]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/scsi/libata-core.c
[PATCH] libata-hp: hook warmplug
[mirror_ubuntu-focal-kernel.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 struct workqueue_struct *ata_aux_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int atapi_dmadir = 0;
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
87 int libata_fua = 0;
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
95
96
97 /**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
111 {
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137 }
138
139 /**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
151 {
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166 }
167
168 static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
183 0,
184 0,
185 0,
186 0,
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
196 };
197
198 /**
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
201 *
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
204 *
205 * LOCKING:
206 * caller.
207 */
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
209 {
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
212 u8 cmd;
213
214 int index, fua, lba48, write;
215
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
219
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else {
228 tf->protocol = ATA_PROT_DMA;
229 index = 16;
230 }
231
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
238 }
239
240 /**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258 {
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262 }
263
264 /**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278 {
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285 }
286
287 static const struct ata_xfer_ent {
288 int shift, bits;
289 u8 base;
290 } ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295 };
296
297 /**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311 {
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319 }
320
321 /**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334 {
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341 }
342
343 /**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
356 {
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363 }
364
365 /**
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
368 *
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
378 */
379 static const char *ata_mode_string(unsigned int xfer_mask)
380 {
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
399 int highbit;
400
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
404 return "<n/a>";
405 }
406
407 static const char *sata_spd_string(unsigned int spd)
408 {
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417 }
418
419 void ata_dev_disable(struct ata_device *dev)
420 {
421 if (ata_dev_enabled(dev)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
423 dev->class++;
424 }
425 }
426
427 /**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447 {
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469 }
470
471 /**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491 {
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513 }
514
515 /**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528 static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530 {
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534 }
535
536 /**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
553 {
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573 }
574
575 /**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 */
596
597 static unsigned int
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
599 {
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
608 ap->ops->tf_read(ap, &tf);
609 err = tf.feature;
610 if (r_err)
611 *r_err = err;
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
619 return ATA_DEV_NONE;
620
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
623
624 if (class == ATA_DEV_UNKNOWN)
625 return ATA_DEV_NONE;
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
627 return ATA_DEV_NONE;
628 return class;
629 }
630
631 /**
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
648 {
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663 }
664
665 /**
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
681 {
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
686 ata_id_string(id, s, ofs, len - 1);
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692 }
693
694 static u64 ata_id_n_sectors(const u16 *id)
695 {
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707 }
708
709 /**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722 {
723 }
724
725
726 /**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
736 *
737 * LOCKING:
738 * caller.
739 */
740
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742 {
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756 }
757
758 /**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779 {
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
782
783 if (wait)
784 ata_wait_idle(ap);
785
786 ap->ops->dev_select(ap, device);
787
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
792 }
793 }
794
795 /**
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
797 * @id: IDENTIFY DEVICE page to dump
798 *
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
801 *
802 * LOCKING:
803 * caller.
804 */
805
806 static inline void ata_dump_id(const u16 *id)
807 {
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
830 id[88],
831 id[93]);
832 }
833
834 /**
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
837 *
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
840 *
841 * FIXME: pre IDE drive timing (do we care ?).
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Computed xfermask
848 */
849 static unsigned int ata_id_xfermask(const u16 *id)
850 {
851 unsigned int pio_mask, mwdma_mask, udma_mask;
852
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
862 */
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
864
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
870 */
871 }
872
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
874
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
878
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880 }
881
882 /**
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
888 *
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
893 *
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
897 *
898 * LOCKING:
899 * Inherited from caller.
900 */
901 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
903 {
904 int rc;
905
906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
907 return;
908
909 PREPARE_WORK(&ap->port_task, fn, data);
910
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
915
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
918 }
919
920 /**
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
923 *
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
926 *
927 * LOCKING:
928 * Kernel thread context (may sleep)
929 */
930 void ata_port_flush_task(struct ata_port *ap)
931 {
932 unsigned long flags;
933
934 DPRINTK("ENTER\n");
935
936 spin_lock_irqsave(&ap->host_set->lock, flags);
937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
939
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
942
943 /*
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
947 */
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
951 }
952
953 spin_lock_irqsave(&ap->host_set->lock, flags);
954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
956
957 DPRINTK("EXIT\n");
958 }
959
960 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
961 {
962 struct completion *waiting = qc->private_data;
963
964 complete(waiting);
965 }
966
967 /**
968 * ata_exec_internal - execute libata internal command
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
971 * @cdb: CDB for packet command
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
975 *
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
981 *
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
984 */
985
986 unsigned ata_exec_internal(struct ata_device *dev,
987 struct ata_taskfile *tf, const u8 *cdb,
988 int dma_dir, void *buf, unsigned int buflen)
989 {
990 struct ata_port *ap = dev->ap;
991 u8 command = tf->command;
992 struct ata_queued_cmd *qc;
993 unsigned int tag, preempted_tag;
994 u32 preempted_sactive, preempted_qc_active;
995 DECLARE_COMPLETION(wait);
996 unsigned long flags;
997 unsigned int err_mask;
998 int rc;
999
1000 spin_lock_irqsave(&ap->host_set->lock, flags);
1001
1002 /* no internal command while frozen */
1003 if (ap->flags & ATA_FLAG_FROZEN) {
1004 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1005 return AC_ERR_SYSTEM;
1006 }
1007
1008 /* initialize internal qc */
1009
1010 /* XXX: Tag 0 is used for drivers with legacy EH as some
1011 * drivers choke if any other tag is given. This breaks
1012 * ata_tag_internal() test for those drivers. Don't use new
1013 * EH stuff without converting to it.
1014 */
1015 if (ap->ops->error_handler)
1016 tag = ATA_TAG_INTERNAL;
1017 else
1018 tag = 0;
1019
1020 if (test_and_set_bit(tag, &ap->qc_allocated))
1021 BUG();
1022 qc = __ata_qc_from_tag(ap, tag);
1023
1024 qc->tag = tag;
1025 qc->scsicmd = NULL;
1026 qc->ap = ap;
1027 qc->dev = dev;
1028 ata_qc_reinit(qc);
1029
1030 preempted_tag = ap->active_tag;
1031 preempted_sactive = ap->sactive;
1032 preempted_qc_active = ap->qc_active;
1033 ap->active_tag = ATA_TAG_POISON;
1034 ap->sactive = 0;
1035 ap->qc_active = 0;
1036
1037 /* prepare & issue qc */
1038 qc->tf = *tf;
1039 if (cdb)
1040 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1041 qc->flags |= ATA_QCFLAG_RESULT_TF;
1042 qc->dma_dir = dma_dir;
1043 if (dma_dir != DMA_NONE) {
1044 ata_sg_init_one(qc, buf, buflen);
1045 qc->nsect = buflen / ATA_SECT_SIZE;
1046 }
1047
1048 qc->private_data = &wait;
1049 qc->complete_fn = ata_qc_complete_internal;
1050
1051 ata_qc_issue(qc);
1052
1053 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1054
1055 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1056
1057 ata_port_flush_task(ap);
1058
1059 if (!rc) {
1060 spin_lock_irqsave(&ap->host_set->lock, flags);
1061
1062 /* We're racing with irq here. If we lose, the
1063 * following test prevents us from completing the qc
1064 * twice. If we win, the port is frozen and will be
1065 * cleaned up by ->post_internal_cmd().
1066 */
1067 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1068 qc->err_mask |= AC_ERR_TIMEOUT;
1069
1070 if (ap->ops->error_handler)
1071 ata_port_freeze(ap);
1072 else
1073 ata_qc_complete(qc);
1074
1075 ata_dev_printk(dev, KERN_WARNING,
1076 "qc timeout (cmd 0x%x)\n", command);
1077 }
1078
1079 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1080 }
1081
1082 /* do post_internal_cmd */
1083 if (ap->ops->post_internal_cmd)
1084 ap->ops->post_internal_cmd(qc);
1085
1086 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1087 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1088 "internal command, assuming AC_ERR_OTHER\n");
1089 qc->err_mask |= AC_ERR_OTHER;
1090 }
1091
1092 /* finish up */
1093 spin_lock_irqsave(&ap->host_set->lock, flags);
1094
1095 *tf = qc->result_tf;
1096 err_mask = qc->err_mask;
1097
1098 ata_qc_free(qc);
1099 ap->active_tag = preempted_tag;
1100 ap->sactive = preempted_sactive;
1101 ap->qc_active = preempted_qc_active;
1102
1103 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1104 * Until those drivers are fixed, we detect the condition
1105 * here, fail the command with AC_ERR_SYSTEM and reenable the
1106 * port.
1107 *
1108 * Note that this doesn't change any behavior as internal
1109 * command failure results in disabling the device in the
1110 * higher layer for LLDDs without new reset/EH callbacks.
1111 *
1112 * Kill the following code as soon as those drivers are fixed.
1113 */
1114 if (ap->flags & ATA_FLAG_DISABLED) {
1115 err_mask |= AC_ERR_SYSTEM;
1116 ata_port_probe(ap);
1117 }
1118
1119 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1120
1121 return err_mask;
1122 }
1123
1124 /**
1125 * ata_pio_need_iordy - check if iordy needed
1126 * @adev: ATA device
1127 *
1128 * Check if the current speed of the device requires IORDY. Used
1129 * by various controllers for chip configuration.
1130 */
1131
1132 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1133 {
1134 int pio;
1135 int speed = adev->pio_mode - XFER_PIO_0;
1136
1137 if (speed < 2)
1138 return 0;
1139 if (speed > 2)
1140 return 1;
1141
1142 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1143
1144 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1145 pio = adev->id[ATA_ID_EIDE_PIO];
1146 /* Is the speed faster than the drive allows non IORDY ? */
1147 if (pio) {
1148 /* This is cycle times not frequency - watch the logic! */
1149 if (pio > 240) /* PIO2 is 240nS per cycle */
1150 return 1;
1151 return 0;
1152 }
1153 }
1154 return 0;
1155 }
1156
1157 /**
1158 * ata_dev_read_id - Read ID data from the specified device
1159 * @dev: target device
1160 * @p_class: pointer to class of the target device (may be changed)
1161 * @post_reset: is this read ID post-reset?
1162 * @id: buffer to read IDENTIFY data into
1163 *
1164 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1165 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1166 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1167 * for pre-ATA4 drives.
1168 *
1169 * LOCKING:
1170 * Kernel thread context (may sleep)
1171 *
1172 * RETURNS:
1173 * 0 on success, -errno otherwise.
1174 */
1175 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1176 int post_reset, u16 *id)
1177 {
1178 struct ata_port *ap = dev->ap;
1179 unsigned int class = *p_class;
1180 struct ata_taskfile tf;
1181 unsigned int err_mask = 0;
1182 const char *reason;
1183 int rc;
1184
1185 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1186
1187 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1188
1189 retry:
1190 ata_tf_init(dev, &tf);
1191
1192 switch (class) {
1193 case ATA_DEV_ATA:
1194 tf.command = ATA_CMD_ID_ATA;
1195 break;
1196 case ATA_DEV_ATAPI:
1197 tf.command = ATA_CMD_ID_ATAPI;
1198 break;
1199 default:
1200 rc = -ENODEV;
1201 reason = "unsupported class";
1202 goto err_out;
1203 }
1204
1205 tf.protocol = ATA_PROT_PIO;
1206
1207 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1208 id, sizeof(id[0]) * ATA_ID_WORDS);
1209 if (err_mask) {
1210 rc = -EIO;
1211 reason = "I/O error";
1212 goto err_out;
1213 }
1214
1215 swap_buf_le16(id, ATA_ID_WORDS);
1216
1217 /* sanity check */
1218 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1219 rc = -EINVAL;
1220 reason = "device reports illegal type";
1221 goto err_out;
1222 }
1223
1224 if (post_reset && class == ATA_DEV_ATA) {
1225 /*
1226 * The exact sequence expected by certain pre-ATA4 drives is:
1227 * SRST RESET
1228 * IDENTIFY
1229 * INITIALIZE DEVICE PARAMETERS
1230 * anything else..
1231 * Some drives were very specific about that exact sequence.
1232 */
1233 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1234 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1235 if (err_mask) {
1236 rc = -EIO;
1237 reason = "INIT_DEV_PARAMS failed";
1238 goto err_out;
1239 }
1240
1241 /* current CHS translation info (id[53-58]) might be
1242 * changed. reread the identify device info.
1243 */
1244 post_reset = 0;
1245 goto retry;
1246 }
1247 }
1248
1249 *p_class = class;
1250
1251 return 0;
1252
1253 err_out:
1254 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1255 "(%s, err_mask=0x%x)\n", reason, err_mask);
1256 return rc;
1257 }
1258
1259 static inline u8 ata_dev_knobble(struct ata_device *dev)
1260 {
1261 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1262 }
1263
1264 static void ata_dev_config_ncq(struct ata_device *dev,
1265 char *desc, size_t desc_sz)
1266 {
1267 struct ata_port *ap = dev->ap;
1268 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1269
1270 if (!ata_id_has_ncq(dev->id)) {
1271 desc[0] = '\0';
1272 return;
1273 }
1274
1275 if (ap->flags & ATA_FLAG_NCQ) {
1276 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1277 dev->flags |= ATA_DFLAG_NCQ;
1278 }
1279
1280 if (hdepth >= ddepth)
1281 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1282 else
1283 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1284 }
1285
1286 /**
1287 * ata_dev_configure - Configure the specified ATA/ATAPI device
1288 * @dev: Target device to configure
1289 * @print_info: Enable device info printout
1290 *
1291 * Configure @dev according to @dev->id. Generic and low-level
1292 * driver specific fixups are also applied.
1293 *
1294 * LOCKING:
1295 * Kernel thread context (may sleep)
1296 *
1297 * RETURNS:
1298 * 0 on success, -errno otherwise
1299 */
1300 int ata_dev_configure(struct ata_device *dev, int print_info)
1301 {
1302 struct ata_port *ap = dev->ap;
1303 const u16 *id = dev->id;
1304 unsigned int xfer_mask;
1305 int i, rc;
1306
1307 if (!ata_dev_enabled(dev)) {
1308 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1309 ap->id, dev->devno);
1310 return 0;
1311 }
1312
1313 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1314
1315 /* print device capabilities */
1316 if (print_info)
1317 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1318 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1319 id[49], id[82], id[83], id[84],
1320 id[85], id[86], id[87], id[88]);
1321
1322 /* initialize to-be-configured parameters */
1323 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1324 dev->max_sectors = 0;
1325 dev->cdb_len = 0;
1326 dev->n_sectors = 0;
1327 dev->cylinders = 0;
1328 dev->heads = 0;
1329 dev->sectors = 0;
1330
1331 /*
1332 * common ATA, ATAPI feature tests
1333 */
1334
1335 /* find max transfer mode; for printk only */
1336 xfer_mask = ata_id_xfermask(id);
1337
1338 ata_dump_id(id);
1339
1340 /* ATA-specific feature tests */
1341 if (dev->class == ATA_DEV_ATA) {
1342 dev->n_sectors = ata_id_n_sectors(id);
1343
1344 if (ata_id_has_lba(id)) {
1345 const char *lba_desc;
1346 char ncq_desc[20];
1347
1348 lba_desc = "LBA";
1349 dev->flags |= ATA_DFLAG_LBA;
1350 if (ata_id_has_lba48(id)) {
1351 dev->flags |= ATA_DFLAG_LBA48;
1352 lba_desc = "LBA48";
1353 }
1354
1355 /* config NCQ */
1356 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1357
1358 /* print device info to dmesg */
1359 if (print_info)
1360 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1361 "max %s, %Lu sectors: %s %s\n",
1362 ata_id_major_version(id),
1363 ata_mode_string(xfer_mask),
1364 (unsigned long long)dev->n_sectors,
1365 lba_desc, ncq_desc);
1366 } else {
1367 /* CHS */
1368
1369 /* Default translation */
1370 dev->cylinders = id[1];
1371 dev->heads = id[3];
1372 dev->sectors = id[6];
1373
1374 if (ata_id_current_chs_valid(id)) {
1375 /* Current CHS translation is valid. */
1376 dev->cylinders = id[54];
1377 dev->heads = id[55];
1378 dev->sectors = id[56];
1379 }
1380
1381 /* print device info to dmesg */
1382 if (print_info)
1383 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1384 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1385 ata_id_major_version(id),
1386 ata_mode_string(xfer_mask),
1387 (unsigned long long)dev->n_sectors,
1388 dev->cylinders, dev->heads, dev->sectors);
1389 }
1390
1391 if (dev->id[59] & 0x100) {
1392 dev->multi_count = dev->id[59] & 0xff;
1393 DPRINTK("ata%u: dev %u multi count %u\n",
1394 ap->id, dev->devno, dev->multi_count);
1395 }
1396
1397 dev->cdb_len = 16;
1398 }
1399
1400 /* ATAPI-specific feature tests */
1401 else if (dev->class == ATA_DEV_ATAPI) {
1402 char *cdb_intr_string = "";
1403
1404 rc = atapi_cdb_len(id);
1405 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1406 ata_dev_printk(dev, KERN_WARNING,
1407 "unsupported CDB len\n");
1408 rc = -EINVAL;
1409 goto err_out_nosup;
1410 }
1411 dev->cdb_len = (unsigned int) rc;
1412
1413 if (ata_id_cdb_intr(dev->id)) {
1414 dev->flags |= ATA_DFLAG_CDB_INTR;
1415 cdb_intr_string = ", CDB intr";
1416 }
1417
1418 /* print device info to dmesg */
1419 if (print_info)
1420 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1421 ata_mode_string(xfer_mask),
1422 cdb_intr_string);
1423 }
1424
1425 ap->host->max_cmd_len = 0;
1426 for (i = 0; i < ATA_MAX_DEVICES; i++)
1427 ap->host->max_cmd_len = max_t(unsigned int,
1428 ap->host->max_cmd_len,
1429 ap->device[i].cdb_len);
1430
1431 /* limit bridge transfers to udma5, 200 sectors */
1432 if (ata_dev_knobble(dev)) {
1433 if (print_info)
1434 ata_dev_printk(dev, KERN_INFO,
1435 "applying bridge limits\n");
1436 dev->udma_mask &= ATA_UDMA5;
1437 dev->max_sectors = ATA_MAX_SECTORS;
1438 }
1439
1440 if (ap->ops->dev_config)
1441 ap->ops->dev_config(ap, dev);
1442
1443 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1444 return 0;
1445
1446 err_out_nosup:
1447 DPRINTK("EXIT, err\n");
1448 return rc;
1449 }
1450
1451 /**
1452 * ata_bus_probe - Reset and probe ATA bus
1453 * @ap: Bus to probe
1454 *
1455 * Master ATA bus probing function. Initiates a hardware-dependent
1456 * bus reset, then attempts to identify any devices found on
1457 * the bus.
1458 *
1459 * LOCKING:
1460 * PCI/etc. bus probe sem.
1461 *
1462 * RETURNS:
1463 * Zero on success, negative errno otherwise.
