]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/isci/host.c
[SCSI] isci: implement suspend/resume support
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / isci / host.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
71
72 #define smu_max_ports(dcc_value) \
73 (\
74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76 )
77
78 #define smu_max_task_contexts(dcc_value) \
79 (\
80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82 )
83
84 #define smu_max_rncs(dcc_value) \
85 (\
86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88 )
89
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
91
92 /**
93 *
94 *
95 * The number of milliseconds to wait while a given phy is consuming power
96 * before allowing another set of phys to consume power. Ultimately, this will
97 * be specified by OEM parameter.
98 */
99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100
101 /**
102 * NORMALIZE_PUT_POINTER() -
103 *
104 * This macro will normalize the completion queue put pointer so its value can
105 * be used as an array inde
106 */
107 #define NORMALIZE_PUT_POINTER(x) \
108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
109
110
111 /**
112 * NORMALIZE_EVENT_POINTER() -
113 *
114 * This macro will normalize the completion queue event entry so its value can
115 * be used as an index.
116 */
117 #define NORMALIZE_EVENT_POINTER(x) \
118 (\
119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
121 )
122
123 /**
124 * NORMALIZE_GET_POINTER() -
125 *
126 * This macro will normalize the completion queue get pointer so its value can
127 * be used as an index into an array
128 */
129 #define NORMALIZE_GET_POINTER(x) \
130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131
132 /**
133 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
134 *
135 * This macro will normalize the completion queue cycle pointer so it matches
136 * the completion queue cycle bit
137 */
138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140
141 /**
142 * COMPLETION_QUEUE_CYCLE_BIT() -
143 *
144 * This macro will return the cycle bit of the completion queue entry
145 */
146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
147
148 /* Init the state machine and call the state entry function (if any) */
149 void sci_init_sm(struct sci_base_state_machine *sm,
150 const struct sci_base_state *state_table, u32 initial_state)
151 {
152 sci_state_transition_t handler;
153
154 sm->initial_state_id = initial_state;
155 sm->previous_state_id = initial_state;
156 sm->current_state_id = initial_state;
157 sm->state_table = state_table;
158
159 handler = sm->state_table[initial_state].enter_state;
160 if (handler)
161 handler(sm);
162 }
163
164 /* Call the state exit fn, update the current state, call the state entry fn */
165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
166 {
167 sci_state_transition_t handler;
168
169 handler = sm->state_table[sm->current_state_id].exit_state;
170 if (handler)
171 handler(sm);
172
173 sm->previous_state_id = sm->current_state_id;
174 sm->current_state_id = next_state;
175
176 handler = sm->state_table[sm->current_state_id].enter_state;
177 if (handler)
178 handler(sm);
179 }
180
181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182 {
183 u32 get_value = ihost->completion_queue_get;
184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
185
186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188 return true;
189
190 return false;
191 }
192
193 static bool sci_controller_isr(struct isci_host *ihost)
194 {
195 if (sci_controller_completion_queue_has_entries(ihost))
196 return true;
197
198 /* we have a spurious interrupt it could be that we have already
199 * emptied the completion queue from a previous interrupt
200 * FIXME: really!?
201 */
202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204 /* There is a race in the hardware that could cause us not to be
205 * notified of an interrupt completion if we do not take this
206 * step. We will mask then unmask the interrupts so if there is
207 * another interrupt pending the clearing of the interrupt
208 * source we get the next interrupt message.
209 */
210 spin_lock(&ihost->scic_lock);
211 if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
212 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
213 writel(0, &ihost->smu_registers->interrupt_mask);
214 }
215 spin_unlock(&ihost->scic_lock);
216
217 return false;
218 }
219
220 irqreturn_t isci_msix_isr(int vec, void *data)
221 {
222 struct isci_host *ihost = data;
223
224 if (sci_controller_isr(ihost))
225 tasklet_schedule(&ihost->completion_tasklet);
226
227 return IRQ_HANDLED;
228 }
229
230 static bool sci_controller_error_isr(struct isci_host *ihost)
231 {
232 u32 interrupt_status;
233
234 interrupt_status =
235 readl(&ihost->smu_registers->interrupt_status);
236 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
237
238 if (interrupt_status != 0) {
239 /*
240 * There is an error interrupt pending so let it through and handle
241 * in the callback */
242 return true;
243 }
244
245 /*
246 * There is a race in the hardware that could cause us not to be notified
247 * of an interrupt completion if we do not take this step. We will mask
248 * then unmask the error interrupts so if there was another interrupt
249 * pending we will be notified.
250 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
251 writel(0xff, &ihost->smu_registers->interrupt_mask);
252 writel(0, &ihost->smu_registers->interrupt_mask);
253
254 return false;
255 }
256
257 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
258 {
259 u32 index = SCU_GET_COMPLETION_INDEX(ent);
260 struct isci_request *ireq = ihost->reqs[index];
261
262 /* Make sure that we really want to process this IO request */
263 if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
264 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
265 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
266 /* Yep this is a valid io request pass it along to the
267 * io request handler
268 */
269 sci_io_request_tc_completion(ireq, ent);
270 }
271
272 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
273 {
274 u32 index;
275 struct isci_request *ireq;
276 struct isci_remote_device *idev;
277
278 index = SCU_GET_COMPLETION_INDEX(ent);
279
280 switch (scu_get_command_request_type(ent)) {
281 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
282 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
283 ireq = ihost->reqs[index];
284 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
285 __func__, ent, ireq);
286 /* @todo For a post TC operation we need to fail the IO
287 * request
288 */
289 break;
290 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
291 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
292 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
293 idev = ihost->device_table[index];
294 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
295 __func__, ent, idev);
296 /* @todo For a port RNC operation we need to fail the
297 * device
298 */
299 break;
300 default:
301 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
302 __func__, ent);
303 break;
304 }
305 }
306
307 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
308 {
309 u32 index;
310 u32 frame_index;
311
312 struct scu_unsolicited_frame_header *frame_header;
313 struct isci_phy *iphy;
314 struct isci_remote_device *idev;
315
316 enum sci_status result = SCI_FAILURE;
317
318 frame_index = SCU_GET_FRAME_INDEX(ent);
319
320 frame_header = ihost->uf_control.buffers.array[frame_index].header;
321 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
322
323 if (SCU_GET_FRAME_ERROR(ent)) {
324 /*
325 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
326 * / this cause a problem? We expect the phy initialization will
327 * / fail if there is an error in the frame. */
328 sci_controller_release_frame(ihost, frame_index);
329 return;
330 }
331
332 if (frame_header->is_address_frame) {
333 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
334 iphy = &ihost->phys[index];
335 result = sci_phy_frame_handler(iphy, frame_index);
336 } else {
337
338 index = SCU_GET_COMPLETION_INDEX(ent);
339
340 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
341 /*
342 * This is a signature fis or a frame from a direct attached SATA
343 * device that has not yet been created. In either case forwared
344 * the frame to the PE and let it take care of the frame data. */
345 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
346 iphy = &ihost->phys[index];
347 result = sci_phy_frame_handler(iphy, frame_index);
348 } else {
349 if (index < ihost->remote_node_entries)
350 idev = ihost->device_table[index];
351 else
352 idev = NULL;
353
354 if (idev != NULL)
355 result = sci_remote_device_frame_handler(idev, frame_index);
356 else
357 sci_controller_release_frame(ihost, frame_index);
358 }
359 }
360
361 if (result != SCI_SUCCESS) {
362 /*
363 * / @todo Is there any reason to report some additional error message
364 * / when we get this failure notifiction? */
365 }
366 }
367
368 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
369 {
370 struct isci_remote_device *idev;
371 struct isci_request *ireq;
372 struct isci_phy *iphy;
373 u32 index;
374
375 index = SCU_GET_COMPLETION_INDEX(ent);
376
377 switch (scu_get_event_type(ent)) {
378 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
379 /* / @todo The driver did something wrong and we need to fix the condtion. */
380 dev_err(&ihost->pdev->dev,
381 "%s: SCIC Controller 0x%p received SMU command error "
382 "0x%x\n",
383 __func__,
384 ihost,
385 ent);
386 break;
387
388 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
389 case SCU_EVENT_TYPE_SMU_ERROR:
390 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
391 /*
392 * / @todo This is a hardware failure and its likely that we want to
393 * / reset the controller. */
394 dev_err(&ihost->pdev->dev,
395 "%s: SCIC Controller 0x%p received fatal controller "
396 "event 0x%x\n",
397 __func__,
398 ihost,
399 ent);
400 break;
401
402 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
403 ireq = ihost->reqs[index];
404 sci_io_request_event_handler(ireq, ent);
405 break;
406
407 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
408 switch (scu_get_event_specifier(ent)) {
409 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
410 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
411 ireq = ihost->reqs[index];
412 if (ireq != NULL)
413 sci_io_request_event_handler(ireq, ent);
414 else
415 dev_warn(&ihost->pdev->dev,
416 "%s: SCIC Controller 0x%p received "
417 "event 0x%x for io request object "
418 "that doesnt exist.\n",
419 __func__,
420 ihost,
421 ent);
422
423 break;
424
425 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
426 idev = ihost->device_table[index];
427 if (idev != NULL)
428 sci_remote_device_event_handler(idev, ent);
429 else
430 dev_warn(&ihost->pdev->dev,
431 "%s: SCIC Controller 0x%p received "
432 "event 0x%x for remote device object "
433 "that doesnt exist.\n",
434 __func__,
435 ihost,
436 ent);
437
438 break;
439 }
440 break;
441
442 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
443 /*
444 * direct the broadcast change event to the phy first and then let
445 * the phy redirect the broadcast change to the port object */
446 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
447 /*
448 * direct error counter event to the phy object since that is where
449 * we get the event notification. This is a type 4 event. */
