]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/libata-core.c
[PATCH] libata: separate out libata-eh.c
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
69 int force_pio0);
70 static int ata_down_sata_spd_limit(struct ata_port *ap);
71 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
72 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
73 struct ata_device *dev);
74 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
75
76 static unsigned int ata_unique_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int libata_fua = 0;
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92
93 /**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
107 {
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133 }
134
135 /**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
147 {
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162 }
163
164 static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
179 0,
180 0,
181 0,
182 0,
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
192 };
193
194 /**
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
197 *
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
200 *
201 * LOCKING:
202 * caller.
203 */
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
205 {
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
208 u8 cmd;
209
210 int index, fua, lba48, write;
211
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
215
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else {
224 tf->protocol = ATA_PROT_DMA;
225 index = 16;
226 }
227
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
234 }
235
236 /**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254 {
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 }
259
260 /**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274 {
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281 }
282
283 static const struct ata_xfer_ent {
284 int shift, bits;
285 u8 base;
286 } ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291 };
292
293 /**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307 {
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315 }
316
317 /**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330 {
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337 }
338
339 /**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
352 {
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359 }
360
361 /**
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
364 *
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
374 */
375 static const char *ata_mode_string(unsigned int xfer_mask)
376 {
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
395 int highbit;
396
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
400 return "<n/a>";
401 }
402
403 static const char *sata_spd_string(unsigned int spd)
404 {
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413 }
414
415 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
416 {
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422 }
423
424 /**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444 {
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466 }
467
468 /**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488 {
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510 }
511
512 /**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525 static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527 {
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531 }
532
533 /**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
550 {
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570 }
571
572 /**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
592 */
593
594 static unsigned int
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
596 {
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
605 ap->ops->tf_read(ap, &tf);
606 err = tf.feature;
607 if (r_err)
608 *r_err = err;
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
616 return ATA_DEV_NONE;
617
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
620
621 if (class == ATA_DEV_UNKNOWN)
622 return ATA_DEV_NONE;
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
624 return ATA_DEV_NONE;
625 return class;
626 }
627
628 /**
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
645 {
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660 }
661
662 /**
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
678 {
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
683 ata_id_string(id, s, ofs, len - 1);
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689 }
690
691 static u64 ata_id_n_sectors(const u16 *id)
692 {
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704 }
705
706 /**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719 {
720 }
721
722
723 /**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
733 *
734 * LOCKING:
735 * caller.
736 */
737
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739 {
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753 }
754
755 /**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776 {
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790 }
791
792 /**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
795 *
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
798 *
799 * LOCKING:
800 * caller.
801 */
802
803 static inline void ata_dump_id(const u16 *id)
804 {
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
827 id[88],
828 id[93]);
829 }
830
831 /**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846 static unsigned int ata_id_xfermask(const u16 *id)
847 {
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877 }
878
879 /**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897 {
898 int rc;
899
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912 }
913
914 /**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924 void ata_port_flush_task(struct ata_port *ap)
925 {
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952 }
953
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
955 {
956 struct completion *waiting = qc->private_data;
957
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
959 complete(waiting);
960 }
961
962 /**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @cdb: CDB for packet command
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
971 *
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
977 *
978 * LOCKING:
979 * None. Should be called with kernel context, might sleep.
980 */
981
982 static unsigned
983 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
984 struct ata_taskfile *tf, const u8 *cdb,
985 int dma_dir, void *buf, unsigned int buflen)
986 {
987 u8 command = tf->command;
988 struct ata_queued_cmd *qc;
989 DECLARE_COMPLETION(wait);
990 unsigned long flags;
991 unsigned int err_mask;
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
995 qc = ata_qc_new_init(ap, dev);
996 BUG_ON(qc == NULL);
997
998 qc->tf = *tf;
999 if (cdb)
1000 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1001 qc->dma_dir = dma_dir;
1002 if (dma_dir != DMA_NONE) {
1003 ata_sg_init_one(qc, buf, buflen);
1004 qc->nsect = buflen / ATA_SECT_SIZE;
1005 }
1006
1007 qc->private_data = &wait;
1008 qc->complete_fn = ata_qc_complete_internal;
1009
1010 ata_qc_issue(qc);
1011
1012 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1013
1014 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1015 ata_port_flush_task(ap);
1016
1017 spin_lock_irqsave(&ap->host_set->lock, flags);
1018
1019 /* We're racing with irq here. If we lose, the
1020 * following test prevents us from completing the qc
1021 * again. If completion irq occurs after here but
1022 * before the caller cleans up, it will result in a
1023 * spurious interrupt. We can live with that.
1024 */
1025 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1026 qc->err_mask = AC_ERR_TIMEOUT;
1027 ata_qc_complete(qc);
1028 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1029 ap->id, command);
1030 }
1031
1032 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1033 }
1034
1035 *tf = qc->tf;
1036 err_mask = qc->err_mask;
1037
1038 ata_qc_free(qc);
1039
1040 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1041 * Until those drivers are fixed, we detect the condition
1042 * here, fail the command with AC_ERR_SYSTEM and reenable the
1043 * port.
1044 *
1045 * Note that this doesn't change any behavior as internal
1046 * command failure results in disabling the device in the
1047 * higher layer for LLDDs without new reset/EH callbacks.
1048 *
1049 * Kill the following code as soon as those drivers are fixed.
1050 */
1051 if (ap->flags & ATA_FLAG_DISABLED) {
1052 err_mask |= AC_ERR_SYSTEM;
1053 ata_port_probe(ap);
1054 }
1055
1056 return err_mask;
1057 }
1058
1059 /**
1060 * ata_pio_need_iordy - check if iordy needed
1061 * @adev: ATA device
1062 *
1063 * Check if the current speed of the device requires IORDY. Used
1064 * by various controllers for chip configuration.
1065 */
1066
1067 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1068 {
1069 int pio;
1070 int speed = adev->pio_mode - XFER_PIO_0;
1071
1072 if (speed < 2)
1073 return 0;
1074 if (speed > 2)
1075 return 1;
1076
1077 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1078
1079 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1080 pio = adev->id[ATA_ID_EIDE_PIO];
1081 /* Is the speed faster than the drive allows non IORDY ? */
1082 if (pio) {
1083 /* This is cycle times not frequency - watch the logic! */
1084 if (pio > 240) /* PIO2 is 240nS per cycle */
1085 return 1;
1086 return 0;
1087 }
1088 }
1089 return 0;
1090 }
1091
1092 /**
1093 * ata_dev_read_id - Read ID data from the specified device
1094 * @ap: port on which target device resides
1095 * @dev: target device
1096 * @p_class: pointer to class of the target device (may be changed)
1097 * @post_reset: is this read ID post-reset?
1098 * @p_id: read IDENTIFY page (newly allocated)
1099 *
1100 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1101 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1102 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1103 * for pre-ATA4 drives.
1104 *
1105 * LOCKING:
1106 * Kernel thread context (may sleep)
1107 *
1108 * RETURNS:
1109 * 0 on success, -errno otherwise.
1110 */
1111 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1112 unsigned int *p_class, int post_reset, u16 **p_id)
1113 {
1114 unsigned int class = *p_class;
1115 struct ata_taskfile tf;
1116 unsigned int err_mask = 0;
1117 u16 *id;
1118 const char *reason;
1119 int rc;
1120
1121 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1122
1123 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1124
1125 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1126 if (id == NULL) {
1127 rc = -ENOMEM;
1128 reason = "out of memory";
1129 goto err_out;
1130 }
1131
1132 retry:
1133 ata_tf_init(ap, &tf, dev->devno);
1134
1135 switch (class) {
1136 case ATA_DEV_ATA:
1137 tf.command = ATA_CMD_ID_ATA;
1138 break;
1139 case ATA_DEV_ATAPI:
1140 tf.command = ATA_CMD_ID_ATAPI;
1141 break;
1142 default:
1143 rc = -ENODEV;
1144 reason = "unsupported class";
1145 goto err_out;
1146 }
1147
1148 tf.protocol = ATA_PROT_PIO;
1149
1150 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1151 id, sizeof(id[0]) * ATA_ID_WORDS);
1152 if (err_mask) {
1153 rc = -EIO;
1154 reason = "I/O error";
1155 goto err_out;
1156 }
1157
1158 swap_buf_le16(id, ATA_ID_WORDS);
1159
1160 /* sanity check */
1161 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1162 rc = -EINVAL;
1163 reason = "device reports illegal type";
1164 goto err_out;
1165 }
1166
1167 if (post_reset && class == ATA_DEV_ATA) {
1168 /*
1169 * The exact sequence expected by certain pre-ATA4 drives is:
1170 * SRST RESET
1171 * IDENTIFY
1172 * INITIALIZE DEVICE PARAMETERS
1173 * anything else..
1174 * Some drives were very specific about that exact sequence.
1175 */
1176 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1177 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1178 if (err_mask) {
1179 rc = -EIO;
1180 reason = "INIT_DEV_PARAMS failed";
1181 goto err_out;
1182 }
1183
1184 /* current CHS translation info (id[53-58]) might be
1185 * changed. reread the identify device info.
1186 */
1187 post_reset = 0;
1188 goto retry;
1189 }
1190 }
1191
1192 *p_class = class;
1193 *p_id = id;
1194 return 0;
1195
1196 err_out:
1197 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1198 ap->id, dev->devno, reason);
1199 kfree(id);
1200 return rc;
1201 }
1202
1203 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1204 struct ata_device *dev)
1205 {
1206 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1207 }
1208
1209 /**
1210 * ata_dev_configure - Configure the specified ATA/ATAPI device
1211 * @ap: Port on which target device resides
1212 * @dev: Target device to configure
1213 * @print_info: Enable device info printout
1214 *
1215 * Configure @dev according to @dev->id. Generic and low-level
1216 * driver specific fixups are also applied.
1217 *
1218 * LOCKING:
1219 * Kernel thread context (may sleep)
1220 *
1221 * RETURNS:
1222 * 0 on success, -errno otherwise
1223 */
1224 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1225 int print_info)
1226 {
1227 const u16 *id = dev->id;
1228 unsigned int xfer_mask;
1229 int i, rc;
1230
1231 if (!ata_dev_enabled(dev)) {
1232 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1233 ap->id, dev->devno);
1234 return 0;
1235 }
1236
1237 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1238
1239 /* print device capabilities */
1240 if (print_info)
1241 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1242 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1243 ap->id, dev->devno, id[49], id[82], id[83],
1244 id[84], id[85], id[86], id[87], id[88]);
1245
1246 /* initialize to-be-configured parameters */
1247 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1248 dev->max_sectors = 0;
1249 dev->cdb_len = 0;
1250 dev->n_sectors = 0;
1251 dev->cylinders = 0;
1252 dev->heads = 0;
1253 dev->sectors = 0;
1254
1255 /*
1256 * common ATA, ATAPI feature tests
1257 */
1258
1259 /* find max transfer mode; for printk only */
1260 xfer_mask = ata_id_xfermask(id);
1261
1262 ata_dump_id(id);
1263
1264 /* ATA-specific feature tests */
1265 if (dev->class == ATA_DEV_ATA) {
1266 dev->n_sectors = ata_id_n_sectors(id);
1267
1268 if (ata_id_has_lba(id)) {
1269 const char *lba_desc;
1270
1271 lba_desc = "LBA";
1272 dev->flags |= ATA_DFLAG_LBA;
1273 if (ata_id_has_lba48(id)) {
1274 dev->flags |= ATA_DFLAG_LBA48;
1275 lba_desc = "LBA48";
1276 }
1277
1278 /* print device info to dmesg */
1279 if (print_info)
1280 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1281 "max %s, %Lu sectors: %s\n",
1282 ap->id, dev->devno,
1283 ata_id_major_version(id),
1284 ata_mode_string(xfer_mask),
1285 (unsigned long long)dev->n_sectors,
1286 lba_desc);
1287 } else {
1288 /* CHS */
1289
1290 /* Default translation */
1291 dev->cylinders = id[1];
1292 dev->heads = id[3];
1293 dev->sectors = id[6];
1294
1295 if (ata_id_current_chs_valid(id)) {
1296 /* Current CHS translation is valid. */
1297 dev->cylinders = id[54];
1298 dev->heads = id[55];
1299 dev->sectors = id[56];
1300 }
1301
1302 /* print device info to dmesg */
1303 if (print_info)
1304 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1305 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1306 ap->id, dev->devno,
1307 ata_id_major_version(id),
1308 ata_mode_string(xfer_mask),
1309 (unsigned long long)dev->n_sectors,
1310 dev->cylinders, dev->heads, dev->sectors);
1311 }
1312
1313 dev->cdb_len = 16;
1314 }
1315
1316 /* ATAPI-specific feature tests */
1317 else if (dev->class == ATA_DEV_ATAPI) {
1318 rc = atapi_cdb_len(id);
1319 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1320 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1321 rc = -EINVAL;
1322 goto err_out_nosup;
1323 }
1324 dev->cdb_len = (unsigned int) rc;
1325
1326 /* print device info to dmesg */
1327 if (print_info)
1328 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1329 ap->id, dev->devno, ata_mode_string(xfer_mask));
1330 }
1331
1332 ap->host->max_cmd_len = 0;
1333 for (i = 0; i < ATA_MAX_DEVICES; i++)
1334 ap->host->max_cmd_len = max_t(unsigned int,
1335 ap->host->max_cmd_len,
1336 ap->device[i].cdb_len);
1337
1338 /* limit bridge transfers to udma5, 200 sectors */
1339 if (ata_dev_knobble(ap, dev)) {
1340 if (print_info)
1341 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1342 ap->id, dev->devno);
1343 dev->udma_mask &= ATA_UDMA5;
1344 dev->max_sectors = ATA_MAX_SECTORS;
1345 }
1346
1347 if (ap->ops->dev_config)
1348 ap->ops->dev_config(ap, dev);
1349
1350 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1351 return 0;
1352
1353 err_out_nosup:
1354 DPRINTK("EXIT, err\n");
1355 return rc;
1356 }
1357
1358 /**
1359 * ata_bus_probe - Reset and probe ATA bus
1360 * @ap: Bus to probe
1361 *
1362 * Master ATA bus probing function. Initiates a hardware-dependent
1363 * bus reset, then attempts to identify any devices found on
1364 * the bus.
1365 *
1366 * LOCKING:
1367 * PCI/etc. bus probe sem.
1368 *
1369 * RETURNS:
1370 * Zero on success, negative errno otherwise.
