]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/libfc/fc_exch.c
ASoC: tegra: Use devm_ioremap_resource instead of open code
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / libfc / fc_exch.c
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22 /*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 #include <linux/log2.h>
31
32 #include <scsi/fc/fc_fc2.h>
33
34 #include <scsi/libfc.h>
35 #include <scsi/fc_encode.h>
36
37 #include "fc_libfc.h"
38
39 u16 fc_cpu_mask; /* cpu mask for possible cpus */
40 EXPORT_SYMBOL(fc_cpu_mask);
41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
43 static struct workqueue_struct *fc_exch_workqueue;
44
45 /*
46 * Structure and function definitions for managing Fibre Channel Exchanges
47 * and Sequences.
48 *
49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 *
51 * fc_exch_mgr holds the exchange state for an N port
52 *
53 * fc_exch holds state for one exchange and links to its active sequence.
54 *
55 * fc_seq holds the state for an individual sequence.
56 */
57
58 /**
59 * struct fc_exch_pool - Per cpu exchange pool
60 * @next_index: Next possible free exchange index
61 * @total_exches: Total allocated exchanges
62 * @lock: Exch pool lock
63 * @ex_list: List of exchanges
64 *
65 * This structure manages per cpu exchanges in array of exchange pointers.
66 * This array is allocated followed by struct fc_exch_pool memory for
67 * assigned range of exchanges to per cpu pool.
68 */
69 struct fc_exch_pool {
70 spinlock_t lock;
71 struct list_head ex_list;
72 u16 next_index;
73 u16 total_exches;
74
75 /* two cache of free slot in exch array */
76 u16 left;
77 u16 right;
78 } ____cacheline_aligned_in_smp;
79
80 /**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
90 *
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
93 */
94 struct fc_exch_mgr {
95 struct fc_exch_pool __percpu *pool;
96 mempool_t *ep_pool;
97 enum fc_class class;
98 struct kref kref;
99 u16 min_xid;
100 u16 max_xid;
101 u16 pool_max_index;
102
103 struct {
104 atomic_t no_free_exch;
105 atomic_t no_free_exch_xid;
106 atomic_t xid_not_found;
107 atomic_t xid_busy;
108 atomic_t seq_not_found;
109 atomic_t non_bls_resp;
110 } stats;
111 };
112
113 /**
114 * struct fc_exch_mgr_anchor - primary structure for list of EMs
115 * @ema_list: Exchange Manager Anchor list
116 * @mp: Exchange Manager associated with this anchor
117 * @match: Routine to determine if this anchor's EM should be used
118 *
119 * When walking the list of anchors the match routine will be called
120 * for each anchor to determine if that EM should be used. The last
121 * anchor in the list will always match to handle any exchanges not
122 * handled by other EMs. The non-default EMs would be added to the
123 * anchor list by HW that provides offloads.
124 */
125 struct fc_exch_mgr_anchor {
126 struct list_head ema_list;
127 struct fc_exch_mgr *mp;
128 bool (*match)(struct fc_frame *);
129 };
130
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_frame *);
133 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
134 enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_frame *);
137
138 /*
139 * Internal implementation notes.
140 *
141 * The exchange manager is one by default in libfc but LLD may choose
142 * to have one per CPU. The sequence manager is one per exchange manager
143 * and currently never separated.
144 *
145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
146 * assigned by the Sequence Initiator that shall be unique for a specific
147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
148 * qualified by exchange ID, which one might think it would be.
149 * In practice this limits the number of open sequences and exchanges to 256
150 * per session. For most targets we could treat this limit as per exchange.
151 *
152 * The exchange and its sequence are freed when the last sequence is received.
153 * It's possible for the remote port to leave an exchange open without
154 * sending any sequences.
155 *
156 * Notes on reference counts:
157 *
158 * Exchanges are reference counted and exchange gets freed when the reference
159 * count becomes zero.
160 *
161 * Timeouts:
162 * Sequences are timed out for E_D_TOV and R_A_TOV.
163 *
164 * Sequence event handling:
165 *
166 * The following events may occur on initiator sequences:
167 *
168 * Send.
169 * For now, the whole thing is sent.
170 * Receive ACK
171 * This applies only to class F.
172 * The sequence is marked complete.
173 * ULP completion.
174 * The upper layer calls fc_exch_done() when done
175 * with exchange and sequence tuple.
176 * RX-inferred completion.
177 * When we receive the next sequence on the same exchange, we can
178 * retire the previous sequence ID. (XXX not implemented).
179 * Timeout.
180 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
181 * E_D_TOV causes abort and calls upper layer response handler
182 * with FC_EX_TIMEOUT error.
183 * Receive RJT
184 * XXX defer.
185 * Send ABTS
186 * On timeout.
187 *
188 * The following events may occur on recipient sequences:
189 *
190 * Receive
191 * Allocate sequence for first frame received.
192 * Hold during receive handler.
193 * Release when final frame received.
194 * Keep status of last N of these for the ELS RES command. XXX TBD.
195 * Receive ABTS
196 * Deallocate sequence
197 * Send RJT
198 * Deallocate
199 *
200 * For now, we neglect conditions where only part of a sequence was
201 * received or transmitted, or where out-of-order receipt is detected.
202 */
203
204 /*
205 * Locking notes:
206 *
207 * The EM code run in a per-CPU worker thread.
208 *
209 * To protect against concurrency between a worker thread code and timers,
210 * sequence allocation and deallocation must be locked.
211 * - exchange refcnt can be done atomicly without locks.
212 * - sequence allocation must be locked by exch lock.
213 * - If the EM pool lock and ex_lock must be taken at the same time, then the
214 * EM pool lock must be taken before the ex_lock.
215 */
216
217 /*
218 * opcode names for debugging.
219 */
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221
222 /**
223 * fc_exch_name_lookup() - Lookup name by opcode
224 * @op: Opcode to be looked up
225 * @table: Opcode/name table
226 * @max_index: Index not to be exceeded
227 *
228 * This routine is used to determine a human-readable string identifying
229 * a R_CTL opcode.
230 */
231 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
232 unsigned int max_index)
233 {
234 const char *name = NULL;
235
236 if (op < max_index)
237 name = table[op];
238 if (!name)
239 name = "unknown";
240 return name;
241 }
242
243 /**
244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
245 * @op: The opcode to be looked up
246 */
247 static const char *fc_exch_rctl_name(unsigned int op)
248 {
249 return fc_exch_name_lookup(op, fc_exch_rctl_names,
250 ARRAY_SIZE(fc_exch_rctl_names));
251 }
252
253 /**
254 * fc_exch_hold() - Increment an exchange's reference count
255 * @ep: Echange to be held
256 */
257 static inline void fc_exch_hold(struct fc_exch *ep)
258 {
259 atomic_inc(&ep->ex_refcnt);
260 }
261
262 /**
263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
264 * and determine SOF and EOF.
265 * @ep: The exchange to that will use the header
266 * @fp: The frame whose header is to be modified
267 * @f_ctl: F_CTL bits that will be used for the frame header
268 *
269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
270 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
271 */
272 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
273 u32 f_ctl)
274 {
275 struct fc_frame_header *fh = fc_frame_header_get(fp);
276 u16 fill;
277
278 fr_sof(fp) = ep->class;
279 if (ep->seq.cnt)
280 fr_sof(fp) = fc_sof_normal(ep->class);
281
282 if (f_ctl & FC_FC_END_SEQ) {
283 fr_eof(fp) = FC_EOF_T;
284 if (fc_sof_needs_ack(ep->class))
285 fr_eof(fp) = FC_EOF_N;
286 /*
287 * From F_CTL.
288 * The number of fill bytes to make the length a 4-byte
289 * multiple is the low order 2-bits of the f_ctl.
290 * The fill itself will have been cleared by the frame
291 * allocation.
292 * After this, the length will be even, as expected by
293 * the transport.
294 */
295 fill = fr_len(fp) & 3;
296 if (fill) {
297 fill = 4 - fill;
298 /* TODO, this may be a problem with fragmented skb */
299 skb_put(fp_skb(fp), fill);
300 hton24(fh->fh_f_ctl, f_ctl | fill);
301 }
302 } else {
303 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
304 fr_eof(fp) = FC_EOF_N;
305 }
306
307 /* Initialize remaining fh fields from fc_fill_fc_hdr */
308 fh->fh_ox_id = htons(ep->oxid);
309 fh->fh_rx_id = htons(ep->rxid);
310 fh->fh_seq_id = ep->seq.id;
311 fh->fh_seq_cnt = htons(ep->seq.cnt);
312 }
313
314 /**
315 * fc_exch_release() - Decrement an exchange's reference count
316 * @ep: Exchange to be released
317 *
318 * If the reference count reaches zero and the exchange is complete,
319 * it is freed.
320 */
321 static void fc_exch_release(struct fc_exch *ep)
322 {
323 struct fc_exch_mgr *mp;
324
325 if (atomic_dec_and_test(&ep->ex_refcnt)) {
326 mp = ep->em;
327 if (ep->destructor)
328 ep->destructor(&ep->seq, ep->arg);
329 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
330 mempool_free(ep, mp->ep_pool);
331 }
332 }
333
334 /**
335 * fc_exch_timer_cancel() - cancel exch timer
336 * @ep: The exchange whose timer to be canceled
337 */
338 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
339 {
340 if (cancel_delayed_work(&ep->timeout_work)) {
341 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
342 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
343 }
344 }
345
346 /**
347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
348 * the exchange lock held
349 * @ep: The exchange whose timer will start
350 * @timer_msec: The timeout period
351 *
352 * Used for upper level protocols to time out the exchange.