1464 */
1465
1466 static int ata_bus_probe(struct ata_port *ap)
1467 {
1468 unsigned int classes[ATA_MAX_DEVICES];
1469 int tries[ATA_MAX_DEVICES];
1470 int i, rc, down_xfermask;
1471 struct ata_device *dev;
1472
1473 ata_port_probe(ap);
1474
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 tries[i] = ATA_PROBE_MAX_TRIES;
1477
1478 retry:
1479 down_xfermask = 0;
1480
1481 /* reset and determine device classes */
1482 for (i = 0; i < ATA_MAX_DEVICES; i++)
1483 classes[i] = ATA_DEV_UNKNOWN;
1484
1485 if (ap->ops->probe_reset) {
1486 rc = ap->ops->probe_reset(ap, classes);
1487 if (rc) {
1488 ata_port_printk(ap, KERN_ERR,
1489 "reset failed (errno=%d)\n", rc);
1490 return rc;
1491 }
1492 } else {
1493 ap->ops->phy_reset(ap);
1494
1495 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1496 if (!(ap->flags & ATA_FLAG_DISABLED))
1497 classes[i] = ap->device[i].class;
1498 ap->device[i].class = ATA_DEV_UNKNOWN;
1499 }
1500
1501 ata_port_probe(ap);
1502 }
1503
1504 for (i = 0; i < ATA_MAX_DEVICES; i++)
1505 if (classes[i] == ATA_DEV_UNKNOWN)
1506 classes[i] = ATA_DEV_NONE;
1507
1508 /* after the reset the device state is PIO 0 and the controller
1509 state is undefined. Record the mode */
1510
1511 for (i = 0; i < ATA_MAX_DEVICES; i++)
1512 ap->device[i].pio_mode = XFER_PIO_0;
1513
1514 /* read IDENTIFY page and configure devices */
1515 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1516 dev = &ap->device[i];
1517
1518 if (tries[i])
1519 dev->class = classes[i];
1520
1521 if (!ata_dev_enabled(dev))
1522 continue;
1523
1524 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1525 if (rc)
1526 goto fail;
1527
1528 rc = ata_dev_configure(dev, 1);
1529 if (rc)
1530 goto fail;
1531 }
1532
1533 /* configure transfer mode */
1534 rc = ata_set_mode(ap, &dev);
1535 if (rc) {
1536 down_xfermask = 1;
1537 goto fail;
1538 }
1539
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 if (ata_dev_enabled(&ap->device[i]))
1542 return 0;
1543
1544 /* no device present, disable port */
1545 ata_port_disable(ap);
1546 ap->ops->port_disable(ap);
1547 return -ENODEV;
1548
1549 fail:
1550 switch (rc) {
1551 case -EINVAL:
1552 case -ENODEV:
1553 tries[dev->devno] = 0;
1554 break;
1555 case -EIO:
1556 sata_down_spd_limit(ap);
1557 /* fall through */
1558 default:
1559 tries[dev->devno]--;
1560 if (down_xfermask &&
1561 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1562 tries[dev->devno] = 0;
1563 }
1564
1565 if (!tries[dev->devno]) {
1566 ata_down_xfermask_limit(dev, 1);
1567 ata_dev_disable(dev);
1568 }
1569
1570 goto retry;
1571 }
1572
1573 /**
1574 * ata_port_probe - Mark port as enabled
1575 * @ap: Port for which we indicate enablement
1576 *
1577 * Modify @ap data structure such that the system
1578 * thinks that the entire port is enabled.
1579 *
1580 * LOCKING: host_set lock, or some other form of
1581 * serialization.
1582 */
1583
1584 void ata_port_probe(struct ata_port *ap)
1585 {
1586 ap->flags &= ~ATA_FLAG_DISABLED;
1587 }
1588
1589 /**
1590 * sata_print_link_status - Print SATA link status
1591 * @ap: SATA port to printk link status about
1592 *
1593 * This function prints link speed and status of a SATA link.
1594 *
1595 * LOCKING:
1596 * None.
1597 */
1598 static void sata_print_link_status(struct ata_port *ap)
1599 {
1600 u32 sstatus, scontrol, tmp;
1601
1602 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1603 return;
1604 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1605
1606 if (ata_port_online(ap)) {
1607 tmp = (sstatus >> 4) & 0xf;
1608 ata_port_printk(ap, KERN_INFO,
1609 "SATA link up %s (SStatus %X SControl %X)\n",
1610 sata_spd_string(tmp), sstatus, scontrol);
1611 } else {
1612 ata_port_printk(ap, KERN_INFO,
1613 "SATA link down (SStatus %X SControl %X)\n",
1614 sstatus, scontrol);
1615 }
1616 }
1617
1618 /**
1619 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1620 * @ap: SATA port associated with target SATA PHY.
1621 *
1622 * This function issues commands to standard SATA Sxxx
1623 * PHY registers, to wake up the phy (and device), and
1624 * clear any reset condition.
1625 *
1626 * LOCKING:
1627 * PCI/etc. bus probe sem.
1628 *
1629 */
1630 void __sata_phy_reset(struct ata_port *ap)
1631 {
1632 u32 sstatus;
1633 unsigned long timeout = jiffies + (HZ * 5);
1634
1635 if (ap->flags & ATA_FLAG_SATA_RESET) {
1636 /* issue phy wake/reset */
1637 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1638 /* Couldn't find anything in SATA I/II specs, but
1639 * AHCI-1.1 10.4.2 says at least 1 ms. */
1640 mdelay(1);
1641 }
1642 /* phy wake/clear reset */
1643 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1644
1645 /* wait for phy to become ready, if necessary */
1646 do {
1647 msleep(200);
1648 sata_scr_read(ap, SCR_STATUS, &sstatus);
1649 if ((sstatus & 0xf) != 1)
1650 break;
1651 } while (time_before(jiffies, timeout));
1652
1653 /* print link status */
1654 sata_print_link_status(ap);
1655
1656 /* TODO: phy layer with polling, timeouts, etc. */
1657 if (!ata_port_offline(ap))
1658 ata_port_probe(ap);
1659 else
1660 ata_port_disable(ap);
1661
1662 if (ap->flags & ATA_FLAG_DISABLED)
1663 return;
1664
1665 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1666 ata_port_disable(ap);
1667 return;
1668 }
1669
1670 ap->cbl = ATA_CBL_SATA;
1671 }
1672
1673 /**
1674 * sata_phy_reset - Reset SATA bus.
1675 * @ap: SATA port associated with target SATA PHY.
1676 *
1677 * This function resets the SATA bus, and then probes
1678 * the bus for devices.
1679 *
1680 * LOCKING:
1681 * PCI/etc. bus probe sem.
1682 *
1683 */
1684 void sata_phy_reset(struct ata_port *ap)
1685 {
1686 __sata_phy_reset(ap);
1687 if (ap->flags & ATA_FLAG_DISABLED)
1688 return;
1689 ata_bus_reset(ap);
1690 }
1691
1692 /**
1693 * ata_dev_pair - return other device on cable
1694 * @adev: device
1695 *
1696 * Obtain the other device on the same cable, or if none is
1697 * present NULL is returned
1698 */
1699
1700 struct ata_device *ata_dev_pair(struct ata_device *adev)
1701 {
1702 struct ata_port *ap = adev->ap;
1703 struct ata_device *pair = &ap->device[1 - adev->devno];
1704 if (!ata_dev_enabled(pair))
1705 return NULL;
1706 return pair;
1707 }
1708
1709 /**
1710 * ata_port_disable - Disable port.
1711 * @ap: Port to be disabled.
1712 *
1713 * Modify @ap data structure such that the system
1714 * thinks that the entire port is disabled, and should
1715 * never attempt to probe or communicate with devices
1716 * on this port.
1717 *
1718 * LOCKING: host_set lock, or some other form of
1719 * serialization.
1720 */
1721
1722 void ata_port_disable(struct ata_port *ap)
1723 {
1724 ap->device[0].class = ATA_DEV_NONE;
1725 ap->device[1].class = ATA_DEV_NONE;
1726 ap->flags |= ATA_FLAG_DISABLED;
1727 }
1728
1729 /**
1730 * sata_down_spd_limit - adjust SATA spd limit downward
1731 * @ap: Port to adjust SATA spd limit for
1732 *
1733 * Adjust SATA spd limit of @ap downward. Note that this
1734 * function only adjusts the limit. The change must be applied
1735 * using sata_set_spd().
1736 *
1737 * LOCKING:
1738 * Inherited from caller.
1739 *
1740 * RETURNS:
1741 * 0 on success, negative errno on failure
1742 */
1743 int sata_down_spd_limit(struct ata_port *ap)
1744 {
1745 u32 sstatus, spd, mask;
1746 int rc, highbit;
1747
1748 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1749 if (rc)
1750 return rc;
1751
1752 mask = ap->sata_spd_limit;
1753 if (mask <= 1)
1754 return -EINVAL;
1755 highbit = fls(mask) - 1;
1756 mask &= ~(1 << highbit);
1757
1758 spd = (sstatus >> 4) & 0xf;
1759 if (spd <= 1)
1760 return -EINVAL;
1761 spd--;
1762 mask &= (1 << spd) - 1;
1763 if (!mask)
1764 return -EINVAL;
1765
1766 ap->sata_spd_limit = mask;
1767
1768 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1769 sata_spd_string(fls(mask)));
1770
1771 return 0;
1772 }
1773
1774 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1775 {
1776 u32 spd, limit;
1777
1778 if (ap->sata_spd_limit == UINT_MAX)
1779 limit = 0;
1780 else
1781 limit = fls(ap->sata_spd_limit);
1782
1783 spd = (*scontrol >> 4) & 0xf;
1784 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1785
1786 return spd != limit;
1787 }
1788
1789 /**
1790 * sata_set_spd_needed - is SATA spd configuration needed
1791 * @ap: Port in question
1792 *
1793 * Test whether the spd limit in SControl matches
1794 * @ap->sata_spd_limit. This function is used to determine
1795 * whether hardreset is necessary to apply SATA spd
1796 * configuration.
1797 *
1798 * LOCKING:
1799 * Inherited from caller.
1800 *
1801 * RETURNS:
1802 * 1 if SATA spd configuration is needed, 0 otherwise.
1803 */
1804 int sata_set_spd_needed(struct ata_port *ap)
1805 {
1806 u32 scontrol;
1807
1808 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1809 return 0;
1810
1811 return __sata_set_spd_needed(ap, &scontrol);
1812 }
1813
1814 /**
1815 * sata_set_spd - set SATA spd according to spd limit
1816 * @ap: Port to set SATA spd for
1817 *
1818 * Set SATA spd of @ap according to sata_spd_limit.
1819 *
1820 * LOCKING:
1821 * Inherited from caller.
1822 *
1823 * RETURNS:
1824 * 0 if spd doesn't need to be changed, 1 if spd has been
1825 * changed. Negative errno if SCR registers are inaccessible.
1826 */
1827 int sata_set_spd(struct ata_port *ap)
1828 {
1829 u32 scontrol;
1830 int rc;
1831
1832 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1833 return rc;
1834
1835 if (!__sata_set_spd_needed(ap, &scontrol))
1836 return 0;
1837
1838 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1839 return rc;
1840
1841 return 1;
1842 }
1843
1844 /*
1845 * This mode timing computation functionality is ported over from
1846 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1847 */
1848 /*
1849 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1850 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1851 * for PIO 5, which is a nonstandard extension and UDMA6, which
1852 * is currently supported only by Maxtor drives.
1853 */
1854
1855 static const struct ata_timing ata_timing[] = {
1856
1857 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1858 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1859 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1860 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1861
1862 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1863 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1864 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1865
1866 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1867
1868 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1869 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1870 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1871
1872 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1873 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1874 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1875
1876 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1877 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1878 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1879
1880 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1881 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1882 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1883
1884 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1885
1886 { 0xFF }
1887 };
1888
1889 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1890 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1891
1892 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1893 {
1894 q->setup = EZ(t->setup * 1000, T);
1895 q->act8b = EZ(t->act8b * 1000, T);
1896 q->rec8b = EZ(t->rec8b * 1000, T);
1897 q->cyc8b = EZ(t->cyc8b * 1000, T);
1898 q->active = EZ(t->active * 1000, T);
1899 q->recover = EZ(t->recover * 1000, T);
1900 q->cycle = EZ(t->cycle * 1000, T);
1901 q->udma = EZ(t->udma * 1000, UT);
1902 }
1903
1904 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1905 struct ata_timing *m, unsigned int what)
1906 {
1907 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1908 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1909 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1910 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1911 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1912 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1913 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1914 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1915 }
1916
1917 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1918 {
1919 const struct ata_timing *t;
1920
1921 for (t = ata_timing; t->mode != speed; t++)
1922 if (t->mode == 0xFF)
1923 return NULL;
1924 return t;
1925 }
1926
1927 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1928 struct ata_timing *t, int T, int UT)
1929 {
1930 const struct ata_timing *s;
1931 struct ata_timing p;
1932
1933 /*
1934 * Find the mode.
1935 */
1936
1937 if (!(s = ata_timing_find_mode(speed)))
1938 return -EINVAL;
1939
1940 memcpy(t, s, sizeof(*s));
1941
1942 /*
1943 * If the drive is an EIDE drive, it can tell us it needs extended
1944 * PIO/MW_DMA cycle timing.
1945 */
1946
1947 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1948 memset(&p, 0, sizeof(p));
1949 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1950 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1951 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1952 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1953 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1954 }
1955 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1956 }
1957
1958 /*
1959 * Convert the timing to bus clock counts.
1960 */
1961
1962 ata_timing_quantize(t, t, T, UT);
1963
1964 /*
1965 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1966 * S.M.A.R.T * and some other commands. We have to ensure that the
1967 * DMA cycle timing is slower/equal than the fastest PIO timing.
1968 */
1969
1970 if (speed > XFER_PIO_4) {
1971 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1972 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1973 }
1974
1975 /*
1976 * Lengthen active & recovery time so that cycle time is correct.
1977 */
1978
1979 if (t->act8b + t->rec8b < t->cyc8b) {
1980 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1981 t->rec8b = t->cyc8b - t->act8b;
1982 }
1983
1984 if (t->active + t->recover < t->cycle) {
1985 t->active += (t->cycle - (t->active + t->recover)) / 2;
1986 t->recover = t->cycle - t->active;
1987 }
1988
1989 return 0;
1990 }
1991
1992 /**
1993 * ata_down_xfermask_limit - adjust dev xfer masks downward
1994 * @dev: Device to adjust xfer masks
1995 * @force_pio0: Force PIO0
1996 *
1997 * Adjust xfer masks of @dev downward. Note that this function
1998 * does not apply the change. Invoking ata_set_mode() afterwards
1999 * will apply the limit.
2000 *
2001 * LOCKING:
2002 * Inherited from caller.
2003 *
2004 * RETURNS:
2005 * 0 on success, negative errno on failure
2006 */
2007 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2008 {
2009 unsigned long xfer_mask;
2010 int highbit;
2011
2012 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2013 dev->udma_mask);
2014
2015 if (!xfer_mask)
2016 goto fail;
2017 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2018 if (xfer_mask & ATA_MASK_UDMA)
2019 xfer_mask &= ~ATA_MASK_MWDMA;
2020
2021 highbit = fls(xfer_mask) - 1;
2022 xfer_mask &= ~(1 << highbit);
2023 if (force_pio0)
2024 xfer_mask &= 1 << ATA_SHIFT_PIO;
2025 if (!xfer_mask)
2026 goto fail;
2027
2028 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2029 &dev->udma_mask);
2030
2031 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2032 ata_mode_string(xfer_mask));
2033
2034 return 0;
2035
2036 fail:
2037 return -EINVAL;
2038 }
2039
2040 static int ata_dev_set_mode(struct ata_device *dev)
2041 {
2042 unsigned int err_mask;
2043 int rc;
2044
2045 dev->flags &= ~ATA_DFLAG_PIO;
2046 if (dev->xfer_shift == ATA_SHIFT_PIO)
2047 dev->flags |= ATA_DFLAG_PIO;
2048
2049 err_mask = ata_dev_set_xfermode(dev);
2050 if (err_mask) {
2051 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2052 "(err_mask=0x%x)\n", err_mask);
2053 return -EIO;
2054 }
2055
2056 rc = ata_dev_revalidate(dev, 0);
2057 if (rc)
2058 return rc;
2059
2060 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2061 dev->xfer_shift, (int)dev->xfer_mode);
2062
2063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2064 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2065 return 0;
2066 }
2067
2068 /**
2069 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2070 * @ap: port on which timings will be programmed
2071 * @r_failed_dev: out paramter for failed device
2072 *
2073 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2074 * ata_set_mode() fails, pointer to the failing device is
2075 * returned in @r_failed_dev.
2076 *
2077 * LOCKING:
2078 * PCI/etc. bus probe sem.
2079 *
2080 * RETURNS:
2081 * 0 on success, negative errno otherwise
2082 */
2083 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2084 {
2085 struct ata_device *dev;
2086 int i, rc = 0, used_dma = 0, found = 0;
2087
2088 /* has private set_mode? */
2089 if (ap->ops->set_mode) {
2090 /* FIXME: make ->set_mode handle no device case and
2091 * return error code and failing device on failure.
2092 */
2093 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2094 if (ata_dev_enabled(&ap->device[i])) {
2095 ap->ops->set_mode(ap);
2096 break;
2097 }
2098 }
2099 return 0;
2100 }
2101
2102 /* step 1: calculate xfer_mask */
2103 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2104 unsigned int pio_mask, dma_mask;
2105
2106 dev = &ap->device[i];
2107
2108 if (!ata_dev_enabled(dev))
2109 continue;
2110
2111 ata_dev_xfermask(dev);
2112
2113 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2114 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2115 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2116 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2117
2118 found = 1;
2119 if (dev->dma_mode)
2120 used_dma = 1;
2121 }
2122 if (!found)
2123 goto out;
2124
2125 /* step 2: always set host PIO timings */
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
2128 if (!ata_dev_enabled(dev))
2129 continue;
2130
2131 if (!dev->pio_mode) {
2132 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2133 rc = -EINVAL;
2134 goto out;
2135 }
2136
2137 dev->xfer_mode = dev->pio_mode;
2138 dev->xfer_shift = ATA_SHIFT_PIO;
2139 if (ap->ops->set_piomode)
2140 ap->ops->set_piomode(ap, dev);
2141 }
2142
2143 /* step 3: set host DMA timings */
2144 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2145 dev = &ap->device[i];
2146
2147 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2148 continue;
2149
2150 dev->xfer_mode = dev->dma_mode;
2151 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2152 if (ap->ops->set_dmamode)
2153 ap->ops->set_dmamode(ap, dev);
2154 }
2155
2156 /* step 4: update devices' xfer mode */
2157 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2158 dev = &ap->device[i];
2159
2160 if (!ata_dev_enabled(dev))
2161 continue;
2162
2163 rc = ata_dev_set_mode(dev);
2164 if (rc)
2165 goto out;
2166 }
2167
2168 /* Record simplex status. If we selected DMA then the other
2169 * host channels are not permitted to do so.