450 case SCU_EVENT_TYPE_OSSP_EVENT:
451 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
452 iphy = &ihost->phys[index];
453 sci_phy_event_handler(iphy, ent);
454 break;
455
456 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
457 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
458 case SCU_EVENT_TYPE_RNC_OPS_MISC:
459 if (index < ihost->remote_node_entries) {
460 idev = ihost->device_table[index];
461
462 if (idev != NULL)
463 sci_remote_device_event_handler(idev, ent);
464 } else
465 dev_err(&ihost->pdev->dev,
466 "%s: SCIC Controller 0x%p received event 0x%x "
467 "for remote device object 0x%0x that doesnt "
468 "exist.\n",
469 __func__,
470 ihost,
471 ent,
472 index);
473
474 break;
475
476 default:
477 dev_warn(&ihost->pdev->dev,
478 "%s: SCIC Controller received unknown event code %x\n",
479 __func__,
480 ent);
481 break;
482 }
483 }
484
485 static void sci_controller_process_completions(struct isci_host *ihost)
486 {
487 u32 completion_count = 0;
488 u32 ent;
489 u32 get_index;
490 u32 get_cycle;
491 u32 event_get;
492 u32 event_cycle;
493
494 dev_dbg(&ihost->pdev->dev,
495 "%s: completion queue begining get:0x%08x\n",
496 __func__,
497 ihost->completion_queue_get);
498
499 /* Get the component parts of the completion queue */
500 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
501 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
502
503 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
504 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
505
506 while (
507 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
508 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
509 ) {
510 completion_count++;
511
512 ent = ihost->completion_queue[get_index];
513
514 /* increment the get pointer and check for rollover to toggle the cycle bit */
515 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
516 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
517 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
518
519 dev_dbg(&ihost->pdev->dev,
520 "%s: completion queue entry:0x%08x\n",
521 __func__,
522 ent);
523
524 switch (SCU_GET_COMPLETION_TYPE(ent)) {
525 case SCU_COMPLETION_TYPE_TASK:
526 sci_controller_task_completion(ihost, ent);
527 break;
528
529 case SCU_COMPLETION_TYPE_SDMA:
530 sci_controller_sdma_completion(ihost, ent);
531 break;
532
533 case SCU_COMPLETION_TYPE_UFI:
534 sci_controller_unsolicited_frame(ihost, ent);
535 break;
536
537 case SCU_COMPLETION_TYPE_EVENT:
538 sci_controller_event_completion(ihost, ent);
539 break;
540
541 case SCU_COMPLETION_TYPE_NOTIFY: {
542 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
543 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
544 event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
545
546 sci_controller_event_completion(ihost, ent);
547 break;
548 }
549 default:
550 dev_warn(&ihost->pdev->dev,
551 "%s: SCIC Controller received unknown "
552 "completion type %x\n",
553 __func__,
554 ent);
555 break;
556 }
557 }
558
559 /* Update the get register if we completed one or more entries */
560 if (completion_count > 0) {
561 ihost->completion_queue_get =
562 SMU_CQGR_GEN_BIT(ENABLE) |
563 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
564 event_cycle |
565 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
566 get_cycle |
567 SMU_CQGR_GEN_VAL(POINTER, get_index);
568
569 writel(ihost->completion_queue_get,
570 &ihost->smu_registers->completion_queue_get);
571
572 }
573
574 dev_dbg(&ihost->pdev->dev,
575 "%s: completion queue ending get:0x%08x\n",
576 __func__,
577 ihost->completion_queue_get);
578
579 }
580
581 static void sci_controller_error_handler(struct isci_host *ihost)
582 {
583 u32 interrupt_status;
584
585 interrupt_status =
586 readl(&ihost->smu_registers->interrupt_status);
587
588 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
589 sci_controller_completion_queue_has_entries(ihost)) {
590
591 sci_controller_process_completions(ihost);
592 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
593 } else {
594 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
595 interrupt_status);
596
597 sci_change_state(&ihost->sm, SCIC_FAILED);
598
599 return;
600 }
601
602 /* If we dont process any completions I am not sure that we want to do this.
603 * We are in the middle of a hardware fault and should probably be reset.
604 */
605 writel(0, &ihost->smu_registers->interrupt_mask);
606 }
607
608 irqreturn_t isci_intx_isr(int vec, void *data)
609 {
610 irqreturn_t ret = IRQ_NONE;
611 struct isci_host *ihost = data;
612
613 if (sci_controller_isr(ihost)) {
614 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
615 tasklet_schedule(&ihost->completion_tasklet);
616 ret = IRQ_HANDLED;
617 } else if (sci_controller_error_isr(ihost)) {
618 spin_lock(&ihost->scic_lock);
619 sci_controller_error_handler(ihost);
620 spin_unlock(&ihost->scic_lock);
621 ret = IRQ_HANDLED;
622 }
623
624 return ret;
625 }
626
627 irqreturn_t isci_error_isr(int vec, void *data)
628 {
629 struct isci_host *ihost = data;
630
631 if (sci_controller_error_isr(ihost))
632 sci_controller_error_handler(ihost);
633
634 return IRQ_HANDLED;
635 }
636
637 /**
638 * isci_host_start_complete() - This function is called by the core library,
639 * through the ISCI Module, to indicate controller start status.
640 * @isci_host: This parameter specifies the ISCI host object
641 * @completion_status: This parameter specifies the completion status from the
642 * core library.
643 *
644 */
645 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
646 {
647 if (completion_status != SCI_SUCCESS)
648 dev_info(&ihost->pdev->dev,
649 "controller start timed out, continuing...\n");
650 clear_bit(IHOST_START_PENDING, &ihost->flags);
651 wake_up(&ihost->eventq);
652 }
653
654 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
655 {
656 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
657 struct isci_host *ihost = ha->lldd_ha;
658
659 if (test_bit(IHOST_START_PENDING, &ihost->flags))
660 return 0;
661
662 sas_drain_work(ha);
663
664 return 1;
665 }
666
667 /**
668 * sci_controller_get_suggested_start_timeout() - This method returns the
669 * suggested sci_controller_start() timeout amount. The user is free to
670 * use any timeout value, but this method provides the suggested minimum
671 * start timeout value. The returned value is based upon empirical
672 * information determined as a result of interoperability testing.
673 * @controller: the handle to the controller object for which to return the
674 * suggested start timeout.
675 *
676 * This method returns the number of milliseconds for the suggested start
677 * operation timeout.
678 */
679 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
680 {
681 /* Validate the user supplied parameters. */
682 if (!ihost)
683 return 0;
684
685 /*
686 * The suggested minimum timeout value for a controller start operation:
687 *
688 * Signature FIS Timeout
689 * + Phy Start Timeout
690 * + Number of Phy Spin Up Intervals
691 * ---------------------------------
692 * Number of milliseconds for the controller start operation.
693 *
694 * NOTE: The number of phy spin up intervals will be equivalent
695 * to the number of phys divided by the number phys allowed
696 * per interval - 1 (once OEM parameters are supported).
697 * Currently we assume only 1 phy per interval. */
698
699 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
700 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
701 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
702 }
703
704 static void sci_controller_enable_interrupts(struct isci_host *ihost)
705 {
706 set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
707 writel(0, &ihost->smu_registers->interrupt_mask);
708 }
709
710 void sci_controller_disable_interrupts(struct isci_host *ihost)
711 {
712 clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
713 writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
714 readl(&ihost->smu_registers->interrupt_mask); /* flush */
715 }
716
717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718 {
719 u32 port_task_scheduler_value;
720
721 port_task_scheduler_value =
722 readl(&ihost->scu_registers->peg0.ptsg.control);
723 port_task_scheduler_value |=
724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726 writel(port_task_scheduler_value,
727 &ihost->scu_registers->peg0.ptsg.control);
728 }
729
730 static void sci_controller_assign_task_entries(struct isci_host *ihost)
731 {
732 u32 task_assignment;
733
734 /*
735 * Assign all the TCs to function 0
736 * TODO: Do we actually need to read this register to write it back?
737 */
738
739 task_assignment =
740 readl(&ihost->smu_registers->task_context_assignment[0]);
741
742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745
746 writel(task_assignment,
747 &ihost->smu_registers->task_context_assignment[0]);
748
749 }
750
751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752 {
753 u32 index;
754 u32 completion_queue_control_value;
755 u32 completion_queue_get_value;
756 u32 completion_queue_put_value;
757
758 ihost->completion_queue_get = 0;
759
760 completion_queue_control_value =
761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763
764 writel(completion_queue_control_value,
765 &ihost->smu_registers->completion_queue_control);
766
767
768 /* Set the completion queue get pointer and enable the queue */
769 completion_queue_get_value = (
770 (SMU_CQGR_GEN_VAL(POINTER, 0))
771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772 | (SMU_CQGR_GEN_BIT(ENABLE))
773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774 );
775
776 writel(completion_queue_get_value,
777 &ihost->smu_registers->completion_queue_get);
778
779 /* Set the completion queue put pointer */
780 completion_queue_put_value = (
781 (SMU_CQPR_GEN_VAL(POINTER, 0))
782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783 );
784
785 writel(completion_queue_put_value,
786 &ihost->smu_registers->completion_queue_put);
787
788 /* Initialize the cycle bit of the completion queue entries */
789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790 /*
791 * If get.cycle_bit != completion_queue.cycle_bit
792 * its not a valid completion queue entry
793 * so at system start all entries are invalid */
794 ihost->completion_queue[index] = 0x80000000;
795 }
796 }
797
798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799 {
800 u32 frame_queue_control_value;
801 u32 frame_queue_get_value;
802 u32 frame_queue_put_value;
803
804 /* Write the queue size */
805 frame_queue_control_value =
806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807
808 writel(frame_queue_control_value,
809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810
811 /* Setup the get pointer for the unsolicited frame queue */
812 frame_queue_get_value = (
813 SCU_UFQGP_GEN_VAL(POINTER, 0)
814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815 );
816
817 writel(frame_queue_get_value,
818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819 /* Setup the put pointer for the unsolicited frame queue */
820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821 writel(frame_queue_put_value,
822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823 }
824
825 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826 {
827 if (ihost->sm.current_state_id == SCIC_STARTING) {
828 /*
829 * We move into the ready state, because some of the phys/ports
830 * may be up and operational.
