]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/scsi/libata-core.c
[PATCH] libata: kill ata_dev_reread_id()
[mirror_ubuntu-focal-kernel.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 MODULE_AUTHOR("Jeff Garzik");
82 MODULE_DESCRIPTION("Library module for ATA devices");
83 MODULE_LICENSE("GPL");
84 MODULE_VERSION(DRV_VERSION);
85
86
87 /**
88 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
89 * @tf: Taskfile to convert
90 * @fis: Buffer into which data will output
91 * @pmp: Port multiplier port
92 *
93 * Converts a standard ATA taskfile to a Serial ATA
94 * FIS structure (Register - Host to Device).
95 *
96 * LOCKING:
97 * Inherited from caller.
98 */
99
100 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
101 {
102 fis[0] = 0x27; /* Register - Host to Device FIS */
103 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
104 bit 7 indicates Command FIS */
105 fis[2] = tf->command;
106 fis[3] = tf->feature;
107
108 fis[4] = tf->lbal;
109 fis[5] = tf->lbam;
110 fis[6] = tf->lbah;
111 fis[7] = tf->device;
112
113 fis[8] = tf->hob_lbal;
114 fis[9] = tf->hob_lbam;
115 fis[10] = tf->hob_lbah;
116 fis[11] = tf->hob_feature;
117
118 fis[12] = tf->nsect;
119 fis[13] = tf->hob_nsect;
120 fis[14] = 0;
121 fis[15] = tf->ctl;
122
123 fis[16] = 0;
124 fis[17] = 0;
125 fis[18] = 0;
126 fis[19] = 0;
127 }
128
129 /**
130 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
131 * @fis: Buffer from which data will be input
132 * @tf: Taskfile to output
133 *
134 * Converts a serial ATA FIS structure to a standard ATA taskfile.
135 *
136 * LOCKING:
137 * Inherited from caller.
138 */
139
140 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
141 {
142 tf->command = fis[2]; /* status */
143 tf->feature = fis[3]; /* error */
144
145 tf->lbal = fis[4];
146 tf->lbam = fis[5];
147 tf->lbah = fis[6];
148 tf->device = fis[7];
149
150 tf->hob_lbal = fis[8];
151 tf->hob_lbam = fis[9];
152 tf->hob_lbah = fis[10];
153
154 tf->nsect = fis[12];
155 tf->hob_nsect = fis[13];
156 }
157
158 static const u8 ata_rw_cmds[] = {
159 /* pio multi */
160 ATA_CMD_READ_MULTI,
161 ATA_CMD_WRITE_MULTI,
162 ATA_CMD_READ_MULTI_EXT,
163 ATA_CMD_WRITE_MULTI_EXT,
164 0,
165 0,
166 0,
167 ATA_CMD_WRITE_MULTI_FUA_EXT,
168 /* pio */
169 ATA_CMD_PIO_READ,
170 ATA_CMD_PIO_WRITE,
171 ATA_CMD_PIO_READ_EXT,
172 ATA_CMD_PIO_WRITE_EXT,
173 0,
174 0,
175 0,
176 0,
177 /* dma */
178 ATA_CMD_READ,
179 ATA_CMD_WRITE,
180 ATA_CMD_READ_EXT,
181 ATA_CMD_WRITE_EXT,
182 0,
183 0,
184 0,
185 ATA_CMD_WRITE_FUA_EXT
186 };
187
188 /**
189 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
190 * @qc: command to examine and configure
191 *
192 * Examine the device configuration and tf->flags to calculate
193 * the proper read/write commands and protocol to use.
194 *
195 * LOCKING:
196 * caller.
197 */
198 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
199 {
200 struct ata_taskfile *tf = &qc->tf;
201 struct ata_device *dev = qc->dev;
202 u8 cmd;
203
204 int index, fua, lba48, write;
205
206 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
207 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
208 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
209
210 if (dev->flags & ATA_DFLAG_PIO) {
211 tf->protocol = ATA_PROT_PIO;
212 index = dev->multi_count ? 0 : 8;
213 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
214 /* Unable to use DMA due to host limitation */
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 8;
217 } else {
218 tf->protocol = ATA_PROT_DMA;
219 index = 16;
220 }
221
222 cmd = ata_rw_cmds[index + fua + lba48 + write];
223 if (cmd) {
224 tf->command = cmd;
225 return 0;
226 }
227 return -1;
228 }
229
230 static const char * const xfer_mode_str[] = {
231 "UDMA/16",
232 "UDMA/25",
233 "UDMA/33",
234 "UDMA/44",
235 "UDMA/66",
236 "UDMA/100",
237 "UDMA/133",
238 "UDMA7",
239 "MWDMA0",
240 "MWDMA1",
241 "MWDMA2",
242 "PIO0",
243 "PIO1",
244 "PIO2",
245 "PIO3",
246 "PIO4",
247 };
248
249 /**
250 * ata_udma_string - convert UDMA bit offset to string
251 * @mask: mask of bits supported; only highest bit counts.
252 *
253 * Determine string which represents the highest speed
254 * (highest bit in @udma_mask).
255 *
256 * LOCKING:
257 * None.
258 *
259 * RETURNS:
260 * Constant C string representing highest speed listed in
261 * @udma_mask, or the constant C string "<n/a>".
262 */
263
264 static const char *ata_mode_string(unsigned int mask)
265 {
266 int i;
267
268 for (i = 7; i >= 0; i--)
269 if (mask & (1 << i))
270 goto out;
271 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
272 if (mask & (1 << i))
273 goto out;
274 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
275 if (mask & (1 << i))
276 goto out;
277
278 return "<n/a>";
279
280 out:
281 return xfer_mode_str[i];
282 }
283
284 /**
285 * ata_pio_devchk - PATA device presence detection
286 * @ap: ATA channel to examine
287 * @device: Device to examine (starting at zero)
288 *
289 * This technique was originally described in
290 * Hale Landis's ATADRVR (www.ata-atapi.com), and
291 * later found its way into the ATA/ATAPI spec.
292 *
293 * Write a pattern to the ATA shadow registers,
294 * and if a device is present, it will respond by
295 * correctly storing and echoing back the
296 * ATA shadow register contents.
297 *
298 * LOCKING:
299 * caller.
300 */
301
302 static unsigned int ata_pio_devchk(struct ata_port *ap,
303 unsigned int device)
304 {
305 struct ata_ioports *ioaddr = &ap->ioaddr;
306 u8 nsect, lbal;
307
308 ap->ops->dev_select(ap, device);
309
310 outb(0x55, ioaddr->nsect_addr);
311 outb(0xaa, ioaddr->lbal_addr);
312
313 outb(0xaa, ioaddr->nsect_addr);
314 outb(0x55, ioaddr->lbal_addr);
315
316 outb(0x55, ioaddr->nsect_addr);
317 outb(0xaa, ioaddr->lbal_addr);
318
319 nsect = inb(ioaddr->nsect_addr);
320 lbal = inb(ioaddr->lbal_addr);
321
322 if ((nsect == 0x55) && (lbal == 0xaa))
323 return 1; /* we found a device */
324
325 return 0; /* nothing found */
326 }
327
328 /**
329 * ata_mmio_devchk - PATA device presence detection
330 * @ap: ATA channel to examine
331 * @device: Device to examine (starting at zero)
332 *
333 * This technique was originally described in
334 * Hale Landis's ATADRVR (www.ata-atapi.com), and
335 * later found its way into the ATA/ATAPI spec.
336 *
337 * Write a pattern to the ATA shadow registers,
338 * and if a device is present, it will respond by
339 * correctly storing and echoing back the
340 * ATA shadow register contents.
341 *
342 * LOCKING:
343 * caller.
344 */
345
346 static unsigned int ata_mmio_devchk(struct ata_port *ap,
347 unsigned int device)
348 {
349 struct ata_ioports *ioaddr = &ap->ioaddr;
350 u8 nsect, lbal;
351
352 ap->ops->dev_select(ap, device);
353
354 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
355 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
356
357 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
358 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
359
360 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
362
363 nsect = readb((void __iomem *) ioaddr->nsect_addr);
364 lbal = readb((void __iomem *) ioaddr->lbal_addr);
365
366 if ((nsect == 0x55) && (lbal == 0xaa))
367 return 1; /* we found a device */
368
369 return 0; /* nothing found */
370 }
371
372 /**
373 * ata_devchk - PATA device presence detection
374 * @ap: ATA channel to examine
375 * @device: Device to examine (starting at zero)
376 *
377 * Dispatch ATA device presence detection, depending
378 * on whether we are using PIO or MMIO to talk to the
379 * ATA shadow registers.
380 *
381 * LOCKING:
382 * caller.
383 */
384
385 static unsigned int ata_devchk(struct ata_port *ap,
386 unsigned int device)
387 {
388 if (ap->flags & ATA_FLAG_MMIO)
389 return ata_mmio_devchk(ap, device);
390 return ata_pio_devchk(ap, device);
391 }
392
393 /**
394 * ata_dev_classify - determine device type based on ATA-spec signature
395 * @tf: ATA taskfile register set for device to be identified
396 *
397 * Determine from taskfile register contents whether a device is
398 * ATA or ATAPI, as per "Signature and persistence" section
399 * of ATA/PI spec (volume 1, sect 5.14).
400 *
401 * LOCKING:
402 * None.
403 *
404 * RETURNS:
405 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
406 * the event of failure.
407 */
408
409 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
410 {
411 /* Apple's open source Darwin code hints that some devices only
412 * put a proper signature into the LBA mid/high registers,
413 * So, we only check those. It's sufficient for uniqueness.
414 */
415
416 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
417 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
418 DPRINTK("found ATA device by sig\n");
419 return ATA_DEV_ATA;
420 }
421
422 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
423 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
424 DPRINTK("found ATAPI device by sig\n");
425 return ATA_DEV_ATAPI;
426 }
427
428 DPRINTK("unknown device\n");
429 return ATA_DEV_UNKNOWN;
430 }
431
432 /**
433 * ata_dev_try_classify - Parse returned ATA device signature
434 * @ap: ATA channel to examine
435 * @device: Device to examine (starting at zero)
436 * @r_err: Value of error register on completion
437 *
438 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
439 * an ATA/ATAPI-defined set of values is placed in the ATA
440 * shadow registers, indicating the results of device detection
441 * and diagnostics.
442 *
443 * Select the ATA device, and read the values from the ATA shadow
444 * registers. Then parse according to the Error register value,
445 * and the spec-defined values examined by ata_dev_classify().
446 *
447 * LOCKING:
448 * caller.
449 *
450 * RETURNS:
451 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
452 */
453
454 static unsigned int
455 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
456 {
457 struct ata_taskfile tf;
458 unsigned int class;
459 u8 err;
460
461 ap->ops->dev_select(ap, device);
462
463 memset(&tf, 0, sizeof(tf));
464
465 ap->ops->tf_read(ap, &tf);
466 err = tf.feature;
467 if (r_err)
468 *r_err = err;
469
470 /* see if device passed diags */
471 if (err == 1)
472 /* do nothing */ ;
473 else if ((device == 0) && (err == 0x81))
474 /* do nothing */ ;
475 else
476 return ATA_DEV_NONE;
477
478 /* determine if device is ATA or ATAPI */
479 class = ata_dev_classify(&tf);
480
481 if (class == ATA_DEV_UNKNOWN)
482 return ATA_DEV_NONE;
483 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
484 return ATA_DEV_NONE;
485 return class;
486 }
487
488 /**
489 * ata_id_string - Convert IDENTIFY DEVICE page into string
490 * @id: IDENTIFY DEVICE results we will examine
491 * @s: string into which data is output
492 * @ofs: offset into identify device page
493 * @len: length of string to return. must be an even number.
494 *
495 * The strings in the IDENTIFY DEVICE page are broken up into
496 * 16-bit chunks. Run through the string, and output each
497 * 8-bit chunk linearly, regardless of platform.
498 *
499 * LOCKING:
500 * caller.
501 */
502
503 void ata_id_string(const u16 *id, unsigned char *s,
504 unsigned int ofs, unsigned int len)
505 {
506 unsigned int c;
507
508 while (len > 0) {
509 c = id[ofs] >> 8;
510 *s = c;
511 s++;
512
513 c = id[ofs] & 0xff;
514 *s = c;
515 s++;
516
517 ofs++;
518 len -= 2;
519 }
520 }
521
522 /**
523 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
524 * @id: IDENTIFY DEVICE results we will examine
525 * @s: string into which data is output
526 * @ofs: offset into identify device page
527 * @len: length of string to return. must be an odd number.
528 *
529 * This function is identical to ata_id_string except that it
530 * trims trailing spaces and terminates the resulting string with
531 * null. @len must be actual maximum length (even number) + 1.
532 *
533 * LOCKING:
534 * caller.
535 */
536 void ata_id_c_string(const u16 *id, unsigned char *s,
537 unsigned int ofs, unsigned int len)
538 {
539 unsigned char *p;
540
541 WARN_ON(!(len & 1));
542
543 ata_id_string(id, s, ofs, len - 1);
544
545 p = s + strnlen(s, len - 1);
546 while (p > s && p[-1] == ' ')
547 p--;
548 *p = '\0';
549 }
550
551 static u64 ata_id_n_sectors(const u16 *id)
552 {
553 if (ata_id_has_lba(id)) {
554 if (ata_id_has_lba48(id))
555 return ata_id_u64(id, 100);
556 else
557 return ata_id_u32(id, 60);
558 } else {
559 if (ata_id_current_chs_valid(id))
560 return ata_id_u32(id, 57);
561 else
562 return id[1] * id[3] * id[6];
563 }
564 }
565
566 /**
567 * ata_noop_dev_select - Select device 0/1 on ATA bus
568 * @ap: ATA channel to manipulate
569 * @device: ATA device (numbered from zero) to select
570 *
571 * This function performs no actual function.
572 *
573 * May be used as the dev_select() entry in ata_port_operations.
574 *
575 * LOCKING:
576 * caller.
577 */
578 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
579 {
580 }
581
582
583 /**
584 * ata_std_dev_select - Select device 0/1 on ATA bus
585 * @ap: ATA channel to manipulate
586 * @device: ATA device (numbered from zero) to select
587 *
588 * Use the method defined in the ATA specification to
589 * make either device 0, or device 1, active on the
590 * ATA channel. Works with both PIO and MMIO.
591 *
592 * May be used as the dev_select() entry in ata_port_operations.
593 *
594 * LOCKING:
595 * caller.
596 */
597
598 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
599 {
600 u8 tmp;
601
602 if (device == 0)
603 tmp = ATA_DEVICE_OBS;
604 else
605 tmp = ATA_DEVICE_OBS | ATA_DEV1;
606
607 if (ap->flags & ATA_FLAG_MMIO) {
608 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
609 } else {
610 outb(tmp, ap->ioaddr.device_addr);
611 }
612 ata_pause(ap); /* needed; also flushes, for mmio */
613 }
614
615 /**
616 * ata_dev_select - Select device 0/1 on ATA bus
617 * @ap: ATA channel to manipulate
618 * @device: ATA device (numbered from zero) to select
619 * @wait: non-zero to wait for Status register BSY bit to clear
620 * @can_sleep: non-zero if context allows sleeping
621 *
622 * Use the method defined in the ATA specification to
623 * make either device 0, or device 1, active on the
624 * ATA channel.
625 *
626 * This is a high-level version of ata_std_dev_select(),
627 * which additionally provides the services of inserting
628 * the proper pauses and status polling, where needed.
629 *
630 * LOCKING:
631 * caller.
632 */
633
634 void ata_dev_select(struct ata_port *ap, unsigned int device,
635 unsigned int wait, unsigned int can_sleep)
636 {
637 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
638 ap->id, device, wait);
639
640 if (wait)
641 ata_wait_idle(ap);
642
643 ap->ops->dev_select(ap, device);
644
645 if (wait) {
646 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
647 msleep(150);
648 ata_wait_idle(ap);
649 }
650 }
651
652 /**
653 * ata_dump_id - IDENTIFY DEVICE info debugging output
654 * @id: IDENTIFY DEVICE page to dump
655 *
656 * Dump selected 16-bit words from the given IDENTIFY DEVICE
657 * page.
658 *
659 * LOCKING:
660 * caller.
661 */
662
663 static inline void ata_dump_id(const u16 *id)
664 {
665 DPRINTK("49==0x%04x "
666 "53==0x%04x "
667 "63==0x%04x "
668 "64==0x%04x "
669 "75==0x%04x \n",
670 id[49],
671 id[53],
672 id[63],
673 id[64],
674 id[75]);
675 DPRINTK("80==0x%04x "
676 "81==0x%04x "
677 "82==0x%04x "
678 "83==0x%04x "
679 "84==0x%04x \n",
680 id[80],
681 id[81],
682 id[82],
683 id[83],
684 id[84]);
685 DPRINTK("88==0x%04x "
686 "93==0x%04x\n",
687 id[88],
688 id[93]);
689 }
690
691 /*
692 * Compute the PIO modes available for this device. This is not as
693 * trivial as it seems if we must consider early devices correctly.
694 *
695 * FIXME: pre IDE drive timing (do we care ?).