1371 */
1372
1373 static int ata_bus_probe(struct ata_port *ap)
1374 {
1375 unsigned int classes[ATA_MAX_DEVICES];
1376 int tries[ATA_MAX_DEVICES];
1377 int i, rc, down_xfermask;
1378 struct ata_device *dev;
1379
1380 ata_port_probe(ap);
1381
1382 for (i = 0; i < ATA_MAX_DEVICES; i++)
1383 tries[i] = ATA_PROBE_MAX_TRIES;
1384
1385 retry:
1386 down_xfermask = 0;
1387
1388 /* reset and determine device classes */
1389 for (i = 0; i < ATA_MAX_DEVICES; i++)
1390 classes[i] = ATA_DEV_UNKNOWN;
1391
1392 if (ap->ops->probe_reset) {
1393 rc = ap->ops->probe_reset(ap, classes);
1394 if (rc) {
1395 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1396 return rc;
1397 }
1398 } else {
1399 ap->ops->phy_reset(ap);
1400
1401 if (!(ap->flags & ATA_FLAG_DISABLED))
1402 for (i = 0; i < ATA_MAX_DEVICES; i++)
1403 classes[i] = ap->device[i].class;
1404
1405 ata_port_probe(ap);
1406 }
1407
1408 for (i = 0; i < ATA_MAX_DEVICES; i++)
1409 if (classes[i] == ATA_DEV_UNKNOWN)
1410 classes[i] = ATA_DEV_NONE;
1411
1412 /* read IDENTIFY page and configure devices */
1413 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1414 dev = &ap->device[i];
1415 dev->class = classes[i];
1416
1417 if (!tries[i]) {
1418 ata_down_xfermask_limit(ap, dev, 1);
1419 ata_dev_disable(ap, dev);
1420 }
1421
1422 if (!ata_dev_enabled(dev))
1423 continue;
1424
1425 kfree(dev->id);
1426 dev->id = NULL;
1427 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1428 if (rc)
1429 goto fail;
1430
1431 rc = ata_dev_configure(ap, dev, 1);
1432 if (rc)
1433 goto fail;
1434 }
1435
1436 /* configure transfer mode */
1437 if (ap->ops->set_mode) {
1438 /* FIXME: make ->set_mode handle no device case and
1439 * return error code and failing device on failure as
1440 * ata_set_mode() does.
1441 */
1442 for (i = 0; i < ATA_MAX_DEVICES; i++)
1443 if (ata_dev_enabled(&ap->device[i])) {
1444 ap->ops->set_mode(ap);
1445 break;
1446 }
1447 rc = 0;
1448 } else {
1449 rc = ata_set_mode(ap, &dev);
1450 if (rc) {
1451 down_xfermask = 1;
1452 goto fail;
1453 }
1454 }
1455
1456 for (i = 0; i < ATA_MAX_DEVICES; i++)
1457 if (ata_dev_enabled(&ap->device[i]))
1458 return 0;
1459
1460 /* no device present, disable port */
1461 ata_port_disable(ap);
1462 ap->ops->port_disable(ap);
1463 return -ENODEV;
1464
1465 fail:
1466 switch (rc) {
1467 case -EINVAL:
1468 case -ENODEV:
1469 tries[dev->devno] = 0;
1470 break;
1471 case -EIO:
1472 ata_down_sata_spd_limit(ap);
1473 /* fall through */
1474 default:
1475 tries[dev->devno]--;
1476 if (down_xfermask &&
1477 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1478 tries[dev->devno] = 0;
1479 }
1480
1481 goto retry;
1482 }
1483
1484 /**
1485 * ata_port_probe - Mark port as enabled
1486 * @ap: Port for which we indicate enablement
1487 *
1488 * Modify @ap data structure such that the system
1489 * thinks that the entire port is enabled.
1490 *
1491 * LOCKING: host_set lock, or some other form of
1492 * serialization.
1493 */
1494
1495 void ata_port_probe(struct ata_port *ap)
1496 {
1497 ap->flags &= ~ATA_FLAG_DISABLED;
1498 }
1499
1500 /**
1501 * sata_print_link_status - Print SATA link status
1502 * @ap: SATA port to printk link status about
1503 *
1504 * This function prints link speed and status of a SATA link.
1505 *
1506 * LOCKING:
1507 * None.
1508 */
1509 static void sata_print_link_status(struct ata_port *ap)
1510 {
1511 u32 sstatus, tmp;
1512
1513 if (!ap->ops->scr_read)
1514 return;
1515
1516 sstatus = scr_read(ap, SCR_STATUS);
1517
1518 if (sata_dev_present(ap)) {
1519 tmp = (sstatus >> 4) & 0xf;
1520 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1521 ap->id, sata_spd_string(tmp), sstatus);
1522 } else {
1523 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1524 ap->id, sstatus);
1525 }
1526 }
1527
1528 /**
1529 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1530 * @ap: SATA port associated with target SATA PHY.
1531 *
1532 * This function issues commands to standard SATA Sxxx
1533 * PHY registers, to wake up the phy (and device), and
1534 * clear any reset condition.
1535 *
1536 * LOCKING:
1537 * PCI/etc. bus probe sem.
1538 *
1539 */
1540 void __sata_phy_reset(struct ata_port *ap)
1541 {
1542 u32 sstatus;
1543 unsigned long timeout = jiffies + (HZ * 5);
1544
1545 if (ap->flags & ATA_FLAG_SATA_RESET) {
1546 /* issue phy wake/reset */
1547 scr_write_flush(ap, SCR_CONTROL, 0x301);
1548 /* Couldn't find anything in SATA I/II specs, but
1549 * AHCI-1.1 10.4.2 says at least 1 ms. */
1550 mdelay(1);
1551 }
1552 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1553
1554 /* wait for phy to become ready, if necessary */
1555 do {
1556 msleep(200);
1557 sstatus = scr_read(ap, SCR_STATUS);
1558 if ((sstatus & 0xf) != 1)
1559 break;
1560 } while (time_before(jiffies, timeout));
1561
1562 /* print link status */
1563 sata_print_link_status(ap);
1564
1565 /* TODO: phy layer with polling, timeouts, etc. */
1566 if (sata_dev_present(ap))
1567 ata_port_probe(ap);
1568 else
1569 ata_port_disable(ap);
1570
1571 if (ap->flags & ATA_FLAG_DISABLED)
1572 return;
1573
1574 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1575 ata_port_disable(ap);
1576 return;
1577 }
1578
1579 ap->cbl = ATA_CBL_SATA;
1580 }
1581
1582 /**
1583 * sata_phy_reset - Reset SATA bus.
1584 * @ap: SATA port associated with target SATA PHY.
1585 *
1586 * This function resets the SATA bus, and then probes
1587 * the bus for devices.
1588 *
1589 * LOCKING:
1590 * PCI/etc. bus probe sem.
1591 *
1592 */
1593 void sata_phy_reset(struct ata_port *ap)
1594 {
1595 __sata_phy_reset(ap);
1596 if (ap->flags & ATA_FLAG_DISABLED)
1597 return;
1598 ata_bus_reset(ap);
1599 }
1600
1601 /**
1602 * ata_dev_pair - return other device on cable
1603 * @ap: port
1604 * @adev: device
1605 *
1606 * Obtain the other device on the same cable, or if none is
1607 * present NULL is returned
1608 */
1609
1610 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1611 {
1612 struct ata_device *pair = &ap->device[1 - adev->devno];
1613 if (!ata_dev_enabled(pair))
1614 return NULL;
1615 return pair;
1616 }
1617
1618 /**
1619 * ata_port_disable - Disable port.
1620 * @ap: Port to be disabled.
1621 *
1622 * Modify @ap data structure such that the system
1623 * thinks that the entire port is disabled, and should
1624 * never attempt to probe or communicate with devices
1625 * on this port.
1626 *
1627 * LOCKING: host_set lock, or some other form of
1628 * serialization.
1629 */
1630
1631 void ata_port_disable(struct ata_port *ap)
1632 {
1633 ap->device[0].class = ATA_DEV_NONE;
1634 ap->device[1].class = ATA_DEV_NONE;
1635 ap->flags |= ATA_FLAG_DISABLED;
1636 }
1637
1638 /**
1639 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1640 * @ap: Port to adjust SATA spd limit for
1641 *
1642 * Adjust SATA spd limit of @ap downward. Note that this
1643 * function only adjusts the limit. The change must be applied
1644 * using ata_set_sata_spd().
1645 *
1646 * LOCKING:
1647 * Inherited from caller.
1648 *
1649 * RETURNS:
1650 * 0 on success, negative errno on failure
1651 */
1652 static int ata_down_sata_spd_limit(struct ata_port *ap)
1653 {
1654 u32 spd, mask;
1655 int highbit;
1656
1657 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1658 return -EOPNOTSUPP;
1659
1660 mask = ap->sata_spd_limit;
1661 if (mask <= 1)
1662 return -EINVAL;
1663 highbit = fls(mask) - 1;
1664 mask &= ~(1 << highbit);
1665
1666 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1667 if (spd <= 1)
1668 return -EINVAL;
1669 spd--;
1670 mask &= (1 << spd) - 1;
1671 if (!mask)
1672 return -EINVAL;
1673
1674 ap->sata_spd_limit = mask;
1675
1676 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1677 ap->id, sata_spd_string(fls(mask)));
1678
1679 return 0;
1680 }
1681
1682 static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1683 {
1684 u32 spd, limit;
1685
1686 if (ap->sata_spd_limit == UINT_MAX)
1687 limit = 0;
1688 else
1689 limit = fls(ap->sata_spd_limit);
1690
1691 spd = (*scontrol >> 4) & 0xf;
1692 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1693
1694 return spd != limit;
1695 }
1696
1697 /**
1698 * ata_set_sata_spd_needed - is SATA spd configuration needed
1699 * @ap: Port in question
1700 *
1701 * Test whether the spd limit in SControl matches
1702 * @ap->sata_spd_limit. This function is used to determine
1703 * whether hardreset is necessary to apply SATA spd
1704 * configuration.
1705 *
1706 * LOCKING:
1707 * Inherited from caller.
1708 *
1709 * RETURNS:
1710 * 1 if SATA spd configuration is needed, 0 otherwise.
1711 */
1712 static int ata_set_sata_spd_needed(struct ata_port *ap)
1713 {
1714 u32 scontrol;
1715
1716 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1717 return 0;
1718
1719 scontrol = scr_read(ap, SCR_CONTROL);
1720
1721 return __ata_set_sata_spd_needed(ap, &scontrol);
1722 }
1723
1724 /**
1725 * ata_set_sata_spd - set SATA spd according to spd limit
1726 * @ap: Port to set SATA spd for
1727 *
1728 * Set SATA spd of @ap according to sata_spd_limit.
1729 *
1730 * LOCKING:
1731 * Inherited from caller.
1732 *
1733 * RETURNS:
1734 * 0 if spd doesn't need to be changed, 1 if spd has been
1735 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1736 */
1737 static int ata_set_sata_spd(struct ata_port *ap)
1738 {
1739 u32 scontrol;
1740
1741 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1742 return -EOPNOTSUPP;
1743
1744 scontrol = scr_read(ap, SCR_CONTROL);
1745 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1746 return 0;
1747
1748 scr_write(ap, SCR_CONTROL, scontrol);
1749 return 1;
1750 }
1751
1752 /*
1753 * This mode timing computation functionality is ported over from
1754 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1755 */
1756 /*
1757 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1758 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1759 * for PIO 5, which is a nonstandard extension and UDMA6, which
1760 * is currently supported only by Maxtor drives.
1761 */
1762
1763 static const struct ata_timing ata_timing[] = {
1764
1765 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1766 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1767 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1768 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1769
1770 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1771 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1772 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1773
1774 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1775
1776 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1777 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1778 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1779
1780 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1781 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1782 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1783
1784 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1785 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1786 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1787
1788 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1789 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1790 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1791
1792 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1793
1794 { 0xFF }
1795 };
1796
1797 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1798 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1799
1800 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1801 {
1802 q->setup = EZ(t->setup * 1000, T);
1803 q->act8b = EZ(t->act8b * 1000, T);
1804 q->rec8b = EZ(t->rec8b * 1000, T);
1805 q->cyc8b = EZ(t->cyc8b * 1000, T);
1806 q->active = EZ(t->active * 1000, T);
1807 q->recover = EZ(t->recover * 1000, T);
1808 q->cycle = EZ(t->cycle * 1000, T);
1809 q->udma = EZ(t->udma * 1000, UT);
1810 }
1811
1812 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1813 struct ata_timing *m, unsigned int what)
1814 {
1815 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1816 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1817 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1818 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1819 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1820 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1821 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1822 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1823 }
1824
1825 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1826 {
1827 const struct ata_timing *t;
1828
1829 for (t = ata_timing; t->mode != speed; t++)
1830 if (t->mode == 0xFF)
1831 return NULL;
1832 return t;
1833 }
1834
1835 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1836 struct ata_timing *t, int T, int UT)
1837 {
1838 const struct ata_timing *s;
1839 struct ata_timing p;
1840
1841 /*
1842 * Find the mode.
1843 */
1844
1845 if (!(s = ata_timing_find_mode(speed)))
1846 return -EINVAL;
1847
1848 memcpy(t, s, sizeof(*s));
1849
1850 /*
1851 * If the drive is an EIDE drive, it can tell us it needs extended
1852 * PIO/MW_DMA cycle timing.
1853 */
1854
1855 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1856 memset(&p, 0, sizeof(p));
1857 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1858 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1859 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1860 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1861 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1862 }
1863 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1864 }
1865
1866 /*
1867 * Convert the timing to bus clock counts.
1868 */
1869
1870 ata_timing_quantize(t, t, T, UT);
1871
1872 /*
1873 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1874 * S.M.A.R.T * and some other commands. We have to ensure that the
1875 * DMA cycle timing is slower/equal than the fastest PIO timing.
1876 */
1877
1878 if (speed > XFER_PIO_4) {
1879 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1880 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1881 }
1882
1883 /*
1884 * Lengthen active & recovery time so that cycle time is correct.
1885 */
1886
1887 if (t->act8b + t->rec8b < t->cyc8b) {
1888 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1889 t->rec8b = t->cyc8b - t->act8b;
1890 }
1891
1892 if (t->active + t->recover < t->cycle) {
1893 t->active += (t->cycle - (t->active + t->recover)) / 2;
1894 t->recover = t->cycle - t->active;
1895 }
1896
1897 return 0;
1898 }
1899
1900 /**
1901 * ata_down_xfermask_limit - adjust dev xfer masks downward
1902 * @ap: Port associated with device @dev
1903 * @dev: Device to adjust xfer masks
1904 * @force_pio0: Force PIO0
1905 *
1906 * Adjust xfer masks of @dev downward. Note that this function
1907 * does not apply the change. Invoking ata_set_mode() afterwards
1908 * will apply the limit.
1909 *
1910 * LOCKING:
1911 * Inherited from caller.
1912 *
1913 * RETURNS:
1914 * 0 on success, negative errno on failure
1915 */
1916 static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1917 int force_pio0)
1918 {
1919 unsigned long xfer_mask;
1920 int highbit;
1921
1922 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1923 dev->udma_mask);
1924
1925 if (!xfer_mask)
1926 goto fail;
1927 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1928 if (xfer_mask & ATA_MASK_UDMA)
1929 xfer_mask &= ~ATA_MASK_MWDMA;
1930
1931 highbit = fls(xfer_mask) - 1;
1932 xfer_mask &= ~(1 << highbit);
1933 if (force_pio0)
1934 xfer_mask &= 1 << ATA_SHIFT_PIO;
1935 if (!xfer_mask)
1936 goto fail;
1937
1938 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1939 &dev->udma_mask);
1940
1941 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1942 ap->id, dev->devno, ata_mode_string(xfer_mask));
1943
1944 return 0;
1945
1946 fail:
1947 return -EINVAL;
1948 }
1949
1950 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1951 {
1952 unsigned int err_mask;
1953 int rc;
1954
1955 dev->flags &= ~ATA_DFLAG_PIO;
1956 if (dev->xfer_shift == ATA_SHIFT_PIO)
1957 dev->flags |= ATA_DFLAG_PIO;
1958
1959 err_mask = ata_dev_set_xfermode(ap, dev);
1960 if (err_mask) {
1961 printk(KERN_ERR
1962 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1963 ap->id, err_mask);
1964 return -EIO;
1965 }
1966
1967 rc = ata_dev_revalidate(ap, dev, 0);
1968 if (rc)
1969 return rc;
1970
1971 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1972 dev->xfer_shift, (int)dev->xfer_mode);
1973
1974 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1975 ap->id, dev->devno,
1976 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1977 return 0;
1978 }
1979
1980 /**
1981 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1982 * @ap: port on which timings will be programmed
1983 * @r_failed_dev: out paramter for failed device
1984 *
1985 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1986 * ata_set_mode() fails, pointer to the failing device is
1987 * returned in @r_failed_dev.