831 */
832 sci_change_state(&ihost->sm, SCIC_READY);
833
834 isci_host_start_complete(ihost, status);
835 }
836 }
837
838 static bool is_phy_starting(struct isci_phy *iphy)
839 {
840 enum sci_phy_states state;
841
842 state = iphy->sm.current_state_id;
843 switch (state) {
844 case SCI_PHY_STARTING:
845 case SCI_PHY_SUB_INITIAL:
846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847 case SCI_PHY_SUB_AWAIT_IAF_UF:
848 case SCI_PHY_SUB_AWAIT_SAS_POWER:
849 case SCI_PHY_SUB_AWAIT_SATA_POWER:
850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852 case SCI_PHY_SUB_AWAIT_OSSP_EN:
853 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
854 case SCI_PHY_SUB_FINAL:
855 return true;
856 default:
857 return false;
858 }
859 }
860
861 bool is_controller_start_complete(struct isci_host *ihost)
862 {
863 int i;
864
865 for (i = 0; i < SCI_MAX_PHYS; i++) {
866 struct isci_phy *iphy = &ihost->phys[i];
867 u32 state = iphy->sm.current_state_id;
868
869 /* in apc mode we need to check every phy, in
870 * mpc mode we only need to check phys that have
871 * been configured into a port
872 */
873 if (is_port_config_apc(ihost))
874 /* pass */;
875 else if (!phy_get_non_dummy_port(iphy))
876 continue;
877
878 /* The controller start operation is complete iff:
879 * - all links have been given an opportunity to start
880 * - have no indication of a connected device
881 * - have an indication of a connected device and it has
882 * finished the link training process.
883 */
884 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
885 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
886 (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
887 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
888 return false;
889 }
890
891 return true;
892 }
893
894 /**
895 * sci_controller_start_next_phy - start phy
896 * @scic: controller
897 *
898 * If all the phys have been started, then attempt to transition the
899 * controller to the READY state and inform the user
900 * (sci_cb_controller_start_complete()).
901 */
902 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
903 {
904 struct sci_oem_params *oem = &ihost->oem_parameters;
905 struct isci_phy *iphy;
906 enum sci_status status;
907
908 status = SCI_SUCCESS;
909
910 if (ihost->phy_startup_timer_pending)
911 return status;
912
913 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
914 if (is_controller_start_complete(ihost)) {
915 sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
916 sci_del_timer(&ihost->phy_timer);
917 ihost->phy_startup_timer_pending = false;
918 }
919 } else {
920 iphy = &ihost->phys[ihost->next_phy_to_start];
921
922 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
923 if (phy_get_non_dummy_port(iphy) == NULL) {
924 ihost->next_phy_to_start++;
925
926 /* Caution recursion ahead be forwarned
927 *
928 * The PHY was never added to a PORT in MPC mode
929 * so start the next phy in sequence This phy
930 * will never go link up and will not draw power
931 * the OEM parameters either configured the phy
932 * incorrectly for the PORT or it was never
933 * assigned to a PORT
934 */
935 return sci_controller_start_next_phy(ihost);
936 }
937 }
938
939 status = sci_phy_start(iphy);
940
941 if (status == SCI_SUCCESS) {
942 sci_mod_timer(&ihost->phy_timer,
943 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
944 ihost->phy_startup_timer_pending = true;
945 } else {
946 dev_warn(&ihost->pdev->dev,
947 "%s: Controller stop operation failed "
948 "to stop phy %d because of status "
949 "%d.\n",
950 __func__,
951 ihost->phys[ihost->next_phy_to_start].phy_index,
952 status);
953 }
954
955 ihost->next_phy_to_start++;
956 }
957
958 return status;
959 }
960
961 static void phy_startup_timeout(unsigned long data)
962 {
963 struct sci_timer *tmr = (struct sci_timer *)data;
964 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
965 unsigned long flags;
966 enum sci_status status;
967
968 spin_lock_irqsave(&ihost->scic_lock, flags);
969
970 if (tmr->cancel)
971 goto done;
972
973 ihost->phy_startup_timer_pending = false;
974
975 do {
976 status = sci_controller_start_next_phy(ihost);
977 } while (status != SCI_SUCCESS);
978
979 done:
980 spin_unlock_irqrestore(&ihost->scic_lock, flags);
981 }
982
983 static u16 isci_tci_active(struct isci_host *ihost)
984 {
985 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
986 }
987
988 static enum sci_status sci_controller_start(struct isci_host *ihost,
989 u32 timeout)
990 {
991 enum sci_status result;
992 u16 index;
993
994 if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
995 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
996 __func__, ihost->sm.current_state_id);
997 return SCI_FAILURE_INVALID_STATE;
998 }
999
1000 /* Build the TCi free pool */
1001 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1002 ihost->tci_head = 0;
1003 ihost->tci_tail = 0;
1004 for (index = 0; index < ihost->task_context_entries; index++)
1005 isci_tci_free(ihost, index);
1006
1007 /* Build the RNi free pool */
1008 sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1009 ihost->remote_node_entries);
1010
1011 /*
1012 * Before anything else lets make sure we will not be
1013 * interrupted by the hardware.
1014 */
1015 sci_controller_disable_interrupts(ihost);
1016
1017 /* Enable the port task scheduler */
1018 sci_controller_enable_port_task_scheduler(ihost);
1019
1020 /* Assign all the task entries to ihost physical function */
1021 sci_controller_assign_task_entries(ihost);
1022
1023 /* Now initialize the completion queue */
1024 sci_controller_initialize_completion_queue(ihost);
1025
1026 /* Initialize the unsolicited frame queue for use */
1027 sci_controller_initialize_unsolicited_frame_queue(ihost);
1028
1029 /* Start all of the ports on this controller */
1030 for (index = 0; index < ihost->logical_port_entries; index++) {
1031 struct isci_port *iport = &ihost->ports[index];
1032
1033 result = sci_port_start(iport);
1034 if (result)
1035 return result;
1036 }
1037
1038 sci_controller_start_next_phy(ihost);
1039
1040 sci_mod_timer(&ihost->timer, timeout);
1041
1042 sci_change_state(&ihost->sm, SCIC_STARTING);
1043
1044 return SCI_SUCCESS;
1045 }
1046
1047 void isci_host_start(struct Scsi_Host *shost)
1048 {
1049 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1050 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1051
1052 set_bit(IHOST_START_PENDING, &ihost->flags);
1053
1054 spin_lock_irq(&ihost->scic_lock);
1055 sci_controller_start(ihost, tmo);
1056 sci_controller_enable_interrupts(ihost);
1057 spin_unlock_irq(&ihost->scic_lock);
1058 }
1059
1060 static void isci_host_stop_complete(struct isci_host *ihost)
1061 {
1062 sci_controller_disable_interrupts(ihost);
1063 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064 wake_up(&ihost->eventq);
1065 }
1066
1067 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 {
1069 /* Empty out the completion queue */
1070 if (sci_controller_completion_queue_has_entries(ihost))
1071 sci_controller_process_completions(ihost);
1072
1073 /* Clear the interrupt and enable all interrupts again */
1074 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075 /* Could we write the value of SMU_ISR_COMPLETION? */
1076 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077 writel(0, &ihost->smu_registers->interrupt_mask);
1078 }
1079
1080 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1081 {
1082 task->lldd_task = NULL;
1083 if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1084 !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1085 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1086 /* Normal notification (task_done) */
1087 dev_dbg(&ihost->pdev->dev,
1088 "%s: Normal - ireq/task = %p/%p\n",
1089 __func__, ireq, task);
1090
1091 task->task_done(task);
1092 } else {
1093 dev_dbg(&ihost->pdev->dev,
1094 "%s: Error - ireq/task = %p/%p\n",
1095 __func__, ireq, task);
1096
1097 sas_task_abort(task);
1098 }
1099 }
1100 if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101 wake_up_all(&ihost->eventq);
1102
1103 if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104 isci_free_tag(ihost, ireq->io_tag);
1105 }
1106 /**
1107 * isci_host_completion_routine() - This function is the delayed service
1108 * routine that calls the sci core library's completion handler. It's
1109 * scheduled as a tasklet from the interrupt service routine when interrupts
1110 * in use, or set as the timeout function in polled mode.
1111 * @data: This parameter specifies the ISCI host object
1112 *
1113 */
1114 void isci_host_completion_routine(unsigned long data)
1115 {
1116 struct isci_host *ihost = (struct isci_host *)data;
1117 u16 active;
1118
1119 spin_lock_irq(&ihost->scic_lock);
1120 sci_controller_completion_handler(ihost);
1121 spin_unlock_irq(&ihost->scic_lock);
1122
1123 /* the coalesence timeout doubles at each encoding step, so
1124 * update it based on the ilog2 value of the outstanding requests
1125 */
1126 active = isci_tci_active(ihost);
1127 writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1128 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1129 &ihost->smu_registers->interrupt_coalesce_control);
1130 }
1131
1132 /**
1133 * sci_controller_stop() - This method will stop an individual controller
1134 * object.This method will invoke the associated user callback upon
1135 * completion. The completion callback is called when the following
1136 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1137 * controller has been quiesced. This method will ensure that all IO
1138 * requests are quiesced, phys are stopped, and all additional operation by
1139 * the hardware is halted.
1140 * @controller: the handle to the controller object to stop.
1141 * @timeout: This parameter specifies the number of milliseconds in which the
1142 * stop operation should complete.
1143 *
1144 * The controller must be in the STARTED or STOPPED state. Indicate if the
1145 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1146 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1147 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1148 * controller is not either in the STARTED or STOPPED states.
1149 */
1150 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1151 {
1152 if (ihost->sm.current_state_id != SCIC_READY) {
1153 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1154 __func__, ihost->sm.current_state_id);
1155 return SCI_FAILURE_INVALID_STATE;
1156 }
1157
1158 sci_mod_timer(&ihost->timer, timeout);
1159 sci_change_state(&ihost->sm, SCIC_STOPPING);
1160 return SCI_SUCCESS;
1161 }
1162
1163 /**
1164 * sci_controller_reset() - This method will reset the supplied core
1165 * controller regardless of the state of said controller. This operation is
1166 * considered destructive. In other words, all current operations are wiped
1167 * out. No IO completions for outstanding devices occur. Outstanding IO
1168 * requests are not aborted or completed at the actual remote device.