696 */
697
698 static unsigned int ata_pio_modes(const struct ata_device *adev)
699 {
700 u16 modes;
701
702 /* Usual case. Word 53 indicates word 64 is valid */
703 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
704 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
705 modes <<= 3;
706 modes |= 0x7;
707 return modes;
708 }
709
710 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
711 number for the maximum. Turn it into a mask and return it */
712 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
713 return modes;
714 /* But wait.. there's more. Design your standards by committee and
715 you too can get a free iordy field to process. However its the
716 speeds not the modes that are supported... Note drivers using the
717 timing API will get this right anyway */
718 }
719
720 static inline void
721 ata_queue_packet_task(struct ata_port *ap)
722 {
723 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
724 queue_work(ata_wq, &ap->packet_task);
725 }
726
727 static inline void
728 ata_queue_pio_task(struct ata_port *ap)
729 {
730 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
731 queue_work(ata_wq, &ap->pio_task);
732 }
733
734 static inline void
735 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
736 {
737 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
738 queue_delayed_work(ata_wq, &ap->pio_task, delay);
739 }
740
741 /**
742 * ata_flush_pio_tasks - Flush pio_task and packet_task
743 * @ap: the target ata_port
744 *
745 * After this function completes, pio_task and packet_task are
746 * guranteed not to be running or scheduled.
747 *
748 * LOCKING:
749 * Kernel thread context (may sleep)
750 */
751
752 static void ata_flush_pio_tasks(struct ata_port *ap)
753 {
754 int tmp = 0;
755 unsigned long flags;
756
757 DPRINTK("ENTER\n");
758
759 spin_lock_irqsave(&ap->host_set->lock, flags);
760 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
761 spin_unlock_irqrestore(&ap->host_set->lock, flags);
762
763 DPRINTK("flush #1\n");
764 flush_workqueue(ata_wq);
765
766 /*
767 * At this point, if a task is running, it's guaranteed to see
768 * the FLUSH flag; thus, it will never queue pio tasks again.
769 * Cancel and flush.
770 */
771 tmp |= cancel_delayed_work(&ap->pio_task);
772 tmp |= cancel_delayed_work(&ap->packet_task);
773 if (!tmp) {
774 DPRINTK("flush #2\n");
775 flush_workqueue(ata_wq);
776 }
777
778 spin_lock_irqsave(&ap->host_set->lock, flags);
779 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
780 spin_unlock_irqrestore(&ap->host_set->lock, flags);
781
782 DPRINTK("EXIT\n");
783 }
784
785 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
786 {
787 struct completion *waiting = qc->private_data;
788
789 qc->ap->ops->tf_read(qc->ap, &qc->tf);
790 complete(waiting);
791 }
792
793 /**
794 * ata_exec_internal - execute libata internal command
795 * @ap: Port to which the command is sent
796 * @dev: Device to which the command is sent
797 * @tf: Taskfile registers for the command and the result
798 * @dma_dir: Data tranfer direction of the command
799 * @buf: Data buffer of the command
800 * @buflen: Length of data buffer
801 *
802 * Executes libata internal command with timeout. @tf contains
803 * command on entry and result on return. Timeout and error
804 * conditions are reported via return value. No recovery action
805 * is taken after a command times out. It's caller's duty to
806 * clean up after timeout.
807 *
808 * LOCKING:
809 * None. Should be called with kernel context, might sleep.
810 */
811
812 static unsigned
813 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
814 struct ata_taskfile *tf,
815 int dma_dir, void *buf, unsigned int buflen)
816 {
817 u8 command = tf->command;
818 struct ata_queued_cmd *qc;
819 DECLARE_COMPLETION(wait);
820 unsigned long flags;
821 unsigned int err_mask;
822
823 spin_lock_irqsave(&ap->host_set->lock, flags);
824
825 qc = ata_qc_new_init(ap, dev);
826 BUG_ON(qc == NULL);
827
828 qc->tf = *tf;
829 qc->dma_dir = dma_dir;
830 if (dma_dir != DMA_NONE) {
831 ata_sg_init_one(qc, buf, buflen);
832 qc->nsect = buflen / ATA_SECT_SIZE;
833 }
834
835 qc->private_data = &wait;
836 qc->complete_fn = ata_qc_complete_internal;
837
838 qc->err_mask = ata_qc_issue(qc);
839 if (qc->err_mask)
840 ata_qc_complete(qc);
841
842 spin_unlock_irqrestore(&ap->host_set->lock, flags);
843
844 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
845 spin_lock_irqsave(&ap->host_set->lock, flags);
846
847 /* We're racing with irq here. If we lose, the
848 * following test prevents us from completing the qc
849 * again. If completion irq occurs after here but
850 * before the caller cleans up, it will result in a
851 * spurious interrupt. We can live with that.
852 */
853 if (qc->flags & ATA_QCFLAG_ACTIVE) {
854 qc->err_mask = AC_ERR_TIMEOUT;
855 ata_qc_complete(qc);
856 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
857 ap->id, command);
858 }
859
860 spin_unlock_irqrestore(&ap->host_set->lock, flags);
861 }
862
863 *tf = qc->tf;
864 err_mask = qc->err_mask;
865
866 ata_qc_free(qc);
867
868 return err_mask;
869 }
870
871 /**
872 * ata_pio_need_iordy - check if iordy needed
873 * @adev: ATA device
874 *
875 * Check if the current speed of the device requires IORDY. Used
876 * by various controllers for chip configuration.
877 */
878
879 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
880 {
881 int pio;
882 int speed = adev->pio_mode - XFER_PIO_0;
883
884 if (speed < 2)
885 return 0;
886 if (speed > 2)
887 return 1;
888
889 /* If we have no drive specific rule, then PIO 2 is non IORDY */
890
891 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
892 pio = adev->id[ATA_ID_EIDE_PIO];
893 /* Is the speed faster than the drive allows non IORDY ? */
894 if (pio) {
895 /* This is cycle times not frequency - watch the logic! */
896 if (pio > 240) /* PIO2 is 240nS per cycle */
897 return 1;
898 return 0;
899 }
900 }
901 return 0;
902 }
903
904 /**
905 * ata_dev_read_id - Read ID data from the specified device
906 * @ap: port on which target device resides
907 * @dev: target device
908 * @p_class: pointer to class of the target device (may be changed)
909 * @post_reset: is this read ID post-reset?
910 * @id: buffer to fill IDENTIFY page into
911 *
912 * Read ID data from the specified device. ATA_CMD_ID_ATA is
913 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
914 * devices. This function also takes care of EDD signature
915 * misreporting (to be removed once EDD support is gone) and
916 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
917 *
918 * LOCKING:
919 * Kernel thread context (may sleep)
920 *
921 * RETURNS:
922 * 0 on success, -errno otherwise.
923 */
924 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
925 unsigned int *p_class, int post_reset, u16 *id)
926 {
927 unsigned int class = *p_class;
928 unsigned int using_edd;
929 struct ata_taskfile tf;
930 unsigned int err_mask = 0;
931 const char *reason;
932 int rc;
933
934 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
935
936 if (ap->ops->probe_reset ||
937 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
938 using_edd = 0;
939 else
940 using_edd = 1;
941
942 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
943
944 retry:
945 ata_tf_init(ap, &tf, dev->devno);
946
947 switch (class) {
948 case ATA_DEV_ATA:
949 tf.command = ATA_CMD_ID_ATA;
950 break;
951 case ATA_DEV_ATAPI:
952 tf.command = ATA_CMD_ID_ATAPI;
953 break;
954 default:
955 rc = -ENODEV;
956 reason = "unsupported class";
957 goto err_out;
958 }
959
960 tf.protocol = ATA_PROT_PIO;
961
962 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
963 id, sizeof(id[0]) * ATA_ID_WORDS);
964
965 if (err_mask) {
966 rc = -EIO;
967 reason = "I/O error";
968
969 if (err_mask & ~AC_ERR_DEV)
970 goto err_out;
971
972 /*
973 * arg! EDD works for all test cases, but seems to return
974 * the ATA signature for some ATAPI devices. Until the
975 * reason for this is found and fixed, we fix up the mess
976 * here. If IDENTIFY DEVICE returns command aborted
977 * (as ATAPI devices do), then we issue an
978 * IDENTIFY PACKET DEVICE.
979 *
980 * ATA software reset (SRST, the default) does not appear
981 * to have this problem.
982 */
983 if ((using_edd) && (class == ATA_DEV_ATA)) {
984 u8 err = tf.feature;
985 if (err & ATA_ABORTED) {
986 class = ATA_DEV_ATAPI;
987 goto retry;
988 }
989 }
990 goto err_out;
991 }
992
993 swap_buf_le16(id, ATA_ID_WORDS);
994
995 /* print device capabilities */
996 printk(KERN_DEBUG "ata%u: dev %u cfg "
997 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
998 ap->id, dev->devno,
999 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
1000
1001 /* sanity check */
1002 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1003 rc = -EINVAL;
1004 reason = "device reports illegal type";
1005 goto err_out;
1006 }
1007
1008 if (post_reset && class == ATA_DEV_ATA) {
1009 /*
1010 * The exact sequence expected by certain pre-ATA4 drives is:
1011 * SRST RESET
1012 * IDENTIFY
1013 * INITIALIZE DEVICE PARAMETERS
1014 * anything else..
1015 * Some drives were very specific about that exact sequence.
1016 */
1017 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1018 err_mask = ata_dev_init_params(ap, dev);
1019 if (err_mask) {
1020 rc = -EIO;
1021 reason = "INIT_DEV_PARAMS failed";
1022 goto err_out;
1023 }
1024
1025 /* current CHS translation info (id[53-58]) might be
1026 * changed. reread the identify device info.
1027 */
1028 post_reset = 0;
1029 goto retry;
1030 }
1031 }
1032
1033 *p_class = class;
1034 return 0;
1035
1036 err_out:
1037 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1038 ap->id, dev->devno, reason);
1039 kfree(id);
1040 return rc;
1041 }
1042
1043 /**
1044 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1045 * @ap: port on which device we wish to probe resides
1046 * @device: device bus address, starting at zero
1047 *
1048 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1049 * command, and read back the 512-byte device information page.
1050 * The device information page is fed to us via the standard
1051 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1052 * using standard PIO-IN paths)
1053 *
1054 * After reading the device information page, we use several
1055 * bits of information from it to initialize data structures
1056 * that will be used during the lifetime of the ata_device.
1057 * Other data from the info page is used to disqualify certain
1058 * older ATA devices we do not wish to support.
1059 *
1060 * LOCKING:
1061 * Inherited from caller. Some functions called by this function
1062 * obtain the host_set lock.
1063 */
1064
1065 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1066 {
1067 struct ata_device *dev = &ap->device[device];
1068 unsigned long xfer_modes;
1069 int i, rc;
1070
1071 if (!ata_dev_present(dev)) {
1072 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1073 ap->id, device);
1074 return;
1075 }
1076
1077 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1078
1079 rc = ata_dev_read_id(ap, dev, &dev->class, 1, dev->id);
1080 if (rc)
1081 goto err_out;
1082
1083 /*
1084 * common ATA, ATAPI feature tests
1085 */
1086
1087 /* we require DMA support (bits 8 of word 49) */
1088 if (!ata_id_has_dma(dev->id)) {
1089 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1090 goto err_out_nosup;
1091 }
1092
1093 /* quick-n-dirty find max transfer mode; for printk only */
1094 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1095 if (!xfer_modes)
1096 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1097 if (!xfer_modes)
1098 xfer_modes = ata_pio_modes(dev);
1099
1100 ata_dump_id(dev->id);
1101
1102 /* ATA-specific feature tests */
1103 if (dev->class == ATA_DEV_ATA) {
1104 dev->n_sectors = ata_id_n_sectors(dev->id);
1105
1106 if (ata_id_has_lba(dev->id)) {
1107 dev->flags |= ATA_DFLAG_LBA;
1108
1109 if (ata_id_has_lba48(dev->id))
1110 dev->flags |= ATA_DFLAG_LBA48;
1111
1112 /* print device info to dmesg */
1113 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1114 ap->id, device,
1115 ata_id_major_version(dev->id),
1116 ata_mode_string(xfer_modes),
1117 (unsigned long long)dev->n_sectors,
1118 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1119 } else {
1120 /* CHS */
1121
1122 /* Default translation */
1123 dev->cylinders = dev->id[1];
1124 dev->heads = dev->id[3];
1125 dev->sectors = dev->id[6];
1126
1127 if (ata_id_current_chs_valid(dev->id)) {
1128 /* Current CHS translation is valid. */
1129 dev->cylinders = dev->id[54];
1130 dev->heads = dev->id[55];
1131 dev->sectors = dev->id[56];
1132 }
1133
1134 /* print device info to dmesg */
1135 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1136 ap->id, device,
1137 ata_id_major_version(dev->id),
1138 ata_mode_string(xfer_modes),
1139 (unsigned long long)dev->n_sectors,
1140 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1141
1142 }
1143
1144 dev->cdb_len = 16;
1145 }
1146
1147 /* ATAPI-specific feature tests */
1148 else if (dev->class == ATA_DEV_ATAPI) {
1149 rc = atapi_cdb_len(dev->id);
1150 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1151 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1152 goto err_out_nosup;
1153 }
1154 dev->cdb_len = (unsigned int) rc;
1155
1156 /* print device info to dmesg */
1157 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1158 ap->id, device,
1159 ata_mode_string(xfer_modes));
1160 }
1161
1162 ap->host->max_cmd_len = 0;
1163 for (i = 0; i < ATA_MAX_DEVICES; i++)
1164 ap->host->max_cmd_len = max_t(unsigned int,
1165 ap->host->max_cmd_len,
1166 ap->device[i].cdb_len);
1167
1168 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1169 return;
1170
1171 err_out_nosup:
1172 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1173 ap->id, device);
1174 err_out:
1175 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1176 DPRINTK("EXIT, err\n");
1177 }
1178
1179
1180 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1181 struct ata_device *dev)
1182 {
1183 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1184 }
1185
1186 /**
1187 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1188 * @ap: Bus
1189 * @i: Device
1190 *
1191 * LOCKING:
1192 */
1193
1194 void ata_dev_config(struct ata_port *ap, unsigned int i)
1195 {
1196 /* limit bridge transfers to udma5, 200 sectors */
1197 if (ata_dev_knobble(ap, &ap->device[i])) {
1198 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1199 ap->id, i);
1200 ap->udma_mask &= ATA_UDMA5;
1201 ap->device[i].max_sectors = ATA_MAX_SECTORS;
1202 }
1203
1204 if (ap->ops->dev_config)
1205 ap->ops->dev_config(ap, &ap->device[i]);
1206 }
1207
1208 /**
1209 * ata_bus_probe - Reset and probe ATA bus
1210 * @ap: Bus to probe
1211 *
1212 * Master ATA bus probing function. Initiates a hardware-dependent
1213 * bus reset, then attempts to identify any devices found on
1214 * the bus.
1215 *
1216 * LOCKING:
1217 * PCI/etc. bus probe sem.
1218 *
1219 * RETURNS:
1220 * Zero on success, non-zero on error.
1221 */
1222
1223 static int ata_bus_probe(struct ata_port *ap)
1224 {
1225 unsigned int i, found = 0;
1226
1227 if (ap->ops->probe_reset) {
1228 unsigned int classes[ATA_MAX_DEVICES];
1229 int rc;
1230
1231 ata_port_probe(ap);
1232
1233 rc = ap->ops->probe_reset(ap, classes);
1234 if (rc == 0) {
1235 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1236 if (classes[i] == ATA_DEV_UNKNOWN)
1237 classes[i] = ATA_DEV_NONE;
1238 ap->device[i].class = classes[i];
1239 }
1240 } else {
1241 printk(KERN_ERR "ata%u: probe reset failed, "
1242 "disabling port\n", ap->id);
1243 ata_port_disable(ap);
1244 }
1245 } else
1246 ap->ops->phy_reset(ap);
1247
1248 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1249 goto err_out;
1250
1251 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1252 ata_dev_identify(ap, i);
1253 if (ata_dev_present(&ap->device[i])) {
1254 found = 1;
1255 ata_dev_config(ap,i);
1256 }
1257 }
1258
1259 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1260 goto err_out_disable;
1261
1262 ata_set_mode(ap);
1263 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1264 goto err_out_disable;
1265
1266 return 0;
1267
1268 err_out_disable:
1269 ap->ops->port_disable(ap);
1270 err_out:
1271 return -1;
1272 }
1273
1274 /**
1275 * ata_port_probe - Mark port as enabled
1276 * @ap: Port for which we indicate enablement
1277 *
1278 * Modify @ap data structure such that the system
1279 * thinks that the entire port is enabled.
1280 *
1281 * LOCKING: host_set lock, or some other form of
1282 * serialization.
1283 */
1284
1285 void ata_port_probe(struct ata_port *ap)
1286 {
1287 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1288 }
1289
1290 /**
1291 * sata_print_link_status - Print SATA link status
1292 * @ap: SATA port to printk link status about
1293 *
1294 * This function prints link speed and status of a SATA link.
1295 *
1296 * LOCKING:
1297 * None.
1298 */
1299 static void sata_print_link_status(struct ata_port *ap)
1300 {
1301 u32 sstatus, tmp;
1302 const char *speed;
1303
1304 if (!ap->ops->scr_read)
1305 return;
1306
1307 sstatus = scr_read(ap, SCR_STATUS);
1308
1309 if (sata_dev_present(ap)) {
1310 tmp = (sstatus >> 4) & 0xf;
1311 if (tmp & (1 << 0))
1312 speed = "1.5";
1313 else if (tmp & (1 << 1))
1314 speed = "3.0";
1315 else
1316 speed = "<unknown>";
1317 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1318 ap->id, speed, sstatus);
1319 } else {
1320 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1321 ap->id, sstatus);
1322 }
1323 }
1324
1325 /**
1326 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1327 * @ap: SATA port associated with target SATA PHY.
1328 *
1329 * This function issues commands to standard SATA Sxxx
1330 * PHY registers, to wake up the phy (and device), and
1331 * clear any reset condition.
1332 *
1333 * LOCKING:
1334 * PCI/etc. bus probe sem.