353 * The timer is cancelled when it fires or when the exchange completes.
354 */
355 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
356 unsigned int timer_msec)
357 {
358 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
359 return;
360
361 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
362
363 fc_exch_hold(ep); /* hold for timer */
364 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
365 msecs_to_jiffies(timer_msec)))
366 fc_exch_release(ep);
367 }
368
369 /**
370 * fc_exch_timer_set() - Lock the exchange and set the timer
371 * @ep: The exchange whose timer will start
372 * @timer_msec: The timeout period
373 */
374 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
375 {
376 spin_lock_bh(&ep->ex_lock);
377 fc_exch_timer_set_locked(ep, timer_msec);
378 spin_unlock_bh(&ep->ex_lock);
379 }
380
381 /**
382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
383 * @ep: The exchange that is complete
384 *
385 * Note: May sleep if invoked from outside a response handler.
386 */
387 static int fc_exch_done_locked(struct fc_exch *ep)
388 {
389 int rc = 1;
390
391 /*
392 * We must check for completion in case there are two threads
393 * tyring to complete this. But the rrq code will reuse the
394 * ep, and in that case we only clear the resp and set it as
395 * complete, so it can be reused by the timer to send the rrq.
396 */
397 if (ep->state & FC_EX_DONE)
398 return rc;
399 ep->esb_stat |= ESB_ST_COMPLETE;
400
401 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402 ep->state |= FC_EX_DONE;
403 fc_exch_timer_cancel(ep);
404 rc = 0;
405 }
406 return rc;
407 }
408
409 /**
410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
411 * @pool: Exchange Pool to get an exchange from
412 * @index: Index of the exchange within the pool
413 *
414 * Use the index to get an exchange from within an exchange pool. exches
415 * will point to an array of exchange pointers. The index will select
416 * the exchange within the array.
417 */
418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419 u16 index)
420 {
421 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422 return exches[index];
423 }
424
425 /**
426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427 * @pool: The pool to assign the exchange to
428 * @index: The index in the pool where the exchange will be assigned
429 * @ep: The exchange to assign to the pool
430 */
431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432 struct fc_exch *ep)
433 {
434 ((struct fc_exch **)(pool + 1))[index] = ep;
435 }
436
437 /**
438 * fc_exch_delete() - Delete an exchange
439 * @ep: The exchange to be deleted
440 */
441 static void fc_exch_delete(struct fc_exch *ep)
442 {
443 struct fc_exch_pool *pool;
444 u16 index;
445
446 pool = ep->pool;
447 spin_lock_bh(&pool->lock);
448 WARN_ON(pool->total_exches <= 0);
449 pool->total_exches--;
450
451 /* update cache of free slot */
452 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453 if (pool->left == FC_XID_UNKNOWN)
454 pool->left = index;
455 else if (pool->right == FC_XID_UNKNOWN)
456 pool->right = index;
457 else
458 pool->next_index = index;
459
460 fc_exch_ptr_set(pool, index, NULL);
461 list_del(&ep->ex_list);
462 spin_unlock_bh(&pool->lock);
463 fc_exch_release(ep); /* drop hold for exch in mp */
464 }
465
466 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468 {
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error = -ENXIO;
472 u32 f_ctl;
473 u8 fh_type = fh->fh_type;
474
475 ep = fc_seq_exch(sp);
476
477 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
478 fc_frame_free(fp);
479 goto out;
480 }
481
482 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
483
484 f_ctl = ntoh24(fh->fh_f_ctl);
485 fc_exch_setup_hdr(ep, fp, f_ctl);
486 fr_encaps(fp) = ep->encaps;
487
488 /*
489 * update sequence count if this frame is carrying
490 * multiple FC frames when sequence offload is enabled
491 * by LLD.
492 */
493 if (fr_max_payload(fp))
494 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
495 fr_max_payload(fp));
496 else
497 sp->cnt++;
498
499 /*
500 * Send the frame.
501 */
502 error = lport->tt.frame_send(lport, fp);
503
504 if (fh_type == FC_TYPE_BLS)
505 goto out;
506
507 /*
508 * Update the exchange and sequence flags,
509 * assuming all frames for the sequence have been sent.
510 * We can only be called to send once for each sequence.
511 */
512 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
513 if (f_ctl & FC_FC_SEQ_INIT)
514 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
515 out:
516 return error;
517 }
518
519 /**
520 * fc_seq_send() - Send a frame using existing sequence/exchange pair
521 * @lport: The local port that the exchange will be sent on
522 * @sp: The sequence to be sent
523 * @fp: The frame to be sent on the exchange
524 *
525 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
526 * or indirectly by calling libfc_function_template.frame_send().
527 */
528 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
529 struct fc_frame *fp)
530 {
531 struct fc_exch *ep;
532 int error;
533 ep = fc_seq_exch(sp);
534 spin_lock_bh(&ep->ex_lock);
535 error = fc_seq_send_locked(lport, sp, fp);
536 spin_unlock_bh(&ep->ex_lock);
537 return error;
538 }
539
540 /**
541 * fc_seq_alloc() - Allocate a sequence for a given exchange
542 * @ep: The exchange to allocate a new sequence for
543 * @seq_id: The sequence ID to be used
544 *
545 * We don't support multiple originated sequences on the same exchange.
546 * By implication, any previously originated sequence on this exchange
547 * is complete, and we reallocate the same sequence.
548 */
549 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
550 {
551 struct fc_seq *sp;
552
553 sp = &ep->seq;
554 sp->ssb_stat = 0;
555 sp->cnt = 0;
556 sp->id = seq_id;
557 return sp;
558 }
559
560 /**
561 * fc_seq_start_next_locked() - Allocate a new sequence on the same
562 * exchange as the supplied sequence
563 * @sp: The sequence/exchange to get a new sequence for
564 */
565 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
566 {
567 struct fc_exch *ep = fc_seq_exch(sp);
568
569 sp = fc_seq_alloc(ep, ep->seq_id++);
570 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
571 ep->f_ctl, sp->id);
572 return sp;
573 }
574
575 /**
576 * fc_seq_start_next() - Lock the exchange and get a new sequence
577 * for a given sequence/exchange pair
578 * @sp: The sequence/exchange to get a new exchange for
579 */
580 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
581 {
582 struct fc_exch *ep = fc_seq_exch(sp);
583
584 spin_lock_bh(&ep->ex_lock);
585 sp = fc_seq_start_next_locked(sp);
586 spin_unlock_bh(&ep->ex_lock);
587
588 return sp;
589 }
590
591 /*
592 * Set the response handler for the exchange associated with a sequence.
593 *
594 * Note: May sleep if invoked from outside a response handler.
595 */
596 static void fc_seq_set_resp(struct fc_seq *sp,
597 void (*resp)(struct fc_seq *, struct fc_frame *,
598 void *),
599 void *arg)
600 {
601 struct fc_exch *ep = fc_seq_exch(sp);
602 DEFINE_WAIT(wait);
603
604 spin_lock_bh(&ep->ex_lock);
605 while (ep->resp_active && ep->resp_task != current) {
606 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock_bh(&ep->ex_lock);
608
609 schedule();
610
611 spin_lock_bh(&ep->ex_lock);
612 }
613 finish_wait(&ep->resp_wq, &wait);
614 ep->resp = resp;
615 ep->arg = arg;
616 spin_unlock_bh(&ep->ex_lock);
617 }
618
619 /**
620 * fc_exch_abort_locked() - Abort an exchange
621 * @ep: The exchange to be aborted
622 * @timer_msec: The period of time to wait before aborting
623 *
624 * Locking notes: Called with exch lock held
625 *
626 * Return value: 0 on success else error code
627 */
628 static int fc_exch_abort_locked(struct fc_exch *ep,
629 unsigned int timer_msec)
630 {
631 struct fc_seq *sp;
632 struct fc_frame *fp;
633 int error;
634
635 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
636 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
637 return -ENXIO;
638
639 /*
640 * Send the abort on a new sequence if possible.
641 */
642 sp = fc_seq_start_next_locked(&ep->seq);
643 if (!sp)
644 return -ENOMEM;
645
646 if (timer_msec)
647 fc_exch_timer_set_locked(ep, timer_msec);
648
649 if (ep->sid) {
650 /*
651 * Send an abort for the sequence that timed out.
652 */
653 fp = fc_frame_alloc(ep->lp, 0);
654 if (fp) {
655 ep->esb_stat |= ESB_ST_SEQ_INIT;
656 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
657 FC_TYPE_BLS, FC_FC_END_SEQ |
658 FC_FC_SEQ_INIT, 0);
659 error = fc_seq_send_locked(ep->lp, sp, fp);
660 } else {
661 error = -ENOBUFS;
662 }
663 } else {
664 /*
665 * If not logged into the fabric, don't send ABTS but leave
666 * sequence active until next timeout.
667 */
668 error = 0;
669 }
670 ep->esb_stat |= ESB_ST_ABNORMAL;
671 return error;
672 }
673
674 /**
675 * fc_seq_exch_abort() - Abort an exchange and sequence
676 * @req_sp: The sequence to be aborted
677 * @timer_msec: The period of time to wait before aborting
678 *
679 * Generally called because of a timeout or an abort from the upper layer.
