]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/isci/task.c
d040aa2f3722c537b64fc27bf8d0e7834fae6707
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / isci / task.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56 #include <linux/completion.h>
57 #include <linux/irqflags.h>
58 #include "sas.h"
59 #include <scsi/libsas.h>
60 #include "remote_device.h"
61 #include "remote_node_context.h"
62 #include "isci.h"
63 #include "request.h"
64 #include "sata.h"
65 #include "task.h"
66 #include "host.h"
67
68 /**
69 * isci_task_refuse() - complete the request to the upper layer driver in
70 * the case where an I/O needs to be completed back in the submit path.
71 * @ihost: host on which the the request was queued
72 * @task: request to complete
73 * @response: response code for the completed task.
74 * @status: status code for the completed task.
75 *
76 */
77 static void isci_task_refuse(struct isci_host *ihost, struct sas_task *task,
78 enum service_response response,
79 enum exec_status status)
80
81 {
82 enum isci_completion_selection disposition;
83
84 disposition = isci_perform_normal_io_completion;
85 disposition = isci_task_set_completion_status(task, response, status,
86 disposition);
87
88 /* Tasks aborted specifically by a call to the lldd_abort_task
89 * function should not be completed to the host in the regular path.
90 */
91 switch (disposition) {
92 case isci_perform_normal_io_completion:
93 /* Normal notification (task_done) */
94 dev_dbg(&ihost->pdev->dev,
95 "%s: Normal - task = %p, response=%d, "
96 "status=%d\n",
97 __func__, task, response, status);
98
99 task->lldd_task = NULL;
100
101 isci_execpath_callback(ihost, task, task->task_done);
102 break;
103
104 case isci_perform_aborted_io_completion:
105 /* No notification because this request is already in the
106 * abort path.
107 */
108 dev_warn(&ihost->pdev->dev,
109 "%s: Aborted - task = %p, response=%d, "
110 "status=%d\n",
111 __func__, task, response, status);
112 break;
113
114 case isci_perform_error_io_completion:
115 /* Use sas_task_abort */
116 dev_warn(&ihost->pdev->dev,
117 "%s: Error - task = %p, response=%d, "
118 "status=%d\n",
119 __func__, task, response, status);
120
121 isci_execpath_callback(ihost, task, sas_task_abort);
122 break;
123
124 default:
125 dev_warn(&ihost->pdev->dev,
126 "%s: isci task notification default case!",
127 __func__);
128 sas_task_abort(task);
129 break;
130 }
131 }
132
133 #define for_each_sas_task(num, task) \
134 for (; num > 0; num--,\
135 task = list_entry(task->list.next, struct sas_task, list))
136
137
138 static inline int isci_device_io_ready(struct isci_remote_device *idev,
139 struct sas_task *task)
140 {
141 return idev ? test_bit(IDEV_IO_READY, &idev->flags) ||
142 (test_bit(IDEV_IO_NCQERROR, &idev->flags) &&
143 isci_task_is_ncq_recovery(task))
144 : 0;
145 }
146 /**
147 * isci_task_execute_task() - This function is one of the SAS Domain Template
148 * functions. This function is called by libsas to send a task down to
149 * hardware.
150 * @task: This parameter specifies the SAS task to send.
151 * @num: This parameter specifies the number of tasks to queue.
152 * @gfp_flags: This parameter specifies the context of this call.
153 *
154 * status, zero indicates success.
155 */
156 int isci_task_execute_task(struct sas_task *task, int num, gfp_t gfp_flags)
157 {
158 struct isci_host *ihost = dev_to_ihost(task->dev);
159 struct isci_remote_device *idev;
160 unsigned long flags;
161 bool io_ready;
162 u16 tag;
163
164 dev_dbg(&ihost->pdev->dev, "%s: num=%d\n", __func__, num);
165
166 for_each_sas_task(num, task) {
167 enum sci_status status = SCI_FAILURE;
168
169 spin_lock_irqsave(&ihost->scic_lock, flags);
170 idev = isci_lookup_device(task->dev);
171 io_ready = isci_device_io_ready(idev, task);
172 tag = isci_alloc_tag(ihost);
173 spin_unlock_irqrestore(&ihost->scic_lock, flags);
174
175 dev_dbg(&ihost->pdev->dev,
176 "task: %p, num: %d dev: %p idev: %p:%#lx cmd = %p\n",
177 task, num, task->dev, idev, idev ? idev->flags : 0,
178 task->uldd_task);
179
180 if (!idev) {
181 isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED,
182 SAS_DEVICE_UNKNOWN);
183 } else if (!io_ready || tag == SCI_CONTROLLER_INVALID_IO_TAG) {
184 /* Indicate QUEUE_FULL so that the scsi midlayer
185 * retries.
186 */
187 isci_task_refuse(ihost, task, SAS_TASK_COMPLETE,
188 SAS_QUEUE_FULL);
189 } else {
190 /* There is a device and it's ready for I/O. */
191 spin_lock_irqsave(&task->task_state_lock, flags);
192
193 if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
194 /* The I/O was aborted. */
195 spin_unlock_irqrestore(&task->task_state_lock,
196 flags);
197
198 isci_task_refuse(ihost, task,
199 SAS_TASK_UNDELIVERED,
200 SAM_STAT_TASK_ABORTED);
201 } else {
202 task->task_state_flags |= SAS_TASK_AT_INITIATOR;
203 spin_unlock_irqrestore(&task->task_state_lock, flags);
204
205 /* build and send the request. */
206 status = isci_request_execute(ihost, idev, task, tag);
207
208 if (status != SCI_SUCCESS) {
209
210 spin_lock_irqsave(&task->task_state_lock, flags);
211 /* Did not really start this command. */
212 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
213 spin_unlock_irqrestore(&task->task_state_lock, flags);
214
215 /* Indicate QUEUE_FULL so that the scsi
216 * midlayer retries. if the request
217 * failed for remote device reasons,
218 * it gets returned as
219 * SAS_TASK_UNDELIVERED next time
220 * through.