2170 */
2171 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2172 ap->host_set->simplex_claimed = 1;
2173
2174 /* step5: chip specific finalisation */
2175 if (ap->ops->post_set_mode)
2176 ap->ops->post_set_mode(ap);
2177
2178 out:
2179 if (rc)
2180 *r_failed_dev = dev;
2181 return rc;
2182 }
2183
2184 /**
2185 * ata_tf_to_host - issue ATA taskfile to host controller
2186 * @ap: port to which command is being issued
2187 * @tf: ATA taskfile register set
2188 *
2189 * Issues ATA taskfile register set to ATA host controller,
2190 * with proper synchronization with interrupt handler and
2191 * other threads.
2192 *
2193 * LOCKING:
2194 * spin_lock_irqsave(host_set lock)
2195 */
2196
2197 static inline void ata_tf_to_host(struct ata_port *ap,
2198 const struct ata_taskfile *tf)
2199 {
2200 ap->ops->tf_load(ap, tf);
2201 ap->ops->exec_command(ap, tf);
2202 }
2203
2204 /**
2205 * ata_busy_sleep - sleep until BSY clears, or timeout
2206 * @ap: port containing status register to be polled
2207 * @tmout_pat: impatience timeout
2208 * @tmout: overall timeout
2209 *
2210 * Sleep until ATA Status register bit BSY clears,
2211 * or a timeout occurs.
2212 *
2213 * LOCKING: None.
2214 */
2215
2216 unsigned int ata_busy_sleep (struct ata_port *ap,
2217 unsigned long tmout_pat, unsigned long tmout)
2218 {
2219 unsigned long timer_start, timeout;
2220 u8 status;
2221
2222 status = ata_busy_wait(ap, ATA_BUSY, 300);
2223 timer_start = jiffies;
2224 timeout = timer_start + tmout_pat;
2225 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2226 msleep(50);
2227 status = ata_busy_wait(ap, ATA_BUSY, 3);
2228 }
2229
2230 if (status & ATA_BUSY)
2231 ata_port_printk(ap, KERN_WARNING,
2232 "port is slow to respond, please be patient\n");
2233
2234 timeout = timer_start + tmout;
2235 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2236 msleep(50);
2237 status = ata_chk_status(ap);
2238 }
2239
2240 if (status & ATA_BUSY) {
2241 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2242 "(%lu secs)\n", tmout / HZ);
2243 return 1;
2244 }
2245
2246 return 0;
2247 }
2248
2249 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2250 {
2251 struct ata_ioports *ioaddr = &ap->ioaddr;
2252 unsigned int dev0 = devmask & (1 << 0);
2253 unsigned int dev1 = devmask & (1 << 1);
2254 unsigned long timeout;
2255
2256 /* if device 0 was found in ata_devchk, wait for its
2257 * BSY bit to clear
2258 */
2259 if (dev0)
2260 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2261
2262 /* if device 1 was found in ata_devchk, wait for
2263 * register access, then wait for BSY to clear
2264 */
2265 timeout = jiffies + ATA_TMOUT_BOOT;
2266 while (dev1) {
2267 u8 nsect, lbal;
2268
2269 ap->ops->dev_select(ap, 1);
2270 if (ap->flags & ATA_FLAG_MMIO) {
2271 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2272 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2273 } else {
2274 nsect = inb(ioaddr->nsect_addr);
2275 lbal = inb(ioaddr->lbal_addr);
2276 }
2277 if ((nsect == 1) && (lbal == 1))
2278 break;
2279 if (time_after(jiffies, timeout)) {
2280 dev1 = 0;
2281 break;
2282 }
2283 msleep(50); /* give drive a breather */
2284 }
2285 if (dev1)
2286 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2287
2288 /* is all this really necessary? */
2289 ap->ops->dev_select(ap, 0);
2290 if (dev1)
2291 ap->ops->dev_select(ap, 1);
2292 if (dev0)
2293 ap->ops->dev_select(ap, 0);
2294 }
2295
2296 static unsigned int ata_bus_softreset(struct ata_port *ap,
2297 unsigned int devmask)
2298 {
2299 struct ata_ioports *ioaddr = &ap->ioaddr;
2300
2301 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2302
2303 /* software reset. causes dev0 to be selected */
2304 if (ap->flags & ATA_FLAG_MMIO) {
2305 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2306 udelay(20); /* FIXME: flush */
2307 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2308 udelay(20); /* FIXME: flush */
2309 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2310 } else {
2311 outb(ap->ctl, ioaddr->ctl_addr);
2312 udelay(10);
2313 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2314 udelay(10);
2315 outb(ap->ctl, ioaddr->ctl_addr);
2316 }
2317
2318 /* spec mandates ">= 2ms" before checking status.
2319 * We wait 150ms, because that was the magic delay used for
2320 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2321 * between when the ATA command register is written, and then
2322 * status is checked. Because waiting for "a while" before
2323 * checking status is fine, post SRST, we perform this magic
2324 * delay here as well.
2325 *
2326 * Old drivers/ide uses the 2mS rule and then waits for ready
2327 */
2328 msleep(150);
2329
2330 /* Before we perform post reset processing we want to see if
2331 * the bus shows 0xFF because the odd clown forgets the D7
2332 * pulldown resistor.
2333 */
2334 if (ata_check_status(ap) == 0xFF) {
2335 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2336 return AC_ERR_OTHER;
2337 }
2338
2339 ata_bus_post_reset(ap, devmask);
2340
2341 return 0;
2342 }
2343
2344 /**
2345 * ata_bus_reset - reset host port and associated ATA channel
2346 * @ap: port to reset
2347 *
2348 * This is typically the first time we actually start issuing
2349 * commands to the ATA channel. We wait for BSY to clear, then
2350 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2351 * result. Determine what devices, if any, are on the channel
2352 * by looking at the device 0/1 error register. Look at the signature
2353 * stored in each device's taskfile registers, to determine if
2354 * the device is ATA or ATAPI.
2355 *
2356 * LOCKING:
2357 * PCI/etc. bus probe sem.
2358 * Obtains host_set lock.
2359 *
2360 * SIDE EFFECTS:
2361 * Sets ATA_FLAG_DISABLED if bus reset fails.
2362 */
2363
2364 void ata_bus_reset(struct ata_port *ap)
2365 {
2366 struct ata_ioports *ioaddr = &ap->ioaddr;
2367 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2368 u8 err;
2369 unsigned int dev0, dev1 = 0, devmask = 0;
2370
2371 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2372
2373 /* determine if device 0/1 are present */
2374 if (ap->flags & ATA_FLAG_SATA_RESET)
2375 dev0 = 1;
2376 else {
2377 dev0 = ata_devchk(ap, 0);
2378 if (slave_possible)
2379 dev1 = ata_devchk(ap, 1);
2380 }
2381
2382 if (dev0)
2383 devmask |= (1 << 0);
2384 if (dev1)
2385 devmask |= (1 << 1);
2386
2387 /* select device 0 again */
2388 ap->ops->dev_select(ap, 0);
2389
2390 /* issue bus reset */
2391 if (ap->flags & ATA_FLAG_SRST)
2392 if (ata_bus_softreset(ap, devmask))
2393 goto err_out;
2394
2395 /*
2396 * determine by signature whether we have ATA or ATAPI devices
2397 */
2398 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2399 if ((slave_possible) && (err != 0x81))
2400 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2401
2402 /* re-enable interrupts */
2403 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2404 ata_irq_on(ap);
2405
2406 /* is double-select really necessary? */
2407 if (ap->device[1].class != ATA_DEV_NONE)
2408 ap->ops->dev_select(ap, 1);
2409 if (ap->device[0].class != ATA_DEV_NONE)
2410 ap->ops->dev_select(ap, 0);
2411
2412 /* if no devices were detected, disable this port */
2413 if ((ap->device[0].class == ATA_DEV_NONE) &&
2414 (ap->device[1].class == ATA_DEV_NONE))
2415 goto err_out;
2416
2417 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2418 /* set up device control for ATA_FLAG_SATA_RESET */
2419 if (ap->flags & ATA_FLAG_MMIO)
2420 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2421 else
2422 outb(ap->ctl, ioaddr->ctl_addr);
2423 }
2424
2425 DPRINTK("EXIT\n");
2426 return;
2427
2428 err_out:
2429 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2430 ap->ops->port_disable(ap);
2431
2432 DPRINTK("EXIT\n");
2433 }
2434
2435 /**
2436 * sata_phy_debounce - debounce SATA phy status
2437 * @ap: ATA port to debounce SATA phy status for
2438 * @params: timing parameters { interval, duratinon, timeout } in msec
2439 *
2440 * Make sure SStatus of @ap reaches stable state, determined by
2441 * holding the same value where DET is not 1 for @duration polled
2442 * every @interval, before @timeout. Timeout constraints the
2443 * beginning of the stable state. Because, after hot unplugging,
2444 * DET gets stuck at 1 on some controllers, this functions waits
2445 * until timeout then returns 0 if DET is stable at 1.
2446 *
2447 * LOCKING:
2448 * Kernel thread context (may sleep)
2449 *
2450 * RETURNS:
2451 * 0 on success, -errno on failure.
2452 */
2453 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2454 {
2455 unsigned long interval_msec = params[0];
2456 unsigned long duration = params[1] * HZ / 1000;
2457 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2458 unsigned long last_jiffies;
2459 u32 last, cur;
2460 int rc;
2461
2462 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2463 return rc;
2464 cur &= 0xf;
2465
2466 last = cur;
2467 last_jiffies = jiffies;
2468
2469 while (1) {
2470 msleep(interval_msec);
2471 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2472 return rc;
2473 cur &= 0xf;
2474
2475 /* DET stable? */
2476 if (cur == last) {
2477 if (cur == 1 && time_before(jiffies, timeout))
2478 continue;
2479 if (time_after(jiffies, last_jiffies + duration))
2480 return 0;
2481 continue;
2482 }
2483
2484 /* unstable, start over */
2485 last = cur;
2486 last_jiffies = jiffies;
2487
2488 /* check timeout */
2489 if (time_after(jiffies, timeout))
2490 return -EBUSY;
2491 }
2492 }
2493
2494 /**
2495 * sata_phy_resume - resume SATA phy
2496 * @ap: ATA port to resume SATA phy for
2497 * @params: timing parameters { interval, duratinon, timeout } in msec
2498 *
2499 * Resume SATA phy of @ap and debounce it.
2500 *
2501 * LOCKING:
2502 * Kernel thread context (may sleep)
2503 *
2504 * RETURNS:
2505 * 0 on success, -errno on failure.
2506 */
2507 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2508 {
2509 u32 scontrol;
2510 int rc;
2511
2512 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2513 return rc;
2514
2515 scontrol = (scontrol & 0x0f0) | 0x300;
2516
2517 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2518 return rc;
2519
2520 /* Some PHYs react badly if SStatus is pounded immediately
2521 * after resuming. Delay 200ms before debouncing.
2522 */
2523 msleep(200);
2524
2525 return sata_phy_debounce(ap, params);
2526 }
2527
2528 static void ata_wait_spinup(struct ata_port *ap)
2529 {
2530 struct ata_eh_context *ehc = &ap->eh_context;
2531 unsigned long end, secs;
2532 int rc;
2533
2534 /* first, debounce phy if SATA */
2535 if (ap->cbl == ATA_CBL_SATA) {
2536 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2537
2538 /* if debounced successfully and offline, no need to wait */
2539 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2540 return;
2541 }
2542
2543 /* okay, let's give the drive time to spin up */
2544 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2545 secs = ((end - jiffies) + HZ - 1) / HZ;
2546
2547 if (time_after(jiffies, end))
2548 return;
2549
2550 if (secs > 5)
2551 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2552 "(%lu secs)\n", secs);
2553
2554 schedule_timeout_uninterruptible(end - jiffies);
2555 }
2556
2557 /**
2558 * ata_std_prereset - prepare for reset
2559 * @ap: ATA port to be reset
2560 *
2561 * @ap is about to be reset. Initialize it.
2562 *
2563 * LOCKING:
2564 * Kernel thread context (may sleep)
2565 *
2566 * RETURNS:
2567 * 0 on success, -errno otherwise.
2568 */
2569 int ata_std_prereset(struct ata_port *ap)
2570 {
2571 struct ata_eh_context *ehc = &ap->eh_context;
2572 const unsigned long *timing;
2573 int rc;
2574
2575 /* hotplug? */
2576 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2577 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2578 ehc->i.action |= ATA_EH_HARDRESET;
2579 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2580 ata_wait_spinup(ap);
2581 }
2582
2583 /* if we're about to do hardreset, nothing more to do */
2584 if (ehc->i.action & ATA_EH_HARDRESET)
2585 return 0;
2586
2587 /* if SATA, resume phy */
2588 if (ap->cbl == ATA_CBL_SATA) {
2589 if (ap->flags & ATA_FLAG_LOADING)
2590 timing = sata_deb_timing_boot;
2591 else
2592 timing = sata_deb_timing_eh;
2593
2594 rc = sata_phy_resume(ap, timing);
2595 if (rc && rc != -EOPNOTSUPP) {
2596 /* phy resume failed */
2597 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2598 "link for reset (errno=%d)\n", rc);
2599 return rc;
2600 }
2601 }
2602
2603 /* Wait for !BSY if the controller can wait for the first D2H
2604 * Reg FIS and we don't know that no device is attached.
2605 */
2606 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2607 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2608
2609 return 0;
2610 }
2611
2612 /**
2613 * ata_std_probeinit - initialize probing
2614 * @ap: port to be probed
2615 *
2616 * @ap is about to be probed. Initialize it. This function is
2617 * to be used as standard callback for ata_drive_probe_reset().
2618 *
2619 * NOTE!!! Do not use this function as probeinit if a low level
2620 * driver implements only hardreset. Just pass NULL as probeinit
2621 * in that case. Using this function is probably okay but doing
2622 * so makes reset sequence different from the original
2623 * ->phy_reset implementation and Jeff nervous. :-P
2624 */
2625 void ata_std_probeinit(struct ata_port *ap)
2626 {
2627 static const unsigned long deb_timing[] = { 5, 100, 5000 };
2628
2629 /* resume link */
2630 sata_phy_resume(ap, deb_timing);
2631
2632 /* wait for device */
2633 if (ata_port_online(ap))
2634 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2635 }
2636
2637 /**
2638 * ata_std_softreset - reset host port via ATA SRST
2639 * @ap: port to reset
2640 * @classes: resulting classes of attached devices
2641 *
2642 * Reset host port using ATA SRST. This function is to be used
2643 * as standard callback for ata_drive_*_reset() functions.
2644 *
2645 * LOCKING:
2646 * Kernel thread context (may sleep)
2647 *
2648 * RETURNS:
2649 * 0 on success, -errno otherwise.
2650 */
2651 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2652 {
2653 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2654 unsigned int devmask = 0, err_mask;
2655 u8 err;
2656
2657 DPRINTK("ENTER\n");
2658
2659 if (ata_port_offline(ap)) {
2660 classes[0] = ATA_DEV_NONE;
2661 goto out;
2662 }
2663
2664 /* determine if device 0/1 are present */
2665 if (ata_devchk(ap, 0))
2666 devmask |= (1 << 0);
2667 if (slave_possible && ata_devchk(ap, 1))
2668 devmask |= (1 << 1);
2669
2670 /* select device 0 again */
2671 ap->ops->dev_select(ap, 0);
2672
2673 /* issue bus reset */
2674 DPRINTK("about to softreset, devmask=%x\n", devmask);
2675 err_mask = ata_bus_softreset(ap, devmask);
2676 if (err_mask) {
2677 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2678 err_mask);
2679 return -EIO;
2680 }
2681
2682 /* determine by signature whether we have ATA or ATAPI devices */
2683 classes[0] = ata_dev_try_classify(ap, 0, &err);
2684 if (slave_possible && err != 0x81)
2685 classes[1] = ata_dev_try_classify(ap, 1, &err);
2686
2687 out:
2688 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2689 return 0;
2690 }
2691
2692 /**
2693 * sata_std_hardreset - reset host port via SATA phy reset
2694 * @ap: port to reset
2695 * @class: resulting class of attached device
2696 *
2697 * SATA phy-reset host port using DET bits of SControl register.
2698 * This function is to be used as standard callback for
2699 * ata_drive_*_reset().
2700 *
2701 * LOCKING:
2702 * Kernel thread context (may sleep)
2703 *
2704 * RETURNS:
2705 * 0 on success, -errno otherwise.
2706 */
2707 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2708 {
2709 u32 scontrol;
2710 int rc;
2711
2712 DPRINTK("ENTER\n");
2713
2714 if (sata_set_spd_needed(ap)) {
2715 /* SATA spec says nothing about how to reconfigure
2716 * spd. To be on the safe side, turn off phy during
2717 * reconfiguration. This works for at least ICH7 AHCI
2718 * and Sil3124.
2719 */
2720 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2721 return rc;
2722
2723 scontrol = (scontrol & 0x0f0) | 0x302;
2724
2725 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2726 return rc;
2727
2728 sata_set_spd(ap);
2729 }
2730
2731 /* issue phy wake/reset */
2732 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2733 return rc;
2734
2735 scontrol = (scontrol & 0x0f0) | 0x301;
2736
2737 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2738 return rc;
2739
2740 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2741 * 10.4.2 says at least 1 ms.
2742 */
2743 msleep(1);
2744
2745 /* bring phy back */
2746 sata_phy_resume(ap, sata_deb_timing_eh);
2747
2748 /* TODO: phy layer with polling, timeouts, etc. */
2749 if (ata_port_offline(ap)) {
2750 *class = ATA_DEV_NONE;
2751 DPRINTK("EXIT, link offline\n");
2752 return 0;
2753 }
2754
2755 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2756 ata_port_printk(ap, KERN_ERR,
2757 "COMRESET failed (device not ready)\n");
2758 return -EIO;
2759 }
2760
2761 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2762
2763 *class = ata_dev_try_classify(ap, 0, NULL);
2764
2765 DPRINTK("EXIT, class=%u\n", *class);
2766 return 0;
2767 }
2768
2769 /**
2770 * ata_std_postreset - standard postreset callback
2771 * @ap: the target ata_port
2772 * @classes: classes of attached devices
2773 *
2774 * This function is invoked after a successful reset. Note that
2775 * the device might have been reset more than once using
2776 * different reset methods before postreset is invoked.
2777 *
2778 * This function is to be used as standard callback for
2779 * ata_drive_*_reset().
