]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/scsi/libata-core.c
[PATCH] libata-hp-prep: implement ap->hw_sata_spd_limit
[mirror_ubuntu-focal-kernel.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
68
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
71
72 int atapi_enabled = 1;
73 module_param(atapi_enabled, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
76 int atapi_dmadir = 0;
77 module_param(atapi_dmadir, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
104 {
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130 }
131
132 /**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
144 {
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159 }
160
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
176 0,
177 0,
178 0,
179 0,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
189 };
190
191 /**
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
194 *
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
197 *
198 * LOCKING:
199 * caller.
200 */
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
202 {
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
206
207 int index, fua, lba48, write;
208
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
212
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
223 }
224
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
231 }
232
233 /**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251 {
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255 }
256
257 /**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271 {
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 }
279
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288 };
289
290 /**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304 {
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312 }
313
314 /**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327 {
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334 }
335
336 /**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
349 {
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356 }
357
358 /**
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
361 *
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
371 */
372 static const char *ata_mode_string(unsigned int xfer_mask)
373 {
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
392 int highbit;
393
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
398 }
399
400 static const char *sata_spd_string(unsigned int spd)
401 {
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410 }
411
412 void ata_dev_disable(struct ata_device *dev)
413 {
414 if (ata_dev_enabled(dev)) {
415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
416 dev->class++;
417 }
418 }
419
420 /**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438 static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440 {
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462 }
463
464 /**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482 static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484 {
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506 }
507
508 /**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521 static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523 {
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527 }
528
529 /**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
545 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
546 {
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566 }
567
568 /**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
572 * @r_err: Value of error register on completion
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
588 */
589
590 static unsigned int
591 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
592 {
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
601 ap->ops->tf_read(ap, &tf);
602 err = tf.feature;
603 if (r_err)
604 *r_err = err;
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
612 return ATA_DEV_NONE;
613
614 /* determine if device is ATA or ATAPI */
615 class = ata_dev_classify(&tf);
616
617 if (class == ATA_DEV_UNKNOWN)
618 return ATA_DEV_NONE;
619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
620 return ATA_DEV_NONE;
621 return class;
622 }
623
624 /**
625 * ata_id_string - Convert IDENTIFY DEVICE page into string
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
639 void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
641 {
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656 }
657
658 /**
659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
665 * This function is identical to ata_id_string except that it
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
672 void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
674 {
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
679 ata_id_string(id, s, ofs, len - 1);
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685 }
686
687 static u64 ata_id_n_sectors(const u16 *id)
688 {
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700 }
701
702 /**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
714 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715 {
716 }
717
718
719 /**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
729 *
730 * LOCKING:
731 * caller.
732 */
733
734 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735 {
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749 }
750
751 /**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770 void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772 {
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786 }
787
788 /**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
790 * @id: IDENTIFY DEVICE page to dump
791 *
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
794 *
795 * LOCKING:
796 * caller.
797 */
798
799 static inline void ata_dump_id(const u16 *id)
800 {
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
823 id[88],
824 id[93]);
825 }
826
827 /**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842 static unsigned int ata_id_xfermask(const u16 *id)
843 {
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873 }
874
875 /**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 * @fn: workqueue function to be scheduled
879 * @data: data value to pass to workqueue function
880 * @delay: delay time for workqueue function
881 *
882 * Schedule @fn(@data) for execution after @delay jiffies using
883 * port_task. There is one port_task per port and it's the
884 * user(low level driver)'s responsibility to make sure that only
885 * one task is active at any given time.
886 *
887 * libata core layer takes care of synchronization between
888 * port_task and EH. ata_port_queue_task() may be ignored for EH
889 * synchronization.
890 *
891 * LOCKING:
892 * Inherited from caller.
893 */
894 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
895 unsigned long delay)
896 {
897 int rc;
898
899 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
900 return;
901
902 PREPARE_WORK(&ap->port_task, fn, data);
903
904 if (!delay)
905 rc = queue_work(ata_wq, &ap->port_task);
906 else
907 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
908
909 /* rc == 0 means that another user is using port task */
910 WARN_ON(rc == 0);
911 }
912
913 /**
914 * ata_port_flush_task - Flush port_task
915 * @ap: The ata_port to flush port_task for
916 *
917 * After this function completes, port_task is guranteed not to
918 * be running or scheduled.
919 *
920 * LOCKING:
921 * Kernel thread context (may sleep)
922 */
923 void ata_port_flush_task(struct ata_port *ap)
924 {
925 unsigned long flags;
926
927 DPRINTK("ENTER\n");
928
929 spin_lock_irqsave(&ap->host_set->lock, flags);
930 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
931 spin_unlock_irqrestore(&ap->host_set->lock, flags);
932
933 DPRINTK("flush #1\n");
934 flush_workqueue(ata_wq);
935
936 /*
937 * At this point, if a task is running, it's guaranteed to see
938 * the FLUSH flag; thus, it will never queue pio tasks again.
939 * Cancel and flush.
940 */
941 if (!cancel_delayed_work(&ap->port_task)) {
942 DPRINTK("flush #2\n");
943 flush_workqueue(ata_wq);
944 }
945
946 spin_lock_irqsave(&ap->host_set->lock, flags);
947 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
948 spin_unlock_irqrestore(&ap->host_set->lock, flags);
949
950 DPRINTK("EXIT\n");
951 }
952
953 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
954 {
955 struct completion *waiting = qc->private_data;
956
957 complete(waiting);
958 }
959
960 /**
961 * ata_exec_internal - execute libata internal command
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
964 * @cdb: CDB for packet command
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
979 unsigned ata_exec_internal(struct ata_device *dev,
980 struct ata_taskfile *tf, const u8 *cdb,
981 int dma_dir, void *buf, unsigned int buflen)
982 {
983 struct ata_port *ap = dev->ap;
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
986 unsigned int tag, preempted_tag;
987 u32 preempted_sactive, preempted_qc_active;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
990 unsigned int err_mask;
991 int rc;
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
995 /* no internal command while frozen */
996 if (ap->flags & ATA_FLAG_FROZEN) {
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
998 return AC_ERR_SYSTEM;
999 }
1000
1001 /* initialize internal qc */
1002
1003 /* XXX: Tag 0 is used for drivers with legacy EH as some
1004 * drivers choke if any other tag is given. This breaks
1005 * ata_tag_internal() test for those drivers. Don't use new
1006 * EH stuff without converting to it.
1007 */
1008 if (ap->ops->error_handler)
1009 tag = ATA_TAG_INTERNAL;
1010 else
1011 tag = 0;
1012
1013 if (test_and_set_bit(tag, &ap->qc_allocated))
1014 BUG();
1015 qc = __ata_qc_from_tag(ap, tag);
1016
1017 qc->tag = tag;
1018 qc->scsicmd = NULL;
1019 qc->ap = ap;
1020 qc->dev = dev;
1021 ata_qc_reinit(qc);
1022
1023 preempted_tag = ap->active_tag;
1024 preempted_sactive = ap->sactive;
1025 preempted_qc_active = ap->qc_active;
1026 ap->active_tag = ATA_TAG_POISON;
1027 ap->sactive = 0;
1028 ap->qc_active = 0;
1029
1030 /* prepare & issue qc */
1031 qc->tf = *tf;
1032 if (cdb)
1033 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1034 qc->flags |= ATA_QCFLAG_RESULT_TF;
1035 qc->dma_dir = dma_dir;
1036 if (dma_dir != DMA_NONE) {
1037 ata_sg_init_one(qc, buf, buflen);
1038 qc->nsect = buflen / ATA_SECT_SIZE;
1039 }
1040
1041 qc->private_data = &wait;
1042 qc->complete_fn = ata_qc_complete_internal;
1043
1044 ata_qc_issue(qc);
1045
1046 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1047
1048 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1049
1050 ata_port_flush_task(ap);
1051
1052 if (!rc) {
1053 spin_lock_irqsave(&ap->host_set->lock, flags);
1054
1055 /* We're racing with irq here. If we lose, the
1056 * following test prevents us from completing the qc
1057 * twice. If we win, the port is frozen and will be
1058 * cleaned up by ->post_internal_cmd().
1059 */
1060 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1061 qc->err_mask |= AC_ERR_TIMEOUT;
1062
1063 if (ap->ops->error_handler)
1064 ata_port_freeze(ap);
1065 else
1066 ata_qc_complete(qc);
1067
1068 ata_dev_printk(dev, KERN_WARNING,
1069 "qc timeout (cmd 0x%x)\n", command);
1070 }
1071
1072 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1073 }
1074
1075 /* do post_internal_cmd */
1076 if (ap->ops->post_internal_cmd)
1077 ap->ops->post_internal_cmd(qc);
1078
1079 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1080 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1081 "internal command, assuming AC_ERR_OTHER\n");
1082 qc->err_mask |= AC_ERR_OTHER;
1083 }
1084
1085 /* finish up */
1086 spin_lock_irqsave(&ap->host_set->lock, flags);
1087
1088 *tf = qc->result_tf;
1089 err_mask = qc->err_mask;
1090
1091 ata_qc_free(qc);
1092 ap->active_tag = preempted_tag;
1093 ap->sactive = preempted_sactive;
1094 ap->qc_active = preempted_qc_active;
1095
1096 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1097 * Until those drivers are fixed, we detect the condition
1098 * here, fail the command with AC_ERR_SYSTEM and reenable the
1099 * port.
1100 *
1101 * Note that this doesn't change any behavior as internal
1102 * command failure results in disabling the device in the
1103 * higher layer for LLDDs without new reset/EH callbacks.
1104 *
1105 * Kill the following code as soon as those drivers are fixed.
1106 */
1107 if (ap->flags & ATA_FLAG_DISABLED) {
1108 err_mask |= AC_ERR_SYSTEM;
1109 ata_port_probe(ap);
1110 }
1111
1112 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1113
1114 return err_mask;
1115 }
1116
1117 /**
1118 * ata_pio_need_iordy - check if iordy needed
1119 * @adev: ATA device
1120 *
1121 * Check if the current speed of the device requires IORDY. Used
1122 * by various controllers for chip configuration.
1123 */
1124
1125 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1126 {
1127 int pio;
1128 int speed = adev->pio_mode - XFER_PIO_0;
1129
1130 if (speed < 2)
1131 return 0;
1132 if (speed > 2)
1133 return 1;
1134
1135 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1136
1137 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1138 pio = adev->id[ATA_ID_EIDE_PIO];
1139 /* Is the speed faster than the drive allows non IORDY ? */
1140 if (pio) {
1141 /* This is cycle times not frequency - watch the logic! */
1142 if (pio > 240) /* PIO2 is 240nS per cycle */
1143 return 1;
1144 return 0;
1145 }
1146 }
1147 return 0;
1148 }
1149
1150 /**
1151 * ata_dev_read_id - Read ID data from the specified device
1152 * @dev: target device
1153 * @p_class: pointer to class of the target device (may be changed)
1154 * @post_reset: is this read ID post-reset?
1155 * @id: buffer to read IDENTIFY data into
1156 *
1157 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1158 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1159 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1160 * for pre-ATA4 drives.
1161 *
1162 * LOCKING:
1163 * Kernel thread context (may sleep)
1164 *
1165 * RETURNS:
1166 * 0 on success, -errno otherwise.
1167 */
1168 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1169 int post_reset, u16 *id)
1170 {
1171 struct ata_port *ap = dev->ap;
1172 unsigned int class = *p_class;
1173 struct ata_taskfile tf;
1174 unsigned int err_mask = 0;
1175 const char *reason;
1176 int rc;
1177
1178 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1179
1180 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1181
1182 retry:
1183 ata_tf_init(dev, &tf);
1184
1185 switch (class) {
1186 case ATA_DEV_ATA:
1187 tf.command = ATA_CMD_ID_ATA;
1188 break;
1189 case ATA_DEV_ATAPI:
1190 tf.command = ATA_CMD_ID_ATAPI;
1191 break;
1192 default:
1193 rc = -ENODEV;
1194 reason = "unsupported class";
1195 goto err_out;
1196 }
1197
1198 tf.protocol = ATA_PROT_PIO;
1199
1200 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1201 id, sizeof(id[0]) * ATA_ID_WORDS);
1202 if (err_mask) {
1203 rc = -EIO;
1204 reason = "I/O error";
1205 goto err_out;
1206 }
1207
1208 swap_buf_le16(id, ATA_ID_WORDS);
1209
1210 /* sanity check */
1211 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1212 rc = -EINVAL;
1213 reason = "device reports illegal type";
1214 goto err_out;
1215 }
1216
1217 if (post_reset && class == ATA_DEV_ATA) {
1218 /*
1219 * The exact sequence expected by certain pre-ATA4 drives is:
1220 * SRST RESET
1221 * IDENTIFY
1222 * INITIALIZE DEVICE PARAMETERS
1223 * anything else..
1224 * Some drives were very specific about that exact sequence.
1225 */
1226 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1227 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1228 if (err_mask) {
1229 rc = -EIO;
1230 reason = "INIT_DEV_PARAMS failed";
1231 goto err_out;
1232 }
1233
1234 /* current CHS translation info (id[53-58]) might be
1235 * changed. reread the identify device info.
1236 */
1237 post_reset = 0;
1238 goto retry;
1239 }
1240 }
1241
1242 *p_class = class;
1243
1244 return 0;
1245
1246 err_out:
1247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1248 "(%s, err_mask=0x%x)\n", reason, err_mask);
1249 return rc;
1250 }
1251
1252 static inline u8 ata_dev_knobble(struct ata_device *dev)
1253 {
1254 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1255 }
1256
1257 static void ata_dev_config_ncq(struct ata_device *dev,
1258 char *desc, size_t desc_sz)
1259 {
1260 struct ata_port *ap = dev->ap;
1261 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1262
1263 if (!ata_id_has_ncq(dev->id)) {
1264 desc[0] = '\0';
1265 return;
1266 }
1267
1268 if (ap->flags & ATA_FLAG_NCQ) {
1269 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1270 dev->flags |= ATA_DFLAG_NCQ;
1271 }
1272
1273 if (hdepth >= ddepth)
1274 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1275 else
1276 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1277 }
1278
1279 /**
1280 * ata_dev_configure - Configure the specified ATA/ATAPI device
1281 * @dev: Target device to configure
1282 * @print_info: Enable device info printout
1283 *
1284 * Configure @dev according to @dev->id. Generic and low-level
1285 * driver specific fixups are also applied.
1286 *
1287 * LOCKING:
1288 * Kernel thread context (may sleep)
1289 *
1290 * RETURNS:
1291 * 0 on success, -errno otherwise
1292 */
1293 static int ata_dev_configure(struct ata_device *dev, int print_info)
1294 {
1295 struct ata_port *ap = dev->ap;
1296 const u16 *id = dev->id;
1297 unsigned int xfer_mask;
1298 int i, rc;
1299
1300 if (!ata_dev_enabled(dev)) {
1301 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1302 ap->id, dev->devno);
1303 return 0;
1304 }
1305
1306 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1307
1308 /* print device capabilities */
1309 if (print_info)
1310 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1311 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1312 id[49], id[82], id[83], id[84],
1313 id[85], id[86], id[87], id[88]);
1314
1315 /* initialize to-be-configured parameters */
1316 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1317 dev->max_sectors = 0;
1318 dev->cdb_len = 0;
1319 dev->n_sectors = 0;
1320 dev->cylinders = 0;
1321 dev->heads = 0;
1322 dev->sectors = 0;
1323
1324 /*
1325 * common ATA, ATAPI feature tests
1326 */
1327
1328 /* find max transfer mode; for printk only */
1329 xfer_mask = ata_id_xfermask(id);
1330
1331 ata_dump_id(id);
1332
1333 /* ATA-specific feature tests */
1334 if (dev->class == ATA_DEV_ATA) {
1335 dev->n_sectors = ata_id_n_sectors(id);
1336
1337 if (ata_id_has_lba(id)) {
1338 const char *lba_desc;
1339 char ncq_desc[20];
1340
1341 lba_desc = "LBA";
1342 dev->flags |= ATA_DFLAG_LBA;
1343 if (ata_id_has_lba48(id)) {
1344 dev->flags |= ATA_DFLAG_LBA48;
1345 lba_desc = "LBA48";
1346 }
1347
1348 /* config NCQ */
1349 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1350
1351 /* print device info to dmesg */
1352 if (print_info)
1353 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1354 "max %s, %Lu sectors: %s %s\n",
1355 ata_id_major_version(id),
1356 ata_mode_string(xfer_mask),
1357 (unsigned long long)dev->n_sectors,
1358 lba_desc, ncq_desc);
1359 } else {
1360 /* CHS */
1361
1362 /* Default translation */
1363 dev->cylinders = id[1];
1364 dev->heads = id[3];
1365 dev->sectors = id[6];
1366
1367 if (ata_id_current_chs_valid(id)) {
1368 /* Current CHS translation is valid. */
1369 dev->cylinders = id[54];
1370 dev->heads = id[55];
1371 dev->sectors = id[56];
1372 }
1373
1374 /* print device info to dmesg */
1375 if (print_info)
1376 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1377 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1378 ata_id_major_version(id),
1379 ata_mode_string(xfer_mask),
1380 (unsigned long long)dev->n_sectors,
1381 dev->cylinders, dev->heads, dev->sectors);
1382 }
1383
1384 if (dev->id[59] & 0x100) {
1385 dev->multi_count = dev->id[59] & 0xff;
1386 DPRINTK("ata%u: dev %u multi count %u\n",
1387 ap->id, dev->devno, dev->multi_count);
1388 }
1389
1390 dev->cdb_len = 16;
1391 }
1392
1393 /* ATAPI-specific feature tests */
1394 else if (dev->class == ATA_DEV_ATAPI) {
1395 char *cdb_intr_string = "";
1396
1397 rc = atapi_cdb_len(id);
1398 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1399 ata_dev_printk(dev, KERN_WARNING,
1400 "unsupported CDB len\n");
1401 rc = -EINVAL;
1402 goto err_out_nosup;
1403 }
1404 dev->cdb_len = (unsigned int) rc;
1405
1406 if (ata_id_cdb_intr(dev->id)) {
1407 dev->flags |= ATA_DFLAG_CDB_INTR;
1408 cdb_intr_string = ", CDB intr";
1409 }
1410
1411 /* print device info to dmesg */
1412 if (print_info)
1413 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1414 ata_mode_string(xfer_mask),
1415 cdb_intr_string);
1416 }
1417
1418 ap->host->max_cmd_len = 0;
1419 for (i = 0; i < ATA_MAX_DEVICES; i++)
1420 ap->host->max_cmd_len = max_t(unsigned int,
1421 ap->host->max_cmd_len,
1422 ap->device[i].cdb_len);
1423
1424 /* limit bridge transfers to udma5, 200 sectors */
1425 if (ata_dev_knobble(dev)) {
1426 if (print_info)
1427 ata_dev_printk(dev, KERN_INFO,
1428 "applying bridge limits\n");
1429 dev->udma_mask &= ATA_UDMA5;
1430 dev->max_sectors = ATA_MAX_SECTORS;
1431 }
1432
1433 if (ap->ops->dev_config)
1434 ap->ops->dev_config(ap, dev);
1435
1436 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1437 return 0;
1438
1439 err_out_nosup:
1440 DPRINTK("EXIT, err\n");
1441 return rc;
1442 }
1443
1444 /**
1445 * ata_bus_probe - Reset and probe ATA bus
1446 * @ap: Bus to probe
1447 *
1448 * Master ATA bus probing function. Initiates a hardware-dependent
1449 * bus reset, then attempts to identify any devices found on
1450 * the bus.