221 */
222 isci_task_refuse(ihost, task,
223 SAS_TASK_COMPLETE,
224 SAS_QUEUE_FULL);
225 }
226 }
227 }
228 if (status != SCI_SUCCESS && tag != SCI_CONTROLLER_INVALID_IO_TAG) {
229 spin_lock_irqsave(&ihost->scic_lock, flags);
230 /* command never hit the device, so just free
231 * the tci and skip the sequence increment
232 */
233 isci_tci_free(ihost, ISCI_TAG_TCI(tag));
234 spin_unlock_irqrestore(&ihost->scic_lock, flags);
235 }
236 isci_put_device(idev);
237 }
238 return 0;
239 }
240
241 static struct isci_request *isci_task_request_build(struct isci_host *ihost,
242 struct isci_remote_device *idev,
243 u16 tag, struct isci_tmf *isci_tmf)
244 {
245 enum sci_status status = SCI_FAILURE;
246 struct isci_request *ireq = NULL;
247 struct domain_device *dev;
248
249 dev_dbg(&ihost->pdev->dev,
250 "%s: isci_tmf = %p\n", __func__, isci_tmf);
251
252 dev = idev->domain_dev;
253
254 /* do common allocation and init of request object. */
255 ireq = isci_tmf_request_from_tag(ihost, isci_tmf, tag);
256 if (!ireq)
257 return NULL;
258
259 /* let the core do it's construct. */
260 status = sci_task_request_construct(ihost, idev, tag,
261 ireq);
262
263 if (status != SCI_SUCCESS) {
264 dev_warn(&ihost->pdev->dev,
265 "%s: sci_task_request_construct failed - "
266 "status = 0x%x\n",
267 __func__,
268 status);
269 return NULL;
270 }
271
272 /* XXX convert to get this from task->tproto like other drivers */
273 if (dev->dev_type == SAS_END_DEV) {
274 isci_tmf->proto = SAS_PROTOCOL_SSP;
275 status = sci_task_request_construct_ssp(ireq);
276 if (status != SCI_SUCCESS)
277 return NULL;
278 }
279
280 if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
281 isci_tmf->proto = SAS_PROTOCOL_SATA;
282 status = isci_sata_management_task_request_build(ireq);
283
284 if (status != SCI_SUCCESS)
285 return NULL;
286 }
287 return ireq;
288 }
289
290 int isci_task_execute_tmf(struct isci_host *ihost,
291 struct isci_remote_device *idev,
292 struct isci_tmf *tmf, unsigned long timeout_ms)
293 {
294 DECLARE_COMPLETION_ONSTACK(completion);
295 enum sci_task_status status = SCI_TASK_FAILURE;
296 struct isci_request *ireq;
297 int ret = TMF_RESP_FUNC_FAILED;
298 unsigned long flags;
299 unsigned long timeleft;
300 u16 tag;
301
302 spin_lock_irqsave(&ihost->scic_lock, flags);
303 tag = isci_alloc_tag(ihost);
304 spin_unlock_irqrestore(&ihost->scic_lock, flags);
305
306 if (tag == SCI_CONTROLLER_INVALID_IO_TAG)
307 return ret;
308
309 /* sanity check, return TMF_RESP_FUNC_FAILED
310 * if the device is not there and ready.
311 */
312 if (!idev ||
313 (!test_bit(IDEV_IO_READY, &idev->flags) &&
314 !test_bit(IDEV_IO_NCQERROR, &idev->flags))) {
315 dev_dbg(&ihost->pdev->dev,
316 "%s: idev = %p not ready (%#lx)\n",
317 __func__,
318 idev, idev ? idev->flags : 0);
319 goto err_tci;
320 } else
321 dev_dbg(&ihost->pdev->dev,
322 "%s: idev = %p\n",
323 __func__, idev);
324
325 /* Assign the pointer to the TMF's completion kernel wait structure. */
326 tmf->complete = &completion;
327
328 ireq = isci_task_request_build(ihost, idev, tag, tmf);
329 if (!ireq)
330 goto err_tci;
331
332 spin_lock_irqsave(&ihost->scic_lock, flags);
333
334 /* start the TMF io. */
335 status = sci_controller_start_task(ihost, idev, ireq);
336
337 if (status != SCI_TASK_SUCCESS) {
338 dev_warn(&ihost->pdev->dev,
339 "%s: start_io failed - status = 0x%x, request = %p\n",
340 __func__,
341 status,
342 ireq);
343 spin_unlock_irqrestore(&ihost->scic_lock, flags);
344 goto err_tci;
345 }
346
347 if (tmf->cb_state_func != NULL)
348 tmf->cb_state_func(isci_tmf_started, tmf, tmf->cb_data);
349
350 isci_request_change_state(ireq, started);
351
352 /* add the request to the remote device request list. */
353 list_add(&ireq->dev_node, &idev->reqs_in_process);
354
355 spin_unlock_irqrestore(&ihost->scic_lock, flags);
356
357 /* Wait for the TMF to complete, or a timeout. */
358 timeleft = wait_for_completion_timeout(&completion,
359 msecs_to_jiffies(timeout_ms));
360
361 if (timeleft == 0) {
362 spin_lock_irqsave(&ihost->scic_lock, flags);
363
364 if (tmf->cb_state_func != NULL)
365 tmf->cb_state_func(isci_tmf_timed_out, tmf, tmf->cb_data);
366
367 sci_controller_terminate_request(ihost,
368 idev,
369 ireq);
370
371 spin_unlock_irqrestore(&ihost->scic_lock, flags);
372
373 wait_for_completion(tmf->complete);
374 }
375
376 isci_print_tmf(tmf);
377
378 if (tmf->status == SCI_SUCCESS)
379 ret = TMF_RESP_FUNC_COMPLETE;
380 else if (tmf->status == SCI_FAILURE_IO_RESPONSE_VALID) {
381 dev_dbg(&ihost->pdev->dev,
382 "%s: tmf.status == "
383 "SCI_FAILURE_IO_RESPONSE_VALID\n",
384 __func__);
385 ret = TMF_RESP_FUNC_COMPLETE;
386 }
387 /* Else - leave the default "failed" status alone. */
388
389 dev_dbg(&ihost->pdev->dev,
390 "%s: completed request = %p\n",
391 __func__,
392 ireq);
393
394 return ret;
395
396 err_tci:
397 spin_lock_irqsave(&ihost->scic_lock, flags);
398 isci_tci_free(ihost, ISCI_TAG_TCI(tag));
399 spin_unlock_irqrestore(&ihost->scic_lock, flags);
400
401 return ret;
402 }
403
404 void isci_task_build_tmf(
405 struct isci_tmf *tmf,
406 enum isci_tmf_function_codes code,
407 void (*tmf_sent_cb)(enum isci_tmf_cb_state,
408 struct isci_tmf *,
409 void *),
410 void *cb_data)
411 {
412 memset(tmf, 0, sizeof(*tmf));
413
414 tmf->tmf_code = code;
415 tmf->cb_state_func = tmf_sent_cb;
416 tmf->cb_data = cb_data;
417 }
418
419 static void isci_task_build_abort_task_tmf(
420 struct isci_tmf *tmf,
421 enum isci_tmf_function_codes code,
422 void (*tmf_sent_cb)(enum isci_tmf_cb_state,
423 struct isci_tmf *,
424 void *),
425 struct isci_request *old_request)
426 {
427 isci_task_build_tmf(tmf, code, tmf_sent_cb,
428 (void *)old_request);
429 tmf->io_tag = old_request->io_tag;
430 }
431
432 /**
433 * isci_task_validate_request_to_abort() - This function checks the given I/O
434 * against the "started" state. If the request is still "started", it's
435 * state is changed to aborted. NOTE: isci_host->scic_lock MUST BE HELD
436 * BEFORE CALLING THIS FUNCTION.
437 * @isci_request: This parameter specifies the request object to control.
438 * @isci_host: This parameter specifies the ISCI host object
439 * @isci_device: This is the device to which the request is pending.