680 *
681 * Return value: 0 on success else error code
682 */
683 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
684 unsigned int timer_msec)
685 {
686 struct fc_exch *ep;
687 int error;
688
689 ep = fc_seq_exch(req_sp);
690 spin_lock_bh(&ep->ex_lock);
691 error = fc_exch_abort_locked(ep, timer_msec);
692 spin_unlock_bh(&ep->ex_lock);
693 return error;
694 }
695
696 /**
697 * fc_invoke_resp() - invoke ep->resp()
698 *
699 * Notes:
700 * It is assumed that after initialization finished (this means the
701 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
702 * modified only via fc_seq_set_resp(). This guarantees that none of these
703 * two variables changes if ep->resp_active > 0.
704 *
705 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
706 * this function is invoked, the first spin_lock_bh() call in this function
707 * will wait until fc_seq_set_resp() has finished modifying these variables.
708 *
709 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
710 * ep->resp() won't be invoked after fc_exch_done() has returned.
711 *
712 * The response handler itself may invoke fc_exch_done(), which will clear the
713 * ep->resp pointer.
714 *
715 * Return value:
716 * Returns true if and only if ep->resp has been invoked.
717 */
718 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
719 struct fc_frame *fp)
720 {
721 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
722 void *arg;
723 bool res = false;
724
725 spin_lock_bh(&ep->ex_lock);
726 ep->resp_active++;
727 if (ep->resp_task != current)
728 ep->resp_task = !ep->resp_task ? current : NULL;
729 resp = ep->resp;
730 arg = ep->arg;
731 spin_unlock_bh(&ep->ex_lock);
732
733 if (resp) {
734 resp(sp, fp, arg);
735 res = true;
736 } else if (!IS_ERR(fp)) {
737 fc_frame_free(fp);
738 }
739
740 spin_lock_bh(&ep->ex_lock);
741 if (--ep->resp_active == 0)
742 ep->resp_task = NULL;
743 spin_unlock_bh(&ep->ex_lock);
744
745 if (ep->resp_active == 0)
746 wake_up(&ep->resp_wq);
747
748 return res;
749 }
750
751 /**
752 * fc_exch_timeout() - Handle exchange timer expiration
753 * @work: The work_struct identifying the exchange that timed out
754 */
755 static void fc_exch_timeout(struct work_struct *work)
756 {
757 struct fc_exch *ep = container_of(work, struct fc_exch,
758 timeout_work.work);
759 struct fc_seq *sp = &ep->seq;
760 u32 e_stat;
761 int rc = 1;
762
763 FC_EXCH_DBG(ep, "Exchange timed out\n");
764
765 spin_lock_bh(&ep->ex_lock);
766 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
767 goto unlock;
768
769 e_stat = ep->esb_stat;
770 if (e_stat & ESB_ST_COMPLETE) {
771 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
772 spin_unlock_bh(&ep->ex_lock);
773 if (e_stat & ESB_ST_REC_QUAL)
774 fc_exch_rrq(ep);
775 goto done;
776 } else {
777 if (e_stat & ESB_ST_ABNORMAL)
778 rc = fc_exch_done_locked(ep);
779 spin_unlock_bh(&ep->ex_lock);
780 if (!rc)
781 fc_exch_delete(ep);
782 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
783 fc_seq_set_resp(sp, NULL, ep->arg);
784 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
785 goto done;
786 }
787 unlock:
788 spin_unlock_bh(&ep->ex_lock);
789 done:
790 /*
791 * This release matches the hold taken when the timer was set.
792 */
793 fc_exch_release(ep);
794 }
795
796 /**
797 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
798 * @lport: The local port that the exchange is for
799 * @mp: The exchange manager that will allocate the exchange
800 *
801 * Returns pointer to allocated fc_exch with exch lock held.
802 */
803 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
804 struct fc_exch_mgr *mp)
805 {
806 struct fc_exch *ep;
807 unsigned int cpu;
808 u16 index;
809 struct fc_exch_pool *pool;
810
811 /* allocate memory for exchange */
812 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
813 if (!ep) {
814 atomic_inc(&mp->stats.no_free_exch);
815 goto out;
816 }
817 memset(ep, 0, sizeof(*ep));
818
819 cpu = get_cpu();
820 pool = per_cpu_ptr(mp->pool, cpu);
821 spin_lock_bh(&pool->lock);
822 put_cpu();
823
824 /* peek cache of free slot */
825 if (pool->left != FC_XID_UNKNOWN) {
826 index = pool->left;
827 pool->left = FC_XID_UNKNOWN;
828 goto hit;
829 }
830 if (pool->right != FC_XID_UNKNOWN) {
831 index = pool->right;
832 pool->right = FC_XID_UNKNOWN;
833 goto hit;
834 }
835
836 index = pool->next_index;
837 /* allocate new exch from pool */
838 while (fc_exch_ptr_get(pool, index)) {
839 index = index == mp->pool_max_index ? 0 : index + 1;
840 if (index == pool->next_index)
841 goto err;
842 }
843 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
844 hit:
845 fc_exch_hold(ep); /* hold for exch in mp */
846 spin_lock_init(&ep->ex_lock);
847 /*
848 * Hold exch lock for caller to prevent fc_exch_reset()
849 * from releasing exch while fc_exch_alloc() caller is
850 * still working on exch.
851 */
852 spin_lock_bh(&ep->ex_lock);
853
854 fc_exch_ptr_set(pool, index, ep);
855 list_add_tail(&ep->ex_list, &pool->ex_list);
856 fc_seq_alloc(ep, ep->seq_id++);
857 pool->total_exches++;
858 spin_unlock_bh(&pool->lock);
859
860 /*
861 * update exchange
862 */
863 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
864 ep->em = mp;
865 ep->pool = pool;
866 ep->lp = lport;
867 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
868 ep->rxid = FC_XID_UNKNOWN;
869 ep->class = mp->class;
870 ep->resp_active = 0;
871 init_waitqueue_head(&ep->resp_wq);
872 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
873 out:
874 return ep;
875 err:
876 spin_unlock_bh(&pool->lock);
877 atomic_inc(&mp->stats.no_free_exch_xid);
878 mempool_free(ep, mp->ep_pool);
879 return NULL;
880 }
881
882 /**
883 * fc_exch_alloc() - Allocate an exchange from an EM on a
884 * local port's list of EMs.
885 * @lport: The local port that will own the exchange
886 * @fp: The FC frame that the exchange will be for
887 *
888 * This function walks the list of exchange manager(EM)
889 * anchors to select an EM for a new exchange allocation. The
890 * EM is selected when a NULL match function pointer is encountered
891 * or when a call to a match function returns true.
892 */
893 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
894 struct fc_frame *fp)
895 {
896 struct fc_exch_mgr_anchor *ema;
897
898 list_for_each_entry(ema, &lport->ema_list, ema_list)
899 if (!ema->match || ema->match(fp))
900 return fc_exch_em_alloc(lport, ema->mp);
901 return NULL;
902 }
903
904 /**
905 * fc_exch_find() - Lookup and hold an exchange
906 * @mp: The exchange manager to lookup the exchange from
907 * @xid: The XID of the exchange to look up
908 */
909 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
910 {
911 struct fc_exch_pool *pool;
912 struct fc_exch *ep = NULL;
913
914 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
915 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
916 spin_lock_bh(&pool->lock);
917 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
918 if (ep) {
919 WARN_ON(ep->xid != xid);
920 fc_exch_hold(ep);
921 }
922 spin_unlock_bh(&pool->lock);
923 }
924 return ep;
925 }
926
927
928 /**
929 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
930 * the memory allocated for the related objects may be freed.
931 * @sp: The sequence that has completed
932 *
933 * Note: May sleep if invoked from outside a response handler.
934 */
935 static void fc_exch_done(struct fc_seq *sp)
936 {
937 struct fc_exch *ep = fc_seq_exch(sp);
938 int rc;
939
940 spin_lock_bh(&ep->ex_lock);
941 rc = fc_exch_done_locked(ep);
942 spin_unlock_bh(&ep->ex_lock);
943
944 fc_seq_set_resp(sp, NULL, ep->arg);
945 if (!rc)
946 fc_exch_delete(ep);
947 }
948
949 /**
950 * fc_exch_resp() - Allocate a new exchange for a response frame
951 * @lport: The local port that the exchange was for
952 * @mp: The exchange manager to allocate the exchange from
953 * @fp: The response frame
954 *
955 * Sets the responder ID in the frame header.
956 */
957 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
958 struct fc_exch_mgr *mp,
959 struct fc_frame *fp)
960 {
961 struct fc_exch *ep;
962 struct fc_frame_header *fh;
963
964 ep = fc_exch_alloc(lport, fp);
965 if (ep) {
966 ep->class = fc_frame_class(fp);
967
968 /*
969 * Set EX_CTX indicating we're responding on this exchange.
970 */
971 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
972 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
973 fh = fc_frame_header_get(fp);
974 ep->sid = ntoh24(fh->fh_d_id);
975 ep->did = ntoh24(fh->fh_s_id);
976 ep->oid = ep->did;
977
978 /*
979 * Allocated exchange has placed the XID in the
980 * originator field. Move it to the responder field,
981 * and set the originator XID from the frame.
