 * request.
2930 * @remote_device: the handle to the remote device object for which to start an
2931 * IO request.
2932 * @io_request: the handle to the io request object to start.
2933 * @io_tag: This parameter specifies a previously allocated IO tag that the
2934 * user desires to be utilized for this request. This parameter is optional.
2935 * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2936 * for this parameter.
2937 *
2938 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
2939 * to ensure that each of the methods that may allocate or free available IO
2940 * tags are handled in a mutually exclusive manner. This method is one of said
2941 * methods requiring proper critical code section protection (e.g. semaphore,
2942 * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
2943 * result, it is expected the user will have set the NCQ tag field in the host
2944 * to device register FIS prior to calling this method. There is also a
2945 * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2946 * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2947 * more information on allocating a tag. Indicate if the controller
2948 * successfully started the IO request. SCI_SUCCESS if the IO request was
2949 * successfully started. Determine the failure situations and return values.
2950 */
2951 enum sci_status scic_controller_start_io(
2952 struct scic_sds_controller *scic,
2953 struct scic_sds_remote_device *rdev,
2954 struct scic_sds_request *req,
2955 u16 io_tag)
2956 {
2957 enum sci_status status;
2958
2959 if (scic->state_machine.current_state_id !=
2960 SCI_BASE_CONTROLLER_STATE_READY) {
2961 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2962 return SCI_FAILURE_INVALID_STATE;
2963 }
2964
2965 status = scic_sds_remote_device_start_io(scic, rdev, req);
2966 if (status != SCI_SUCCESS)
2967 return status;
2968
2969 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2970 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2971 return SCI_SUCCESS;
2972 }
2973
2974 /**
2975 * scic_controller_terminate_request() - This method is called by the SCI Core
2976 * user to terminate an ongoing (i.e. started) core IO request. This does
2977 * not abort the IO request at the target, but rather removes the IO request
2978 * from the host controller.
2979 * @controller: the handle to the controller object for which to terminate a
2980 * request.
2981 * @remote_device: the handle to the remote device object for which to
2982 * terminate a request.
2983 * @request: the handle to the io or task management request object to
2984 * terminate.
2985 *
2986 * Indicate if the controller successfully began the terminate process for the
2987 * IO request. SCI_SUCCESS if the terminate process was successfully started
2988 * for the request. Determine the failure situations and return values.
2989 */
2990 enum sci_status scic_controller_terminate_request(
2991 struct scic_sds_controller *scic,
2992 struct scic_sds_remote_device *rdev,
2993 struct scic_sds_request *req)
2994 {
2995 enum sci_status status;
2996
2997 if (scic->state_machine.current_state_id !=
2998 SCI_BASE_CONTROLLER_STATE_READY) {
2999 dev_warn(scic_to_dev(scic),
3000 "invalid state to terminate request\n");
3001 return SCI_FAILURE_INVALID_STATE;
3002 }
3003
3004 status = scic_sds_io_request_terminate(req);
3005 if (status != SCI_SUCCESS)
3006 return status;
3007
3008 /*
3009 * Utilize the original post context command and or in the POST_TC_ABORT
3010 * request sub-type.
3011 */
3012 scic_sds_controller_post_request(scic,
3013 scic_sds_request_get_post_context(req) |
3014 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
3015 return SCI_SUCCESS;
3016 }
3017
3018 /**
3019 * scic_controller_complete_io() - This method will perform core specific
3020 * completion operations for an IO request. After this method is invoked,
3021 * the user should consider the IO request as invalid until it is properly
3022 * reused (i.e. re-constructed).
3023 * @controller: The handle to the controller object for which to complete the
3024 * IO request.
3025 * @remote_device: The handle to the remote device object for which to complete
3026 * the IO request.
3027 * @io_request: the handle to the io request object to complete.