1451 *
1452 * LOCKING:
1453 * PCI/etc. bus probe sem.
1454 *
1455 * RETURNS:
1456 * Zero on success, negative errno otherwise.
1457 */
1458
1459 static int ata_bus_probe(struct ata_port *ap)
1460 {
1461 unsigned int classes[ATA_MAX_DEVICES];
1462 int tries[ATA_MAX_DEVICES];
1463 int i, rc, down_xfermask;
1464 struct ata_device *dev;
1465
1466 ata_port_probe(ap);
1467
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 tries[i] = ATA_PROBE_MAX_TRIES;
1470
1471 retry:
1472 down_xfermask = 0;
1473
1474 /* reset and determine device classes */
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 classes[i] = ATA_DEV_UNKNOWN;
1477
1478 if (ap->ops->probe_reset) {
1479 rc = ap->ops->probe_reset(ap, classes);
1480 if (rc) {
1481 ata_port_printk(ap, KERN_ERR,
1482 "reset failed (errno=%d)\n", rc);
1483 return rc;
1484 }
1485 } else {
1486 ap->ops->phy_reset(ap);
1487
1488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1489 if (!(ap->flags & ATA_FLAG_DISABLED))
1490 classes[i] = ap->device[i].class;
1491 ap->device[i].class = ATA_DEV_UNKNOWN;
1492 }
1493
1494 ata_port_probe(ap);
1495 }
1496
1497 for (i = 0; i < ATA_MAX_DEVICES; i++)
1498 if (classes[i] == ATA_DEV_UNKNOWN)
1499 classes[i] = ATA_DEV_NONE;
1500
1501 /* after the reset the device state is PIO 0 and the controller
1502 state is undefined. Record the mode */
1503
1504 for (i = 0; i < ATA_MAX_DEVICES; i++)
1505 ap->device[i].pio_mode = XFER_PIO_0;
1506
1507 /* read IDENTIFY page and configure devices */
1508 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1509 dev = &ap->device[i];
1510
1511 if (tries[i])
1512 dev->class = classes[i];
1513
1514 if (!ata_dev_enabled(dev))
1515 continue;
1516
1517 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1518 if (rc)
1519 goto fail;
1520
1521 rc = ata_dev_configure(dev, 1);
1522 if (rc)
1523 goto fail;
1524 }
1525
1526 /* configure transfer mode */
1527 rc = ata_set_mode(ap, &dev);
1528 if (rc) {
1529 down_xfermask = 1;
1530 goto fail;
1531 }
1532
1533 for (i = 0; i < ATA_MAX_DEVICES; i++)
1534 if (ata_dev_enabled(&ap->device[i]))
1535 return 0;
1536
1537 /* no device present, disable port */
1538 ata_port_disable(ap);
1539 ap->ops->port_disable(ap);
1540 return -ENODEV;
1541
1542 fail:
1543 switch (rc) {
1544 case -EINVAL:
1545 case -ENODEV:
1546 tries[dev->devno] = 0;
1547 break;
1548 case -EIO:
1549 sata_down_spd_limit(ap);
1550 /* fall through */
1551 default:
1552 tries[dev->devno]--;
1553 if (down_xfermask &&
1554 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1555 tries[dev->devno] = 0;
1556 }
1557
1558 if (!tries[dev->devno]) {
1559 ata_down_xfermask_limit(dev, 1);
1560 ata_dev_disable(dev);
1561 }
1562
1563 goto retry;
1564 }
1565
1566 /**
1567 * ata_port_probe - Mark port as enabled
1568 * @ap: Port for which we indicate enablement
1569 *
1570 * Modify @ap data structure such that the system
1571 * thinks that the entire port is enabled.
1572 *
1573 * LOCKING: host_set lock, or some other form of
1574 * serialization.
1575 */
1576
1577 void ata_port_probe(struct ata_port *ap)
1578 {
1579 ap->flags &= ~ATA_FLAG_DISABLED;
1580 }
1581
1582 /**
1583 * sata_print_link_status - Print SATA link status
1584 * @ap: SATA port to printk link status about
1585 *
1586 * This function prints link speed and status of a SATA link.
1587 *
1588 * LOCKING:
1589 * None.
1590 */
1591 static void sata_print_link_status(struct ata_port *ap)
1592 {
1593 u32 sstatus, scontrol, tmp;
1594
1595 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1596 return;
1597 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1598
1599 if (ata_port_online(ap)) {
1600 tmp = (sstatus >> 4) & 0xf;
1601 ata_port_printk(ap, KERN_INFO,
1602 "SATA link up %s (SStatus %X SControl %X)\n",
1603 sata_spd_string(tmp), sstatus, scontrol);
1604 } else {
1605 ata_port_printk(ap, KERN_INFO,
1606 "SATA link down (SStatus %X SControl %X)\n",
1607 sstatus, scontrol);
1608 }
1609 }
1610
1611 /**
1612 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1613 * @ap: SATA port associated with target SATA PHY.
1614 *
1615 * This function issues commands to standard SATA Sxxx
1616 * PHY registers, to wake up the phy (and device), and
1617 * clear any reset condition.
1618 *
1619 * LOCKING:
1620 * PCI/etc. bus probe sem.
1621 *
1622 */
1623 void __sata_phy_reset(struct ata_port *ap)
1624 {
1625 u32 sstatus;
1626 unsigned long timeout = jiffies + (HZ * 5);
1627
1628 if (ap->flags & ATA_FLAG_SATA_RESET) {
1629 /* issue phy wake/reset */
1630 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1631 /* Couldn't find anything in SATA I/II specs, but
1632 * AHCI-1.1 10.4.2 says at least 1 ms. */
1633 mdelay(1);
1634 }
1635 /* phy wake/clear reset */
1636 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1637
1638 /* wait for phy to become ready, if necessary */
1639 do {
1640 msleep(200);
1641 sata_scr_read(ap, SCR_STATUS, &sstatus);
1642 if ((sstatus & 0xf) != 1)
1643 break;
1644 } while (time_before(jiffies, timeout));
1645
1646 /* print link status */
1647 sata_print_link_status(ap);
1648
1649 /* TODO: phy layer with polling, timeouts, etc. */
1650 if (!ata_port_offline(ap))
1651 ata_port_probe(ap);
1652 else
1653 ata_port_disable(ap);
1654
1655 if (ap->flags & ATA_FLAG_DISABLED)
1656 return;
1657
1658 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1659 ata_port_disable(ap);
1660 return;
1661 }
1662
1663 ap->cbl = ATA_CBL_SATA;
1664 }
1665
1666 /**
1667 * sata_phy_reset - Reset SATA bus.
1668 * @ap: SATA port associated with target SATA PHY.
1669 *
1670 * This function resets the SATA bus, and then probes
1671 * the bus for devices.
1672 *
1673 * LOCKING:
1674 * PCI/etc. bus probe sem.
1675 *
1676 */
1677 void sata_phy_reset(struct ata_port *ap)
1678 {
1679 __sata_phy_reset(ap);
1680 if (ap->flags & ATA_FLAG_DISABLED)
1681 return;
1682 ata_bus_reset(ap);
1683 }
1684
1685 /**
1686 * ata_dev_pair - return other device on cable
1687 * @adev: device
1688 *
1689 * Obtain the other device on the same cable, or if none is
1690 * present NULL is returned
1691 */
1692
1693 struct ata_device *ata_dev_pair(struct ata_device *adev)
1694 {
1695 struct ata_port *ap = adev->ap;
1696 struct ata_device *pair = &ap->device[1 - adev->devno];
1697 if (!ata_dev_enabled(pair))
1698 return NULL;
1699 return pair;
1700 }
1701
1702 /**
1703 * ata_port_disable - Disable port.
1704 * @ap: Port to be disabled.
1705 *
1706 * Modify @ap data structure such that the system
1707 * thinks that the entire port is disabled, and should
1708 * never attempt to probe or communicate with devices
1709 * on this port.
1710 *
1711 * LOCKING: host_set lock, or some other form of
1712 * serialization.
1713 */
1714
1715 void ata_port_disable(struct ata_port *ap)
1716 {
1717 ap->device[0].class = ATA_DEV_NONE;
1718 ap->device[1].class = ATA_DEV_NONE;
1719 ap->flags |= ATA_FLAG_DISABLED;
1720 }
1721
1722 /**
1723 * sata_down_spd_limit - adjust SATA spd limit downward
1724 * @ap: Port to adjust SATA spd limit for
1725 *
1726 * Adjust SATA spd limit of @ap downward. Note that this
1727 * function only adjusts the limit. The change must be applied
1728 * using sata_set_spd().
1729 *
1730 * LOCKING:
1731 * Inherited from caller.
1732 *
1733 * RETURNS:
1734 * 0 on success, negative errno on failure
1735 */
1736 int sata_down_spd_limit(struct ata_port *ap)
1737 {
1738 u32 sstatus, spd, mask;
1739 int rc, highbit;
1740
1741 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1742 if (rc)
1743 return rc;
1744
1745 mask = ap->sata_spd_limit;
1746 if (mask <= 1)
1747 return -EINVAL;
1748 highbit = fls(mask) - 1;
1749 mask &= ~(1 << highbit);
1750
1751 spd = (sstatus >> 4) & 0xf;
1752 if (spd <= 1)
1753 return -EINVAL;
1754 spd--;
1755 mask &= (1 << spd) - 1;
1756 if (!mask)
1757 return -EINVAL;
1758
1759 ap->sata_spd_limit = mask;
1760
1761 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1762 sata_spd_string(fls(mask)));
1763
1764 return 0;
1765 }
1766
1767 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1768 {
1769 u32 spd, limit;
1770
1771 if (ap->sata_spd_limit == UINT_MAX)
1772 limit = 0;
1773 else
1774 limit = fls(ap->sata_spd_limit);
1775
1776 spd = (*scontrol >> 4) & 0xf;
1777 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1778
1779 return spd != limit;
1780 }
1781
1782 /**
1783 * sata_set_spd_needed - is SATA spd configuration needed
1784 * @ap: Port in question
1785 *
1786 * Test whether the spd limit in SControl matches
1787 * @ap->sata_spd_limit. This function is used to determine
1788 * whether hardreset is necessary to apply SATA spd
1789 * configuration.
1790 *
1791 * LOCKING:
1792 * Inherited from caller.
1793 *
1794 * RETURNS:
1795 * 1 if SATA spd configuration is needed, 0 otherwise.
1796 */
1797 int sata_set_spd_needed(struct ata_port *ap)
1798 {
1799 u32 scontrol;
1800
1801 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1802 return 0;
1803
1804 return __sata_set_spd_needed(ap, &scontrol);
1805 }
1806
1807 /**
1808 * sata_set_spd - set SATA spd according to spd limit
1809 * @ap: Port to set SATA spd for
1810 *
1811 * Set SATA spd of @ap according to sata_spd_limit.
1812 *
1813 * LOCKING:
1814 * Inherited from caller.
1815 *
1816 * RETURNS:
1817 * 0 if spd doesn't need to be changed, 1 if spd has been
1818 * changed. Negative errno if SCR registers are inaccessible.
1819 */
1820 int sata_set_spd(struct ata_port *ap)
1821 {
1822 u32 scontrol;
1823 int rc;
1824
1825 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1826 return rc;
1827
1828 if (!__sata_set_spd_needed(ap, &scontrol))
1829 return 0;
1830
1831 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1832 return rc;
1833
1834 return 1;
1835 }
1836
1837 /*
1838 * This mode timing computation functionality is ported over from
1839 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1840 */
1841 /*
1842 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1843 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1844 * for PIO 5, which is a nonstandard extension and UDMA6, which
1845 * is currently supported only by Maxtor drives.
1846 */
1847
1848 static const struct ata_timing ata_timing[] = {
1849
1850 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1851 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1852 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1853 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1854
1855 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1857 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1858
1859 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1860
1861 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1862 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1863 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1864
1865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1867 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1868
1869 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1870 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1871 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1872
1873 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1874 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1875 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1876
1877 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1878
1879 { 0xFF }
1880 };
1881
1882 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1883 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1884
1885 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1886 {
1887 q->setup = EZ(t->setup * 1000, T);
1888 q->act8b = EZ(t->act8b * 1000, T);
1889 q->rec8b = EZ(t->rec8b * 1000, T);
1890 q->cyc8b = EZ(t->cyc8b * 1000, T);
1891 q->active = EZ(t->active * 1000, T);
1892 q->recover = EZ(t->recover * 1000, T);
1893 q->cycle = EZ(t->cycle * 1000, T);
1894 q->udma = EZ(t->udma * 1000, UT);
1895 }
1896
1897 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1898 struct ata_timing *m, unsigned int what)
1899 {
1900 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1901 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1902 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1903 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1904 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1905 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1906 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1907 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1908 }
1909
1910 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1911 {
1912 const struct ata_timing *t;
1913
1914 for (t = ata_timing; t->mode != speed; t++)
1915 if (t->mode == 0xFF)
1916 return NULL;
1917 return t;
1918 }
1919
1920 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1921 struct ata_timing *t, int T, int UT)
1922 {
1923 const struct ata_timing *s;
1924 struct ata_timing p;
1925
1926 /*
1927 * Find the mode.
1928 */
1929
1930 if (!(s = ata_timing_find_mode(speed)))
1931 return -EINVAL;
1932
1933 memcpy(t, s, sizeof(*s));
1934
1935 /*
1936 * If the drive is an EIDE drive, it can tell us it needs extended
1937 * PIO/MW_DMA cycle timing.
1938 */
1939
1940 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1941 memset(&p, 0, sizeof(p));
1942 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1943 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1944 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1945 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1946 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1947 }
1948 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1949 }
1950
1951 /*
1952 * Convert the timing to bus clock counts.
1953 */
1954
1955 ata_timing_quantize(t, t, T, UT);
1956
1957 /*
1958 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1959 * S.M.A.R.T * and some other commands. We have to ensure that the
1960 * DMA cycle timing is slower/equal than the fastest PIO timing.
1961 */
1962
1963 if (speed > XFER_PIO_4) {
1964 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1965 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1966 }
1967
1968 /*
1969 * Lengthen active & recovery time so that cycle time is correct.
1970 */
1971
1972 if (t->act8b + t->rec8b < t->cyc8b) {
1973 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1974 t->rec8b = t->cyc8b - t->act8b;
1975 }
1976
1977 if (t->active + t->recover < t->cycle) {
1978 t->active += (t->cycle - (t->active + t->recover)) / 2;
1979 t->recover = t->cycle - t->active;
1980 }
1981
1982 return 0;
1983 }
1984
1985 /**
1986 * ata_down_xfermask_limit - adjust dev xfer masks downward
1987 * @dev: Device to adjust xfer masks
1988 * @force_pio0: Force PIO0
1989 *
1990 * Adjust xfer masks of @dev downward. Note that this function
1991 * does not apply the change. Invoking ata_set_mode() afterwards
1992 * will apply the limit.
1993 *
1994 * LOCKING:
1995 * Inherited from caller.
1996 *
1997 * RETURNS:
1998 * 0 on success, negative errno on failure
1999 */
2000 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2001 {
2002 unsigned long xfer_mask;
2003 int highbit;
2004
2005 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2006 dev->udma_mask);
2007
2008 if (!xfer_mask)
2009 goto fail;
2010 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2011 if (xfer_mask & ATA_MASK_UDMA)
2012 xfer_mask &= ~ATA_MASK_MWDMA;
2013
2014 highbit = fls(xfer_mask) - 1;
2015 xfer_mask &= ~(1 << highbit);
2016 if (force_pio0)
2017 xfer_mask &= 1 << ATA_SHIFT_PIO;
2018 if (!xfer_mask)
2019 goto fail;
2020
2021 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2022 &dev->udma_mask);
2023
2024 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2025 ata_mode_string(xfer_mask));
2026
2027 return 0;
2028
2029 fail:
2030 return -EINVAL;
2031 }
2032
2033 static int ata_dev_set_mode(struct ata_device *dev)
2034 {
2035 unsigned int err_mask;
2036 int rc;
2037
2038 dev->flags &= ~ATA_DFLAG_PIO;
2039 if (dev->xfer_shift == ATA_SHIFT_PIO)
2040 dev->flags |= ATA_DFLAG_PIO;
2041
2042 err_mask = ata_dev_set_xfermode(dev);
2043 if (err_mask) {
2044 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2045 "(err_mask=0x%x)\n", err_mask);
2046 return -EIO;
2047 }
2048
2049 rc = ata_dev_revalidate(dev, 0);
2050 if (rc)
2051 return rc;
2052
2053 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2054 dev->xfer_shift, (int)dev->xfer_mode);
2055
2056 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2057 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2058 return 0;
2059 }
2060
2061 /**
2062 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2063 * @ap: port on which timings will be programmed
2064 * @r_failed_dev: out paramter for failed device
2065 *
2066 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2067 * ata_set_mode() fails, pointer to the failing device is
2068 * returned in @r_failed_dev.
2069 *
2070 * LOCKING:
2071 * PCI/etc. bus probe sem.
2072 *
2073 * RETURNS:
2074 * 0 on success, negative errno otherwise
2075 */
2076 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2077 {
2078 struct ata_device *dev;
2079 int i, rc = 0, used_dma = 0, found = 0;
2080
2081 /* has private set_mode? */
2082 if (ap->ops->set_mode) {
2083 /* FIXME: make ->set_mode handle no device case and
2084 * return error code and failing device on failure.