1988 *
1989 * LOCKING:
1990 * PCI/etc. bus probe sem.
1991 *
1992 * RETURNS:
1993 * 0 on success, negative errno otherwise
1994 */
1995 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1996 {
1997 struct ata_device *dev;
1998 int i, rc = 0, used_dma = 0, found = 0;
1999
2000 /* step 1: calculate xfer_mask */
2001 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2002 unsigned int pio_mask, dma_mask;
2003
2004 dev = &ap->device[i];
2005
2006 if (!ata_dev_enabled(dev))
2007 continue;
2008
2009 ata_dev_xfermask(ap, dev);
2010
2011 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2012 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2013 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2014 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2015
2016 found = 1;
2017 if (dev->dma_mode)
2018 used_dma = 1;
2019 }
2020 if (!found)
2021 goto out;
2022
2023 /* step 2: always set host PIO timings */
2024 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2025 dev = &ap->device[i];
2026 if (!ata_dev_enabled(dev))
2027 continue;
2028
2029 if (!dev->pio_mode) {
2030 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2031 ap->id, dev->devno);
2032 rc = -EINVAL;
2033 goto out;
2034 }
2035
2036 dev->xfer_mode = dev->pio_mode;
2037 dev->xfer_shift = ATA_SHIFT_PIO;
2038 if (ap->ops->set_piomode)
2039 ap->ops->set_piomode(ap, dev);
2040 }
2041
2042 /* step 3: set host DMA timings */
2043 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2044 dev = &ap->device[i];
2045
2046 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2047 continue;
2048
2049 dev->xfer_mode = dev->dma_mode;
2050 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2051 if (ap->ops->set_dmamode)
2052 ap->ops->set_dmamode(ap, dev);
2053 }
2054
2055 /* step 4: update devices' xfer mode */
2056 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2057 dev = &ap->device[i];
2058
2059 if (!ata_dev_enabled(dev))
2060 continue;
2061
2062 rc = ata_dev_set_mode(ap, dev);
2063 if (rc)
2064 goto out;
2065 }
2066
2067 /* Record simplex status. If we selected DMA then the other
2068 * host channels are not permitted to do so.
2069 */
2070 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2071 ap->host_set->simplex_claimed = 1;
2072
2073 /* step5: chip specific finalisation */
2074 if (ap->ops->post_set_mode)
2075 ap->ops->post_set_mode(ap);
2076
2077 out:
2078 if (rc)
2079 *r_failed_dev = dev;
2080 return rc;
2081 }
2082
2083 /**
2084 * ata_tf_to_host - issue ATA taskfile to host controller
2085 * @ap: port to which command is being issued
2086 * @tf: ATA taskfile register set
2087 *
2088 * Issues ATA taskfile register set to ATA host controller,
2089 * with proper synchronization with interrupt handler and
2090 * other threads.
2091 *
2092 * LOCKING:
2093 * spin_lock_irqsave(host_set lock)
2094 */
2095
2096 static inline void ata_tf_to_host(struct ata_port *ap,
2097 const struct ata_taskfile *tf)
2098 {
2099 ap->ops->tf_load(ap, tf);
2100 ap->ops->exec_command(ap, tf);
2101 }
2102
2103 /**
2104 * ata_busy_sleep - sleep until BSY clears, or timeout
2105 * @ap: port containing status register to be polled
2106 * @tmout_pat: impatience timeout
2107 * @tmout: overall timeout
2108 *
2109 * Sleep until ATA Status register bit BSY clears,
2110 * or a timeout occurs.
2111 *
2112 * LOCKING: None.
2113 */
2114
2115 unsigned int ata_busy_sleep (struct ata_port *ap,
2116 unsigned long tmout_pat, unsigned long tmout)
2117 {
2118 unsigned long timer_start, timeout;
2119 u8 status;
2120
2121 status = ata_busy_wait(ap, ATA_BUSY, 300);
2122 timer_start = jiffies;
2123 timeout = timer_start + tmout_pat;
2124 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2125 msleep(50);
2126 status = ata_busy_wait(ap, ATA_BUSY, 3);
2127 }
2128
2129 if (status & ATA_BUSY)
2130 printk(KERN_WARNING "ata%u is slow to respond, "
2131 "please be patient\n", ap->id);
2132
2133 timeout = timer_start + tmout;
2134 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2135 msleep(50);
2136 status = ata_chk_status(ap);
2137 }
2138
2139 if (status & ATA_BUSY) {
2140 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2141 ap->id, tmout / HZ);
2142 return 1;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2149 {
2150 struct ata_ioports *ioaddr = &ap->ioaddr;
2151 unsigned int dev0 = devmask & (1 << 0);
2152 unsigned int dev1 = devmask & (1 << 1);
2153 unsigned long timeout;
2154
2155 /* if device 0 was found in ata_devchk, wait for its
2156 * BSY bit to clear
2157 */
2158 if (dev0)
2159 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2160
2161 /* if device 1 was found in ata_devchk, wait for
2162 * register access, then wait for BSY to clear
2163 */
2164 timeout = jiffies + ATA_TMOUT_BOOT;
2165 while (dev1) {
2166 u8 nsect, lbal;
2167
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->flags & ATA_FLAG_MMIO) {
2170 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2171 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2172 } else {
2173 nsect = inb(ioaddr->nsect_addr);
2174 lbal = inb(ioaddr->lbal_addr);
2175 }
2176 if ((nsect == 1) && (lbal == 1))
2177 break;
2178 if (time_after(jiffies, timeout)) {
2179 dev1 = 0;
2180 break;
2181 }
2182 msleep(50); /* give drive a breather */
2183 }
2184 if (dev1)
2185 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2186
2187 /* is all this really necessary? */
2188 ap->ops->dev_select(ap, 0);
2189 if (dev1)
2190 ap->ops->dev_select(ap, 1);
2191 if (dev0)
2192 ap->ops->dev_select(ap, 0);
2193 }
2194
2195 static unsigned int ata_bus_softreset(struct ata_port *ap,
2196 unsigned int devmask)
2197 {
2198 struct ata_ioports *ioaddr = &ap->ioaddr;
2199
2200 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2201
2202 /* software reset. causes dev0 to be selected */
2203 if (ap->flags & ATA_FLAG_MMIO) {
2204 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2205 udelay(20); /* FIXME: flush */
2206 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2209 } else {
2210 outb(ap->ctl, ioaddr->ctl_addr);
2211 udelay(10);
2212 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2213 udelay(10);
2214 outb(ap->ctl, ioaddr->ctl_addr);
2215 }
2216
2217 /* spec mandates ">= 2ms" before checking status.
2218 * We wait 150ms, because that was the magic delay used for
2219 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2220 * between when the ATA command register is written, and then
2221 * status is checked. Because waiting for "a while" before
2222 * checking status is fine, post SRST, we perform this magic
2223 * delay here as well.
2224 *
2225 * Old drivers/ide uses the 2mS rule and then waits for ready
2226 */
2227 msleep(150);
2228
2229 /* Before we perform post reset processing we want to see if
2230 * the bus shows 0xFF because the odd clown forgets the D7
2231 * pulldown resistor.
2232 */
2233 if (ata_check_status(ap) == 0xFF)
2234 return AC_ERR_OTHER;
2235
2236 ata_bus_post_reset(ap, devmask);
2237
2238 return 0;
2239 }
2240
2241 /**
2242 * ata_bus_reset - reset host port and associated ATA channel
2243 * @ap: port to reset
2244 *
2245 * This is typically the first time we actually start issuing
2246 * commands to the ATA channel. We wait for BSY to clear, then
2247 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2248 * result. Determine what devices, if any, are on the channel
2249 * by looking at the device 0/1 error register. Look at the signature
2250 * stored in each device's taskfile registers, to determine if
2251 * the device is ATA or ATAPI.
2252 *
2253 * LOCKING:
2254 * PCI/etc. bus probe sem.
2255 * Obtains host_set lock.
2256 *
2257 * SIDE EFFECTS:
2258 * Sets ATA_FLAG_DISABLED if bus reset fails.
2259 */
2260
2261 void ata_bus_reset(struct ata_port *ap)
2262 {
2263 struct ata_ioports *ioaddr = &ap->ioaddr;
2264 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2265 u8 err;
2266 unsigned int dev0, dev1 = 0, devmask = 0;
2267
2268 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2269
2270 /* determine if device 0/1 are present */
2271 if (ap->flags & ATA_FLAG_SATA_RESET)
2272 dev0 = 1;
2273 else {
2274 dev0 = ata_devchk(ap, 0);
2275 if (slave_possible)
2276 dev1 = ata_devchk(ap, 1);
2277 }
2278
2279 if (dev0)
2280 devmask |= (1 << 0);
2281 if (dev1)
2282 devmask |= (1 << 1);
2283
2284 /* select device 0 again */
2285 ap->ops->dev_select(ap, 0);
2286
2287 /* issue bus reset */
2288 if (ap->flags & ATA_FLAG_SRST)
2289 if (ata_bus_softreset(ap, devmask))
2290 goto err_out;
2291
2292 /*
2293 * determine by signature whether we have ATA or ATAPI devices
2294 */
2295 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2296 if ((slave_possible) && (err != 0x81))
2297 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2298
2299 /* re-enable interrupts */
2300 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2301 ata_irq_on(ap);
2302
2303 /* is double-select really necessary? */
2304 if (ap->device[1].class != ATA_DEV_NONE)
2305 ap->ops->dev_select(ap, 1);
2306 if (ap->device[0].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 0);
2308
2309 /* if no devices were detected, disable this port */
2310 if ((ap->device[0].class == ATA_DEV_NONE) &&
2311 (ap->device[1].class == ATA_DEV_NONE))
2312 goto err_out;
2313
2314 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2315 /* set up device control for ATA_FLAG_SATA_RESET */
2316 if (ap->flags & ATA_FLAG_MMIO)
2317 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2318 else
2319 outb(ap->ctl, ioaddr->ctl_addr);
2320 }
2321
2322 DPRINTK("EXIT\n");
2323 return;
2324
2325 err_out:
2326 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2327 ap->ops->port_disable(ap);
2328
2329 DPRINTK("EXIT\n");
2330 }
2331
2332 static int sata_phy_resume(struct ata_port *ap)
2333 {
2334 unsigned long timeout = jiffies + (HZ * 5);
2335 u32 scontrol, sstatus;
2336
2337 scontrol = scr_read(ap, SCR_CONTROL);
2338 scontrol = (scontrol & 0x0f0) | 0x300;
2339 scr_write_flush(ap, SCR_CONTROL, scontrol);
2340
2341 /* Wait for phy to become ready, if necessary. */
2342 do {
2343 msleep(200);
2344 sstatus = scr_read(ap, SCR_STATUS);
2345 if ((sstatus & 0xf) != 1)
2346 return 0;
2347 } while (time_before(jiffies, timeout));
2348
2349 return -1;
2350 }
2351
2352 /**
2353 * ata_std_probeinit - initialize probing
2354 * @ap: port to be probed
2355 *
2356 * @ap is about to be probed. Initialize it. This function is
2357 * to be used as standard callback for ata_drive_probe_reset().
2358 *
2359 * NOTE!!! Do not use this function as probeinit if a low level
2360 * driver implements only hardreset. Just pass NULL as probeinit
2361 * in that case. Using this function is probably okay but doing
2362 * so makes reset sequence different from the original
2363 * ->phy_reset implementation and Jeff nervous. :-P
2364 */
2365 void ata_std_probeinit(struct ata_port *ap)
2366 {
2367 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2368 u32 spd;
2369
2370 sata_phy_resume(ap);
2371
2372 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2373 if (spd)
2374 ap->sata_spd_limit &= (1 << spd) - 1;
2375
2376 if (sata_dev_present(ap))
2377 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2378 }
2379 }
2380
2381 /**
2382 * ata_std_softreset - reset host port via ATA SRST
2383 * @ap: port to reset
2384 * @verbose: fail verbosely
2385 * @classes: resulting classes of attached devices
2386 *
2387 * Reset host port using ATA SRST. This function is to be used
2388 * as standard callback for ata_drive_*_reset() functions.
2389 *
2390 * LOCKING:
2391 * Kernel thread context (may sleep)
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno otherwise.
2395 */
2396 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2397 {
2398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2399 unsigned int devmask = 0, err_mask;
2400 u8 err;
2401
2402 DPRINTK("ENTER\n");
2403
2404 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2405 classes[0] = ATA_DEV_NONE;
2406 goto out;
2407 }
2408
2409 /* determine if device 0/1 are present */
2410 if (ata_devchk(ap, 0))
2411 devmask |= (1 << 0);
2412 if (slave_possible && ata_devchk(ap, 1))
2413 devmask |= (1 << 1);
2414
2415 /* select device 0 again */
2416 ap->ops->dev_select(ap, 0);
2417
2418 /* issue bus reset */
2419 DPRINTK("about to softreset, devmask=%x\n", devmask);
2420 err_mask = ata_bus_softreset(ap, devmask);
2421 if (err_mask) {
2422 if (verbose)
2423 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2424 ap->id, err_mask);
2425 else
2426 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2427 err_mask);
2428 return -EIO;
2429 }
2430
2431 /* determine by signature whether we have ATA or ATAPI devices */
2432 classes[0] = ata_dev_try_classify(ap, 0, &err);
2433 if (slave_possible && err != 0x81)
2434 classes[1] = ata_dev_try_classify(ap, 1, &err);
2435
2436 out:
2437 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2438 return 0;
2439 }
2440
2441 /**
2442 * sata_std_hardreset - reset host port via SATA phy reset
2443 * @ap: port to reset
2444 * @verbose: fail verbosely
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2457 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2458 {
2459 u32 scontrol;
2460
2461 DPRINTK("ENTER\n");
2462
2463 if (ata_set_sata_spd_needed(ap)) {
2464 /* SATA spec says nothing about how to reconfigure
2465 * spd. To be on the safe side, turn off phy during
2466 * reconfiguration. This works for at least ICH7 AHCI
2467 * and Sil3124.
2468 */
2469 scontrol = scr_read(ap, SCR_CONTROL);
2470 scontrol = (scontrol & 0x0f0) | 0x302;
2471 scr_write_flush(ap, SCR_CONTROL, scontrol);
2472
2473 ata_set_sata_spd(ap);
2474 }
2475
2476 /* issue phy wake/reset */
2477 scontrol = scr_read(ap, SCR_CONTROL);
2478 scontrol = (scontrol & 0x0f0) | 0x301;
2479 scr_write_flush(ap, SCR_CONTROL, scontrol);
2480
2481 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2482 * 10.4.2 says at least 1 ms.