1169 * @controller: the handle to the controller object to reset.
1170 *
1171 * Indicate if the controller reset method succeeded or failed in some way.
1172 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1173 * the controller reset operation is unable to complete.
1174 */
1175 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1176 {
1177 switch (ihost->sm.current_state_id) {
1178 case SCIC_RESET:
1179 case SCIC_READY:
1180 case SCIC_STOPPING:
1181 case SCIC_FAILED:
1182 /*
1183 * The reset operation is not a graceful cleanup, just
1184 * perform the state transition.
1185 */
1186 sci_change_state(&ihost->sm, SCIC_RESETTING);
1187 return SCI_SUCCESS;
1188 default:
1189 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1190 __func__, ihost->sm.current_state_id);
1191 return SCI_FAILURE_INVALID_STATE;
1192 }
1193 }
1194
1195 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1196 {
1197 u32 index;
1198 enum sci_status status;
1199 enum sci_status phy_status;
1200
1201 status = SCI_SUCCESS;
1202
1203 for (index = 0; index < SCI_MAX_PHYS; index++) {
1204 phy_status = sci_phy_stop(&ihost->phys[index]);
1205
1206 if (phy_status != SCI_SUCCESS &&
1207 phy_status != SCI_FAILURE_INVALID_STATE) {
1208 status = SCI_FAILURE;
1209
1210 dev_warn(&ihost->pdev->dev,
1211 "%s: Controller stop operation failed to stop "
1212 "phy %d because of status %d.\n",
1213 __func__,
1214 ihost->phys[index].phy_index, phy_status);
1215 }
1216 }
1217
1218 return status;
1219 }
1220
1221
1222 /**
1223 * isci_host_deinit - shutdown frame reception and dma
1224 * @ihost: host to take down
1225 *
1226 * This is called in either the driver shutdown or the suspend path. In
1227 * the shutdown case libsas went through port teardown and normal device
1228 * removal (i.e. physical links stayed up to service scsi_device removal
1229 * commands). In the suspend case we disable the hardware without
1230 * notifying libsas of the link down events since we want libsas to
1231 * remember the domain across the suspend/resume cycle
1232 */
1233 void isci_host_deinit(struct isci_host *ihost)
1234 {
1235 int i;
1236
1237 /* disable output data selects */
1238 for (i = 0; i < isci_gpio_count(ihost); i++)
1239 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1240
1241 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1242
1243 spin_lock_irq(&ihost->scic_lock);
1244 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1245 spin_unlock_irq(&ihost->scic_lock);
1246
1247 wait_for_stop(ihost);
1248
1249 /* phy stop is after controller stop to allow port and device to
1250 * go idle before shutting down the phys, but the expectation is
1251 * that i/o has been shut off well before we reach this
1252 * function.
1253 */
1254 sci_controller_stop_phys(ihost);
1255
1256 /* disable sgpio: where the above wait should give time for the
1257 * enclosure to sample the gpios going inactive
1258 */
1259 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1260
1261 spin_lock_irq(&ihost->scic_lock);
1262 sci_controller_reset(ihost);
1263 spin_unlock_irq(&ihost->scic_lock);
1264
1265 /* Cancel any/all outstanding port timers */
1266 for (i = 0; i < ihost->logical_port_entries; i++) {
1267 struct isci_port *iport = &ihost->ports[i];
1268 del_timer_sync(&iport->timer.timer);
1269 }
1270
1271 /* Cancel any/all outstanding phy timers */
1272 for (i = 0; i < SCI_MAX_PHYS; i++) {
1273 struct isci_phy *iphy = &ihost->phys[i];
1274 del_timer_sync(&iphy->sata_timer.timer);
1275 }
1276
1277 del_timer_sync(&ihost->port_agent.timer.timer);
1278
1279 del_timer_sync(&ihost->power_control.timer.timer);
1280
1281 del_timer_sync(&ihost->timer.timer);
1282
1283 del_timer_sync(&ihost->phy_timer.timer);
1284 }
1285
1286 static void __iomem *scu_base(struct isci_host *isci_host)
1287 {
1288 struct pci_dev *pdev = isci_host->pdev;
1289 int id = isci_host->id;
1290
1291 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1292 }
1293
1294 static void __iomem *smu_base(struct isci_host *isci_host)
1295 {
1296 struct pci_dev *pdev = isci_host->pdev;
1297 int id = isci_host->id;
1298
1299 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1300 }
1301
1302 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1303 {
1304 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1305
1306 sci_change_state(&ihost->sm, SCIC_RESET);
1307 }
1308
1309 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1310 {
1311 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1312
1313 sci_del_timer(&ihost->timer);
1314 }
1315
1316 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1317 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1318 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1319 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1320 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1321 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1322
1323 /**
1324 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1325 * configure the interrupt coalescence.
1326 * @controller: This parameter represents the handle to the controller object
1327 * for which its interrupt coalesce register is overridden.
1328 * @coalesce_number: Used to control the number of entries in the Completion
1329 * Queue before an interrupt is generated. If the number of entries exceed
1330 * this number, an interrupt will be generated. The valid range of the input
1331 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1332 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1333 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1334 * interrupt coalescing timeout.
1335 *
1336 * Indicate if the user successfully set the interrupt coalesce parameters.
1337 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1338 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1339 */
1340 static enum sci_status
1341 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1342 u32 coalesce_number,
1343 u32 coalesce_timeout)
1344 {
1345 u8 timeout_encode = 0;
1346 u32 min = 0;
1347 u32 max = 0;
1348
1349 /* Check if the input parameters fall in the range. */
1350 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1351 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1352
1353 /*
1354 * Defined encoding for interrupt coalescing timeout:
1355 * Value Min Max Units
1356 * ----- --- --- -----
1357 * 0 - - Disabled
1358 * 1 13.3 20.0 ns
1359 * 2 26.7 40.0
1360 * 3 53.3 80.0
1361 * 4 106.7 160.0
1362 * 5 213.3 320.0
1363 * 6 426.7 640.0
1364 * 7 853.3 1280.0
1365 * 8 1.7 2.6 us
1366 * 9 3.4 5.1
1367 * 10 6.8 10.2
1368 * 11 13.7 20.5
1369 * 12 27.3 41.0
1370 * 13 54.6 81.9
1371 * 14 109.2 163.8
1372 * 15 218.5 327.7
1373 * 16 436.9 655.4
1374 * 17 873.8 1310.7
1375 * 18 1.7 2.6 ms
1376 * 19 3.5 5.2
1377 * 20 7.0 10.5
1378 * 21 14.0 21.0
1379 * 22 28.0 41.9
1380 * 23 55.9 83.9
1381 * 24 111.8 167.8
1382 * 25 223.7 335.5
1383 * 26 447.4 671.1
1384 * 27 894.8 1342.2
1385 * 28 1.8 2.7 s
1386 * Others Undefined */
1387
1388 /*
1389 * Use the table above to decide the encode of interrupt coalescing timeout
1390 * value for register writing. */
1391 if (coalesce_timeout == 0)
1392 timeout_encode = 0;
1393 else{
1394 /* make the timeout value in unit of (10 ns). */
1395 coalesce_timeout = coalesce_timeout * 100;
1396 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1397 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1398
1399 /* get the encode of timeout for register writing. */
1400 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1401 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1402 timeout_encode++) {
1403 if (min <= coalesce_timeout && max > coalesce_timeout)
1404 break;
1405 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1406 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1407 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1408 break;
1409 else{
1410 timeout_encode++;
1411 break;
1412 }
1413 } else {
1414 max = max * 2;
1415 min = min * 2;
1416 }
1417 }
1418
1419 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1420 /* the value is out of range. */
1421 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1422 }
1423
1424 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1425 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1426 &ihost->smu_registers->interrupt_coalesce_control);
1427
1428
1429 ihost->interrupt_coalesce_number = (u16)coalesce_number;
1430 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1431
1432 return SCI_SUCCESS;
1433 }
1434
1435
1436 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1437 {
1438 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1439 u32 val;
1440
1441 /* enable clock gating for power control of the scu unit */
1442 val = readl(&ihost->smu_registers->clock_gating_control);
1443 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1444 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1445 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1446 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1447 writel(val, &ihost->smu_registers->clock_gating_control);
1448
1449 /* set the default interrupt coalescence number and timeout value. */
1450 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1451 }
1452
1453 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1454 {
1455 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1456
1457 /* disable interrupt coalescence. */
1458 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1459 }
1460
1461 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1462 {
1463 u32 index;
1464 enum sci_status port_status;
1465 enum sci_status status = SCI_SUCCESS;
1466
1467 for (index = 0; index < ihost->logical_port_entries; index++) {
1468 struct isci_port *iport = &ihost->ports[index];
1469
1470 port_status = sci_port_stop(iport);
1471
1472 if ((port_status != SCI_SUCCESS) &&
1473 (port_status != SCI_FAILURE_INVALID_STATE)) {
1474 status = SCI_FAILURE;
1475
1476 dev_warn(&ihost->pdev->dev,
1477 "%s: Controller stop operation failed to "