1335 *
1336 */
1337 void __sata_phy_reset(struct ata_port *ap)
1338 {
1339 u32 sstatus;
1340 unsigned long timeout = jiffies + (HZ * 5);
1341
1342 if (ap->flags & ATA_FLAG_SATA_RESET) {
1343 /* issue phy wake/reset */
1344 scr_write_flush(ap, SCR_CONTROL, 0x301);
1345 /* Couldn't find anything in SATA I/II specs, but
1346 * AHCI-1.1 10.4.2 says at least 1 ms. */
1347 mdelay(1);
1348 }
1349 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1350
1351 /* wait for phy to become ready, if necessary */
1352 do {
1353 msleep(200);
1354 sstatus = scr_read(ap, SCR_STATUS);
1355 if ((sstatus & 0xf) != 1)
1356 break;
1357 } while (time_before(jiffies, timeout));
1358
1359 /* print link status */
1360 sata_print_link_status(ap);
1361
1362 /* TODO: phy layer with polling, timeouts, etc. */
1363 if (sata_dev_present(ap))
1364 ata_port_probe(ap);
1365 else
1366 ata_port_disable(ap);
1367
1368 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1369 return;
1370
1371 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1372 ata_port_disable(ap);
1373 return;
1374 }
1375
1376 ap->cbl = ATA_CBL_SATA;
1377 }
1378
1379 /**
1380 * sata_phy_reset - Reset SATA bus.
1381 * @ap: SATA port associated with target SATA PHY.
1382 *
1383 * This function resets the SATA bus, and then probes
1384 * the bus for devices.
1385 *
1386 * LOCKING:
1387 * PCI/etc. bus probe sem.
1388 *
1389 */
1390 void sata_phy_reset(struct ata_port *ap)
1391 {
1392 __sata_phy_reset(ap);
1393 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1394 return;
1395 ata_bus_reset(ap);
1396 }
1397
1398 /**
1399 * ata_port_disable - Disable port.
1400 * @ap: Port to be disabled.
1401 *
1402 * Modify @ap data structure such that the system
1403 * thinks that the entire port is disabled, and should
1404 * never attempt to probe or communicate with devices
1405 * on this port.
1406 *
1407 * LOCKING: host_set lock, or some other form of
1408 * serialization.
1409 */
1410
1411 void ata_port_disable(struct ata_port *ap)
1412 {
1413 ap->device[0].class = ATA_DEV_NONE;
1414 ap->device[1].class = ATA_DEV_NONE;
1415 ap->flags |= ATA_FLAG_PORT_DISABLED;
1416 }
1417
1418 /*
1419 * This mode timing computation functionality is ported over from
1420 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1421 */
1422 /*
1423 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1424 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1425 * for PIO 5, which is a nonstandard extension and UDMA6, which
1426 * is currently supported only by Maxtor drives.
1427 */
1428
1429 static const struct ata_timing ata_timing[] = {
1430
1431 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1432 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1433 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1434 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1435
1436 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1437 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1438 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1439
1440 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1441
1442 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1443 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1444 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1445
1446 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1447 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1448 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1449
1450 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1451 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1452 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1453
1454 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1455 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1456 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1457
1458 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1459
1460 { 0xFF }
1461 };
1462
1463 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1464 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1465
1466 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1467 {
1468 q->setup = EZ(t->setup * 1000, T);
1469 q->act8b = EZ(t->act8b * 1000, T);
1470 q->rec8b = EZ(t->rec8b * 1000, T);
1471 q->cyc8b = EZ(t->cyc8b * 1000, T);
1472 q->active = EZ(t->active * 1000, T);
1473 q->recover = EZ(t->recover * 1000, T);
1474 q->cycle = EZ(t->cycle * 1000, T);
1475 q->udma = EZ(t->udma * 1000, UT);
1476 }
1477
1478 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1479 struct ata_timing *m, unsigned int what)
1480 {
1481 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1482 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1483 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1484 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1485 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1486 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1487 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1488 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1489 }
1490
1491 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1492 {
1493 const struct ata_timing *t;
1494
1495 for (t = ata_timing; t->mode != speed; t++)
1496 if (t->mode == 0xFF)
1497 return NULL;
1498 return t;
1499 }
1500
1501 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1502 struct ata_timing *t, int T, int UT)
1503 {
1504 const struct ata_timing *s;
1505 struct ata_timing p;
1506
1507 /*
1508 * Find the mode.
1509 */
1510
1511 if (!(s = ata_timing_find_mode(speed)))
1512 return -EINVAL;
1513
1514 memcpy(t, s, sizeof(*s));
1515
1516 /*
1517 * If the drive is an EIDE drive, it can tell us it needs extended
1518 * PIO/MW_DMA cycle timing.
1519 */
1520
1521 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1522 memset(&p, 0, sizeof(p));
1523 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1524 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1525 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1526 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1527 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1528 }
1529 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1530 }
1531
1532 /*
1533 * Convert the timing to bus clock counts.
1534 */
1535
1536 ata_timing_quantize(t, t, T, UT);
1537
1538 /*
1539 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1540 * S.M.A.R.T * and some other commands. We have to ensure that the
1541 * DMA cycle timing is slower/equal than the fastest PIO timing.
1542 */
1543
1544 if (speed > XFER_PIO_4) {
1545 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1546 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1547 }
1548
1549 /*
1550 * Lengthen active & recovery time so that cycle time is correct.
1551 */
1552
1553 if (t->act8b + t->rec8b < t->cyc8b) {
1554 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1555 t->rec8b = t->cyc8b - t->act8b;
1556 }
1557
1558 if (t->active + t->recover < t->cycle) {
1559 t->active += (t->cycle - (t->active + t->recover)) / 2;
1560 t->recover = t->cycle - t->active;
1561 }
1562
1563 return 0;
1564 }
1565
1566 static const struct {
1567 unsigned int shift;
1568 u8 base;
1569 } xfer_mode_classes[] = {
1570 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1571 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1572 { ATA_SHIFT_PIO, XFER_PIO_0 },
1573 };
1574
1575 static u8 base_from_shift(unsigned int shift)
1576 {
1577 int i;
1578
1579 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1580 if (xfer_mode_classes[i].shift == shift)
1581 return xfer_mode_classes[i].base;
1582
1583 return 0xff;
1584 }
1585
1586 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1587 {
1588 int ofs, idx;
1589 u8 base;
1590
1591 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1592 return;
1593
1594 if (dev->xfer_shift == ATA_SHIFT_PIO)
1595 dev->flags |= ATA_DFLAG_PIO;
1596
1597 ata_dev_set_xfermode(ap, dev);
1598
1599 base = base_from_shift(dev->xfer_shift);
1600 ofs = dev->xfer_mode - base;
1601 idx = ofs + dev->xfer_shift;
1602 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1603
1604 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1605 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1606
1607 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1608 ap->id, dev->devno, xfer_mode_str[idx]);
1609 }
1610
1611 static int ata_host_set_pio(struct ata_port *ap)
1612 {
1613 unsigned int mask;
1614 int x, i;
1615 u8 base, xfer_mode;
1616
1617 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1618 x = fgb(mask);
1619 if (x < 0) {
1620 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1621 return -1;
1622 }
1623
1624 base = base_from_shift(ATA_SHIFT_PIO);
1625 xfer_mode = base + x;
1626
1627 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1628 (int)base, (int)xfer_mode, mask, x);
1629
1630 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1631 struct ata_device *dev = &ap->device[i];
1632 if (ata_dev_present(dev)) {
1633 dev->pio_mode = xfer_mode;
1634 dev->xfer_mode = xfer_mode;
1635 dev->xfer_shift = ATA_SHIFT_PIO;
1636 if (ap->ops->set_piomode)
1637 ap->ops->set_piomode(ap, dev);
1638 }
1639 }
1640
1641 return 0;
1642 }
1643
1644 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1645 unsigned int xfer_shift)
1646 {
1647 int i;
1648
1649 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1650 struct ata_device *dev = &ap->device[i];
1651 if (ata_dev_present(dev)) {
1652 dev->dma_mode = xfer_mode;
1653 dev->xfer_mode = xfer_mode;
1654 dev->xfer_shift = xfer_shift;
1655 if (ap->ops->set_dmamode)
1656 ap->ops->set_dmamode(ap, dev);
1657 }
1658 }
1659 }
1660
1661 /**
1662 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1663 * @ap: port on which timings will be programmed
1664 *
1665 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1666 *
1667 * LOCKING:
1668 * PCI/etc. bus probe sem.
1669 */
1670 static void ata_set_mode(struct ata_port *ap)
1671 {
1672 unsigned int xfer_shift;
1673 u8 xfer_mode;
1674 int rc;
1675
1676 /* step 1: always set host PIO timings */
1677 rc = ata_host_set_pio(ap);
1678 if (rc)
1679 goto err_out;
1680
1681 /* step 2: choose the best data xfer mode */
1682 xfer_mode = xfer_shift = 0;
1683 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1684 if (rc)
1685 goto err_out;
1686
1687 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1688 if (xfer_shift != ATA_SHIFT_PIO)
1689 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1690
1691 /* step 4: update devices' xfer mode */
1692 ata_dev_set_mode(ap, &ap->device[0]);
1693 ata_dev_set_mode(ap, &ap->device[1]);
1694
1695 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1696 return;
1697
1698 if (ap->ops->post_set_mode)
1699 ap->ops->post_set_mode(ap);
1700
1701 return;
1702
1703 err_out:
1704 ata_port_disable(ap);
1705 }
1706
1707 /**
1708 * ata_tf_to_host - issue ATA taskfile to host controller
1709 * @ap: port to which command is being issued
1710 * @tf: ATA taskfile register set
1711 *
1712 * Issues ATA taskfile register set to ATA host controller,
1713 * with proper synchronization with interrupt handler and
1714 * other threads.
1715 *
1716 * LOCKING:
1717 * spin_lock_irqsave(host_set lock)
1718 */
1719
1720 static inline void ata_tf_to_host(struct ata_port *ap,
1721 const struct ata_taskfile *tf)
1722 {
1723 ap->ops->tf_load(ap, tf);
1724 ap->ops->exec_command(ap, tf);
1725 }
1726
1727 /**
1728 * ata_busy_sleep - sleep until BSY clears, or timeout
1729 * @ap: port containing status register to be polled
1730 * @tmout_pat: impatience timeout
1731 * @tmout: overall timeout
1732 *
1733 * Sleep until ATA Status register bit BSY clears,
1734 * or a timeout occurs.
1735 *
1736 * LOCKING: None.
1737 */
1738
1739 unsigned int ata_busy_sleep (struct ata_port *ap,
1740 unsigned long tmout_pat, unsigned long tmout)
1741 {
1742 unsigned long timer_start, timeout;
1743 u8 status;
1744
1745 status = ata_busy_wait(ap, ATA_BUSY, 300);
1746 timer_start = jiffies;
1747 timeout = timer_start + tmout_pat;
1748 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1749 msleep(50);
1750 status = ata_busy_wait(ap, ATA_BUSY, 3);
1751 }
1752
1753 if (status & ATA_BUSY)
1754 printk(KERN_WARNING "ata%u is slow to respond, "
1755 "please be patient\n", ap->id);
1756
1757 timeout = timer_start + tmout;
1758 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1759 msleep(50);
1760 status = ata_chk_status(ap);
1761 }
1762
1763 if (status & ATA_BUSY) {
1764 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1765 ap->id, tmout / HZ);
1766 return 1;
1767 }
1768
1769 return 0;
1770 }
1771
1772 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1773 {
1774 struct ata_ioports *ioaddr = &ap->ioaddr;
1775 unsigned int dev0 = devmask & (1 << 0);
1776 unsigned int dev1 = devmask & (1 << 1);
1777 unsigned long timeout;
1778
1779 /* if device 0 was found in ata_devchk, wait for its
1780 * BSY bit to clear
1781 */
1782 if (dev0)
1783 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1784
1785 /* if device 1 was found in ata_devchk, wait for
1786 * register access, then wait for BSY to clear
1787 */
1788 timeout = jiffies + ATA_TMOUT_BOOT;
1789 while (dev1) {
1790 u8 nsect, lbal;
1791
1792 ap->ops->dev_select(ap, 1);
1793 if (ap->flags & ATA_FLAG_MMIO) {
1794 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1795 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1796 } else {
1797 nsect = inb(ioaddr->nsect_addr);
1798 lbal = inb(ioaddr->lbal_addr);
1799 }
1800 if ((nsect == 1) && (lbal == 1))
1801 break;
1802 if (time_after(jiffies, timeout)) {
1803 dev1 = 0;
1804 break;
1805 }
1806 msleep(50); /* give drive a breather */
1807 }
1808 if (dev1)
1809 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1810
1811 /* is all this really necessary? */
1812 ap->ops->dev_select(ap, 0);
1813 if (dev1)
1814 ap->ops->dev_select(ap, 1);
1815 if (dev0)
1816 ap->ops->dev_select(ap, 0);
1817 }
1818
1819 /**
1820 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1821 * @ap: Port to reset and probe
1822 *
1823 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1824 * probe the bus. Not often used these days.
1825 *
1826 * LOCKING:
1827 * PCI/etc. bus probe sem.
1828 * Obtains host_set lock.
1829 *
1830 */
1831
1832 static unsigned int ata_bus_edd(struct ata_port *ap)
1833 {
1834 struct ata_taskfile tf;
1835 unsigned long flags;
1836
1837 /* set up execute-device-diag (bus reset) taskfile */
1838 /* also, take interrupts to a known state (disabled) */
1839 DPRINTK("execute-device-diag\n");
1840 ata_tf_init(ap, &tf, 0);
1841 tf.ctl |= ATA_NIEN;
1842 tf.command = ATA_CMD_EDD;
1843 tf.protocol = ATA_PROT_NODATA;
1844
1845 /* do bus reset */
1846 spin_lock_irqsave(&ap->host_set->lock, flags);
1847 ata_tf_to_host(ap, &tf);
1848 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1849
1850 /* spec says at least 2ms. but who knows with those
1851 * crazy ATAPI devices...
1852 */
1853 msleep(150);
1854
1855 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1856 }
1857
1858 static unsigned int ata_bus_softreset(struct ata_port *ap,
1859 unsigned int devmask)
1860 {
1861 struct ata_ioports *ioaddr = &ap->ioaddr;
1862
1863 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1864
1865 /* software reset. causes dev0 to be selected */
1866 if (ap->flags & ATA_FLAG_MMIO) {
1867 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1868 udelay(20); /* FIXME: flush */
1869 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1870 udelay(20); /* FIXME: flush */
1871 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1872 } else {
1873 outb(ap->ctl, ioaddr->ctl_addr);
1874 udelay(10);
1875 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1876 udelay(10);
1877 outb(ap->ctl, ioaddr->ctl_addr);
1878 }
1879
1880 /* spec mandates ">= 2ms" before checking status.
1881 * We wait 150ms, because that was the magic delay used for
1882 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1883 * between when the ATA command register is written, and then
1884 * status is checked. Because waiting for "a while" before
1885 * checking status is fine, post SRST, we perform this magic
1886 * delay here as well.
1887 */
1888 msleep(150);
1889
1890 ata_bus_post_reset(ap, devmask);
1891
1892 return 0;
1893 }
1894
1895 /**
1896 * ata_bus_reset - reset host port and associated ATA channel
1897 * @ap: port to reset
1898 *
1899 * This is typically the first time we actually start issuing
1900 * commands to the ATA channel. We wait for BSY to clear, then
1901 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1902 * result. Determine what devices, if any, are on the channel
1903 * by looking at the device 0/1 error register. Look at the signature
1904 * stored in each device's taskfile registers, to determine if
1905 * the device is ATA or ATAPI.
1906 *
1907 * LOCKING:
1908 * PCI/etc. bus probe sem.
1909 * Obtains host_set lock.
1910 *
1911 * SIDE EFFECTS:
1912 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1913 */
1914
1915 void ata_bus_reset(struct ata_port *ap)
1916 {
1917 struct ata_ioports *ioaddr = &ap->ioaddr;
1918 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1919 u8 err;
1920 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1921
1922 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1923
1924 /* determine if device 0/1 are present */
1925 if (ap->flags & ATA_FLAG_SATA_RESET)
1926 dev0 = 1;
1927 else {
1928 dev0 = ata_devchk(ap, 0);
1929 if (slave_possible)
1930 dev1 = ata_devchk(ap, 1);
1931 }
1932
1933 if (dev0)
1934 devmask |= (1 << 0);
1935 if (dev1)
1936 devmask |= (1 << 1);
1937
1938 /* select device 0 again */
1939 ap->ops->dev_select(ap, 0);
1940
1941 /* issue bus reset */
1942 if (ap->flags & ATA_FLAG_SRST)
1943 rc = ata_bus_softreset(ap, devmask);
1944 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1945 /* set up device control */
1946 if (ap->flags & ATA_FLAG_MMIO)
1947 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1948 else
1949 outb(ap->ctl, ioaddr->ctl_addr);
1950 rc = ata_bus_edd(ap);
1951 }
1952
1953 if (rc)
1954 goto err_out;
1955
1956 /*
1957 * determine by signature whether we have ATA or ATAPI devices
1958 */
1959 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1960 if ((slave_possible) && (err != 0x81))
1961 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1962
1963 /* re-enable interrupts */
1964 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1965 ata_irq_on(ap);
1966
1967 /* is double-select really necessary? */
1968 if (ap->device[1].class != ATA_DEV_NONE)
1969 ap->ops->dev_select(ap, 1);
1970 if (ap->device[0].class != ATA_DEV_NONE)
1971 ap->ops->dev_select(ap, 0);
1972
1973 /* if no devices were detected, disable this port */
1974 if ((ap->device[0].class == ATA_DEV_NONE) &&
1975 (ap->device[1].class == ATA_DEV_NONE))
1976 goto err_out;
1977
1978 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1979 /* set up device control for ATA_FLAG_SATA_RESET */
1980 if (ap->flags & ATA_FLAG_MMIO)
1981 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1982 else
1983 outb(ap->ctl, ioaddr->ctl_addr);
1984 }
1985
1986 DPRINTK("EXIT\n");
1987 return;
1988
1989 err_out:
1990 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1991 ap->ops->port_disable(ap);
1992
1993 DPRINTK("EXIT\n");
1994 }
1995
1996 static int sata_phy_resume(struct ata_port *ap)
1997 {
1998 unsigned long timeout = jiffies + (HZ * 5);
1999 u32 sstatus;
2000
2001 scr_write_flush(ap, SCR_CONTROL, 0x300);
2002
2003 /* Wait for phy to become ready, if necessary. */
2004 do {
2005 msleep(200);
2006 sstatus = scr_read(ap, SCR_STATUS);
2007 if ((sstatus & 0xf) != 1)
2008 return 0;
2009 } while (time_before(jiffies, timeout));
2010
2011 return -1;
2012 }
2013
2014 /**
2015 * ata_std_probeinit - initialize probing
2016 * @ap: port to be probed
2017 *
2018 * @ap is about to be probed. Initialize it. This function is
2019 * to be used as standard callback for ata_drive_probe_reset().