2085 */
2086 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2087 if (ata_dev_enabled(&ap->device[i])) {
2088 ap->ops->set_mode(ap);
2089 break;
2090 }
2091 }
2092 return 0;
2093 }
2094
2095 /* step 1: calculate xfer_mask */
2096 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2097 unsigned int pio_mask, dma_mask;
2098
2099 dev = &ap->device[i];
2100
2101 if (!ata_dev_enabled(dev))
2102 continue;
2103
2104 ata_dev_xfermask(dev);
2105
2106 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2107 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2108 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2109 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2110
2111 found = 1;
2112 if (dev->dma_mode)
2113 used_dma = 1;
2114 }
2115 if (!found)
2116 goto out;
2117
2118 /* step 2: always set host PIO timings */
2119 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2120 dev = &ap->device[i];
2121 if (!ata_dev_enabled(dev))
2122 continue;
2123
2124 if (!dev->pio_mode) {
2125 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2126 rc = -EINVAL;
2127 goto out;
2128 }
2129
2130 dev->xfer_mode = dev->pio_mode;
2131 dev->xfer_shift = ATA_SHIFT_PIO;
2132 if (ap->ops->set_piomode)
2133 ap->ops->set_piomode(ap, dev);
2134 }
2135
2136 /* step 3: set host DMA timings */
2137 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2138 dev = &ap->device[i];
2139
2140 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2141 continue;
2142
2143 dev->xfer_mode = dev->dma_mode;
2144 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2145 if (ap->ops->set_dmamode)
2146 ap->ops->set_dmamode(ap, dev);
2147 }
2148
2149 /* step 4: update devices' xfer mode */
2150 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2151 dev = &ap->device[i];
2152
2153 if (!ata_dev_enabled(dev))
2154 continue;
2155
2156 rc = ata_dev_set_mode(dev);
2157 if (rc)
2158 goto out;
2159 }
2160
2161 /* Record simplex status. If we selected DMA then the other
2162 * host channels are not permitted to do so.
2163 */
2164 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2165 ap->host_set->simplex_claimed = 1;
2166
2167 /* step5: chip specific finalisation */
2168 if (ap->ops->post_set_mode)
2169 ap->ops->post_set_mode(ap);
2170
2171 out:
2172 if (rc)
2173 *r_failed_dev = dev;
2174 return rc;
2175 }
2176
2177 /**
2178 * ata_tf_to_host - issue ATA taskfile to host controller
2179 * @ap: port to which command is being issued
2180 * @tf: ATA taskfile register set
2181 *
2182 * Issues ATA taskfile register set to ATA host controller,
2183 * with proper synchronization with interrupt handler and
2184 * other threads.
2185 *
2186 * LOCKING:
2187 * spin_lock_irqsave(host_set lock)
2188 */
2189
2190 static inline void ata_tf_to_host(struct ata_port *ap,
2191 const struct ata_taskfile *tf)
2192 {
2193 ap->ops->tf_load(ap, tf);
2194 ap->ops->exec_command(ap, tf);
2195 }
2196
2197 /**
2198 * ata_busy_sleep - sleep until BSY clears, or timeout
2199 * @ap: port containing status register to be polled
2200 * @tmout_pat: impatience timeout
2201 * @tmout: overall timeout
2202 *
2203 * Sleep until ATA Status register bit BSY clears,
2204 * or a timeout occurs.
2205 *
2206 * LOCKING: None.
2207 */
2208
2209 unsigned int ata_busy_sleep (struct ata_port *ap,
2210 unsigned long tmout_pat, unsigned long tmout)
2211 {
2212 unsigned long timer_start, timeout;
2213 u8 status;
2214
2215 status = ata_busy_wait(ap, ATA_BUSY, 300);
2216 timer_start = jiffies;
2217 timeout = timer_start + tmout_pat;
2218 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2219 msleep(50);
2220 status = ata_busy_wait(ap, ATA_BUSY, 3);
2221 }
2222
2223 if (status & ATA_BUSY)
2224 ata_port_printk(ap, KERN_WARNING,
2225 "port is slow to respond, please be patient\n");
2226
2227 timeout = timer_start + tmout;
2228 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2229 msleep(50);
2230 status = ata_chk_status(ap);
2231 }
2232
2233 if (status & ATA_BUSY) {
2234 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2235 "(%lu secs)\n", tmout / HZ);
2236 return 1;
2237 }
2238
2239 return 0;
2240 }
2241
2242 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2243 {
2244 struct ata_ioports *ioaddr = &ap->ioaddr;
2245 unsigned int dev0 = devmask & (1 << 0);
2246 unsigned int dev1 = devmask & (1 << 1);
2247 unsigned long timeout;
2248
2249 /* if device 0 was found in ata_devchk, wait for its
2250 * BSY bit to clear
2251 */
2252 if (dev0)
2253 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2254
2255 /* if device 1 was found in ata_devchk, wait for
2256 * register access, then wait for BSY to clear
2257 */
2258 timeout = jiffies + ATA_TMOUT_BOOT;
2259 while (dev1) {
2260 u8 nsect, lbal;
2261
2262 ap->ops->dev_select(ap, 1);
2263 if (ap->flags & ATA_FLAG_MMIO) {
2264 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2265 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2266 } else {
2267 nsect = inb(ioaddr->nsect_addr);
2268 lbal = inb(ioaddr->lbal_addr);
2269 }
2270 if ((nsect == 1) && (lbal == 1))
2271 break;
2272 if (time_after(jiffies, timeout)) {
2273 dev1 = 0;
2274 break;
2275 }
2276 msleep(50); /* give drive a breather */
2277 }
2278 if (dev1)
2279 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2280
2281 /* is all this really necessary? */
2282 ap->ops->dev_select(ap, 0);
2283 if (dev1)
2284 ap->ops->dev_select(ap, 1);
2285 if (dev0)
2286 ap->ops->dev_select(ap, 0);
2287 }
2288
2289 static unsigned int ata_bus_softreset(struct ata_port *ap,
2290 unsigned int devmask)
2291 {
2292 struct ata_ioports *ioaddr = &ap->ioaddr;
2293
2294 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2295
2296 /* software reset. causes dev0 to be selected */
2297 if (ap->flags & ATA_FLAG_MMIO) {
2298 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2299 udelay(20); /* FIXME: flush */
2300 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2301 udelay(20); /* FIXME: flush */
2302 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2303 } else {
2304 outb(ap->ctl, ioaddr->ctl_addr);
2305 udelay(10);
2306 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2307 udelay(10);
2308 outb(ap->ctl, ioaddr->ctl_addr);
2309 }
2310
2311 /* spec mandates ">= 2ms" before checking status.
2312 * We wait 150ms, because that was the magic delay used for
2313 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2314 * between when the ATA command register is written, and then
2315 * status is checked. Because waiting for "a while" before
2316 * checking status is fine, post SRST, we perform this magic
2317 * delay here as well.
2318 *
2319 * Old drivers/ide uses the 2mS rule and then waits for ready
2320 */
2321 msleep(150);
2322
2323 /* Before we perform post reset processing we want to see if
2324 * the bus shows 0xFF because the odd clown forgets the D7
2325 * pulldown resistor.
2326 */
2327 if (ata_check_status(ap) == 0xFF) {
2328 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2329 return AC_ERR_OTHER;
2330 }
2331
2332 ata_bus_post_reset(ap, devmask);
2333
2334 return 0;
2335 }
2336
2337 /**
2338 * ata_bus_reset - reset host port and associated ATA channel
2339 * @ap: port to reset
2340 *
2341 * This is typically the first time we actually start issuing
2342 * commands to the ATA channel. We wait for BSY to clear, then
2343 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2344 * result. Determine what devices, if any, are on the channel
2345 * by looking at the device 0/1 error register. Look at the signature
2346 * stored in each device's taskfile registers, to determine if
2347 * the device is ATA or ATAPI.
2348 *
2349 * LOCKING:
2350 * PCI/etc. bus probe sem.
2351 * Obtains host_set lock.
2352 *
2353 * SIDE EFFECTS:
2354 * Sets ATA_FLAG_DISABLED if bus reset fails.
2355 */
2356
2357 void ata_bus_reset(struct ata_port *ap)
2358 {
2359 struct ata_ioports *ioaddr = &ap->ioaddr;
2360 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2361 u8 err;
2362 unsigned int dev0, dev1 = 0, devmask = 0;
2363
2364 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2365
2366 /* determine if device 0/1 are present */
2367 if (ap->flags & ATA_FLAG_SATA_RESET)
2368 dev0 = 1;
2369 else {
2370 dev0 = ata_devchk(ap, 0);
2371 if (slave_possible)
2372 dev1 = ata_devchk(ap, 1);
2373 }
2374
2375 if (dev0)
2376 devmask |= (1 << 0);
2377 if (dev1)
2378 devmask |= (1 << 1);
2379
2380 /* select device 0 again */
2381 ap->ops->dev_select(ap, 0);
2382
2383 /* issue bus reset */
2384 if (ap->flags & ATA_FLAG_SRST)
2385 if (ata_bus_softreset(ap, devmask))
2386 goto err_out;
2387
2388 /*
2389 * determine by signature whether we have ATA or ATAPI devices
2390 */
2391 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2392 if ((slave_possible) && (err != 0x81))
2393 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2394
2395 /* re-enable interrupts */
2396 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2397 ata_irq_on(ap);
2398
2399 /* is double-select really necessary? */
2400 if (ap->device[1].class != ATA_DEV_NONE)
2401 ap->ops->dev_select(ap, 1);
2402 if (ap->device[0].class != ATA_DEV_NONE)
2403 ap->ops->dev_select(ap, 0);
2404
2405 /* if no devices were detected, disable this port */
2406 if ((ap->device[0].class == ATA_DEV_NONE) &&
2407 (ap->device[1].class == ATA_DEV_NONE))
2408 goto err_out;
2409
2410 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2411 /* set up device control for ATA_FLAG_SATA_RESET */
2412 if (ap->flags & ATA_FLAG_MMIO)
2413 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2414 else
2415 outb(ap->ctl, ioaddr->ctl_addr);
2416 }
2417
2418 DPRINTK("EXIT\n");
2419 return;
2420
2421 err_out:
2422 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2423 ap->ops->port_disable(ap);
2424
2425 DPRINTK("EXIT\n");
2426 }
2427
2428 static int sata_phy_resume(struct ata_port *ap)
2429 {
2430 unsigned long timeout = jiffies + (HZ * 5);
2431 u32 scontrol, sstatus;
2432 int rc;
2433
2434 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2435 return rc;
2436
2437 scontrol = (scontrol & 0x0f0) | 0x300;
2438
2439 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2440 return rc;
2441
2442 /* Wait for phy to become ready, if necessary. */
2443 do {
2444 msleep(200);
2445 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2446 return rc;
2447 if ((sstatus & 0xf) != 1)
2448 return 0;
2449 } while (time_before(jiffies, timeout));
2450
2451 return -EBUSY;
2452 }
2453
2454 /**
2455 * ata_std_probeinit - initialize probing
2456 * @ap: port to be probed
2457 *
2458 * @ap is about to be probed. Initialize it. This function is
2459 * to be used as standard callback for ata_drive_probe_reset().
2460 *
2461 * NOTE!!! Do not use this function as probeinit if a low level
2462 * driver implements only hardreset. Just pass NULL as probeinit
2463 * in that case. Using this function is probably okay but doing
2464 * so makes reset sequence different from the original
2465 * ->phy_reset implementation and Jeff nervous. :-P
2466 */
2467 void ata_std_probeinit(struct ata_port *ap)
2468 {
2469 /* resume link */
2470 sata_phy_resume(ap);
2471
2472 /* wait for device */
2473 if (ata_port_online(ap))
2474 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2475 }
2476
2477 /**
2478 * ata_std_softreset - reset host port via ATA SRST
2479 * @ap: port to reset
2480 * @classes: resulting classes of attached devices
2481 *
2482 * Reset host port using ATA SRST. This function is to be used
2483 * as standard callback for ata_drive_*_reset() functions.
2484 *
2485 * LOCKING:
2486 * Kernel thread context (may sleep)
2487 *
2488 * RETURNS:
2489 * 0 on success, -errno otherwise.
2490 */
2491 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2492 {
2493 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2494 unsigned int devmask = 0, err_mask;
2495 u8 err;
2496
2497 DPRINTK("ENTER\n");
2498
2499 if (ata_port_offline(ap)) {
2500 classes[0] = ATA_DEV_NONE;
2501 goto out;
2502 }
2503
2504 /* determine if device 0/1 are present */
2505 if (ata_devchk(ap, 0))
2506 devmask |= (1 << 0);
2507 if (slave_possible && ata_devchk(ap, 1))
2508 devmask |= (1 << 1);
2509
2510 /* select device 0 again */
2511 ap->ops->dev_select(ap, 0);
2512
2513 /* issue bus reset */
2514 DPRINTK("about to softreset, devmask=%x\n", devmask);
2515 err_mask = ata_bus_softreset(ap, devmask);
2516 if (err_mask) {
2517 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2518 err_mask);
2519 return -EIO;
2520 }
2521
2522 /* determine by signature whether we have ATA or ATAPI devices */
2523 classes[0] = ata_dev_try_classify(ap, 0, &err);
2524 if (slave_possible && err != 0x81)
2525 classes[1] = ata_dev_try_classify(ap, 1, &err);
2526
2527 out:
2528 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2529 return 0;
2530 }
2531
2532 /**
2533 * sata_std_hardreset - reset host port via SATA phy reset
2534 * @ap: port to reset
2535 * @class: resulting class of attached device
2536 *
2537 * SATA phy-reset host port using DET bits of SControl register.
2538 * This function is to be used as standard callback for
2539 * ata_drive_*_reset().
2540 *
2541 * LOCKING:
2542 * Kernel thread context (may sleep)
2543 *
2544 * RETURNS:
2545 * 0 on success, -errno otherwise.
2546 */
2547 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2548 {
2549 u32 scontrol;
2550 int rc;
2551
2552 DPRINTK("ENTER\n");
2553
2554 if (sata_set_spd_needed(ap)) {
2555 /* SATA spec says nothing about how to reconfigure
2556 * spd. To be on the safe side, turn off phy during
2557 * reconfiguration. This works for at least ICH7 AHCI
2558 * and Sil3124.
2559 */
2560 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2561 return rc;
2562
2563 scontrol = (scontrol & 0x0f0) | 0x302;
2564
2565 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2566 return rc;
2567
2568 sata_set_spd(ap);
2569 }
2570
2571 /* issue phy wake/reset */
2572 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2573 return rc;
2574
2575 scontrol = (scontrol & 0x0f0) | 0x301;
2576
2577 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2578 return rc;
2579
2580 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2581 * 10.4.2 says at least 1 ms.
2582 */
2583 msleep(1);
2584
2585 /* bring phy back */
2586 sata_phy_resume(ap);
2587
2588 /* TODO: phy layer with polling, timeouts, etc. */
2589 if (ata_port_offline(ap)) {
2590 *class = ATA_DEV_NONE;
2591 DPRINTK("EXIT, link offline\n");
2592 return 0;
2593 }
2594
2595 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2596 ata_port_printk(ap, KERN_ERR,
2597 "COMRESET failed (device not ready)\n");
2598 return -EIO;
2599 }
2600
2601 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2602
2603 *class = ata_dev_try_classify(ap, 0, NULL);
2604
2605 DPRINTK("EXIT, class=%u\n", *class);
2606 return 0;
2607 }
2608
2609 /**
2610 * ata_std_postreset - standard postreset callback
2611 * @ap: the target ata_port
2612 * @classes: classes of attached devices
2613 *
2614 * This function is invoked after a successful reset. Note that
2615 * the device might have been reset more than once using
2616 * different reset methods before postreset is invoked.
2617 *
2618 * This function is to be used as standard callback for
2619 * ata_drive_*_reset().
2620 *
2621 * LOCKING:
2622 * Kernel thread context (may sleep)
2623 */
2624 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2625 {
2626 u32 serror;
2627
2628 DPRINTK("ENTER\n");
2629
2630 /* print link status */
2631 sata_print_link_status(ap);
2632
2633 /* clear SError */
2634 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2635 sata_scr_write(ap, SCR_ERROR, serror);
2636
2637 /* re-enable interrupts */
2638 if (!ap->ops->error_handler) {
2639 /* FIXME: hack. create a hook instead */
2640 if (ap->ioaddr.ctl_addr)
2641 ata_irq_on(ap);
2642 }
2643
2644 /* is double-select really necessary? */
2645 if (classes[0] != ATA_DEV_NONE)
2646 ap->ops->dev_select(ap, 1);
2647 if (classes[1] != ATA_DEV_NONE)
2648 ap->ops->dev_select(ap, 0);
2649
2650 /* bail out if no device is present */
2651 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2652 DPRINTK("EXIT, no device\n");
2653 return;
2654 }
2655
2656 /* set up device control */
2657 if (ap->ioaddr.ctl_addr) {
2658 if (ap->flags & ATA_FLAG_MMIO)
2659 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2660 else
2661 outb(ap->ctl, ap->ioaddr.ctl_addr);
2662 }
2663
2664 DPRINTK("EXIT\n");
2665 }
2666
2667 /**
2668 * ata_std_probe_reset - standard probe reset method
2669 * @ap: prot to perform probe-reset
2670 * @classes: resulting classes of attached devices
2671 *
2672 * The stock off-the-shelf ->probe_reset method.
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, -errno otherwise.
2679 */
2680 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2681 {
2682 ata_reset_fn_t hardreset;
2683
2684 hardreset = NULL;
2685 if (sata_scr_valid(ap))
2686 hardreset = sata_std_hardreset;
2687
2688 return ata_drive_probe_reset(ap, ata_std_probeinit,
2689 ata_std_softreset, hardreset,
2690 ata_std_postreset, classes);
2691 }
2692
2693 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2694 unsigned int *classes)
2695 {
2696 int i, rc;
2697
2698 for (i = 0; i < ATA_MAX_DEVICES; i++)
2699 classes[i] = ATA_DEV_UNKNOWN;
2700
2701 rc = reset(ap, classes);
2702 if (rc)
2703 return rc;
2704
2705 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2706 * is complete and convert all ATA_DEV_UNKNOWN to
2707 * ATA_DEV_NONE.