1478 "stop port %d because of status %d.\n",
1479 __func__,
1480 iport->logical_port_index,
1481 port_status);
1482 }
1483 }
1484
1485 return status;
1486 }
1487
1488 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1489 {
1490 u32 index;
1491 enum sci_status status;
1492 enum sci_status device_status;
1493
1494 status = SCI_SUCCESS;
1495
1496 for (index = 0; index < ihost->remote_node_entries; index++) {
1497 if (ihost->device_table[index] != NULL) {
1498 /* / @todo What timeout value do we want to provide to this request? */
1499 device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1500
1501 if ((device_status != SCI_SUCCESS) &&
1502 (device_status != SCI_FAILURE_INVALID_STATE)) {
1503 dev_warn(&ihost->pdev->dev,
1504 "%s: Controller stop operation failed "
1505 "to stop device 0x%p because of "
1506 "status %d.\n",
1507 __func__,
1508 ihost->device_table[index], device_status);
1509 }
1510 }
1511 }
1512
1513 return status;
1514 }
1515
1516 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1517 {
1518 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1519
1520 sci_controller_stop_devices(ihost);
1521 sci_controller_stop_ports(ihost);
1522
1523 if (!sci_controller_has_remote_devices_stopping(ihost))
1524 isci_host_stop_complete(ihost);
1525 }
1526
1527 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1528 {
1529 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1530
1531 sci_del_timer(&ihost->timer);
1532 }
1533
1534 static void sci_controller_reset_hardware(struct isci_host *ihost)
1535 {
1536 /* Disable interrupts so we dont take any spurious interrupts */
1537 sci_controller_disable_interrupts(ihost);
1538
1539 /* Reset the SCU */
1540 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1541
1542 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1543 udelay(1000);
1544
1545 /* The write to the CQGR clears the CQP */
1546 writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1547
1548 /* The write to the UFQGP clears the UFQPR */
1549 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1550
1551 /* clear all interrupts */
1552 writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1553 }
1554
1555 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1556 {
1557 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1558
1559 sci_controller_reset_hardware(ihost);
1560 sci_change_state(&ihost->sm, SCIC_RESET);
1561 }
1562
1563 static const struct sci_base_state sci_controller_state_table[] = {
1564 [SCIC_INITIAL] = {
1565 .enter_state = sci_controller_initial_state_enter,
1566 },
1567 [SCIC_RESET] = {},
1568 [SCIC_INITIALIZING] = {},
1569 [SCIC_INITIALIZED] = {},
1570 [SCIC_STARTING] = {
1571 .exit_state = sci_controller_starting_state_exit,
1572 },
1573 [SCIC_READY] = {
1574 .enter_state = sci_controller_ready_state_enter,
1575 .exit_state = sci_controller_ready_state_exit,
1576 },
1577 [SCIC_RESETTING] = {
1578 .enter_state = sci_controller_resetting_state_enter,
1579 },
1580 [SCIC_STOPPING] = {
1581 .enter_state = sci_controller_stopping_state_enter,
1582 .exit_state = sci_controller_stopping_state_exit,
1583 },
1584 [SCIC_FAILED] = {}
1585 };
1586
1587 static void controller_timeout(unsigned long data)
1588 {
1589 struct sci_timer *tmr = (struct sci_timer *)data;
1590 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1591 struct sci_base_state_machine *sm = &ihost->sm;
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&ihost->scic_lock, flags);
1595
1596 if (tmr->cancel)
1597 goto done;
1598
1599 if (sm->current_state_id == SCIC_STARTING)
1600 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1601 else if (sm->current_state_id == SCIC_STOPPING) {
1602 sci_change_state(sm, SCIC_FAILED);
1603 isci_host_stop_complete(ihost);
1604 } else /* / @todo Now what do we want to do in this case? */
1605 dev_err(&ihost->pdev->dev,
1606 "%s: Controller timer fired when controller was not "
1607 "in a state being timed.\n",
1608 __func__);
1609
1610 done:
1611 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1612 }
1613
1614 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1615 void __iomem *scu_base,
1616 void __iomem *smu_base)
1617 {
1618 u8 i;
1619
1620 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1621
1622 ihost->scu_registers = scu_base;
1623 ihost->smu_registers = smu_base;
1624
1625 sci_port_configuration_agent_construct(&ihost->port_agent);
1626
1627 /* Construct the ports for this controller */
1628 for (i = 0; i < SCI_MAX_PORTS; i++)
1629 sci_port_construct(&ihost->ports[i], i, ihost);
1630 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1631
1632 /* Construct the phys for this controller */
1633 for (i = 0; i < SCI_MAX_PHYS; i++) {
1634 /* Add all the PHYs to the dummy port */
1635 sci_phy_construct(&ihost->phys[i],
1636 &ihost->ports[SCI_MAX_PORTS], i);
1637 }
1638
1639 ihost->invalid_phy_mask = 0;
1640
1641 sci_init_timer(&ihost->timer, controller_timeout);
1642
1643 return sci_controller_reset(ihost);
1644 }
1645
1646 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1647 {
1648 int i;
1649
1650 for (i = 0; i < SCI_MAX_PORTS; i++)
1651 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1652 return -EINVAL;
1653
1654 for (i = 0; i < SCI_MAX_PHYS; i++)
1655 if (oem->phys[i].sas_address.high == 0 &&
1656 oem->phys[i].sas_address.low == 0)
1657 return -EINVAL;
1658
1659 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1660 for (i = 0; i < SCI_MAX_PHYS; i++)
1661 if (oem->ports[i].phy_mask != 0)
1662 return -EINVAL;
1663 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1664 u8 phy_mask = 0;
1665
1666 for (i = 0; i < SCI_MAX_PHYS; i++)
1667 phy_mask |= oem->ports[i].phy_mask;
1668
1669 if (phy_mask == 0)
1670 return -EINVAL;
1671 } else
1672 return -EINVAL;
1673
1674 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1675 oem->controller.max_concurr_spin_up < 1)
1676 return -EINVAL;
1677
1678 if (oem->controller.do_enable_ssc) {
1679 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1680 return -EINVAL;
1681
1682 if (version >= ISCI_ROM_VER_1_1) {
1683 u8 test = oem->controller.ssc_sata_tx_spread_level;
1684
1685 switch (test) {
1686 case 0:
1687 case 2:
1688 case 3:
1689 case 6:
1690 case 7:
1691 break;
1692 default:
1693 return -EINVAL;
1694 }
1695
1696 test = oem->controller.ssc_sas_tx_spread_level;
1697 if (oem->controller.ssc_sas_tx_type == 0) {
1698 switch (test) {
1699 case 0:
1700 case 2:
1701 case 3:
1702 break;
1703 default:
1704 return -EINVAL;
1705 }
1706 } else if (oem->controller.ssc_sas_tx_type == 1) {
1707 switch (test) {
1708 case 0:
1709 case 3:
1710 case 6:
1711 break;
1712 default:
1713 return -EINVAL;
1714 }
1715 }
1716 }
1717 }
1718
1719 return 0;
1720 }
1721
1722 static u8 max_spin_up(struct isci_host *ihost)
1723 {
1724 if (ihost->user_parameters.max_concurr_spinup)
1725 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1726 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1727 else
1728 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1729 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1730 }
1731
1732 static void power_control_timeout(unsigned long data)
1733 {
1734 struct sci_timer *tmr = (struct sci_timer *)data;
1735 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1736 struct isci_phy *iphy;
1737 unsigned long flags;
1738 u8 i;
1739
1740 spin_lock_irqsave(&ihost->scic_lock, flags);
1741
1742 if (tmr->cancel)
1743 goto done;
1744
1745 ihost->power_control.phys_granted_power = 0;
1746
1747 if (ihost->power_control.phys_waiting == 0) {
1748 ihost->power_control.timer_started = false;
1749 goto done;
1750 }
1751
1752 for (i = 0; i < SCI_MAX_PHYS; i++) {
1753
1754 if (ihost->power_control.phys_waiting == 0)
1755 break;
1756
1757 iphy = ihost->power_control.requesters[i];
1758 if (iphy == NULL)
1759 continue;
1760
1761 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1762 break;
1763
1764 ihost->power_control.requesters[i] = NULL;
1765 ihost->power_control.phys_waiting--;
1766 ihost->power_control.phys_granted_power++;
1767 sci_phy_consume_power_handler(iphy);
1768
1769 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1770 u8 j;
1771
1772 for (j = 0; j < SCI_MAX_PHYS; j++) {
1773 struct isci_phy *requester = ihost->power_control.requesters[j];
1774
1775 /*
1776 * Search the power_control queue to see if there are other phys
1777 * attached to the same remote device. If found, take all of
1778 * them out of await_sas_power state.
1779 */
1780 if (requester != NULL && requester != iphy) {
1781 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1782 iphy->frame_rcvd.iaf.sas_addr,
1783 sizeof(requester->frame_rcvd.iaf.sas_addr));
1784
1785 if (other == 0) {
1786 ihost->power_control.requesters[j] = NULL;
1787 ihost->power_control.phys_waiting--;
1788 sci_phy_consume_power_handler(requester);
1789 }
1790 }
1791 }
1792 }
1793 }
1794
1795 /*
1796 * It doesn't matter if the power list is empty, we need to start the
1797 * timer in case another phy becomes ready.
1798 */
1799 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1800 ihost->power_control.timer_started = true;
1801
1802 done:
1803 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1804 }
1805
1806 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1807 struct isci_phy *iphy)
1808 {
1809 BUG_ON(iphy == NULL);
1810
1811 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1812 ihost->power_control.phys_granted_power++;
1813 sci_phy_consume_power_handler(iphy);
1814
1815 /*
1816 * stop and start the power_control timer. When the timer fires, the
1817 * no_of_phys_granted_power will be set to 0
1818 */
1819 if (ihost->power_control.timer_started)
1820 sci_del_timer(&ihost->power_control.timer);
1821
1822 sci_mod_timer(&ihost->power_control.timer,
1823 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1824 ihost->power_control.timer_started = true;
1825
1826 } else {
1827 /*
1828 * There are phys, attached to the same sas address as this phy, are
1829 * already in READY state, this phy don't need wait.