2020 *
2021 * NOTE!!! Do not use this function as probeinit if a low level
2022 * driver implements only hardreset. Just pass NULL as probeinit
2023 * in that case. Using this function is probably okay but doing
2024 * so makes reset sequence different from the original
2025 * ->phy_reset implementation and Jeff nervous. :-P
2026 */
2027 extern void ata_std_probeinit(struct ata_port *ap)
2028 {
2029 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2030 sata_phy_resume(ap);
2031 if (sata_dev_present(ap))
2032 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2033 }
2034 }
2035
2036 /**
2037 * ata_std_softreset - reset host port via ATA SRST
2038 * @ap: port to reset
2039 * @verbose: fail verbosely
2040 * @classes: resulting classes of attached devices
2041 *
2042 * Reset host port using ATA SRST. This function is to be used
2043 * as standard callback for ata_drive_*_reset() functions.
2044 *
2045 * LOCKING:
2046 * Kernel thread context (may sleep)
2047 *
2048 * RETURNS:
2049 * 0 on success, -errno otherwise.
2050 */
2051 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2052 {
2053 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2054 unsigned int devmask = 0, err_mask;
2055 u8 err;
2056
2057 DPRINTK("ENTER\n");
2058
2059 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2060 classes[0] = ATA_DEV_NONE;
2061 goto out;
2062 }
2063
2064 /* determine if device 0/1 are present */
2065 if (ata_devchk(ap, 0))
2066 devmask |= (1 << 0);
2067 if (slave_possible && ata_devchk(ap, 1))
2068 devmask |= (1 << 1);
2069
2070 /* select device 0 again */
2071 ap->ops->dev_select(ap, 0);
2072
2073 /* issue bus reset */
2074 DPRINTK("about to softreset, devmask=%x\n", devmask);
2075 err_mask = ata_bus_softreset(ap, devmask);
2076 if (err_mask) {
2077 if (verbose)
2078 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2079 ap->id, err_mask);
2080 else
2081 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2082 err_mask);
2083 return -EIO;
2084 }
2085
2086 /* determine by signature whether we have ATA or ATAPI devices */
2087 classes[0] = ata_dev_try_classify(ap, 0, &err);
2088 if (slave_possible && err != 0x81)
2089 classes[1] = ata_dev_try_classify(ap, 1, &err);
2090
2091 out:
2092 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2093 return 0;
2094 }
2095
2096 /**
2097 * sata_std_hardreset - reset host port via SATA phy reset
2098 * @ap: port to reset
2099 * @verbose: fail verbosely
2100 * @class: resulting class of attached device
2101 *
2102 * SATA phy-reset host port using DET bits of SControl register.
2103 * This function is to be used as standard callback for
2104 * ata_drive_*_reset().
2105 *
2106 * LOCKING:
2107 * Kernel thread context (may sleep)
2108 *
2109 * RETURNS:
2110 * 0 on success, -errno otherwise.
2111 */
2112 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2113 {
2114 DPRINTK("ENTER\n");
2115
2116 /* Issue phy wake/reset */
2117 scr_write_flush(ap, SCR_CONTROL, 0x301);
2118
2119 /*
2120 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2121 * 10.4.2 says at least 1 ms.
2122 */
2123 msleep(1);
2124
2125 /* Bring phy back */
2126 sata_phy_resume(ap);
2127
2128 /* TODO: phy layer with polling, timeouts, etc. */
2129 if (!sata_dev_present(ap)) {
2130 *class = ATA_DEV_NONE;
2131 DPRINTK("EXIT, link offline\n");
2132 return 0;
2133 }
2134
2135 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2136 if (verbose)
2137 printk(KERN_ERR "ata%u: COMRESET failed "
2138 "(device not ready)\n", ap->id);
2139 else
2140 DPRINTK("EXIT, device not ready\n");
2141 return -EIO;
2142 }
2143
2144 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2145
2146 *class = ata_dev_try_classify(ap, 0, NULL);
2147
2148 DPRINTK("EXIT, class=%u\n", *class);
2149 return 0;
2150 }
2151
2152 /**
2153 * ata_std_postreset - standard postreset callback
2154 * @ap: the target ata_port
2155 * @classes: classes of attached devices
2156 *
2157 * This function is invoked after a successful reset. Note that
2158 * the device might have been reset more than once using
2159 * different reset methods before postreset is invoked.
2160 *
2161 * This function is to be used as standard callback for
2162 * ata_drive_*_reset().
2163 *
2164 * LOCKING:
2165 * Kernel thread context (may sleep)
2166 */
2167 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2168 {
2169 DPRINTK("ENTER\n");
2170
2171 /* set cable type if it isn't already set */
2172 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2173 ap->cbl = ATA_CBL_SATA;
2174
2175 /* print link status */
2176 if (ap->cbl == ATA_CBL_SATA)
2177 sata_print_link_status(ap);
2178
2179 /* re-enable interrupts */
2180 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2181 ata_irq_on(ap);
2182
2183 /* is double-select really necessary? */
2184 if (classes[0] != ATA_DEV_NONE)
2185 ap->ops->dev_select(ap, 1);
2186 if (classes[1] != ATA_DEV_NONE)
2187 ap->ops->dev_select(ap, 0);
2188
2189 /* bail out if no device is present */
2190 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2191 DPRINTK("EXIT, no device\n");
2192 return;
2193 }
2194
2195 /* set up device control */
2196 if (ap->ioaddr.ctl_addr) {
2197 if (ap->flags & ATA_FLAG_MMIO)
2198 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2199 else
2200 outb(ap->ctl, ap->ioaddr.ctl_addr);
2201 }
2202
2203 DPRINTK("EXIT\n");
2204 }
2205
2206 /**
2207 * ata_std_probe_reset - standard probe reset method
2208 * @ap: prot to perform probe-reset
2209 * @classes: resulting classes of attached devices
2210 *
2211 * The stock off-the-shelf ->probe_reset method.
2212 *
2213 * LOCKING:
2214 * Kernel thread context (may sleep)
2215 *
2216 * RETURNS:
2217 * 0 on success, -errno otherwise.
2218 */
2219 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2220 {
2221 ata_reset_fn_t hardreset;
2222
2223 hardreset = NULL;
2224 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2225 hardreset = sata_std_hardreset;
2226
2227 return ata_drive_probe_reset(ap, ata_std_probeinit,
2228 ata_std_softreset, hardreset,
2229 ata_std_postreset, classes);
2230 }
2231
2232 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2233 ata_postreset_fn_t postreset,
2234 unsigned int *classes)
2235 {
2236 int i, rc;
2237
2238 for (i = 0; i < ATA_MAX_DEVICES; i++)
2239 classes[i] = ATA_DEV_UNKNOWN;
2240
2241 rc = reset(ap, 0, classes);
2242 if (rc)
2243 return rc;
2244
2245 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2246 * is complete and convert all ATA_DEV_UNKNOWN to
2247 * ATA_DEV_NONE.
2248 */
2249 for (i = 0; i < ATA_MAX_DEVICES; i++)
2250 if (classes[i] != ATA_DEV_UNKNOWN)
2251 break;
2252
2253 if (i < ATA_MAX_DEVICES)
2254 for (i = 0; i < ATA_MAX_DEVICES; i++)
2255 if (classes[i] == ATA_DEV_UNKNOWN)
2256 classes[i] = ATA_DEV_NONE;
2257
2258 if (postreset)
2259 postreset(ap, classes);
2260
2261 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2262 }
2263
2264 /**
2265 * ata_drive_probe_reset - Perform probe reset with given methods
2266 * @ap: port to reset
2267 * @probeinit: probeinit method (can be NULL)
2268 * @softreset: softreset method (can be NULL)
2269 * @hardreset: hardreset method (can be NULL)
2270 * @postreset: postreset method (can be NULL)
2271 * @classes: resulting classes of attached devices
2272 *
2273 * Reset the specified port and classify attached devices using
2274 * given methods. This function prefers softreset but tries all
2275 * possible reset sequences to reset and classify devices. This
2276 * function is intended to be used for constructing ->probe_reset
2277 * callback by low level drivers.
2278 *
2279 * Reset methods should follow the following rules.
2280 *
2281 * - Return 0 on sucess, -errno on failure.
2282 * - If classification is supported, fill classes[] with
2283 * recognized class codes.
2284 * - If classification is not supported, leave classes[] alone.
2285 * - If verbose is non-zero, print error message on failure;
2286 * otherwise, shut up.
2287 *
2288 * LOCKING:
2289 * Kernel thread context (may sleep)
2290 *
2291 * RETURNS:
2292 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2293 * if classification fails, and any error code from reset
2294 * methods.
2295 */
2296 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2297 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2298 ata_postreset_fn_t postreset, unsigned int *classes)
2299 {
2300 int rc = -EINVAL;
2301
2302 if (probeinit)
2303 probeinit(ap);
2304
2305 if (softreset) {
2306 rc = do_probe_reset(ap, softreset, postreset, classes);
2307 if (rc == 0)
2308 return 0;
2309 }
2310
2311 if (!hardreset)
2312 return rc;
2313
2314 rc = do_probe_reset(ap, hardreset, postreset, classes);
2315 if (rc == 0 || rc != -ENODEV)
2316 return rc;
2317
2318 if (softreset)
2319 rc = do_probe_reset(ap, softreset, postreset, classes);
2320
2321 return rc;
2322 }
2323
2324 static void ata_pr_blacklisted(const struct ata_port *ap,
2325 const struct ata_device *dev)
2326 {
2327 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2328 ap->id, dev->devno);
2329 }
2330
2331 static const char * const ata_dma_blacklist [] = {
2332 "WDC AC11000H",
2333 "WDC AC22100H",
2334 "WDC AC32500H",
2335 "WDC AC33100H",
2336 "WDC AC31600H",
2337 "WDC AC32100H",
2338 "WDC AC23200L",
2339 "Compaq CRD-8241B",
2340 "CRD-8400B",
2341 "CRD-8480B",
2342 "CRD-8482B",
2343 "CRD-84",
2344 "SanDisk SDP3B",
2345 "SanDisk SDP3B-64",
2346 "SANYO CD-ROM CRD",
2347 "HITACHI CDR-8",
2348 "HITACHI CDR-8335",
2349 "HITACHI CDR-8435",
2350 "Toshiba CD-ROM XM-6202B",
2351 "TOSHIBA CD-ROM XM-1702BC",
2352 "CD-532E-A",
2353 "E-IDE CD-ROM CR-840",
2354 "CD-ROM Drive/F5A",
2355 "WPI CDD-820",
2356 "SAMSUNG CD-ROM SC-148C",
2357 "SAMSUNG CD-ROM SC",
2358 "SanDisk SDP3B-64",
2359 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2360 "_NEC DV5800A",
2361 };
2362
2363 static int ata_dma_blacklisted(const struct ata_device *dev)
2364 {
2365 unsigned char model_num[41];
2366 int i;
2367
2368 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
2369
2370 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2371 if (!strcmp(ata_dma_blacklist[i], model_num))
2372 return 1;
2373
2374 return 0;
2375 }
2376
2377 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2378 {
2379 const struct ata_device *master, *slave;
2380 unsigned int mask;
2381
2382 master = &ap->device[0];
2383 slave = &ap->device[1];
2384
2385 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2386
2387 if (shift == ATA_SHIFT_UDMA) {
2388 mask = ap->udma_mask;
2389 if (ata_dev_present(master)) {
2390 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2391 if (ata_dma_blacklisted(master)) {
2392 mask = 0;
2393 ata_pr_blacklisted(ap, master);
2394 }
2395 }
2396 if (ata_dev_present(slave)) {
2397 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2398 if (ata_dma_blacklisted(slave)) {
2399 mask = 0;
2400 ata_pr_blacklisted(ap, slave);
2401 }
2402 }
2403 }
2404 else if (shift == ATA_SHIFT_MWDMA) {
2405 mask = ap->mwdma_mask;
2406 if (ata_dev_present(master)) {
2407 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2408 if (ata_dma_blacklisted(master)) {
2409 mask = 0;
2410 ata_pr_blacklisted(ap, master);
2411 }
2412 }
2413 if (ata_dev_present(slave)) {
2414 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2415 if (ata_dma_blacklisted(slave)) {
2416 mask = 0;
2417 ata_pr_blacklisted(ap, slave);
2418 }
2419 }
2420 }
2421 else if (shift == ATA_SHIFT_PIO) {
2422 mask = ap->pio_mask;
2423 if (ata_dev_present(master)) {
2424 /* spec doesn't return explicit support for
2425 * PIO0-2, so we fake it
2426 */
2427 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2428 tmp_mode <<= 3;
2429 tmp_mode |= 0x7;
2430 mask &= tmp_mode;
2431 }
2432 if (ata_dev_present(slave)) {
2433 /* spec doesn't return explicit support for
2434 * PIO0-2, so we fake it
2435 */
2436 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2437 tmp_mode <<= 3;
2438 tmp_mode |= 0x7;
2439 mask &= tmp_mode;
2440 }
2441 }
2442 else {
2443 mask = 0xffffffff; /* shut up compiler warning */
2444 BUG();
2445 }
2446
2447 return mask;
2448 }
2449
2450 /* find greatest bit */
2451 static int fgb(u32 bitmap)
2452 {
2453 unsigned int i;
2454 int x = -1;
2455
2456 for (i = 0; i < 32; i++)
2457 if (bitmap & (1 << i))
2458 x = i;
2459
2460 return x;
2461 }
2462
2463 /**
2464 * ata_choose_xfer_mode - attempt to find best transfer mode
2465 * @ap: Port for which an xfer mode will be selected
2466 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2467 * @xfer_shift_out: (output) bit shift that selects this mode
2468 *
2469 * Based on host and device capabilities, determine the
2470 * maximum transfer mode that is amenable to all.
2471 *
2472 * LOCKING:
2473 * PCI/etc. bus probe sem.
2474 *
2475 * RETURNS:
2476 * Zero on success, negative on error.
2477 */
2478
2479 static int ata_choose_xfer_mode(const struct ata_port *ap,
2480 u8 *xfer_mode_out,
2481 unsigned int *xfer_shift_out)
2482 {
2483 unsigned int mask, shift;
2484 int x, i;
2485
2486 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2487 shift = xfer_mode_classes[i].shift;
2488 mask = ata_get_mode_mask(ap, shift);
2489
2490 x = fgb(mask);
2491 if (x >= 0) {
2492 *xfer_mode_out = xfer_mode_classes[i].base + x;
2493 *xfer_shift_out = shift;
2494 return 0;
2495 }
2496 }
2497
2498 return -1;
2499 }
2500
2501 /**
2502 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2503 * @ap: Port associated with device @dev
2504 * @dev: Device to which command will be sent
2505 *
2506 * Issue SET FEATURES - XFER MODE command to device @dev
2507 * on port @ap.
2508 *
2509 * LOCKING:
2510 * PCI/etc. bus probe sem.
2511 */
2512
2513 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2514 {
2515 struct ata_taskfile tf;
2516
2517 /* set up set-features taskfile */
2518 DPRINTK("set features - xfer mode\n");
2519
2520 ata_tf_init(ap, &tf, dev->devno);
2521 tf.command = ATA_CMD_SET_FEATURES;
2522 tf.feature = SETFEATURES_XFER;
2523 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2524 tf.protocol = ATA_PROT_NODATA;
2525 tf.nsect = dev->xfer_mode;
2526
2527 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2528 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2529 ap->id);
2530 ata_port_disable(ap);
2531 }
2532
2533 DPRINTK("EXIT\n");
2534 }
2535
2536 /**
2537 * ata_dev_init_params - Issue INIT DEV PARAMS command
2538 * @ap: Port associated with device @dev
2539 * @dev: Device to which command will be sent
2540 *
2541 * LOCKING:
2542 * Kernel thread context (may sleep)
2543 *
2544 * RETURNS:
2545 * 0 on success, AC_ERR_* mask otherwise.
2546 */
2547
2548 static unsigned int ata_dev_init_params(struct ata_port *ap,
2549 struct ata_device *dev)
2550 {
2551 struct ata_taskfile tf;
2552 unsigned int err_mask;
2553 u16 sectors = dev->id[6];
2554 u16 heads = dev->id[3];
2555
2556 /* Number of sectors per track 1-255. Number of heads 1-16 */
2557 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2558 return 0;
2559
2560 /* set up init dev params taskfile */
2561 DPRINTK("init dev params \n");
2562
2563 ata_tf_init(ap, &tf, dev->devno);
2564 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2565 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2566 tf.protocol = ATA_PROT_NODATA;
2567 tf.nsect = sectors;
2568 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2569
2570 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2571
2572 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2573 return err_mask;
2574 }
2575
2576 /**
2577 * ata_sg_clean - Unmap DMA memory associated with command
2578 * @qc: Command containing DMA memory to be released
2579 *
2580 * Unmap all mapped DMA memory associated with this command.