2708 */
2709 for (i = 0; i < ATA_MAX_DEVICES; i++)
2710 if (classes[i] != ATA_DEV_UNKNOWN)
2711 break;
2712
2713 if (i < ATA_MAX_DEVICES)
2714 for (i = 0; i < ATA_MAX_DEVICES; i++)
2715 if (classes[i] == ATA_DEV_UNKNOWN)
2716 classes[i] = ATA_DEV_NONE;
2717
2718 return 0;
2719 }
2720
2721 /**
2722 * ata_drive_probe_reset - Perform probe reset with given methods
2723 * @ap: port to reset
2724 * @probeinit: probeinit method (can be NULL)
2725 * @softreset: softreset method (can be NULL)
2726 * @hardreset: hardreset method (can be NULL)
2727 * @postreset: postreset method (can be NULL)
2728 * @classes: resulting classes of attached devices
2729 *
2730 * Reset the specified port and classify attached devices using
2731 * given methods. This function prefers softreset but tries all
2732 * possible reset sequences to reset and classify devices. This
2733 * function is intended to be used for constructing ->probe_reset
2734 * callback by low level drivers.
2735 *
2736 * Reset methods should follow the following rules.
2737 *
2738 * - Return 0 on sucess, -errno on failure.
2739 * - If classification is supported, fill classes[] with
2740 * recognized class codes.
2741 * - If classification is not supported, leave classes[] alone.
2742 *
2743 * LOCKING:
2744 * Kernel thread context (may sleep)
2745 *
2746 * RETURNS:
2747 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2748 * if classification fails, and any error code from reset
2749 * methods.
2750 */
2751 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2752 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2753 ata_postreset_fn_t postreset, unsigned int *classes)
2754 {
2755 int rc = -EINVAL;
2756
2757 ata_eh_freeze_port(ap);
2758
2759 if (probeinit)
2760 probeinit(ap);
2761
2762 if (softreset && !sata_set_spd_needed(ap)) {
2763 rc = ata_do_reset(ap, softreset, classes);
2764 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2765 goto done;
2766 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2767 "will try hardreset in 5 secs\n");
2768 ssleep(5);
2769 }
2770
2771 if (!hardreset)
2772 goto done;
2773
2774 while (1) {
2775 rc = ata_do_reset(ap, hardreset, classes);
2776 if (rc == 0) {
2777 if (classes[0] != ATA_DEV_UNKNOWN)
2778 goto done;
2779 break;
2780 }
2781
2782 if (sata_down_spd_limit(ap))
2783 goto done;
2784
2785 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2786 "will retry in 5 secs\n");
2787 ssleep(5);
2788 }
2789
2790 if (softreset) {
2791 ata_port_printk(ap, KERN_INFO,
2792 "hardreset succeeded without classification, "
2793 "will retry softreset in 5 secs\n");
2794 ssleep(5);
2795
2796 rc = ata_do_reset(ap, softreset, classes);
2797 }
2798
2799 done:
2800 if (rc == 0) {
2801 if (postreset)
2802 postreset(ap, classes);
2803
2804 ata_eh_thaw_port(ap);
2805
2806 if (classes[0] == ATA_DEV_UNKNOWN)
2807 rc = -ENODEV;
2808 }
2809 return rc;
2810 }
2811
2812 /**
2813 * ata_dev_same_device - Determine whether new ID matches configured device
2814 * @dev: device to compare against
2815 * @new_class: class of the new device
2816 * @new_id: IDENTIFY page of the new device
2817 *
2818 * Compare @new_class and @new_id against @dev and determine
2819 * whether @dev is the device indicated by @new_class and
2820 * @new_id.
2821 *
2822 * LOCKING:
2823 * None.
2824 *
2825 * RETURNS:
2826 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2827 */
2828 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2829 const u16 *new_id)
2830 {
2831 const u16 *old_id = dev->id;
2832 unsigned char model[2][41], serial[2][21];
2833 u64 new_n_sectors;
2834
2835 if (dev->class != new_class) {
2836 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2837 dev->class, new_class);
2838 return 0;
2839 }
2840
2841 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2842 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2843 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2844 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2845 new_n_sectors = ata_id_n_sectors(new_id);
2846
2847 if (strcmp(model[0], model[1])) {
2848 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2849 "'%s' != '%s'\n", model[0], model[1]);
2850 return 0;
2851 }
2852
2853 if (strcmp(serial[0], serial[1])) {
2854 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2855 "'%s' != '%s'\n", serial[0], serial[1]);
2856 return 0;
2857 }
2858
2859 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2860 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2861 "%llu != %llu\n",
2862 (unsigned long long)dev->n_sectors,
2863 (unsigned long long)new_n_sectors);
2864 return 0;
2865 }
2866
2867 return 1;
2868 }
2869
2870 /**
2871 * ata_dev_revalidate - Revalidate ATA device
2872 * @dev: device to revalidate
2873 * @post_reset: is this revalidation after reset?
2874 *
2875 * Re-read IDENTIFY page and make sure @dev is still attached to
2876 * the port.
2877 *
2878 * LOCKING:
2879 * Kernel thread context (may sleep)
2880 *
2881 * RETURNS:
2882 * 0 on success, negative errno otherwise
2883 */
2884 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2885 {
2886 unsigned int class = dev->class;
2887 u16 *id = (void *)dev->ap->sector_buf;
2888 int rc;
2889
2890 if (!ata_dev_enabled(dev)) {
2891 rc = -ENODEV;
2892 goto fail;
2893 }
2894
2895 /* read ID data */
2896 rc = ata_dev_read_id(dev, &class, post_reset, id);
2897 if (rc)
2898 goto fail;
2899
2900 /* is the device still there? */
2901 if (!ata_dev_same_device(dev, class, id)) {
2902 rc = -ENODEV;
2903 goto fail;
2904 }
2905
2906 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2907
2908 /* configure device according to the new ID */
2909 rc = ata_dev_configure(dev, 0);
2910 if (rc == 0)
2911 return 0;
2912
2913 fail:
2914 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2915 return rc;
2916 }
2917
2918 static const char * const ata_dma_blacklist [] = {
2919 "WDC AC11000H", NULL,
2920 "WDC AC22100H", NULL,
2921 "WDC AC32500H", NULL,
2922 "WDC AC33100H", NULL,
2923 "WDC AC31600H", NULL,
2924 "WDC AC32100H", "24.09P07",
2925 "WDC AC23200L", "21.10N21",
2926 "Compaq CRD-8241B", NULL,
2927 "CRD-8400B", NULL,
2928 "CRD-8480B", NULL,
2929 "CRD-8482B", NULL,
2930 "CRD-84", NULL,
2931 "SanDisk SDP3B", NULL,
2932 "SanDisk SDP3B-64", NULL,
2933 "SANYO CD-ROM CRD", NULL,
2934 "HITACHI CDR-8", NULL,
2935 "HITACHI CDR-8335", NULL,
2936 "HITACHI CDR-8435", NULL,
2937 "Toshiba CD-ROM XM-6202B", NULL,
2938 "TOSHIBA CD-ROM XM-1702BC", NULL,
2939 "CD-532E-A", NULL,
2940 "E-IDE CD-ROM CR-840", NULL,
2941 "CD-ROM Drive/F5A", NULL,
2942 "WPI CDD-820", NULL,
2943 "SAMSUNG CD-ROM SC-148C", NULL,
2944 "SAMSUNG CD-ROM SC", NULL,
2945 "SanDisk SDP3B-64", NULL,
2946 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2947 "_NEC DV5800A", NULL,
2948 "SAMSUNG CD-ROM SN-124", "N001"
2949 };
2950
2951 static int ata_strim(char *s, size_t len)
2952 {
2953 len = strnlen(s, len);
2954
2955 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2956 while ((len > 0) && (s[len - 1] == ' ')) {
2957 len--;
2958 s[len] = 0;
2959 }
2960 return len;
2961 }
2962
2963 static int ata_dma_blacklisted(const struct ata_device *dev)
2964 {
2965 unsigned char model_num[40];
2966 unsigned char model_rev[16];
2967 unsigned int nlen, rlen;
2968 int i;
2969
2970 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2971 sizeof(model_num));
2972 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2973 sizeof(model_rev));
2974 nlen = ata_strim(model_num, sizeof(model_num));
2975 rlen = ata_strim(model_rev, sizeof(model_rev));
2976
2977 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2978 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2979 if (ata_dma_blacklist[i+1] == NULL)
2980 return 1;
2981 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2982 return 1;
2983 }
2984 }
2985 return 0;
2986 }
2987
2988 /**
2989 * ata_dev_xfermask - Compute supported xfermask of the given device
2990 * @dev: Device to compute xfermask for
2991 *
2992 * Compute supported xfermask of @dev and store it in
2993 * dev->*_mask. This function is responsible for applying all
2994 * known limits including host controller limits, device
2995 * blacklist, etc...
2996 *
2997 * FIXME: The current implementation limits all transfer modes to
2998 * the fastest of the lowested device on the port. This is not
2999 * required on most controllers.
3000 *
3001 * LOCKING:
3002 * None.
3003 */
3004 static void ata_dev_xfermask(struct ata_device *dev)
3005 {
3006 struct ata_port *ap = dev->ap;
3007 struct ata_host_set *hs = ap->host_set;
3008 unsigned long xfer_mask;
3009 int i;
3010
3011 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3012 ap->mwdma_mask, ap->udma_mask);
3013
3014 /* Apply cable rule here. Don't apply it early because when
3015 * we handle hot plug the cable type can itself change.
3016 */
3017 if (ap->cbl == ATA_CBL_PATA40)
3018 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3019
3020 /* FIXME: Use port-wide xfermask for now */
3021 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3022 struct ata_device *d = &ap->device[i];
3023
3024 if (ata_dev_absent(d))
3025 continue;
3026
3027 if (ata_dev_disabled(d)) {
3028 /* to avoid violating device selection timing */
3029 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3030 UINT_MAX, UINT_MAX);
3031 continue;
3032 }
3033
3034 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3035 d->mwdma_mask, d->udma_mask);
3036 xfer_mask &= ata_id_xfermask(d->id);
3037 if (ata_dma_blacklisted(d))
3038 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3039 }
3040
3041 if (ata_dma_blacklisted(dev))
3042 ata_dev_printk(dev, KERN_WARNING,
3043 "device is on DMA blacklist, disabling DMA\n");
3044
3045 if (hs->flags & ATA_HOST_SIMPLEX) {
3046 if (hs->simplex_claimed)
3047 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3048 }
3049
3050 if (ap->ops->mode_filter)
3051 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3052
3053 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3054 &dev->mwdma_mask, &dev->udma_mask);
3055 }
3056
3057 /**
3058 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3059 * @dev: Device to which command will be sent
3060 *
3061 * Issue SET FEATURES - XFER MODE command to device @dev
3062 * on port @ap.
3063 *
3064 * LOCKING:
3065 * PCI/etc. bus probe sem.
3066 *
3067 * RETURNS:
3068 * 0 on success, AC_ERR_* mask otherwise.
3069 */
3070
3071 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3072 {
3073 struct ata_taskfile tf;
3074 unsigned int err_mask;
3075
3076 /* set up set-features taskfile */
3077 DPRINTK("set features - xfer mode\n");
3078
3079 ata_tf_init(dev, &tf);
3080 tf.command = ATA_CMD_SET_FEATURES;
3081 tf.feature = SETFEATURES_XFER;
3082 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3083 tf.protocol = ATA_PROT_NODATA;
3084 tf.nsect = dev->xfer_mode;
3085
3086 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3087
3088 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3089 return err_mask;
3090 }
3091
3092 /**
3093 * ata_dev_init_params - Issue INIT DEV PARAMS command
3094 * @dev: Device to which command will be sent
3095 * @heads: Number of heads (taskfile parameter)
3096 * @sectors: Number of sectors (taskfile parameter)
3097 *
3098 * LOCKING:
3099 * Kernel thread context (may sleep)
3100 *
3101 * RETURNS:
3102 * 0 on success, AC_ERR_* mask otherwise.
3103 */
3104 static unsigned int ata_dev_init_params(struct ata_device *dev,
3105 u16 heads, u16 sectors)
3106 {
3107 struct ata_taskfile tf;
3108 unsigned int err_mask;
3109
3110 /* Number of sectors per track 1-255. Number of heads 1-16 */
3111 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3112 return AC_ERR_INVALID;
3113
3114 /* set up init dev params taskfile */
3115 DPRINTK("init dev params \n");
3116
3117 ata_tf_init(dev, &tf);
3118 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3119 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3120 tf.protocol = ATA_PROT_NODATA;
3121 tf.nsect = sectors;
3122 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3123
3124 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3125
3126 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3127 return err_mask;
3128 }
3129
3130 /**
3131 * ata_sg_clean - Unmap DMA memory associated with command
3132 * @qc: Command containing DMA memory to be released
3133 *
3134 * Unmap all mapped DMA memory associated with this command.
3135 *
3136 * LOCKING:
3137 * spin_lock_irqsave(host_set lock)
3138 */
3139
3140 static void ata_sg_clean(struct ata_queued_cmd *qc)
3141 {
3142 struct ata_port *ap = qc->ap;
3143 struct scatterlist *sg = qc->__sg;
3144 int dir = qc->dma_dir;
3145 void *pad_buf = NULL;
3146
3147 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3148 WARN_ON(sg == NULL);
3149
3150 if (qc->flags & ATA_QCFLAG_SINGLE)
3151 WARN_ON(qc->n_elem > 1);
3152
3153 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3154
3155 /* if we padded the buffer out to 32-bit bound, and data
3156 * xfer direction is from-device, we must copy from the
3157 * pad buffer back into the supplied buffer
3158 */
3159 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3160 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3161
3162 if (qc->flags & ATA_QCFLAG_SG) {
3163 if (qc->n_elem)
3164 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3165 /* restore last sg */
3166 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3167 if (pad_buf) {
3168 struct scatterlist *psg = &qc->pad_sgent;
3169 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3170 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3171 kunmap_atomic(addr, KM_IRQ0);
3172 }
3173 } else {
3174 if (qc->n_elem)
3175 dma_unmap_single(ap->dev,
3176 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3177 dir);
3178 /* restore sg */
3179 sg->length += qc->pad_len;
3180 if (pad_buf)
3181 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3182 pad_buf, qc->pad_len);
3183 }
3184
3185 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3186 qc->__sg = NULL;
3187 }
3188
3189 /**
3190 * ata_fill_sg - Fill PCI IDE PRD table
3191 * @qc: Metadata associated with taskfile to be transferred
3192 *
3193 * Fill PCI IDE PRD (scatter-gather) table with segments
3194 * associated with the current disk command.
3195 *
3196 * LOCKING:
3197 * spin_lock_irqsave(host_set lock)
3198 *
3199 */
3200 static void ata_fill_sg(struct ata_queued_cmd *qc)
3201 {
3202 struct ata_port *ap = qc->ap;
3203 struct scatterlist *sg;
3204 unsigned int idx;
3205
3206 WARN_ON(qc->__sg == NULL);
3207 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3208
3209 idx = 0;
3210 ata_for_each_sg(sg, qc) {
3211 u32 addr, offset;
3212 u32 sg_len, len;
3213
3214 /* determine if physical DMA addr spans 64K boundary.
3215 * Note h/w doesn't support 64-bit, so we unconditionally
3216 * truncate dma_addr_t to u32.
3217 */
3218 addr = (u32) sg_dma_address(sg);
3219 sg_len = sg_dma_len(sg);
3220
3221 while (sg_len) {
3222 offset = addr & 0xffff;
3223 len = sg_len;
3224 if ((offset + sg_len) > 0x10000)
3225 len = 0x10000 - offset;
3226
3227 ap->prd[idx].addr = cpu_to_le32(addr);
3228 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3229 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3230
3231 idx++;
3232 sg_len -= len;
3233 addr += len;
3234 }
3235 }
3236
3237 if (idx)
3238 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3239 }
3240 /**
3241 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3242 * @qc: Metadata associated with taskfile to check
3243 *
3244 * Allow low-level driver to filter ATA PACKET commands, returning
3245 * a status indicating whether or not it is OK to use DMA for the
3246 * supplied PACKET command.
3247 *
3248 * LOCKING:
3249 * spin_lock_irqsave(host_set lock)
3250 *
3251 * RETURNS: 0 when ATAPI DMA can be used
3252 * nonzero otherwise
3253 */
3254 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3255 {
3256 struct ata_port *ap = qc->ap;
3257 int rc = 0; /* Assume ATAPI DMA is OK by default */
3258
3259 if (ap->ops->check_atapi_dma)
3260 rc = ap->ops->check_atapi_dma(qc);
3261
3262 /* We don't support polling DMA.
3263 * Use PIO if the LLDD handles only interrupts in
3264 * the HSM_ST_LAST state and the ATAPI device
3265 * generates CDB interrupts.
3266 */
3267 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3268 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3269 rc = 1;
3270
3271 return rc;
3272 }
3273 /**
3274 * ata_qc_prep - Prepare taskfile for submission
3275 * @qc: Metadata associated with taskfile to be prepared
3276 *
3277 * Prepare ATA taskfile for submission.
3278 *
3279 * LOCKING:
3280 * spin_lock_irqsave(host_set lock)
3281 */
3282 void ata_qc_prep(struct ata_queued_cmd *qc)
3283 {
3284 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3285 return;
3286
3287 ata_fill_sg(qc);
3288 }
3289
3290 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3291
3292 /**
3293 * ata_sg_init_one - Associate command with memory buffer
3294 * @qc: Command to be associated
3295 * @buf: Memory buffer
3296 * @buflen: Length of memory buffer, in bytes.
3297 *
3298 * Initialize the data-related elements of queued_cmd @qc
3299 * to point to a single memory buffer, @buf of byte length @buflen.
3300 *
3301 * LOCKING:
3302 * spin_lock_irqsave(host_set lock)
3303 */
3304
3305 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3306 {
3307 struct scatterlist *sg;
3308
3309 qc->flags |= ATA_QCFLAG_SINGLE;
3310
3311 memset(&qc->sgent, 0, sizeof(qc->sgent));
3312 qc->__sg = &qc->sgent;
3313 qc->n_elem = 1;
3314 qc->orig_n_elem = 1;
3315 qc->buf_virt = buf;
3316
3317 sg = qc->__sg;
3318 sg_init_one(sg, buf, buflen);
3319 }
3320
3321 /**
3322 * ata_sg_init - Associate command with scatter-gather table.
3323 * @qc: Command to be associated
3324 * @sg: Scatter-gather table.
3325 * @n_elem: Number of elements in s/g table.