2483 */
2484 msleep(1);
2485
2486 /* bring phy back */
2487 sata_phy_resume(ap);
2488
2489 /* TODO: phy layer with polling, timeouts, etc. */
2490 if (!sata_dev_present(ap)) {
2491 *class = ATA_DEV_NONE;
2492 DPRINTK("EXIT, link offline\n");
2493 return 0;
2494 }
2495
2496 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2497 if (verbose)
2498 printk(KERN_ERR "ata%u: COMRESET failed "
2499 "(device not ready)\n", ap->id);
2500 else
2501 DPRINTK("EXIT, device not ready\n");
2502 return -EIO;
2503 }
2504
2505 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2506
2507 *class = ata_dev_try_classify(ap, 0, NULL);
2508
2509 DPRINTK("EXIT, class=%u\n", *class);
2510 return 0;
2511 }
2512
2513 /**
2514 * ata_std_postreset - standard postreset callback
2515 * @ap: the target ata_port
2516 * @classes: classes of attached devices
2517 *
2518 * This function is invoked after a successful reset. Note that
2519 * the device might have been reset more than once using
2520 * different reset methods before postreset is invoked.
2521 *
2522 * This function is to be used as standard callback for
2523 * ata_drive_*_reset().
2524 *
2525 * LOCKING:
2526 * Kernel thread context (may sleep)
2527 */
2528 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2529 {
2530 DPRINTK("ENTER\n");
2531
2532 /* set cable type if it isn't already set */
2533 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2534 ap->cbl = ATA_CBL_SATA;
2535
2536 /* print link status */
2537 if (ap->cbl == ATA_CBL_SATA)
2538 sata_print_link_status(ap);
2539
2540 /* re-enable interrupts */
2541 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2542 ata_irq_on(ap);
2543
2544 /* is double-select really necessary? */
2545 if (classes[0] != ATA_DEV_NONE)
2546 ap->ops->dev_select(ap, 1);
2547 if (classes[1] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 0);
2549
2550 /* bail out if no device is present */
2551 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2552 DPRINTK("EXIT, no device\n");
2553 return;
2554 }
2555
2556 /* set up device control */
2557 if (ap->ioaddr.ctl_addr) {
2558 if (ap->flags & ATA_FLAG_MMIO)
2559 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2560 else
2561 outb(ap->ctl, ap->ioaddr.ctl_addr);
2562 }
2563
2564 DPRINTK("EXIT\n");
2565 }
2566
2567 /**
2568 * ata_std_probe_reset - standard probe reset method
2569 * @ap: prot to perform probe-reset
2570 * @classes: resulting classes of attached devices
2571 *
2572 * The stock off-the-shelf ->probe_reset method.
2573 *
2574 * LOCKING:
2575 * Kernel thread context (may sleep)
2576 *
2577 * RETURNS:
2578 * 0 on success, -errno otherwise.
2579 */
2580 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2581 {
2582 ata_reset_fn_t hardreset;
2583
2584 hardreset = NULL;
2585 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2586 hardreset = sata_std_hardreset;
2587
2588 return ata_drive_probe_reset(ap, ata_std_probeinit,
2589 ata_std_softreset, hardreset,
2590 ata_std_postreset, classes);
2591 }
2592
2593 static int ata_do_reset(struct ata_port *ap,
2594 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2595 int verbose, unsigned int *classes)
2596 {
2597 int i, rc;
2598
2599 for (i = 0; i < ATA_MAX_DEVICES; i++)
2600 classes[i] = ATA_DEV_UNKNOWN;
2601
2602 rc = reset(ap, verbose, classes);
2603 if (rc)
2604 return rc;
2605
2606 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2607 * is complete and convert all ATA_DEV_UNKNOWN to
2608 * ATA_DEV_NONE.
2609 */
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] != ATA_DEV_UNKNOWN)
2612 break;
2613
2614 if (i < ATA_MAX_DEVICES)
2615 for (i = 0; i < ATA_MAX_DEVICES; i++)
2616 if (classes[i] == ATA_DEV_UNKNOWN)
2617 classes[i] = ATA_DEV_NONE;
2618
2619 if (postreset)
2620 postreset(ap, classes);
2621
2622 return 0;
2623 }
2624
2625 /**
2626 * ata_drive_probe_reset - Perform probe reset with given methods
2627 * @ap: port to reset
2628 * @probeinit: probeinit method (can be NULL)
2629 * @softreset: softreset method (can be NULL)
2630 * @hardreset: hardreset method (can be NULL)
2631 * @postreset: postreset method (can be NULL)
2632 * @classes: resulting classes of attached devices
2633 *
2634 * Reset the specified port and classify attached devices using
2635 * given methods. This function prefers softreset but tries all
2636 * possible reset sequences to reset and classify devices. This
2637 * function is intended to be used for constructing ->probe_reset
2638 * callback by low level drivers.
2639 *
2640 * Reset methods should follow the following rules.
2641 *
2642 * - Return 0 on sucess, -errno on failure.
2643 * - If classification is supported, fill classes[] with
2644 * recognized class codes.
2645 * - If classification is not supported, leave classes[] alone.
2646 * - If verbose is non-zero, print error message on failure;
2647 * otherwise, shut up.
2648 *
2649 * LOCKING:
2650 * Kernel thread context (may sleep)
2651 *
2652 * RETURNS:
2653 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2654 * if classification fails, and any error code from reset
2655 * methods.
2656 */
2657 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2658 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2659 ata_postreset_fn_t postreset, unsigned int *classes)
2660 {
2661 int rc = -EINVAL;
2662
2663 if (probeinit)
2664 probeinit(ap);
2665
2666 if (softreset && !ata_set_sata_spd_needed(ap)) {
2667 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2668 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2669 goto done;
2670 printk(KERN_INFO "ata%u: softreset failed, will try "
2671 "hardreset in 5 secs\n", ap->id);
2672 ssleep(5);
2673 }
2674
2675 if (!hardreset)
2676 goto done;
2677
2678 while (1) {
2679 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2680 if (rc == 0) {
2681 if (classes[0] != ATA_DEV_UNKNOWN)
2682 goto done;
2683 break;
2684 }
2685
2686 if (ata_down_sata_spd_limit(ap))
2687 goto done;
2688
2689 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2690 "in 5 secs\n", ap->id);
2691 ssleep(5);
2692 }
2693
2694 if (softreset) {
2695 printk(KERN_INFO "ata%u: hardreset succeeded without "
2696 "classification, will retry softreset in 5 secs\n",
2697 ap->id);
2698 ssleep(5);
2699
2700 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2701 }
2702
2703 done:
2704 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2705 rc = -ENODEV;
2706 return rc;
2707 }
2708
2709 /**
2710 * ata_dev_same_device - Determine whether new ID matches configured device
2711 * @ap: port on which the device to compare against resides
2712 * @dev: device to compare against
2713 * @new_class: class of the new device
2714 * @new_id: IDENTIFY page of the new device
2715 *
2716 * Compare @new_class and @new_id against @dev and determine
2717 * whether @dev is the device indicated by @new_class and
2718 * @new_id.
2719 *
2720 * LOCKING:
2721 * None.
2722 *
2723 * RETURNS:
2724 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2725 */
2726 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2727 unsigned int new_class, const u16 *new_id)
2728 {
2729 const u16 *old_id = dev->id;
2730 unsigned char model[2][41], serial[2][21];
2731 u64 new_n_sectors;
2732
2733 if (dev->class != new_class) {
2734 printk(KERN_INFO
2735 "ata%u: dev %u class mismatch %d != %d\n",
2736 ap->id, dev->devno, dev->class, new_class);
2737 return 0;
2738 }
2739
2740 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2741 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2742 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2743 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2744 new_n_sectors = ata_id_n_sectors(new_id);
2745
2746 if (strcmp(model[0], model[1])) {
2747 printk(KERN_INFO
2748 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2749 ap->id, dev->devno, model[0], model[1]);
2750 return 0;
2751 }
2752
2753 if (strcmp(serial[0], serial[1])) {
2754 printk(KERN_INFO
2755 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2756 ap->id, dev->devno, serial[0], serial[1]);
2757 return 0;
2758 }
2759
2760 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2761 printk(KERN_INFO
2762 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2763 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2764 (unsigned long long)new_n_sectors);
2765 return 0;
2766 }
2767
2768 return 1;
2769 }
2770
2771 /**
2772 * ata_dev_revalidate - Revalidate ATA device
2773 * @ap: port on which the device to revalidate resides
2774 * @dev: device to revalidate
2775 * @post_reset: is this revalidation after reset?
2776 *
2777 * Re-read IDENTIFY page and make sure @dev is still attached to
2778 * the port.
2779 *
2780 * LOCKING:
2781 * Kernel thread context (may sleep)
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
2785 */
2786 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2787 int post_reset)
2788 {
2789 unsigned int class = dev->class;
2790 u16 *id = NULL;
2791 int rc;
2792
2793 if (!ata_dev_enabled(dev)) {
2794 rc = -ENODEV;
2795 goto fail;
2796 }
2797
2798 /* allocate & read ID data */
2799 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2800 if (rc)
2801 goto fail;
2802
2803 /* is the device still there? */
2804 if (!ata_dev_same_device(ap, dev, class, id)) {
2805 rc = -ENODEV;
2806 goto fail;
2807 }
2808
2809 kfree(dev->id);
2810 dev->id = id;
2811
2812 /* configure device according to the new ID */
2813 rc = ata_dev_configure(ap, dev, 0);
2814 if (rc == 0)
2815 return 0;
2816
2817 fail:
2818 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2819 ap->id, dev->devno, rc);
2820 kfree(id);
2821 return rc;
2822 }
2823
2824 static const char * const ata_dma_blacklist [] = {
2825 "WDC AC11000H", NULL,
2826 "WDC AC22100H", NULL,
2827 "WDC AC32500H", NULL,
2828 "WDC AC33100H", NULL,
2829 "WDC AC31600H", NULL,
2830 "WDC AC32100H", "24.09P07",
2831 "WDC AC23200L", "21.10N21",
2832 "Compaq CRD-8241B", NULL,
2833 "CRD-8400B", NULL,
2834 "CRD-8480B", NULL,
2835 "CRD-8482B", NULL,
2836 "CRD-84", NULL,
2837 "SanDisk SDP3B", NULL,
2838 "SanDisk SDP3B-64", NULL,
2839 "SANYO CD-ROM CRD", NULL,
2840 "HITACHI CDR-8", NULL,
2841 "HITACHI CDR-8335", NULL,
2842 "HITACHI CDR-8435", NULL,
2843 "Toshiba CD-ROM XM-6202B", NULL,
2844 "TOSHIBA CD-ROM XM-1702BC", NULL,
2845 "CD-532E-A", NULL,
2846 "E-IDE CD-ROM CR-840", NULL,
2847 "CD-ROM Drive/F5A", NULL,
2848 "WPI CDD-820", NULL,
2849 "SAMSUNG CD-ROM SC-148C", NULL,
2850 "SAMSUNG CD-ROM SC", NULL,
2851 "SanDisk SDP3B-64", NULL,
2852 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2853 "_NEC DV5800A", NULL,
2854 "SAMSUNG CD-ROM SN-124", "N001"
2855 };
2856
2857 static int ata_strim(char *s, size_t len)
2858 {
2859 len = strnlen(s, len);
2860
2861 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2862 while ((len > 0) && (s[len - 1] == ' ')) {
2863 len--;
2864 s[len] = 0;
2865 }
2866 return len;
2867 }
2868
2869 static int ata_dma_blacklisted(const struct ata_device *dev)
2870 {
2871 unsigned char model_num[40];
2872 unsigned char model_rev[16];
2873 unsigned int nlen, rlen;
2874 int i;
2875
2876 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2877 sizeof(model_num));
2878 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2879 sizeof(model_rev));
2880 nlen = ata_strim(model_num, sizeof(model_num));
2881 rlen = ata_strim(model_rev, sizeof(model_rev));
2882
2883 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2884 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2885 if (ata_dma_blacklist[i+1] == NULL)
2886 return 1;
2887 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2888 return 1;
2889 }
2890 }
2891 return 0;
2892 }
2893
2894 /**
2895 * ata_dev_xfermask - Compute supported xfermask of the given device
2896 * @ap: Port on which the device to compute xfermask for resides
2897 * @dev: Device to compute xfermask for
2898 *
2899 * Compute supported xfermask of @dev and store it in
2900 * dev->*_mask. This function is responsible for applying all
2901 * known limits including host controller limits, device
2902 * blacklist, etc...
2903 *
2904 * FIXME: The current implementation limits all transfer modes to
2905 * the fastest of the lowested device on the port. This is not
2906 * required on most controllers.
2907 *
2908 * LOCKING:
2909 * None.
2910 */
2911 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2912 {
2913 struct ata_host_set *hs = ap->host_set;
2914 unsigned long xfer_mask;
2915 int i;
2916
2917 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2918 ap->mwdma_mask, ap->udma_mask);
2919
2920 /* Apply cable rule here. Don't apply it early because when
2921 * we handle hot plug the cable type can itself change.
2922 */
2923 if (ap->cbl == ATA_CBL_PATA40)
2924 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2925
2926 /* FIXME: Use port-wide xfermask for now */
2927 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2928 struct ata_device *d = &ap->device[i];
2929
2930 if (ata_dev_absent(d))
2931 continue;
2932
2933 if (ata_dev_disabled(d)) {
2934 /* to avoid violating device selection timing */
2935 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2936 UINT_MAX, UINT_MAX);
2937 continue;
2938 }
2939
2940 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2941 d->mwdma_mask, d->udma_mask);
2942 xfer_mask &= ata_id_xfermask(d->id);
2943 if (ata_dma_blacklisted(d))
2944 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2945 }
2946
2947 if (ata_dma_blacklisted(dev))
2948 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2949 "disabling DMA\n", ap->id, dev->devno);
2950
2951 if (hs->flags & ATA_HOST_SIMPLEX) {
2952 if (hs->simplex_claimed)
2953 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2954 }
2955
2956 if (ap->ops->mode_filter)
2957 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2958
2959 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2960 &dev->mwdma_mask, &dev->udma_mask);
2961 }
2962
2963 /**
2964 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2965 * @ap: Port associated with device @dev
2966 * @dev: Device to which command will be sent
2967 *
2968 * Issue SET FEATURES - XFER MODE command to device @dev
2969 * on port @ap.
2970 *
2971 * LOCKING:
2972 * PCI/etc. bus probe sem.
2973 *
2974 * RETURNS:
2975 * 0 on success, AC_ERR_* mask otherwise.
2976 */
2977
2978 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2979 struct ata_device *dev)
2980 {
2981 struct ata_taskfile tf;
2982 unsigned int err_mask;
2983
2984 /* set up set-features taskfile */
2985 DPRINTK("set features - xfer mode\n");
2986
2987 ata_tf_init(ap, &tf, dev->devno);
2988 tf.command = ATA_CMD_SET_FEATURES;
2989 tf.feature = SETFEATURES_XFER;
2990 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2991 tf.protocol = ATA_PROT_NODATA;
2992 tf.nsect = dev->xfer_mode;
2993
2994 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
2995
2996 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2997 return err_mask;
2998 }
2999
3000 /**
3001 * ata_dev_init_params - Issue INIT DEV PARAMS command
3002 * @ap: Port associated with device @dev
3003 * @dev: Device to which command will be sent
3004 *
3005 * LOCKING:
3006 * Kernel thread context (may sleep)
3007 *
3008 * RETURNS:
3009 * 0 on success, AC_ERR_* mask otherwise.