2581 *
2582 * LOCKING:
2583 * spin_lock_irqsave(host_set lock)
2584 */
2585
2586 static void ata_sg_clean(struct ata_queued_cmd *qc)
2587 {
2588 struct ata_port *ap = qc->ap;
2589 struct scatterlist *sg = qc->__sg;
2590 int dir = qc->dma_dir;
2591 void *pad_buf = NULL;
2592
2593 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2594 WARN_ON(sg == NULL);
2595
2596 if (qc->flags & ATA_QCFLAG_SINGLE)
2597 WARN_ON(qc->n_elem > 1);
2598
2599 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2600
2601 /* if we padded the buffer out to 32-bit bound, and data
2602 * xfer direction is from-device, we must copy from the
2603 * pad buffer back into the supplied buffer
2604 */
2605 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2606 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2607
2608 if (qc->flags & ATA_QCFLAG_SG) {
2609 if (qc->n_elem)
2610 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2611 /* restore last sg */
2612 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2613 if (pad_buf) {
2614 struct scatterlist *psg = &qc->pad_sgent;
2615 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2616 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2617 kunmap_atomic(addr, KM_IRQ0);
2618 }
2619 } else {
2620 if (qc->n_elem)
2621 dma_unmap_single(ap->host_set->dev,
2622 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2623 dir);
2624 /* restore sg */
2625 sg->length += qc->pad_len;
2626 if (pad_buf)
2627 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2628 pad_buf, qc->pad_len);
2629 }
2630
2631 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2632 qc->__sg = NULL;
2633 }
2634
2635 /**
2636 * ata_fill_sg - Fill PCI IDE PRD table
2637 * @qc: Metadata associated with taskfile to be transferred
2638 *
2639 * Fill PCI IDE PRD (scatter-gather) table with segments
2640 * associated with the current disk command.
2641 *
2642 * LOCKING:
2643 * spin_lock_irqsave(host_set lock)
2644 *
2645 */
2646 static void ata_fill_sg(struct ata_queued_cmd *qc)
2647 {
2648 struct ata_port *ap = qc->ap;
2649 struct scatterlist *sg;
2650 unsigned int idx;
2651
2652 WARN_ON(qc->__sg == NULL);
2653 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2654
2655 idx = 0;
2656 ata_for_each_sg(sg, qc) {
2657 u32 addr, offset;
2658 u32 sg_len, len;
2659
2660 /* determine if physical DMA addr spans 64K boundary.
2661 * Note h/w doesn't support 64-bit, so we unconditionally
2662 * truncate dma_addr_t to u32.
2663 */
2664 addr = (u32) sg_dma_address(sg);
2665 sg_len = sg_dma_len(sg);
2666
2667 while (sg_len) {
2668 offset = addr & 0xffff;
2669 len = sg_len;
2670 if ((offset + sg_len) > 0x10000)
2671 len = 0x10000 - offset;
2672
2673 ap->prd[idx].addr = cpu_to_le32(addr);
2674 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2675 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2676
2677 idx++;
2678 sg_len -= len;
2679 addr += len;
2680 }
2681 }
2682
2683 if (idx)
2684 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2685 }
2686 /**
2687 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2688 * @qc: Metadata associated with taskfile to check
2689 *
2690 * Allow low-level driver to filter ATA PACKET commands, returning
2691 * a status indicating whether or not it is OK to use DMA for the
2692 * supplied PACKET command.
2693 *
2694 * LOCKING:
2695 * spin_lock_irqsave(host_set lock)
2696 *
2697 * RETURNS: 0 when ATAPI DMA can be used
2698 * nonzero otherwise
2699 */
2700 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2701 {
2702 struct ata_port *ap = qc->ap;
2703 int rc = 0; /* Assume ATAPI DMA is OK by default */
2704
2705 if (ap->ops->check_atapi_dma)
2706 rc = ap->ops->check_atapi_dma(qc);
2707
2708 return rc;
2709 }
2710 /**
2711 * ata_qc_prep - Prepare taskfile for submission
2712 * @qc: Metadata associated with taskfile to be prepared
2713 *
2714 * Prepare ATA taskfile for submission.
2715 *
2716 * LOCKING:
2717 * spin_lock_irqsave(host_set lock)
2718 */
2719 void ata_qc_prep(struct ata_queued_cmd *qc)
2720 {
2721 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2722 return;
2723
2724 ata_fill_sg(qc);
2725 }
2726
2727 /**
2728 * ata_sg_init_one - Associate command with memory buffer
2729 * @qc: Command to be associated
2730 * @buf: Memory buffer
2731 * @buflen: Length of memory buffer, in bytes.
2732 *
2733 * Initialize the data-related elements of queued_cmd @qc
2734 * to point to a single memory buffer, @buf of byte length @buflen.
2735 *
2736 * LOCKING:
2737 * spin_lock_irqsave(host_set lock)
2738 */
2739
2740 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2741 {
2742 struct scatterlist *sg;
2743
2744 qc->flags |= ATA_QCFLAG_SINGLE;
2745
2746 memset(&qc->sgent, 0, sizeof(qc->sgent));
2747 qc->__sg = &qc->sgent;
2748 qc->n_elem = 1;
2749 qc->orig_n_elem = 1;
2750 qc->buf_virt = buf;
2751
2752 sg = qc->__sg;
2753 sg_init_one(sg, buf, buflen);
2754 }
2755
2756 /**
2757 * ata_sg_init - Associate command with scatter-gather table.
2758 * @qc: Command to be associated
2759 * @sg: Scatter-gather table.
2760 * @n_elem: Number of elements in s/g table.
2761 *
2762 * Initialize the data-related elements of queued_cmd @qc
2763 * to point to a scatter-gather table @sg, containing @n_elem
2764 * elements.
2765 *
2766 * LOCKING:
2767 * spin_lock_irqsave(host_set lock)
2768 */
2769
2770 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2771 unsigned int n_elem)
2772 {
2773 qc->flags |= ATA_QCFLAG_SG;
2774 qc->__sg = sg;
2775 qc->n_elem = n_elem;
2776 qc->orig_n_elem = n_elem;
2777 }
2778
2779 /**
2780 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2781 * @qc: Command with memory buffer to be mapped.
2782 *
2783 * DMA-map the memory buffer associated with queued_cmd @qc.
2784 *
2785 * LOCKING:
2786 * spin_lock_irqsave(host_set lock)
2787 *
2788 * RETURNS:
2789 * Zero on success, negative on error.
2790 */
2791
2792 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2793 {
2794 struct ata_port *ap = qc->ap;
2795 int dir = qc->dma_dir;
2796 struct scatterlist *sg = qc->__sg;
2797 dma_addr_t dma_address;
2798 int trim_sg = 0;
2799
2800 /* we must lengthen transfers to end on a 32-bit boundary */
2801 qc->pad_len = sg->length & 3;
2802 if (qc->pad_len) {
2803 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2804 struct scatterlist *psg = &qc->pad_sgent;
2805
2806 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2807
2808 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2809
2810 if (qc->tf.flags & ATA_TFLAG_WRITE)
2811 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2812 qc->pad_len);
2813
2814 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2815 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2816 /* trim sg */
2817 sg->length -= qc->pad_len;
2818 if (sg->length == 0)
2819 trim_sg = 1;
2820
2821 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2822 sg->length, qc->pad_len);
2823 }
2824
2825 if (trim_sg) {
2826 qc->n_elem--;
2827 goto skip_map;
2828 }
2829
2830 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2831 sg->length, dir);
2832 if (dma_mapping_error(dma_address)) {
2833 /* restore sg */
2834 sg->length += qc->pad_len;
2835 return -1;
2836 }
2837
2838 sg_dma_address(sg) = dma_address;
2839 sg_dma_len(sg) = sg->length;
2840
2841 skip_map:
2842 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2843 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2844
2845 return 0;
2846 }
2847
2848 /**
2849 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2850 * @qc: Command with scatter-gather table to be mapped.
2851 *
2852 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2853 *
2854 * LOCKING:
2855 * spin_lock_irqsave(host_set lock)
2856 *
2857 * RETURNS:
2858 * Zero on success, negative on error.
2859 *
2860 */
2861
2862 static int ata_sg_setup(struct ata_queued_cmd *qc)
2863 {
2864 struct ata_port *ap = qc->ap;
2865 struct scatterlist *sg = qc->__sg;
2866 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2867 int n_elem, pre_n_elem, dir, trim_sg = 0;
2868
2869 VPRINTK("ENTER, ata%u\n", ap->id);
2870 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
2871
2872 /* we must lengthen transfers to end on a 32-bit boundary */
2873 qc->pad_len = lsg->length & 3;
2874 if (qc->pad_len) {
2875 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2876 struct scatterlist *psg = &qc->pad_sgent;
2877 unsigned int offset;
2878
2879 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2880
2881 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2882
2883 /*
2884 * psg->page/offset are used to copy to-be-written
2885 * data in this function or read data in ata_sg_clean.
2886 */
2887 offset = lsg->offset + lsg->length - qc->pad_len;
2888 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2889 psg->offset = offset_in_page(offset);
2890
2891 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2892 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2893 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2894 kunmap_atomic(addr, KM_IRQ0);
2895 }
2896
2897 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2898 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2899 /* trim last sg */
2900 lsg->length -= qc->pad_len;
2901 if (lsg->length == 0)
2902 trim_sg = 1;
2903
2904 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2905 qc->n_elem - 1, lsg->length, qc->pad_len);
2906 }
2907
2908 pre_n_elem = qc->n_elem;
2909 if (trim_sg && pre_n_elem)
2910 pre_n_elem--;
2911
2912 if (!pre_n_elem) {
2913 n_elem = 0;
2914 goto skip_map;
2915 }
2916
2917 dir = qc->dma_dir;
2918 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2919 if (n_elem < 1) {
2920 /* restore last sg */
2921 lsg->length += qc->pad_len;
2922 return -1;
2923 }
2924
2925 DPRINTK("%d sg elements mapped\n", n_elem);
2926
2927 skip_map:
2928 qc->n_elem = n_elem;
2929
2930 return 0;
2931 }
2932
2933 /**
2934 * ata_poll_qc_complete - turn irq back on and finish qc
2935 * @qc: Command to complete
2936 * @err_mask: ATA status register content
2937 *
2938 * LOCKING:
2939 * None. (grabs host lock)
2940 */
2941
2942 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2943 {
2944 struct ata_port *ap = qc->ap;
2945 unsigned long flags;
2946
2947 spin_lock_irqsave(&ap->host_set->lock, flags);
2948 ap->flags &= ~ATA_FLAG_NOINTR;
2949 ata_irq_on(ap);
2950 ata_qc_complete(qc);
2951 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2952 }
2953
2954 /**
2955 * ata_pio_poll - poll using PIO, depending on current state
2956 * @ap: the target ata_port
2957 *
2958 * LOCKING:
2959 * None. (executing in kernel thread context)
2960 *
2961 * RETURNS:
2962 * timeout value to use
2963 */
2964
2965 static unsigned long ata_pio_poll(struct ata_port *ap)
2966 {
2967 struct ata_queued_cmd *qc;
2968 u8 status;
2969 unsigned int poll_state = HSM_ST_UNKNOWN;
2970 unsigned int reg_state = HSM_ST_UNKNOWN;
2971
2972 qc = ata_qc_from_tag(ap, ap->active_tag);
2973 WARN_ON(qc == NULL);
2974
2975 switch (ap->hsm_task_state) {
2976 case HSM_ST:
2977 case HSM_ST_POLL:
2978 poll_state = HSM_ST_POLL;
2979 reg_state = HSM_ST;
2980 break;
2981 case HSM_ST_LAST:
2982 case HSM_ST_LAST_POLL:
2983 poll_state = HSM_ST_LAST_POLL;
2984 reg_state = HSM_ST_LAST;
2985 break;
2986 default:
2987 BUG();
2988 break;
2989 }
2990
2991 status = ata_chk_status(ap);
2992 if (status & ATA_BUSY) {
2993 if (time_after(jiffies, ap->pio_task_timeout)) {
2994 qc->err_mask |= AC_ERR_TIMEOUT;
2995 ap->hsm_task_state = HSM_ST_TMOUT;
2996 return 0;
2997 }
2998 ap->hsm_task_state = poll_state;
2999 return ATA_SHORT_PAUSE;
3000 }
3001
3002 ap->hsm_task_state = reg_state;
3003 return 0;
3004 }
3005
3006 /**
3007 * ata_pio_complete - check if drive is busy or idle
3008 * @ap: the target ata_port
3009 *
3010 * LOCKING:
3011 * None. (executing in kernel thread context)
3012 *
3013 * RETURNS:
3014 * Non-zero if qc completed, zero otherwise.
3015 */
3016
3017 static int ata_pio_complete (struct ata_port *ap)
3018 {
3019 struct ata_queued_cmd *qc;
3020 u8 drv_stat;
3021
3022 /*
3023 * This is purely heuristic. This is a fast path. Sometimes when
3024 * we enter, BSY will be cleared in a chk-status or two. If not,
3025 * the drive is probably seeking or something. Snooze for a couple
3026 * msecs, then chk-status again. If still busy, fall back to
3027 * HSM_ST_POLL state.
3028 */
3029 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3030 if (drv_stat & ATA_BUSY) {
3031 msleep(2);
3032 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3033 if (drv_stat & ATA_BUSY) {
3034 ap->hsm_task_state = HSM_ST_LAST_POLL;
3035 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3036 return 0;
3037 }
3038 }
3039
3040 qc = ata_qc_from_tag(ap, ap->active_tag);
3041 WARN_ON(qc == NULL);
3042
3043 drv_stat = ata_wait_idle(ap);
3044 if (!ata_ok(drv_stat)) {
3045 qc->err_mask |= __ac_err_mask(drv_stat);
3046 ap->hsm_task_state = HSM_ST_ERR;
3047 return 0;
3048 }
3049
3050 ap->hsm_task_state = HSM_ST_IDLE;
3051
3052 WARN_ON(qc->err_mask);
3053 ata_poll_qc_complete(qc);
3054
3055 /* another command may start at this point */
3056
3057 return 1;
3058 }
3059
3060
3061 /**
3062 * swap_buf_le16 - swap halves of 16-bit words in place
3063 * @buf: Buffer to swap
3064 * @buf_words: Number of 16-bit words in buffer.
3065 *
3066 * Swap halves of 16-bit words if needed to convert from
3067 * little-endian byte order to native cpu byte order, or
3068 * vice-versa.
3069 *
3070 * LOCKING:
3071 * Inherited from caller.
3072 */
3073 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3074 {
3075 #ifdef __BIG_ENDIAN
3076 unsigned int i;
3077
3078 for (i = 0; i < buf_words; i++)
3079 buf[i] = le16_to_cpu(buf[i]);
3080 #endif /* __BIG_ENDIAN */
3081 }
3082
3083 /**
3084 * ata_mmio_data_xfer - Transfer data by MMIO
3085 * @ap: port to read/write
3086 * @buf: data buffer
3087 * @buflen: buffer length
3088 * @write_data: read/write
3089 *
3090 * Transfer data from/to the device data register by MMIO.
3091 *
3092 * LOCKING:
3093 * Inherited from caller.
3094 */
3095
3096 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3097 unsigned int buflen, int write_data)
3098 {
3099 unsigned int i;
3100 unsigned int words = buflen >> 1;
3101 u16 *buf16 = (u16 *) buf;
3102 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3103
3104 /* Transfer multiple of 2 bytes */
3105 if (write_data) {
3106 for (i = 0; i < words; i++)
3107 writew(le16_to_cpu(buf16[i]), mmio);
3108 } else {
3109 for (i = 0; i < words; i++)
3110 buf16[i] = cpu_to_le16(readw(mmio));
3111 }
3112
3113 /* Transfer trailing 1 byte, if any. */
3114 if (unlikely(buflen & 0x01)) {
3115 u16 align_buf[1] = { 0 };
3116 unsigned char *trailing_buf = buf + buflen - 1;
3117
3118 if (write_data) {
3119 memcpy(align_buf, trailing_buf, 1);
3120 writew(le16_to_cpu(align_buf[0]), mmio);
3121 } else {
3122 align_buf[0] = cpu_to_le16(readw(mmio));
3123 memcpy(trailing_buf, align_buf, 1);
3124 }
3125 }
3126 }
3127
3128 /**
3129 * ata_pio_data_xfer - Transfer data by PIO
3130 * @ap: port to read/write
3131 * @buf: data buffer
3132 * @buflen: buffer length
3133 * @write_data: read/write
3134 *
3135 * Transfer data from/to the device data register by PIO.
3136 *
3137 * LOCKING:
3138 * Inherited from caller.
3139 */
3140
3141 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3142 unsigned int buflen, int write_data)
3143 {
3144 unsigned int words = buflen >> 1;
3145
3146 /* Transfer multiple of 2 bytes */
3147 if (write_data)
3148 outsw(ap->ioaddr.data_addr, buf, words);
3149 else
3150 insw(ap->ioaddr.data_addr, buf, words);
3151
3152 /* Transfer trailing 1 byte, if any. */
3153 if (unlikely(buflen & 0x01)) {
3154 u16 align_buf[1] = { 0 };
3155 unsigned char *trailing_buf = buf + buflen - 1;
3156
3157 if (write_data) {
3158 memcpy(align_buf, trailing_buf, 1);
3159 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3160 } else {
3161 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3162 memcpy(trailing_buf, align_buf, 1);
3163 }
3164 }
3165 }
3166
3167 /**
3168 * ata_data_xfer - Transfer data from/to the data register.