3326 *
3327 * Initialize the data-related elements of queued_cmd @qc
3328 * to point to a scatter-gather table @sg, containing @n_elem
3329 * elements.
3330 *
3331 * LOCKING:
3332 * spin_lock_irqsave(host_set lock)
3333 */
3334
3335 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3336 unsigned int n_elem)
3337 {
3338 qc->flags |= ATA_QCFLAG_SG;
3339 qc->__sg = sg;
3340 qc->n_elem = n_elem;
3341 qc->orig_n_elem = n_elem;
3342 }
3343
3344 /**
3345 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3346 * @qc: Command with memory buffer to be mapped.
3347 *
3348 * DMA-map the memory buffer associated with queued_cmd @qc.
3349 *
3350 * LOCKING:
3351 * spin_lock_irqsave(host_set lock)
3352 *
3353 * RETURNS:
3354 * Zero on success, negative on error.
3355 */
3356
3357 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3358 {
3359 struct ata_port *ap = qc->ap;
3360 int dir = qc->dma_dir;
3361 struct scatterlist *sg = qc->__sg;
3362 dma_addr_t dma_address;
3363 int trim_sg = 0;
3364
3365 /* we must lengthen transfers to end on a 32-bit boundary */
3366 qc->pad_len = sg->length & 3;
3367 if (qc->pad_len) {
3368 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3369 struct scatterlist *psg = &qc->pad_sgent;
3370
3371 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3372
3373 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3374
3375 if (qc->tf.flags & ATA_TFLAG_WRITE)
3376 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3377 qc->pad_len);
3378
3379 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3380 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3381 /* trim sg */
3382 sg->length -= qc->pad_len;
3383 if (sg->length == 0)
3384 trim_sg = 1;
3385
3386 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3387 sg->length, qc->pad_len);
3388 }
3389
3390 if (trim_sg) {
3391 qc->n_elem--;
3392 goto skip_map;
3393 }
3394
3395 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3396 sg->length, dir);
3397 if (dma_mapping_error(dma_address)) {
3398 /* restore sg */
3399 sg->length += qc->pad_len;
3400 return -1;
3401 }
3402
3403 sg_dma_address(sg) = dma_address;
3404 sg_dma_len(sg) = sg->length;
3405
3406 skip_map:
3407 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3408 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3409
3410 return 0;
3411 }
3412
3413 /**
3414 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3415 * @qc: Command with scatter-gather table to be mapped.
3416 *
3417 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3418 *
3419 * LOCKING:
3420 * spin_lock_irqsave(host_set lock)
3421 *
3422 * RETURNS:
3423 * Zero on success, negative on error.
3424 *
3425 */
3426
3427 static int ata_sg_setup(struct ata_queued_cmd *qc)
3428 {
3429 struct ata_port *ap = qc->ap;
3430 struct scatterlist *sg = qc->__sg;
3431 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3432 int n_elem, pre_n_elem, dir, trim_sg = 0;
3433
3434 VPRINTK("ENTER, ata%u\n", ap->id);
3435 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3436
3437 /* we must lengthen transfers to end on a 32-bit boundary */
3438 qc->pad_len = lsg->length & 3;
3439 if (qc->pad_len) {
3440 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3441 struct scatterlist *psg = &qc->pad_sgent;
3442 unsigned int offset;
3443
3444 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3445
3446 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3447
3448 /*
3449 * psg->page/offset are used to copy to-be-written
3450 * data in this function or read data in ata_sg_clean.
3451 */
3452 offset = lsg->offset + lsg->length - qc->pad_len;
3453 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3454 psg->offset = offset_in_page(offset);
3455
3456 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3457 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3458 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3459 kunmap_atomic(addr, KM_IRQ0);
3460 }
3461
3462 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3463 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3464 /* trim last sg */
3465 lsg->length -= qc->pad_len;
3466 if (lsg->length == 0)
3467 trim_sg = 1;
3468
3469 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3470 qc->n_elem - 1, lsg->length, qc->pad_len);
3471 }
3472
3473 pre_n_elem = qc->n_elem;
3474 if (trim_sg && pre_n_elem)
3475 pre_n_elem--;
3476
3477 if (!pre_n_elem) {
3478 n_elem = 0;
3479 goto skip_map;
3480 }
3481
3482 dir = qc->dma_dir;
3483 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3484 if (n_elem < 1) {
3485 /* restore last sg */
3486 lsg->length += qc->pad_len;
3487 return -1;
3488 }
3489
3490 DPRINTK("%d sg elements mapped\n", n_elem);
3491
3492 skip_map:
3493 qc->n_elem = n_elem;
3494
3495 return 0;
3496 }
3497
3498 /**
3499 * swap_buf_le16 - swap halves of 16-bit words in place
3500 * @buf: Buffer to swap
3501 * @buf_words: Number of 16-bit words in buffer.
3502 *
3503 * Swap halves of 16-bit words if needed to convert from
3504 * little-endian byte order to native cpu byte order, or
3505 * vice-versa.
3506 *
3507 * LOCKING:
3508 * Inherited from caller.
3509 */
3510 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3511 {
3512 #ifdef __BIG_ENDIAN
3513 unsigned int i;
3514
3515 for (i = 0; i < buf_words; i++)
3516 buf[i] = le16_to_cpu(buf[i]);
3517 #endif /* __BIG_ENDIAN */
3518 }
3519
3520 /**
3521 * ata_mmio_data_xfer - Transfer data by MMIO
3522 * @dev: device for this I/O
3523 * @buf: data buffer
3524 * @buflen: buffer length
3525 * @write_data: read/write
3526 *
3527 * Transfer data from/to the device data register by MMIO.
3528 *
3529 * LOCKING:
3530 * Inherited from caller.
3531 */
3532
3533 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3534 unsigned int buflen, int write_data)
3535 {
3536 struct ata_port *ap = adev->ap;
3537 unsigned int i;
3538 unsigned int words = buflen >> 1;
3539 u16 *buf16 = (u16 *) buf;
3540 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3541
3542 /* Transfer multiple of 2 bytes */
3543 if (write_data) {
3544 for (i = 0; i < words; i++)
3545 writew(le16_to_cpu(buf16[i]), mmio);
3546 } else {
3547 for (i = 0; i < words; i++)
3548 buf16[i] = cpu_to_le16(readw(mmio));
3549 }
3550
3551 /* Transfer trailing 1 byte, if any. */
3552 if (unlikely(buflen & 0x01)) {
3553 u16 align_buf[1] = { 0 };
3554 unsigned char *trailing_buf = buf + buflen - 1;
3555
3556 if (write_data) {
3557 memcpy(align_buf, trailing_buf, 1);
3558 writew(le16_to_cpu(align_buf[0]), mmio);
3559 } else {
3560 align_buf[0] = cpu_to_le16(readw(mmio));
3561 memcpy(trailing_buf, align_buf, 1);
3562 }
3563 }
3564 }
3565
3566 /**
3567 * ata_pio_data_xfer - Transfer data by PIO
3568 * @adev: device to target
3569 * @buf: data buffer
3570 * @buflen: buffer length
3571 * @write_data: read/write
3572 *
3573 * Transfer data from/to the device data register by PIO.
3574 *
3575 * LOCKING:
3576 * Inherited from caller.
3577 */
3578
3579 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3580 unsigned int buflen, int write_data)
3581 {
3582 struct ata_port *ap = adev->ap;
3583 unsigned int words = buflen >> 1;
3584
3585 /* Transfer multiple of 2 bytes */
3586 if (write_data)
3587 outsw(ap->ioaddr.data_addr, buf, words);
3588 else
3589 insw(ap->ioaddr.data_addr, buf, words);
3590
3591 /* Transfer trailing 1 byte, if any. */
3592 if (unlikely(buflen & 0x01)) {
3593 u16 align_buf[1] = { 0 };
3594 unsigned char *trailing_buf = buf + buflen - 1;
3595
3596 if (write_data) {
3597 memcpy(align_buf, trailing_buf, 1);
3598 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3599 } else {
3600 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3601 memcpy(trailing_buf, align_buf, 1);
3602 }
3603 }
3604 }
3605
3606 /**
3607 * ata_pio_data_xfer_noirq - Transfer data by PIO
3608 * @adev: device to target
3609 * @buf: data buffer
3610 * @buflen: buffer length
3611 * @write_data: read/write
3612 *
3613 * Transfer data from/to the device data register by PIO. Do the
3614 * transfer with interrupts disabled.
3615 *
3616 * LOCKING:
3617 * Inherited from caller.
3618 */
3619
3620 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3621 unsigned int buflen, int write_data)
3622 {
3623 unsigned long flags;
3624 local_irq_save(flags);
3625 ata_pio_data_xfer(adev, buf, buflen, write_data);
3626 local_irq_restore(flags);
3627 }
3628
3629
3630 /**
3631 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3632 * @qc: Command on going
3633 *
3634 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
3639
3640 static void ata_pio_sector(struct ata_queued_cmd *qc)
3641 {
3642 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3643 struct scatterlist *sg = qc->__sg;
3644 struct ata_port *ap = qc->ap;
3645 struct page *page;
3646 unsigned int offset;
3647 unsigned char *buf;
3648
3649 if (qc->cursect == (qc->nsect - 1))
3650 ap->hsm_task_state = HSM_ST_LAST;
3651
3652 page = sg[qc->cursg].page;
3653 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3654
3655 /* get the current page and offset */
3656 page = nth_page(page, (offset >> PAGE_SHIFT));
3657 offset %= PAGE_SIZE;
3658
3659 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3660
3661 if (PageHighMem(page)) {
3662 unsigned long flags;
3663
3664 /* FIXME: use a bounce buffer */
3665 local_irq_save(flags);
3666 buf = kmap_atomic(page, KM_IRQ0);
3667
3668 /* do the actual data transfer */
3669 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3670
3671 kunmap_atomic(buf, KM_IRQ0);
3672 local_irq_restore(flags);
3673 } else {
3674 buf = page_address(page);
3675 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3676 }
3677
3678 qc->cursect++;
3679 qc->cursg_ofs++;
3680
3681 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3682 qc->cursg++;
3683 qc->cursg_ofs = 0;
3684 }
3685 }
3686
3687 /**
3688 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3689 * @qc: Command on going
3690 *
3691 * Transfer one or many ATA_SECT_SIZE of data from/to the
3692 * ATA device for the DRQ request.
3693 *
3694 * LOCKING:
3695 * Inherited from caller.
3696 */
3697
3698 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3699 {
3700 if (is_multi_taskfile(&qc->tf)) {
3701 /* READ/WRITE MULTIPLE */
3702 unsigned int nsect;
3703
3704 WARN_ON(qc->dev->multi_count == 0);
3705
3706 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3707 while (nsect--)
3708 ata_pio_sector(qc);
3709 } else
3710 ata_pio_sector(qc);
3711 }
3712
3713 /**
3714 * atapi_send_cdb - Write CDB bytes to hardware
3715 * @ap: Port to which ATAPI device is attached.
3716 * @qc: Taskfile currently active
3717 *
3718 * When device has indicated its readiness to accept
3719 * a CDB, this function is called. Send the CDB.
3720 *
3721 * LOCKING:
3722 * caller.
3723 */
3724
3725 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3726 {
3727 /* send SCSI cdb */
3728 DPRINTK("send cdb\n");
3729 WARN_ON(qc->dev->cdb_len < 12);
3730
3731 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3732 ata_altstatus(ap); /* flush */
3733
3734 switch (qc->tf.protocol) {
3735 case ATA_PROT_ATAPI:
3736 ap->hsm_task_state = HSM_ST;
3737 break;
3738 case ATA_PROT_ATAPI_NODATA:
3739 ap->hsm_task_state = HSM_ST_LAST;
3740 break;
3741 case ATA_PROT_ATAPI_DMA:
3742 ap->hsm_task_state = HSM_ST_LAST;
3743 /* initiate bmdma */
3744 ap->ops->bmdma_start(qc);
3745 break;
3746 }
3747 }
3748
3749 /**
3750 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3751 * @qc: Command on going
3752 * @bytes: number of bytes
3753 *
3754 * Transfer Transfer data from/to the ATAPI device.
3755 *
3756 * LOCKING:
3757 * Inherited from caller.
3758 *
3759 */
3760
3761 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3762 {
3763 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3764 struct scatterlist *sg = qc->__sg;
3765 struct ata_port *ap = qc->ap;
3766 struct page *page;
3767 unsigned char *buf;
3768 unsigned int offset, count;
3769
3770 if (qc->curbytes + bytes >= qc->nbytes)
3771 ap->hsm_task_state = HSM_ST_LAST;
3772
3773 next_sg:
3774 if (unlikely(qc->cursg >= qc->n_elem)) {
3775 /*
3776 * The end of qc->sg is reached and the device expects
3777 * more data to transfer. In order not to overrun qc->sg
3778 * and fulfill length specified in the byte count register,
3779 * - for read case, discard trailing data from the device
3780 * - for write case, padding zero data to the device
3781 */
3782 u16 pad_buf[1] = { 0 };
3783 unsigned int words = bytes >> 1;
3784 unsigned int i;
3785
3786 if (words) /* warning if bytes > 1 */
3787 ata_dev_printk(qc->dev, KERN_WARNING,
3788 "%u bytes trailing data\n", bytes);
3789
3790 for (i = 0; i < words; i++)
3791 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3792
3793 ap->hsm_task_state = HSM_ST_LAST;
3794 return;
3795 }
3796
3797 sg = &qc->__sg[qc->cursg];
3798
3799 page = sg->page;
3800 offset = sg->offset + qc->cursg_ofs;
3801
3802 /* get the current page and offset */
3803 page = nth_page(page, (offset >> PAGE_SHIFT));
3804 offset %= PAGE_SIZE;
3805
3806 /* don't overrun current sg */
3807 count = min(sg->length - qc->cursg_ofs, bytes);
3808
3809 /* don't cross page boundaries */
3810 count = min(count, (unsigned int)PAGE_SIZE - offset);
3811
3812 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3813
3814 if (PageHighMem(page)) {
3815 unsigned long flags;
3816
3817 /* FIXME: use bounce buffer */
3818 local_irq_save(flags);
3819 buf = kmap_atomic(page, KM_IRQ0);
3820
3821 /* do the actual data transfer */
3822 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3823
3824 kunmap_atomic(buf, KM_IRQ0);
3825 local_irq_restore(flags);
3826 } else {
3827 buf = page_address(page);
3828 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3829 }
3830
3831 bytes -= count;
3832 qc->curbytes += count;
3833 qc->cursg_ofs += count;
3834
3835 if (qc->cursg_ofs == sg->length) {
3836 qc->cursg++;
3837 qc->cursg_ofs = 0;
3838 }
3839
3840 if (bytes)
3841 goto next_sg;
3842 }
3843
3844 /**
3845 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3846 * @qc: Command on going
3847 *
3848 * Transfer Transfer data from/to the ATAPI device.
3849 *
3850 * LOCKING:
3851 * Inherited from caller.
3852 */
3853
3854 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3855 {
3856 struct ata_port *ap = qc->ap;
3857 struct ata_device *dev = qc->dev;
3858 unsigned int ireason, bc_lo, bc_hi, bytes;
3859 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3860
3861 /* Abuse qc->result_tf for temp storage of intermediate TF
3862 * here to save some kernel stack usage.
3863 * For normal completion, qc->result_tf is not relevant. For
3864 * error, qc->result_tf is later overwritten by ata_qc_complete().
3865 * So, the correctness of qc->result_tf is not affected.
3866 */
3867 ap->ops->tf_read(ap, &qc->result_tf);
3868 ireason = qc->result_tf.nsect;
3869 bc_lo = qc->result_tf.lbam;
3870 bc_hi = qc->result_tf.lbah;
3871 bytes = (bc_hi << 8) | bc_lo;
3872
3873 /* shall be cleared to zero, indicating xfer of data */
3874 if (ireason & (1 << 0))
3875 goto err_out;
3876
3877 /* make sure transfer direction matches expected */
3878 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3879 if (do_write != i_write)
3880 goto err_out;
3881
3882 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3883
3884 __atapi_pio_bytes(qc, bytes);
3885
3886 return;
3887
3888 err_out:
3889 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3890 qc->err_mask |= AC_ERR_HSM;
3891 ap->hsm_task_state = HSM_ST_ERR;
3892 }
3893
3894 /**
3895 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3896 * @ap: the target ata_port
3897 * @qc: qc on going
3898 *
3899 * RETURNS:
3900 * 1 if ok in workqueue, 0 otherwise.
3901 */
3902
3903 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3904 {
3905 if (qc->tf.flags & ATA_TFLAG_POLLING)
3906 return 1;
3907
3908 if (ap->hsm_task_state == HSM_ST_FIRST) {
3909 if (qc->tf.protocol == ATA_PROT_PIO &&
3910 (qc->tf.flags & ATA_TFLAG_WRITE))
3911 return 1;
3912
3913 if (is_atapi_taskfile(&qc->tf) &&
3914 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3915 return 1;
3916 }
3917
3918 return 0;
3919 }
3920
3921 /**
3922 * ata_hsm_qc_complete - finish a qc running on standard HSM
3923 * @qc: Command to complete
3924 * @in_wq: 1 if called from workqueue, 0 otherwise
3925 *
3926 * Finish @qc which is running on standard HSM.
3927 *
3928 * LOCKING:
3929 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3930 * Otherwise, none on entry and grabs host lock.
3931 */
3932 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3933 {
3934 struct ata_port *ap = qc->ap;
3935 unsigned long flags;
3936
3937 if (ap->ops->error_handler) {
3938 if (in_wq) {
3939 spin_lock_irqsave(&ap->host_set->lock, flags);
3940
3941 /* EH might have kicked in while host_set lock
3942 * is released.
3943 */
3944 qc = ata_qc_from_tag(ap, qc->tag);
3945 if (qc) {
3946 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3947 ata_irq_on(ap);
3948 ata_qc_complete(qc);
3949 } else
3950 ata_port_freeze(ap);
3951 }
3952
3953 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3954 } else {
3955 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3956 ata_qc_complete(qc);
3957 else
3958 ata_port_freeze(ap);
3959 }
3960 } else {
3961 if (in_wq) {
3962 spin_lock_irqsave(&ap->host_set->lock, flags);
3963 ata_irq_on(ap);
3964 ata_qc_complete(qc);
3965 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3966 } else
3967 ata_qc_complete(qc);
3968 }
3969
3970 ata_altstatus(ap); /* flush */
3971 }
3972
3973 /**
3974 * ata_hsm_move - move the HSM to the next state.