2780 *
2781 * LOCKING:
2782 * Kernel thread context (may sleep)
2783 */
2784 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2785 {
2786 u32 serror;
2787
2788 DPRINTK("ENTER\n");
2789
2790 /* print link status */
2791 sata_print_link_status(ap);
2792
2793 /* clear SError */
2794 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2795 sata_scr_write(ap, SCR_ERROR, serror);
2796
2797 /* re-enable interrupts */
2798 if (!ap->ops->error_handler) {
2799 /* FIXME: hack. create a hook instead */
2800 if (ap->ioaddr.ctl_addr)
2801 ata_irq_on(ap);
2802 }
2803
2804 /* is double-select really necessary? */
2805 if (classes[0] != ATA_DEV_NONE)
2806 ap->ops->dev_select(ap, 1);
2807 if (classes[1] != ATA_DEV_NONE)
2808 ap->ops->dev_select(ap, 0);
2809
2810 /* bail out if no device is present */
2811 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2812 DPRINTK("EXIT, no device\n");
2813 return;
2814 }
2815
2816 /* set up device control */
2817 if (ap->ioaddr.ctl_addr) {
2818 if (ap->flags & ATA_FLAG_MMIO)
2819 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2820 else
2821 outb(ap->ctl, ap->ioaddr.ctl_addr);
2822 }
2823
2824 DPRINTK("EXIT\n");
2825 }
2826
2827 /**
2828 * ata_std_probe_reset - standard probe reset method
2829 * @ap: prot to perform probe-reset
2830 * @classes: resulting classes of attached devices
2831 *
2832 * The stock off-the-shelf ->probe_reset method.
2833 *
2834 * LOCKING:
2835 * Kernel thread context (may sleep)
2836 *
2837 * RETURNS:
2838 * 0 on success, -errno otherwise.
2839 */
2840 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2841 {
2842 ata_reset_fn_t hardreset;
2843
2844 hardreset = NULL;
2845 if (sata_scr_valid(ap))
2846 hardreset = sata_std_hardreset;
2847
2848 return ata_drive_probe_reset(ap, ata_std_probeinit,
2849 ata_std_softreset, hardreset,
2850 ata_std_postreset, classes);
2851 }
2852
2853 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2854 unsigned int *classes)
2855 {
2856 int i, rc;
2857
2858 for (i = 0; i < ATA_MAX_DEVICES; i++)
2859 classes[i] = ATA_DEV_UNKNOWN;
2860
2861 rc = reset(ap, classes);
2862 if (rc)
2863 return rc;
2864
2865 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2866 * is complete and convert all ATA_DEV_UNKNOWN to
2867 * ATA_DEV_NONE.
2868 */
2869 for (i = 0; i < ATA_MAX_DEVICES; i++)
2870 if (classes[i] != ATA_DEV_UNKNOWN)
2871 break;
2872
2873 if (i < ATA_MAX_DEVICES)
2874 for (i = 0; i < ATA_MAX_DEVICES; i++)
2875 if (classes[i] == ATA_DEV_UNKNOWN)
2876 classes[i] = ATA_DEV_NONE;
2877
2878 return 0;
2879 }
2880
2881 /**
2882 * ata_drive_probe_reset - Perform probe reset with given methods
2883 * @ap: port to reset
2884 * @probeinit: probeinit method (can be NULL)
2885 * @softreset: softreset method (can be NULL)
2886 * @hardreset: hardreset method (can be NULL)
2887 * @postreset: postreset method (can be NULL)
2888 * @classes: resulting classes of attached devices
2889 *
2890 * Reset the specified port and classify attached devices using
2891 * given methods. This function prefers softreset but tries all
2892 * possible reset sequences to reset and classify devices. This
2893 * function is intended to be used for constructing ->probe_reset
2894 * callback by low level drivers.
2895 *
2896 * Reset methods should follow the following rules.
2897 *
2898 * - Return 0 on sucess, -errno on failure.
2899 * - If classification is supported, fill classes[] with
2900 * recognized class codes.
2901 * - If classification is not supported, leave classes[] alone.
2902 *
2903 * LOCKING:
2904 * Kernel thread context (may sleep)
2905 *
2906 * RETURNS:
2907 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2908 * if classification fails, and any error code from reset
2909 * methods.
2910 */
2911 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2912 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2913 ata_postreset_fn_t postreset, unsigned int *classes)
2914 {
2915 int rc = -EINVAL;
2916
2917 ata_eh_freeze_port(ap);
2918
2919 if (probeinit)
2920 probeinit(ap);
2921
2922 if (softreset && !sata_set_spd_needed(ap)) {
2923 rc = ata_do_reset(ap, softreset, classes);
2924 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2925 goto done;
2926 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2927 "will try hardreset in 5 secs\n");
2928 ssleep(5);
2929 }
2930
2931 if (!hardreset)
2932 goto done;
2933
2934 while (1) {
2935 rc = ata_do_reset(ap, hardreset, classes);
2936 if (rc == 0) {
2937 if (classes[0] != ATA_DEV_UNKNOWN)
2938 goto done;
2939 break;
2940 }
2941
2942 if (sata_down_spd_limit(ap))
2943 goto done;
2944
2945 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2946 "will retry in 5 secs\n");
2947 ssleep(5);
2948 }
2949
2950 if (softreset) {
2951 ata_port_printk(ap, KERN_INFO,
2952 "hardreset succeeded without classification, "
2953 "will retry softreset in 5 secs\n");
2954 ssleep(5);
2955
2956 rc = ata_do_reset(ap, softreset, classes);
2957 }
2958
2959 done:
2960 if (rc == 0) {
2961 if (postreset)
2962 postreset(ap, classes);
2963
2964 ata_eh_thaw_port(ap);
2965
2966 if (classes[0] == ATA_DEV_UNKNOWN)
2967 rc = -ENODEV;
2968 }
2969 return rc;
2970 }
2971
2972 /**
2973 * ata_dev_same_device - Determine whether new ID matches configured device
2974 * @dev: device to compare against
2975 * @new_class: class of the new device
2976 * @new_id: IDENTIFY page of the new device
2977 *
2978 * Compare @new_class and @new_id against @dev and determine
2979 * whether @dev is the device indicated by @new_class and
2980 * @new_id.
2981 *
2982 * LOCKING:
2983 * None.
2984 *
2985 * RETURNS:
2986 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2987 */
2988 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2989 const u16 *new_id)
2990 {
2991 const u16 *old_id = dev->id;
2992 unsigned char model[2][41], serial[2][21];
2993 u64 new_n_sectors;
2994
2995 if (dev->class != new_class) {
2996 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2997 dev->class, new_class);
2998 return 0;
2999 }
3000
3001 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3002 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3003 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3004 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3005 new_n_sectors = ata_id_n_sectors(new_id);
3006
3007 if (strcmp(model[0], model[1])) {
3008 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3009 "'%s' != '%s'\n", model[0], model[1]);
3010 return 0;
3011 }
3012
3013 if (strcmp(serial[0], serial[1])) {
3014 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3015 "'%s' != '%s'\n", serial[0], serial[1]);
3016 return 0;
3017 }
3018
3019 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3020 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3021 "%llu != %llu\n",
3022 (unsigned long long)dev->n_sectors,
3023 (unsigned long long)new_n_sectors);
3024 return 0;
3025 }
3026
3027 return 1;
3028 }
3029
3030 /**
3031 * ata_dev_revalidate - Revalidate ATA device
3032 * @dev: device to revalidate
3033 * @post_reset: is this revalidation after reset?
3034 *
3035 * Re-read IDENTIFY page and make sure @dev is still attached to
3036 * the port.
3037 *
3038 * LOCKING:
3039 * Kernel thread context (may sleep)
3040 *
3041 * RETURNS:
3042 * 0 on success, negative errno otherwise
3043 */
3044 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
3045 {
3046 unsigned int class = dev->class;
3047 u16 *id = (void *)dev->ap->sector_buf;
3048 int rc;
3049
3050 if (!ata_dev_enabled(dev)) {
3051 rc = -ENODEV;
3052 goto fail;
3053 }
3054
3055 /* read ID data */
3056 rc = ata_dev_read_id(dev, &class, post_reset, id);
3057 if (rc)
3058 goto fail;
3059
3060 /* is the device still there? */
3061 if (!ata_dev_same_device(dev, class, id)) {
3062 rc = -ENODEV;
3063 goto fail;
3064 }
3065
3066 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3067
3068 /* configure device according to the new ID */
3069 rc = ata_dev_configure(dev, 0);
3070 if (rc == 0)
3071 return 0;
3072
3073 fail:
3074 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3075 return rc;
3076 }
3077
3078 static const char * const ata_dma_blacklist [] = {
3079 "WDC AC11000H", NULL,
3080 "WDC AC22100H", NULL,
3081 "WDC AC32500H", NULL,
3082 "WDC AC33100H", NULL,
3083 "WDC AC31600H", NULL,
3084 "WDC AC32100H", "24.09P07",
3085 "WDC AC23200L", "21.10N21",
3086 "Compaq CRD-8241B", NULL,
3087 "CRD-8400B", NULL,
3088 "CRD-8480B", NULL,
3089 "CRD-8482B", NULL,
3090 "CRD-84", NULL,
3091 "SanDisk SDP3B", NULL,
3092 "SanDisk SDP3B-64", NULL,
3093 "SANYO CD-ROM CRD", NULL,
3094 "HITACHI CDR-8", NULL,
3095 "HITACHI CDR-8335", NULL,
3096 "HITACHI CDR-8435", NULL,
3097 "Toshiba CD-ROM XM-6202B", NULL,
3098 "TOSHIBA CD-ROM XM-1702BC", NULL,
3099 "CD-532E-A", NULL,
3100 "E-IDE CD-ROM CR-840", NULL,
3101 "CD-ROM Drive/F5A", NULL,
3102 "WPI CDD-820", NULL,
3103 "SAMSUNG CD-ROM SC-148C", NULL,
3104 "SAMSUNG CD-ROM SC", NULL,
3105 "SanDisk SDP3B-64", NULL,
3106 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3107 "_NEC DV5800A", NULL,
3108 "SAMSUNG CD-ROM SN-124", "N001"
3109 };
3110
3111 static int ata_strim(char *s, size_t len)
3112 {
3113 len = strnlen(s, len);
3114
3115 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3116 while ((len > 0) && (s[len - 1] == ' ')) {
3117 len--;
3118 s[len] = 0;
3119 }
3120 return len;
3121 }
3122
3123 static int ata_dma_blacklisted(const struct ata_device *dev)
3124 {
3125 unsigned char model_num[40];
3126 unsigned char model_rev[16];
3127 unsigned int nlen, rlen;
3128 int i;
3129
3130 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3131 sizeof(model_num));
3132 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3133 sizeof(model_rev));
3134 nlen = ata_strim(model_num, sizeof(model_num));
3135 rlen = ata_strim(model_rev, sizeof(model_rev));
3136
3137 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3138 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3139 if (ata_dma_blacklist[i+1] == NULL)
3140 return 1;
3141 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3142 return 1;
3143 }
3144 }
3145 return 0;
3146 }
3147
3148 /**
3149 * ata_dev_xfermask - Compute supported xfermask of the given device
3150 * @dev: Device to compute xfermask for
3151 *
3152 * Compute supported xfermask of @dev and store it in
3153 * dev->*_mask. This function is responsible for applying all
3154 * known limits including host controller limits, device
3155 * blacklist, etc...
3156 *
3157 * FIXME: The current implementation limits all transfer modes to
3158 * the fastest of the lowested device on the port. This is not
3159 * required on most controllers.
3160 *
3161 * LOCKING:
3162 * None.
3163 */
3164 static void ata_dev_xfermask(struct ata_device *dev)
3165 {
3166 struct ata_port *ap = dev->ap;
3167 struct ata_host_set *hs = ap->host_set;
3168 unsigned long xfer_mask;
3169 int i;
3170
3171 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3172 ap->mwdma_mask, ap->udma_mask);
3173
3174 /* Apply cable rule here. Don't apply it early because when
3175 * we handle hot plug the cable type can itself change.
3176 */
3177 if (ap->cbl == ATA_CBL_PATA40)
3178 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3179
3180 /* FIXME: Use port-wide xfermask for now */
3181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3182 struct ata_device *d = &ap->device[i];
3183
3184 if (ata_dev_absent(d))
3185 continue;
3186
3187 if (ata_dev_disabled(d)) {
3188 /* to avoid violating device selection timing */
3189 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3190 UINT_MAX, UINT_MAX);
3191 continue;
3192 }
3193
3194 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3195 d->mwdma_mask, d->udma_mask);
3196 xfer_mask &= ata_id_xfermask(d->id);
3197 if (ata_dma_blacklisted(d))
3198 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3199 }
3200
3201 if (ata_dma_blacklisted(dev))
3202 ata_dev_printk(dev, KERN_WARNING,
3203 "device is on DMA blacklist, disabling DMA\n");
3204
3205 if (hs->flags & ATA_HOST_SIMPLEX) {
3206 if (hs->simplex_claimed)
3207 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3208 }
3209
3210 if (ap->ops->mode_filter)
3211 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3212
3213 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3214 &dev->mwdma_mask, &dev->udma_mask);
3215 }
3216
3217 /**
3218 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3219 * @dev: Device to which command will be sent
3220 *
3221 * Issue SET FEATURES - XFER MODE command to device @dev
3222 * on port @ap.
3223 *
3224 * LOCKING:
3225 * PCI/etc. bus probe sem.
3226 *
3227 * RETURNS:
3228 * 0 on success, AC_ERR_* mask otherwise.
3229 */
3230
3231 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3232 {
3233 struct ata_taskfile tf;
3234 unsigned int err_mask;
3235
3236 /* set up set-features taskfile */
3237 DPRINTK("set features - xfer mode\n");
3238
3239 ata_tf_init(dev, &tf);
3240 tf.command = ATA_CMD_SET_FEATURES;
3241 tf.feature = SETFEATURES_XFER;
3242 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3243 tf.protocol = ATA_PROT_NODATA;
3244 tf.nsect = dev->xfer_mode;
3245
3246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3247
3248 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3249 return err_mask;
3250 }
3251
3252 /**
3253 * ata_dev_init_params - Issue INIT DEV PARAMS command
3254 * @dev: Device to which command will be sent
3255 * @heads: Number of heads (taskfile parameter)
3256 * @sectors: Number of sectors (taskfile parameter)
3257 *
3258 * LOCKING:
3259 * Kernel thread context (may sleep)
3260 *
3261 * RETURNS:
3262 * 0 on success, AC_ERR_* mask otherwise.
3263 */
3264 static unsigned int ata_dev_init_params(struct ata_device *dev,
3265 u16 heads, u16 sectors)
3266 {
3267 struct ata_taskfile tf;
3268 unsigned int err_mask;
3269
3270 /* Number of sectors per track 1-255. Number of heads 1-16 */
3271 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3272 return AC_ERR_INVALID;
3273
3274 /* set up init dev params taskfile */
3275 DPRINTK("init dev params \n");
3276
3277 ata_tf_init(dev, &tf);
3278 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3279 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3280 tf.protocol = ATA_PROT_NODATA;
3281 tf.nsect = sectors;
3282 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3283
3284 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3285
3286 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3287 return err_mask;
3288 }
3289
3290 /**
3291 * ata_sg_clean - Unmap DMA memory associated with command
3292 * @qc: Command containing DMA memory to be released
3293 *
3294 * Unmap all mapped DMA memory associated with this command.
3295 *
3296 * LOCKING:
3297 * spin_lock_irqsave(host_set lock)
3298 */
3299
3300 static void ata_sg_clean(struct ata_queued_cmd *qc)
3301 {
3302 struct ata_port *ap = qc->ap;
3303 struct scatterlist *sg = qc->__sg;
3304 int dir = qc->dma_dir;
3305 void *pad_buf = NULL;
3306
3307 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3308 WARN_ON(sg == NULL);
3309
3310 if (qc->flags & ATA_QCFLAG_SINGLE)
3311 WARN_ON(qc->n_elem > 1);
3312
3313 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3314
3315 /* if we padded the buffer out to 32-bit bound, and data
3316 * xfer direction is from-device, we must copy from the
3317 * pad buffer back into the supplied buffer
3318 */
3319 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3320 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3321
3322 if (qc->flags & ATA_QCFLAG_SG) {
3323 if (qc->n_elem)
3324 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3325 /* restore last sg */
3326 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3327 if (pad_buf) {
3328 struct scatterlist *psg = &qc->pad_sgent;
3329 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3330 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3331 kunmap_atomic(addr, KM_IRQ0);
3332 }
3333 } else {
3334 if (qc->n_elem)
3335 dma_unmap_single(ap->dev,
3336 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3337 dir);
3338 /* restore sg */
3339 sg->length += qc->pad_len;
3340 if (pad_buf)
3341 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3342 pad_buf, qc->pad_len);
3343 }
3344
3345 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3346 qc->__sg = NULL;
3347 }
3348
3349 /**
3350 * ata_fill_sg - Fill PCI IDE PRD table
3351 * @qc: Metadata associated with taskfile to be transferred
3352 *
3353 * Fill PCI IDE PRD (scatter-gather) table with segments
3354 * associated with the current disk command.
3355 *
3356 * LOCKING:
3357 * spin_lock_irqsave(host_set lock)
3358 *
3359 */
3360 static void ata_fill_sg(struct ata_queued_cmd *qc)
3361 {
3362 struct ata_port *ap = qc->ap;
3363 struct scatterlist *sg;
3364 unsigned int idx;
3365
3366 WARN_ON(qc->__sg == NULL);
3367 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3368
3369 idx = 0;
3370 ata_for_each_sg(sg, qc) {
3371 u32 addr, offset;
3372 u32 sg_len, len;
3373
3374 /* determine if physical DMA addr spans 64K boundary.
3375 * Note h/w doesn't support 64-bit, so we unconditionally
3376 * truncate dma_addr_t to u32.
3377 */
3378 addr = (u32) sg_dma_address(sg);
3379 sg_len = sg_dma_len(sg);
3380
3381 while (sg_len) {
3382 offset = addr & 0xffff;
3383 len = sg_len;
3384 if ((offset + sg_len) > 0x10000)
3385 len = 0x10000 - offset;
3386
3387 ap->prd[idx].addr = cpu_to_le32(addr);
3388 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3389 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3390
3391 idx++;
3392 sg_len -= len;
3393 addr += len;
3394 }
3395 }
3396
3397 if (idx)
3398 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3399 }
3400 /**
3401 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3402 * @qc: Metadata associated with taskfile to check
3403 *
3404 * Allow low-level driver to filter ATA PACKET commands, returning
3405 * a status indicating whether or not it is OK to use DMA for the
3406 * supplied PACKET command.
3407 *
3408 * LOCKING:
3409 * spin_lock_irqsave(host_set lock)
3410 *
3411 * RETURNS: 0 when ATAPI DMA can be used
3412 * nonzero otherwise
3413 */
3414 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3415 {
3416 struct ata_port *ap = qc->ap;
3417 int rc = 0; /* Assume ATAPI DMA is OK by default */
3418
3419 if (ap->ops->check_atapi_dma)
3420 rc = ap->ops->check_atapi_dma(qc);
3421
3422 /* We don't support polling DMA.
3423 * Use PIO if the LLDD handles only interrupts in
3424 * the HSM_ST_LAST state and the ATAPI device
3425 * generates CDB interrupts.