1830 */
1831 u8 i;
1832 struct isci_phy *current_phy;
1833
1834 for (i = 0; i < SCI_MAX_PHYS; i++) {
1835 u8 other;
1836 current_phy = &ihost->phys[i];
1837
1838 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1839 iphy->frame_rcvd.iaf.sas_addr,
1840 sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1841
1842 if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1843 current_phy->protocol == SAS_PROTOCOL_SSP &&
1844 other == 0) {
1845 sci_phy_consume_power_handler(iphy);
1846 break;
1847 }
1848 }
1849
1850 if (i == SCI_MAX_PHYS) {
1851 /* Add the phy in the waiting list */
1852 ihost->power_control.requesters[iphy->phy_index] = iphy;
1853 ihost->power_control.phys_waiting++;
1854 }
1855 }
1856 }
1857
1858 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1859 struct isci_phy *iphy)
1860 {
1861 BUG_ON(iphy == NULL);
1862
1863 if (ihost->power_control.requesters[iphy->phy_index])
1864 ihost->power_control.phys_waiting--;
1865
1866 ihost->power_control.requesters[iphy->phy_index] = NULL;
1867 }
1868
1869 static int is_long_cable(int phy, unsigned char selection_byte)
1870 {
1871 return !!(selection_byte & (1 << phy));
1872 }
1873
1874 static int is_medium_cable(int phy, unsigned char selection_byte)
1875 {
1876 return !!(selection_byte & (1 << (phy + 4)));
1877 }
1878
1879 static enum cable_selections decode_selection_byte(
1880 int phy,
1881 unsigned char selection_byte)
1882 {
1883 return ((selection_byte & (1 << phy)) ? 1 : 0)
1884 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1885 }
1886
1887 static unsigned char *to_cable_select(struct isci_host *ihost)
1888 {
1889 if (is_cable_select_overridden())
1890 return ((unsigned char *)&cable_selection_override)
1891 + ihost->id;
1892 else
1893 return &ihost->oem_parameters.controller.cable_selection_mask;
1894 }
1895
1896 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1897 {
1898 return decode_selection_byte(phy, *to_cable_select(ihost));
1899 }
1900
1901 char *lookup_cable_names(enum cable_selections selection)
1902 {
1903 static char *cable_names[] = {
1904 [short_cable] = "short",
1905 [long_cable] = "long",
1906 [medium_cable] = "medium",
1907 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1908 };
1909 return (selection <= undefined_cable) ? cable_names[selection]
1910 : cable_names[undefined_cable];
1911 }
1912
1913 #define AFE_REGISTER_WRITE_DELAY 10
1914
1915 static void sci_controller_afe_initialization(struct isci_host *ihost)
1916 {
1917 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1918 const struct sci_oem_params *oem = &ihost->oem_parameters;
1919 struct pci_dev *pdev = ihost->pdev;
1920 u32 afe_status;
1921 u32 phy_id;
1922 unsigned char cable_selection_mask = *to_cable_select(ihost);
1923
1924 /* Clear DFX Status registers */
1925 writel(0x0081000f, &afe->afe_dfx_master_control0);
1926 udelay(AFE_REGISTER_WRITE_DELAY);
1927
1928 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1929 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1930 * Timer, PM Stagger Timer
1931 */
1932 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1933 udelay(AFE_REGISTER_WRITE_DELAY);
1934 }
1935
1936 /* Configure bias currents to normal */
1937 if (is_a2(pdev))
1938 writel(0x00005A00, &afe->afe_bias_control);
1939 else if (is_b0(pdev) || is_c0(pdev))
1940 writel(0x00005F00, &afe->afe_bias_control);
1941 else if (is_c1(pdev))
1942 writel(0x00005500, &afe->afe_bias_control);
1943
1944 udelay(AFE_REGISTER_WRITE_DELAY);
1945
1946 /* Enable PLL */
1947 if (is_a2(pdev))
1948 writel(0x80040908, &afe->afe_pll_control0);
1949 else if (is_b0(pdev) || is_c0(pdev))
1950 writel(0x80040A08, &afe->afe_pll_control0);
1951 else if (is_c1(pdev)) {
1952 writel(0x80000B08, &afe->afe_pll_control0);
1953 udelay(AFE_REGISTER_WRITE_DELAY);
1954 writel(0x00000B08, &afe->afe_pll_control0);
1955 udelay(AFE_REGISTER_WRITE_DELAY);
1956 writel(0x80000B08, &afe->afe_pll_control0);
1957 }
1958
1959 udelay(AFE_REGISTER_WRITE_DELAY);
1960
1961 /* Wait for the PLL to lock */
1962 do {
1963 afe_status = readl(&afe->afe_common_block_status);
1964 udelay(AFE_REGISTER_WRITE_DELAY);
1965 } while ((afe_status & 0x00001000) == 0);
1966
1967 if (is_a2(pdev)) {
1968 /* Shorten SAS SNW lock time (RxLock timer value from 76
1969 * us to 50 us)
1970 */
1971 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1972 udelay(AFE_REGISTER_WRITE_DELAY);
1973 }
1974
1975 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1976 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
1977 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1978 int cable_length_long =
1979 is_long_cable(phy_id, cable_selection_mask);
1980 int cable_length_medium =
1981 is_medium_cable(phy_id, cable_selection_mask);
1982
1983 if (is_a2(pdev)) {
1984 /* All defaults, except the Receive Word
1985 * Alignament/Comma Detect Enable....(0xe800)
1986 */
1987 writel(0x00004512, &xcvr->afe_xcvr_control0);
1988 udelay(AFE_REGISTER_WRITE_DELAY);
1989
1990 writel(0x0050100F, &xcvr->afe_xcvr_control1);
1991 udelay(AFE_REGISTER_WRITE_DELAY);
1992 } else if (is_b0(pdev)) {
1993 /* Configure transmitter SSC parameters */
1994 writel(0x00030000, &xcvr->afe_tx_ssc_control);
1995 udelay(AFE_REGISTER_WRITE_DELAY);
1996 } else if (is_c0(pdev)) {
1997 /* Configure transmitter SSC parameters */
1998 writel(0x00010202, &xcvr->afe_tx_ssc_control);
1999 udelay(AFE_REGISTER_WRITE_DELAY);
2000
2001 /* All defaults, except the Receive Word
2002 * Alignament/Comma Detect Enable....(0xe800)
2003 */
2004 writel(0x00014500, &xcvr->afe_xcvr_control0);
2005 udelay(AFE_REGISTER_WRITE_DELAY);
2006 } else if (is_c1(pdev)) {
2007 /* Configure transmitter SSC parameters */
2008 writel(0x00010202, &xcvr->afe_tx_ssc_control);
2009 udelay(AFE_REGISTER_WRITE_DELAY);
2010
2011 /* All defaults, except the Receive Word
2012 * Alignament/Comma Detect Enable....(0xe800)
2013 */
2014 writel(0x0001C500, &xcvr->afe_xcvr_control0);
2015 udelay(AFE_REGISTER_WRITE_DELAY);
2016 }
2017
2018 /* Power up TX and RX out from power down (PWRDNTX and
2019 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2020 */
2021 if (is_a2(pdev))
2022 writel(0x000003F0, &xcvr->afe_channel_control);
2023 else if (is_b0(pdev)) {
2024 writel(0x000003D7, &xcvr->afe_channel_control);
2025 udelay(AFE_REGISTER_WRITE_DELAY);
2026
2027 writel(0x000003D4, &xcvr->afe_channel_control);
2028 } else if (is_c0(pdev)) {
2029 writel(0x000001E7, &xcvr->afe_channel_control);
2030 udelay(AFE_REGISTER_WRITE_DELAY);
2031
2032 writel(0x000001E4, &xcvr->afe_channel_control);
2033 } else if (is_c1(pdev)) {
2034 writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2035 &xcvr->afe_channel_control);
2036 udelay(AFE_REGISTER_WRITE_DELAY);
2037
2038 writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2039 &xcvr->afe_channel_control);
2040 }
2041 udelay(AFE_REGISTER_WRITE_DELAY);
2042
2043 if (is_a2(pdev)) {
2044 /* Enable TX equalization (0xe824) */
2045 writel(0x00040000, &xcvr->afe_tx_control);
2046 udelay(AFE_REGISTER_WRITE_DELAY);
2047 }
2048
2049 if (is_a2(pdev) || is_b0(pdev))
2050 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2051 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2052 * Enabled) ....(0xe800)
2053 */
2054 writel(0x00004100, &xcvr->afe_xcvr_control0);
2055 else if (is_c0(pdev))
2056 writel(0x00014100, &xcvr->afe_xcvr_control0);
2057 else if (is_c1(pdev))
2058 writel(0x0001C100, &xcvr->afe_xcvr_control0);
2059 udelay(AFE_REGISTER_WRITE_DELAY);
2060
2061 /* Leave DFE/FFE on */
2062 if (is_a2(pdev))
2063 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2064 else if (is_b0(pdev)) {
2065 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2066 udelay(AFE_REGISTER_WRITE_DELAY);
2067 /* Enable TX equalization (0xe824) */
2068 writel(0x00040000, &xcvr->afe_tx_control);
2069 } else if (is_c0(pdev)) {
2070 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2071 udelay(AFE_REGISTER_WRITE_DELAY);
2072
2073 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2074 udelay(AFE_REGISTER_WRITE_DELAY);
2075
2076 /* Enable TX equalization (0xe824) */
2077 writel(0x00040000, &xcvr->afe_tx_control);
2078 } else if (is_c1(pdev)) {
2079 writel(cable_length_long ? 0x01500C0C :
2080 cable_length_medium ? 0x01400C0D : 0x02400C0D,
2081 &xcvr->afe_xcvr_control1);
2082 udelay(AFE_REGISTER_WRITE_DELAY);
2083
2084 writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2085 udelay(AFE_REGISTER_WRITE_DELAY);
2086
2087 writel(cable_length_long ? 0x33091C1F :
2088 cable_length_medium ? 0x3315181F : 0x2B17161F,
2089 &xcvr->afe_rx_ssc_control0);
2090 udelay(AFE_REGISTER_WRITE_DELAY);
2091
2092 /* Enable TX equalization (0xe824) */
2093 writel(0x00040000, &xcvr->afe_tx_control);
2094 }
2095
2096 udelay(AFE_REGISTER_WRITE_DELAY);
2097
2098 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2099 udelay(AFE_REGISTER_WRITE_DELAY);
2100
2101 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2102 udelay(AFE_REGISTER_WRITE_DELAY);
2103
2104 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2105 udelay(AFE_REGISTER_WRITE_DELAY);
2106
2107 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2108 udelay(AFE_REGISTER_WRITE_DELAY);
2109 }
2110
2111 /* Transfer control to the PEs */
2112 writel(0x00010f00, &afe->afe_dfx_master_control0);
2113 udelay(AFE_REGISTER_WRITE_DELAY);
2114 }
2115
2116 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2117 {
2118 sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2119
2120 memset(ihost->power_control.requesters, 0,
2121 sizeof(ihost->power_control.requesters));
2122
2123 ihost->power_control.phys_waiting = 0;
2124 ihost->power_control.phys_granted_power = 0;
2125 }
2126
2127 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2128 {
2129 struct sci_base_state_machine *sm = &ihost->sm;
2130 enum sci_status result = SCI_FAILURE;
2131 unsigned long i, state, val;
2132
2133 if (ihost->sm.current_state_id != SCIC_RESET) {
2134 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2135 __func__, ihost->sm.current_state_id);
2136 return SCI_FAILURE_INVALID_STATE;
2137 }
2138
2139 sci_change_state(sm, SCIC_INITIALIZING);
2140
2141 sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2142
2143 ihost->next_phy_to_start = 0;
2144 ihost->phy_startup_timer_pending = false;
2145
2146 sci_controller_initialize_power_control(ihost);
2147
2148 /*
2149 * There is nothing to do here for B0 since we do not have to
2150 * program the AFE registers.