3975 * @ap: the target ata_port
3976 * @qc: qc on going
3977 * @status: current device status
3978 * @in_wq: 1 if called from workqueue, 0 otherwise
3979 *
3980 * RETURNS:
3981 * 1 when poll next status needed, 0 otherwise.
3982 */
3983
3984 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3985 u8 status, int in_wq)
3986 {
3987 unsigned long flags = 0;
3988 int poll_next;
3989
3990 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3991
3992 /* Make sure ata_qc_issue_prot() does not throw things
3993 * like DMA polling into the workqueue. Notice that
3994 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3995 */
3996 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3997
3998 fsm_start:
3999 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4000 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4001
4002 switch (ap->hsm_task_state) {
4003 case HSM_ST_FIRST:
4004 /* Send first data block or PACKET CDB */
4005
4006 /* If polling, we will stay in the work queue after
4007 * sending the data. Otherwise, interrupt handler
4008 * takes over after sending the data.
4009 */
4010 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4011
4012 /* check device status */
4013 if (unlikely((status & ATA_DRQ) == 0)) {
4014 /* handle BSY=0, DRQ=0 as error */
4015 if (likely(status & (ATA_ERR | ATA_DF)))
4016 /* device stops HSM for abort/error */
4017 qc->err_mask |= AC_ERR_DEV;
4018 else
4019 /* HSM violation. Let EH handle this */
4020 qc->err_mask |= AC_ERR_HSM;
4021
4022 ap->hsm_task_state = HSM_ST_ERR;
4023 goto fsm_start;
4024 }
4025
4026 /* Device should not ask for data transfer (DRQ=1)
4027 * when it finds something wrong.
4028 * We ignore DRQ here and stop the HSM by
4029 * changing hsm_task_state to HSM_ST_ERR and
4030 * let the EH abort the command or reset the device.
4031 */
4032 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4033 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4034 ap->id, status);
4035 qc->err_mask |= AC_ERR_HSM;
4036 ap->hsm_task_state = HSM_ST_ERR;
4037 goto fsm_start;
4038 }
4039
4040 /* Send the CDB (atapi) or the first data block (ata pio out).
4041 * During the state transition, interrupt handler shouldn't
4042 * be invoked before the data transfer is complete and
4043 * hsm_task_state is changed. Hence, the following locking.
4044 */
4045 if (in_wq)
4046 spin_lock_irqsave(&ap->host_set->lock, flags);
4047
4048 if (qc->tf.protocol == ATA_PROT_PIO) {
4049 /* PIO data out protocol.
4050 * send first data block.
4051 */
4052
4053 /* ata_pio_sectors() might change the state
4054 * to HSM_ST_LAST. so, the state is changed here
4055 * before ata_pio_sectors().
4056 */
4057 ap->hsm_task_state = HSM_ST;
4058 ata_pio_sectors(qc);
4059 ata_altstatus(ap); /* flush */
4060 } else
4061 /* send CDB */
4062 atapi_send_cdb(ap, qc);
4063
4064 if (in_wq)
4065 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4066
4067 /* if polling, ata_pio_task() handles the rest.
4068 * otherwise, interrupt handler takes over from here.
4069 */
4070 break;
4071
4072 case HSM_ST:
4073 /* complete command or read/write the data register */
4074 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4075 /* ATAPI PIO protocol */
4076 if ((status & ATA_DRQ) == 0) {
4077 /* No more data to transfer or device error.
4078 * Device error will be tagged in HSM_ST_LAST.
4079 */
4080 ap->hsm_task_state = HSM_ST_LAST;
4081 goto fsm_start;
4082 }
4083
4084 /* Device should not ask for data transfer (DRQ=1)
4085 * when it finds something wrong.
4086 * We ignore DRQ here and stop the HSM by
4087 * changing hsm_task_state to HSM_ST_ERR and
4088 * let the EH abort the command or reset the device.
4089 */
4090 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4091 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4092 ap->id, status);
4093 qc->err_mask |= AC_ERR_HSM;
4094 ap->hsm_task_state = HSM_ST_ERR;
4095 goto fsm_start;
4096 }
4097
4098 atapi_pio_bytes(qc);
4099
4100 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4101 /* bad ireason reported by device */
4102 goto fsm_start;
4103
4104 } else {
4105 /* ATA PIO protocol */
4106 if (unlikely((status & ATA_DRQ) == 0)) {
4107 /* handle BSY=0, DRQ=0 as error */
4108 if (likely(status & (ATA_ERR | ATA_DF)))
4109 /* device stops HSM for abort/error */
4110 qc->err_mask |= AC_ERR_DEV;
4111 else
4112 /* HSM violation. Let EH handle this */
4113 qc->err_mask |= AC_ERR_HSM;
4114
4115 ap->hsm_task_state = HSM_ST_ERR;
4116 goto fsm_start;
4117 }
4118
4119 /* For PIO reads, some devices may ask for
4120 * data transfer (DRQ=1) alone with ERR=1.
4121 * We respect DRQ here and transfer one
4122 * block of junk data before changing the
4123 * hsm_task_state to HSM_ST_ERR.
4124 *
4125 * For PIO writes, ERR=1 DRQ=1 doesn't make
4126 * sense since the data block has been
4127 * transferred to the device.
4128 */
4129 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4130 /* data might be corrputed */
4131 qc->err_mask |= AC_ERR_DEV;
4132
4133 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4134 ata_pio_sectors(qc);
4135 ata_altstatus(ap);
4136 status = ata_wait_idle(ap);
4137 }
4138
4139 if (status & (ATA_BUSY | ATA_DRQ))
4140 qc->err_mask |= AC_ERR_HSM;
4141
4142 /* ata_pio_sectors() might change the
4143 * state to HSM_ST_LAST. so, the state
4144 * is changed after ata_pio_sectors().
4145 */
4146 ap->hsm_task_state = HSM_ST_ERR;
4147 goto fsm_start;
4148 }
4149
4150 ata_pio_sectors(qc);
4151
4152 if (ap->hsm_task_state == HSM_ST_LAST &&
4153 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4154 /* all data read */
4155 ata_altstatus(ap);
4156 status = ata_wait_idle(ap);
4157 goto fsm_start;
4158 }
4159 }
4160
4161 ata_altstatus(ap); /* flush */
4162 poll_next = 1;
4163 break;
4164
4165 case HSM_ST_LAST:
4166 if (unlikely(!ata_ok(status))) {
4167 qc->err_mask |= __ac_err_mask(status);
4168 ap->hsm_task_state = HSM_ST_ERR;
4169 goto fsm_start;
4170 }
4171
4172 /* no more data to transfer */
4173 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4174 ap->id, qc->dev->devno, status);
4175
4176 WARN_ON(qc->err_mask);
4177
4178 ap->hsm_task_state = HSM_ST_IDLE;
4179
4180 /* complete taskfile transaction */
4181 ata_hsm_qc_complete(qc, in_wq);
4182
4183 poll_next = 0;
4184 break;
4185
4186 case HSM_ST_ERR:
4187 /* make sure qc->err_mask is available to
4188 * know what's wrong and recover
4189 */
4190 WARN_ON(qc->err_mask == 0);
4191
4192 ap->hsm_task_state = HSM_ST_IDLE;
4193
4194 /* complete taskfile transaction */
4195 ata_hsm_qc_complete(qc, in_wq);
4196
4197 poll_next = 0;
4198 break;
4199 default:
4200 poll_next = 0;
4201 BUG();
4202 }
4203
4204 return poll_next;
4205 }
4206
4207 static void ata_pio_task(void *_data)
4208 {
4209 struct ata_queued_cmd *qc = _data;
4210 struct ata_port *ap = qc->ap;
4211 u8 status;
4212 int poll_next;
4213
4214 fsm_start:
4215 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4216
4217 /*
4218 * This is purely heuristic. This is a fast path.
4219 * Sometimes when we enter, BSY will be cleared in
4220 * a chk-status or two. If not, the drive is probably seeking
4221 * or something. Snooze for a couple msecs, then
4222 * chk-status again. If still busy, queue delayed work.
4223 */
4224 status = ata_busy_wait(ap, ATA_BUSY, 5);
4225 if (status & ATA_BUSY) {
4226 msleep(2);
4227 status = ata_busy_wait(ap, ATA_BUSY, 10);
4228 if (status & ATA_BUSY) {
4229 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4230 return;
4231 }
4232 }
4233
4234 /* move the HSM */
4235 poll_next = ata_hsm_move(ap, qc, status, 1);
4236
4237 /* another command or interrupt handler
4238 * may be running at this point.
4239 */
4240 if (poll_next)
4241 goto fsm_start;
4242 }
4243
4244 /**
4245 * ata_qc_new - Request an available ATA command, for queueing
4246 * @ap: Port associated with device @dev
4247 * @dev: Device from whom we request an available command structure
4248 *
4249 * LOCKING:
4250 * None.
4251 */
4252
4253 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4254 {
4255 struct ata_queued_cmd *qc = NULL;
4256 unsigned int i;
4257
4258 /* no command while frozen */
4259 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4260 return NULL;
4261
4262 /* the last tag is reserved for internal command. */
4263 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4264 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4265 qc = __ata_qc_from_tag(ap, i);
4266 break;
4267 }
4268
4269 if (qc)
4270 qc->tag = i;
4271
4272 return qc;
4273 }
4274
4275 /**
4276 * ata_qc_new_init - Request an available ATA command, and initialize it
4277 * @dev: Device from whom we request an available command structure
4278 *
4279 * LOCKING:
4280 * None.
4281 */
4282
4283 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4284 {
4285 struct ata_port *ap = dev->ap;
4286 struct ata_queued_cmd *qc;
4287
4288 qc = ata_qc_new(ap);
4289 if (qc) {
4290 qc->scsicmd = NULL;
4291 qc->ap = ap;
4292 qc->dev = dev;
4293
4294 ata_qc_reinit(qc);
4295 }
4296
4297 return qc;
4298 }
4299
4300 /**
4301 * ata_qc_free - free unused ata_queued_cmd
4302 * @qc: Command to complete
4303 *
4304 * Designed to free unused ata_queued_cmd object
4305 * in case something prevents using it.
4306 *
4307 * LOCKING:
4308 * spin_lock_irqsave(host_set lock)
4309 */
4310 void ata_qc_free(struct ata_queued_cmd *qc)
4311 {
4312 struct ata_port *ap = qc->ap;
4313 unsigned int tag;
4314
4315 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4316
4317 qc->flags = 0;
4318 tag = qc->tag;
4319 if (likely(ata_tag_valid(tag))) {
4320 qc->tag = ATA_TAG_POISON;
4321 clear_bit(tag, &ap->qc_allocated);
4322 }
4323 }
4324
4325 void __ata_qc_complete(struct ata_queued_cmd *qc)
4326 {
4327 struct ata_port *ap = qc->ap;
4328
4329 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4330 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4331
4332 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4333 ata_sg_clean(qc);
4334
4335 /* command should be marked inactive atomically with qc completion */
4336 if (qc->tf.protocol == ATA_PROT_NCQ)
4337 ap->sactive &= ~(1 << qc->tag);
4338 else
4339 ap->active_tag = ATA_TAG_POISON;
4340
4341 /* atapi: mark qc as inactive to prevent the interrupt handler
4342 * from completing the command twice later, before the error handler
4343 * is called. (when rc != 0 and atapi request sense is needed)
4344 */
4345 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4346 ap->qc_active &= ~(1 << qc->tag);
4347
4348 /* call completion callback */
4349 qc->complete_fn(qc);
4350 }
4351
4352 /**
4353 * ata_qc_complete - Complete an active ATA command
4354 * @qc: Command to complete
4355 * @err_mask: ATA Status register contents
4356 *
4357 * Indicate to the mid and upper layers that an ATA
4358 * command has completed, with either an ok or not-ok status.
4359 *
4360 * LOCKING:
4361 * spin_lock_irqsave(host_set lock)
4362 */
4363 void ata_qc_complete(struct ata_queued_cmd *qc)
4364 {
4365 struct ata_port *ap = qc->ap;
4366
4367 /* XXX: New EH and old EH use different mechanisms to
4368 * synchronize EH with regular execution path.
4369 *
4370 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4371 * Normal execution path is responsible for not accessing a
4372 * failed qc. libata core enforces the rule by returning NULL
4373 * from ata_qc_from_tag() for failed qcs.
4374 *
4375 * Old EH depends on ata_qc_complete() nullifying completion
4376 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4377 * not synchronize with interrupt handler. Only PIO task is
4378 * taken care of.
4379 */
4380 if (ap->ops->error_handler) {
4381 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4382
4383 if (unlikely(qc->err_mask))
4384 qc->flags |= ATA_QCFLAG_FAILED;
4385
4386 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4387 if (!ata_tag_internal(qc->tag)) {
4388 /* always fill result TF for failed qc */
4389 ap->ops->tf_read(ap, &qc->result_tf);
4390 ata_qc_schedule_eh(qc);
4391 return;
4392 }
4393 }
4394
4395 /* read result TF if requested */
4396 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4397 ap->ops->tf_read(ap, &qc->result_tf);
4398
4399 __ata_qc_complete(qc);
4400 } else {
4401 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4402 return;
4403
4404 /* read result TF if failed or requested */
4405 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4406 ap->ops->tf_read(ap, &qc->result_tf);
4407
4408 __ata_qc_complete(qc);
4409 }
4410 }
4411
4412 /**
4413 * ata_qc_complete_multiple - Complete multiple qcs successfully
4414 * @ap: port in question
4415 * @qc_active: new qc_active mask
4416 * @finish_qc: LLDD callback invoked before completing a qc
4417 *
4418 * Complete in-flight commands. This functions is meant to be
4419 * called from low-level driver's interrupt routine to complete
4420 * requests normally. ap->qc_active and @qc_active is compared
4421 * and commands are completed accordingly.
4422 *
4423 * LOCKING:
4424 * spin_lock_irqsave(host_set lock)
4425 *
4426 * RETURNS:
4427 * Number of completed commands on success, -errno otherwise.
4428 */
4429 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4430 void (*finish_qc)(struct ata_queued_cmd *))
4431 {
4432 int nr_done = 0;
4433 u32 done_mask;
4434 int i;
4435
4436 done_mask = ap->qc_active ^ qc_active;
4437
4438 if (unlikely(done_mask & qc_active)) {
4439 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4440 "(%08x->%08x)\n", ap->qc_active, qc_active);
4441 return -EINVAL;
4442 }
4443
4444 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4445 struct ata_queued_cmd *qc;
4446
4447 if (!(done_mask & (1 << i)))
4448 continue;
4449
4450 if ((qc = ata_qc_from_tag(ap, i))) {
4451 if (finish_qc)
4452 finish_qc(qc);
4453 ata_qc_complete(qc);
4454 nr_done++;
4455 }
4456 }
4457
4458 return nr_done;
4459 }
4460
4461 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4462 {
4463 struct ata_port *ap = qc->ap;
4464
4465 switch (qc->tf.protocol) {
4466 case ATA_PROT_NCQ:
4467 case ATA_PROT_DMA:
4468 case ATA_PROT_ATAPI_DMA:
4469 return 1;
4470
4471 case ATA_PROT_ATAPI:
4472 case ATA_PROT_PIO:
4473 if (ap->flags & ATA_FLAG_PIO_DMA)
4474 return 1;
4475
4476 /* fall through */
4477
4478 default:
4479 return 0;
4480 }
4481
4482 /* never reached */
4483 }
4484
4485 /**
4486 * ata_qc_issue - issue taskfile to device
4487 * @qc: command to issue to device
4488 *
4489 * Prepare an ATA command to submission to device.
4490 * This includes mapping the data into a DMA-able
4491 * area, filling in the S/G table, and finally
4492 * writing the taskfile to hardware, starting the command.
4493 *
4494 * LOCKING:
4495 * spin_lock_irqsave(host_set lock)
4496 */
4497 void ata_qc_issue(struct ata_queued_cmd *qc)
4498 {
4499 struct ata_port *ap = qc->ap;
4500
4501 /* Make sure only one non-NCQ command is outstanding. The
4502 * check is skipped for old EH because it reuses active qc to
4503 * request ATAPI sense.
4504 */
4505 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4506
4507 if (qc->tf.protocol == ATA_PROT_NCQ) {
4508 WARN_ON(ap->sactive & (1 << qc->tag));
4509 ap->sactive |= 1 << qc->tag;
4510 } else {
4511 WARN_ON(ap->sactive);
4512 ap->active_tag = qc->tag;
4513 }
4514
4515 qc->flags |= ATA_QCFLAG_ACTIVE;
4516 ap->qc_active |= 1 << qc->tag;
4517
4518 if (ata_should_dma_map(qc)) {
4519 if (qc->flags & ATA_QCFLAG_SG) {
4520 if (ata_sg_setup(qc))
4521 goto sg_err;
4522 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4523 if (ata_sg_setup_one(qc))
4524 goto sg_err;
4525 }
4526 } else {
4527 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4528 }
4529
4530 ap->ops->qc_prep(qc);
4531
4532 qc->err_mask |= ap->ops->qc_issue(qc);
4533 if (unlikely(qc->err_mask))
4534 goto err;
4535 return;
4536
4537 sg_err:
4538 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4539 qc->err_mask |= AC_ERR_SYSTEM;
4540 err:
4541 ata_qc_complete(qc);
4542 }
4543
4544 /**
4545 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4546 * @qc: command to issue to device
4547 *
4548 * Using various libata functions and hooks, this function
4549 * starts an ATA command. ATA commands are grouped into
4550 * classes called "protocols", and issuing each type of protocol
4551 * is slightly different.
4552 *
4553 * May be used as the qc_issue() entry in ata_port_operations.
4554 *
4555 * LOCKING:
4556 * spin_lock_irqsave(host_set lock)
4557 *
4558 * RETURNS:
4559 * Zero on success, AC_ERR_* mask on failure
4560 */
4561
4562 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4563 {
4564 struct ata_port *ap = qc->ap;
4565
4566 /* Use polling pio if the LLD doesn't handle
4567 * interrupt driven pio and atapi CDB interrupt.