3426 */
3427 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3428 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3429 rc = 1;
3430
3431 return rc;
3432 }
3433 /**
3434 * ata_qc_prep - Prepare taskfile for submission
3435 * @qc: Metadata associated with taskfile to be prepared
3436 *
3437 * Prepare ATA taskfile for submission.
3438 *
3439 * LOCKING:
3440 * spin_lock_irqsave(host_set lock)
3441 */
3442 void ata_qc_prep(struct ata_queued_cmd *qc)
3443 {
3444 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3445 return;
3446
3447 ata_fill_sg(qc);
3448 }
3449
3450 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3451
3452 /**
3453 * ata_sg_init_one - Associate command with memory buffer
3454 * @qc: Command to be associated
3455 * @buf: Memory buffer
3456 * @buflen: Length of memory buffer, in bytes.
3457 *
3458 * Initialize the data-related elements of queued_cmd @qc
3459 * to point to a single memory buffer, @buf of byte length @buflen.
3460 *
3461 * LOCKING:
3462 * spin_lock_irqsave(host_set lock)
3463 */
3464
3465 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3466 {
3467 struct scatterlist *sg;
3468
3469 qc->flags |= ATA_QCFLAG_SINGLE;
3470
3471 memset(&qc->sgent, 0, sizeof(qc->sgent));
3472 qc->__sg = &qc->sgent;
3473 qc->n_elem = 1;
3474 qc->orig_n_elem = 1;
3475 qc->buf_virt = buf;
3476
3477 sg = qc->__sg;
3478 sg_init_one(sg, buf, buflen);
3479 }
3480
3481 /**
3482 * ata_sg_init - Associate command with scatter-gather table.
3483 * @qc: Command to be associated
3484 * @sg: Scatter-gather table.
3485 * @n_elem: Number of elements in s/g table.
3486 *
3487 * Initialize the data-related elements of queued_cmd @qc
3488 * to point to a scatter-gather table @sg, containing @n_elem
3489 * elements.
3490 *
3491 * LOCKING:
3492 * spin_lock_irqsave(host_set lock)
3493 */
3494
3495 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3496 unsigned int n_elem)
3497 {
3498 qc->flags |= ATA_QCFLAG_SG;
3499 qc->__sg = sg;
3500 qc->n_elem = n_elem;
3501 qc->orig_n_elem = n_elem;
3502 }
3503
3504 /**
3505 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3506 * @qc: Command with memory buffer to be mapped.
3507 *
3508 * DMA-map the memory buffer associated with queued_cmd @qc.
3509 *
3510 * LOCKING:
3511 * spin_lock_irqsave(host_set lock)
3512 *
3513 * RETURNS:
3514 * Zero on success, negative on error.
3515 */
3516
3517 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3518 {
3519 struct ata_port *ap = qc->ap;
3520 int dir = qc->dma_dir;
3521 struct scatterlist *sg = qc->__sg;
3522 dma_addr_t dma_address;
3523 int trim_sg = 0;
3524
3525 /* we must lengthen transfers to end on a 32-bit boundary */
3526 qc->pad_len = sg->length & 3;
3527 if (qc->pad_len) {
3528 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3529 struct scatterlist *psg = &qc->pad_sgent;
3530
3531 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3532
3533 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3534
3535 if (qc->tf.flags & ATA_TFLAG_WRITE)
3536 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3537 qc->pad_len);
3538
3539 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3540 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3541 /* trim sg */
3542 sg->length -= qc->pad_len;
3543 if (sg->length == 0)
3544 trim_sg = 1;
3545
3546 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3547 sg->length, qc->pad_len);
3548 }
3549
3550 if (trim_sg) {
3551 qc->n_elem--;
3552 goto skip_map;
3553 }
3554
3555 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3556 sg->length, dir);
3557 if (dma_mapping_error(dma_address)) {
3558 /* restore sg */
3559 sg->length += qc->pad_len;
3560 return -1;
3561 }
3562
3563 sg_dma_address(sg) = dma_address;
3564 sg_dma_len(sg) = sg->length;
3565
3566 skip_map:
3567 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3568 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3569
3570 return 0;
3571 }
3572
3573 /**
3574 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3575 * @qc: Command with scatter-gather table to be mapped.
3576 *
3577 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3578 *
3579 * LOCKING:
3580 * spin_lock_irqsave(host_set lock)
3581 *
3582 * RETURNS:
3583 * Zero on success, negative on error.
3584 *
3585 */
3586
3587 static int ata_sg_setup(struct ata_queued_cmd *qc)
3588 {
3589 struct ata_port *ap = qc->ap;
3590 struct scatterlist *sg = qc->__sg;
3591 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3592 int n_elem, pre_n_elem, dir, trim_sg = 0;
3593
3594 VPRINTK("ENTER, ata%u\n", ap->id);
3595 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3596
3597 /* we must lengthen transfers to end on a 32-bit boundary */
3598 qc->pad_len = lsg->length & 3;
3599 if (qc->pad_len) {
3600 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3601 struct scatterlist *psg = &qc->pad_sgent;
3602 unsigned int offset;
3603
3604 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3605
3606 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3607
3608 /*
3609 * psg->page/offset are used to copy to-be-written
3610 * data in this function or read data in ata_sg_clean.
3611 */
3612 offset = lsg->offset + lsg->length - qc->pad_len;
3613 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3614 psg->offset = offset_in_page(offset);
3615
3616 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3617 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3618 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3619 kunmap_atomic(addr, KM_IRQ0);
3620 }
3621
3622 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3623 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3624 /* trim last sg */
3625 lsg->length -= qc->pad_len;
3626 if (lsg->length == 0)
3627 trim_sg = 1;
3628
3629 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3630 qc->n_elem - 1, lsg->length, qc->pad_len);
3631 }
3632
3633 pre_n_elem = qc->n_elem;
3634 if (trim_sg && pre_n_elem)
3635 pre_n_elem--;
3636
3637 if (!pre_n_elem) {
3638 n_elem = 0;
3639 goto skip_map;
3640 }
3641
3642 dir = qc->dma_dir;
3643 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3644 if (n_elem < 1) {
3645 /* restore last sg */
3646 lsg->length += qc->pad_len;
3647 return -1;
3648 }
3649
3650 DPRINTK("%d sg elements mapped\n", n_elem);
3651
3652 skip_map:
3653 qc->n_elem = n_elem;
3654
3655 return 0;
3656 }
3657
3658 /**
3659 * swap_buf_le16 - swap halves of 16-bit words in place
3660 * @buf: Buffer to swap
3661 * @buf_words: Number of 16-bit words in buffer.
3662 *
3663 * Swap halves of 16-bit words if needed to convert from
3664 * little-endian byte order to native cpu byte order, or
3665 * vice-versa.
3666 *
3667 * LOCKING:
3668 * Inherited from caller.
3669 */
3670 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3671 {
3672 #ifdef __BIG_ENDIAN
3673 unsigned int i;
3674
3675 for (i = 0; i < buf_words; i++)
3676 buf[i] = le16_to_cpu(buf[i]);
3677 #endif /* __BIG_ENDIAN */
3678 }
3679
3680 /**
3681 * ata_mmio_data_xfer - Transfer data by MMIO
3682 * @dev: device for this I/O
3683 * @buf: data buffer
3684 * @buflen: buffer length
3685 * @write_data: read/write
3686 *
3687 * Transfer data from/to the device data register by MMIO.
3688 *
3689 * LOCKING:
3690 * Inherited from caller.
3691 */
3692
3693 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3694 unsigned int buflen, int write_data)
3695 {
3696 struct ata_port *ap = adev->ap;
3697 unsigned int i;
3698 unsigned int words = buflen >> 1;
3699 u16 *buf16 = (u16 *) buf;
3700 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3701
3702 /* Transfer multiple of 2 bytes */
3703 if (write_data) {
3704 for (i = 0; i < words; i++)
3705 writew(le16_to_cpu(buf16[i]), mmio);
3706 } else {
3707 for (i = 0; i < words; i++)
3708 buf16[i] = cpu_to_le16(readw(mmio));
3709 }
3710
3711 /* Transfer trailing 1 byte, if any. */
3712 if (unlikely(buflen & 0x01)) {
3713 u16 align_buf[1] = { 0 };
3714 unsigned char *trailing_buf = buf + buflen - 1;
3715
3716 if (write_data) {
3717 memcpy(align_buf, trailing_buf, 1);
3718 writew(le16_to_cpu(align_buf[0]), mmio);
3719 } else {
3720 align_buf[0] = cpu_to_le16(readw(mmio));
3721 memcpy(trailing_buf, align_buf, 1);
3722 }
3723 }
3724 }
3725
3726 /**
3727 * ata_pio_data_xfer - Transfer data by PIO
3728 * @adev: device to target
3729 * @buf: data buffer
3730 * @buflen: buffer length
3731 * @write_data: read/write
3732 *
3733 * Transfer data from/to the device data register by PIO.
3734 *
3735 * LOCKING:
3736 * Inherited from caller.
3737 */
3738
3739 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3740 unsigned int buflen, int write_data)
3741 {
3742 struct ata_port *ap = adev->ap;
3743 unsigned int words = buflen >> 1;
3744
3745 /* Transfer multiple of 2 bytes */
3746 if (write_data)
3747 outsw(ap->ioaddr.data_addr, buf, words);
3748 else
3749 insw(ap->ioaddr.data_addr, buf, words);
3750
3751 /* Transfer trailing 1 byte, if any. */
3752 if (unlikely(buflen & 0x01)) {
3753 u16 align_buf[1] = { 0 };
3754 unsigned char *trailing_buf = buf + buflen - 1;
3755
3756 if (write_data) {
3757 memcpy(align_buf, trailing_buf, 1);
3758 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3759 } else {
3760 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3761 memcpy(trailing_buf, align_buf, 1);
3762 }
3763 }
3764 }
3765
3766 /**
3767 * ata_pio_data_xfer_noirq - Transfer data by PIO
3768 * @adev: device to target
3769 * @buf: data buffer
3770 * @buflen: buffer length
3771 * @write_data: read/write
3772 *
3773 * Transfer data from/to the device data register by PIO. Do the
3774 * transfer with interrupts disabled.
3775 *
3776 * LOCKING:
3777 * Inherited from caller.
3778 */
3779
3780 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3781 unsigned int buflen, int write_data)
3782 {
3783 unsigned long flags;
3784 local_irq_save(flags);
3785 ata_pio_data_xfer(adev, buf, buflen, write_data);
3786 local_irq_restore(flags);
3787 }
3788
3789
3790 /**
3791 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3792 * @qc: Command on going
3793 *
3794 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3795 *
3796 * LOCKING:
3797 * Inherited from caller.
3798 */
3799
3800 static void ata_pio_sector(struct ata_queued_cmd *qc)
3801 {
3802 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3803 struct scatterlist *sg = qc->__sg;
3804 struct ata_port *ap = qc->ap;
3805 struct page *page;
3806 unsigned int offset;
3807 unsigned char *buf;
3808
3809 if (qc->cursect == (qc->nsect - 1))
3810 ap->hsm_task_state = HSM_ST_LAST;
3811
3812 page = sg[qc->cursg].page;
3813 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3814
3815 /* get the current page and offset */
3816 page = nth_page(page, (offset >> PAGE_SHIFT));
3817 offset %= PAGE_SIZE;
3818
3819 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3820
3821 if (PageHighMem(page)) {
3822 unsigned long flags;
3823
3824 /* FIXME: use a bounce buffer */
3825 local_irq_save(flags);
3826 buf = kmap_atomic(page, KM_IRQ0);
3827
3828 /* do the actual data transfer */
3829 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3830
3831 kunmap_atomic(buf, KM_IRQ0);
3832 local_irq_restore(flags);
3833 } else {
3834 buf = page_address(page);
3835 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3836 }
3837
3838 qc->cursect++;
3839 qc->cursg_ofs++;
3840
3841 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3842 qc->cursg++;
3843 qc->cursg_ofs = 0;
3844 }
3845 }
3846
3847 /**
3848 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3849 * @qc: Command on going
3850 *
3851 * Transfer one or many ATA_SECT_SIZE of data from/to the
3852 * ATA device for the DRQ request.
3853 *
3854 * LOCKING:
3855 * Inherited from caller.
3856 */
3857
3858 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3859 {
3860 if (is_multi_taskfile(&qc->tf)) {
3861 /* READ/WRITE MULTIPLE */
3862 unsigned int nsect;
3863
3864 WARN_ON(qc->dev->multi_count == 0);
3865
3866 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3867 while (nsect--)
3868 ata_pio_sector(qc);
3869 } else
3870 ata_pio_sector(qc);
3871 }
3872
3873 /**
3874 * atapi_send_cdb - Write CDB bytes to hardware
3875 * @ap: Port to which ATAPI device is attached.
3876 * @qc: Taskfile currently active
3877 *
3878 * When device has indicated its readiness to accept
3879 * a CDB, this function is called. Send the CDB.
3880 *
3881 * LOCKING:
3882 * caller.
3883 */
3884
3885 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3886 {
3887 /* send SCSI cdb */
3888 DPRINTK("send cdb\n");
3889 WARN_ON(qc->dev->cdb_len < 12);
3890
3891 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3892 ata_altstatus(ap); /* flush */
3893
3894 switch (qc->tf.protocol) {
3895 case ATA_PROT_ATAPI:
3896 ap->hsm_task_state = HSM_ST;
3897 break;
3898 case ATA_PROT_ATAPI_NODATA:
3899 ap->hsm_task_state = HSM_ST_LAST;
3900 break;
3901 case ATA_PROT_ATAPI_DMA:
3902 ap->hsm_task_state = HSM_ST_LAST;
3903 /* initiate bmdma */
3904 ap->ops->bmdma_start(qc);
3905 break;
3906 }
3907 }
3908
3909 /**
3910 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3911 * @qc: Command on going
3912 * @bytes: number of bytes
3913 *
3914 * Transfer Transfer data from/to the ATAPI device.
3915 *
3916 * LOCKING:
3917 * Inherited from caller.
3918 *
3919 */
3920
3921 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3922 {
3923 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3924 struct scatterlist *sg = qc->__sg;
3925 struct ata_port *ap = qc->ap;
3926 struct page *page;
3927 unsigned char *buf;
3928 unsigned int offset, count;
3929
3930 if (qc->curbytes + bytes >= qc->nbytes)
3931 ap->hsm_task_state = HSM_ST_LAST;
3932
3933 next_sg:
3934 if (unlikely(qc->cursg >= qc->n_elem)) {
3935 /*
3936 * The end of qc->sg is reached and the device expects
3937 * more data to transfer. In order not to overrun qc->sg
3938 * and fulfill length specified in the byte count register,
3939 * - for read case, discard trailing data from the device
3940 * - for write case, padding zero data to the device
3941 */
3942 u16 pad_buf[1] = { 0 };
3943 unsigned int words = bytes >> 1;
3944 unsigned int i;
3945
3946 if (words) /* warning if bytes > 1 */
3947 ata_dev_printk(qc->dev, KERN_WARNING,
3948 "%u bytes trailing data\n", bytes);
3949
3950 for (i = 0; i < words; i++)
3951 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3952
3953 ap->hsm_task_state = HSM_ST_LAST;
3954 return;
3955 }
3956
3957 sg = &qc->__sg[qc->cursg];
3958
3959 page = sg->page;
3960 offset = sg->offset + qc->cursg_ofs;
3961
3962 /* get the current page and offset */
3963 page = nth_page(page, (offset >> PAGE_SHIFT));
3964 offset %= PAGE_SIZE;
3965
3966 /* don't overrun current sg */
3967 count = min(sg->length - qc->cursg_ofs, bytes);
3968
3969 /* don't cross page boundaries */
3970 count = min(count, (unsigned int)PAGE_SIZE - offset);
3971
3972 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3973
3974 if (PageHighMem(page)) {
3975 unsigned long flags;
3976
3977 /* FIXME: use bounce buffer */
3978 local_irq_save(flags);
3979 buf = kmap_atomic(page, KM_IRQ0);
3980
3981 /* do the actual data transfer */
3982 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3983
3984 kunmap_atomic(buf, KM_IRQ0);
3985 local_irq_restore(flags);
3986 } else {
3987 buf = page_address(page);
3988 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3989 }
3990
3991 bytes -= count;
3992 qc->curbytes += count;
3993 qc->cursg_ofs += count;
3994
3995 if (qc->cursg_ofs == sg->length) {
3996 qc->cursg++;
3997 qc->cursg_ofs = 0;
3998 }
3999
4000 if (bytes)
4001 goto next_sg;
4002 }
4003
4004 /**
4005 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4006 * @qc: Command on going
4007 *
4008 * Transfer Transfer data from/to the ATAPI device.
4009 *
4010 * LOCKING:
4011 * Inherited from caller.
4012 */
4013
4014 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4015 {
4016 struct ata_port *ap = qc->ap;
4017 struct ata_device *dev = qc->dev;
4018 unsigned int ireason, bc_lo, bc_hi, bytes;
4019 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4020
4021 /* Abuse qc->result_tf for temp storage of intermediate TF
4022 * here to save some kernel stack usage.
4023 * For normal completion, qc->result_tf is not relevant. For
4024 * error, qc->result_tf is later overwritten by ata_qc_complete().
4025 * So, the correctness of qc->result_tf is not affected.
4026 */
4027 ap->ops->tf_read(ap, &qc->result_tf);
4028 ireason = qc->result_tf.nsect;
4029 bc_lo = qc->result_tf.lbam;
4030 bc_hi = qc->result_tf.lbah;
4031 bytes = (bc_hi << 8) | bc_lo;
4032
4033 /* shall be cleared to zero, indicating xfer of data */
4034 if (ireason & (1 << 0))
4035 goto err_out;
4036
4037 /* make sure transfer direction matches expected */
4038 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4039 if (do_write != i_write)
4040 goto err_out;
4041
4042 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4043
4044 __atapi_pio_bytes(qc, bytes);
4045
4046 return;
4047
4048 err_out:
4049 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4050 qc->err_mask |= AC_ERR_HSM;
4051 ap->hsm_task_state = HSM_ST_ERR;
4052 }
4053
4054 /**
4055 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4056 * @ap: the target ata_port
4057 * @qc: qc on going
4058 *
4059 * RETURNS:
4060 * 1 if ok in workqueue, 0 otherwise.
4061 */
4062
4063 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4064 {
4065 if (qc->tf.flags & ATA_TFLAG_POLLING)
4066 return 1;
4067
4068 if (ap->hsm_task_state == HSM_ST_FIRST) {
4069 if (qc->tf.protocol == ATA_PROT_PIO &&
4070 (qc->tf.flags & ATA_TFLAG_WRITE))
4071 return 1;
4072
4073 if (is_atapi_taskfile(&qc->tf) &&
4074 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4075 return 1;
4076 }
4077
4078 return 0;
4079 }
4080
4081 /**
4082 * ata_hsm_qc_complete - finish a qc running on standard HSM
4083 * @qc: Command to complete
4084 * @in_wq: 1 if called from workqueue, 0 otherwise
4085 *
4086 * Finish @qc which is running on standard HSM.