440 * @aborted_io_completion: This is a completion structure that will be added to
441 * the request in case it is changed to aborting; this completion is
442 * triggered when the request is fully completed.
443 *
444 * Either "started" on successful change of the task status to "aborted", or
445 * "unallocated" if the task cannot be controlled.
446 */
447 static enum isci_request_status isci_task_validate_request_to_abort(
448 struct isci_request *isci_request,
449 struct isci_host *isci_host,
450 struct isci_remote_device *isci_device,
451 struct completion *aborted_io_completion)
452 {
453 enum isci_request_status old_state = unallocated;
454
455 /* Only abort the task if it's in the
456 * device's request_in_process list
457 */
458 if (isci_request && !list_empty(&isci_request->dev_node)) {
459 old_state = isci_request_change_started_to_aborted(
460 isci_request, aborted_io_completion);
461
462 }
463
464 return old_state;
465 }
466
467 /**
468 * isci_request_cleanup_completed_loiterer() - This function will take care of
469 * the final cleanup on any request which has been explicitly terminated.
470 * @isci_host: This parameter specifies the ISCI host object
471 * @isci_device: This is the device to which the request is pending.
472 * @isci_request: This parameter specifies the terminated request object.
473 * @task: This parameter is the libsas I/O request.
474 */
475 static void isci_request_cleanup_completed_loiterer(
476 struct isci_host *isci_host,
477 struct isci_remote_device *isci_device,
478 struct isci_request *isci_request,
479 struct sas_task *task)
480 {
481 unsigned long flags;
482
483 dev_dbg(&isci_host->pdev->dev,
484 "%s: isci_device=%p, request=%p, task=%p\n",
485 __func__, isci_device, isci_request, task);
486
487 if (task != NULL) {
488
489 spin_lock_irqsave(&task->task_state_lock, flags);
490 task->lldd_task = NULL;
491
492 task->task_state_flags &= ~SAS_TASK_NEED_DEV_RESET;
493
494 isci_set_task_doneflags(task);
495
496 /* If this task is not in the abort path, call task_done. */
497 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
498
499 spin_unlock_irqrestore(&task->task_state_lock, flags);
500 task->task_done(task);
501 } else
502 spin_unlock_irqrestore(&task->task_state_lock, flags);
503 }
504
505 if (isci_request != NULL) {
506 spin_lock_irqsave(&isci_host->scic_lock, flags);
507 list_del_init(&isci_request->dev_node);
508 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
509 }
510 }
511
512 /**
513 * isci_terminate_request_core() - This function will terminate the given
514 * request, and wait for it to complete. This function must only be called
515 * from a thread that can wait. Note that the request is terminated and
516 * completed (back to the host, if started there).
517 * @ihost: This SCU.
518 * @idev: The target.
519 * @isci_request: The I/O request to be terminated.
520 *
521 */
522 static void isci_terminate_request_core(struct isci_host *ihost,
523 struct isci_remote_device *idev,
524 struct isci_request *isci_request)
525 {
526 enum sci_status status = SCI_SUCCESS;
527 bool was_terminated = false;
528 bool needs_cleanup_handling = false;
529 enum isci_request_status request_status;
530 unsigned long flags;
531 unsigned long termination_completed = 1;
532 struct completion *io_request_completion;
533 struct sas_task *task;
534
535 dev_dbg(&ihost->pdev->dev,
536 "%s: device = %p; request = %p\n",
537 __func__, idev, isci_request);
538
539 spin_lock_irqsave(&ihost->scic_lock, flags);
540
541 io_request_completion = isci_request->io_request_completion;
542
543 task = (isci_request->ttype == io_task)
544 ? isci_request_access_task(isci_request)
545 : NULL;
546
547 /* Note that we are not going to control
548 * the target to abort the request.
549 */
550 set_bit(IREQ_COMPLETE_IN_TARGET, &isci_request->flags);
551
552 /* Make sure the request wasn't just sitting around signalling
553 * device condition (if the request handle is NULL, then the
554 * request completed but needed additional handling here).
555 */
556 if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) {
557 was_terminated = true;
558 needs_cleanup_handling = true;
559 status = sci_controller_terminate_request(ihost,
560 idev,
561 isci_request);
562 }
563 spin_unlock_irqrestore(&ihost->scic_lock, flags);
564
565 /*
566 * The only time the request to terminate will
567 * fail is when the io request is completed and
568 * being aborted.
569 */
570 if (status != SCI_SUCCESS) {
571 dev_err(&ihost->pdev->dev,
572 "%s: sci_controller_terminate_request"
573 " returned = 0x%x\n",
574 __func__, status);
575
576 isci_request->io_request_completion = NULL;
577
578 } else {
579 if (was_terminated) {
580 dev_dbg(&ihost->pdev->dev,
581 "%s: before completion wait (%p/%p)\n",
582 __func__, isci_request, io_request_completion);
583
584 /* Wait here for the request to complete. */
585 #define TERMINATION_TIMEOUT_MSEC 500
586 termination_completed
587 = wait_for_completion_timeout(
588 io_request_completion,
589 msecs_to_jiffies(TERMINATION_TIMEOUT_MSEC));
590
591 if (!termination_completed) {
592
593 /* The request to terminate has timed out. */
594 spin_lock_irqsave(&ihost->scic_lock,
595 flags);
596
597 /* Check for state changes. */
598 if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) {
599
600 /* The best we can do is to have the
601 * request die a silent death if it
602 * ever really completes.
603 *
604 * Set the request state to "dead",
605 * and clear the task pointer so that
606 * an actual completion event callback
607 * doesn't do anything.
608 */
609 isci_request->status = dead;
610 isci_request->io_request_completion
611 = NULL;
612
613 if (isci_request->ttype == io_task) {
614
615 /* Break links with the
616 * sas_task.
617 */
618 isci_request->ttype_ptr.io_task_ptr
619 = NULL;
620 }
621 } else
622 termination_completed = 1;
623
624 spin_unlock_irqrestore(&ihost->scic_lock,
625 flags);
626
627 if (!termination_completed) {
628
629 dev_err(&ihost->pdev->dev,
630 "%s: *** Timeout waiting for "
631 "termination(%p/%p)\n",
632 __func__, io_request_completion,
633 isci_request);
634
635 /* The request can no longer be referenced
636 * safely since it may go away if the
637 * termination every really does complete.
638 */
639 isci_request = NULL;
640 }
641 }
642 if (termination_completed)
643 dev_dbg(&ihost->pdev->dev,
644 "%s: after completion wait (%p/%p)\n",
645 __func__, isci_request, io_request_completion);
646 }
647
648 if (termination_completed) {
649
650 isci_request->io_request_completion = NULL;
651
652 /* Peek at the status of the request. This will tell
653 * us if there was special handling on the request such that it
654 * needs to be detached and freed here.
655 */
656 spin_lock_irqsave(&isci_request->state_lock, flags);
657 request_status = isci_request_get_state(isci_request);
658
659 if ((isci_request->ttype == io_task) /* TMFs are in their own thread */
660 && ((request_status == aborted)
661 || (request_status == aborting)
662 || (request_status == terminating)
663 || (request_status == completed)
664 || (request_status == dead)
665 )
666 ) {
667
668 /* The completion routine won't free a request in
669 * the aborted/aborting/etc. states, so we do
670 * it here.