3169 * @ap: port to read/write
3170 * @buf: data buffer
3171 * @buflen: buffer length
3172 * @do_write: read/write
3173 *
3174 * Transfer data from/to the device data register.
3175 *
3176 * LOCKING:
3177 * Inherited from caller.
3178 */
3179
3180 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3181 unsigned int buflen, int do_write)
3182 {
3183 /* Make the crap hardware pay the costs not the good stuff */
3184 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3185 unsigned long flags;
3186 local_irq_save(flags);
3187 if (ap->flags & ATA_FLAG_MMIO)
3188 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3189 else
3190 ata_pio_data_xfer(ap, buf, buflen, do_write);
3191 local_irq_restore(flags);
3192 } else {
3193 if (ap->flags & ATA_FLAG_MMIO)
3194 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3195 else
3196 ata_pio_data_xfer(ap, buf, buflen, do_write);
3197 }
3198 }
3199
3200 /**
3201 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3202 * @qc: Command on going
3203 *
3204 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3205 *
3206 * LOCKING:
3207 * Inherited from caller.
3208 */
3209
3210 static void ata_pio_sector(struct ata_queued_cmd *qc)
3211 {
3212 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3213 struct scatterlist *sg = qc->__sg;
3214 struct ata_port *ap = qc->ap;
3215 struct page *page;
3216 unsigned int offset;
3217 unsigned char *buf;
3218
3219 if (qc->cursect == (qc->nsect - 1))
3220 ap->hsm_task_state = HSM_ST_LAST;
3221
3222 page = sg[qc->cursg].page;
3223 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3224
3225 /* get the current page and offset */
3226 page = nth_page(page, (offset >> PAGE_SHIFT));
3227 offset %= PAGE_SIZE;
3228
3229 buf = kmap(page) + offset;
3230
3231 qc->cursect++;
3232 qc->cursg_ofs++;
3233
3234 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3235 qc->cursg++;
3236 qc->cursg_ofs = 0;
3237 }
3238
3239 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3240
3241 /* do the actual data transfer */
3242 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3243 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3244
3245 kunmap(page);
3246 }
3247
3248 /**
3249 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3250 * @qc: Command on going
3251 * @bytes: number of bytes
3252 *
3253 * Transfer Transfer data from/to the ATAPI device.
3254 *
3255 * LOCKING:
3256 * Inherited from caller.
3257 *
3258 */
3259
3260 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3261 {
3262 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3263 struct scatterlist *sg = qc->__sg;
3264 struct ata_port *ap = qc->ap;
3265 struct page *page;
3266 unsigned char *buf;
3267 unsigned int offset, count;
3268
3269 if (qc->curbytes + bytes >= qc->nbytes)
3270 ap->hsm_task_state = HSM_ST_LAST;
3271
3272 next_sg:
3273 if (unlikely(qc->cursg >= qc->n_elem)) {
3274 /*
3275 * The end of qc->sg is reached and the device expects
3276 * more data to transfer. In order not to overrun qc->sg
3277 * and fulfill length specified in the byte count register,
3278 * - for read case, discard trailing data from the device
3279 * - for write case, padding zero data to the device
3280 */
3281 u16 pad_buf[1] = { 0 };
3282 unsigned int words = bytes >> 1;
3283 unsigned int i;
3284
3285 if (words) /* warning if bytes > 1 */
3286 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3287 ap->id, bytes);
3288
3289 for (i = 0; i < words; i++)
3290 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3291
3292 ap->hsm_task_state = HSM_ST_LAST;
3293 return;
3294 }
3295
3296 sg = &qc->__sg[qc->cursg];
3297
3298 page = sg->page;
3299 offset = sg->offset + qc->cursg_ofs;
3300
3301 /* get the current page and offset */
3302 page = nth_page(page, (offset >> PAGE_SHIFT));
3303 offset %= PAGE_SIZE;
3304
3305 /* don't overrun current sg */
3306 count = min(sg->length - qc->cursg_ofs, bytes);
3307
3308 /* don't cross page boundaries */
3309 count = min(count, (unsigned int)PAGE_SIZE - offset);
3310
3311 buf = kmap(page) + offset;
3312
3313 bytes -= count;
3314 qc->curbytes += count;
3315 qc->cursg_ofs += count;
3316
3317 if (qc->cursg_ofs == sg->length) {
3318 qc->cursg++;
3319 qc->cursg_ofs = 0;
3320 }
3321
3322 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3323
3324 /* do the actual data transfer */
3325 ata_data_xfer(ap, buf, count, do_write);
3326
3327 kunmap(page);
3328
3329 if (bytes)
3330 goto next_sg;
3331 }
3332
3333 /**
3334 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3335 * @qc: Command on going
3336 *
3337 * Transfer Transfer data from/to the ATAPI device.
3338 *
3339 * LOCKING:
3340 * Inherited from caller.
3341 */
3342
3343 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3344 {
3345 struct ata_port *ap = qc->ap;
3346 struct ata_device *dev = qc->dev;
3347 unsigned int ireason, bc_lo, bc_hi, bytes;
3348 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3349
3350 ap->ops->tf_read(ap, &qc->tf);
3351 ireason = qc->tf.nsect;
3352 bc_lo = qc->tf.lbam;
3353 bc_hi = qc->tf.lbah;
3354 bytes = (bc_hi << 8) | bc_lo;
3355
3356 /* shall be cleared to zero, indicating xfer of data */
3357 if (ireason & (1 << 0))
3358 goto err_out;
3359
3360 /* make sure transfer direction matches expected */
3361 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3362 if (do_write != i_write)
3363 goto err_out;
3364
3365 __atapi_pio_bytes(qc, bytes);
3366
3367 return;
3368
3369 err_out:
3370 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3371 ap->id, dev->devno);
3372 qc->err_mask |= AC_ERR_HSM;
3373 ap->hsm_task_state = HSM_ST_ERR;
3374 }
3375
3376 /**
3377 * ata_pio_block - start PIO on a block
3378 * @ap: the target ata_port
3379 *
3380 * LOCKING:
3381 * None. (executing in kernel thread context)
3382 */
3383
3384 static void ata_pio_block(struct ata_port *ap)
3385 {
3386 struct ata_queued_cmd *qc;
3387 u8 status;
3388
3389 /*
3390 * This is purely heuristic. This is a fast path.
3391 * Sometimes when we enter, BSY will be cleared in
3392 * a chk-status or two. If not, the drive is probably seeking
3393 * or something. Snooze for a couple msecs, then
3394 * chk-status again. If still busy, fall back to
3395 * HSM_ST_POLL state.
3396 */
3397 status = ata_busy_wait(ap, ATA_BUSY, 5);
3398 if (status & ATA_BUSY) {
3399 msleep(2);
3400 status = ata_busy_wait(ap, ATA_BUSY, 10);
3401 if (status & ATA_BUSY) {
3402 ap->hsm_task_state = HSM_ST_POLL;
3403 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3404 return;
3405 }
3406 }
3407
3408 qc = ata_qc_from_tag(ap, ap->active_tag);
3409 WARN_ON(qc == NULL);
3410
3411 /* check error */
3412 if (status & (ATA_ERR | ATA_DF)) {
3413 qc->err_mask |= AC_ERR_DEV;
3414 ap->hsm_task_state = HSM_ST_ERR;
3415 return;
3416 }
3417
3418 /* transfer data if any */
3419 if (is_atapi_taskfile(&qc->tf)) {
3420 /* DRQ=0 means no more data to transfer */
3421 if ((status & ATA_DRQ) == 0) {
3422 ap->hsm_task_state = HSM_ST_LAST;
3423 return;
3424 }
3425
3426 atapi_pio_bytes(qc);
3427 } else {
3428 /* handle BSY=0, DRQ=0 as error */
3429 if ((status & ATA_DRQ) == 0) {
3430 qc->err_mask |= AC_ERR_HSM;
3431 ap->hsm_task_state = HSM_ST_ERR;
3432 return;
3433 }
3434
3435 ata_pio_sector(qc);
3436 }
3437 }
3438
3439 static void ata_pio_error(struct ata_port *ap)
3440 {
3441 struct ata_queued_cmd *qc;
3442
3443 qc = ata_qc_from_tag(ap, ap->active_tag);
3444 WARN_ON(qc == NULL);
3445
3446 if (qc->tf.command != ATA_CMD_PACKET)
3447 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3448
3449 /* make sure qc->err_mask is available to
3450 * know what's wrong and recover
3451 */
3452 WARN_ON(qc->err_mask == 0);
3453
3454 ap->hsm_task_state = HSM_ST_IDLE;
3455
3456 ata_poll_qc_complete(qc);
3457 }
3458
3459 static void ata_pio_task(void *_data)
3460 {
3461 struct ata_port *ap = _data;
3462 unsigned long timeout;
3463 int qc_completed;
3464
3465 fsm_start:
3466 timeout = 0;
3467 qc_completed = 0;
3468
3469 switch (ap->hsm_task_state) {
3470 case HSM_ST_IDLE:
3471 return;
3472
3473 case HSM_ST:
3474 ata_pio_block(ap);
3475 break;
3476
3477 case HSM_ST_LAST:
3478 qc_completed = ata_pio_complete(ap);
3479 break;
3480
3481 case HSM_ST_POLL:
3482 case HSM_ST_LAST_POLL:
3483 timeout = ata_pio_poll(ap);
3484 break;
3485
3486 case HSM_ST_TMOUT:
3487 case HSM_ST_ERR:
3488 ata_pio_error(ap);
3489 return;
3490 }
3491
3492 if (timeout)
3493 ata_queue_delayed_pio_task(ap, timeout);
3494 else if (!qc_completed)
3495 goto fsm_start;
3496 }
3497
3498 /**
3499 * ata_qc_timeout - Handle timeout of queued command
3500 * @qc: Command that timed out
3501 *
3502 * Some part of the kernel (currently, only the SCSI layer)
3503 * has noticed that the active command on port @ap has not
3504 * completed after a specified length of time. Handle this
3505 * condition by disabling DMA (if necessary) and completing
3506 * transactions, with error if necessary.
3507 *
3508 * This also handles the case of the "lost interrupt", where
3509 * for some reason (possibly hardware bug, possibly driver bug)
3510 * an interrupt was not delivered to the driver, even though the
3511 * transaction completed successfully.
3512 *
3513 * LOCKING:
3514 * Inherited from SCSI layer (none, can sleep)
3515 */
3516
3517 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3518 {
3519 struct ata_port *ap = qc->ap;
3520 struct ata_host_set *host_set = ap->host_set;
3521 u8 host_stat = 0, drv_stat;
3522 unsigned long flags;
3523
3524 DPRINTK("ENTER\n");
3525
3526 ata_flush_pio_tasks(ap);
3527 ap->hsm_task_state = HSM_ST_IDLE;
3528
3529 spin_lock_irqsave(&host_set->lock, flags);
3530
3531 switch (qc->tf.protocol) {
3532
3533 case ATA_PROT_DMA:
3534 case ATA_PROT_ATAPI_DMA:
3535 host_stat = ap->ops->bmdma_status(ap);
3536
3537 /* before we do anything else, clear DMA-Start bit */
3538 ap->ops->bmdma_stop(qc);
3539
3540 /* fall through */
3541
3542 default:
3543 ata_altstatus(ap);
3544 drv_stat = ata_chk_status(ap);
3545
3546 /* ack bmdma irq events */
3547 ap->ops->irq_clear(ap);
3548
3549 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3550 ap->id, qc->tf.command, drv_stat, host_stat);
3551
3552 /* complete taskfile transaction */
3553 qc->err_mask |= ac_err_mask(drv_stat);
3554 break;
3555 }
3556
3557 spin_unlock_irqrestore(&host_set->lock, flags);
3558
3559 ata_eh_qc_complete(qc);
3560
3561 DPRINTK("EXIT\n");
3562 }
3563
3564 /**
3565 * ata_eng_timeout - Handle timeout of queued command
3566 * @ap: Port on which timed-out command is active
3567 *
3568 * Some part of the kernel (currently, only the SCSI layer)
3569 * has noticed that the active command on port @ap has not
3570 * completed after a specified length of time. Handle this
3571 * condition by disabling DMA (if necessary) and completing
3572 * transactions, with error if necessary.
3573 *
3574 * This also handles the case of the "lost interrupt", where
3575 * for some reason (possibly hardware bug, possibly driver bug)
3576 * an interrupt was not delivered to the driver, even though the
3577 * transaction completed successfully.
3578 *
3579 * LOCKING:
3580 * Inherited from SCSI layer (none, can sleep)
3581 */
3582
3583 void ata_eng_timeout(struct ata_port *ap)
3584 {
3585 DPRINTK("ENTER\n");
3586
3587 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3588
3589 DPRINTK("EXIT\n");
3590 }
3591
3592 /**
3593 * ata_qc_new - Request an available ATA command, for queueing
3594 * @ap: Port associated with device @dev
3595 * @dev: Device from whom we request an available command structure
3596 *
3597 * LOCKING:
3598 * None.
3599 */
3600
3601 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3602 {
3603 struct ata_queued_cmd *qc = NULL;
3604 unsigned int i;
3605
3606 for (i = 0; i < ATA_MAX_QUEUE; i++)
3607 if (!test_and_set_bit(i, &ap->qactive)) {
3608 qc = ata_qc_from_tag(ap, i);
3609 break;
3610 }
3611
3612 if (qc)
3613 qc->tag = i;
3614
3615 return qc;
3616 }
3617
3618 /**
3619 * ata_qc_new_init - Request an available ATA command, and initialize it
3620 * @ap: Port associated with device @dev
3621 * @dev: Device from whom we request an available command structure
3622 *
3623 * LOCKING:
3624 * None.
3625 */
3626
3627 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3628 struct ata_device *dev)
3629 {
3630 struct ata_queued_cmd *qc;
3631
3632 qc = ata_qc_new(ap);
3633 if (qc) {
3634 qc->scsicmd = NULL;
3635 qc->ap = ap;
3636 qc->dev = dev;
3637
3638 ata_qc_reinit(qc);
3639 }
3640
3641 return qc;
3642 }
3643
3644 /**
3645 * ata_qc_free - free unused ata_queued_cmd
3646 * @qc: Command to complete
3647 *
3648 * Designed to free unused ata_queued_cmd object
3649 * in case something prevents using it.
3650 *
3651 * LOCKING:
3652 * spin_lock_irqsave(host_set lock)
3653 */
3654 void ata_qc_free(struct ata_queued_cmd *qc)
3655 {
3656 struct ata_port *ap = qc->ap;
3657 unsigned int tag;
3658
3659 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3660
3661 qc->flags = 0;
3662 tag = qc->tag;
3663 if (likely(ata_tag_valid(tag))) {
3664 if (tag == ap->active_tag)
3665 ap->active_tag = ATA_TAG_POISON;
3666 qc->tag = ATA_TAG_POISON;
3667 clear_bit(tag, &ap->qactive);
3668 }
3669 }
3670
3671 void __ata_qc_complete(struct ata_queued_cmd *qc)
3672 {
3673 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3674 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3675
3676 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3677 ata_sg_clean(qc);
3678
3679 /* atapi: mark qc as inactive to prevent the interrupt handler
3680 * from completing the command twice later, before the error handler
3681 * is called. (when rc != 0 and atapi request sense is needed)
3682 */
3683 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3684
3685 /* call completion callback */
3686 qc->complete_fn(qc);
3687 }
3688
3689 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3690 {
3691 struct ata_port *ap = qc->ap;
3692
3693 switch (qc->tf.protocol) {
3694 case ATA_PROT_DMA:
3695 case ATA_PROT_ATAPI_DMA:
3696 return 1;
3697
3698 case ATA_PROT_ATAPI:
3699 case ATA_PROT_PIO:
3700 case ATA_PROT_PIO_MULT:
3701 if (ap->flags & ATA_FLAG_PIO_DMA)
3702 return 1;
3703
3704 /* fall through */
3705
3706 default:
3707 return 0;
3708 }
3709
3710 /* never reached */
3711 }
3712
3713 /**
3714 * ata_qc_issue - issue taskfile to device
3715 * @qc: command to issue to device
3716 *
3717 * Prepare an ATA command to submission to device.
3718 * This includes mapping the data into a DMA-able
3719 * area, filling in the S/G table, and finally
3720 * writing the taskfile to hardware, starting the command.
3721 *
3722 * LOCKING:
3723 * spin_lock_irqsave(host_set lock)
3724 *
3725 * RETURNS:
3726 * Zero on success, AC_ERR_* mask on failure
3727 */
3728
3729 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3730 {
3731 struct ata_port *ap = qc->ap;
3732
3733 if (ata_should_dma_map(qc)) {
3734 if (qc->flags & ATA_QCFLAG_SG) {
3735 if (ata_sg_setup(qc))
3736 goto sg_err;
3737 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3738 if (ata_sg_setup_one(qc))
3739 goto sg_err;
3740 }
3741 } else {
3742 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3743 }
3744
3745 ap->ops->qc_prep(qc);
3746
3747 qc->ap->active_tag = qc->tag;
3748 qc->flags |= ATA_QCFLAG_ACTIVE;
3749
3750 return ap->ops->qc_issue(qc);
3751
3752 sg_err:
3753 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3754 return AC_ERR_SYSTEM;
3755 }
3756
3757
3758 /**
3759 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3760 * @qc: command to issue to device
3761 *
3762 * Using various libata functions and hooks, this function
3763 * starts an ATA command. ATA commands are grouped into
3764 * classes called "protocols", and issuing each type of protocol
3765 * is slightly different.
3766 *
3767 * May be used as the qc_issue() entry in ata_port_operations.