4087 *
4088 * LOCKING:
4089 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
4090 * Otherwise, none on entry and grabs host lock.
4091 */
4092 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4093 {
4094 struct ata_port *ap = qc->ap;
4095 unsigned long flags;
4096
4097 if (ap->ops->error_handler) {
4098 if (in_wq) {
4099 spin_lock_irqsave(&ap->host_set->lock, flags);
4100
4101 /* EH might have kicked in while host_set lock
4102 * is released.
4103 */
4104 qc = ata_qc_from_tag(ap, qc->tag);
4105 if (qc) {
4106 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4107 ata_irq_on(ap);
4108 ata_qc_complete(qc);
4109 } else
4110 ata_port_freeze(ap);
4111 }
4112
4113 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4114 } else {
4115 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4116 ata_qc_complete(qc);
4117 else
4118 ata_port_freeze(ap);
4119 }
4120 } else {
4121 if (in_wq) {
4122 spin_lock_irqsave(&ap->host_set->lock, flags);
4123 ata_irq_on(ap);
4124 ata_qc_complete(qc);
4125 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4126 } else
4127 ata_qc_complete(qc);
4128 }
4129
4130 ata_altstatus(ap); /* flush */
4131 }
4132
4133 /**
4134 * ata_hsm_move - move the HSM to the next state.
4135 * @ap: the target ata_port
4136 * @qc: qc on going
4137 * @status: current device status
4138 * @in_wq: 1 if called from workqueue, 0 otherwise
4139 *
4140 * RETURNS:
4141 * 1 when poll next status needed, 0 otherwise.
4142 */
4143 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4144 u8 status, int in_wq)
4145 {
4146 unsigned long flags = 0;
4147 int poll_next;
4148
4149 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4150
4151 /* Make sure ata_qc_issue_prot() does not throw things
4152 * like DMA polling into the workqueue. Notice that
4153 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4154 */
4155 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4156
4157 fsm_start:
4158 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4159 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4160
4161 switch (ap->hsm_task_state) {
4162 case HSM_ST_FIRST:
4163 /* Send first data block or PACKET CDB */
4164
4165 /* If polling, we will stay in the work queue after
4166 * sending the data. Otherwise, interrupt handler
4167 * takes over after sending the data.
4168 */
4169 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4170
4171 /* check device status */
4172 if (unlikely((status & ATA_DRQ) == 0)) {
4173 /* handle BSY=0, DRQ=0 as error */
4174 if (likely(status & (ATA_ERR | ATA_DF)))
4175 /* device stops HSM for abort/error */
4176 qc->err_mask |= AC_ERR_DEV;
4177 else
4178 /* HSM violation. Let EH handle this */
4179 qc->err_mask |= AC_ERR_HSM;
4180
4181 ap->hsm_task_state = HSM_ST_ERR;
4182 goto fsm_start;
4183 }
4184
4185 /* Device should not ask for data transfer (DRQ=1)
4186 * when it finds something wrong.
4187 * We ignore DRQ here and stop the HSM by
4188 * changing hsm_task_state to HSM_ST_ERR and
4189 * let the EH abort the command or reset the device.
4190 */
4191 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4192 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4193 ap->id, status);
4194 qc->err_mask |= AC_ERR_HSM;
4195 ap->hsm_task_state = HSM_ST_ERR;
4196 goto fsm_start;
4197 }
4198
4199 /* Send the CDB (atapi) or the first data block (ata pio out).
4200 * During the state transition, interrupt handler shouldn't
4201 * be invoked before the data transfer is complete and
4202 * hsm_task_state is changed. Hence, the following locking.
4203 */
4204 if (in_wq)
4205 spin_lock_irqsave(&ap->host_set->lock, flags);
4206
4207 if (qc->tf.protocol == ATA_PROT_PIO) {
4208 /* PIO data out protocol.
4209 * send first data block.
4210 */
4211
4212 /* ata_pio_sectors() might change the state
4213 * to HSM_ST_LAST. so, the state is changed here
4214 * before ata_pio_sectors().
4215 */
4216 ap->hsm_task_state = HSM_ST;
4217 ata_pio_sectors(qc);
4218 ata_altstatus(ap); /* flush */
4219 } else
4220 /* send CDB */
4221 atapi_send_cdb(ap, qc);
4222
4223 if (in_wq)
4224 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4225
4226 /* if polling, ata_pio_task() handles the rest.
4227 * otherwise, interrupt handler takes over from here.
4228 */
4229 break;
4230
4231 case HSM_ST:
4232 /* complete command or read/write the data register */
4233 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4234 /* ATAPI PIO protocol */
4235 if ((status & ATA_DRQ) == 0) {
4236 /* No more data to transfer or device error.
4237 * Device error will be tagged in HSM_ST_LAST.
4238 */
4239 ap->hsm_task_state = HSM_ST_LAST;
4240 goto fsm_start;
4241 }
4242
4243 /* Device should not ask for data transfer (DRQ=1)
4244 * when it finds something wrong.
4245 * We ignore DRQ here and stop the HSM by
4246 * changing hsm_task_state to HSM_ST_ERR and
4247 * let the EH abort the command or reset the device.
4248 */
4249 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4250 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4251 ap->id, status);
4252 qc->err_mask |= AC_ERR_HSM;
4253 ap->hsm_task_state = HSM_ST_ERR;
4254 goto fsm_start;
4255 }
4256
4257 atapi_pio_bytes(qc);
4258
4259 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4260 /* bad ireason reported by device */
4261 goto fsm_start;
4262
4263 } else {
4264 /* ATA PIO protocol */
4265 if (unlikely((status & ATA_DRQ) == 0)) {
4266 /* handle BSY=0, DRQ=0 as error */
4267 if (likely(status & (ATA_ERR | ATA_DF)))
4268 /* device stops HSM for abort/error */
4269 qc->err_mask |= AC_ERR_DEV;
4270 else
4271 /* HSM violation. Let EH handle this */
4272 qc->err_mask |= AC_ERR_HSM;
4273
4274 ap->hsm_task_state = HSM_ST_ERR;
4275 goto fsm_start;
4276 }
4277
4278 /* For PIO reads, some devices may ask for
4279 * data transfer (DRQ=1) alone with ERR=1.
4280 * We respect DRQ here and transfer one
4281 * block of junk data before changing the
4282 * hsm_task_state to HSM_ST_ERR.
4283 *
4284 * For PIO writes, ERR=1 DRQ=1 doesn't make
4285 * sense since the data block has been
4286 * transferred to the device.
4287 */
4288 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4289 /* data might be corrputed */
4290 qc->err_mask |= AC_ERR_DEV;
4291
4292 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4293 ata_pio_sectors(qc);
4294 ata_altstatus(ap);
4295 status = ata_wait_idle(ap);
4296 }
4297
4298 if (status & (ATA_BUSY | ATA_DRQ))
4299 qc->err_mask |= AC_ERR_HSM;
4300
4301 /* ata_pio_sectors() might change the
4302 * state to HSM_ST_LAST. so, the state
4303 * is changed after ata_pio_sectors().
4304 */
4305 ap->hsm_task_state = HSM_ST_ERR;
4306 goto fsm_start;
4307 }
4308
4309 ata_pio_sectors(qc);
4310
4311 if (ap->hsm_task_state == HSM_ST_LAST &&
4312 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4313 /* all data read */
4314 ata_altstatus(ap);
4315 status = ata_wait_idle(ap);
4316 goto fsm_start;
4317 }
4318 }
4319
4320 ata_altstatus(ap); /* flush */
4321 poll_next = 1;
4322 break;
4323
4324 case HSM_ST_LAST:
4325 if (unlikely(!ata_ok(status))) {
4326 qc->err_mask |= __ac_err_mask(status);
4327 ap->hsm_task_state = HSM_ST_ERR;
4328 goto fsm_start;
4329 }
4330
4331 /* no more data to transfer */
4332 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4333 ap->id, qc->dev->devno, status);
4334
4335 WARN_ON(qc->err_mask);
4336
4337 ap->hsm_task_state = HSM_ST_IDLE;
4338
4339 /* complete taskfile transaction */
4340 ata_hsm_qc_complete(qc, in_wq);
4341
4342 poll_next = 0;
4343 break;
4344
4345 case HSM_ST_ERR:
4346 /* make sure qc->err_mask is available to
4347 * know what's wrong and recover
4348 */
4349 WARN_ON(qc->err_mask == 0);
4350
4351 ap->hsm_task_state = HSM_ST_IDLE;
4352
4353 /* complete taskfile transaction */
4354 ata_hsm_qc_complete(qc, in_wq);
4355
4356 poll_next = 0;
4357 break;
4358 default:
4359 poll_next = 0;
4360 BUG();
4361 }
4362
4363 return poll_next;
4364 }
4365
4366 static void ata_pio_task(void *_data)
4367 {
4368 struct ata_queued_cmd *qc = _data;
4369 struct ata_port *ap = qc->ap;
4370 u8 status;
4371 int poll_next;
4372
4373 fsm_start:
4374 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4375
4376 /*
4377 * This is purely heuristic. This is a fast path.
4378 * Sometimes when we enter, BSY will be cleared in
4379 * a chk-status or two. If not, the drive is probably seeking
4380 * or something. Snooze for a couple msecs, then
4381 * chk-status again. If still busy, queue delayed work.
4382 */
4383 status = ata_busy_wait(ap, ATA_BUSY, 5);
4384 if (status & ATA_BUSY) {
4385 msleep(2);
4386 status = ata_busy_wait(ap, ATA_BUSY, 10);
4387 if (status & ATA_BUSY) {
4388 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4389 return;
4390 }
4391 }
4392
4393 /* move the HSM */
4394 poll_next = ata_hsm_move(ap, qc, status, 1);
4395
4396 /* another command or interrupt handler
4397 * may be running at this point.
4398 */
4399 if (poll_next)
4400 goto fsm_start;
4401 }
4402
4403 /**
4404 * ata_qc_new - Request an available ATA command, for queueing
4405 * @ap: Port associated with device @dev
4406 * @dev: Device from whom we request an available command structure
4407 *
4408 * LOCKING:
4409 * None.
4410 */
4411
4412 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4413 {
4414 struct ata_queued_cmd *qc = NULL;
4415 unsigned int i;
4416
4417 /* no command while frozen */
4418 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4419 return NULL;
4420
4421 /* the last tag is reserved for internal command. */
4422 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4423 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4424 qc = __ata_qc_from_tag(ap, i);
4425 break;
4426 }
4427
4428 if (qc)
4429 qc->tag = i;
4430
4431 return qc;
4432 }
4433
4434 /**
4435 * ata_qc_new_init - Request an available ATA command, and initialize it
4436 * @dev: Device from whom we request an available command structure
4437 *
4438 * LOCKING:
4439 * None.
4440 */
4441
4442 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4443 {
4444 struct ata_port *ap = dev->ap;
4445 struct ata_queued_cmd *qc;
4446
4447 qc = ata_qc_new(ap);
4448 if (qc) {
4449 qc->scsicmd = NULL;
4450 qc->ap = ap;
4451 qc->dev = dev;
4452
4453 ata_qc_reinit(qc);
4454 }
4455
4456 return qc;
4457 }
4458
4459 /**
4460 * ata_qc_free - free unused ata_queued_cmd
4461 * @qc: Command to complete
4462 *
4463 * Designed to free unused ata_queued_cmd object
4464 * in case something prevents using it.
4465 *
4466 * LOCKING:
4467 * spin_lock_irqsave(host_set lock)
4468 */
4469 void ata_qc_free(struct ata_queued_cmd *qc)
4470 {
4471 struct ata_port *ap = qc->ap;
4472 unsigned int tag;
4473
4474 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4475
4476 qc->flags = 0;
4477 tag = qc->tag;
4478 if (likely(ata_tag_valid(tag))) {
4479 qc->tag = ATA_TAG_POISON;
4480 clear_bit(tag, &ap->qc_allocated);
4481 }
4482 }
4483
4484 void __ata_qc_complete(struct ata_queued_cmd *qc)
4485 {
4486 struct ata_port *ap = qc->ap;
4487
4488 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4489 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4490
4491 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4492 ata_sg_clean(qc);
4493
4494 /* command should be marked inactive atomically with qc completion */
4495 if (qc->tf.protocol == ATA_PROT_NCQ)
4496 ap->sactive &= ~(1 << qc->tag);
4497 else
4498 ap->active_tag = ATA_TAG_POISON;
4499
4500 /* atapi: mark qc as inactive to prevent the interrupt handler
4501 * from completing the command twice later, before the error handler
4502 * is called. (when rc != 0 and atapi request sense is needed)
4503 */
4504 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4505 ap->qc_active &= ~(1 << qc->tag);
4506
4507 /* call completion callback */
4508 qc->complete_fn(qc);
4509 }
4510
4511 /**
4512 * ata_qc_complete - Complete an active ATA command
4513 * @qc: Command to complete
4514 * @err_mask: ATA Status register contents
4515 *
4516 * Indicate to the mid and upper layers that an ATA
4517 * command has completed, with either an ok or not-ok status.
4518 *
4519 * LOCKING:
4520 * spin_lock_irqsave(host_set lock)
4521 */
4522 void ata_qc_complete(struct ata_queued_cmd *qc)
4523 {
4524 struct ata_port *ap = qc->ap;
4525
4526 /* XXX: New EH and old EH use different mechanisms to
4527 * synchronize EH with regular execution path.
4528 *
4529 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4530 * Normal execution path is responsible for not accessing a
4531 * failed qc. libata core enforces the rule by returning NULL
4532 * from ata_qc_from_tag() for failed qcs.
4533 *
4534 * Old EH depends on ata_qc_complete() nullifying completion
4535 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4536 * not synchronize with interrupt handler. Only PIO task is
4537 * taken care of.
4538 */
4539 if (ap->ops->error_handler) {
4540 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4541
4542 if (unlikely(qc->err_mask))
4543 qc->flags |= ATA_QCFLAG_FAILED;
4544
4545 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4546 if (!ata_tag_internal(qc->tag)) {
4547 /* always fill result TF for failed qc */
4548 ap->ops->tf_read(ap, &qc->result_tf);
4549 ata_qc_schedule_eh(qc);
4550 return;
4551 }
4552 }
4553
4554 /* read result TF if requested */
4555 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4556 ap->ops->tf_read(ap, &qc->result_tf);
4557
4558 __ata_qc_complete(qc);
4559 } else {
4560 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4561 return;
4562
4563 /* read result TF if failed or requested */
4564 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4565 ap->ops->tf_read(ap, &qc->result_tf);
4566
4567 __ata_qc_complete(qc);
4568 }
4569 }
4570
4571 /**
4572 * ata_qc_complete_multiple - Complete multiple qcs successfully
4573 * @ap: port in question
4574 * @qc_active: new qc_active mask
4575 * @finish_qc: LLDD callback invoked before completing a qc
4576 *
4577 * Complete in-flight commands. This functions is meant to be
4578 * called from low-level driver's interrupt routine to complete
4579 * requests normally. ap->qc_active and @qc_active is compared
4580 * and commands are completed accordingly.
4581 *
4582 * LOCKING:
4583 * spin_lock_irqsave(host_set lock)
4584 *
4585 * RETURNS:
4586 * Number of completed commands on success, -errno otherwise.
4587 */
4588 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4589 void (*finish_qc)(struct ata_queued_cmd *))
4590 {
4591 int nr_done = 0;
4592 u32 done_mask;
4593 int i;
4594
4595 done_mask = ap->qc_active ^ qc_active;
4596
4597 if (unlikely(done_mask & qc_active)) {
4598 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4599 "(%08x->%08x)\n", ap->qc_active, qc_active);
4600 return -EINVAL;
4601 }
4602
4603 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4604 struct ata_queued_cmd *qc;
4605
4606 if (!(done_mask & (1 << i)))
4607 continue;
4608
4609 if ((qc = ata_qc_from_tag(ap, i))) {
4610 if (finish_qc)
4611 finish_qc(qc);
4612 ata_qc_complete(qc);
4613 nr_done++;
4614 }
4615 }
4616
4617 return nr_done;
4618 }
4619
4620 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4621 {
4622 struct ata_port *ap = qc->ap;
4623
4624 switch (qc->tf.protocol) {
4625 case ATA_PROT_NCQ:
4626 case ATA_PROT_DMA:
4627 case ATA_PROT_ATAPI_DMA:
4628 return 1;
4629
4630 case ATA_PROT_ATAPI:
4631 case ATA_PROT_PIO:
4632 if (ap->flags & ATA_FLAG_PIO_DMA)
4633 return 1;
4634
4635 /* fall through */
4636
4637 default:
4638 return 0;
4639 }
4640
4641 /* never reached */
4642 }
4643
4644 /**
4645 * ata_qc_issue - issue taskfile to device
4646 * @qc: command to issue to device
4647 *
4648 * Prepare an ATA command to submission to device.
4649 * This includes mapping the data into a DMA-able
4650 * area, filling in the S/G table, and finally
4651 * writing the taskfile to hardware, starting the command.
4652 *
4653 * LOCKING:
4654 * spin_lock_irqsave(host_set lock)
4655 */
4656 void ata_qc_issue(struct ata_queued_cmd *qc)
4657 {
4658 struct ata_port *ap = qc->ap;
4659
4660 /* Make sure only one non-NCQ command is outstanding. The
4661 * check is skipped for old EH because it reuses active qc to
4662 * request ATAPI sense.
4663 */
4664 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4665
4666 if (qc->tf.protocol == ATA_PROT_NCQ) {
4667 WARN_ON(ap->sactive & (1 << qc->tag));
4668 ap->sactive |= 1 << qc->tag;
4669 } else {
4670 WARN_ON(ap->sactive);
4671 ap->active_tag = qc->tag;
4672 }
4673
4674 qc->flags |= ATA_QCFLAG_ACTIVE;
4675 ap->qc_active |= 1 << qc->tag;
4676
4677 if (ata_should_dma_map(qc)) {
4678 if (qc->flags & ATA_QCFLAG_SG) {
4679 if (ata_sg_setup(qc))
4680 goto sg_err;
4681 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4682 if (ata_sg_setup_one(qc))
4683 goto sg_err;
4684 }
4685 } else {
4686 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4687 }
4688
4689 ap->ops->qc_prep(qc);
4690
4691 qc->err_mask |= ap->ops->qc_issue(qc);
4692 if (unlikely(qc->err_mask))
4693 goto err;
4694 return;
4695
4696 sg_err:
4697 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4698 qc->err_mask |= AC_ERR_SYSTEM;
4699 err:
4700 ata_qc_complete(qc);
4701 }
4702
4703 /**
4704 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4705 * @qc: command to issue to device
4706 *
4707 * Using various libata functions and hooks, this function
4708 * starts an ATA command. ATA commands are grouped into
4709 * classes called "protocols", and issuing each type of protocol
4710 * is slightly different.
4711 *
4712 * May be used as the qc_issue() entry in ata_port_operations.