982 */
983 ep->rxid = ep->xid;
984 ep->oxid = ntohs(fh->fh_ox_id);
985 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
986 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
987 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
988
989 fc_exch_hold(ep); /* hold for caller */
990 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
991 }
992 return ep;
993 }
994
995 /**
996 * fc_seq_lookup_recip() - Find a sequence where the other end
997 * originated the sequence
998 * @lport: The local port that the frame was sent to
999 * @mp: The Exchange Manager to lookup the exchange from
1000 * @fp: The frame associated with the sequence we're looking for
1001 *
1002 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1003 * on the ep that should be released by the caller.
1004 */
1005 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1006 struct fc_exch_mgr *mp,
1007 struct fc_frame *fp)
1008 {
1009 struct fc_frame_header *fh = fc_frame_header_get(fp);
1010 struct fc_exch *ep = NULL;
1011 struct fc_seq *sp = NULL;
1012 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1013 u32 f_ctl;
1014 u16 xid;
1015
1016 f_ctl = ntoh24(fh->fh_f_ctl);
1017 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1018
1019 /*
1020 * Lookup or create the exchange if we will be creating the sequence.
1021 */
1022 if (f_ctl & FC_FC_EX_CTX) {
1023 xid = ntohs(fh->fh_ox_id); /* we originated exch */
1024 ep = fc_exch_find(mp, xid);
1025 if (!ep) {
1026 atomic_inc(&mp->stats.xid_not_found);
1027 reject = FC_RJT_OX_ID;
1028 goto out;
1029 }
1030 if (ep->rxid == FC_XID_UNKNOWN)
1031 ep->rxid = ntohs(fh->fh_rx_id);
1032 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1033 reject = FC_RJT_OX_ID;
1034 goto rel;
1035 }
1036 } else {
1037 xid = ntohs(fh->fh_rx_id); /* we are the responder */
1038
1039 /*
1040 * Special case for MDS issuing an ELS TEST with a
1041 * bad rxid of 0.
1042 * XXX take this out once we do the proper reject.
1043 */
1044 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1045 fc_frame_payload_op(fp) == ELS_TEST) {
1046 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1047 xid = FC_XID_UNKNOWN;
1048 }
1049
1050 /*
1051 * new sequence - find the exchange
1052 */
1053 ep = fc_exch_find(mp, xid);
1054 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1055 if (ep) {
1056 atomic_inc(&mp->stats.xid_busy);
1057 reject = FC_RJT_RX_ID;
1058 goto rel;
1059 }
1060 ep = fc_exch_resp(lport, mp, fp);
1061 if (!ep) {
1062 reject = FC_RJT_EXCH_EST; /* XXX */
1063 goto out;
1064 }
1065 xid = ep->xid; /* get our XID */
1066 } else if (!ep) {
1067 atomic_inc(&mp->stats.xid_not_found);
1068 reject = FC_RJT_RX_ID; /* XID not found */
1069 goto out;
1070 }
1071 }
1072
1073 spin_lock_bh(&ep->ex_lock);
1074 /*
1075 * At this point, we have the exchange held.
1076 * Find or create the sequence.
1077 */
1078 if (fc_sof_is_init(fr_sof(fp))) {
1079 sp = &ep->seq;
1080 sp->ssb_stat |= SSB_ST_RESP;
1081 sp->id = fh->fh_seq_id;
1082 } else {
1083 sp = &ep->seq;
1084 if (sp->id != fh->fh_seq_id) {
1085 atomic_inc(&mp->stats.seq_not_found);
1086 if (f_ctl & FC_FC_END_SEQ) {
1087 /*
1088 * Update sequence_id based on incoming last
1089 * frame of sequence exchange. This is needed
1090 * for FC target where DDP has been used
1091 * on target where, stack is indicated only
1092 * about last frame's (payload _header) header.
1093 * Whereas "seq_id" which is part of
1094 * frame_header is allocated by initiator
1095 * which is totally different from "seq_id"
1096 * allocated when XFER_RDY was sent by target.
1097 * To avoid false -ve which results into not
1098 * sending RSP, hence write request on other
1099 * end never finishes.
1100 */
1101 sp->ssb_stat |= SSB_ST_RESP;
1102 sp->id = fh->fh_seq_id;
1103 } else {
1104 spin_unlock_bh(&ep->ex_lock);
1105
1106 /* sequence/exch should exist */
1107 reject = FC_RJT_SEQ_ID;
1108 goto rel;
1109 }
1110 }
1111 }
1112 WARN_ON(ep != fc_seq_exch(sp));
1113
1114 if (f_ctl & FC_FC_SEQ_INIT)
1115 ep->esb_stat |= ESB_ST_SEQ_INIT;
1116 spin_unlock_bh(&ep->ex_lock);
1117
1118 fr_seq(fp) = sp;
1119 out:
1120 return reject;
1121 rel:
1122 fc_exch_done(&ep->seq);
1123 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1124 return reject;
1125 }
1126
1127 /**
1128 * fc_seq_lookup_orig() - Find a sequence where this end
1129 * originated the sequence
1130 * @mp: The Exchange Manager to lookup the exchange from
1131 * @fp: The frame associated with the sequence we're looking for
1132 *
1133 * Does not hold the sequence for the caller.
1134 */
1135 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1136 struct fc_frame *fp)
1137 {
1138 struct fc_frame_header *fh = fc_frame_header_get(fp);
1139 struct fc_exch *ep;
1140 struct fc_seq *sp = NULL;
1141 u32 f_ctl;
1142 u16 xid;
1143
1144 f_ctl = ntoh24(fh->fh_f_ctl);
1145 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1146 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1147 ep = fc_exch_find(mp, xid);
1148 if (!ep)
1149 return NULL;
1150 if (ep->seq.id == fh->fh_seq_id) {
1151 /*
1152 * Save the RX_ID if we didn't previously know it.
1153 */
1154 sp = &ep->seq;
1155 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1156 ep->rxid == FC_XID_UNKNOWN) {
1157 ep->rxid = ntohs(fh->fh_rx_id);
1158 }
1159 }
1160 fc_exch_release(ep);
1161 return sp;
1162 }
1163
1164 /**
1165 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1166 * @ep: The exchange to set the addresses for
1167 * @orig_id: The originator's ID
1168 * @resp_id: The responder's ID
1169 *
1170 * Note this must be done before the first sequence of the exchange is sent.
1171 */
1172 static void fc_exch_set_addr(struct fc_exch *ep,
1173 u32 orig_id, u32 resp_id)
1174 {
1175 ep->oid = orig_id;
1176 if (ep->esb_stat & ESB_ST_RESP) {
1177 ep->sid = resp_id;
1178 ep->did = orig_id;
1179 } else {
1180 ep->sid = orig_id;
1181 ep->did = resp_id;
1182 }
1183 }
1184
1185 /**
1186 * fc_seq_els_rsp_send() - Send an ELS response using information from
1187 * the existing sequence/exchange.
1188 * @fp: The received frame
1189 * @els_cmd: The ELS command to be sent
1190 * @els_data: The ELS data to be sent
1191 *
1192 * The received frame is not freed.
1193 */
1194 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1195 struct fc_seq_els_data *els_data)
1196 {
1197 switch (els_cmd) {
1198 case ELS_LS_RJT:
1199 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1200 break;
1201 case ELS_LS_ACC:
1202 fc_seq_ls_acc(fp);
1203 break;
1204 case ELS_RRQ:
1205 fc_exch_els_rrq(fp);
1206 break;
1207 case ELS_REC:
1208 fc_exch_els_rec(fp);
1209 break;
1210 default:
1211 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1212 }
1213 }
1214
1215 /**
1216 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1217 * @sp: The sequence that is to be sent
1218 * @fp: The frame that will be sent on the sequence
1219 * @rctl: The R_CTL information to be sent
1220 * @fh_type: The frame header type
1221 */
1222 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1223 enum fc_rctl rctl, enum fc_fh_type fh_type)
1224 {
1225 u32 f_ctl;
1226 struct fc_exch *ep = fc_seq_exch(sp);
1227
1228 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1229 f_ctl |= ep->f_ctl;
1230 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1231 fc_seq_send_locked(ep->lp, sp, fp);
1232 }
1233
1234 /**
1235 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1236 * @sp: The sequence to send the ACK on
1237 * @rx_fp: The received frame that is being acknoledged
1238 *
1239 * Send ACK_1 (or equiv.) indicating we received something.
1240 */
1241 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1242 {
1243 struct fc_frame *fp;
1244 struct fc_frame_header *rx_fh;
1245 struct fc_frame_header *fh;
1246 struct fc_exch *ep = fc_seq_exch(sp);
1247 struct fc_lport *lport = ep->lp;
1248 unsigned int f_ctl;
1249
1250 /*
1251 * Don't send ACKs for class 3.
1252 */
1253 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1254 fp = fc_frame_alloc(lport, 0);
1255 if (!fp)
1256 return;
1257
1258 fh = fc_frame_header_get(fp);
1259 fh->fh_r_ctl = FC_RCTL_ACK_1;
1260 fh->fh_type = FC_TYPE_BLS;
1261
1262 /*
1263 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1264 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1265 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1266 * Last ACK uses bits 7-6 (continue sequence),
1267 * bits 5-4 are meaningful (what kind of ACK to use).