2151 * / @todo The AFE settings are supposed to be correct for the B0 but
2152 * / presently they seem to be wrong. */
2153 sci_controller_afe_initialization(ihost);
2154
2155
2156 /* Take the hardware out of reset */
2157 writel(0, &ihost->smu_registers->soft_reset_control);
2158
2159 /*
2160 * / @todo Provide meaningfull error code for hardware failure
2161 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2162 for (i = 100; i >= 1; i--) {
2163 u32 status;
2164
2165 /* Loop until the hardware reports success */
2166 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2167 status = readl(&ihost->smu_registers->control_status);
2168
2169 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2170 break;
2171 }
2172 if (i == 0)
2173 goto out;
2174
2175 /*
2176 * Determine what are the actaul device capacities that the
2177 * hardware will support */
2178 val = readl(&ihost->smu_registers->device_context_capacity);
2179
2180 /* Record the smaller of the two capacity values */
2181 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2182 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2183 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2184
2185 /*
2186 * Make all PEs that are unassigned match up with the
2187 * logical ports
2188 */
2189 for (i = 0; i < ihost->logical_port_entries; i++) {
2190 struct scu_port_task_scheduler_group_registers __iomem
2191 *ptsg = &ihost->scu_registers->peg0.ptsg;
2192
2193 writel(i, &ptsg->protocol_engine[i]);
2194 }
2195
2196 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2197 val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2198 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2199 writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2200
2201 val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2202 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2203 writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2204
2205 /*
2206 * Initialize the PHYs before the PORTs because the PHY registers
2207 * are accessed during the port initialization.
2208 */
2209 for (i = 0; i < SCI_MAX_PHYS; i++) {
2210 result = sci_phy_initialize(&ihost->phys[i],
2211 &ihost->scu_registers->peg0.pe[i].tl,
2212 &ihost->scu_registers->peg0.pe[i].ll);
2213 if (result != SCI_SUCCESS)
2214 goto out;
2215 }
2216
2217 for (i = 0; i < ihost->logical_port_entries; i++) {
2218 struct isci_port *iport = &ihost->ports[i];
2219
2220 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2221 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2222 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2223 }
2224
2225 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2226
2227 out:
2228 /* Advance the controller state machine */
2229 if (result == SCI_SUCCESS)
2230 state = SCIC_INITIALIZED;
2231 else
2232 state = SCIC_FAILED;
2233 sci_change_state(sm, state);
2234
2235 return result;
2236 }
2237
2238 static int sci_controller_dma_alloc(struct isci_host *ihost)
2239 {
2240 struct device *dev = &ihost->pdev->dev;
2241 size_t size;
2242 int i;
2243
2244 /* detect re-initialization */
2245 if (ihost->completion_queue)
2246 return 0;
2247
2248 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2249 ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2250 GFP_KERNEL);
2251 if (!ihost->completion_queue)
2252 return -ENOMEM;
2253
2254 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2255 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2256 GFP_KERNEL);
2257
2258 if (!ihost->remote_node_context_table)
2259 return -ENOMEM;
2260
2261 size = ihost->task_context_entries * sizeof(struct scu_task_context),
2262 ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2263 GFP_KERNEL);
2264 if (!ihost->task_context_table)
2265 return -ENOMEM;
2266
2267 size = SCI_UFI_TOTAL_SIZE;
2268 ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2269 if (!ihost->ufi_buf)
2270 return -ENOMEM;
2271
2272 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2273 struct isci_request *ireq;
2274 dma_addr_t dma;
2275
2276 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2277 if (!ireq)
2278 return -ENOMEM;
2279
2280 ireq->tc = &ihost->task_context_table[i];
2281 ireq->owning_controller = ihost;
2282 ireq->request_daddr = dma;
2283 ireq->isci_host = ihost;
2284 ihost->reqs[i] = ireq;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static int sci_controller_mem_init(struct isci_host *ihost)
2291 {
2292 int err = sci_controller_dma_alloc(ihost);
2293
2294 if (err)
2295 return err;
2296
2297 writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2298 writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2299
2300 writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2301 writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2302
2303 writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2304 writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2305
2306 sci_unsolicited_frame_control_construct(ihost);
2307
2308 /*
2309 * Inform the silicon as to the location of the UF headers and
2310 * address table.
2311 */
2312 writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2313 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2314 writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2315 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2316
2317 writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2318 &ihost->scu_registers->sdma.uf_address_table_lower);
2319 writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2320 &ihost->scu_registers->sdma.uf_address_table_upper);
2321
2322 return 0;
2323 }
2324
2325 /**
2326 * isci_host_init - (re-)initialize hardware and internal (private) state
2327 * @ihost: host to init
2328 *
2329 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2330 * one-time initialization objects like locks and waitqueues, are
2331 * not touched (they are initialized in isci_host_alloc)
2332 */
2333 int isci_host_init(struct isci_host *ihost)
2334 {
2335 int i, err;
2336 enum sci_status status;
2337
2338 spin_lock_irq(&ihost->scic_lock);
2339 status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2340 spin_unlock_irq(&ihost->scic_lock);
2341 if (status != SCI_SUCCESS) {
2342 dev_err(&ihost->pdev->dev,
2343 "%s: sci_controller_construct failed - status = %x\n",
2344 __func__,
2345 status);
2346 return -ENODEV;
2347 }
2348
2349 spin_lock_irq(&ihost->scic_lock);
2350 status = sci_controller_initialize(ihost);
2351 spin_unlock_irq(&ihost->scic_lock);
2352 if (status != SCI_SUCCESS) {
2353 dev_warn(&ihost->pdev->dev,
2354 "%s: sci_controller_initialize failed -"
2355 " status = 0x%x\n",
2356 __func__, status);
2357 return -ENODEV;
2358 }
2359
2360 err = sci_controller_mem_init(ihost);
2361 if (err)
2362 return err;
2363
2364 /* enable sgpio */
2365 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2366 for (i = 0; i < isci_gpio_count(ihost); i++)
2367 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2368 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2369
2370 return 0;
2371 }
2372
2373 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2374 struct isci_phy *iphy)
2375 {
2376 switch (ihost->sm.current_state_id) {
2377 case SCIC_STARTING:
2378 sci_del_timer(&ihost->phy_timer);
2379 ihost->phy_startup_timer_pending = false;
2380 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2381 iport, iphy);
2382 sci_controller_start_next_phy(ihost);
2383 break;
2384 case SCIC_READY:
2385 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2386 iport, iphy);
2387 break;
2388 default:
2389 dev_dbg(&ihost->pdev->dev,
2390 "%s: SCIC Controller linkup event from phy %d in "
2391 "unexpected state %d\n", __func__, iphy->phy_index,
2392 ihost->sm.current_state_id);
2393 }
2394 }
2395
2396 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2397 struct isci_phy *iphy)
2398 {
2399 switch (ihost->sm.current_state_id) {
2400 case SCIC_STARTING:
2401 case SCIC_READY:
2402 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2403 iport, iphy);
2404 break;
2405 default:
2406 dev_dbg(&ihost->pdev->dev,
2407 "%s: SCIC Controller linkdown event from phy %d in "
2408 "unexpected state %d\n",
2409 __func__,
2410 iphy->phy_index,
2411 ihost->sm.current_state_id);
2412 }
2413 }
2414
2415 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2416 {
2417 u32 index;
2418
2419 for (index = 0; index < ihost->remote_node_entries; index++) {
2420 if ((ihost->device_table[index] != NULL) &&
2421 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2422 return true;
2423 }
2424
2425 return false;
2426 }
2427
2428 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2429 struct isci_remote_device *idev)
2430 {
2431 if (ihost->sm.current_state_id != SCIC_STOPPING) {
2432 dev_dbg(&ihost->pdev->dev,
2433 "SCIC Controller 0x%p remote device stopped event "
2434 "from device 0x%p in unexpected state %d\n",
2435 ihost, idev,
2436 ihost->sm.current_state_id);
2437 return;
2438 }
2439
2440 if (!sci_controller_has_remote_devices_stopping(ihost))
2441 isci_host_stop_complete(ihost);
2442 }
2443
2444 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2445 {
2446 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2447 __func__, ihost->id, request);
2448
2449 writel(request, &ihost->smu_registers->post_context_port);
2450 }
2451
2452 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2453 {
2454 u16 task_index;
2455 u16 task_sequence;
2456
2457 task_index = ISCI_TAG_TCI(io_tag);
2458
2459 if (task_index < ihost->task_context_entries) {
2460 struct isci_request *ireq = ihost->reqs[task_index];
2461
2462 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2463 task_sequence = ISCI_TAG_SEQ(io_tag);
2464
2465 if (task_sequence == ihost->io_request_sequence[task_index])
2466 return ireq;
2467 }
2468 }
2469
2470 return NULL;
2471 }
2472
2473 /**
2474 * This method allocates remote node index and the reserves the remote node
2475 * context space for use. This method can fail if there are no more remote
2476 * node index available.