671 */
672 needs_cleanup_handling = true;
673 }
674 spin_unlock_irqrestore(&isci_request->state_lock, flags);
675
676 }
677 if (needs_cleanup_handling)
678 isci_request_cleanup_completed_loiterer(
679 ihost, idev, isci_request, task);
680 }
681 }
682
683 /**
684 * isci_terminate_pending_requests() - This function will change the all of the
685 * requests on the given device's state to "aborting", will terminate the
686 * requests, and wait for them to complete. This function must only be
687 * called from a thread that can wait. Note that the requests are all
688 * terminated and completed (back to the host, if started there).
689 * @isci_host: This parameter specifies SCU.
690 * @idev: This parameter specifies the target.
691 *
692 */
693 void isci_terminate_pending_requests(struct isci_host *ihost,
694 struct isci_remote_device *idev)
695 {
696 struct completion request_completion;
697 enum isci_request_status old_state;
698 unsigned long flags;
699 LIST_HEAD(list);
700
701 spin_lock_irqsave(&ihost->scic_lock, flags);
702 list_splice_init(&idev->reqs_in_process, &list);
703
704 /* assumes that isci_terminate_request_core deletes from the list */
705 while (!list_empty(&list)) {
706 struct isci_request *ireq = list_entry(list.next, typeof(*ireq), dev_node);
707
708 /* Change state to "terminating" if it is currently
709 * "started".
710 */
711 old_state = isci_request_change_started_to_newstate(ireq,
712 &request_completion,
713 terminating);
714 switch (old_state) {
715 case started:
716 case completed:
717 case aborting:
718 break;
719 default:
720 /* termination in progress, or otherwise dispositioned.
721 * We know the request was on 'list' so should be safe
722 * to move it back to reqs_in_process
723 */
724 list_move(&ireq->dev_node, &idev->reqs_in_process);
725 ireq = NULL;
726 break;
727 }
728
729 if (!ireq)
730 continue;
731 spin_unlock_irqrestore(&ihost->scic_lock, flags);
732
733 init_completion(&request_completion);
734
735 dev_dbg(&ihost->pdev->dev,
736 "%s: idev=%p request=%p; task=%p old_state=%d\n",
737 __func__, idev, ireq,
738 ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL,
739 old_state);
740
741 /* If the old_state is started:
742 * This request was not already being aborted. If it had been,
743 * then the aborting I/O (ie. the TMF request) would not be in
744 * the aborting state, and thus would be terminated here. Note
745 * that since the TMF completion's call to the kernel function
746 * "complete()" does not happen until the pending I/O request
747 * terminate fully completes, we do not have to implement a
748 * special wait here for already aborting requests - the
749 * termination of the TMF request will force the request
750 * to finish it's already started terminate.
751 *
752 * If old_state == completed:
753 * This request completed from the SCU hardware perspective
754 * and now just needs cleaning up in terms of freeing the
755 * request and potentially calling up to libsas.
756 *
757 * If old_state == aborting:
758 * This request has already gone through a TMF timeout, but may
759 * not have been terminated; needs cleaning up at least.
760 */
761 isci_terminate_request_core(ihost, idev, ireq);
762 spin_lock_irqsave(&ihost->scic_lock, flags);
763 }
764 spin_unlock_irqrestore(&ihost->scic_lock, flags);
765 }
766
767 /**
768 * isci_task_send_lu_reset_sas() - This function is called by of the SAS Domain
769 * Template functions.
770 * @lun: This parameter specifies the lun to be reset.
771 *
772 * status, zero indicates success.
773 */
774 static int isci_task_send_lu_reset_sas(
775 struct isci_host *isci_host,
776 struct isci_remote_device *isci_device,
777 u8 *lun)
778 {
779 struct isci_tmf tmf;
780 int ret = TMF_RESP_FUNC_FAILED;
781
782 dev_dbg(&isci_host->pdev->dev,
783 "%s: isci_host = %p, isci_device = %p\n",
784 __func__, isci_host, isci_device);
785 /* Send the LUN reset to the target. By the time the call returns,
786 * the TMF has fully exected in the target (in which case the return
787 * value is "TMF_RESP_FUNC_COMPLETE", or the request timed-out (or
788 * was otherwise unable to be executed ("TMF_RESP_FUNC_FAILED").
789 */
790 isci_task_build_tmf(&tmf, isci_tmf_ssp_lun_reset, NULL, NULL);
791
792 #define ISCI_LU_RESET_TIMEOUT_MS 2000 /* 2 second timeout. */
793 ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_LU_RESET_TIMEOUT_MS);
794
795 if (ret == TMF_RESP_FUNC_COMPLETE)
796 dev_dbg(&isci_host->pdev->dev,
797 "%s: %p: TMF_LU_RESET passed\n",
798 __func__, isci_device);
799 else
800 dev_dbg(&isci_host->pdev->dev,
801 "%s: %p: TMF_LU_RESET failed (%x)\n",
802 __func__, isci_device, ret);
803
804 return ret;
805 }
806
807 /**
808 * isci_task_lu_reset() - This function is one of the SAS Domain Template
809 * functions. This is one of the Task Management functoins called by libsas,
810 * to reset the given lun. Note the assumption that while this call is
811 * executing, no I/O will be sent by the host to the device.
812 * @lun: This parameter specifies the lun to be reset.
813 *
814 * status, zero indicates success.
815 */
816 int isci_task_lu_reset(struct domain_device *domain_device, u8 *lun)
817 {
818 struct isci_host *isci_host = dev_to_ihost(domain_device);
819 struct isci_remote_device *isci_device;
820 unsigned long flags;
821 int ret;
822
823 spin_lock_irqsave(&isci_host->scic_lock, flags);
824 isci_device = isci_lookup_device(domain_device);
825 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
826
827 dev_dbg(&isci_host->pdev->dev,
828 "%s: domain_device=%p, isci_host=%p; isci_device=%p\n",
829 __func__, domain_device, isci_host, isci_device);
830
831 if (isci_device)
832 set_bit(IDEV_EH, &isci_device->flags);
833
834 /* If there is a device reset pending on any request in the
835 * device's list, fail this LUN reset request in order to
836 * escalate to the device reset.