3028 *
3029 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3030 * to ensure that each of the methods that may allocate or free available IO
3031 * tags are handled in a mutually exclusive manner. This method is one of said
3032 * methods requiring proper critical code section protection (e.g. semaphore,
3033 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3034 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3035 * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3036 * method to free the tag (i.e. this method will not free the IO tag). Indicate
3037 * if the controller successfully completed the IO request. SCI_SUCCESS if the
3038 * completion process was successful.
3039 */
3040 enum sci_status scic_controller_complete_io(
3041 struct scic_sds_controller *scic,
3042 struct scic_sds_remote_device *rdev,
3043 struct scic_sds_request *request)
3044 {
3045 enum sci_status status;
3046 u16 index;
3047
3048 switch (scic->state_machine.current_state_id) {
3049 case SCI_BASE_CONTROLLER_STATE_STOPPING:
3050 /* XXX: Implement this function */
3051 return SCI_FAILURE;
3052 case SCI_BASE_CONTROLLER_STATE_READY:
3053 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3054 if (status != SCI_SUCCESS)
3055 return status;
3056
3057 index = scic_sds_io_tag_get_index(request->io_tag);
3058 scic->io_request_table[index] = NULL;
3059 return SCI_SUCCESS;
3060 default:
3061 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3062 return SCI_FAILURE_INVALID_STATE;
3063 }
3064
3065 }
3066
3067 enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3068 {
3069 struct scic_sds_controller *scic = sci_req->owning_controller;
3070
3071 if (scic->state_machine.current_state_id !=
3072 SCI_BASE_CONTROLLER_STATE_READY) {
3073 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3074 return SCI_FAILURE_INVALID_STATE;
3075 }
3076
3077 scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3078 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3079 return SCI_SUCCESS;
3080 }
3081
3082 /**
3083 * scic_controller_start_task() - This method is called by the SCIC user to
3084 * send/start a framework task management request.
3085 * @controller: the handle to the controller object for which to start the task
3086 * management request.
3087 * @remote_device: the handle to the remote device object for which to start
3088 * the task management request.
3089 * @task_request: the handle to the task request object to start.
3090 * @io_tag: This parameter specifies a previously allocated IO tag that the
3091 * user desires to be utilized for this request. Note this not the io_tag
3092 * of the request being managed. It is to be utilized for the task request
3093 * itself. This parameter is optional. The user is allowed to supply
3094 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3095 *
3096 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3097 * to ensure that each of the methods that may allocate or free available IO
3098 * tags are handled in a mutually exclusive manner. This method is one of said
3099 * methods requiring proper critical code section protection (e.g. semaphore,
3100 * spin-lock, etc.). - The user must synchronize this task with completion
3101 * queue processing. If they are not synchronized then it is possible for the
3102 * io requests that are being managed by the task request can complete before
3103 * starting the task request. scic_controller_allocate_tag() for more
3104 * information on allocating a tag. Indicate if the controller successfully
3105 * started the IO request. SCI_TASK_SUCCESS if the task request was
3106 * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3107 * returned if there is/are task(s) outstanding that require termination or
3108 * completion before this request can succeed.
3109 */
3110 enum sci_task_status scic_controller_start_task(
3111 struct scic_sds_controller *scic,
3112 struct scic_sds_remote_device *rdev,
3113 struct scic_sds_request *req,
3114 u16 task_tag)
3115 {
3116 enum sci_status status;
3117
3118 if (scic->state_machine.current_state_id !=
3119 SCI_BASE_CONTROLLER_STATE_READY) {
3120 dev_warn(scic_to_dev(scic),
3121 "%s: SCIC Controller starting task from invalid "
3122 "state\n",
3123 __func__);
3124 return SCI_TASK_FAILURE_INVALID_STATE;
3125 }
3126
3127 status = scic_sds_remote_device_start_task(scic, rdev, req);
3128 switch (status) {
3129 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3130 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3131
3132 /*
3133 * We will let framework know this task request started successfully,
3134 * although core is still woring on starting the request (to post tc when
3135 * RNC is resumed.)