3768 *
3769 * LOCKING:
3770 * spin_lock_irqsave(host_set lock)
3771 *
3772 * RETURNS:
3773 * Zero on success, AC_ERR_* mask on failure
3774 */
3775
3776 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3777 {
3778 struct ata_port *ap = qc->ap;
3779
3780 ata_dev_select(ap, qc->dev->devno, 1, 0);
3781
3782 switch (qc->tf.protocol) {
3783 case ATA_PROT_NODATA:
3784 ata_tf_to_host(ap, &qc->tf);
3785 break;
3786
3787 case ATA_PROT_DMA:
3788 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3789 ap->ops->bmdma_setup(qc); /* set up bmdma */
3790 ap->ops->bmdma_start(qc); /* initiate bmdma */
3791 break;
3792
3793 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3794 ata_qc_set_polling(qc);
3795 ata_tf_to_host(ap, &qc->tf);
3796 ap->hsm_task_state = HSM_ST;
3797 ata_queue_pio_task(ap);
3798 break;
3799
3800 case ATA_PROT_ATAPI:
3801 ata_qc_set_polling(qc);
3802 ata_tf_to_host(ap, &qc->tf);
3803 ata_queue_packet_task(ap);
3804 break;
3805
3806 case ATA_PROT_ATAPI_NODATA:
3807 ap->flags |= ATA_FLAG_NOINTR;
3808 ata_tf_to_host(ap, &qc->tf);
3809 ata_queue_packet_task(ap);
3810 break;
3811
3812 case ATA_PROT_ATAPI_DMA:
3813 ap->flags |= ATA_FLAG_NOINTR;
3814 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3815 ap->ops->bmdma_setup(qc); /* set up bmdma */
3816 ata_queue_packet_task(ap);
3817 break;
3818
3819 default:
3820 WARN_ON(1);
3821 return AC_ERR_SYSTEM;
3822 }
3823
3824 return 0;
3825 }
3826
3827 /**
3828 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3829 * @qc: Info associated with this ATA transaction.
3830 *
3831 * LOCKING:
3832 * spin_lock_irqsave(host_set lock)
3833 */
3834
3835 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3836 {
3837 struct ata_port *ap = qc->ap;
3838 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3839 u8 dmactl;
3840 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3841
3842 /* load PRD table addr. */
3843 mb(); /* make sure PRD table writes are visible to controller */
3844 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3845
3846 /* specify data direction, triple-check start bit is clear */
3847 dmactl = readb(mmio + ATA_DMA_CMD);
3848 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3849 if (!rw)
3850 dmactl |= ATA_DMA_WR;
3851 writeb(dmactl, mmio + ATA_DMA_CMD);
3852
3853 /* issue r/w command */
3854 ap->ops->exec_command(ap, &qc->tf);
3855 }
3856
3857 /**
3858 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3859 * @qc: Info associated with this ATA transaction.
3860 *
3861 * LOCKING:
3862 * spin_lock_irqsave(host_set lock)
3863 */
3864
3865 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3866 {
3867 struct ata_port *ap = qc->ap;
3868 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3869 u8 dmactl;
3870
3871 /* start host DMA transaction */
3872 dmactl = readb(mmio + ATA_DMA_CMD);
3873 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3874
3875 /* Strictly, one may wish to issue a readb() here, to
3876 * flush the mmio write. However, control also passes
3877 * to the hardware at this point, and it will interrupt
3878 * us when we are to resume control. So, in effect,
3879 * we don't care when the mmio write flushes.
3880 * Further, a read of the DMA status register _immediately_
3881 * following the write may not be what certain flaky hardware
3882 * is expected, so I think it is best to not add a readb()
3883 * without first all the MMIO ATA cards/mobos.
3884 * Or maybe I'm just being paranoid.
3885 */
3886 }
3887
3888 /**
3889 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3890 * @qc: Info associated with this ATA transaction.
3891 *
3892 * LOCKING:
3893 * spin_lock_irqsave(host_set lock)
3894 */
3895
3896 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3897 {
3898 struct ata_port *ap = qc->ap;
3899 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3900 u8 dmactl;
3901
3902 /* load PRD table addr. */
3903 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3904
3905 /* specify data direction, triple-check start bit is clear */
3906 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3907 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3908 if (!rw)
3909 dmactl |= ATA_DMA_WR;
3910 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3911
3912 /* issue r/w command */
3913 ap->ops->exec_command(ap, &qc->tf);
3914 }
3915
3916 /**
3917 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3918 * @qc: Info associated with this ATA transaction.
3919 *
3920 * LOCKING:
3921 * spin_lock_irqsave(host_set lock)
3922 */
3923
3924 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3925 {
3926 struct ata_port *ap = qc->ap;
3927 u8 dmactl;
3928
3929 /* start host DMA transaction */
3930 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3931 outb(dmactl | ATA_DMA_START,
3932 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3933 }
3934
3935
3936 /**
3937 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3938 * @qc: Info associated with this ATA transaction.
3939 *
3940 * Writes the ATA_DMA_START flag to the DMA command register.
3941 *
3942 * May be used as the bmdma_start() entry in ata_port_operations.
3943 *
3944 * LOCKING:
3945 * spin_lock_irqsave(host_set lock)
3946 */
3947 void ata_bmdma_start(struct ata_queued_cmd *qc)
3948 {
3949 if (qc->ap->flags & ATA_FLAG_MMIO)
3950 ata_bmdma_start_mmio(qc);
3951 else
3952 ata_bmdma_start_pio(qc);
3953 }
3954
3955
3956 /**
3957 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3958 * @qc: Info associated with this ATA transaction.
3959 *
3960 * Writes address of PRD table to device's PRD Table Address
3961 * register, sets the DMA control register, and calls
3962 * ops->exec_command() to start the transfer.
3963 *
3964 * May be used as the bmdma_setup() entry in ata_port_operations.
3965 *
3966 * LOCKING:
3967 * spin_lock_irqsave(host_set lock)
3968 */
3969 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3970 {
3971 if (qc->ap->flags & ATA_FLAG_MMIO)
3972 ata_bmdma_setup_mmio(qc);
3973 else
3974 ata_bmdma_setup_pio(qc);
3975 }
3976
3977
3978 /**
3979 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3980 * @ap: Port associated with this ATA transaction.
3981 *
3982 * Clear interrupt and error flags in DMA status register.
3983 *
3984 * May be used as the irq_clear() entry in ata_port_operations.
3985 *
3986 * LOCKING:
3987 * spin_lock_irqsave(host_set lock)
3988 */
3989
3990 void ata_bmdma_irq_clear(struct ata_port *ap)
3991 {
3992 if (ap->flags & ATA_FLAG_MMIO) {
3993 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3994 writeb(readb(mmio), mmio);
3995 } else {
3996 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3997 outb(inb(addr), addr);
3998 }
3999
4000 }
4001
4002
4003 /**
4004 * ata_bmdma_status - Read PCI IDE BMDMA status
4005 * @ap: Port associated with this ATA transaction.
4006 *
4007 * Read and return BMDMA status register.
4008 *
4009 * May be used as the bmdma_status() entry in ata_port_operations.
4010 *
4011 * LOCKING:
4012 * spin_lock_irqsave(host_set lock)
4013 */
4014
4015 u8 ata_bmdma_status(struct ata_port *ap)
4016 {
4017 u8 host_stat;
4018 if (ap->flags & ATA_FLAG_MMIO) {
4019 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4020 host_stat = readb(mmio + ATA_DMA_STATUS);
4021 } else
4022 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4023 return host_stat;
4024 }
4025
4026
4027 /**
4028 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4029 * @qc: Command we are ending DMA for
4030 *
4031 * Clears the ATA_DMA_START flag in the dma control register
4032 *
4033 * May be used as the bmdma_stop() entry in ata_port_operations.
4034 *
4035 * LOCKING:
4036 * spin_lock_irqsave(host_set lock)
4037 */
4038
4039 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4040 {
4041 struct ata_port *ap = qc->ap;
4042 if (ap->flags & ATA_FLAG_MMIO) {
4043 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4044
4045 /* clear start/stop bit */
4046 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4047 mmio + ATA_DMA_CMD);
4048 } else {
4049 /* clear start/stop bit */
4050 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4051 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4052 }
4053
4054 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4055 ata_altstatus(ap); /* dummy read */
4056 }
4057
4058 /**
4059 * ata_host_intr - Handle host interrupt for given (port, task)
4060 * @ap: Port on which interrupt arrived (possibly...)
4061 * @qc: Taskfile currently active in engine
4062 *
4063 * Handle host interrupt for given queued command. Currently,
4064 * only DMA interrupts are handled. All other commands are
4065 * handled via polling with interrupts disabled (nIEN bit).
4066 *
4067 * LOCKING:
4068 * spin_lock_irqsave(host_set lock)
4069 *
4070 * RETURNS:
4071 * One if interrupt was handled, zero if not (shared irq).
4072 */
4073
4074 inline unsigned int ata_host_intr (struct ata_port *ap,
4075 struct ata_queued_cmd *qc)
4076 {
4077 u8 status, host_stat;
4078
4079 switch (qc->tf.protocol) {
4080
4081 case ATA_PROT_DMA:
4082 case ATA_PROT_ATAPI_DMA:
4083 case ATA_PROT_ATAPI:
4084 /* check status of DMA engine */
4085 host_stat = ap->ops->bmdma_status(ap);
4086 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4087
4088 /* if it's not our irq... */
4089 if (!(host_stat & ATA_DMA_INTR))
4090 goto idle_irq;
4091
4092 /* before we do anything else, clear DMA-Start bit */
4093 ap->ops->bmdma_stop(qc);
4094
4095 /* fall through */
4096
4097 case ATA_PROT_ATAPI_NODATA:
4098 case ATA_PROT_NODATA:
4099 /* check altstatus */
4100 status = ata_altstatus(ap);
4101 if (status & ATA_BUSY)
4102 goto idle_irq;
4103
4104 /* check main status, clearing INTRQ */
4105 status = ata_chk_status(ap);
4106 if (unlikely(status & ATA_BUSY))
4107 goto idle_irq;
4108 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4109 ap->id, qc->tf.protocol, status);
4110
4111 /* ack bmdma irq events */
4112 ap->ops->irq_clear(ap);
4113
4114 /* complete taskfile transaction */
4115 qc->err_mask |= ac_err_mask(status);
4116 ata_qc_complete(qc);
4117 break;
4118
4119 default:
4120 goto idle_irq;
4121 }
4122
4123 return 1; /* irq handled */
4124
4125 idle_irq:
4126 ap->stats.idle_irq++;
4127
4128 #ifdef ATA_IRQ_TRAP
4129 if ((ap->stats.idle_irq % 1000) == 0) {
4130 handled = 1;
4131 ata_irq_ack(ap, 0); /* debug trap */
4132 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4133 }
4134 #endif
4135 return 0; /* irq not handled */
4136 }
4137
4138 /**
4139 * ata_interrupt - Default ATA host interrupt handler
4140 * @irq: irq line (unused)
4141 * @dev_instance: pointer to our ata_host_set information structure
4142 * @regs: unused
4143 *
4144 * Default interrupt handler for PCI IDE devices. Calls
4145 * ata_host_intr() for each port that is not disabled.
4146 *
4147 * LOCKING:
4148 * Obtains host_set lock during operation.
4149 *
4150 * RETURNS:
4151 * IRQ_NONE or IRQ_HANDLED.
4152 */
4153
4154 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4155 {
4156 struct ata_host_set *host_set = dev_instance;
4157 unsigned int i;
4158 unsigned int handled = 0;
4159 unsigned long flags;
4160
4161 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4162 spin_lock_irqsave(&host_set->lock, flags);
4163
4164 for (i = 0; i < host_set->n_ports; i++) {
4165 struct ata_port *ap;
4166
4167 ap = host_set->ports[i];
4168 if (ap &&
4169 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4170 struct ata_queued_cmd *qc;
4171
4172 qc = ata_qc_from_tag(ap, ap->active_tag);
4173 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4174 (qc->flags & ATA_QCFLAG_ACTIVE))
4175 handled |= ata_host_intr(ap, qc);
4176 }
4177 }
4178
4179 spin_unlock_irqrestore(&host_set->lock, flags);
4180
4181 return IRQ_RETVAL(handled);
4182 }
4183
4184 /**
4185 * atapi_packet_task - Write CDB bytes to hardware
4186 * @_data: Port to which ATAPI device is attached.
4187 *
4188 * When device has indicated its readiness to accept
4189 * a CDB, this function is called. Send the CDB.
4190 * If DMA is to be performed, exit immediately.
4191 * Otherwise, we are in polling mode, so poll
4192 * status under operation succeeds or fails.
4193 *
4194 * LOCKING:
4195 * Kernel thread context (may sleep)
4196 */
4197
4198 static void atapi_packet_task(void *_data)
4199 {
4200 struct ata_port *ap = _data;
4201 struct ata_queued_cmd *qc;
4202 u8 status;
4203
4204 qc = ata_qc_from_tag(ap, ap->active_tag);
4205 WARN_ON(qc == NULL);
4206 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4207
4208 /* sleep-wait for BSY to clear */
4209 DPRINTK("busy wait\n");
4210 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4211 qc->err_mask |= AC_ERR_TIMEOUT;
4212 goto err_out;
4213 }
4214
4215 /* make sure DRQ is set */
4216 status = ata_chk_status(ap);
4217 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4218 qc->err_mask |= AC_ERR_HSM;
4219 goto err_out;
4220 }
4221
4222 /* send SCSI cdb */
4223 DPRINTK("send cdb\n");
4224 WARN_ON(qc->dev->cdb_len < 12);
4225
4226 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4227 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4228 unsigned long flags;
4229
4230 /* Once we're done issuing command and kicking bmdma,
4231 * irq handler takes over. To not lose irq, we need
4232 * to clear NOINTR flag before sending cdb, but
4233 * interrupt handler shouldn't be invoked before we're
4234 * finished. Hence, the following locking.
4235 */
4236 spin_lock_irqsave(&ap->host_set->lock, flags);
4237 ap->flags &= ~ATA_FLAG_NOINTR;
4238 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4239 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4240 ap->ops->bmdma_start(qc); /* initiate bmdma */
4241 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4242 } else {
4243 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4244
4245 /* PIO commands are handled by polling */
4246 ap->hsm_task_state = HSM_ST;
4247 ata_queue_pio_task(ap);
4248 }
4249
4250 return;
4251
4252 err_out:
4253 ata_poll_qc_complete(qc);
4254 }
4255
4256
4257 /*
4258 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4259 * without filling any other registers
4260 */
4261 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4262 u8 cmd)
4263 {
4264 struct ata_taskfile tf;
4265 int err;
4266
4267 ata_tf_init(ap, &tf, dev->devno);
4268
4269 tf.command = cmd;
4270 tf.flags |= ATA_TFLAG_DEVICE;
4271 tf.protocol = ATA_PROT_NODATA;
4272
4273 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4274 if (err)
4275 printk(KERN_ERR "%s: ata command failed: %d\n",
4276 __FUNCTION__, err);
4277
4278 return err;
4279 }
4280
4281 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4282 {
4283 u8 cmd;
4284
4285 if (!ata_try_flush_cache(dev))
4286 return 0;
4287
4288 if (ata_id_has_flush_ext(dev->id))
4289 cmd = ATA_CMD_FLUSH_EXT;
4290 else
4291 cmd = ATA_CMD_FLUSH;
4292
4293 return ata_do_simple_cmd(ap, dev, cmd);
4294 }
4295
4296 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4297 {
4298 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4299 }
4300
4301 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4302 {
4303 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4304 }
4305
4306 /**
4307 * ata_device_resume - wakeup a previously suspended devices
4308 * @ap: port the device is connected to
4309 * @dev: the device to resume
4310 *
4311 * Kick the drive back into action, by sending it an idle immediate
4312 * command and making sure its transfer mode matches between drive
4313 * and host.
4314 *
4315 */
4316 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4317 {
4318 if (ap->flags & ATA_FLAG_SUSPENDED) {
4319 ap->flags &= ~ATA_FLAG_SUSPENDED;
4320 ata_set_mode(ap);
4321 }
4322 if (!ata_dev_present(dev))
4323 return 0;
4324 if (dev->class == ATA_DEV_ATA)
4325 ata_start_drive(ap, dev);
4326
4327 return 0;
4328 }
4329
4330 /**
4331 * ata_device_suspend - prepare a device for suspend
4332 * @ap: port the device is connected to
4333 * @dev: the device to suspend
4334 *
4335 * Flush the cache on the drive, if appropriate, then issue a
4336 * standbynow command.
4337 */
4338 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4339 {
4340 if (!ata_dev_present(dev))
4341 return 0;
4342 if (dev->class == ATA_DEV_ATA)
4343 ata_flush_cache(ap, dev);
4344
4345 ata_standby_drive(ap, dev);
4346 ap->flags |= ATA_FLAG_SUSPENDED;
4347 return 0;
4348 }
4349
4350 /**
4351 * ata_port_start - Set port up for dma.
4352 * @ap: Port to initialize
4353 *
4354 * Called just after data structures for each port are
4355 * initialized. Allocates space for PRD table.
4356 *
4357 * May be used as the port_start() entry in ata_port_operations.
4358 *
4359 * LOCKING:
4360 * Inherited from caller.
4361 */
4362
4363 int ata_port_start (struct ata_port *ap)
4364 {
4365 struct device *dev = ap->host_set->dev;
4366 int rc;
4367
4368 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4369 if (!ap->prd)
4370 return -ENOMEM;
4371
4372 rc = ata_pad_alloc(ap, dev);
4373 if (rc) {
4374 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4375 return rc;
4376 }
4377
4378 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4379
4380 return 0;
4381 }
4382
4383
4384 /**
4385 * ata_port_stop - Undo ata_port_start()
4386 * @ap: Port to shut down
4387 *
4388 * Frees the PRD table.