1268 */
1269 rx_fh = fc_frame_header_get(rx_fp);
1270 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1271 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1272 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1273 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1274 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1275 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1276 hton24(fh->fh_f_ctl, f_ctl);
1277
1278 fc_exch_setup_hdr(ep, fp, f_ctl);
1279 fh->fh_seq_id = rx_fh->fh_seq_id;
1280 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1281 fh->fh_parm_offset = htonl(1); /* ack single frame */
1282
1283 fr_sof(fp) = fr_sof(rx_fp);
1284 if (f_ctl & FC_FC_END_SEQ)
1285 fr_eof(fp) = FC_EOF_T;
1286 else
1287 fr_eof(fp) = FC_EOF_N;
1288
1289 lport->tt.frame_send(lport, fp);
1290 }
1291 }
1292
1293 /**
1294 * fc_exch_send_ba_rjt() - Send BLS Reject
1295 * @rx_fp: The frame being rejected
1296 * @reason: The reason the frame is being rejected
1297 * @explan: The explanation for the rejection
1298 *
1299 * This is for rejecting BA_ABTS only.
1300 */
1301 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1302 enum fc_ba_rjt_reason reason,
1303 enum fc_ba_rjt_explan explan)
1304 {
1305 struct fc_frame *fp;
1306 struct fc_frame_header *rx_fh;
1307 struct fc_frame_header *fh;
1308 struct fc_ba_rjt *rp;
1309 struct fc_lport *lport;
1310 unsigned int f_ctl;
1311
1312 lport = fr_dev(rx_fp);
1313 fp = fc_frame_alloc(lport, sizeof(*rp));
1314 if (!fp)
1315 return;
1316 fh = fc_frame_header_get(fp);
1317 rx_fh = fc_frame_header_get(rx_fp);
1318
1319 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1320
1321 rp = fc_frame_payload_get(fp, sizeof(*rp));
1322 rp->br_reason = reason;
1323 rp->br_explan = explan;
1324
1325 /*
1326 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1327 */
1328 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1329 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1330 fh->fh_ox_id = rx_fh->fh_ox_id;
1331 fh->fh_rx_id = rx_fh->fh_rx_id;
1332 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1333 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1334 fh->fh_type = FC_TYPE_BLS;
1335
1336 /*
1337 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1338 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1339 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1340 * Last ACK uses bits 7-6 (continue sequence),
1341 * bits 5-4 are meaningful (what kind of ACK to use).
1342 * Always set LAST_SEQ, END_SEQ.
1343 */
1344 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1345 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1346 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1347 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1348 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1349 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1350 f_ctl &= ~FC_FC_FIRST_SEQ;
1351 hton24(fh->fh_f_ctl, f_ctl);
1352
1353 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1354 fr_eof(fp) = FC_EOF_T;
1355 if (fc_sof_needs_ack(fr_sof(fp)))
1356 fr_eof(fp) = FC_EOF_N;
1357
1358 lport->tt.frame_send(lport, fp);
1359 }
1360
1361 /**
1362 * fc_exch_recv_abts() - Handle an incoming ABTS
1363 * @ep: The exchange the abort was on
1364 * @rx_fp: The ABTS frame
1365 *
1366 * This would be for target mode usually, but could be due to lost
1367 * FCP transfer ready, confirm or RRQ. We always handle this as an
1368 * exchange abort, ignoring the parameter.
1369 */
1370 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1371 {
1372 struct fc_frame *fp;
1373 struct fc_ba_acc *ap;
1374 struct fc_frame_header *fh;
1375 struct fc_seq *sp;
1376
1377 if (!ep)
1378 goto reject;
1379
1380 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1381 if (!fp)
1382 goto free;
1383
1384 spin_lock_bh(&ep->ex_lock);
1385 if (ep->esb_stat & ESB_ST_COMPLETE) {
1386 spin_unlock_bh(&ep->ex_lock);
1387
1388 fc_frame_free(fp);
1389 goto reject;
1390 }
1391 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1392 ep->esb_stat |= ESB_ST_REC_QUAL;
1393 fc_exch_hold(ep); /* hold for REC_QUAL */
1394 }
1395 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1396 fh = fc_frame_header_get(fp);
1397 ap = fc_frame_payload_get(fp, sizeof(*ap));
1398 memset(ap, 0, sizeof(*ap));
1399 sp = &ep->seq;
1400 ap->ba_high_seq_cnt = htons(0xffff);
1401 if (sp->ssb_stat & SSB_ST_RESP) {
1402 ap->ba_seq_id = sp->id;
1403 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1404 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1405 ap->ba_low_seq_cnt = htons(sp->cnt);
1406 }
1407 sp = fc_seq_start_next_locked(sp);
1408 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1409 ep->esb_stat |= ESB_ST_ABNORMAL;
1410 spin_unlock_bh(&ep->ex_lock);
1411
1412 free:
1413 fc_frame_free(rx_fp);
1414 return;
1415
1416 reject:
1417 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1418 goto free;
1419 }
1420
1421 /**
1422 * fc_seq_assign() - Assign exchange and sequence for incoming request
1423 * @lport: The local port that received the request
1424 * @fp: The request frame
1425 *
1426 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1427 * A reference will be held on the exchange/sequence for the caller, which
1428 * must call fc_seq_release().
1429 */
1430 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1431 {
1432 struct fc_exch_mgr_anchor *ema;
1433
1434 WARN_ON(lport != fr_dev(fp));
1435 WARN_ON(fr_seq(fp));
1436 fr_seq(fp) = NULL;
1437
1438 list_for_each_entry(ema, &lport->ema_list, ema_list)
1439 if ((!ema->match || ema->match(fp)) &&
1440 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1441 break;
1442 return fr_seq(fp);
1443 }
1444
1445 /**
1446 * fc_seq_release() - Release the hold
1447 * @sp: The sequence.
1448 */
1449 static void fc_seq_release(struct fc_seq *sp)
1450 {
1451 fc_exch_release(fc_seq_exch(sp));
1452 }
1453
1454 /**
1455 * fc_exch_recv_req() - Handler for an incoming request
1456 * @lport: The local port that received the request
1457 * @mp: The EM that the exchange is on
1458 * @fp: The request frame
1459 *
1460 * This is used when the other end is originating the exchange
1461 * and the sequence.
1462 */
1463 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1464 struct fc_frame *fp)
1465 {
1466 struct fc_frame_header *fh = fc_frame_header_get(fp);
1467 struct fc_seq *sp = NULL;
1468 struct fc_exch *ep = NULL;
1469 enum fc_pf_rjt_reason reject;
1470
1471 /* We can have the wrong fc_lport at this point with NPIV, which is a
1472 * problem now that we know a new exchange needs to be allocated
1473 */
1474 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1475 if (!lport) {
1476 fc_frame_free(fp);
1477 return;
1478 }
1479 fr_dev(fp) = lport;
1480
1481 BUG_ON(fr_seq(fp)); /* XXX remove later */
1482
1483 /*
1484 * If the RX_ID is 0xffff, don't allocate an exchange.
1485 * The upper-level protocol may request one later, if needed.
1486 */
1487 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1488 return lport->tt.lport_recv(lport, fp);
1489
1490 reject = fc_seq_lookup_recip(lport, mp, fp);
1491 if (reject == FC_RJT_NONE) {
1492 sp = fr_seq(fp); /* sequence will be held */
1493 ep = fc_seq_exch(sp);
1494 fc_seq_send_ack(sp, fp);
1495 ep->encaps = fr_encaps(fp);
1496
1497 /*
1498 * Call the receive function.
1499 *
1500 * The receive function may allocate a new sequence
1501 * over the old one, so we shouldn't change the
1502 * sequence after this.
1503 *
1504 * The frame will be freed by the receive function.
1505 * If new exch resp handler is valid then call that
1506 * first.
1507 */
1508 if (!fc_invoke_resp(ep, sp, fp))
1509 lport->tt.lport_recv(lport, fp);
1510 fc_exch_release(ep); /* release from lookup */
1511 } else {
1512 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1513 reject);
1514 fc_frame_free(fp);
1515 }
1516 }
1517
1518 /**
1519 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1520 * end is the originator of the sequence that is a
1521 * response to our initial exchange
1522 * @mp: The EM that the exchange is on
1523 * @fp: The response frame
1524 */
1525 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1526 {
1527 struct fc_frame_header *fh = fc_frame_header_get(fp);
1528 struct fc_seq *sp;
1529 struct fc_exch *ep;
1530 enum fc_sof sof;
1531 u32 f_ctl;
1532 int rc;
1533
1534 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1535 if (!ep) {
1536 atomic_inc(&mp->stats.xid_not_found);
1537 goto out;
1538 }
1539 if (ep->esb_stat & ESB_ST_COMPLETE) {
1540 atomic_inc(&mp->stats.xid_not_found);
1541 goto rel;
1542 }
1543 if (ep->rxid == FC_XID_UNKNOWN)
1544 ep->rxid = ntohs(fh->fh_rx_id);
1545 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1546 atomic_inc(&mp->stats.xid_not_found);
1547 goto rel;
1548 }
1549 if (ep->did != ntoh24(fh->fh_s_id) &&
1550 ep->did != FC_FID_FLOGI) {
1551 atomic_inc(&mp->stats.xid_not_found);
1552 goto rel;
1553 }
1554 sof = fr_sof(fp);
1555 sp = &ep->seq;
1556 if (fc_sof_is_init(sof)) {
1557 sp->ssb_stat |= SSB_ST_RESP;
1558 sp->id = fh->fh_seq_id;
1559 } else if (sp->id != fh->fh_seq_id) {
1560 atomic_inc(&mp->stats.seq_not_found);
1561 goto rel;
1562 }
1563
1564 f_ctl = ntoh24(fh->fh_f_ctl);
1565 fr_seq(fp) = sp;
1566
1567 spin_lock_bh(&ep->ex_lock);
1568 if (f_ctl & FC_FC_SEQ_INIT)
1569 ep->esb_stat |= ESB_ST_SEQ_INIT;
1570 spin_unlock_bh(&ep->ex_lock);
1571
1572 if (fc_sof_needs_ack(sof))
1573 fc_seq_send_ack(sp, fp);
1574
1575 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1576 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1577 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1578 spin_lock_bh(&ep->ex_lock);
1579 rc = fc_exch_done_locked(ep);
1580 WARN_ON(fc_seq_exch(sp) != ep);
1581 spin_unlock_bh(&ep->ex_lock);
1582 if (!rc)
1583 fc_exch_delete(ep);
1584 }
1585
1586 /*
1587 * Call the receive function.