3010 */
3011
3012 static unsigned int ata_dev_init_params(struct ata_port *ap,
3013 struct ata_device *dev,
3014 u16 heads,
3015 u16 sectors)
3016 {
3017 struct ata_taskfile tf;
3018 unsigned int err_mask;
3019
3020 /* Number of sectors per track 1-255. Number of heads 1-16 */
3021 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3022 return AC_ERR_INVALID;
3023
3024 /* set up init dev params taskfile */
3025 DPRINTK("init dev params \n");
3026
3027 ata_tf_init(ap, &tf, dev->devno);
3028 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3029 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3030 tf.protocol = ATA_PROT_NODATA;
3031 tf.nsect = sectors;
3032 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3033
3034 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3035
3036 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3037 return err_mask;
3038 }
3039
3040 /**
3041 * ata_sg_clean - Unmap DMA memory associated with command
3042 * @qc: Command containing DMA memory to be released
3043 *
3044 * Unmap all mapped DMA memory associated with this command.
3045 *
3046 * LOCKING:
3047 * spin_lock_irqsave(host_set lock)
3048 */
3049
3050 static void ata_sg_clean(struct ata_queued_cmd *qc)
3051 {
3052 struct ata_port *ap = qc->ap;
3053 struct scatterlist *sg = qc->__sg;
3054 int dir = qc->dma_dir;
3055 void *pad_buf = NULL;
3056
3057 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3058 WARN_ON(sg == NULL);
3059
3060 if (qc->flags & ATA_QCFLAG_SINGLE)
3061 WARN_ON(qc->n_elem > 1);
3062
3063 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3064
3065 /* if we padded the buffer out to 32-bit bound, and data
3066 * xfer direction is from-device, we must copy from the
3067 * pad buffer back into the supplied buffer
3068 */
3069 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3070 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3071
3072 if (qc->flags & ATA_QCFLAG_SG) {
3073 if (qc->n_elem)
3074 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3075 /* restore last sg */
3076 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3077 if (pad_buf) {
3078 struct scatterlist *psg = &qc->pad_sgent;
3079 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3080 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3081 kunmap_atomic(addr, KM_IRQ0);
3082 }
3083 } else {
3084 if (qc->n_elem)
3085 dma_unmap_single(ap->dev,
3086 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3087 dir);
3088 /* restore sg */
3089 sg->length += qc->pad_len;
3090 if (pad_buf)
3091 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3092 pad_buf, qc->pad_len);
3093 }
3094
3095 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3096 qc->__sg = NULL;
3097 }
3098
3099 /**
3100 * ata_fill_sg - Fill PCI IDE PRD table
3101 * @qc: Metadata associated with taskfile to be transferred
3102 *
3103 * Fill PCI IDE PRD (scatter-gather) table with segments
3104 * associated with the current disk command.
3105 *
3106 * LOCKING:
3107 * spin_lock_irqsave(host_set lock)
3108 *
3109 */
3110 static void ata_fill_sg(struct ata_queued_cmd *qc)
3111 {
3112 struct ata_port *ap = qc->ap;
3113 struct scatterlist *sg;
3114 unsigned int idx;
3115
3116 WARN_ON(qc->__sg == NULL);
3117 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3118
3119 idx = 0;
3120 ata_for_each_sg(sg, qc) {
3121 u32 addr, offset;
3122 u32 sg_len, len;
3123
3124 /* determine if physical DMA addr spans 64K boundary.
3125 * Note h/w doesn't support 64-bit, so we unconditionally
3126 * truncate dma_addr_t to u32.
3127 */
3128 addr = (u32) sg_dma_address(sg);
3129 sg_len = sg_dma_len(sg);
3130
3131 while (sg_len) {
3132 offset = addr & 0xffff;
3133 len = sg_len;
3134 if ((offset + sg_len) > 0x10000)
3135 len = 0x10000 - offset;
3136
3137 ap->prd[idx].addr = cpu_to_le32(addr);
3138 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3139 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3140
3141 idx++;
3142 sg_len -= len;
3143 addr += len;
3144 }
3145 }
3146
3147 if (idx)
3148 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3149 }
3150 /**
3151 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3152 * @qc: Metadata associated with taskfile to check
3153 *
3154 * Allow low-level driver to filter ATA PACKET commands, returning
3155 * a status indicating whether or not it is OK to use DMA for the
3156 * supplied PACKET command.
3157 *
3158 * LOCKING:
3159 * spin_lock_irqsave(host_set lock)
3160 *
3161 * RETURNS: 0 when ATAPI DMA can be used
3162 * nonzero otherwise
3163 */
3164 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3165 {
3166 struct ata_port *ap = qc->ap;
3167 int rc = 0; /* Assume ATAPI DMA is OK by default */
3168
3169 if (ap->ops->check_atapi_dma)
3170 rc = ap->ops->check_atapi_dma(qc);
3171
3172 return rc;
3173 }
3174 /**
3175 * ata_qc_prep - Prepare taskfile for submission
3176 * @qc: Metadata associated with taskfile to be prepared
3177 *
3178 * Prepare ATA taskfile for submission.
3179 *
3180 * LOCKING:
3181 * spin_lock_irqsave(host_set lock)
3182 */
3183 void ata_qc_prep(struct ata_queued_cmd *qc)
3184 {
3185 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3186 return;
3187
3188 ata_fill_sg(qc);
3189 }
3190
3191 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3192
3193 /**
3194 * ata_sg_init_one - Associate command with memory buffer
3195 * @qc: Command to be associated
3196 * @buf: Memory buffer
3197 * @buflen: Length of memory buffer, in bytes.
3198 *
3199 * Initialize the data-related elements of queued_cmd @qc
3200 * to point to a single memory buffer, @buf of byte length @buflen.
3201 *
3202 * LOCKING:
3203 * spin_lock_irqsave(host_set lock)
3204 */
3205
3206 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3207 {
3208 struct scatterlist *sg;
3209
3210 qc->flags |= ATA_QCFLAG_SINGLE;
3211
3212 memset(&qc->sgent, 0, sizeof(qc->sgent));
3213 qc->__sg = &qc->sgent;
3214 qc->n_elem = 1;
3215 qc->orig_n_elem = 1;
3216 qc->buf_virt = buf;
3217
3218 sg = qc->__sg;
3219 sg_init_one(sg, buf, buflen);
3220 }
3221
3222 /**
3223 * ata_sg_init - Associate command with scatter-gather table.
3224 * @qc: Command to be associated
3225 * @sg: Scatter-gather table.
3226 * @n_elem: Number of elements in s/g table.
3227 *
3228 * Initialize the data-related elements of queued_cmd @qc
3229 * to point to a scatter-gather table @sg, containing @n_elem
3230 * elements.
3231 *
3232 * LOCKING:
3233 * spin_lock_irqsave(host_set lock)
3234 */
3235
3236 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3237 unsigned int n_elem)
3238 {
3239 qc->flags |= ATA_QCFLAG_SG;
3240 qc->__sg = sg;
3241 qc->n_elem = n_elem;
3242 qc->orig_n_elem = n_elem;
3243 }
3244
3245 /**
3246 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3247 * @qc: Command with memory buffer to be mapped.
3248 *
3249 * DMA-map the memory buffer associated with queued_cmd @qc.
3250 *
3251 * LOCKING:
3252 * spin_lock_irqsave(host_set lock)
3253 *
3254 * RETURNS:
3255 * Zero on success, negative on error.
3256 */
3257
3258 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3259 {
3260 struct ata_port *ap = qc->ap;
3261 int dir = qc->dma_dir;
3262 struct scatterlist *sg = qc->__sg;
3263 dma_addr_t dma_address;
3264 int trim_sg = 0;
3265
3266 /* we must lengthen transfers to end on a 32-bit boundary */
3267 qc->pad_len = sg->length & 3;
3268 if (qc->pad_len) {
3269 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3270 struct scatterlist *psg = &qc->pad_sgent;
3271
3272 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3273
3274 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3275
3276 if (qc->tf.flags & ATA_TFLAG_WRITE)
3277 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3278 qc->pad_len);
3279
3280 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3281 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3282 /* trim sg */
3283 sg->length -= qc->pad_len;
3284 if (sg->length == 0)
3285 trim_sg = 1;
3286
3287 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3288 sg->length, qc->pad_len);
3289 }
3290
3291 if (trim_sg) {
3292 qc->n_elem--;
3293 goto skip_map;
3294 }
3295
3296 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3297 sg->length, dir);
3298 if (dma_mapping_error(dma_address)) {
3299 /* restore sg */
3300 sg->length += qc->pad_len;
3301 return -1;
3302 }
3303
3304 sg_dma_address(sg) = dma_address;
3305 sg_dma_len(sg) = sg->length;
3306
3307 skip_map:
3308 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3309 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3310
3311 return 0;
3312 }
3313
3314 /**
3315 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3316 * @qc: Command with scatter-gather table to be mapped.
3317 *
3318 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3319 *
3320 * LOCKING:
3321 * spin_lock_irqsave(host_set lock)
3322 *
3323 * RETURNS:
3324 * Zero on success, negative on error.
3325 *
3326 */
3327
3328 static int ata_sg_setup(struct ata_queued_cmd *qc)
3329 {
3330 struct ata_port *ap = qc->ap;
3331 struct scatterlist *sg = qc->__sg;
3332 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3333 int n_elem, pre_n_elem, dir, trim_sg = 0;
3334
3335 VPRINTK("ENTER, ata%u\n", ap->id);
3336 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3337
3338 /* we must lengthen transfers to end on a 32-bit boundary */
3339 qc->pad_len = lsg->length & 3;
3340 if (qc->pad_len) {
3341 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3342 struct scatterlist *psg = &qc->pad_sgent;
3343 unsigned int offset;
3344
3345 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3346
3347 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3348
3349 /*
3350 * psg->page/offset are used to copy to-be-written
3351 * data in this function or read data in ata_sg_clean.
3352 */
3353 offset = lsg->offset + lsg->length - qc->pad_len;
3354 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3355 psg->offset = offset_in_page(offset);
3356
3357 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3358 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3359 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3360 kunmap_atomic(addr, KM_IRQ0);
3361 }
3362
3363 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3364 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3365 /* trim last sg */
3366 lsg->length -= qc->pad_len;
3367 if (lsg->length == 0)
3368 trim_sg = 1;
3369
3370 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3371 qc->n_elem - 1, lsg->length, qc->pad_len);
3372 }
3373
3374 pre_n_elem = qc->n_elem;
3375 if (trim_sg && pre_n_elem)
3376 pre_n_elem--;
3377
3378 if (!pre_n_elem) {
3379 n_elem = 0;
3380 goto skip_map;
3381 }
3382
3383 dir = qc->dma_dir;
3384 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3385 if (n_elem < 1) {
3386 /* restore last sg */
3387 lsg->length += qc->pad_len;
3388 return -1;
3389 }
3390
3391 DPRINTK("%d sg elements mapped\n", n_elem);
3392
3393 skip_map:
3394 qc->n_elem = n_elem;
3395
3396 return 0;
3397 }
3398
3399 /**
3400 * ata_poll_qc_complete - turn irq back on and finish qc
3401 * @qc: Command to complete
3402 * @err_mask: ATA status register content
3403 *
3404 * LOCKING:
3405 * None. (grabs host lock)
3406 */
3407
3408 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3409 {
3410 struct ata_port *ap = qc->ap;
3411 unsigned long flags;
3412
3413 spin_lock_irqsave(&ap->host_set->lock, flags);
3414 ap->flags &= ~ATA_FLAG_NOINTR;
3415 ata_irq_on(ap);
3416 ata_qc_complete(qc);
3417 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3418 }
3419
3420 /**
3421 * ata_pio_poll - poll using PIO, depending on current state
3422 * @qc: qc in progress
3423 *
3424 * LOCKING:
3425 * None. (executing in kernel thread context)
3426 *
3427 * RETURNS:
3428 * timeout value to use
3429 */
3430 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3431 {
3432 struct ata_port *ap = qc->ap;
3433 u8 status;
3434 unsigned int poll_state = HSM_ST_UNKNOWN;
3435 unsigned int reg_state = HSM_ST_UNKNOWN;
3436
3437 switch (ap->hsm_task_state) {
3438 case HSM_ST:
3439 case HSM_ST_POLL:
3440 poll_state = HSM_ST_POLL;
3441 reg_state = HSM_ST;
3442 break;
3443 case HSM_ST_LAST:
3444 case HSM_ST_LAST_POLL:
3445 poll_state = HSM_ST_LAST_POLL;
3446 reg_state = HSM_ST_LAST;
3447 break;
3448 default:
3449 BUG();
3450 break;
3451 }
3452
3453 status = ata_chk_status(ap);
3454 if (status & ATA_BUSY) {
3455 if (time_after(jiffies, ap->pio_task_timeout)) {
3456 qc->err_mask |= AC_ERR_TIMEOUT;
3457 ap->hsm_task_state = HSM_ST_TMOUT;
3458 return 0;
3459 }
3460 ap->hsm_task_state = poll_state;
3461 return ATA_SHORT_PAUSE;
3462 }
3463
3464 ap->hsm_task_state = reg_state;
3465 return 0;
3466 }
3467
3468 /**
3469 * ata_pio_complete - check if drive is busy or idle
3470 * @qc: qc to complete
3471 *
3472 * LOCKING:
3473 * None. (executing in kernel thread context)
3474 *
3475 * RETURNS:
3476 * Non-zero if qc completed, zero otherwise.
3477 */
3478 static int ata_pio_complete(struct ata_queued_cmd *qc)
3479 {
3480 struct ata_port *ap = qc->ap;
3481 u8 drv_stat;
3482
3483 /*
3484 * This is purely heuristic. This is a fast path. Sometimes when
3485 * we enter, BSY will be cleared in a chk-status or two. If not,
3486 * the drive is probably seeking or something. Snooze for a couple
3487 * msecs, then chk-status again. If still busy, fall back to
3488 * HSM_ST_POLL state.
3489 */
3490 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3491 if (drv_stat & ATA_BUSY) {
3492 msleep(2);
3493 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3494 if (drv_stat & ATA_BUSY) {
3495 ap->hsm_task_state = HSM_ST_LAST_POLL;
3496 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3497 return 0;
3498 }
3499 }
3500
3501 drv_stat = ata_wait_idle(ap);
3502 if (!ata_ok(drv_stat)) {
3503 qc->err_mask |= __ac_err_mask(drv_stat);
3504 ap->hsm_task_state = HSM_ST_ERR;
3505 return 0;
3506 }
3507
3508 ap->hsm_task_state = HSM_ST_IDLE;
3509
3510 WARN_ON(qc->err_mask);
3511 ata_poll_qc_complete(qc);
3512
3513 /* another command may start at this point */
3514
3515 return 1;
3516 }
3517
3518
3519 /**
3520 * swap_buf_le16 - swap halves of 16-bit words in place
3521 * @buf: Buffer to swap
3522 * @buf_words: Number of 16-bit words in buffer.
3523 *
3524 * Swap halves of 16-bit words if needed to convert from
3525 * little-endian byte order to native cpu byte order, or
3526 * vice-versa.
3527 *
3528 * LOCKING:
3529 * Inherited from caller.
3530 */
3531 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3532 {
3533 #ifdef __BIG_ENDIAN
3534 unsigned int i;
3535
3536 for (i = 0; i < buf_words; i++)
3537 buf[i] = le16_to_cpu(buf[i]);
3538 #endif /* __BIG_ENDIAN */
3539 }
3540
3541 /**
3542 * ata_mmio_data_xfer - Transfer data by MMIO
3543 * @ap: port to read/write
3544 * @buf: data buffer
3545 * @buflen: buffer length
3546 * @write_data: read/write
3547 *
3548 * Transfer data from/to the device data register by MMIO.
3549 *
3550 * LOCKING:
3551 * Inherited from caller.