837 */
838 if (!isci_device ||
839 isci_device_is_reset_pending(isci_host, isci_device)) {
840 dev_warn(&isci_host->pdev->dev,
841 "%s: No dev (%p), or "
842 "RESET PENDING: domain_device=%p\n",
843 __func__, isci_device, domain_device);
844 ret = TMF_RESP_FUNC_FAILED;
845 goto out;
846 }
847
848 /* Send the task management part of the reset. */
849 if (sas_protocol_ata(domain_device->tproto)) {
850 ret = isci_task_send_lu_reset_sata(isci_host, isci_device, lun);
851 } else
852 ret = isci_task_send_lu_reset_sas(isci_host, isci_device, lun);
853
854 /* If the LUN reset worked, all the I/O can now be terminated. */
855 if (ret == TMF_RESP_FUNC_COMPLETE)
856 /* Terminate all I/O now. */
857 isci_terminate_pending_requests(isci_host,
858 isci_device);
859
860 out:
861 isci_put_device(isci_device);
862 return ret;
863 }
864
865
866 /* int (*lldd_clear_nexus_port)(struct asd_sas_port *); */
867 int isci_task_clear_nexus_port(struct asd_sas_port *port)
868 {
869 return TMF_RESP_FUNC_FAILED;
870 }
871
872
873
874 int isci_task_clear_nexus_ha(struct sas_ha_struct *ha)
875 {
876 return TMF_RESP_FUNC_FAILED;
877 }
878
879 /* Task Management Functions. Must be called from process context. */
880
881 /**
882 * isci_abort_task_process_cb() - This is a helper function for the abort task
883 * TMF command. It manages the request state with respect to the successful
884 * transmission / completion of the abort task request.
885 * @cb_state: This parameter specifies when this function was called - after
886 * the TMF request has been started and after it has timed-out.
887 * @tmf: This parameter specifies the TMF in progress.
888 *
889 *
890 */
891 static void isci_abort_task_process_cb(
892 enum isci_tmf_cb_state cb_state,
893 struct isci_tmf *tmf,
894 void *cb_data)
895 {
896 struct isci_request *old_request;
897
898 old_request = (struct isci_request *)cb_data;
899
900 dev_dbg(&old_request->isci_host->pdev->dev,
901 "%s: tmf=%p, old_request=%p\n",
902 __func__, tmf, old_request);
903
904 switch (cb_state) {
905
906 case isci_tmf_started:
907 /* The TMF has been started. Nothing to do here, since the
908 * request state was already set to "aborted" by the abort
909 * task function.
910 */
911 if ((old_request->status != aborted)
912 && (old_request->status != completed))
913 dev_err(&old_request->isci_host->pdev->dev,
914 "%s: Bad request status (%d): tmf=%p, old_request=%p\n",
915 __func__, old_request->status, tmf, old_request);
916 break;
917
918 case isci_tmf_timed_out:
919
920 /* Set the task's state to "aborting", since the abort task
921 * function thread set it to "aborted" (above) in anticipation
922 * of the task management request working correctly. Since the
923 * timeout has now fired, the TMF request failed. We set the
924 * state such that the request completion will indicate the
925 * device is no longer present.
926 */
927 isci_request_change_state(old_request, aborting);
928 break;
929
930 default:
931 dev_err(&old_request->isci_host->pdev->dev,
932 "%s: Bad cb_state (%d): tmf=%p, old_request=%p\n",
933 __func__, cb_state, tmf, old_request);
934 break;
935 }
936 }
937
938 /**
939 * isci_task_abort_task() - This function is one of the SAS Domain Template
940 * functions. This function is called by libsas to abort a specified task.
941 * @task: This parameter specifies the SAS task to abort.
942 *
943 * status, zero indicates success.
944 */
945 int isci_task_abort_task(struct sas_task *task)
946 {
947 struct isci_host *isci_host = dev_to_ihost(task->dev);
948 DECLARE_COMPLETION_ONSTACK(aborted_io_completion);
949 struct isci_request *old_request = NULL;
950 enum isci_request_status old_state;
951 struct isci_remote_device *isci_device = NULL;
952 struct isci_tmf tmf;
953 int ret = TMF_RESP_FUNC_FAILED;
954 unsigned long flags;
955 bool any_dev_reset = false;
956
957 /* Get the isci_request reference from the task. Note that
958 * this check does not depend on the pending request list
959 * in the device, because tasks driving resets may land here
960 * after completion in the core.
961 */
962 spin_lock_irqsave(&isci_host->scic_lock, flags);
963 spin_lock(&task->task_state_lock);
964
965 old_request = task->lldd_task;
966
967 /* If task is already done, the request isn't valid */
968 if (!(task->task_state_flags & SAS_TASK_STATE_DONE) &&
969 (task->task_state_flags & SAS_TASK_AT_INITIATOR) &&
970 old_request)
971 isci_device = isci_lookup_device(task->dev);
972
973 spin_unlock(&task->task_state_lock);
974 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
975
976 dev_dbg(&isci_host->pdev->dev,
977 "%s: task = %p\n", __func__, task);
978
979 if (!isci_device || !old_request)
980 goto out;
981
982 set_bit(IDEV_EH, &isci_device->flags);
983
984 /* This version of the driver will fail abort requests for
985 * SATA/STP. Failing the abort request this way will cause the
986 * SCSI error handler thread to escalate to LUN reset
987 */
988 if (sas_protocol_ata(task->task_proto)) {
989 dev_warn(&isci_host->pdev->dev,
990 " task %p is for a STP/SATA device;"
991 " returning TMF_RESP_FUNC_FAILED\n"
992 " to cause a LUN reset...\n", task);
993 goto out;
994 }
995
996 dev_dbg(&isci_host->pdev->dev,
997 "%s: old_request == %p\n", __func__, old_request);
998
999 any_dev_reset = isci_device_is_reset_pending(isci_host,isci_device);
1000
1001 spin_lock_irqsave(&task->task_state_lock, flags);
1002
1003 any_dev_reset = any_dev_reset || (task->task_state_flags & SAS_TASK_NEED_DEV_RESET);
1004
1005 /* If the extraction of the request reference from the task
1006 * failed, then the request has been completed (or if there is a
1007 * pending reset then this abort request function must be failed
1008 * in order to escalate to the target reset).
1009 */
1010 if ((old_request == NULL) || any_dev_reset) {
1011
1012 /* If the device reset task flag is set, fail the task
1013 * management request. Otherwise, the original request
1014 * has completed.
1015 */
1016 if (any_dev_reset) {
1017
1018 /* Turn off the task's DONE to make sure this
1019 * task is escalated to a target reset.
1020 */
1021 task->task_state_flags &= ~SAS_TASK_STATE_DONE;
1022
1023 /* Make the reset happen as soon as possible. */
1024 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
1025
1026 spin_unlock_irqrestore(&task->task_state_lock, flags);
1027
1028 /* Fail the task management request in order to
1029 * escalate to the target reset.
1030 */
1031 ret = TMF_RESP_FUNC_FAILED;
1032
1033 dev_dbg(&isci_host->pdev->dev,
1034 "%s: Failing task abort in order to "
1035 "escalate to target reset because\n"
1036 "SAS_TASK_NEED_DEV_RESET is set for "
1037 "task %p on dev %p\n",
1038 __func__, task, isci_device);
1039
1040
1041 } else {
1042 /* The request has already completed and there
1043 * is nothing to do here other than to set the task
1044 * done bit, and indicate that the task abort function
1045 * was sucessful.