4713 *
4714 * LOCKING:
4715 * spin_lock_irqsave(host_set lock)
4716 *
4717 * RETURNS:
4718 * Zero on success, AC_ERR_* mask on failure
4719 */
4720
4721 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4722 {
4723 struct ata_port *ap = qc->ap;
4724
4725 /* Use polling pio if the LLD doesn't handle
4726 * interrupt driven pio and atapi CDB interrupt.
4727 */
4728 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4729 switch (qc->tf.protocol) {
4730 case ATA_PROT_PIO:
4731 case ATA_PROT_ATAPI:
4732 case ATA_PROT_ATAPI_NODATA:
4733 qc->tf.flags |= ATA_TFLAG_POLLING;
4734 break;
4735 case ATA_PROT_ATAPI_DMA:
4736 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4737 /* see ata_check_atapi_dma() */
4738 BUG();
4739 break;
4740 default:
4741 break;
4742 }
4743 }
4744
4745 /* select the device */
4746 ata_dev_select(ap, qc->dev->devno, 1, 0);
4747
4748 /* start the command */
4749 switch (qc->tf.protocol) {
4750 case ATA_PROT_NODATA:
4751 if (qc->tf.flags & ATA_TFLAG_POLLING)
4752 ata_qc_set_polling(qc);
4753
4754 ata_tf_to_host(ap, &qc->tf);
4755 ap->hsm_task_state = HSM_ST_LAST;
4756
4757 if (qc->tf.flags & ATA_TFLAG_POLLING)
4758 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4759
4760 break;
4761
4762 case ATA_PROT_DMA:
4763 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4764
4765 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4766 ap->ops->bmdma_setup(qc); /* set up bmdma */
4767 ap->ops->bmdma_start(qc); /* initiate bmdma */
4768 ap->hsm_task_state = HSM_ST_LAST;
4769 break;
4770
4771 case ATA_PROT_PIO:
4772 if (qc->tf.flags & ATA_TFLAG_POLLING)
4773 ata_qc_set_polling(qc);
4774
4775 ata_tf_to_host(ap, &qc->tf);
4776
4777 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4778 /* PIO data out protocol */
4779 ap->hsm_task_state = HSM_ST_FIRST;
4780 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4781
4782 /* always send first data block using
4783 * the ata_pio_task() codepath.
4784 */
4785 } else {
4786 /* PIO data in protocol */
4787 ap->hsm_task_state = HSM_ST;
4788
4789 if (qc->tf.flags & ATA_TFLAG_POLLING)
4790 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4791
4792 /* if polling, ata_pio_task() handles the rest.
4793 * otherwise, interrupt handler takes over from here.
4794 */
4795 }
4796
4797 break;
4798
4799 case ATA_PROT_ATAPI:
4800 case ATA_PROT_ATAPI_NODATA:
4801 if (qc->tf.flags & ATA_TFLAG_POLLING)
4802 ata_qc_set_polling(qc);
4803
4804 ata_tf_to_host(ap, &qc->tf);
4805
4806 ap->hsm_task_state = HSM_ST_FIRST;
4807
4808 /* send cdb by polling if no cdb interrupt */
4809 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4810 (qc->tf.flags & ATA_TFLAG_POLLING))
4811 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4812 break;
4813
4814 case ATA_PROT_ATAPI_DMA:
4815 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4816
4817 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4818 ap->ops->bmdma_setup(qc); /* set up bmdma */
4819 ap->hsm_task_state = HSM_ST_FIRST;
4820
4821 /* send cdb by polling if no cdb interrupt */
4822 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4823 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4824 break;
4825
4826 default:
4827 WARN_ON(1);
4828 return AC_ERR_SYSTEM;
4829 }
4830
4831 return 0;
4832 }
4833
4834 /**
4835 * ata_host_intr - Handle host interrupt for given (port, task)
4836 * @ap: Port on which interrupt arrived (possibly...)
4837 * @qc: Taskfile currently active in engine
4838 *
4839 * Handle host interrupt for given queued command. Currently,
4840 * only DMA interrupts are handled. All other commands are
4841 * handled via polling with interrupts disabled (nIEN bit).
4842 *
4843 * LOCKING:
4844 * spin_lock_irqsave(host_set lock)
4845 *
4846 * RETURNS:
4847 * One if interrupt was handled, zero if not (shared irq).
4848 */
4849
4850 inline unsigned int ata_host_intr (struct ata_port *ap,
4851 struct ata_queued_cmd *qc)
4852 {
4853 u8 status, host_stat = 0;
4854
4855 VPRINTK("ata%u: protocol %d task_state %d\n",
4856 ap->id, qc->tf.protocol, ap->hsm_task_state);
4857
4858 /* Check whether we are expecting interrupt in this state */
4859 switch (ap->hsm_task_state) {
4860 case HSM_ST_FIRST:
4861 /* Some pre-ATAPI-4 devices assert INTRQ
4862 * at this state when ready to receive CDB.
4863 */
4864
4865 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4866 * The flag was turned on only for atapi devices.
4867 * No need to check is_atapi_taskfile(&qc->tf) again.
4868 */
4869 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4870 goto idle_irq;
4871 break;
4872 case HSM_ST_LAST:
4873 if (qc->tf.protocol == ATA_PROT_DMA ||
4874 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4875 /* check status of DMA engine */
4876 host_stat = ap->ops->bmdma_status(ap);
4877 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4878
4879 /* if it's not our irq... */
4880 if (!(host_stat & ATA_DMA_INTR))
4881 goto idle_irq;
4882
4883 /* before we do anything else, clear DMA-Start bit */
4884 ap->ops->bmdma_stop(qc);
4885
4886 if (unlikely(host_stat & ATA_DMA_ERR)) {
4887 /* error when transfering data to/from memory */
4888 qc->err_mask |= AC_ERR_HOST_BUS;
4889 ap->hsm_task_state = HSM_ST_ERR;
4890 }
4891 }
4892 break;
4893 case HSM_ST:
4894 break;
4895 default:
4896 goto idle_irq;
4897 }
4898
4899 /* check altstatus */
4900 status = ata_altstatus(ap);
4901 if (status & ATA_BUSY)
4902 goto idle_irq;
4903
4904 /* check main status, clearing INTRQ */
4905 status = ata_chk_status(ap);
4906 if (unlikely(status & ATA_BUSY))
4907 goto idle_irq;
4908
4909 /* ack bmdma irq events */
4910 ap->ops->irq_clear(ap);
4911
4912 ata_hsm_move(ap, qc, status, 0);
4913 return 1; /* irq handled */
4914
4915 idle_irq:
4916 ap->stats.idle_irq++;
4917
4918 #ifdef ATA_IRQ_TRAP
4919 if ((ap->stats.idle_irq % 1000) == 0) {
4920 ata_irq_ack(ap, 0); /* debug trap */
4921 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4922 return 1;
4923 }
4924 #endif
4925 return 0; /* irq not handled */
4926 }
4927
4928 /**
4929 * ata_interrupt - Default ATA host interrupt handler
4930 * @irq: irq line (unused)
4931 * @dev_instance: pointer to our ata_host_set information structure
4932 * @regs: unused
4933 *
4934 * Default interrupt handler for PCI IDE devices. Calls
4935 * ata_host_intr() for each port that is not disabled.
4936 *
4937 * LOCKING:
4938 * Obtains host_set lock during operation.
4939 *
4940 * RETURNS:
4941 * IRQ_NONE or IRQ_HANDLED.
4942 */
4943
4944 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4945 {
4946 struct ata_host_set *host_set = dev_instance;
4947 unsigned int i;
4948 unsigned int handled = 0;
4949 unsigned long flags;
4950
4951 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4952 spin_lock_irqsave(&host_set->lock, flags);
4953
4954 for (i = 0; i < host_set->n_ports; i++) {
4955 struct ata_port *ap;
4956
4957 ap = host_set->ports[i];
4958 if (ap &&
4959 !(ap->flags & ATA_FLAG_DISABLED)) {
4960 struct ata_queued_cmd *qc;
4961
4962 qc = ata_qc_from_tag(ap, ap->active_tag);
4963 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4964 (qc->flags & ATA_QCFLAG_ACTIVE))
4965 handled |= ata_host_intr(ap, qc);
4966 }
4967 }
4968
4969 spin_unlock_irqrestore(&host_set->lock, flags);
4970
4971 return IRQ_RETVAL(handled);
4972 }
4973
4974 /**
4975 * sata_scr_valid - test whether SCRs are accessible
4976 * @ap: ATA port to test SCR accessibility for
4977 *
4978 * Test whether SCRs are accessible for @ap.
4979 *
4980 * LOCKING:
4981 * None.
4982 *
4983 * RETURNS:
4984 * 1 if SCRs are accessible, 0 otherwise.
4985 */
4986 int sata_scr_valid(struct ata_port *ap)
4987 {
4988 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4989 }
4990
4991 /**
4992 * sata_scr_read - read SCR register of the specified port
4993 * @ap: ATA port to read SCR for
4994 * @reg: SCR to read
4995 * @val: Place to store read value
4996 *
4997 * Read SCR register @reg of @ap into *@val. This function is
4998 * guaranteed to succeed if the cable type of the port is SATA
4999 * and the port implements ->scr_read.
5000 *
5001 * LOCKING:
5002 * None.
5003 *
5004 * RETURNS:
5005 * 0 on success, negative errno on failure.
5006 */
5007 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5008 {
5009 if (sata_scr_valid(ap)) {
5010 *val = ap->ops->scr_read(ap, reg);
5011 return 0;
5012 }
5013 return -EOPNOTSUPP;
5014 }
5015
5016 /**
5017 * sata_scr_write - write SCR register of the specified port
5018 * @ap: ATA port to write SCR for
5019 * @reg: SCR to write
5020 * @val: value to write
5021 *
5022 * Write @val to SCR register @reg of @ap. This function is
5023 * guaranteed to succeed if the cable type of the port is SATA
5024 * and the port implements ->scr_read.
5025 *
5026 * LOCKING:
5027 * None.
5028 *
5029 * RETURNS:
5030 * 0 on success, negative errno on failure.
5031 */
5032 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5033 {
5034 if (sata_scr_valid(ap)) {
5035 ap->ops->scr_write(ap, reg, val);
5036 return 0;
5037 }
5038 return -EOPNOTSUPP;
5039 }
5040
5041 /**
5042 * sata_scr_write_flush - write SCR register of the specified port and flush
5043 * @ap: ATA port to write SCR for
5044 * @reg: SCR to write
5045 * @val: value to write
5046 *
5047 * This function is identical to sata_scr_write() except that this
5048 * function performs flush after writing to the register.
5049 *
5050 * LOCKING:
5051 * None.
5052 *
5053 * RETURNS:
5054 * 0 on success, negative errno on failure.
5055 */
5056 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5057 {
5058 if (sata_scr_valid(ap)) {
5059 ap->ops->scr_write(ap, reg, val);
5060 ap->ops->scr_read(ap, reg);
5061 return 0;
5062 }
5063 return -EOPNOTSUPP;
5064 }
5065
5066 /**
5067 * ata_port_online - test whether the given port is online
5068 * @ap: ATA port to test
5069 *
5070 * Test whether @ap is online. Note that this function returns 0
5071 * if online status of @ap cannot be obtained, so
5072 * ata_port_online(ap) != !ata_port_offline(ap).
5073 *
5074 * LOCKING:
5075 * None.
5076 *
5077 * RETURNS:
5078 * 1 if the port online status is available and online.
5079 */
5080 int ata_port_online(struct ata_port *ap)
5081 {
5082 u32 sstatus;
5083
5084 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5085 return 1;
5086 return 0;
5087 }
5088
5089 /**
5090 * ata_port_offline - test whether the given port is offline
5091 * @ap: ATA port to test
5092 *
5093 * Test whether @ap is offline. Note that this function returns
5094 * 0 if offline status of @ap cannot be obtained, so
5095 * ata_port_online(ap) != !ata_port_offline(ap).
5096 *
5097 * LOCKING:
5098 * None.
5099 *
5100 * RETURNS:
5101 * 1 if the port offline status is available and offline.
5102 */
5103 int ata_port_offline(struct ata_port *ap)
5104 {
5105 u32 sstatus;
5106
5107 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5108 return 1;
5109 return 0;
5110 }
5111
5112 /*
5113 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
5114 * without filling any other registers
5115 */
5116 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
5117 {
5118 struct ata_taskfile tf;
5119 int err;
5120
5121 ata_tf_init(dev, &tf);
5122
5123 tf.command = cmd;
5124 tf.flags |= ATA_TFLAG_DEVICE;
5125 tf.protocol = ATA_PROT_NODATA;
5126
5127 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
5128 if (err)
5129 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
5130 __FUNCTION__, err);
5131
5132 return err;
5133 }
5134
5135 static int ata_flush_cache(struct ata_device *dev)
5136 {
5137 u8 cmd;
5138
5139 if (!ata_try_flush_cache(dev))
5140 return 0;
5141
5142 if (ata_id_has_flush_ext(dev->id))
5143 cmd = ATA_CMD_FLUSH_EXT;
5144 else
5145 cmd = ATA_CMD_FLUSH;
5146
5147 return ata_do_simple_cmd(dev, cmd);
5148 }
5149
5150 static int ata_standby_drive(struct ata_device *dev)
5151 {
5152 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5153 }
5154
5155 static int ata_start_drive(struct ata_device *dev)
5156 {
5157 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5158 }
5159
5160 /**
5161 * ata_device_resume - wakeup a previously suspended devices
5162 * @dev: the device to resume
5163 *
5164 * Kick the drive back into action, by sending it an idle immediate
5165 * command and making sure its transfer mode matches between drive
5166 * and host.
5167 *
5168 */
5169 int ata_device_resume(struct ata_device *dev)
5170 {
5171 struct ata_port *ap = dev->ap;
5172
5173 if (ap->flags & ATA_FLAG_SUSPENDED) {
5174 struct ata_device *failed_dev;
5175
5176 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5177
5178 ap->flags &= ~ATA_FLAG_SUSPENDED;
5179 while (ata_set_mode(ap, &failed_dev))
5180 ata_dev_disable(failed_dev);
5181 }
5182 if (!ata_dev_enabled(dev))
5183 return 0;
5184 if (dev->class == ATA_DEV_ATA)
5185 ata_start_drive(dev);
5186
5187 return 0;
5188 }
5189
5190 /**
5191 * ata_device_suspend - prepare a device for suspend
5192 * @dev: the device to suspend
5193 * @state: target power management state
5194 *
5195 * Flush the cache on the drive, if appropriate, then issue a
5196 * standbynow command.
5197 */
5198 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5199 {
5200 struct ata_port *ap = dev->ap;
5201
5202 if (!ata_dev_enabled(dev))
5203 return 0;
5204 if (dev->class == ATA_DEV_ATA)
5205 ata_flush_cache(dev);
5206
5207 if (state.event != PM_EVENT_FREEZE)
5208 ata_standby_drive(dev);
5209 ap->flags |= ATA_FLAG_SUSPENDED;
5210 return 0;
5211 }
5212
5213 /**
5214 * ata_port_start - Set port up for dma.
5215 * @ap: Port to initialize
5216 *
5217 * Called just after data structures for each port are
5218 * initialized. Allocates space for PRD table.
5219 *
5220 * May be used as the port_start() entry in ata_port_operations.
5221 *
5222 * LOCKING:
5223 * Inherited from caller.
5224 */
5225
5226 int ata_port_start (struct ata_port *ap)
5227 {
5228 struct device *dev = ap->dev;
5229 int rc;
5230
5231 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5232 if (!ap->prd)
5233 return -ENOMEM;
5234
5235 rc = ata_pad_alloc(ap, dev);
5236 if (rc) {
5237 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5238 return rc;
5239 }
5240
5241 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5242
5243 return 0;
5244 }
5245
5246
5247 /**
5248 * ata_port_stop - Undo ata_port_start()
5249 * @ap: Port to shut down
5250 *
5251 * Frees the PRD table.
5252 *
5253 * May be used as the port_stop() entry in ata_port_operations.
5254 *
5255 * LOCKING:
5256 * Inherited from caller.
5257 */
5258
5259 void ata_port_stop (struct ata_port *ap)
5260 {
5261 struct device *dev = ap->dev;
5262
5263 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5264 ata_pad_free(ap, dev);
5265 }
5266
5267 void ata_host_stop (struct ata_host_set *host_set)
5268 {
5269 if (host_set->mmio_base)
5270 iounmap(host_set->mmio_base);
5271 }
5272
5273
5274 /**
5275 * ata_host_remove - Unregister SCSI host structure with upper layers
5276 * @ap: Port to unregister
5277 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5278 *
5279 * LOCKING:
5280 * Inherited from caller.
5281 */
5282
5283 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5284 {
5285 struct Scsi_Host *sh = ap->host;
5286
5287 DPRINTK("ENTER\n");
5288
5289 if (do_unregister)
5290 scsi_remove_host(sh);
5291
5292 ap->ops->port_stop(ap);
5293 }
5294
5295 /**
5296 * ata_dev_init - Initialize an ata_device structure
5297 * @dev: Device structure to initialize
5298 *
5299 * Initialize @dev in preparation for probing.
5300 *
5301 * LOCKING:
5302 * Inherited from caller.
5303 */
5304 void ata_dev_init(struct ata_device *dev)
5305 {
5306 struct ata_port *ap = dev->ap;
5307 unsigned long flags;
5308
5309 /* SATA spd limit is bound to the first device */
5310 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5311
5312 /* High bits of dev->flags are used to record warm plug
5313 * requests which occur asynchronously. Synchronize using
5314 * host_set lock.
5315 */
5316 spin_lock_irqsave(&ap->host_set->lock, flags);
5317 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5318 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5319
5320 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5321 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5322 dev->pio_mask = UINT_MAX;
5323 dev->mwdma_mask = UINT_MAX;
5324 dev->udma_mask = UINT_MAX;
5325 }
5326
5327 /**
5328 * ata_host_init - Initialize an ata_port structure
5329 * @ap: Structure to initialize
5330 * @host: associated SCSI mid-layer structure
5331 * @host_set: Collection of hosts to which @ap belongs
5332 * @ent: Probe information provided by low-level driver
5333 * @port_no: Port number associated with this ata_port
5334 *
5335 * Initialize a new ata_port structure, and its associated
5336 * scsi_host.
5337 *
5338 * LOCKING:
5339 * Inherited from caller.