1588 * The sequence is held (has a refcnt) for us,
1589 * but not for the receive function.
1590 *
1591 * The receive function may allocate a new sequence
1592 * over the old one, so we shouldn't change the
1593 * sequence after this.
1594 *
1595 * The frame will be freed by the receive function.
1596 * If new exch resp handler is valid then call that
1597 * first.
1598 */
1599 fc_invoke_resp(ep, sp, fp);
1600
1601 fc_exch_release(ep);
1602 return;
1603 rel:
1604 fc_exch_release(ep);
1605 out:
1606 fc_frame_free(fp);
1607 }
1608
1609 /**
1610 * fc_exch_recv_resp() - Handler for a sequence where other end is
1611 * responding to our sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The response frame
1614 */
1615 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1616 {
1617 struct fc_seq *sp;
1618
1619 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1620
1621 if (!sp)
1622 atomic_inc(&mp->stats.xid_not_found);
1623 else
1624 atomic_inc(&mp->stats.non_bls_resp);
1625
1626 fc_frame_free(fp);
1627 }
1628
1629 /**
1630 * fc_exch_abts_resp() - Handler for a response to an ABT
1631 * @ep: The exchange that the frame is on
1632 * @fp: The response frame
1633 *
1634 * This response would be to an ABTS cancelling an exchange or sequence.
1635 * The response can be either BA_ACC or BA_RJT
1636 */
1637 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1638 {
1639 struct fc_frame_header *fh;
1640 struct fc_ba_acc *ap;
1641 struct fc_seq *sp;
1642 u16 low;
1643 u16 high;
1644 int rc = 1, has_rec = 0;
1645
1646 fh = fc_frame_header_get(fp);
1647 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1648 fc_exch_rctl_name(fh->fh_r_ctl));
1649
1650 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1651 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1652 fc_exch_release(ep); /* release from pending timer hold */
1653 }
1654
1655 spin_lock_bh(&ep->ex_lock);
1656 switch (fh->fh_r_ctl) {
1657 case FC_RCTL_BA_ACC:
1658 ap = fc_frame_payload_get(fp, sizeof(*ap));
1659 if (!ap)
1660 break;
1661
1662 /*
1663 * Decide whether to establish a Recovery Qualifier.
1664 * We do this if there is a non-empty SEQ_CNT range and
1665 * SEQ_ID is the same as the one we aborted.
1666 */
1667 low = ntohs(ap->ba_low_seq_cnt);
1668 high = ntohs(ap->ba_high_seq_cnt);
1669 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1670 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1671 ap->ba_seq_id == ep->seq_id) && low != high) {
1672 ep->esb_stat |= ESB_ST_REC_QUAL;
1673 fc_exch_hold(ep); /* hold for recovery qualifier */
1674 has_rec = 1;
1675 }
1676 break;
1677 case FC_RCTL_BA_RJT:
1678 break;
1679 default:
1680 break;
1681 }
1682
1683 /* do we need to do some other checks here. Can we reuse more of
1684 * fc_exch_recv_seq_resp
1685 */
1686 sp = &ep->seq;
1687 /*
1688 * do we want to check END_SEQ as well as LAST_SEQ here?
1689 */
1690 if (ep->fh_type != FC_TYPE_FCP &&
1691 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1692 rc = fc_exch_done_locked(ep);
1693 spin_unlock_bh(&ep->ex_lock);
1694
1695 fc_exch_hold(ep);
1696 if (!rc)
1697 fc_exch_delete(ep);
1698 fc_invoke_resp(ep, sp, fp);
1699 if (has_rec)
1700 fc_exch_timer_set(ep, ep->r_a_tov);
1701 fc_exch_release(ep);
1702 }
1703
1704 /**
1705 * fc_exch_recv_bls() - Handler for a BLS sequence
1706 * @mp: The EM that the exchange is on
1707 * @fp: The request frame
1708 *
1709 * The BLS frame is always a sequence initiated by the remote side.
1710 * We may be either the originator or recipient of the exchange.
1711 */
1712 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1713 {
1714 struct fc_frame_header *fh;
1715 struct fc_exch *ep;
1716 u32 f_ctl;
1717
1718 fh = fc_frame_header_get(fp);
1719 f_ctl = ntoh24(fh->fh_f_ctl);
1720 fr_seq(fp) = NULL;
1721
1722 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1723 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1724 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1725 spin_lock_bh(&ep->ex_lock);
1726 ep->esb_stat |= ESB_ST_SEQ_INIT;
1727 spin_unlock_bh(&ep->ex_lock);
1728 }
1729 if (f_ctl & FC_FC_SEQ_CTX) {
1730 /*
1731 * A response to a sequence we initiated.
1732 * This should only be ACKs for class 2 or F.
1733 */
1734 switch (fh->fh_r_ctl) {
1735 case FC_RCTL_ACK_1:
1736 case FC_RCTL_ACK_0:
1737 break;
1738 default:
1739 if (ep)
1740 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1741 fh->fh_r_ctl,
1742 fc_exch_rctl_name(fh->fh_r_ctl));
1743 break;
1744 }
1745 fc_frame_free(fp);
1746 } else {
1747 switch (fh->fh_r_ctl) {
1748 case FC_RCTL_BA_RJT:
1749 case FC_RCTL_BA_ACC:
1750 if (ep)
1751 fc_exch_abts_resp(ep, fp);
1752 else
1753 fc_frame_free(fp);
1754 break;
1755 case FC_RCTL_BA_ABTS:
1756 fc_exch_recv_abts(ep, fp);
1757 break;
1758 default: /* ignore junk */
1759 fc_frame_free(fp);
1760 break;
1761 }
1762 }
1763 if (ep)
1764 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1765 }
1766
1767 /**
1768 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1769 * @rx_fp: The received frame, not freed here.
1770 *
1771 * If this fails due to allocation or transmit congestion, assume the
1772 * originator will repeat the sequence.
1773 */
1774 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1775 {
1776 struct fc_lport *lport;
1777 struct fc_els_ls_acc *acc;
1778 struct fc_frame *fp;
1779
1780 lport = fr_dev(rx_fp);
1781 fp = fc_frame_alloc(lport, sizeof(*acc));
1782 if (!fp)
1783 return;
1784 acc = fc_frame_payload_get(fp, sizeof(*acc));
1785 memset(acc, 0, sizeof(*acc));
1786 acc->la_cmd = ELS_LS_ACC;
1787 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1788 lport->tt.frame_send(lport, fp);
1789 }
1790
1791 /**
1792 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1793 * @rx_fp: The received frame, not freed here.
1794 * @reason: The reason the sequence is being rejected
1795 * @explan: The explanation for the rejection
1796 *
1797 * If this fails due to allocation or transmit congestion, assume the
1798 * originator will repeat the sequence.
1799 */
1800 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1801 enum fc_els_rjt_explan explan)
1802 {
1803 struct fc_lport *lport;
1804 struct fc_els_ls_rjt *rjt;
1805 struct fc_frame *fp;
1806
1807 lport = fr_dev(rx_fp);
1808 fp = fc_frame_alloc(lport, sizeof(*rjt));
1809 if (!fp)
1810 return;
1811 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1812 memset(rjt, 0, sizeof(*rjt));
1813 rjt->er_cmd = ELS_LS_RJT;
1814 rjt->er_reason = reason;
1815 rjt->er_explan = explan;
1816 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1817 lport->tt.frame_send(lport, fp);
1818 }
1819
1820 /**
1821 * fc_exch_reset() - Reset an exchange
1822 * @ep: The exchange to be reset
1823 *
1824 * Note: May sleep if invoked from outside a response handler.