4389 *
4390 * May be used as the port_stop() entry in ata_port_operations.
4391 *
4392 * LOCKING:
4393 * Inherited from caller.
4394 */
4395
4396 void ata_port_stop (struct ata_port *ap)
4397 {
4398 struct device *dev = ap->host_set->dev;
4399
4400 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4401 ata_pad_free(ap, dev);
4402 }
4403
4404 void ata_host_stop (struct ata_host_set *host_set)
4405 {
4406 if (host_set->mmio_base)
4407 iounmap(host_set->mmio_base);
4408 }
4409
4410
4411 /**
4412 * ata_host_remove - Unregister SCSI host structure with upper layers
4413 * @ap: Port to unregister
4414 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4415 *
4416 * LOCKING:
4417 * Inherited from caller.
4418 */
4419
4420 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4421 {
4422 struct Scsi_Host *sh = ap->host;
4423
4424 DPRINTK("ENTER\n");
4425
4426 if (do_unregister)
4427 scsi_remove_host(sh);
4428
4429 ap->ops->port_stop(ap);
4430 }
4431
4432 /**
4433 * ata_host_init - Initialize an ata_port structure
4434 * @ap: Structure to initialize
4435 * @host: associated SCSI mid-layer structure
4436 * @host_set: Collection of hosts to which @ap belongs
4437 * @ent: Probe information provided by low-level driver
4438 * @port_no: Port number associated with this ata_port
4439 *
4440 * Initialize a new ata_port structure, and its associated
4441 * scsi_host.
4442 *
4443 * LOCKING:
4444 * Inherited from caller.
4445 */
4446
4447 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4448 struct ata_host_set *host_set,
4449 const struct ata_probe_ent *ent, unsigned int port_no)
4450 {
4451 unsigned int i;
4452
4453 host->max_id = 16;
4454 host->max_lun = 1;
4455 host->max_channel = 1;
4456 host->unique_id = ata_unique_id++;
4457 host->max_cmd_len = 12;
4458
4459 ap->flags = ATA_FLAG_PORT_DISABLED;
4460 ap->id = host->unique_id;
4461 ap->host = host;
4462 ap->ctl = ATA_DEVCTL_OBS;
4463 ap->host_set = host_set;
4464 ap->port_no = port_no;
4465 ap->hard_port_no =
4466 ent->legacy_mode ? ent->hard_port_no : port_no;
4467 ap->pio_mask = ent->pio_mask;
4468 ap->mwdma_mask = ent->mwdma_mask;
4469 ap->udma_mask = ent->udma_mask;
4470 ap->flags |= ent->host_flags;
4471 ap->ops = ent->port_ops;
4472 ap->cbl = ATA_CBL_NONE;
4473 ap->active_tag = ATA_TAG_POISON;
4474 ap->last_ctl = 0xFF;
4475
4476 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4477 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4478 INIT_LIST_HEAD(&ap->eh_done_q);
4479
4480 for (i = 0; i < ATA_MAX_DEVICES; i++)
4481 ap->device[i].devno = i;
4482
4483 #ifdef ATA_IRQ_TRAP
4484 ap->stats.unhandled_irq = 1;
4485 ap->stats.idle_irq = 1;
4486 #endif
4487
4488 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4489 }
4490
4491 /**
4492 * ata_host_add - Attach low-level ATA driver to system
4493 * @ent: Information provided by low-level driver
4494 * @host_set: Collections of ports to which we add
4495 * @port_no: Port number associated with this host
4496 *
4497 * Attach low-level ATA driver to system.
4498 *
4499 * LOCKING:
4500 * PCI/etc. bus probe sem.
4501 *
4502 * RETURNS:
4503 * New ata_port on success, for NULL on error.
4504 */
4505
4506 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4507 struct ata_host_set *host_set,
4508 unsigned int port_no)
4509 {
4510 struct Scsi_Host *host;
4511 struct ata_port *ap;
4512 int rc;
4513
4514 DPRINTK("ENTER\n");
4515 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4516 if (!host)
4517 return NULL;
4518
4519 ap = (struct ata_port *) &host->hostdata[0];
4520
4521 ata_host_init(ap, host, host_set, ent, port_no);
4522
4523 rc = ap->ops->port_start(ap);
4524 if (rc)
4525 goto err_out;
4526
4527 return ap;
4528
4529 err_out:
4530 scsi_host_put(host);
4531 return NULL;
4532 }
4533
4534 /**
4535 * ata_device_add - Register hardware device with ATA and SCSI layers
4536 * @ent: Probe information describing hardware device to be registered
4537 *
4538 * This function processes the information provided in the probe
4539 * information struct @ent, allocates the necessary ATA and SCSI
4540 * host information structures, initializes them, and registers
4541 * everything with requisite kernel subsystems.
4542 *
4543 * This function requests irqs, probes the ATA bus, and probes
4544 * the SCSI bus.
4545 *
4546 * LOCKING:
4547 * PCI/etc. bus probe sem.
4548 *
4549 * RETURNS:
4550 * Number of ports registered. Zero on error (no ports registered).
4551 */
4552
4553 int ata_device_add(const struct ata_probe_ent *ent)
4554 {
4555 unsigned int count = 0, i;
4556 struct device *dev = ent->dev;
4557 struct ata_host_set *host_set;
4558
4559 DPRINTK("ENTER\n");
4560 /* alloc a container for our list of ATA ports (buses) */
4561 host_set = kzalloc(sizeof(struct ata_host_set) +
4562 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4563 if (!host_set)
4564 return 0;
4565 spin_lock_init(&host_set->lock);
4566
4567 host_set->dev = dev;
4568 host_set->n_ports = ent->n_ports;
4569 host_set->irq = ent->irq;
4570 host_set->mmio_base = ent->mmio_base;
4571 host_set->private_data = ent->private_data;
4572 host_set->ops = ent->port_ops;
4573
4574 /* register each port bound to this device */
4575 for (i = 0; i < ent->n_ports; i++) {
4576 struct ata_port *ap;
4577 unsigned long xfer_mode_mask;
4578
4579 ap = ata_host_add(ent, host_set, i);
4580 if (!ap)
4581 goto err_out;
4582
4583 host_set->ports[i] = ap;
4584 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4585 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4586 (ap->pio_mask << ATA_SHIFT_PIO);
4587
4588 /* print per-port info to dmesg */
4589 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4590 "bmdma 0x%lX irq %lu\n",
4591 ap->id,
4592 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4593 ata_mode_string(xfer_mode_mask),
4594 ap->ioaddr.cmd_addr,
4595 ap->ioaddr.ctl_addr,
4596 ap->ioaddr.bmdma_addr,
4597 ent->irq);
4598
4599 ata_chk_status(ap);
4600 host_set->ops->irq_clear(ap);
4601 count++;
4602 }
4603
4604 if (!count)
4605 goto err_free_ret;
4606
4607 /* obtain irq, that is shared between channels */
4608 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4609 DRV_NAME, host_set))
4610 goto err_out;
4611
4612 /* perform each probe synchronously */
4613 DPRINTK("probe begin\n");
4614 for (i = 0; i < count; i++) {
4615 struct ata_port *ap;
4616 int rc;
4617
4618 ap = host_set->ports[i];
4619
4620 DPRINTK("ata%u: bus probe begin\n", ap->id);
4621 rc = ata_bus_probe(ap);
4622 DPRINTK("ata%u: bus probe end\n", ap->id);
4623
4624 if (rc) {
4625 /* FIXME: do something useful here?
4626 * Current libata behavior will
4627 * tear down everything when
4628 * the module is removed
4629 * or the h/w is unplugged.
4630 */
4631 }
4632
4633 rc = scsi_add_host(ap->host, dev);
4634 if (rc) {
4635 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4636 ap->id);
4637 /* FIXME: do something useful here */
4638 /* FIXME: handle unconditional calls to
4639 * scsi_scan_host and ata_host_remove, below,
4640 * at the very least
4641 */
4642 }
4643 }
4644
4645 /* probes are done, now scan each port's disk(s) */
4646 DPRINTK("host probe begin\n");
4647 for (i = 0; i < count; i++) {
4648 struct ata_port *ap = host_set->ports[i];
4649
4650 ata_scsi_scan_host(ap);
4651 }
4652
4653 dev_set_drvdata(dev, host_set);
4654
4655 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4656 return ent->n_ports; /* success */
4657
4658 err_out:
4659 for (i = 0; i < count; i++) {
4660 ata_host_remove(host_set->ports[i], 1);
4661 scsi_host_put(host_set->ports[i]->host);
4662 }
4663 err_free_ret:
4664 kfree(host_set);
4665 VPRINTK("EXIT, returning 0\n");
4666 return 0;
4667 }
4668
4669 /**
4670 * ata_host_set_remove - PCI layer callback for device removal
4671 * @host_set: ATA host set that was removed
4672 *
4673 * Unregister all objects associated with this host set. Free those
4674 * objects.
4675 *
4676 * LOCKING:
4677 * Inherited from calling layer (may sleep).
4678 */
4679
4680 void ata_host_set_remove(struct ata_host_set *host_set)
4681 {
4682 struct ata_port *ap;
4683 unsigned int i;
4684
4685 for (i = 0; i < host_set->n_ports; i++) {
4686 ap = host_set->ports[i];
4687 scsi_remove_host(ap->host);
4688 }
4689
4690 free_irq(host_set->irq, host_set);
4691
4692 for (i = 0; i < host_set->n_ports; i++) {
4693 ap = host_set->ports[i];
4694
4695 ata_scsi_release(ap->host);
4696
4697 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4698 struct ata_ioports *ioaddr = &ap->ioaddr;
4699
4700 if (ioaddr->cmd_addr == 0x1f0)
4701 release_region(0x1f0, 8);
4702 else if (ioaddr->cmd_addr == 0x170)
4703 release_region(0x170, 8);
4704 }
4705
4706 scsi_host_put(ap->host);
4707 }
4708
4709 if (host_set->ops->host_stop)
4710 host_set->ops->host_stop(host_set);
4711
4712 kfree(host_set);
4713 }
4714
4715 /**
4716 * ata_scsi_release - SCSI layer callback hook for host unload
4717 * @host: libata host to be unloaded
4718 *
4719 * Performs all duties necessary to shut down a libata port...
4720 * Kill port kthread, disable port, and release resources.
4721 *
4722 * LOCKING:
4723 * Inherited from SCSI layer.
4724 *
4725 * RETURNS:
4726 * One.
4727 */
4728
4729 int ata_scsi_release(struct Scsi_Host *host)
4730 {
4731 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4732
4733 DPRINTK("ENTER\n");
4734
4735 ap->ops->port_disable(ap);
4736 ata_host_remove(ap, 0);
4737
4738 DPRINTK("EXIT\n");
4739 return 1;
4740 }
4741
4742 /**
4743 * ata_std_ports - initialize ioaddr with standard port offsets.
4744 * @ioaddr: IO address structure to be initialized
4745 *
4746 * Utility function which initializes data_addr, error_addr,
4747 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4748 * device_addr, status_addr, and command_addr to standard offsets
4749 * relative to cmd_addr.
4750 *
4751 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4752 */
4753
4754 void ata_std_ports(struct ata_ioports *ioaddr)
4755 {
4756 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4757 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4758 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4759 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4760 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4761 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4762 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4763 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4764 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4765 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4766 }
4767
4768
4769 #ifdef CONFIG_PCI
4770
4771 void ata_pci_host_stop (struct ata_host_set *host_set)
4772 {
4773 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4774
4775 pci_iounmap(pdev, host_set->mmio_base);
4776 }
4777
4778 /**
4779 * ata_pci_remove_one - PCI layer callback for device removal
4780 * @pdev: PCI device that was removed
4781 *
4782 * PCI layer indicates to libata via this hook that
4783 * hot-unplug or module unload event has occurred.
4784 * Handle this by unregistering all objects associated
4785 * with this PCI device. Free those objects. Then finally
4786 * release PCI resources and disable device.
4787 *
4788 * LOCKING:
4789 * Inherited from PCI layer (may sleep).
4790 */
4791
4792 void ata_pci_remove_one (struct pci_dev *pdev)
4793 {
4794 struct device *dev = pci_dev_to_dev(pdev);
4795 struct ata_host_set *host_set = dev_get_drvdata(dev);
4796
4797 ata_host_set_remove(host_set);
4798 pci_release_regions(pdev);
4799 pci_disable_device(pdev);
4800 dev_set_drvdata(dev, NULL);
4801 }
4802
4803 /* move to PCI subsystem */
4804 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4805 {
4806 unsigned long tmp = 0;
4807
4808 switch (bits->width) {
4809 case 1: {
4810 u8 tmp8 = 0;
4811 pci_read_config_byte(pdev, bits->reg, &tmp8);
4812 tmp = tmp8;
4813 break;
4814 }
4815 case 2: {
4816 u16 tmp16 = 0;
4817 pci_read_config_word(pdev, bits->reg, &tmp16);
4818 tmp = tmp16;
4819 break;
4820 }
4821 case 4: {
4822 u32 tmp32 = 0;
4823 pci_read_config_dword(pdev, bits->reg, &tmp32);
4824 tmp = tmp32;
4825 break;
4826 }
4827
4828 default:
4829 return -EINVAL;
4830 }
4831
4832 tmp &= bits->mask;
4833
4834 return (tmp == bits->val) ? 1 : 0;
4835 }
4836
4837 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4838 {
4839 pci_save_state(pdev);
4840 pci_disable_device(pdev);
4841 pci_set_power_state(pdev, PCI_D3hot);
4842 return 0;
4843 }
4844
4845 int ata_pci_device_resume(struct pci_dev *pdev)
4846 {
4847 pci_set_power_state(pdev, PCI_D0);
4848 pci_restore_state(pdev);
4849 pci_enable_device(pdev);
4850 pci_set_master(pdev);
4851 return 0;
4852 }
4853 #endif /* CONFIG_PCI */
4854
4855
4856 static int __init ata_init(void)
4857 {
4858 ata_wq = create_workqueue("ata");
4859 if (!ata_wq)
4860 return -ENOMEM;
4861
4862 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4863 return 0;
4864 }
4865
4866 static void __exit ata_exit(void)
4867 {
4868 destroy_workqueue(ata_wq);
4869 }
4870
4871 module_init(ata_init);
4872 module_exit(ata_exit);
4873
4874 static unsigned long ratelimit_time;
4875 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4876
4877 int ata_ratelimit(void)
4878 {
4879 int rc;
4880 unsigned long flags;
4881
4882 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4883
4884 if (time_after(jiffies, ratelimit_time)) {
4885 rc = 1;
4886 ratelimit_time = jiffies + (HZ/5);
4887 } else
4888 rc = 0;
4889
4890 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4891
4892 return rc;
4893 }
4894
4895 /*
4896 * libata is essentially a library of internal helper functions for
4897 * low-level ATA host controller drivers. As such, the API/ABI is
4898 * likely to change as new drivers are added and updated.
4899 * Do not depend on ABI/API stability.
4900 */
4901
4902 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4903 EXPORT_SYMBOL_GPL(ata_std_ports);
4904 EXPORT_SYMBOL_GPL(ata_device_add);
4905 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4906 EXPORT_SYMBOL_GPL(ata_sg_init);
4907 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4908 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4909 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4910 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4911 EXPORT_SYMBOL_GPL(ata_tf_load);
4912 EXPORT_SYMBOL_GPL(ata_tf_read);
4913 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4914 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4915 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4916 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4917 EXPORT_SYMBOL_GPL(ata_check_status);
4918 EXPORT_SYMBOL_GPL(ata_altstatus);
4919 EXPORT_SYMBOL_GPL(ata_exec_command);
4920 EXPORT_SYMBOL_GPL(ata_port_start);
4921 EXPORT_SYMBOL_GPL(ata_port_stop);
4922 EXPORT_SYMBOL_GPL(ata_host_stop);
4923 EXPORT_SYMBOL_GPL(ata_interrupt);
4924 EXPORT_SYMBOL_GPL(ata_qc_prep);
4925 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4926 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4927 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4928 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4929 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4930 EXPORT_SYMBOL_GPL(ata_port_probe);
4931 EXPORT_SYMBOL_GPL(sata_phy_reset);
4932 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4933 EXPORT_SYMBOL_GPL(ata_bus_reset);
4934 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4935 EXPORT_SYMBOL_GPL(ata_std_softreset);
4936 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4937 EXPORT_SYMBOL_GPL(ata_std_postreset);
4938 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4939 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4940 EXPORT_SYMBOL_GPL(ata_port_disable);
4941 EXPORT_SYMBOL_GPL(ata_ratelimit);
4942 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4943 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4944 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4945 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
4946 EXPORT_SYMBOL_GPL(ata_scsi_error);
4947 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4948 EXPORT_SYMBOL_GPL(ata_scsi_release);
4949 EXPORT_SYMBOL_GPL(ata_host_intr);
4950 EXPORT_SYMBOL_GPL(ata_dev_classify);
4951 EXPORT_SYMBOL_GPL(ata_id_string);
4952 EXPORT_SYMBOL_GPL(ata_id_c_string);
4953 EXPORT_SYMBOL_GPL(ata_dev_config);
4954 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4955 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4956 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4957
4958 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4959 EXPORT_SYMBOL_GPL(ata_timing_compute);
4960 EXPORT_SYMBOL_GPL(ata_timing_merge);
4961
4962 #ifdef CONFIG_PCI
4963 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4964 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4965 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4966 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4967 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4968 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4969 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4970 #endif /* CONFIG_PCI */
4971
4972 EXPORT_SYMBOL_GPL(ata_device_suspend);
4973 EXPORT_SYMBOL_GPL(ata_device_resume);
4974 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4975 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);