1046 */
1047 isci_set_task_doneflags(task);
1048
1049 spin_unlock_irqrestore(&task->task_state_lock, flags);
1050
1051 ret = TMF_RESP_FUNC_COMPLETE;
1052
1053 dev_dbg(&isci_host->pdev->dev,
1054 "%s: abort task not needed for %p\n",
1055 __func__, task);
1056 }
1057 goto out;
1058 }
1059 else
1060 spin_unlock_irqrestore(&task->task_state_lock, flags);
1061
1062 spin_lock_irqsave(&isci_host->scic_lock, flags);
1063
1064 /* Check the request status and change to "aborted" if currently
1065 * "starting"; if true then set the I/O kernel completion
1066 * struct that will be triggered when the request completes.
1067 */
1068 old_state = isci_task_validate_request_to_abort(
1069 old_request, isci_host, isci_device,
1070 &aborted_io_completion);
1071 if ((old_state != started) &&
1072 (old_state != completed) &&
1073 (old_state != aborting)) {
1074
1075 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1076
1077 /* The request was already being handled by someone else (because
1078 * they got to set the state away from started).
1079 */
1080 dev_dbg(&isci_host->pdev->dev,
1081 "%s: device = %p; old_request %p already being aborted\n",
1082 __func__,
1083 isci_device, old_request);
1084 ret = TMF_RESP_FUNC_COMPLETE;
1085 goto out;
1086 }
1087 if (task->task_proto == SAS_PROTOCOL_SMP ||
1088 test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) {
1089
1090 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1091
1092 dev_dbg(&isci_host->pdev->dev,
1093 "%s: SMP request (%d)"
1094 " or complete_in_target (%d), thus no TMF\n",
1095 __func__, (task->task_proto == SAS_PROTOCOL_SMP),
1096 test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags));
1097
1098 /* Set the state on the task. */
1099 isci_task_all_done(task);
1100
1101 ret = TMF_RESP_FUNC_COMPLETE;
1102
1103 /* Stopping and SMP devices are not sent a TMF, and are not
1104 * reset, but the outstanding I/O request is terminated below.
1105 */
1106 } else {
1107 /* Fill in the tmf stucture */
1108 isci_task_build_abort_task_tmf(&tmf, isci_tmf_ssp_task_abort,
1109 isci_abort_task_process_cb,
1110 old_request);
1111
1112 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
1113
1114 #define ISCI_ABORT_TASK_TIMEOUT_MS 500 /* half second timeout. */
1115 ret = isci_task_execute_tmf(isci_host, isci_device, &tmf,
1116 ISCI_ABORT_TASK_TIMEOUT_MS);
1117
1118 if (ret != TMF_RESP_FUNC_COMPLETE)
1119 dev_err(&isci_host->pdev->dev,
1120 "%s: isci_task_send_tmf failed\n",
1121 __func__);
1122 }
1123 if (ret == TMF_RESP_FUNC_COMPLETE) {
1124 set_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags);
1125
1126 /* Clean up the request on our side, and wait for the aborted
1127 * I/O to complete.
1128 */
1129 isci_terminate_request_core(isci_host, isci_device, old_request);
1130 }
1131
1132 /* Make sure we do not leave a reference to aborted_io_completion */
1133 old_request->io_request_completion = NULL;
1134 out:
1135 isci_put_device(isci_device);
1136 return ret;
1137 }
1138
1139 /**
1140 * isci_task_abort_task_set() - This function is one of the SAS Domain Template
1141 * functions. This is one of the Task Management functoins called by libsas,
1142 * to abort all task for the given lun.
1143 * @d_device: This parameter specifies the domain device associated with this
1144 * request.
1145 * @lun: This parameter specifies the lun associated with this request.
1146 *
1147 * status, zero indicates success.
1148 */
1149 int isci_task_abort_task_set(
1150 struct domain_device *d_device,
1151 u8 *lun)
1152 {
1153 return TMF_RESP_FUNC_FAILED;
1154 }
1155
1156
1157 /**
1158 * isci_task_clear_aca() - This function is one of the SAS Domain Template
1159 * functions. This is one of the Task Management functoins called by libsas.
1160 * @d_device: This parameter specifies the domain device associated with this
1161 * request.
1162 * @lun: This parameter specifies the lun associated with this request.
1163 *
1164 * status, zero indicates success.
1165 */
1166 int isci_task_clear_aca(
1167 struct domain_device *d_device,
1168 u8 *lun)
1169 {
1170 return TMF_RESP_FUNC_FAILED;
1171 }
1172
1173
1174
1175 /**
1176 * isci_task_clear_task_set() - This function is one of the SAS Domain Template
1177 * functions. This is one of the Task Management functoins called by libsas.
1178 * @d_device: This parameter specifies the domain device associated with this
1179 * request.
1180 * @lun: This parameter specifies the lun associated with this request.
1181 *
1182 * status, zero indicates success.
1183 */
1184 int isci_task_clear_task_set(
1185 struct domain_device *d_device,
1186 u8 *lun)
1187 {
1188 return TMF_RESP_FUNC_FAILED;
1189 }
1190
1191
1192 /**
1193 * isci_task_query_task() - This function is implemented to cause libsas to
1194 * correctly escalate the failed abort to a LUN or target reset (this is
1195 * because sas_scsi_find_task libsas function does not correctly interpret
1196 * all return codes from the abort task call). When TMF_RESP_FUNC_SUCC is
1197 * returned, libsas turns this into a LUN reset; when FUNC_FAILED is
1198 * returned, libsas will turn this into a target reset
1199 * @task: This parameter specifies the sas task being queried.
1200 * @lun: This parameter specifies the lun associated with this request.
1201 *
1202 * status, zero indicates success.
1203 */
1204 int isci_task_query_task(
1205 struct sas_task *task)
1206 {
1207 /* See if there is a pending device reset for this device. */
1208 if (task->task_state_flags & SAS_TASK_NEED_DEV_RESET)
1209 return TMF_RESP_FUNC_FAILED;
1210 else
1211 return TMF_RESP_FUNC_SUCC;
1212 }
1213
1214 /*
1215 * isci_task_request_complete() - This function is called by the sci core when
1216 * an task request completes.
1217 * @ihost: This parameter specifies the ISCI host object
1218 * @ireq: This parameter is the completed isci_request object.
1219 * @completion_status: This parameter specifies the completion status from the
1220 * sci core.
1221 *
1222 * none.
1223 */
1224 void
1225 isci_task_request_complete(struct isci_host *ihost,
1226 struct isci_request *ireq,
1227 enum sci_task_status completion_status)
1228 {
1229 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
1230 struct completion *tmf_complete;
1231
1232 dev_dbg(&ihost->pdev->dev,
1233 "%s: request = %p, status=%d\n",
1234 __func__, ireq, completion_status);
1235
1236 isci_request_change_state(ireq, completed);
1237
1238 tmf->status = completion_status;
1239 set_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags);
1240
1241 if (tmf->proto == SAS_PROTOCOL_SSP) {
1242 memcpy(&tmf->resp.resp_iu,
1243 &ireq->ssp.rsp,
1244 SSP_RESP_IU_MAX_SIZE);
1245 } else if (tmf->proto == SAS_PROTOCOL_SATA) {
1246 memcpy(&tmf->resp.d2h_fis,
1247 &ireq->stp.rsp,
1248 sizeof(struct dev_to_host_fis));
1249 }
1250
1251 /* PRINT_TMF( ((struct isci_tmf *)request->task)); */
1252 tmf_complete = tmf->complete;
1253
1254 sci_controller_complete_io(ihost, ireq->target_device, ireq);
1255 /* set the 'terminated' flag handle to make sure it cannot be terminated
1256 * or completed again.