1825 */
1826 static void fc_exch_reset(struct fc_exch *ep)
1827 {
1828 struct fc_seq *sp;
1829 int rc = 1;
1830
1831 spin_lock_bh(&ep->ex_lock);
1832 fc_exch_abort_locked(ep, 0);
1833 ep->state |= FC_EX_RST_CLEANUP;
1834 fc_exch_timer_cancel(ep);
1835 if (ep->esb_stat & ESB_ST_REC_QUAL)
1836 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1837 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1838 sp = &ep->seq;
1839 rc = fc_exch_done_locked(ep);
1840 spin_unlock_bh(&ep->ex_lock);
1841
1842 fc_exch_hold(ep);
1843
1844 if (!rc)
1845 fc_exch_delete(ep);
1846
1847 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1848 fc_seq_set_resp(sp, NULL, ep->arg);
1849 fc_exch_release(ep);
1850 }
1851
1852 /**
1853 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1854 * @lport: The local port that the exchange pool is on
1855 * @pool: The exchange pool to be reset
1856 * @sid: The source ID
1857 * @did: The destination ID
1858 *
1859 * Resets a per cpu exches pool, releasing all of its sequences
1860 * and exchanges. If sid is non-zero then reset only exchanges
1861 * we sourced from the local port's FID. If did is non-zero then
1862 * only reset exchanges destined for the local port's FID.
1863 */
1864 static void fc_exch_pool_reset(struct fc_lport *lport,
1865 struct fc_exch_pool *pool,
1866 u32 sid, u32 did)
1867 {
1868 struct fc_exch *ep;
1869 struct fc_exch *next;
1870
1871 spin_lock_bh(&pool->lock);
1872 restart:
1873 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1874 if ((lport == ep->lp) &&
1875 (sid == 0 || sid == ep->sid) &&
1876 (did == 0 || did == ep->did)) {
1877 fc_exch_hold(ep);
1878 spin_unlock_bh(&pool->lock);
1879
1880 fc_exch_reset(ep);
1881
1882 fc_exch_release(ep);
1883 spin_lock_bh(&pool->lock);
1884
1885 /*
1886 * must restart loop incase while lock
1887 * was down multiple eps were released.
1888 */
1889 goto restart;
1890 }
1891 }
1892 pool->next_index = 0;
1893 pool->left = FC_XID_UNKNOWN;
1894 pool->right = FC_XID_UNKNOWN;
1895 spin_unlock_bh(&pool->lock);
1896 }
1897
1898 /**
1899 * fc_exch_mgr_reset() - Reset all EMs of a local port
1900 * @lport: The local port whose EMs are to be reset
1901 * @sid: The source ID
1902 * @did: The destination ID
1903 *
1904 * Reset all EMs associated with a given local port. Release all
1905 * sequences and exchanges. If sid is non-zero then reset only the
1906 * exchanges sent from the local port's FID. If did is non-zero then
1907 * reset only exchanges destined for the local port's FID.
1908 */
1909 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1910 {
1911 struct fc_exch_mgr_anchor *ema;
1912 unsigned int cpu;
1913
1914 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1915 for_each_possible_cpu(cpu)
1916 fc_exch_pool_reset(lport,
1917 per_cpu_ptr(ema->mp->pool, cpu),
1918 sid, did);
1919 }
1920 }
1921 EXPORT_SYMBOL(fc_exch_mgr_reset);
1922
1923 /**
1924 * fc_exch_lookup() - find an exchange
1925 * @lport: The local port
1926 * @xid: The exchange ID
1927 *
1928 * Returns exchange pointer with hold for caller, or NULL if not found.
1929 */
1930 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1931 {
1932 struct fc_exch_mgr_anchor *ema;
1933
1934 list_for_each_entry(ema, &lport->ema_list, ema_list)
1935 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1936 return fc_exch_find(ema->mp, xid);
1937 return NULL;
1938 }
1939
1940 /**
1941 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1942 * @rfp: The REC frame, not freed here.
1943 *
1944 * Note that the requesting port may be different than the S_ID in the request.
1945 */
1946 static void fc_exch_els_rec(struct fc_frame *rfp)
1947 {
1948 struct fc_lport *lport;
1949 struct fc_frame *fp;
1950 struct fc_exch *ep;
1951 struct fc_els_rec *rp;
1952 struct fc_els_rec_acc *acc;
1953 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1954 enum fc_els_rjt_explan explan;
1955 u32 sid;
1956 u16 rxid;
1957 u16 oxid;
1958
1959 lport = fr_dev(rfp);
1960 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1961 explan = ELS_EXPL_INV_LEN;
1962 if (!rp)
1963 goto reject;
1964 sid = ntoh24(rp->rec_s_id);
1965 rxid = ntohs(rp->rec_rx_id);
1966 oxid = ntohs(rp->rec_ox_id);
1967
1968 ep = fc_exch_lookup(lport,
1969 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1970 explan = ELS_EXPL_OXID_RXID;
1971 if (!ep)
1972 goto reject;
1973 if (ep->oid != sid || oxid != ep->oxid)
1974 goto rel;
1975 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1976 goto rel;
1977 fp = fc_frame_alloc(lport, sizeof(*acc));
1978 if (!fp)
1979 goto out;
1980
1981 acc = fc_frame_payload_get(fp, sizeof(*acc));
1982 memset(acc, 0, sizeof(*acc));
1983 acc->reca_cmd = ELS_LS_ACC;
1984 acc->reca_ox_id = rp->rec_ox_id;
1985 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1986 acc->reca_rx_id = htons(ep->rxid);
1987 if (ep->sid == ep->oid)
1988 hton24(acc->reca_rfid, ep->did);
1989 else
1990 hton24(acc->reca_rfid, ep->sid);
1991 acc->reca_fc4value = htonl(ep->seq.rec_data);
1992 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1993 ESB_ST_SEQ_INIT |
1994 ESB_ST_COMPLETE));
1995 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1996 lport->tt.frame_send(lport, fp);
1997 out:
1998 fc_exch_release(ep);
1999 return;
2000
2001 rel:
2002 fc_exch_release(ep);
2003 reject:
2004 fc_seq_ls_rjt(rfp, reason, explan);
2005 }
2006
2007 /**
2008 * fc_exch_rrq_resp() - Handler for RRQ responses
2009 * @sp: The sequence that the RRQ is on
2010 * @fp: The RRQ frame
2011 * @arg: The exchange that the RRQ is on
2012 *
2013 * TODO: fix error handler.
2014 */
2015 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2016 {
2017 struct fc_exch *aborted_ep = arg;
2018 unsigned int op;
2019
2020 if (IS_ERR(fp)) {
2021 int err = PTR_ERR(fp);
2022
2023 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2024 goto cleanup;
2025 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2026 "frame error %d\n", err);
2027 return;
2028 }
2029
2030 op = fc_frame_payload_op(fp);
2031 fc_frame_free(fp);
2032
2033 switch (op) {
2034 case ELS_LS_RJT:
2035 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2036 /* fall through */
2037 case ELS_LS_ACC:
2038 goto cleanup;
2039 default:
2040 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2041 op);
2042 return;
2043 }
2044
2045 cleanup:
2046 fc_exch_done(&aborted_ep->seq);
2047 /* drop hold for rec qual */
2048 fc_exch_release(aborted_ep);
2049 }
2050
2051
2052 /**
2053 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2054 * @lport: The local port to send the frame on
2055 * @fp: The frame to be sent
2056 * @resp: The response handler for this request
2057 * @destructor: The destructor for the exchange
2058 * @arg: The argument to be passed to the response handler
2059 * @timer_msec: The timeout period for the exchange
2060 *
2061 * The frame pointer with some of the header's fields must be
2062 * filled before calling this routine, those fields are:
2063 *
2064 * - routing control
2065 * - FC port did
2066 * - FC port sid
2067 * - FC header type
2068 * - frame control
2069 * - parameter or relative offset
2070 */
2071 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2072 struct fc_frame *fp,
2073 void (*resp)(struct fc_seq *,
2074 struct fc_frame *fp,
2075 void *arg),
2076 void (*destructor)(struct fc_seq *,
2077 void *),
2078 void *arg, u32 timer_msec)
2079 {
2080 struct fc_exch *ep;
2081 struct fc_seq *sp = NULL;
2082 struct fc_frame_header *fh;
2083 struct fc_fcp_pkt *fsp = NULL;
2084 int rc = 1;
2085
2086 ep = fc_exch_alloc(lport, fp);
2087 if (!ep) {
2088 fc_frame_free(fp);
2089 return NULL;
2090 }
2091 ep->esb_stat |= ESB_ST_SEQ_INIT;
2092 fh = fc_frame_header_get(fp);
2093 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2094 ep->resp = resp;
2095 ep->destructor = destructor;
2096 ep->arg = arg;
2097 ep->r_a_tov = FC_DEF_R_A_TOV;
2098 ep->lp = lport;
2099 sp = &ep->seq;
2100
2101 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2102 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2103 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2104 sp->cnt++;
2105
2106 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2107 fsp = fr_fsp(fp);
2108 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2109 }
2110
2111 if (unlikely(lport->tt.frame_send(lport, fp)))
2112 goto err;
2113
2114 if (timer_msec)
2115 fc_exch_timer_set_locked(ep, timer_msec);
2116 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2117
2118 if (ep->f_ctl & FC_FC_SEQ_INIT)
2119 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2120 spin_unlock_bh(&ep->ex_lock);
2121 return sp;
2122 err:
2123 if (fsp)
2124 fc_fcp_ddp_done(fsp);
2125 rc = fc_exch_done_locked(ep);
2126 spin_unlock_bh(&ep->ex_lock);
2127 if (!rc)
2128 fc_exch_delete(ep);
2129 return NULL;
2130 }
2131
2132 /**
2133 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2134 * @ep: The exchange to send the RRQ on
2135 *
2136 * This tells the remote port to stop blocking the use of
2137 * the exchange and the seq_cnt range.