3552 */
3553
3554 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3555 unsigned int buflen, int write_data)
3556 {
3557 unsigned int i;
3558 unsigned int words = buflen >> 1;
3559 u16 *buf16 = (u16 *) buf;
3560 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3561
3562 /* Transfer multiple of 2 bytes */
3563 if (write_data) {
3564 for (i = 0; i < words; i++)
3565 writew(le16_to_cpu(buf16[i]), mmio);
3566 } else {
3567 for (i = 0; i < words; i++)
3568 buf16[i] = cpu_to_le16(readw(mmio));
3569 }
3570
3571 /* Transfer trailing 1 byte, if any. */
3572 if (unlikely(buflen & 0x01)) {
3573 u16 align_buf[1] = { 0 };
3574 unsigned char *trailing_buf = buf + buflen - 1;
3575
3576 if (write_data) {
3577 memcpy(align_buf, trailing_buf, 1);
3578 writew(le16_to_cpu(align_buf[0]), mmio);
3579 } else {
3580 align_buf[0] = cpu_to_le16(readw(mmio));
3581 memcpy(trailing_buf, align_buf, 1);
3582 }
3583 }
3584 }
3585
3586 /**
3587 * ata_pio_data_xfer - Transfer data by PIO
3588 * @ap: port to read/write
3589 * @buf: data buffer
3590 * @buflen: buffer length
3591 * @write_data: read/write
3592 *
3593 * Transfer data from/to the device data register by PIO.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
3597 */
3598
3599 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3600 unsigned int buflen, int write_data)
3601 {
3602 unsigned int words = buflen >> 1;
3603
3604 /* Transfer multiple of 2 bytes */
3605 if (write_data)
3606 outsw(ap->ioaddr.data_addr, buf, words);
3607 else
3608 insw(ap->ioaddr.data_addr, buf, words);
3609
3610 /* Transfer trailing 1 byte, if any. */
3611 if (unlikely(buflen & 0x01)) {
3612 u16 align_buf[1] = { 0 };
3613 unsigned char *trailing_buf = buf + buflen - 1;
3614
3615 if (write_data) {
3616 memcpy(align_buf, trailing_buf, 1);
3617 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3618 } else {
3619 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3620 memcpy(trailing_buf, align_buf, 1);
3621 }
3622 }
3623 }
3624
3625 /**
3626 * ata_data_xfer - Transfer data from/to the data register.
3627 * @ap: port to read/write
3628 * @buf: data buffer
3629 * @buflen: buffer length
3630 * @do_write: read/write
3631 *
3632 * Transfer data from/to the device data register.
3633 *
3634 * LOCKING:
3635 * Inherited from caller.
3636 */
3637
3638 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3639 unsigned int buflen, int do_write)
3640 {
3641 /* Make the crap hardware pay the costs not the good stuff */
3642 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3643 unsigned long flags;
3644 local_irq_save(flags);
3645 if (ap->flags & ATA_FLAG_MMIO)
3646 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3647 else
3648 ata_pio_data_xfer(ap, buf, buflen, do_write);
3649 local_irq_restore(flags);
3650 } else {
3651 if (ap->flags & ATA_FLAG_MMIO)
3652 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3653 else
3654 ata_pio_data_xfer(ap, buf, buflen, do_write);
3655 }
3656 }
3657
3658 /**
3659 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3660 * @qc: Command on going
3661 *
3662 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3663 *
3664 * LOCKING:
3665 * Inherited from caller.
3666 */
3667
3668 static void ata_pio_sector(struct ata_queued_cmd *qc)
3669 {
3670 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3671 struct scatterlist *sg = qc->__sg;
3672 struct ata_port *ap = qc->ap;
3673 struct page *page;
3674 unsigned int offset;
3675 unsigned char *buf;
3676
3677 if (qc->cursect == (qc->nsect - 1))
3678 ap->hsm_task_state = HSM_ST_LAST;
3679
3680 page = sg[qc->cursg].page;
3681 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3682
3683 /* get the current page and offset */
3684 page = nth_page(page, (offset >> PAGE_SHIFT));
3685 offset %= PAGE_SIZE;
3686
3687 buf = kmap(page) + offset;
3688
3689 qc->cursect++;
3690 qc->cursg_ofs++;
3691
3692 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3693 qc->cursg++;
3694 qc->cursg_ofs = 0;
3695 }
3696
3697 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3698
3699 /* do the actual data transfer */
3700 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3701 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3702
3703 kunmap(page);
3704 }
3705
3706 /**
3707 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3708 * @qc: Command on going
3709 * @bytes: number of bytes
3710 *
3711 * Transfer Transfer data from/to the ATAPI device.
3712 *
3713 * LOCKING:
3714 * Inherited from caller.
3715 *
3716 */
3717
3718 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3719 {
3720 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3721 struct scatterlist *sg = qc->__sg;
3722 struct ata_port *ap = qc->ap;
3723 struct page *page;
3724 unsigned char *buf;
3725 unsigned int offset, count;
3726
3727 if (qc->curbytes + bytes >= qc->nbytes)
3728 ap->hsm_task_state = HSM_ST_LAST;
3729
3730 next_sg:
3731 if (unlikely(qc->cursg >= qc->n_elem)) {
3732 /*
3733 * The end of qc->sg is reached and the device expects
3734 * more data to transfer. In order not to overrun qc->sg
3735 * and fulfill length specified in the byte count register,
3736 * - for read case, discard trailing data from the device
3737 * - for write case, padding zero data to the device
3738 */
3739 u16 pad_buf[1] = { 0 };
3740 unsigned int words = bytes >> 1;
3741 unsigned int i;
3742
3743 if (words) /* warning if bytes > 1 */
3744 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3745 ap->id, bytes);
3746
3747 for (i = 0; i < words; i++)
3748 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3749
3750 ap->hsm_task_state = HSM_ST_LAST;
3751 return;
3752 }
3753
3754 sg = &qc->__sg[qc->cursg];
3755
3756 page = sg->page;
3757 offset = sg->offset + qc->cursg_ofs;
3758
3759 /* get the current page and offset */
3760 page = nth_page(page, (offset >> PAGE_SHIFT));
3761 offset %= PAGE_SIZE;
3762
3763 /* don't overrun current sg */
3764 count = min(sg->length - qc->cursg_ofs, bytes);
3765
3766 /* don't cross page boundaries */
3767 count = min(count, (unsigned int)PAGE_SIZE - offset);
3768
3769 buf = kmap(page) + offset;
3770
3771 bytes -= count;
3772 qc->curbytes += count;
3773 qc->cursg_ofs += count;
3774
3775 if (qc->cursg_ofs == sg->length) {
3776 qc->cursg++;
3777 qc->cursg_ofs = 0;
3778 }
3779
3780 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3781
3782 /* do the actual data transfer */
3783 ata_data_xfer(ap, buf, count, do_write);
3784
3785 kunmap(page);
3786
3787 if (bytes)
3788 goto next_sg;
3789 }
3790
3791 /**
3792 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3793 * @qc: Command on going
3794 *
3795 * Transfer Transfer data from/to the ATAPI device.
3796 *
3797 * LOCKING:
3798 * Inherited from caller.
3799 */
3800
3801 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3802 {
3803 struct ata_port *ap = qc->ap;
3804 struct ata_device *dev = qc->dev;
3805 unsigned int ireason, bc_lo, bc_hi, bytes;
3806 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3807
3808 ap->ops->tf_read(ap, &qc->tf);
3809 ireason = qc->tf.nsect;
3810 bc_lo = qc->tf.lbam;
3811 bc_hi = qc->tf.lbah;
3812 bytes = (bc_hi << 8) | bc_lo;
3813
3814 /* shall be cleared to zero, indicating xfer of data */
3815 if (ireason & (1 << 0))
3816 goto err_out;
3817
3818 /* make sure transfer direction matches expected */
3819 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3820 if (do_write != i_write)
3821 goto err_out;
3822
3823 __atapi_pio_bytes(qc, bytes);
3824
3825 return;
3826
3827 err_out:
3828 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3829 ap->id, dev->devno);
3830 qc->err_mask |= AC_ERR_HSM;
3831 ap->hsm_task_state = HSM_ST_ERR;
3832 }
3833
3834 /**
3835 * ata_pio_block - start PIO on a block
3836 * @qc: qc to transfer block for
3837 *
3838 * LOCKING:
3839 * None. (executing in kernel thread context)
3840 */
3841 static void ata_pio_block(struct ata_queued_cmd *qc)
3842 {
3843 struct ata_port *ap = qc->ap;
3844 u8 status;
3845
3846 /*
3847 * This is purely heuristic. This is a fast path.
3848 * Sometimes when we enter, BSY will be cleared in
3849 * a chk-status or two. If not, the drive is probably seeking
3850 * or something. Snooze for a couple msecs, then
3851 * chk-status again. If still busy, fall back to
3852 * HSM_ST_POLL state.
3853 */
3854 status = ata_busy_wait(ap, ATA_BUSY, 5);
3855 if (status & ATA_BUSY) {
3856 msleep(2);
3857 status = ata_busy_wait(ap, ATA_BUSY, 10);
3858 if (status & ATA_BUSY) {
3859 ap->hsm_task_state = HSM_ST_POLL;
3860 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3861 return;
3862 }
3863 }
3864
3865 /* check error */
3866 if (status & (ATA_ERR | ATA_DF)) {
3867 qc->err_mask |= AC_ERR_DEV;
3868 ap->hsm_task_state = HSM_ST_ERR;
3869 return;
3870 }
3871
3872 /* transfer data if any */
3873 if (is_atapi_taskfile(&qc->tf)) {
3874 /* DRQ=0 means no more data to transfer */
3875 if ((status & ATA_DRQ) == 0) {
3876 ap->hsm_task_state = HSM_ST_LAST;
3877 return;
3878 }
3879
3880 atapi_pio_bytes(qc);
3881 } else {
3882 /* handle BSY=0, DRQ=0 as error */
3883 if ((status & ATA_DRQ) == 0) {
3884 qc->err_mask |= AC_ERR_HSM;
3885 ap->hsm_task_state = HSM_ST_ERR;
3886 return;
3887 }
3888
3889 ata_pio_sector(qc);
3890 }
3891 }
3892
3893 static void ata_pio_error(struct ata_queued_cmd *qc)
3894 {
3895 struct ata_port *ap = qc->ap;
3896
3897 if (qc->tf.command != ATA_CMD_PACKET)
3898 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3899 ap->id, qc->dev->devno);
3900
3901 /* make sure qc->err_mask is available to
3902 * know what's wrong and recover
3903 */
3904 WARN_ON(qc->err_mask == 0);
3905
3906 ap->hsm_task_state = HSM_ST_IDLE;
3907
3908 ata_poll_qc_complete(qc);
3909 }
3910
3911 static void ata_pio_task(void *_data)
3912 {
3913 struct ata_queued_cmd *qc = _data;
3914 struct ata_port *ap = qc->ap;
3915 unsigned long timeout;
3916 int qc_completed;
3917
3918 fsm_start:
3919 timeout = 0;
3920 qc_completed = 0;
3921
3922 switch (ap->hsm_task_state) {
3923 case HSM_ST_IDLE:
3924 return;
3925
3926 case HSM_ST:
3927 ata_pio_block(qc);
3928 break;
3929
3930 case HSM_ST_LAST:
3931 qc_completed = ata_pio_complete(qc);
3932 break;
3933
3934 case HSM_ST_POLL:
3935 case HSM_ST_LAST_POLL:
3936 timeout = ata_pio_poll(qc);
3937 break;
3938
3939 case HSM_ST_TMOUT:
3940 case HSM_ST_ERR:
3941 ata_pio_error(qc);
3942 return;
3943 }
3944
3945 if (timeout)
3946 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3947 else if (!qc_completed)
3948 goto fsm_start;
3949 }
3950
3951 /**
3952 * atapi_packet_task - Write CDB bytes to hardware
3953 * @_data: qc in progress
3954 *
3955 * When device has indicated its readiness to accept
3956 * a CDB, this function is called. Send the CDB.
3957 * If DMA is to be performed, exit immediately.
3958 * Otherwise, we are in polling mode, so poll
3959 * status under operation succeeds or fails.
3960 *
3961 * LOCKING:
3962 * Kernel thread context (may sleep)
3963 */
3964 static void atapi_packet_task(void *_data)
3965 {
3966 struct ata_queued_cmd *qc = _data;
3967 struct ata_port *ap = qc->ap;
3968 u8 status;
3969
3970 /* sleep-wait for BSY to clear */
3971 DPRINTK("busy wait\n");
3972 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3973 qc->err_mask |= AC_ERR_TIMEOUT;
3974 goto err_out;
3975 }
3976
3977 /* make sure DRQ is set */
3978 status = ata_chk_status(ap);
3979 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3980 qc->err_mask |= AC_ERR_HSM;
3981 goto err_out;
3982 }
3983
3984 /* send SCSI cdb */
3985 DPRINTK("send cdb\n");
3986 WARN_ON(qc->dev->cdb_len < 12);
3987
3988 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3989 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3990 unsigned long flags;
3991
3992 /* Once we're done issuing command and kicking bmdma,
3993 * irq handler takes over. To not lose irq, we need
3994 * to clear NOINTR flag before sending cdb, but
3995 * interrupt handler shouldn't be invoked before we're
3996 * finished. Hence, the following locking.
3997 */
3998 spin_lock_irqsave(&ap->host_set->lock, flags);
3999 ap->flags &= ~ATA_FLAG_NOINTR;
4000 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4001 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4002 ap->ops->bmdma_start(qc); /* initiate bmdma */
4003 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4004 } else {
4005 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4006
4007 /* PIO commands are handled by polling */
4008 ap->hsm_task_state = HSM_ST;
4009 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4010 }
4011
4012 return;
4013
4014 err_out:
4015 ata_poll_qc_complete(qc);
4016 }
4017
4018 /**
4019 * ata_qc_new - Request an available ATA command, for queueing
4020 * @ap: Port associated with device @dev
4021 * @dev: Device from whom we request an available command structure
4022 *
4023 * LOCKING:
4024 * None.
4025 */
4026
4027 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4028 {
4029 struct ata_queued_cmd *qc = NULL;
4030 unsigned int i;
4031
4032 for (i = 0; i < ATA_MAX_QUEUE; i++)
4033 if (!test_and_set_bit(i, &ap->qactive)) {
4034 qc = ata_qc_from_tag(ap, i);
4035 break;
4036 }
4037
4038 if (qc)
4039 qc->tag = i;
4040
4041 return qc;
4042 }
4043
4044 /**
4045 * ata_qc_new_init - Request an available ATA command, and initialize it
4046 * @ap: Port associated with device @dev
4047 * @dev: Device from whom we request an available command structure
4048 *
4049 * LOCKING:
4050 * None.
4051 */
4052
4053 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4054 struct ata_device *dev)
4055 {
4056 struct ata_queued_cmd *qc;
4057
4058 qc = ata_qc_new(ap);
4059 if (qc) {
4060 qc->scsicmd = NULL;
4061 qc->ap = ap;
4062 qc->dev = dev;
4063
4064 ata_qc_reinit(qc);
4065 }
4066
4067 return qc;
4068 }
4069
4070 /**
4071 * ata_qc_free - free unused ata_queued_cmd
4072 * @qc: Command to complete
4073 *
4074 * Designed to free unused ata_queued_cmd object
4075 * in case something prevents using it.