4568 */
4569 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4570 switch (qc->tf.protocol) {
4571 case ATA_PROT_PIO:
4572 case ATA_PROT_ATAPI:
4573 case ATA_PROT_ATAPI_NODATA:
4574 qc->tf.flags |= ATA_TFLAG_POLLING;
4575 break;
4576 case ATA_PROT_ATAPI_DMA:
4577 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4578 /* see ata_check_atapi_dma() */
4579 BUG();
4580 break;
4581 default:
4582 break;
4583 }
4584 }
4585
4586 /* select the device */
4587 ata_dev_select(ap, qc->dev->devno, 1, 0);
4588
4589 /* start the command */
4590 switch (qc->tf.protocol) {
4591 case ATA_PROT_NODATA:
4592 if (qc->tf.flags & ATA_TFLAG_POLLING)
4593 ata_qc_set_polling(qc);
4594
4595 ata_tf_to_host(ap, &qc->tf);
4596 ap->hsm_task_state = HSM_ST_LAST;
4597
4598 if (qc->tf.flags & ATA_TFLAG_POLLING)
4599 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4600
4601 break;
4602
4603 case ATA_PROT_DMA:
4604 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4605
4606 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4607 ap->ops->bmdma_setup(qc); /* set up bmdma */
4608 ap->ops->bmdma_start(qc); /* initiate bmdma */
4609 ap->hsm_task_state = HSM_ST_LAST;
4610 break;
4611
4612 case ATA_PROT_PIO:
4613 if (qc->tf.flags & ATA_TFLAG_POLLING)
4614 ata_qc_set_polling(qc);
4615
4616 ata_tf_to_host(ap, &qc->tf);
4617
4618 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4619 /* PIO data out protocol */
4620 ap->hsm_task_state = HSM_ST_FIRST;
4621 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4622
4623 /* always send first data block using
4624 * the ata_pio_task() codepath.
4625 */
4626 } else {
4627 /* PIO data in protocol */
4628 ap->hsm_task_state = HSM_ST;
4629
4630 if (qc->tf.flags & ATA_TFLAG_POLLING)
4631 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4632
4633 /* if polling, ata_pio_task() handles the rest.
4634 * otherwise, interrupt handler takes over from here.
4635 */
4636 }
4637
4638 break;
4639
4640 case ATA_PROT_ATAPI:
4641 case ATA_PROT_ATAPI_NODATA:
4642 if (qc->tf.flags & ATA_TFLAG_POLLING)
4643 ata_qc_set_polling(qc);
4644
4645 ata_tf_to_host(ap, &qc->tf);
4646
4647 ap->hsm_task_state = HSM_ST_FIRST;
4648
4649 /* send cdb by polling if no cdb interrupt */
4650 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4651 (qc->tf.flags & ATA_TFLAG_POLLING))
4652 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4653 break;
4654
4655 case ATA_PROT_ATAPI_DMA:
4656 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4657
4658 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4659 ap->ops->bmdma_setup(qc); /* set up bmdma */
4660 ap->hsm_task_state = HSM_ST_FIRST;
4661
4662 /* send cdb by polling if no cdb interrupt */
4663 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4664 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4665 break;
4666
4667 default:
4668 WARN_ON(1);
4669 return AC_ERR_SYSTEM;
4670 }
4671
4672 return 0;
4673 }
4674
4675 /**
4676 * ata_host_intr - Handle host interrupt for given (port, task)
4677 * @ap: Port on which interrupt arrived (possibly...)
4678 * @qc: Taskfile currently active in engine
4679 *
4680 * Handle host interrupt for given queued command. Currently,
4681 * only DMA interrupts are handled. All other commands are
4682 * handled via polling with interrupts disabled (nIEN bit).
4683 *
4684 * LOCKING:
4685 * spin_lock_irqsave(host_set lock)
4686 *
4687 * RETURNS:
4688 * One if interrupt was handled, zero if not (shared irq).
4689 */
4690
4691 inline unsigned int ata_host_intr (struct ata_port *ap,
4692 struct ata_queued_cmd *qc)
4693 {
4694 u8 status, host_stat = 0;
4695
4696 VPRINTK("ata%u: protocol %d task_state %d\n",
4697 ap->id, qc->tf.protocol, ap->hsm_task_state);
4698
4699 /* Check whether we are expecting interrupt in this state */
4700 switch (ap->hsm_task_state) {
4701 case HSM_ST_FIRST:
4702 /* Some pre-ATAPI-4 devices assert INTRQ
4703 * at this state when ready to receive CDB.
4704 */
4705
4706 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4707 * The flag was turned on only for atapi devices.
4708 * No need to check is_atapi_taskfile(&qc->tf) again.
4709 */
4710 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4711 goto idle_irq;
4712 break;
4713 case HSM_ST_LAST:
4714 if (qc->tf.protocol == ATA_PROT_DMA ||
4715 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4716 /* check status of DMA engine */
4717 host_stat = ap->ops->bmdma_status(ap);
4718 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4719
4720 /* if it's not our irq... */
4721 if (!(host_stat & ATA_DMA_INTR))
4722 goto idle_irq;
4723
4724 /* before we do anything else, clear DMA-Start bit */
4725 ap->ops->bmdma_stop(qc);
4726
4727 if (unlikely(host_stat & ATA_DMA_ERR)) {
4728 /* error when transfering data to/from memory */
4729 qc->err_mask |= AC_ERR_HOST_BUS;
4730 ap->hsm_task_state = HSM_ST_ERR;
4731 }
4732 }
4733 break;
4734 case HSM_ST:
4735 break;
4736 default:
4737 goto idle_irq;
4738 }
4739
4740 /* check altstatus */
4741 status = ata_altstatus(ap);
4742 if (status & ATA_BUSY)
4743 goto idle_irq;
4744
4745 /* check main status, clearing INTRQ */
4746 status = ata_chk_status(ap);
4747 if (unlikely(status & ATA_BUSY))
4748 goto idle_irq;
4749
4750 /* ack bmdma irq events */
4751 ap->ops->irq_clear(ap);
4752
4753 ata_hsm_move(ap, qc, status, 0);
4754 return 1; /* irq handled */
4755
4756 idle_irq:
4757 ap->stats.idle_irq++;
4758
4759 #ifdef ATA_IRQ_TRAP
4760 if ((ap->stats.idle_irq % 1000) == 0) {
4761 ata_irq_ack(ap, 0); /* debug trap */
4762 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4763 return 1;
4764 }
4765 #endif
4766 return 0; /* irq not handled */
4767 }
4768
4769 /**
4770 * ata_interrupt - Default ATA host interrupt handler
4771 * @irq: irq line (unused)
4772 * @dev_instance: pointer to our ata_host_set information structure
4773 * @regs: unused
4774 *
4775 * Default interrupt handler for PCI IDE devices. Calls
4776 * ata_host_intr() for each port that is not disabled.
4777 *
4778 * LOCKING:
4779 * Obtains host_set lock during operation.
4780 *
4781 * RETURNS:
4782 * IRQ_NONE or IRQ_HANDLED.
4783 */
4784
4785 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4786 {
4787 struct ata_host_set *host_set = dev_instance;
4788 unsigned int i;
4789 unsigned int handled = 0;
4790 unsigned long flags;
4791
4792 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4793 spin_lock_irqsave(&host_set->lock, flags);
4794
4795 for (i = 0; i < host_set->n_ports; i++) {
4796 struct ata_port *ap;
4797
4798 ap = host_set->ports[i];
4799 if (ap &&
4800 !(ap->flags & ATA_FLAG_DISABLED)) {
4801 struct ata_queued_cmd *qc;
4802
4803 qc = ata_qc_from_tag(ap, ap->active_tag);
4804 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4805 (qc->flags & ATA_QCFLAG_ACTIVE))
4806 handled |= ata_host_intr(ap, qc);
4807 }
4808 }
4809
4810 spin_unlock_irqrestore(&host_set->lock, flags);
4811
4812 return IRQ_RETVAL(handled);
4813 }
4814
4815 /**
4816 * sata_scr_valid - test whether SCRs are accessible
4817 * @ap: ATA port to test SCR accessibility for
4818 *
4819 * Test whether SCRs are accessible for @ap.
4820 *
4821 * LOCKING:
4822 * None.
4823 *
4824 * RETURNS:
4825 * 1 if SCRs are accessible, 0 otherwise.
4826 */
4827 int sata_scr_valid(struct ata_port *ap)
4828 {
4829 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4830 }
4831
4832 /**
4833 * sata_scr_read - read SCR register of the specified port
4834 * @ap: ATA port to read SCR for
4835 * @reg: SCR to read
4836 * @val: Place to store read value
4837 *
4838 * Read SCR register @reg of @ap into *@val. This function is
4839 * guaranteed to succeed if the cable type of the port is SATA
4840 * and the port implements ->scr_read.
4841 *
4842 * LOCKING:
4843 * None.
4844 *
4845 * RETURNS:
4846 * 0 on success, negative errno on failure.
4847 */
4848 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4849 {
4850 if (sata_scr_valid(ap)) {
4851 *val = ap->ops->scr_read(ap, reg);
4852 return 0;
4853 }
4854 return -EOPNOTSUPP;
4855 }
4856
4857 /**
4858 * sata_scr_write - write SCR register of the specified port
4859 * @ap: ATA port to write SCR for
4860 * @reg: SCR to write
4861 * @val: value to write
4862 *
4863 * Write @val to SCR register @reg of @ap. This function is
4864 * guaranteed to succeed if the cable type of the port is SATA
4865 * and the port implements ->scr_read.
4866 *
4867 * LOCKING:
4868 * None.
4869 *
4870 * RETURNS:
4871 * 0 on success, negative errno on failure.
4872 */
4873 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4874 {
4875 if (sata_scr_valid(ap)) {
4876 ap->ops->scr_write(ap, reg, val);
4877 return 0;
4878 }
4879 return -EOPNOTSUPP;
4880 }
4881
4882 /**
4883 * sata_scr_write_flush - write SCR register of the specified port and flush
4884 * @ap: ATA port to write SCR for
4885 * @reg: SCR to write
4886 * @val: value to write
4887 *
4888 * This function is identical to sata_scr_write() except that this
4889 * function performs flush after writing to the register.
4890 *
4891 * LOCKING:
4892 * None.
4893 *
4894 * RETURNS:
4895 * 0 on success, negative errno on failure.
4896 */
4897 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4898 {
4899 if (sata_scr_valid(ap)) {
4900 ap->ops->scr_write(ap, reg, val);
4901 ap->ops->scr_read(ap, reg);
4902 return 0;
4903 }
4904 return -EOPNOTSUPP;
4905 }
4906
4907 /**
4908 * ata_port_online - test whether the given port is online
4909 * @ap: ATA port to test
4910 *
4911 * Test whether @ap is online. Note that this function returns 0
4912 * if online status of @ap cannot be obtained, so
4913 * ata_port_online(ap) != !ata_port_offline(ap).
4914 *
4915 * LOCKING:
4916 * None.
4917 *
4918 * RETURNS:
4919 * 1 if the port online status is available and online.
4920 */
4921 int ata_port_online(struct ata_port *ap)
4922 {
4923 u32 sstatus;
4924
4925 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4926 return 1;
4927 return 0;
4928 }
4929
4930 /**
4931 * ata_port_offline - test whether the given port is offline
4932 * @ap: ATA port to test
4933 *
4934 * Test whether @ap is offline. Note that this function returns
4935 * 0 if offline status of @ap cannot be obtained, so
4936 * ata_port_online(ap) != !ata_port_offline(ap).
4937 *
4938 * LOCKING:
4939 * None.
4940 *
4941 * RETURNS:
4942 * 1 if the port offline status is available and offline.
4943 */
4944 int ata_port_offline(struct ata_port *ap)
4945 {
4946 u32 sstatus;
4947
4948 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4949 return 1;
4950 return 0;
4951 }
4952
4953 /*
4954 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4955 * without filling any other registers
4956 */
4957 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4958 {
4959 struct ata_taskfile tf;
4960 int err;
4961
4962 ata_tf_init(dev, &tf);
4963
4964 tf.command = cmd;
4965 tf.flags |= ATA_TFLAG_DEVICE;
4966 tf.protocol = ATA_PROT_NODATA;
4967
4968 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4969 if (err)
4970 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4971 __FUNCTION__, err);
4972
4973 return err;
4974 }
4975
4976 static int ata_flush_cache(struct ata_device *dev)
4977 {
4978 u8 cmd;
4979
4980 if (!ata_try_flush_cache(dev))
4981 return 0;
4982
4983 if (ata_id_has_flush_ext(dev->id))
4984 cmd = ATA_CMD_FLUSH_EXT;
4985 else
4986 cmd = ATA_CMD_FLUSH;
4987
4988 return ata_do_simple_cmd(dev, cmd);
4989 }
4990
4991 static int ata_standby_drive(struct ata_device *dev)
4992 {
4993 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4994 }
4995
4996 static int ata_start_drive(struct ata_device *dev)
4997 {
4998 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4999 }
5000
5001 /**
5002 * ata_device_resume - wakeup a previously suspended devices
5003 * @dev: the device to resume
5004 *
5005 * Kick the drive back into action, by sending it an idle immediate
5006 * command and making sure its transfer mode matches between drive
5007 * and host.
5008 *
5009 */
5010 int ata_device_resume(struct ata_device *dev)
5011 {
5012 struct ata_port *ap = dev->ap;
5013
5014 if (ap->flags & ATA_FLAG_SUSPENDED) {
5015 struct ata_device *failed_dev;
5016
5017 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5018
5019 ap->flags &= ~ATA_FLAG_SUSPENDED;
5020 while (ata_set_mode(ap, &failed_dev))
5021 ata_dev_disable(failed_dev);
5022 }
5023 if (!ata_dev_enabled(dev))
5024 return 0;
5025 if (dev->class == ATA_DEV_ATA)
5026 ata_start_drive(dev);
5027
5028 return 0;
5029 }
5030
5031 /**
5032 * ata_device_suspend - prepare a device for suspend
5033 * @dev: the device to suspend
5034 * @state: target power management state
5035 *
5036 * Flush the cache on the drive, if appropriate, then issue a
5037 * standbynow command.
5038 */
5039 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5040 {
5041 struct ata_port *ap = dev->ap;
5042
5043 if (!ata_dev_enabled(dev))
5044 return 0;
5045 if (dev->class == ATA_DEV_ATA)
5046 ata_flush_cache(dev);
5047
5048 if (state.event != PM_EVENT_FREEZE)
5049 ata_standby_drive(dev);
5050 ap->flags |= ATA_FLAG_SUSPENDED;
5051 return 0;
5052 }
5053
5054 /**
5055 * ata_port_start - Set port up for dma.
5056 * @ap: Port to initialize
5057 *
5058 * Called just after data structures for each port are
5059 * initialized. Allocates space for PRD table.
5060 *
5061 * May be used as the port_start() entry in ata_port_operations.
5062 *
5063 * LOCKING:
5064 * Inherited from caller.
5065 */
5066
5067 int ata_port_start (struct ata_port *ap)
5068 {
5069 struct device *dev = ap->dev;
5070 int rc;
5071
5072 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5073 if (!ap->prd)
5074 return -ENOMEM;
5075
5076 rc = ata_pad_alloc(ap, dev);
5077 if (rc) {
5078 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5079 return rc;
5080 }
5081
5082 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5083
5084 return 0;
5085 }
5086
5087
5088 /**
5089 * ata_port_stop - Undo ata_port_start()
5090 * @ap: Port to shut down
5091 *
5092 * Frees the PRD table.
5093 *
5094 * May be used as the port_stop() entry in ata_port_operations.
5095 *
5096 * LOCKING:
5097 * Inherited from caller.
5098 */
5099
5100 void ata_port_stop (struct ata_port *ap)
5101 {
5102 struct device *dev = ap->dev;
5103
5104 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5105 ata_pad_free(ap, dev);
5106 }
5107
5108 void ata_host_stop (struct ata_host_set *host_set)
5109 {
5110 if (host_set->mmio_base)
5111 iounmap(host_set->mmio_base);
5112 }
5113
5114
5115 /**
5116 * ata_host_remove - Unregister SCSI host structure with upper layers
5117 * @ap: Port to unregister
5118 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5119 *
5120 * LOCKING:
5121 * Inherited from caller.
5122 */
5123
5124 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5125 {
5126 struct Scsi_Host *sh = ap->host;
5127
5128 DPRINTK("ENTER\n");
5129
5130 if (do_unregister)
5131 scsi_remove_host(sh);
5132
5133 ap->ops->port_stop(ap);
5134 }
5135
5136 /**
5137 * ata_dev_init - Initialize an ata_device structure
5138 * @dev: Device structure to initialize
5139 *
5140 * Initialize @dev in preparation for probing.
5141 *
5142 * LOCKING:
5143 * Inherited from caller.
5144 */
5145 void ata_dev_init(struct ata_device *dev)
5146 {
5147 struct ata_port *ap = dev->ap;
5148 unsigned long flags;
5149
5150 /* SATA spd limit is bound to the first device */
5151 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5152
5153 /* High bits of dev->flags are used to record warm plug
5154 * requests which occur asynchronously. Synchronize using
5155 * host_set lock.
5156 */
5157 spin_lock_irqsave(&ap->host_set->lock, flags);
5158 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5159 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5160
5161 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5162 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5163 dev->pio_mask = UINT_MAX;
5164 dev->mwdma_mask = UINT_MAX;
5165 dev->udma_mask = UINT_MAX;
5166 }
5167
5168 /**
5169 * ata_host_init - Initialize an ata_port structure
5170 * @ap: Structure to initialize
5171 * @host: associated SCSI mid-layer structure
5172 * @host_set: Collection of hosts to which @ap belongs
5173 * @ent: Probe information provided by low-level driver
5174 * @port_no: Port number associated with this ata_port
5175 *
5176 * Initialize a new ata_port structure, and its associated
5177 * scsi_host.
5178 *
5179 * LOCKING:
5180 * Inherited from caller.