3136 */
3137 return SCI_SUCCESS;
3138 case SCI_SUCCESS:
3139 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3140
3141 scic_sds_controller_post_request(scic,
3142 scic_sds_request_get_post_context(req));
3143 break;
3144 default:
3145 break;
3146 }
3147
3148 return status;
3149 }
3150
3151 /**
3152 * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3153 * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3154 * is optional. The scic_controller_start_io() method will allocate an IO
3155 * tag if this method is not utilized and the tag is not supplied to the IO
3156 * construct routine. Direct allocation of IO tags may provide additional
3157 * performance improvements in environments capable of supporting this usage
3158 * model. Additionally, direct allocation of IO tags also provides
3159 * additional flexibility to the SCI Core user. Specifically, the user may
3160 * retain IO tags across the lives of multiple IO requests.
3161 * @controller: the handle to the controller object for which to allocate the
3162 * tag.
3163 *
3164 * IO tags are a protected resource. It is incumbent upon the SCI Core user to
3165 * ensure that each of the methods that may allocate or free available IO tags
3166 * are handled in a mutually exclusive manner. This method is one of said
3167 * methods requiring proper critical code section protection (e.g. semaphore,
3168 * spin-lock, etc.). An unsigned integer representing an available IO tag.
3169 * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3170 * currently available tags to be allocated. All return other values indicate a
3171 * legitimate tag.
3172 */
3173 u16 scic_controller_allocate_io_tag(
3174 struct scic_sds_controller *scic)
3175 {
3176 u16 task_context;
3177 u16 sequence_count;
3178
3179 if (!sci_pool_empty(scic->tci_pool)) {
3180 sci_pool_get(scic->tci_pool, task_context);
3181
3182 sequence_count = scic->io_request_sequence[task_context];
3183
3184 return scic_sds_io_tag_construct(sequence_count, task_context);
3185 }
3186
3187 return SCI_CONTROLLER_INVALID_IO_TAG;
3188 }
3189
3190 /**
3191 * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3192 * of free IO tags. This method provides the SCI Core user more flexibility
3193 * with regards to IO tags. The user may desire to keep an IO tag after an
3194 * IO request has completed, because they plan on re-using the tag for a
3195 * subsequent IO request. This method is only legal if the tag was
3196 * allocated via scic_controller_allocate_io_tag().
3197 * @controller: This parameter specifies the handle to the controller object
3198 * for which to free/return the tag.
3199 * @io_tag: This parameter represents the tag to be freed to the pool of
3200 * available tags.
3201 *
3202 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3203 * to ensure that each of the methods that may allocate or free available IO
3204 * tags are handled in a mutually exclusive manner. This method is one of said
3205 * methods requiring proper critical code section protection (e.g. semaphore,
3206 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3207 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3208 * the responsibility of the caller to invoke this method to free the tag. This
3209 * method returns an indication of whether the tag was successfully put back
3210 * (freed) to the pool of available tags. SCI_SUCCESS This return value
3211 * indicates the tag was successfully placed into the pool of available IO
3212 * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3213 * is not a valid IO tag value.
3214 */
3215 enum sci_status scic_controller_free_io_tag(
3216 struct scic_sds_controller *scic,
3217 u16 io_tag)
3218 {
3219 u16 sequence;
3220 u16 index;
3221
3222 BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3223
3224 sequence = scic_sds_io_tag_get_sequence(io_tag);
3225 index = scic_sds_io_tag_get_index(io_tag);
3226
3227 if (!sci_pool_full(scic->tci_pool)) {
3228 if (sequence == scic->io_request_sequence[index]) {
3229 scic_sds_io_sequence_increment(
3230 scic->io_request_sequence[index]);
3231
3232 sci_pool_put(scic->tci_pool, index);
3233
3234 return SCI_SUCCESS;
3235 }
3236 }
3237
3238 return SCI_FAILURE_INVALID_IO_TAG;
3239 }
3240
3241