2477 * @scic: This is the controller object which contains the set of
2478 * free remote node ids
2479 * @sci_dev: This is the device object which is requesting the a remote node
2480 * id
2481 * @node_id: This is the remote node id that is assinged to the device if one
2482 * is available
2483 *
2484 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2485 * node index available.
2486 */
2487 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2488 struct isci_remote_device *idev,
2489 u16 *node_id)
2490 {
2491 u16 node_index;
2492 u32 remote_node_count = sci_remote_device_node_count(idev);
2493
2494 node_index = sci_remote_node_table_allocate_remote_node(
2495 &ihost->available_remote_nodes, remote_node_count
2496 );
2497
2498 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2499 ihost->device_table[node_index] = idev;
2500
2501 *node_id = node_index;
2502
2503 return SCI_SUCCESS;
2504 }
2505
2506 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2507 }
2508
2509 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2510 struct isci_remote_device *idev,
2511 u16 node_id)
2512 {
2513 u32 remote_node_count = sci_remote_device_node_count(idev);
2514
2515 if (ihost->device_table[node_id] == idev) {
2516 ihost->device_table[node_id] = NULL;
2517
2518 sci_remote_node_table_release_remote_node_index(
2519 &ihost->available_remote_nodes, remote_node_count, node_id
2520 );
2521 }
2522 }
2523
2524 void sci_controller_copy_sata_response(void *response_buffer,
2525 void *frame_header,
2526 void *frame_buffer)
2527 {
2528 /* XXX type safety? */
2529 memcpy(response_buffer, frame_header, sizeof(u32));
2530
2531 memcpy(response_buffer + sizeof(u32),
2532 frame_buffer,
2533 sizeof(struct dev_to_host_fis) - sizeof(u32));
2534 }
2535
2536 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2537 {
2538 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2539 writel(ihost->uf_control.get,
2540 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2541 }
2542
2543 void isci_tci_free(struct isci_host *ihost, u16 tci)
2544 {
2545 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2546
2547 ihost->tci_pool[tail] = tci;
2548 ihost->tci_tail = tail + 1;
2549 }
2550
2551 static u16 isci_tci_alloc(struct isci_host *ihost)
2552 {
2553 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2554 u16 tci = ihost->tci_pool[head];
2555
2556 ihost->tci_head = head + 1;
2557 return tci;
2558 }
2559
2560 static u16 isci_tci_space(struct isci_host *ihost)
2561 {
2562 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2563 }
2564
2565 u16 isci_alloc_tag(struct isci_host *ihost)
2566 {
2567 if (isci_tci_space(ihost)) {
2568 u16 tci = isci_tci_alloc(ihost);
2569 u8 seq = ihost->io_request_sequence[tci];
2570
2571 return ISCI_TAG(seq, tci);
2572 }
2573
2574 return SCI_CONTROLLER_INVALID_IO_TAG;
2575 }
2576
2577 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2578 {
2579 u16 tci = ISCI_TAG_TCI(io_tag);
2580 u16 seq = ISCI_TAG_SEQ(io_tag);
2581
2582 /* prevent tail from passing head */
2583 if (isci_tci_active(ihost) == 0)
2584 return SCI_FAILURE_INVALID_IO_TAG;
2585
2586 if (seq == ihost->io_request_sequence[tci]) {
2587 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2588
2589 isci_tci_free(ihost, tci);
2590
2591 return SCI_SUCCESS;
2592 }
2593 return SCI_FAILURE_INVALID_IO_TAG;
2594 }
2595
2596 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2597 struct isci_remote_device *idev,
2598 struct isci_request *ireq)
2599 {
2600 enum sci_status status;
2601
2602 if (ihost->sm.current_state_id != SCIC_READY) {
2603 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2604 __func__, ihost->sm.current_state_id);
2605 return SCI_FAILURE_INVALID_STATE;
2606 }
2607
2608 status = sci_remote_device_start_io(ihost, idev, ireq);
2609 if (status != SCI_SUCCESS)
2610 return status;
2611
2612 set_bit(IREQ_ACTIVE, &ireq->flags);
2613 sci_controller_post_request(ihost, ireq->post_context);
2614 return SCI_SUCCESS;
2615 }
2616
2617 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2618 struct isci_remote_device *idev,
2619 struct isci_request *ireq)
2620 {
2621 /* terminate an ongoing (i.e. started) core IO request. This does not
2622 * abort the IO request at the target, but rather removes the IO
2623 * request from the host controller.
2624 */
2625 enum sci_status status;
2626
2627 if (ihost->sm.current_state_id != SCIC_READY) {
2628 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2629 __func__, ihost->sm.current_state_id);
2630 return SCI_FAILURE_INVALID_STATE;
2631 }
2632 status = sci_io_request_terminate(ireq);
2633
2634 dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2635 __func__, status, ireq, ireq->flags);
2636
2637 if ((status == SCI_SUCCESS) &&
2638 !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2639 !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2640 /* Utilize the original post context command and or in the
2641 * POST_TC_ABORT request sub-type.
2642 */
2643 sci_controller_post_request(
2644 ihost, ireq->post_context |
2645 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2646 }
2647 return status;
2648 }
2649
2650 /**
2651 * sci_controller_complete_io() - This method will perform core specific
2652 * completion operations for an IO request. After this method is invoked,
2653 * the user should consider the IO request as invalid until it is properly
2654 * reused (i.e. re-constructed).
2655 * @ihost: The handle to the controller object for which to complete the
2656 * IO request.
2657 * @idev: The handle to the remote device object for which to complete
2658 * the IO request.
2659 * @ireq: the handle to the io request object to complete.
2660 */
2661 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2662 struct isci_remote_device *idev,
2663 struct isci_request *ireq)
2664 {
2665 enum sci_status status;
2666 u16 index;
2667
2668 switch (ihost->sm.current_state_id) {
2669 case SCIC_STOPPING:
2670 /* XXX: Implement this function */
2671 return SCI_FAILURE;
2672 case SCIC_READY:
2673 status = sci_remote_device_complete_io(ihost, idev, ireq);
2674 if (status != SCI_SUCCESS)
2675 return status;
2676
2677 index = ISCI_TAG_TCI(ireq->io_tag);
2678 clear_bit(IREQ_ACTIVE, &ireq->flags);
2679 return SCI_SUCCESS;
2680 default:
2681 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2682 __func__, ihost->sm.current_state_id);
2683 return SCI_FAILURE_INVALID_STATE;
2684 }
2685
2686 }
2687
2688 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2689 {
2690 struct isci_host *ihost = ireq->owning_controller;
2691
2692 if (ihost->sm.current_state_id != SCIC_READY) {
2693 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2694 __func__, ihost->sm.current_state_id);
2695 return SCI_FAILURE_INVALID_STATE;
2696 }
2697
2698 set_bit(IREQ_ACTIVE, &ireq->flags);
2699 sci_controller_post_request(ihost, ireq->post_context);
2700 return SCI_SUCCESS;
2701 }
2702
2703 /**
2704 * sci_controller_start_task() - This method is called by the SCIC user to
2705 * send/start a framework task management request.
2706 * @controller: the handle to the controller object for which to start the task
2707 * management request.
2708 * @remote_device: the handle to the remote device object for which to start
2709 * the task management request.
2710 * @task_request: the handle to the task request object to start.
2711 */
2712 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2713 struct isci_remote_device *idev,
2714 struct isci_request *ireq)
2715 {
2716 enum sci_status status;
2717
2718 if (ihost->sm.current_state_id != SCIC_READY) {
2719 dev_warn(&ihost->pdev->dev,
2720 "%s: SCIC Controller starting task from invalid "
2721 "state\n",
2722 __func__);
2723 return SCI_TASK_FAILURE_INVALID_STATE;
2724 }
2725
2726 status = sci_remote_device_start_task(ihost, idev, ireq);
2727 switch (status) {
2728 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2729 set_bit(IREQ_ACTIVE, &ireq->flags);
2730
2731 /*
2732 * We will let framework know this task request started successfully,
2733 * although core is still woring on starting the request (to post tc when
2734 * RNC is resumed.)
2735 */
2736 return SCI_SUCCESS;
2737 case SCI_SUCCESS:
2738 set_bit(IREQ_ACTIVE, &ireq->flags);
2739 sci_controller_post_request(ihost, ireq->post_context);
2740 break;
2741 default:
2742 break;
2743 }
2744
2745 return status;
2746 }
2747
2748 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2749 {
2750 int d;
2751
2752 /* no support for TX_GP_CFG */
2753 if (reg_index == 0)
2754 return -EINVAL;
2755
2756 for (d = 0; d < isci_gpio_count(ihost); d++) {
2757 u32 val = 0x444; /* all ODx.n clear */
2758 int i;
2759
2760 for (i = 0; i < 3; i++) {
2761 int bit = (i << 2) + 2;
2762
2763 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2764 write_data, reg_index,
2765 reg_count);
2766 if (bit < 0)
2767 break;
2768
2769 /* if od is set, clear the 'invert' bit */
2770 val &= ~(bit << ((i << 2) + 2));
2771 }
2772
2773 if (i < 3)
2774 break;
2775 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2776 }
2777
2778 /* unless reg_index is > 1, we should always be able to write at
2779 * least one register
2780 */
2781 return d > 0;
2782 }
2783
2784 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2785 u8 reg_count, u8 *write_data)
2786 {
2787 struct isci_host *ihost = sas_ha->lldd_ha;
2788 int written;
2789
2790 switch (reg_type) {
2791 case SAS_GPIO_REG_TX_GP:
2792 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2793 break;
2794 default:
2795 written = -EINVAL;
2796 }
2797
2798 return written;
2799 }