5340 */
5341 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5342 struct ata_host_set *host_set,
5343 const struct ata_probe_ent *ent, unsigned int port_no)
5344 {
5345 unsigned int i;
5346
5347 host->max_id = 16;
5348 host->max_lun = 1;
5349 host->max_channel = 1;
5350 host->unique_id = ata_unique_id++;
5351 host->max_cmd_len = 12;
5352
5353 ap->flags = ATA_FLAG_DISABLED;
5354 ap->id = host->unique_id;
5355 ap->host = host;
5356 ap->ctl = ATA_DEVCTL_OBS;
5357 ap->host_set = host_set;
5358 ap->dev = ent->dev;
5359 ap->port_no = port_no;
5360 ap->hard_port_no =
5361 ent->legacy_mode ? ent->hard_port_no : port_no;
5362 ap->pio_mask = ent->pio_mask;
5363 ap->mwdma_mask = ent->mwdma_mask;
5364 ap->udma_mask = ent->udma_mask;
5365 ap->flags |= ent->host_flags;
5366 ap->ops = ent->port_ops;
5367 ap->hw_sata_spd_limit = UINT_MAX;
5368 ap->active_tag = ATA_TAG_POISON;
5369 ap->last_ctl = 0xFF;
5370 ap->msg_enable = ATA_MSG_DRV;
5371
5372 INIT_WORK(&ap->port_task, NULL, NULL);
5373 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5374 INIT_LIST_HEAD(&ap->eh_done_q);
5375 init_waitqueue_head(&ap->eh_wait_q);
5376
5377 /* set cable type */
5378 ap->cbl = ATA_CBL_NONE;
5379 if (ap->flags & ATA_FLAG_SATA)
5380 ap->cbl = ATA_CBL_SATA;
5381
5382 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5383 struct ata_device *dev = &ap->device[i];
5384 dev->ap = ap;
5385 dev->devno = i;
5386 ata_dev_init(dev);
5387 }
5388
5389 #ifdef ATA_IRQ_TRAP
5390 ap->stats.unhandled_irq = 1;
5391 ap->stats.idle_irq = 1;
5392 #endif
5393
5394 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5395 }
5396
5397 /**
5398 * ata_host_add - Attach low-level ATA driver to system
5399 * @ent: Information provided by low-level driver
5400 * @host_set: Collections of ports to which we add
5401 * @port_no: Port number associated with this host
5402 *
5403 * Attach low-level ATA driver to system.
5404 *
5405 * LOCKING:
5406 * PCI/etc. bus probe sem.
5407 *
5408 * RETURNS:
5409 * New ata_port on success, for NULL on error.
5410 */
5411
5412 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5413 struct ata_host_set *host_set,
5414 unsigned int port_no)
5415 {
5416 struct Scsi_Host *host;
5417 struct ata_port *ap;
5418 int rc;
5419
5420 DPRINTK("ENTER\n");
5421
5422 if (!ent->port_ops->probe_reset &&
5423 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5424 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5425 port_no);
5426 return NULL;
5427 }
5428
5429 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5430 if (!host)
5431 return NULL;
5432
5433 host->transportt = &ata_scsi_transport_template;
5434
5435 ap = ata_shost_to_port(host);
5436
5437 ata_host_init(ap, host, host_set, ent, port_no);
5438
5439 rc = ap->ops->port_start(ap);
5440 if (rc)
5441 goto err_out;
5442
5443 return ap;
5444
5445 err_out:
5446 scsi_host_put(host);
5447 return NULL;
5448 }
5449
5450 /**
5451 * ata_device_add - Register hardware device with ATA and SCSI layers
5452 * @ent: Probe information describing hardware device to be registered
5453 *
5454 * This function processes the information provided in the probe
5455 * information struct @ent, allocates the necessary ATA and SCSI
5456 * host information structures, initializes them, and registers
5457 * everything with requisite kernel subsystems.
5458 *
5459 * This function requests irqs, probes the ATA bus, and probes
5460 * the SCSI bus.
5461 *
5462 * LOCKING:
5463 * PCI/etc. bus probe sem.
5464 *
5465 * RETURNS:
5466 * Number of ports registered. Zero on error (no ports registered).
5467 */
5468
5469 int ata_device_add(const struct ata_probe_ent *ent)
5470 {
5471 unsigned int count = 0, i;
5472 struct device *dev = ent->dev;
5473 struct ata_host_set *host_set;
5474
5475 DPRINTK("ENTER\n");
5476 /* alloc a container for our list of ATA ports (buses) */
5477 host_set = kzalloc(sizeof(struct ata_host_set) +
5478 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5479 if (!host_set)
5480 return 0;
5481 spin_lock_init(&host_set->lock);
5482
5483 host_set->dev = dev;
5484 host_set->n_ports = ent->n_ports;
5485 host_set->irq = ent->irq;
5486 host_set->mmio_base = ent->mmio_base;
5487 host_set->private_data = ent->private_data;
5488 host_set->ops = ent->port_ops;
5489 host_set->flags = ent->host_set_flags;
5490
5491 /* register each port bound to this device */
5492 for (i = 0; i < ent->n_ports; i++) {
5493 struct ata_port *ap;
5494 unsigned long xfer_mode_mask;
5495
5496 ap = ata_host_add(ent, host_set, i);
5497 if (!ap)
5498 goto err_out;
5499
5500 host_set->ports[i] = ap;
5501 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5502 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5503 (ap->pio_mask << ATA_SHIFT_PIO);
5504
5505 /* print per-port info to dmesg */
5506 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5507 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5508 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5509 ata_mode_string(xfer_mode_mask),
5510 ap->ioaddr.cmd_addr,
5511 ap->ioaddr.ctl_addr,
5512 ap->ioaddr.bmdma_addr,
5513 ent->irq);
5514
5515 ata_chk_status(ap);
5516 host_set->ops->irq_clear(ap);
5517 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5518 count++;
5519 }
5520
5521 if (!count)
5522 goto err_free_ret;
5523
5524 /* obtain irq, that is shared between channels */
5525 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5526 DRV_NAME, host_set))
5527 goto err_out;
5528
5529 /* perform each probe synchronously */
5530 DPRINTK("probe begin\n");
5531 for (i = 0; i < count; i++) {
5532 struct ata_port *ap;
5533 u32 scontrol;
5534 int rc;
5535
5536 ap = host_set->ports[i];
5537
5538 /* init sata_spd_limit to the current value */
5539 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5540 int spd = (scontrol >> 4) & 0xf;
5541 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5542 }
5543 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5544
5545 DPRINTK("ata%u: bus probe begin\n", ap->id);
5546 rc = ata_bus_probe(ap);
5547 DPRINTK("ata%u: bus probe end\n", ap->id);
5548
5549 if (rc) {
5550 /* FIXME: do something useful here?
5551 * Current libata behavior will
5552 * tear down everything when
5553 * the module is removed
5554 * or the h/w is unplugged.
5555 */
5556 }
5557
5558 rc = scsi_add_host(ap->host, dev);
5559 if (rc) {
5560 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5561 /* FIXME: do something useful here */
5562 /* FIXME: handle unconditional calls to
5563 * scsi_scan_host and ata_host_remove, below,
5564 * at the very least
5565 */
5566 }
5567 }
5568
5569 /* probes are done, now scan each port's disk(s) */
5570 DPRINTK("host probe begin\n");
5571 for (i = 0; i < count; i++) {
5572 struct ata_port *ap = host_set->ports[i];
5573
5574 ata_scsi_scan_host(ap);
5575 }
5576
5577 dev_set_drvdata(dev, host_set);
5578
5579 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5580 return ent->n_ports; /* success */
5581
5582 err_out:
5583 for (i = 0; i < count; i++) {
5584 ata_host_remove(host_set->ports[i], 1);
5585 scsi_host_put(host_set->ports[i]->host);
5586 }
5587 err_free_ret:
5588 kfree(host_set);
5589 VPRINTK("EXIT, returning 0\n");
5590 return 0;
5591 }
5592
5593 /**
5594 * ata_host_set_remove - PCI layer callback for device removal
5595 * @host_set: ATA host set that was removed
5596 *
5597 * Unregister all objects associated with this host set. Free those
5598 * objects.
5599 *
5600 * LOCKING:
5601 * Inherited from calling layer (may sleep).
5602 */
5603
5604 void ata_host_set_remove(struct ata_host_set *host_set)
5605 {
5606 struct ata_port *ap;
5607 unsigned int i;
5608
5609 for (i = 0; i < host_set->n_ports; i++) {
5610 ap = host_set->ports[i];
5611 scsi_remove_host(ap->host);
5612 }
5613
5614 free_irq(host_set->irq, host_set);
5615
5616 for (i = 0; i < host_set->n_ports; i++) {
5617 ap = host_set->ports[i];
5618
5619 ata_scsi_release(ap->host);
5620
5621 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5622 struct ata_ioports *ioaddr = &ap->ioaddr;
5623
5624 if (ioaddr->cmd_addr == 0x1f0)
5625 release_region(0x1f0, 8);
5626 else if (ioaddr->cmd_addr == 0x170)
5627 release_region(0x170, 8);
5628 }
5629
5630 scsi_host_put(ap->host);
5631 }
5632
5633 if (host_set->ops->host_stop)
5634 host_set->ops->host_stop(host_set);
5635
5636 kfree(host_set);
5637 }
5638
5639 /**
5640 * ata_scsi_release - SCSI layer callback hook for host unload
5641 * @host: libata host to be unloaded
5642 *
5643 * Performs all duties necessary to shut down a libata port...
5644 * Kill port kthread, disable port, and release resources.
5645 *
5646 * LOCKING:
5647 * Inherited from SCSI layer.
5648 *
5649 * RETURNS:
5650 * One.
5651 */
5652
5653 int ata_scsi_release(struct Scsi_Host *host)
5654 {
5655 struct ata_port *ap = ata_shost_to_port(host);
5656
5657 DPRINTK("ENTER\n");
5658
5659 ap->ops->port_disable(ap);
5660 ata_host_remove(ap, 0);
5661
5662 DPRINTK("EXIT\n");
5663 return 1;
5664 }
5665
5666 /**
5667 * ata_std_ports - initialize ioaddr with standard port offsets.
5668 * @ioaddr: IO address structure to be initialized
5669 *
5670 * Utility function which initializes data_addr, error_addr,
5671 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5672 * device_addr, status_addr, and command_addr to standard offsets
5673 * relative to cmd_addr.
5674 *
5675 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5676 */
5677
5678 void ata_std_ports(struct ata_ioports *ioaddr)
5679 {
5680 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5681 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5682 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5683 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5684 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5685 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5686 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5687 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5688 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5689 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5690 }
5691
5692
5693 #ifdef CONFIG_PCI
5694
5695 void ata_pci_host_stop (struct ata_host_set *host_set)
5696 {
5697 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5698
5699 pci_iounmap(pdev, host_set->mmio_base);
5700 }
5701
5702 /**
5703 * ata_pci_remove_one - PCI layer callback for device removal
5704 * @pdev: PCI device that was removed
5705 *
5706 * PCI layer indicates to libata via this hook that
5707 * hot-unplug or module unload event has occurred.
5708 * Handle this by unregistering all objects associated
5709 * with this PCI device. Free those objects. Then finally
5710 * release PCI resources and disable device.
5711 *
5712 * LOCKING:
5713 * Inherited from PCI layer (may sleep).
5714 */
5715
5716 void ata_pci_remove_one (struct pci_dev *pdev)
5717 {
5718 struct device *dev = pci_dev_to_dev(pdev);
5719 struct ata_host_set *host_set = dev_get_drvdata(dev);
5720
5721 ata_host_set_remove(host_set);
5722 pci_release_regions(pdev);
5723 pci_disable_device(pdev);
5724 dev_set_drvdata(dev, NULL);
5725 }
5726
5727 /* move to PCI subsystem */
5728 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5729 {
5730 unsigned long tmp = 0;
5731
5732 switch (bits->width) {
5733 case 1: {
5734 u8 tmp8 = 0;
5735 pci_read_config_byte(pdev, bits->reg, &tmp8);
5736 tmp = tmp8;
5737 break;
5738 }
5739 case 2: {
5740 u16 tmp16 = 0;
5741 pci_read_config_word(pdev, bits->reg, &tmp16);
5742 tmp = tmp16;
5743 break;
5744 }
5745 case 4: {
5746 u32 tmp32 = 0;
5747 pci_read_config_dword(pdev, bits->reg, &tmp32);
5748 tmp = tmp32;
5749 break;
5750 }
5751
5752 default:
5753 return -EINVAL;
5754 }
5755
5756 tmp &= bits->mask;
5757
5758 return (tmp == bits->val) ? 1 : 0;
5759 }
5760
5761 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5762 {
5763 pci_save_state(pdev);
5764 pci_disable_device(pdev);
5765 pci_set_power_state(pdev, PCI_D3hot);
5766 return 0;
5767 }
5768
5769 int ata_pci_device_resume(struct pci_dev *pdev)
5770 {
5771 pci_set_power_state(pdev, PCI_D0);
5772 pci_restore_state(pdev);
5773 pci_enable_device(pdev);
5774 pci_set_master(pdev);
5775 return 0;
5776 }
5777 #endif /* CONFIG_PCI */
5778
5779
5780 static int __init ata_init(void)
5781 {
5782 ata_wq = create_workqueue("ata");
5783 if (!ata_wq)
5784 return -ENOMEM;
5785
5786 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5787 if (!ata_aux_wq) {
5788 destroy_workqueue(ata_wq);
5789 return -ENOMEM;
5790 }
5791
5792 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5793 return 0;
5794 }
5795
5796 static void __exit ata_exit(void)
5797 {
5798 destroy_workqueue(ata_wq);
5799 destroy_workqueue(ata_aux_wq);
5800 }
5801
5802 module_init(ata_init);
5803 module_exit(ata_exit);
5804
5805 static unsigned long ratelimit_time;
5806 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5807
5808 int ata_ratelimit(void)
5809 {
5810 int rc;
5811 unsigned long flags;
5812
5813 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5814
5815 if (time_after(jiffies, ratelimit_time)) {
5816 rc = 1;
5817 ratelimit_time = jiffies + (HZ/5);
5818 } else
5819 rc = 0;
5820
5821 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5822
5823 return rc;
5824 }
5825
5826 /**
5827 * ata_wait_register - wait until register value changes
5828 * @reg: IO-mapped register
5829 * @mask: Mask to apply to read register value
5830 * @val: Wait condition
5831 * @interval_msec: polling interval in milliseconds
5832 * @timeout_msec: timeout in milliseconds
5833 *
5834 * Waiting for some bits of register to change is a common
5835 * operation for ATA controllers. This function reads 32bit LE
5836 * IO-mapped register @reg and tests for the following condition.
5837 *
5838 * (*@reg & mask) != val
5839 *
5840 * If the condition is met, it returns; otherwise, the process is
5841 * repeated after @interval_msec until timeout.
5842 *
5843 * LOCKING:
5844 * Kernel thread context (may sleep)
5845 *
5846 * RETURNS:
5847 * The final register value.
5848 */
5849 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5850 unsigned long interval_msec,
5851 unsigned long timeout_msec)
5852 {
5853 unsigned long timeout;
5854 u32 tmp;
5855
5856 tmp = ioread32(reg);
5857
5858 /* Calculate timeout _after_ the first read to make sure
5859 * preceding writes reach the controller before starting to
5860 * eat away the timeout.
5861 */
5862 timeout = jiffies + (timeout_msec * HZ) / 1000;
5863
5864 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5865 msleep(interval_msec);
5866 tmp = ioread32(reg);
5867 }
5868
5869 return tmp;
5870 }
5871
5872 /*
5873 * libata is essentially a library of internal helper functions for
5874 * low-level ATA host controller drivers. As such, the API/ABI is
5875 * likely to change as new drivers are added and updated.
5876 * Do not depend on ABI/API stability.
5877 */
5878
5879 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5880 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5881 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5882 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5883 EXPORT_SYMBOL_GPL(ata_std_ports);
5884 EXPORT_SYMBOL_GPL(ata_device_add);
5885 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5886 EXPORT_SYMBOL_GPL(ata_sg_init);
5887 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5888 EXPORT_SYMBOL_GPL(ata_hsm_move);
5889 EXPORT_SYMBOL_GPL(ata_qc_complete);
5890 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5891 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5892 EXPORT_SYMBOL_GPL(ata_tf_load);
5893 EXPORT_SYMBOL_GPL(ata_tf_read);
5894 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5895 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5896 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5897 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5898 EXPORT_SYMBOL_GPL(ata_check_status);
5899 EXPORT_SYMBOL_GPL(ata_altstatus);
5900 EXPORT_SYMBOL_GPL(ata_exec_command);
5901 EXPORT_SYMBOL_GPL(ata_port_start);
5902 EXPORT_SYMBOL_GPL(ata_port_stop);
5903 EXPORT_SYMBOL_GPL(ata_host_stop);
5904 EXPORT_SYMBOL_GPL(ata_interrupt);
5905 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5906 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5907 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5908 EXPORT_SYMBOL_GPL(ata_qc_prep);
5909 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5910 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5911 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5912 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5913 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5914 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5915 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5916 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5917 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5918 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5919 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5920 EXPORT_SYMBOL_GPL(ata_port_probe);
5921 EXPORT_SYMBOL_GPL(sata_set_spd);
5922 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5923 EXPORT_SYMBOL_GPL(sata_phy_resume);
5924 EXPORT_SYMBOL_GPL(sata_phy_reset);
5925 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5926 EXPORT_SYMBOL_GPL(ata_bus_reset);
5927 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5928 EXPORT_SYMBOL_GPL(ata_std_prereset);
5929 EXPORT_SYMBOL_GPL(ata_std_softreset);
5930 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5931 EXPORT_SYMBOL_GPL(ata_std_postreset);
5932 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5933 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5934 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5935 EXPORT_SYMBOL_GPL(ata_dev_classify);
5936 EXPORT_SYMBOL_GPL(ata_dev_pair);
5937 EXPORT_SYMBOL_GPL(ata_port_disable);
5938 EXPORT_SYMBOL_GPL(ata_ratelimit);
5939 EXPORT_SYMBOL_GPL(ata_wait_register);
5940 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5941 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5942 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5943 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5944 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5945 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5946 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5947 EXPORT_SYMBOL_GPL(ata_scsi_release);
5948 EXPORT_SYMBOL_GPL(ata_host_intr);
5949 EXPORT_SYMBOL_GPL(sata_scr_valid);
5950 EXPORT_SYMBOL_GPL(sata_scr_read);
5951 EXPORT_SYMBOL_GPL(sata_scr_write);
5952 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5953 EXPORT_SYMBOL_GPL(ata_port_online);
5954 EXPORT_SYMBOL_GPL(ata_port_offline);
5955 EXPORT_SYMBOL_GPL(ata_id_string);
5956 EXPORT_SYMBOL_GPL(ata_id_c_string);
5957 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5958
5959 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5960 EXPORT_SYMBOL_GPL(ata_timing_compute);
5961 EXPORT_SYMBOL_GPL(ata_timing_merge);
5962
5963 #ifdef CONFIG_PCI
5964 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5965 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5966 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5967 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5968 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5969 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5970 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5971 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5972 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5973 #endif /* CONFIG_PCI */
5974
5975 EXPORT_SYMBOL_GPL(ata_device_suspend);
5976 EXPORT_SYMBOL_GPL(ata_device_resume);
5977 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5978 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5979
5980 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5981 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5982 EXPORT_SYMBOL_GPL(ata_port_abort);
5983 EXPORT_SYMBOL_GPL(ata_port_freeze);
5984 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5985 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5986 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5987 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5988 EXPORT_SYMBOL_GPL(ata_do_eh);