4076 *
4077 * LOCKING:
4078 * spin_lock_irqsave(host_set lock)
4079 */
4080 void ata_qc_free(struct ata_queued_cmd *qc)
4081 {
4082 struct ata_port *ap = qc->ap;
4083 unsigned int tag;
4084
4085 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4086
4087 qc->flags = 0;
4088 tag = qc->tag;
4089 if (likely(ata_tag_valid(tag))) {
4090 if (tag == ap->active_tag)
4091 ap->active_tag = ATA_TAG_POISON;
4092 qc->tag = ATA_TAG_POISON;
4093 clear_bit(tag, &ap->qactive);
4094 }
4095 }
4096
4097 void __ata_qc_complete(struct ata_queued_cmd *qc)
4098 {
4099 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4100 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4101
4102 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4103 ata_sg_clean(qc);
4104
4105 /* atapi: mark qc as inactive to prevent the interrupt handler
4106 * from completing the command twice later, before the error handler
4107 * is called. (when rc != 0 and atapi request sense is needed)
4108 */
4109 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4110
4111 /* call completion callback */
4112 qc->complete_fn(qc);
4113 }
4114
4115 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4116 {
4117 struct ata_port *ap = qc->ap;
4118
4119 switch (qc->tf.protocol) {
4120 case ATA_PROT_DMA:
4121 case ATA_PROT_ATAPI_DMA:
4122 return 1;
4123
4124 case ATA_PROT_ATAPI:
4125 case ATA_PROT_PIO:
4126 if (ap->flags & ATA_FLAG_PIO_DMA)
4127 return 1;
4128
4129 /* fall through */
4130
4131 default:
4132 return 0;
4133 }
4134
4135 /* never reached */
4136 }
4137
4138 /**
4139 * ata_qc_issue - issue taskfile to device
4140 * @qc: command to issue to device
4141 *
4142 * Prepare an ATA command to submission to device.
4143 * This includes mapping the data into a DMA-able
4144 * area, filling in the S/G table, and finally
4145 * writing the taskfile to hardware, starting the command.
4146 *
4147 * LOCKING:
4148 * spin_lock_irqsave(host_set lock)
4149 */
4150 void ata_qc_issue(struct ata_queued_cmd *qc)
4151 {
4152 struct ata_port *ap = qc->ap;
4153
4154 qc->ap->active_tag = qc->tag;
4155 qc->flags |= ATA_QCFLAG_ACTIVE;
4156
4157 if (ata_should_dma_map(qc)) {
4158 if (qc->flags & ATA_QCFLAG_SG) {
4159 if (ata_sg_setup(qc))
4160 goto sg_err;
4161 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4162 if (ata_sg_setup_one(qc))
4163 goto sg_err;
4164 }
4165 } else {
4166 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4167 }
4168
4169 ap->ops->qc_prep(qc);
4170
4171 qc->err_mask |= ap->ops->qc_issue(qc);
4172 if (unlikely(qc->err_mask))
4173 goto err;
4174 return;
4175
4176 sg_err:
4177 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4178 qc->err_mask |= AC_ERR_SYSTEM;
4179 err:
4180 ata_qc_complete(qc);
4181 }
4182
4183 /**
4184 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4185 * @qc: command to issue to device
4186 *
4187 * Using various libata functions and hooks, this function
4188 * starts an ATA command. ATA commands are grouped into
4189 * classes called "protocols", and issuing each type of protocol
4190 * is slightly different.
4191 *
4192 * May be used as the qc_issue() entry in ata_port_operations.
4193 *
4194 * LOCKING:
4195 * spin_lock_irqsave(host_set lock)
4196 *
4197 * RETURNS:
4198 * Zero on success, AC_ERR_* mask on failure
4199 */
4200
4201 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4202 {
4203 struct ata_port *ap = qc->ap;
4204
4205 ata_dev_select(ap, qc->dev->devno, 1, 0);
4206
4207 switch (qc->tf.protocol) {
4208 case ATA_PROT_NODATA:
4209 ata_tf_to_host(ap, &qc->tf);
4210 break;
4211
4212 case ATA_PROT_DMA:
4213 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4214 ap->ops->bmdma_setup(qc); /* set up bmdma */
4215 ap->ops->bmdma_start(qc); /* initiate bmdma */
4216 break;
4217
4218 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4219 ata_qc_set_polling(qc);
4220 ata_tf_to_host(ap, &qc->tf);
4221 ap->hsm_task_state = HSM_ST;
4222 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4223 break;
4224
4225 case ATA_PROT_ATAPI:
4226 ata_qc_set_polling(qc);
4227 ata_tf_to_host(ap, &qc->tf);
4228 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4229 break;
4230
4231 case ATA_PROT_ATAPI_NODATA:
4232 ap->flags |= ATA_FLAG_NOINTR;
4233 ata_tf_to_host(ap, &qc->tf);
4234 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4235 break;
4236
4237 case ATA_PROT_ATAPI_DMA:
4238 ap->flags |= ATA_FLAG_NOINTR;
4239 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4240 ap->ops->bmdma_setup(qc); /* set up bmdma */
4241 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4242 break;
4243
4244 default:
4245 WARN_ON(1);
4246 return AC_ERR_SYSTEM;
4247 }
4248
4249 return 0;
4250 }
4251
4252 /**
4253 * ata_host_intr - Handle host interrupt for given (port, task)
4254 * @ap: Port on which interrupt arrived (possibly...)
4255 * @qc: Taskfile currently active in engine
4256 *
4257 * Handle host interrupt for given queued command. Currently,
4258 * only DMA interrupts are handled. All other commands are
4259 * handled via polling with interrupts disabled (nIEN bit).
4260 *
4261 * LOCKING:
4262 * spin_lock_irqsave(host_set lock)
4263 *
4264 * RETURNS:
4265 * One if interrupt was handled, zero if not (shared irq).
4266 */
4267
4268 inline unsigned int ata_host_intr (struct ata_port *ap,
4269 struct ata_queued_cmd *qc)
4270 {
4271 u8 status, host_stat;
4272
4273 switch (qc->tf.protocol) {
4274
4275 case ATA_PROT_DMA:
4276 case ATA_PROT_ATAPI_DMA:
4277 case ATA_PROT_ATAPI:
4278 /* check status of DMA engine */
4279 host_stat = ap->ops->bmdma_status(ap);
4280 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4281
4282 /* if it's not our irq... */
4283 if (!(host_stat & ATA_DMA_INTR))
4284 goto idle_irq;
4285
4286 /* before we do anything else, clear DMA-Start bit */
4287 ap->ops->bmdma_stop(qc);
4288
4289 /* fall through */
4290
4291 case ATA_PROT_ATAPI_NODATA:
4292 case ATA_PROT_NODATA:
4293 /* check altstatus */
4294 status = ata_altstatus(ap);
4295 if (status & ATA_BUSY)
4296 goto idle_irq;
4297
4298 /* check main status, clearing INTRQ */
4299 status = ata_chk_status(ap);
4300 if (unlikely(status & ATA_BUSY))
4301 goto idle_irq;
4302 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4303 ap->id, qc->tf.protocol, status);
4304
4305 /* ack bmdma irq events */
4306 ap->ops->irq_clear(ap);
4307
4308 /* complete taskfile transaction */
4309 qc->err_mask |= ac_err_mask(status);
4310 ata_qc_complete(qc);
4311 break;
4312
4313 default:
4314 goto idle_irq;
4315 }
4316
4317 return 1; /* irq handled */
4318
4319 idle_irq:
4320 ap->stats.idle_irq++;
4321
4322 #ifdef ATA_IRQ_TRAP
4323 if ((ap->stats.idle_irq % 1000) == 0) {
4324 ata_irq_ack(ap, 0); /* debug trap */
4325 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4326 return 1;
4327 }
4328 #endif
4329 return 0; /* irq not handled */
4330 }
4331
4332 /**
4333 * ata_interrupt - Default ATA host interrupt handler
4334 * @irq: irq line (unused)
4335 * @dev_instance: pointer to our ata_host_set information structure
4336 * @regs: unused
4337 *
4338 * Default interrupt handler for PCI IDE devices. Calls
4339 * ata_host_intr() for each port that is not disabled.
4340 *
4341 * LOCKING:
4342 * Obtains host_set lock during operation.
4343 *
4344 * RETURNS:
4345 * IRQ_NONE or IRQ_HANDLED.
4346 */
4347
4348 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4349 {
4350 struct ata_host_set *host_set = dev_instance;
4351 unsigned int i;
4352 unsigned int handled = 0;
4353 unsigned long flags;
4354
4355 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4356 spin_lock_irqsave(&host_set->lock, flags);
4357
4358 for (i = 0; i < host_set->n_ports; i++) {
4359 struct ata_port *ap;
4360
4361 ap = host_set->ports[i];
4362 if (ap &&
4363 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4364 struct ata_queued_cmd *qc;
4365
4366 qc = ata_qc_from_tag(ap, ap->active_tag);
4367 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4368 (qc->flags & ATA_QCFLAG_ACTIVE))
4369 handled |= ata_host_intr(ap, qc);
4370 }
4371 }
4372
4373 spin_unlock_irqrestore(&host_set->lock, flags);
4374
4375 return IRQ_RETVAL(handled);
4376 }
4377
4378
4379 /*
4380 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4381 * without filling any other registers
4382 */
4383 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4384 u8 cmd)
4385 {
4386 struct ata_taskfile tf;
4387 int err;
4388
4389 ata_tf_init(ap, &tf, dev->devno);
4390
4391 tf.command = cmd;
4392 tf.flags |= ATA_TFLAG_DEVICE;
4393 tf.protocol = ATA_PROT_NODATA;
4394
4395 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4396 if (err)
4397 printk(KERN_ERR "%s: ata command failed: %d\n",
4398 __FUNCTION__, err);
4399
4400 return err;
4401 }
4402
4403 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4404 {
4405 u8 cmd;
4406
4407 if (!ata_try_flush_cache(dev))
4408 return 0;
4409
4410 if (ata_id_has_flush_ext(dev->id))
4411 cmd = ATA_CMD_FLUSH_EXT;
4412 else
4413 cmd = ATA_CMD_FLUSH;
4414
4415 return ata_do_simple_cmd(ap, dev, cmd);
4416 }
4417
4418 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4419 {
4420 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4421 }
4422
4423 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4424 {
4425 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4426 }
4427
4428 /**
4429 * ata_device_resume - wakeup a previously suspended devices
4430 * @ap: port the device is connected to
4431 * @dev: the device to resume
4432 *
4433 * Kick the drive back into action, by sending it an idle immediate
4434 * command and making sure its transfer mode matches between drive
4435 * and host.
4436 *
4437 */
4438 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4439 {
4440 if (ap->flags & ATA_FLAG_SUSPENDED) {
4441 struct ata_device *failed_dev;
4442 ap->flags &= ~ATA_FLAG_SUSPENDED;
4443 while (ata_set_mode(ap, &failed_dev))
4444 ata_dev_disable(ap, failed_dev);
4445 }
4446 if (!ata_dev_enabled(dev))
4447 return 0;
4448 if (dev->class == ATA_DEV_ATA)
4449 ata_start_drive(ap, dev);
4450
4451 return 0;
4452 }
4453
4454 /**
4455 * ata_device_suspend - prepare a device for suspend
4456 * @ap: port the device is connected to
4457 * @dev: the device to suspend
4458 *
4459 * Flush the cache on the drive, if appropriate, then issue a
4460 * standbynow command.
4461 */
4462 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4463 {
4464 if (!ata_dev_enabled(dev))
4465 return 0;
4466 if (dev->class == ATA_DEV_ATA)
4467 ata_flush_cache(ap, dev);
4468
4469 if (state.event != PM_EVENT_FREEZE)
4470 ata_standby_drive(ap, dev);
4471 ap->flags |= ATA_FLAG_SUSPENDED;
4472 return 0;
4473 }
4474
4475 /**
4476 * ata_port_start - Set port up for dma.
4477 * @ap: Port to initialize
4478 *
4479 * Called just after data structures for each port are
4480 * initialized. Allocates space for PRD table.
4481 *
4482 * May be used as the port_start() entry in ata_port_operations.
4483 *
4484 * LOCKING:
4485 * Inherited from caller.
4486 */
4487
4488 int ata_port_start (struct ata_port *ap)
4489 {
4490 struct device *dev = ap->dev;
4491 int rc;
4492
4493 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4494 if (!ap->prd)
4495 return -ENOMEM;
4496
4497 rc = ata_pad_alloc(ap, dev);
4498 if (rc) {
4499 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4500 return rc;
4501 }
4502
4503 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4504
4505 return 0;
4506 }
4507
4508
4509 /**
4510 * ata_port_stop - Undo ata_port_start()
4511 * @ap: Port to shut down
4512 *
4513 * Frees the PRD table.
4514 *
4515 * May be used as the port_stop() entry in ata_port_operations.
4516 *
4517 * LOCKING:
4518 * Inherited from caller.
4519 */
4520
4521 void ata_port_stop (struct ata_port *ap)
4522 {
4523 struct device *dev = ap->dev;
4524
4525 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4526 ata_pad_free(ap, dev);
4527 }
4528
4529 void ata_host_stop (struct ata_host_set *host_set)
4530 {
4531 if (host_set->mmio_base)
4532 iounmap(host_set->mmio_base);
4533 }
4534
4535
4536 /**
4537 * ata_host_remove - Unregister SCSI host structure with upper layers
4538 * @ap: Port to unregister
4539 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4540 *
4541 * LOCKING:
4542 * Inherited from caller.
4543 */
4544
4545 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4546 {
4547 struct Scsi_Host *sh = ap->host;
4548
4549 DPRINTK("ENTER\n");
4550
4551 if (do_unregister)
4552 scsi_remove_host(sh);
4553
4554 ap->ops->port_stop(ap);
4555 }
4556
4557 /**
4558 * ata_host_init - Initialize an ata_port structure
4559 * @ap: Structure to initialize
4560 * @host: associated SCSI mid-layer structure
4561 * @host_set: Collection of hosts to which @ap belongs
4562 * @ent: Probe information provided by low-level driver
4563 * @port_no: Port number associated with this ata_port
4564 *
4565 * Initialize a new ata_port structure, and its associated
4566 * scsi_host.
4567 *
4568 * LOCKING:
4569 * Inherited from caller.
4570 */
4571
4572 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4573 struct ata_host_set *host_set,
4574 const struct ata_probe_ent *ent, unsigned int port_no)
4575 {
4576 unsigned int i;
4577
4578 host->max_id = 16;
4579 host->max_lun = 1;
4580 host->max_channel = 1;
4581 host->unique_id = ata_unique_id++;
4582 host->max_cmd_len = 12;
4583
4584 ap->flags = ATA_FLAG_DISABLED;
4585 ap->id = host->unique_id;
4586 ap->host = host;
4587 ap->ctl = ATA_DEVCTL_OBS;
4588 ap->host_set = host_set;
4589 ap->dev = ent->dev;
4590 ap->port_no = port_no;
4591 ap->hard_port_no =
4592 ent->legacy_mode ? ent->hard_port_no : port_no;
4593 ap->pio_mask = ent->pio_mask;
4594 ap->mwdma_mask = ent->mwdma_mask;
4595 ap->udma_mask = ent->udma_mask;
4596 ap->flags |= ent->host_flags;
4597 ap->ops = ent->port_ops;
4598 ap->cbl = ATA_CBL_NONE;
4599 ap->sata_spd_limit = UINT_MAX;
4600 ap->active_tag = ATA_TAG_POISON;
4601 ap->last_ctl = 0xFF;
4602
4603 INIT_WORK(&ap->port_task, NULL, NULL);
4604 INIT_LIST_HEAD(&ap->eh_done_q);
4605
4606 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4607 struct ata_device *dev = &ap->device[i];
4608 dev->devno = i;
4609 dev->pio_mask = UINT_MAX;
4610 dev->mwdma_mask = UINT_MAX;
4611 dev->udma_mask = UINT_MAX;
4612 }
4613
4614 #ifdef ATA_IRQ_TRAP
4615 ap->stats.unhandled_irq = 1;
4616 ap->stats.idle_irq = 1;
4617 #endif
4618
4619 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4620 }
4621
4622 /**
4623 * ata_host_add - Attach low-level ATA driver to system
4624 * @ent: Information provided by low-level driver
4625 * @host_set: Collections of ports to which we add
4626 * @port_no: Port number associated with this host
4627 *
4628 * Attach low-level ATA driver to system.