1257 */
1258 set_bit(IREQ_TERMINATED, &ireq->flags);
1259
1260 isci_request_change_state(ireq, unallocated);
1261 list_del_init(&ireq->dev_node);
1262
1263 /* The task management part completes last. */
1264 complete(tmf_complete);
1265 }
1266
1267 static void isci_smp_task_timedout(unsigned long _task)
1268 {
1269 struct sas_task *task = (void *) _task;
1270 unsigned long flags;
1271
1272 spin_lock_irqsave(&task->task_state_lock, flags);
1273 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
1274 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
1275 spin_unlock_irqrestore(&task->task_state_lock, flags);
1276
1277 complete(&task->completion);
1278 }
1279
1280 static void isci_smp_task_done(struct sas_task *task)
1281 {
1282 if (!del_timer(&task->timer))
1283 return;
1284 complete(&task->completion);
1285 }
1286
1287 static struct sas_task *isci_alloc_task(void)
1288 {
1289 struct sas_task *task = kzalloc(sizeof(*task), GFP_KERNEL);
1290
1291 if (task) {
1292 INIT_LIST_HEAD(&task->list);
1293 spin_lock_init(&task->task_state_lock);
1294 task->task_state_flags = SAS_TASK_STATE_PENDING;
1295 init_timer(&task->timer);
1296 init_completion(&task->completion);
1297 }
1298
1299 return task;
1300 }
1301
1302 static void isci_free_task(struct isci_host *ihost, struct sas_task *task)
1303 {
1304 if (task) {
1305 BUG_ON(!list_empty(&task->list));
1306 kfree(task);
1307 }
1308 }
1309
1310 static int isci_smp_execute_task(struct isci_host *ihost,
1311 struct domain_device *dev, void *req,
1312 int req_size, void *resp, int resp_size)
1313 {
1314 int res, retry;
1315 struct sas_task *task = NULL;
1316
1317 for (retry = 0; retry < 3; retry++) {
1318 task = isci_alloc_task();
1319 if (!task)
1320 return -ENOMEM;
1321
1322 task->dev = dev;
1323 task->task_proto = dev->tproto;
1324 sg_init_one(&task->smp_task.smp_req, req, req_size);
1325 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
1326
1327 task->task_done = isci_smp_task_done;
1328
1329 task->timer.data = (unsigned long) task;
1330 task->timer.function = isci_smp_task_timedout;
1331 task->timer.expires = jiffies + 10*HZ;
1332 add_timer(&task->timer);
1333
1334 res = isci_task_execute_task(task, 1, GFP_KERNEL);
1335
1336 if (res) {
1337 del_timer(&task->timer);
1338 dev_err(&ihost->pdev->dev,
1339 "%s: executing SMP task failed:%d\n",
1340 __func__, res);
1341 goto ex_err;
1342 }
1343
1344 wait_for_completion(&task->completion);
1345 res = -ECOMM;
1346 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1347 dev_err(&ihost->pdev->dev,
1348 "%s: smp task timed out or aborted\n",
1349 __func__);
1350 isci_task_abort_task(task);
1351 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
1352 dev_err(&ihost->pdev->dev,
1353 "%s: SMP task aborted and not done\n",
1354 __func__);
1355 goto ex_err;
1356 }
1357 }
1358 if (task->task_status.resp == SAS_TASK_COMPLETE &&
1359 task->task_status.stat == SAM_STAT_GOOD) {
1360 res = 0;
1361 break;
1362 }
1363 if (task->task_status.resp == SAS_TASK_COMPLETE &&
1364 task->task_status.stat == SAS_DATA_UNDERRUN) {
1365 /* no error, but return the number of bytes of
1366 * underrun */
1367 res = task->task_status.residual;
1368 break;
1369 }
1370 if (task->task_status.resp == SAS_TASK_COMPLETE &&
1371 task->task_status.stat == SAS_DATA_OVERRUN) {
1372 res = -EMSGSIZE;
1373 break;
1374 } else {
1375 dev_err(&ihost->pdev->dev,
1376 "%s: task to dev %016llx response: 0x%x "
1377 "status 0x%x\n", __func__,
1378 SAS_ADDR(dev->sas_addr),
1379 task->task_status.resp,
1380 task->task_status.stat);
1381 isci_free_task(ihost, task);
1382 task = NULL;
1383 }
1384 }
1385 ex_err:
1386 BUG_ON(retry == 3 && task != NULL);
1387 isci_free_task(ihost, task);
1388 return res;
1389 }
1390
1391 #define DISCOVER_REQ_SIZE 16
1392 #define DISCOVER_RESP_SIZE 56
1393
1394 int isci_smp_get_phy_attached_dev_type(struct isci_host *ihost,
1395 struct domain_device *dev,
1396 int phy_id, int *adt)
1397 {
1398 struct smp_resp *disc_resp;
1399 u8 *disc_req;
1400 int res;
1401
1402 disc_resp = kzalloc(DISCOVER_RESP_SIZE, GFP_KERNEL);
1403 if (!disc_resp)
1404 return -ENOMEM;
1405
1406 disc_req = kzalloc(DISCOVER_REQ_SIZE, GFP_KERNEL);
1407 if (disc_req) {
1408 disc_req[0] = SMP_REQUEST;
1409 disc_req[1] = SMP_DISCOVER;
1410 disc_req[9] = phy_id;
1411 } else {
1412 kfree(disc_resp);
1413 return -ENOMEM;
1414 }
1415 res = isci_smp_execute_task(ihost, dev, disc_req, DISCOVER_REQ_SIZE,
1416 disc_resp, DISCOVER_RESP_SIZE);
1417 if (!res) {
1418 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1419 res = disc_resp->result;
1420 else
1421 *adt = disc_resp->disc.attached_dev_type;
1422 }
1423 kfree(disc_req);
1424 kfree(disc_resp);
1425
1426 return res;
1427 }
1428
1429 static void isci_wait_for_smp_phy_reset(struct isci_remote_device *idev, int phy_num)
1430 {
1431 struct domain_device *dev = idev->domain_dev;
1432 struct isci_port *iport = idev->isci_port;
1433 struct isci_host *ihost = iport->isci_host;
1434 int res, iteration = 0, attached_device_type;
1435 #define STP_WAIT_MSECS 25000
1436 unsigned long tmo = msecs_to_jiffies(STP_WAIT_MSECS);
1437 unsigned long deadline = jiffies + tmo;
1438 enum {
1439 SMP_PHYWAIT_PHYDOWN,
1440 SMP_PHYWAIT_PHYUP,
1441 SMP_PHYWAIT_DONE
1442 } phy_state = SMP_PHYWAIT_PHYDOWN;
1443
1444 /* While there is time, wait for the phy to go away and come back */
1445 while (time_is_after_jiffies(deadline) && phy_state != SMP_PHYWAIT_DONE) {