5181 */
5182 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5183 struct ata_host_set *host_set,
5184 const struct ata_probe_ent *ent, unsigned int port_no)
5185 {
5186 unsigned int i;
5187
5188 host->max_id = 16;
5189 host->max_lun = 1;
5190 host->max_channel = 1;
5191 host->unique_id = ata_unique_id++;
5192 host->max_cmd_len = 12;
5193
5194 ap->flags = ATA_FLAG_DISABLED;
5195 ap->id = host->unique_id;
5196 ap->host = host;
5197 ap->ctl = ATA_DEVCTL_OBS;
5198 ap->host_set = host_set;
5199 ap->dev = ent->dev;
5200 ap->port_no = port_no;
5201 ap->hard_port_no =
5202 ent->legacy_mode ? ent->hard_port_no : port_no;
5203 ap->pio_mask = ent->pio_mask;
5204 ap->mwdma_mask = ent->mwdma_mask;
5205 ap->udma_mask = ent->udma_mask;
5206 ap->flags |= ent->host_flags;
5207 ap->ops = ent->port_ops;
5208 ap->hw_sata_spd_limit = UINT_MAX;
5209 ap->active_tag = ATA_TAG_POISON;
5210 ap->last_ctl = 0xFF;
5211 ap->msg_enable = ATA_MSG_DRV;
5212
5213 INIT_WORK(&ap->port_task, NULL, NULL);
5214 INIT_LIST_HEAD(&ap->eh_done_q);
5215 init_waitqueue_head(&ap->eh_wait_q);
5216
5217 /* set cable type */
5218 ap->cbl = ATA_CBL_NONE;
5219 if (ap->flags & ATA_FLAG_SATA)
5220 ap->cbl = ATA_CBL_SATA;
5221
5222 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5223 struct ata_device *dev = &ap->device[i];
5224 dev->ap = ap;
5225 dev->devno = i;
5226 ata_dev_init(dev);
5227 }
5228
5229 #ifdef ATA_IRQ_TRAP
5230 ap->stats.unhandled_irq = 1;
5231 ap->stats.idle_irq = 1;
5232 #endif
5233
5234 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5235 }
5236
5237 /**
5238 * ata_host_add - Attach low-level ATA driver to system
5239 * @ent: Information provided by low-level driver
5240 * @host_set: Collections of ports to which we add
5241 * @port_no: Port number associated with this host
5242 *
5243 * Attach low-level ATA driver to system.
5244 *
5245 * LOCKING:
5246 * PCI/etc. bus probe sem.
5247 *
5248 * RETURNS:
5249 * New ata_port on success, for NULL on error.
5250 */
5251
5252 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5253 struct ata_host_set *host_set,
5254 unsigned int port_no)
5255 {
5256 struct Scsi_Host *host;
5257 struct ata_port *ap;
5258 int rc;
5259
5260 DPRINTK("ENTER\n");
5261
5262 if (!ent->port_ops->probe_reset &&
5263 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5264 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5265 port_no);
5266 return NULL;
5267 }
5268
5269 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5270 if (!host)
5271 return NULL;
5272
5273 host->transportt = &ata_scsi_transport_template;
5274
5275 ap = ata_shost_to_port(host);
5276
5277 ata_host_init(ap, host, host_set, ent, port_no);
5278
5279 rc = ap->ops->port_start(ap);
5280 if (rc)
5281 goto err_out;
5282
5283 return ap;
5284
5285 err_out:
5286 scsi_host_put(host);
5287 return NULL;
5288 }
5289
5290 /**
5291 * ata_device_add - Register hardware device with ATA and SCSI layers
5292 * @ent: Probe information describing hardware device to be registered
5293 *
5294 * This function processes the information provided in the probe
5295 * information struct @ent, allocates the necessary ATA and SCSI
5296 * host information structures, initializes them, and registers
5297 * everything with requisite kernel subsystems.
5298 *
5299 * This function requests irqs, probes the ATA bus, and probes
5300 * the SCSI bus.
5301 *
5302 * LOCKING:
5303 * PCI/etc. bus probe sem.
5304 *
5305 * RETURNS:
5306 * Number of ports registered. Zero on error (no ports registered).
5307 */
5308
5309 int ata_device_add(const struct ata_probe_ent *ent)
5310 {
5311 unsigned int count = 0, i;
5312 struct device *dev = ent->dev;
5313 struct ata_host_set *host_set;
5314
5315 DPRINTK("ENTER\n");
5316 /* alloc a container for our list of ATA ports (buses) */
5317 host_set = kzalloc(sizeof(struct ata_host_set) +
5318 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5319 if (!host_set)
5320 return 0;
5321 spin_lock_init(&host_set->lock);
5322
5323 host_set->dev = dev;
5324 host_set->n_ports = ent->n_ports;
5325 host_set->irq = ent->irq;
5326 host_set->mmio_base = ent->mmio_base;
5327 host_set->private_data = ent->private_data;
5328 host_set->ops = ent->port_ops;
5329 host_set->flags = ent->host_set_flags;
5330
5331 /* register each port bound to this device */
5332 for (i = 0; i < ent->n_ports; i++) {
5333 struct ata_port *ap;
5334 unsigned long xfer_mode_mask;
5335
5336 ap = ata_host_add(ent, host_set, i);
5337 if (!ap)
5338 goto err_out;
5339
5340 host_set->ports[i] = ap;
5341 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5342 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5343 (ap->pio_mask << ATA_SHIFT_PIO);
5344
5345 /* print per-port info to dmesg */
5346 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5347 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5348 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5349 ata_mode_string(xfer_mode_mask),
5350 ap->ioaddr.cmd_addr,
5351 ap->ioaddr.ctl_addr,
5352 ap->ioaddr.bmdma_addr,
5353 ent->irq);
5354
5355 ata_chk_status(ap);
5356 host_set->ops->irq_clear(ap);
5357 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5358 count++;
5359 }
5360
5361 if (!count)
5362 goto err_free_ret;
5363
5364 /* obtain irq, that is shared between channels */
5365 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5366 DRV_NAME, host_set))
5367 goto err_out;
5368
5369 /* perform each probe synchronously */
5370 DPRINTK("probe begin\n");
5371 for (i = 0; i < count; i++) {
5372 struct ata_port *ap;
5373 u32 scontrol;
5374 int rc;
5375
5376 ap = host_set->ports[i];
5377
5378 /* init sata_spd_limit to the current value */
5379 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5380 int spd = (scontrol >> 4) & 0xf;
5381 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5382 }
5383 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5384
5385 DPRINTK("ata%u: bus probe begin\n", ap->id);
5386 rc = ata_bus_probe(ap);
5387 DPRINTK("ata%u: bus probe end\n", ap->id);
5388
5389 if (rc) {
5390 /* FIXME: do something useful here?
5391 * Current libata behavior will
5392 * tear down everything when
5393 * the module is removed
5394 * or the h/w is unplugged.
5395 */
5396 }
5397
5398 rc = scsi_add_host(ap->host, dev);
5399 if (rc) {
5400 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5401 /* FIXME: do something useful here */
5402 /* FIXME: handle unconditional calls to
5403 * scsi_scan_host and ata_host_remove, below,
5404 * at the very least
5405 */
5406 }
5407 }
5408
5409 /* probes are done, now scan each port's disk(s) */
5410 DPRINTK("host probe begin\n");
5411 for (i = 0; i < count; i++) {
5412 struct ata_port *ap = host_set->ports[i];
5413
5414 ata_scsi_scan_host(ap);
5415 }
5416
5417 dev_set_drvdata(dev, host_set);
5418
5419 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5420 return ent->n_ports; /* success */
5421
5422 err_out:
5423 for (i = 0; i < count; i++) {
5424 ata_host_remove(host_set->ports[i], 1);
5425 scsi_host_put(host_set->ports[i]->host);
5426 }
5427 err_free_ret:
5428 kfree(host_set);
5429 VPRINTK("EXIT, returning 0\n");
5430 return 0;
5431 }
5432
5433 /**
5434 * ata_host_set_remove - PCI layer callback for device removal
5435 * @host_set: ATA host set that was removed
5436 *
5437 * Unregister all objects associated with this host set. Free those
5438 * objects.
5439 *
5440 * LOCKING:
5441 * Inherited from calling layer (may sleep).
5442 */
5443
5444 void ata_host_set_remove(struct ata_host_set *host_set)
5445 {
5446 struct ata_port *ap;
5447 unsigned int i;
5448
5449 for (i = 0; i < host_set->n_ports; i++) {
5450 ap = host_set->ports[i];
5451 scsi_remove_host(ap->host);
5452 }
5453
5454 free_irq(host_set->irq, host_set);
5455
5456 for (i = 0; i < host_set->n_ports; i++) {
5457 ap = host_set->ports[i];
5458
5459 ata_scsi_release(ap->host);
5460
5461 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5462 struct ata_ioports *ioaddr = &ap->ioaddr;
5463
5464 if (ioaddr->cmd_addr == 0x1f0)
5465 release_region(0x1f0, 8);
5466 else if (ioaddr->cmd_addr == 0x170)
5467 release_region(0x170, 8);
5468 }
5469
5470 scsi_host_put(ap->host);
5471 }
5472
5473 if (host_set->ops->host_stop)
5474 host_set->ops->host_stop(host_set);
5475
5476 kfree(host_set);
5477 }
5478
5479 /**
5480 * ata_scsi_release - SCSI layer callback hook for host unload
5481 * @host: libata host to be unloaded
5482 *
5483 * Performs all duties necessary to shut down a libata port...
5484 * Kill port kthread, disable port, and release resources.
5485 *
5486 * LOCKING:
5487 * Inherited from SCSI layer.
5488 *
5489 * RETURNS:
5490 * One.
5491 */
5492
5493 int ata_scsi_release(struct Scsi_Host *host)
5494 {
5495 struct ata_port *ap = ata_shost_to_port(host);
5496
5497 DPRINTK("ENTER\n");
5498
5499 ap->ops->port_disable(ap);
5500 ata_host_remove(ap, 0);
5501
5502 DPRINTK("EXIT\n");
5503 return 1;
5504 }
5505
5506 /**
5507 * ata_std_ports - initialize ioaddr with standard port offsets.
5508 * @ioaddr: IO address structure to be initialized
5509 *
5510 * Utility function which initializes data_addr, error_addr,
5511 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5512 * device_addr, status_addr, and command_addr to standard offsets
5513 * relative to cmd_addr.
5514 *
5515 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5516 */
5517
5518 void ata_std_ports(struct ata_ioports *ioaddr)
5519 {
5520 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5521 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5522 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5523 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5524 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5525 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5526 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5527 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5528 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5529 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5530 }
5531
5532
5533 #ifdef CONFIG_PCI
5534
5535 void ata_pci_host_stop (struct ata_host_set *host_set)
5536 {
5537 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5538
5539 pci_iounmap(pdev, host_set->mmio_base);
5540 }
5541
5542 /**
5543 * ata_pci_remove_one - PCI layer callback for device removal
5544 * @pdev: PCI device that was removed
5545 *
5546 * PCI layer indicates to libata via this hook that
5547 * hot-unplug or module unload event has occurred.
5548 * Handle this by unregistering all objects associated
5549 * with this PCI device. Free those objects. Then finally
5550 * release PCI resources and disable device.
5551 *
5552 * LOCKING:
5553 * Inherited from PCI layer (may sleep).
5554 */
5555
5556 void ata_pci_remove_one (struct pci_dev *pdev)
5557 {
5558 struct device *dev = pci_dev_to_dev(pdev);
5559 struct ata_host_set *host_set = dev_get_drvdata(dev);
5560
5561 ata_host_set_remove(host_set);
5562 pci_release_regions(pdev);
5563 pci_disable_device(pdev);
5564 dev_set_drvdata(dev, NULL);
5565 }
5566
5567 /* move to PCI subsystem */
5568 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5569 {
5570 unsigned long tmp = 0;
5571
5572 switch (bits->width) {
5573 case 1: {
5574 u8 tmp8 = 0;
5575 pci_read_config_byte(pdev, bits->reg, &tmp8);
5576 tmp = tmp8;
5577 break;
5578 }
5579 case 2: {
5580 u16 tmp16 = 0;
5581 pci_read_config_word(pdev, bits->reg, &tmp16);
5582 tmp = tmp16;
5583 break;
5584 }
5585 case 4: {
5586 u32 tmp32 = 0;
5587 pci_read_config_dword(pdev, bits->reg, &tmp32);
5588 tmp = tmp32;
5589 break;
5590 }
5591
5592 default:
5593 return -EINVAL;
5594 }
5595
5596 tmp &= bits->mask;
5597
5598 return (tmp == bits->val) ? 1 : 0;
5599 }
5600
5601 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5602 {
5603 pci_save_state(pdev);
5604 pci_disable_device(pdev);
5605 pci_set_power_state(pdev, PCI_D3hot);
5606 return 0;
5607 }
5608
5609 int ata_pci_device_resume(struct pci_dev *pdev)
5610 {
5611 pci_set_power_state(pdev, PCI_D0);
5612 pci_restore_state(pdev);
5613 pci_enable_device(pdev);
5614 pci_set_master(pdev);
5615 return 0;
5616 }
5617 #endif /* CONFIG_PCI */
5618
5619
5620 static int __init ata_init(void)
5621 {
5622 ata_wq = create_workqueue("ata");
5623 if (!ata_wq)
5624 return -ENOMEM;
5625
5626 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5627 return 0;
5628 }
5629
5630 static void __exit ata_exit(void)
5631 {
5632 destroy_workqueue(ata_wq);
5633 }
5634
5635 module_init(ata_init);
5636 module_exit(ata_exit);
5637
5638 static unsigned long ratelimit_time;
5639 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5640
5641 int ata_ratelimit(void)
5642 {
5643 int rc;
5644 unsigned long flags;
5645
5646 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5647
5648 if (time_after(jiffies, ratelimit_time)) {
5649 rc = 1;
5650 ratelimit_time = jiffies + (HZ/5);
5651 } else
5652 rc = 0;
5653
5654 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5655
5656 return rc;
5657 }
5658
5659 /**
5660 * ata_wait_register - wait until register value changes
5661 * @reg: IO-mapped register
5662 * @mask: Mask to apply to read register value
5663 * @val: Wait condition
5664 * @interval_msec: polling interval in milliseconds
5665 * @timeout_msec: timeout in milliseconds
5666 *
5667 * Waiting for some bits of register to change is a common
5668 * operation for ATA controllers. This function reads 32bit LE
5669 * IO-mapped register @reg and tests for the following condition.
5670 *
5671 * (*@reg & mask) != val
5672 *
5673 * If the condition is met, it returns; otherwise, the process is
5674 * repeated after @interval_msec until timeout.
5675 *
5676 * LOCKING:
5677 * Kernel thread context (may sleep)
5678 *
5679 * RETURNS:
5680 * The final register value.
5681 */
5682 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5683 unsigned long interval_msec,
5684 unsigned long timeout_msec)
5685 {
5686 unsigned long timeout;
5687 u32 tmp;
5688
5689 tmp = ioread32(reg);
5690
5691 /* Calculate timeout _after_ the first read to make sure
5692 * preceding writes reach the controller before starting to
5693 * eat away the timeout.
5694 */
5695 timeout = jiffies + (timeout_msec * HZ) / 1000;
5696
5697 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5698 msleep(interval_msec);
5699 tmp = ioread32(reg);
5700 }
5701
5702 return tmp;
5703 }
5704
5705 /*
5706 * libata is essentially a library of internal helper functions for
5707 * low-level ATA host controller drivers. As such, the API/ABI is
5708 * likely to change as new drivers are added and updated.
5709 * Do not depend on ABI/API stability.
5710 */
5711
5712 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5713 EXPORT_SYMBOL_GPL(ata_std_ports);
5714 EXPORT_SYMBOL_GPL(ata_device_add);
5715 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5716 EXPORT_SYMBOL_GPL(ata_sg_init);
5717 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5718 EXPORT_SYMBOL_GPL(ata_qc_complete);
5719 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5720 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5721 EXPORT_SYMBOL_GPL(ata_tf_load);
5722 EXPORT_SYMBOL_GPL(ata_tf_read);
5723 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5724 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5725 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5726 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5727 EXPORT_SYMBOL_GPL(ata_check_status);
5728 EXPORT_SYMBOL_GPL(ata_altstatus);
5729 EXPORT_SYMBOL_GPL(ata_exec_command);
5730 EXPORT_SYMBOL_GPL(ata_port_start);
5731 EXPORT_SYMBOL_GPL(ata_port_stop);
5732 EXPORT_SYMBOL_GPL(ata_host_stop);
5733 EXPORT_SYMBOL_GPL(ata_interrupt);
5734 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5735 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5736 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5737 EXPORT_SYMBOL_GPL(ata_qc_prep);
5738 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5739 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5740 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5741 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5742 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5743 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5744 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5745 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5746 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5747 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5748 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5749 EXPORT_SYMBOL_GPL(ata_port_probe);
5750 EXPORT_SYMBOL_GPL(sata_set_spd);
5751 EXPORT_SYMBOL_GPL(sata_phy_reset);
5752 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5753 EXPORT_SYMBOL_GPL(ata_bus_reset);
5754 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5755 EXPORT_SYMBOL_GPL(ata_std_softreset);
5756 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5757 EXPORT_SYMBOL_GPL(ata_std_postreset);
5758 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5759 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5760 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5761 EXPORT_SYMBOL_GPL(ata_dev_classify);
5762 EXPORT_SYMBOL_GPL(ata_dev_pair);
5763 EXPORT_SYMBOL_GPL(ata_port_disable);
5764 EXPORT_SYMBOL_GPL(ata_ratelimit);
5765 EXPORT_SYMBOL_GPL(ata_wait_register);
5766 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5767 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5768 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5769 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5770 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5771 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5772 EXPORT_SYMBOL_GPL(ata_scsi_release);
5773 EXPORT_SYMBOL_GPL(ata_host_intr);
5774 EXPORT_SYMBOL_GPL(sata_scr_valid);
5775 EXPORT_SYMBOL_GPL(sata_scr_read);
5776 EXPORT_SYMBOL_GPL(sata_scr_write);
5777 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5778 EXPORT_SYMBOL_GPL(ata_port_online);
5779 EXPORT_SYMBOL_GPL(ata_port_offline);
5780 EXPORT_SYMBOL_GPL(ata_id_string);
5781 EXPORT_SYMBOL_GPL(ata_id_c_string);
5782 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5783
5784 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5785 EXPORT_SYMBOL_GPL(ata_timing_compute);
5786 EXPORT_SYMBOL_GPL(ata_timing_merge);
5787
5788 #ifdef CONFIG_PCI
5789 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5790 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5791 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5792 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5793 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5794 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5795 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5796 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5797 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5798 #endif /* CONFIG_PCI */
5799
5800 EXPORT_SYMBOL_GPL(ata_device_suspend);
5801 EXPORT_SYMBOL_GPL(ata_device_resume);
5802 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5803 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5804
5805 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5806 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5807 EXPORT_SYMBOL_GPL(ata_port_abort);
5808 EXPORT_SYMBOL_GPL(ata_port_freeze);
5809 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5810 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5811 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5812 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5813 EXPORT_SYMBOL_GPL(ata_do_eh);