4629 *
4630 * LOCKING:
4631 * PCI/etc. bus probe sem.
4632 *
4633 * RETURNS:
4634 * New ata_port on success, for NULL on error.
4635 */
4636
4637 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4638 struct ata_host_set *host_set,
4639 unsigned int port_no)
4640 {
4641 struct Scsi_Host *host;
4642 struct ata_port *ap;
4643 int rc;
4644
4645 DPRINTK("ENTER\n");
4646
4647 if (!ent->port_ops->probe_reset &&
4648 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4649 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4650 port_no);
4651 return NULL;
4652 }
4653
4654 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4655 if (!host)
4656 return NULL;
4657
4658 host->transportt = &ata_scsi_transport_template;
4659
4660 ap = (struct ata_port *) &host->hostdata[0];
4661
4662 ata_host_init(ap, host, host_set, ent, port_no);
4663
4664 rc = ap->ops->port_start(ap);
4665 if (rc)
4666 goto err_out;
4667
4668 return ap;
4669
4670 err_out:
4671 scsi_host_put(host);
4672 return NULL;
4673 }
4674
4675 /**
4676 * ata_device_add - Register hardware device with ATA and SCSI layers
4677 * @ent: Probe information describing hardware device to be registered
4678 *
4679 * This function processes the information provided in the probe
4680 * information struct @ent, allocates the necessary ATA and SCSI
4681 * host information structures, initializes them, and registers
4682 * everything with requisite kernel subsystems.
4683 *
4684 * This function requests irqs, probes the ATA bus, and probes
4685 * the SCSI bus.
4686 *
4687 * LOCKING:
4688 * PCI/etc. bus probe sem.
4689 *
4690 * RETURNS:
4691 * Number of ports registered. Zero on error (no ports registered).
4692 */
4693
4694 int ata_device_add(const struct ata_probe_ent *ent)
4695 {
4696 unsigned int count = 0, i;
4697 struct device *dev = ent->dev;
4698 struct ata_host_set *host_set;
4699
4700 DPRINTK("ENTER\n");
4701 /* alloc a container for our list of ATA ports (buses) */
4702 host_set = kzalloc(sizeof(struct ata_host_set) +
4703 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4704 if (!host_set)
4705 return 0;
4706 spin_lock_init(&host_set->lock);
4707
4708 host_set->dev = dev;
4709 host_set->n_ports = ent->n_ports;
4710 host_set->irq = ent->irq;
4711 host_set->mmio_base = ent->mmio_base;
4712 host_set->private_data = ent->private_data;
4713 host_set->ops = ent->port_ops;
4714 host_set->flags = ent->host_set_flags;
4715
4716 /* register each port bound to this device */
4717 for (i = 0; i < ent->n_ports; i++) {
4718 struct ata_port *ap;
4719 unsigned long xfer_mode_mask;
4720
4721 ap = ata_host_add(ent, host_set, i);
4722 if (!ap)
4723 goto err_out;
4724
4725 host_set->ports[i] = ap;
4726 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4727 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4728 (ap->pio_mask << ATA_SHIFT_PIO);
4729
4730 /* print per-port info to dmesg */
4731 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4732 "bmdma 0x%lX irq %lu\n",
4733 ap->id,
4734 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4735 ata_mode_string(xfer_mode_mask),
4736 ap->ioaddr.cmd_addr,
4737 ap->ioaddr.ctl_addr,
4738 ap->ioaddr.bmdma_addr,
4739 ent->irq);
4740
4741 ata_chk_status(ap);
4742 host_set->ops->irq_clear(ap);
4743 count++;
4744 }
4745
4746 if (!count)
4747 goto err_free_ret;
4748
4749 /* obtain irq, that is shared between channels */
4750 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4751 DRV_NAME, host_set))
4752 goto err_out;
4753
4754 /* perform each probe synchronously */
4755 DPRINTK("probe begin\n");
4756 for (i = 0; i < count; i++) {
4757 struct ata_port *ap;
4758 int rc;
4759
4760 ap = host_set->ports[i];
4761
4762 DPRINTK("ata%u: bus probe begin\n", ap->id);
4763 rc = ata_bus_probe(ap);
4764 DPRINTK("ata%u: bus probe end\n", ap->id);
4765
4766 if (rc) {
4767 /* FIXME: do something useful here?
4768 * Current libata behavior will
4769 * tear down everything when
4770 * the module is removed
4771 * or the h/w is unplugged.
4772 */
4773 }
4774
4775 rc = scsi_add_host(ap->host, dev);
4776 if (rc) {
4777 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4778 ap->id);
4779 /* FIXME: do something useful here */
4780 /* FIXME: handle unconditional calls to
4781 * scsi_scan_host and ata_host_remove, below,
4782 * at the very least
4783 */
4784 }
4785 }
4786
4787 /* probes are done, now scan each port's disk(s) */
4788 DPRINTK("host probe begin\n");
4789 for (i = 0; i < count; i++) {
4790 struct ata_port *ap = host_set->ports[i];
4791
4792 ata_scsi_scan_host(ap);
4793 }
4794
4795 dev_set_drvdata(dev, host_set);
4796
4797 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4798 return ent->n_ports; /* success */
4799
4800 err_out:
4801 for (i = 0; i < count; i++) {
4802 ata_host_remove(host_set->ports[i], 1);
4803 scsi_host_put(host_set->ports[i]->host);
4804 }
4805 err_free_ret:
4806 kfree(host_set);
4807 VPRINTK("EXIT, returning 0\n");
4808 return 0;
4809 }
4810
4811 /**
4812 * ata_host_set_remove - PCI layer callback for device removal
4813 * @host_set: ATA host set that was removed
4814 *
4815 * Unregister all objects associated with this host set. Free those
4816 * objects.
4817 *
4818 * LOCKING:
4819 * Inherited from calling layer (may sleep).
4820 */
4821
4822 void ata_host_set_remove(struct ata_host_set *host_set)
4823 {
4824 struct ata_port *ap;
4825 unsigned int i;
4826
4827 for (i = 0; i < host_set->n_ports; i++) {
4828 ap = host_set->ports[i];
4829 scsi_remove_host(ap->host);
4830 }
4831
4832 free_irq(host_set->irq, host_set);
4833
4834 for (i = 0; i < host_set->n_ports; i++) {
4835 ap = host_set->ports[i];
4836
4837 ata_scsi_release(ap->host);
4838
4839 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4840 struct ata_ioports *ioaddr = &ap->ioaddr;
4841
4842 if (ioaddr->cmd_addr == 0x1f0)
4843 release_region(0x1f0, 8);
4844 else if (ioaddr->cmd_addr == 0x170)
4845 release_region(0x170, 8);
4846 }
4847
4848 scsi_host_put(ap->host);
4849 }
4850
4851 if (host_set->ops->host_stop)
4852 host_set->ops->host_stop(host_set);
4853
4854 kfree(host_set);
4855 }
4856
4857 /**
4858 * ata_scsi_release - SCSI layer callback hook for host unload
4859 * @host: libata host to be unloaded
4860 *
4861 * Performs all duties necessary to shut down a libata port...
4862 * Kill port kthread, disable port, and release resources.
4863 *
4864 * LOCKING:
4865 * Inherited from SCSI layer.
4866 *
4867 * RETURNS:
4868 * One.
4869 */
4870
4871 int ata_scsi_release(struct Scsi_Host *host)
4872 {
4873 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4874 int i;
4875
4876 DPRINTK("ENTER\n");
4877
4878 ap->ops->port_disable(ap);
4879 ata_host_remove(ap, 0);
4880 for (i = 0; i < ATA_MAX_DEVICES; i++)
4881 kfree(ap->device[i].id);
4882
4883 DPRINTK("EXIT\n");
4884 return 1;
4885 }
4886
4887 /**
4888 * ata_std_ports - initialize ioaddr with standard port offsets.
4889 * @ioaddr: IO address structure to be initialized
4890 *
4891 * Utility function which initializes data_addr, error_addr,
4892 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4893 * device_addr, status_addr, and command_addr to standard offsets
4894 * relative to cmd_addr.
4895 *
4896 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4897 */
4898
4899 void ata_std_ports(struct ata_ioports *ioaddr)
4900 {
4901 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4902 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4903 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4904 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4905 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4906 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4907 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4908 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4909 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4910 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4911 }
4912
4913
4914 #ifdef CONFIG_PCI
4915
4916 void ata_pci_host_stop (struct ata_host_set *host_set)
4917 {
4918 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4919
4920 pci_iounmap(pdev, host_set->mmio_base);
4921 }
4922
4923 /**
4924 * ata_pci_remove_one - PCI layer callback for device removal
4925 * @pdev: PCI device that was removed
4926 *
4927 * PCI layer indicates to libata via this hook that
4928 * hot-unplug or module unload event has occurred.
4929 * Handle this by unregistering all objects associated
4930 * with this PCI device. Free those objects. Then finally
4931 * release PCI resources and disable device.
4932 *
4933 * LOCKING:
4934 * Inherited from PCI layer (may sleep).
4935 */
4936
4937 void ata_pci_remove_one (struct pci_dev *pdev)
4938 {
4939 struct device *dev = pci_dev_to_dev(pdev);
4940 struct ata_host_set *host_set = dev_get_drvdata(dev);
4941
4942 ata_host_set_remove(host_set);
4943 pci_release_regions(pdev);
4944 pci_disable_device(pdev);
4945 dev_set_drvdata(dev, NULL);
4946 }
4947
4948 /* move to PCI subsystem */
4949 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4950 {
4951 unsigned long tmp = 0;
4952
4953 switch (bits->width) {
4954 case 1: {
4955 u8 tmp8 = 0;
4956 pci_read_config_byte(pdev, bits->reg, &tmp8);
4957 tmp = tmp8;
4958 break;
4959 }
4960 case 2: {
4961 u16 tmp16 = 0;
4962 pci_read_config_word(pdev, bits->reg, &tmp16);
4963 tmp = tmp16;
4964 break;
4965 }
4966 case 4: {
4967 u32 tmp32 = 0;
4968 pci_read_config_dword(pdev, bits->reg, &tmp32);
4969 tmp = tmp32;
4970 break;
4971 }
4972
4973 default:
4974 return -EINVAL;
4975 }
4976
4977 tmp &= bits->mask;
4978
4979 return (tmp == bits->val) ? 1 : 0;
4980 }
4981
4982 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4983 {
4984 pci_save_state(pdev);
4985 pci_disable_device(pdev);
4986 pci_set_power_state(pdev, PCI_D3hot);
4987 return 0;
4988 }
4989
4990 int ata_pci_device_resume(struct pci_dev *pdev)
4991 {
4992 pci_set_power_state(pdev, PCI_D0);
4993 pci_restore_state(pdev);
4994 pci_enable_device(pdev);
4995 pci_set_master(pdev);
4996 return 0;
4997 }
4998 #endif /* CONFIG_PCI */
4999
5000
5001 static int __init ata_init(void)
5002 {
5003 ata_wq = create_workqueue("ata");
5004 if (!ata_wq)
5005 return -ENOMEM;
5006
5007 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5008 return 0;
5009 }
5010
5011 static void __exit ata_exit(void)
5012 {
5013 destroy_workqueue(ata_wq);
5014 }
5015
5016 module_init(ata_init);
5017 module_exit(ata_exit);
5018
5019 static unsigned long ratelimit_time;
5020 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5021
5022 int ata_ratelimit(void)
5023 {
5024 int rc;
5025 unsigned long flags;
5026
5027 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5028
5029 if (time_after(jiffies, ratelimit_time)) {
5030 rc = 1;
5031 ratelimit_time = jiffies + (HZ/5);
5032 } else
5033 rc = 0;
5034
5035 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5036
5037 return rc;
5038 }
5039
5040 /*
5041 * libata is essentially a library of internal helper functions for
5042 * low-level ATA host controller drivers. As such, the API/ABI is
5043 * likely to change as new drivers are added and updated.
5044 * Do not depend on ABI/API stability.
5045 */
5046
5047 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5048 EXPORT_SYMBOL_GPL(ata_std_ports);
5049 EXPORT_SYMBOL_GPL(ata_device_add);
5050 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5051 EXPORT_SYMBOL_GPL(ata_sg_init);
5052 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5053 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5054 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5055 EXPORT_SYMBOL_GPL(ata_tf_load);
5056 EXPORT_SYMBOL_GPL(ata_tf_read);
5057 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5058 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5059 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5060 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5061 EXPORT_SYMBOL_GPL(ata_check_status);
5062 EXPORT_SYMBOL_GPL(ata_altstatus);
5063 EXPORT_SYMBOL_GPL(ata_exec_command);
5064 EXPORT_SYMBOL_GPL(ata_port_start);
5065 EXPORT_SYMBOL_GPL(ata_port_stop);
5066 EXPORT_SYMBOL_GPL(ata_host_stop);
5067 EXPORT_SYMBOL_GPL(ata_interrupt);
5068 EXPORT_SYMBOL_GPL(ata_qc_prep);
5069 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5070 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5071 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5072 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5073 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5074 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5075 EXPORT_SYMBOL_GPL(ata_port_probe);
5076 EXPORT_SYMBOL_GPL(sata_phy_reset);
5077 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5078 EXPORT_SYMBOL_GPL(ata_bus_reset);
5079 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5080 EXPORT_SYMBOL_GPL(ata_std_softreset);
5081 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5082 EXPORT_SYMBOL_GPL(ata_std_postreset);
5083 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5084 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5085 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5086 EXPORT_SYMBOL_GPL(ata_dev_classify);
5087 EXPORT_SYMBOL_GPL(ata_dev_pair);
5088 EXPORT_SYMBOL_GPL(ata_port_disable);
5089 EXPORT_SYMBOL_GPL(ata_ratelimit);
5090 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5091 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5092 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5093 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5094 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5095 EXPORT_SYMBOL_GPL(ata_scsi_release);
5096 EXPORT_SYMBOL_GPL(ata_host_intr);
5097 EXPORT_SYMBOL_GPL(ata_id_string);
5098 EXPORT_SYMBOL_GPL(ata_id_c_string);
5099 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5100
5101 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5102 EXPORT_SYMBOL_GPL(ata_timing_compute);
5103 EXPORT_SYMBOL_GPL(ata_timing_merge);
5104
5105 #ifdef CONFIG_PCI
5106 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5107 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5108 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5109 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5110 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5111 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5112 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5113 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5114 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5115 #endif /* CONFIG_PCI */
5116
5117 EXPORT_SYMBOL_GPL(ata_device_suspend);
5118 EXPORT_SYMBOL_GPL(ata_device_resume);
5119 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5120 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5121
5122 EXPORT_SYMBOL_GPL(ata_scsi_error);
5123 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5124 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5125 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);