1446 int event = atomic_read(&iport->event);
1447
1448 ++iteration;
1449
1450 tmo = wait_event_timeout(ihost->eventq,
1451 event != atomic_read(&iport->event) ||
1452 !test_bit(IPORT_BCN_BLOCKED, &iport->flags),
1453 tmo);
1454 /* link down, stop polling */
1455 if (!test_bit(IPORT_BCN_BLOCKED, &iport->flags))
1456 break;
1457
1458 dev_dbg(&ihost->pdev->dev,
1459 "%s: iport %p, iteration %d,"
1460 " phase %d: time_remaining %lu, bcns = %d\n",
1461 __func__, iport, iteration, phy_state,
1462 tmo, test_bit(IPORT_BCN_PENDING, &iport->flags));
1463
1464 res = isci_smp_get_phy_attached_dev_type(ihost, dev, phy_num,
1465 &attached_device_type);
1466 tmo = deadline - jiffies;
1467
1468 if (res) {
1469 dev_warn(&ihost->pdev->dev,
1470 "%s: iteration %d, phase %d:"
1471 " SMP error=%d, time_remaining=%lu\n",
1472 __func__, iteration, phy_state, res, tmo);
1473 break;
1474 }
1475 dev_dbg(&ihost->pdev->dev,
1476 "%s: iport %p, iteration %d,"
1477 " phase %d: time_remaining %lu, bcns = %d, "
1478 "attdevtype = %x\n",
1479 __func__, iport, iteration, phy_state,
1480 tmo, test_bit(IPORT_BCN_PENDING, &iport->flags),
1481 attached_device_type);
1482
1483 switch (phy_state) {
1484 case SMP_PHYWAIT_PHYDOWN:
1485 /* Has the device gone away? */
1486 if (!attached_device_type)
1487 phy_state = SMP_PHYWAIT_PHYUP;
1488
1489 break;
1490
1491 case SMP_PHYWAIT_PHYUP:
1492 /* Has the device come back? */
1493 if (attached_device_type)
1494 phy_state = SMP_PHYWAIT_DONE;
1495 break;
1496
1497 case SMP_PHYWAIT_DONE:
1498 break;
1499 }
1500
1501 }
1502 dev_dbg(&ihost->pdev->dev, "%s: done\n", __func__);
1503 }
1504
1505 static int isci_reset_device(struct isci_host *ihost,
1506 struct isci_remote_device *idev, int hard_reset)
1507 {
1508 struct sas_phy *phy = sas_find_local_phy(idev->domain_dev);
1509 struct isci_port *iport = idev->isci_port;
1510 enum sci_status status;
1511 unsigned long flags;
1512 int rc;
1513
1514 dev_dbg(&ihost->pdev->dev, "%s: idev %p\n", __func__, idev);
1515
1516 spin_lock_irqsave(&ihost->scic_lock, flags);
1517 status = sci_remote_device_reset(idev);
1518 if (status != SCI_SUCCESS) {
1519 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1520
1521 dev_warn(&ihost->pdev->dev,
1522 "%s: sci_remote_device_reset(%p) returned %d!\n",
1523 __func__, idev, status);
1524
1525 return TMF_RESP_FUNC_FAILED;
1526 }
1527 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1528
1529 /* Make sure all pending requests are able to be fully terminated. */
1530 isci_device_clear_reset_pending(ihost, idev);
1531
1532 /* If this is a device on an expander, disable BCN processing. */
1533 if (!scsi_is_sas_phy_local(phy))
1534 set_bit(IPORT_BCN_BLOCKED, &iport->flags);
1535
1536 rc = sas_phy_reset(phy, hard_reset);
1537
1538 /* Terminate in-progress I/O now. */
1539 isci_remote_device_nuke_requests(ihost, idev);
1540
1541 /* Since all pending TCs have been cleaned, resume the RNC. */
1542 spin_lock_irqsave(&ihost->scic_lock, flags);
1543 status = sci_remote_device_reset_complete(idev);
1544 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1545
1546 /* If this is a device on an expander, bring the phy back up. */
1547 if (!scsi_is_sas_phy_local(phy)) {
1548 /* A phy reset will cause the device to go away then reappear.
1549 * Since libsas will take action on incoming BCNs (eg. remove
1550 * a device going through an SMP phy-control driven reset),
1551 * we need to wait until the phy comes back up before letting
1552 * discovery proceed in libsas.
1553 */
1554 isci_wait_for_smp_phy_reset(idev, phy->number);
1555
1556 spin_lock_irqsave(&ihost->scic_lock, flags);
1557 isci_port_bcn_enable(ihost, idev->isci_port);
1558 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1559 }
1560
1561 if (status != SCI_SUCCESS) {
1562 dev_warn(&ihost->pdev->dev,
1563 "%s: sci_remote_device_reset_complete(%p) "
1564 "returned %d!\n", __func__, idev, status);
1565 }
1566
1567 dev_dbg(&ihost->pdev->dev, "%s: idev %p complete.\n", __func__, idev);
1568
1569 return rc;
1570 }
1571
1572 int isci_task_I_T_nexus_reset(struct domain_device *dev)
1573 {
1574 struct isci_host *ihost = dev_to_ihost(dev);
1575 struct isci_remote_device *idev;
1576 int ret, hard_reset = 1;
1577 unsigned long flags;
1578
1579 spin_lock_irqsave(&ihost->scic_lock, flags);
1580 idev = isci_lookup_device(dev);
1581 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1582
1583 if (!idev || !test_bit(IDEV_EH, &idev->flags)) {
1584 ret = TMF_RESP_FUNC_COMPLETE;
1585 goto out;
1586 }
1587
1588 if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
1589 hard_reset = 0;
1590
1591 ret = isci_reset_device(ihost, idev, hard_reset);
1592 out:
1593 isci_put_device(idev);
1594 return ret;
1595 }
1596
1597 int isci_bus_reset_handler(struct scsi_cmnd *cmd)
1598 {
1599 struct domain_device *dev = sdev_to_domain_dev(cmd->device);
1600 struct isci_host *ihost = dev_to_ihost(dev);
1601 struct isci_remote_device *idev;
1602 int ret, hard_reset = 1;
1603 unsigned long flags;
1604
1605 if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
1606 hard_reset = 0;
1607
1608 spin_lock_irqsave(&ihost->scic_lock, flags);
1609 idev = isci_lookup_device(dev);
1610 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1611
1612 if (!idev) {
1613 ret = TMF_RESP_FUNC_COMPLETE;
1614 goto out;
1615 }
1616
1617 ret = isci_reset_device(ihost, idev, hard_reset);
1618 out:
1619 isci_put_device(idev);
1620 return ret;
1621 }