2138 */
2139 static void fc_exch_rrq(struct fc_exch *ep)
2140 {
2141 struct fc_lport *lport;
2142 struct fc_els_rrq *rrq;
2143 struct fc_frame *fp;
2144 u32 did;
2145
2146 lport = ep->lp;
2147
2148 fp = fc_frame_alloc(lport, sizeof(*rrq));
2149 if (!fp)
2150 goto retry;
2151
2152 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2153 memset(rrq, 0, sizeof(*rrq));
2154 rrq->rrq_cmd = ELS_RRQ;
2155 hton24(rrq->rrq_s_id, ep->sid);
2156 rrq->rrq_ox_id = htons(ep->oxid);
2157 rrq->rrq_rx_id = htons(ep->rxid);
2158
2159 did = ep->did;
2160 if (ep->esb_stat & ESB_ST_RESP)
2161 did = ep->sid;
2162
2163 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2164 lport->port_id, FC_TYPE_ELS,
2165 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2166
2167 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2168 lport->e_d_tov))
2169 return;
2170
2171 retry:
2172 spin_lock_bh(&ep->ex_lock);
2173 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2174 spin_unlock_bh(&ep->ex_lock);
2175 /* drop hold for rec qual */
2176 fc_exch_release(ep);
2177 return;
2178 }
2179 ep->esb_stat |= ESB_ST_REC_QUAL;
2180 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2181 spin_unlock_bh(&ep->ex_lock);
2182 }
2183
2184 /**
2185 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2186 * @fp: The RRQ frame, not freed here.
2187 */
2188 static void fc_exch_els_rrq(struct fc_frame *fp)
2189 {
2190 struct fc_lport *lport;
2191 struct fc_exch *ep = NULL; /* request or subject exchange */
2192 struct fc_els_rrq *rp;
2193 u32 sid;
2194 u16 xid;
2195 enum fc_els_rjt_explan explan;
2196
2197 lport = fr_dev(fp);
2198 rp = fc_frame_payload_get(fp, sizeof(*rp));
2199 explan = ELS_EXPL_INV_LEN;
2200 if (!rp)
2201 goto reject;
2202
2203 /*
2204 * lookup subject exchange.
2205 */
2206 sid = ntoh24(rp->rrq_s_id); /* subject source */
2207 xid = fc_host_port_id(lport->host) == sid ?
2208 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2209 ep = fc_exch_lookup(lport, xid);
2210 explan = ELS_EXPL_OXID_RXID;
2211 if (!ep)
2212 goto reject;
2213 spin_lock_bh(&ep->ex_lock);
2214 if (ep->oxid != ntohs(rp->rrq_ox_id))
2215 goto unlock_reject;
2216 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2217 ep->rxid != FC_XID_UNKNOWN)
2218 goto unlock_reject;
2219 explan = ELS_EXPL_SID;
2220 if (ep->sid != sid)
2221 goto unlock_reject;
2222
2223 /*
2224 * Clear Recovery Qualifier state, and cancel timer if complete.
2225 */
2226 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2227 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2228 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2229 }
2230 if (ep->esb_stat & ESB_ST_COMPLETE)
2231 fc_exch_timer_cancel(ep);
2232
2233 spin_unlock_bh(&ep->ex_lock);
2234
2235 /*
2236 * Send LS_ACC.
2237 */
2238 fc_seq_ls_acc(fp);
2239 goto out;
2240
2241 unlock_reject:
2242 spin_unlock_bh(&ep->ex_lock);
2243 reject:
2244 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2245 out:
2246 if (ep)
2247 fc_exch_release(ep); /* drop hold from fc_exch_find */
2248 }
2249
2250 /**
2251 * fc_exch_update_stats() - update exches stats to lport
2252 * @lport: The local port to update exchange manager stats
2253 */
2254 void fc_exch_update_stats(struct fc_lport *lport)
2255 {
2256 struct fc_host_statistics *st;
2257 struct fc_exch_mgr_anchor *ema;
2258 struct fc_exch_mgr *mp;
2259
2260 st = &lport->host_stats;
2261
2262 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2263 mp = ema->mp;
2264 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2265 st->fc_no_free_exch_xid +=
2266 atomic_read(&mp->stats.no_free_exch_xid);
2267 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2268 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2269 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2270 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2271 }
2272 }
2273 EXPORT_SYMBOL(fc_exch_update_stats);
2274
2275 /**
2276 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2277 * @lport: The local port to add the exchange manager to
2278 * @mp: The exchange manager to be added to the local port
2279 * @match: The match routine that indicates when this EM should be used
2280 */
2281 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2282 struct fc_exch_mgr *mp,
2283 bool (*match)(struct fc_frame *))
2284 {
2285 struct fc_exch_mgr_anchor *ema;
2286
2287 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2288 if (!ema)
2289 return ema;
2290
2291 ema->mp = mp;
2292 ema->match = match;
2293 /* add EM anchor to EM anchors list */
2294 list_add_tail(&ema->ema_list, &lport->ema_list);
2295 kref_get(&mp->kref);
2296 return ema;
2297 }
2298 EXPORT_SYMBOL(fc_exch_mgr_add);
2299
2300 /**
2301 * fc_exch_mgr_destroy() - Destroy an exchange manager
2302 * @kref: The reference to the EM to be destroyed
2303 */
2304 static void fc_exch_mgr_destroy(struct kref *kref)
2305 {
2306 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2307
2308 mempool_destroy(mp->ep_pool);
2309 free_percpu(mp->pool);
2310 kfree(mp);
2311 }
2312
2313 /**
2314 * fc_exch_mgr_del() - Delete an EM from a local port's list
2315 * @ema: The exchange manager anchor identifying the EM to be deleted
2316 */
2317 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2318 {
2319 /* remove EM anchor from EM anchors list */
2320 list_del(&ema->ema_list);
2321 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2322 kfree(ema);
2323 }
2324 EXPORT_SYMBOL(fc_exch_mgr_del);
2325
2326 /**
2327 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2328 * @src: Source lport to clone exchange managers from
2329 * @dst: New lport that takes references to all the exchange managers
2330 */
2331 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2332 {
2333 struct fc_exch_mgr_anchor *ema, *tmp;
2334
2335 list_for_each_entry(ema, &src->ema_list, ema_list) {
2336 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2337 goto err;
2338 }
2339 return 0;
2340 err:
2341 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2342 fc_exch_mgr_del(ema);
2343 return -ENOMEM;
2344 }
2345 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2346
2347 /**
2348 * fc_exch_mgr_alloc() - Allocate an exchange manager
2349 * @lport: The local port that the new EM will be associated with
2350 * @class: The default FC class for new exchanges
2351 * @min_xid: The minimum XID for exchanges from the new EM
2352 * @max_xid: The maximum XID for exchanges from the new EM
2353 * @match: The match routine for the new EM
2354 */
2355 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2356 enum fc_class class,
2357 u16 min_xid, u16 max_xid,
2358 bool (*match)(struct fc_frame *))
2359 {
2360 struct fc_exch_mgr *mp;
2361 u16 pool_exch_range;
2362 size_t pool_size;
2363 unsigned int cpu;
2364 struct fc_exch_pool *pool;
2365
2366 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2367 (min_xid & fc_cpu_mask) != 0) {
2368 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2369 min_xid, max_xid);
2370 return NULL;
2371 }
2372
2373 /*
2374 * allocate memory for EM
2375 */
2376 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2377 if (!mp)
2378 return NULL;
2379
2380 mp->class = class;
2381 /* adjust em exch xid range for offload */
2382 mp->min_xid = min_xid;
2383
2384 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2385 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2386 sizeof(struct fc_exch *);
2387 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2388 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2389 min_xid - 1;
2390 } else {
2391 mp->max_xid = max_xid;
2392 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2393 (fc_cpu_mask + 1);
2394 }
2395
2396 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2397 if (!mp->ep_pool)
2398 goto free_mp;
2399
2400 /*
2401 * Setup per cpu exch pool with entire exchange id range equally
2402 * divided across all cpus. The exch pointers array memory is
2403 * allocated for exch range per pool.
2404 */
2405 mp->pool_max_index = pool_exch_range - 1;
2406
2407 /*
2408 * Allocate and initialize per cpu exch pool
2409 */
2410 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2411 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2412 if (!mp->pool)
2413 goto free_mempool;
2414 for_each_possible_cpu(cpu) {
2415 pool = per_cpu_ptr(mp->pool, cpu);
2416 pool->next_index = 0;
2417 pool->left = FC_XID_UNKNOWN;
2418 pool->right = FC_XID_UNKNOWN;
2419 spin_lock_init(&pool->lock);
2420 INIT_LIST_HEAD(&pool->ex_list);
2421 }
2422
2423 kref_init(&mp->kref);
2424 if (!fc_exch_mgr_add(lport, mp, match)) {
2425 free_percpu(mp->pool);
2426 goto free_mempool;
2427 }
2428
2429 /*
2430 * Above kref_init() sets mp->kref to 1 and then
2431 * call to fc_exch_mgr_add incremented mp->kref again,
2432 * so adjust that extra increment.
2433 */
2434 kref_put(&mp->kref, fc_exch_mgr_destroy);
2435 return mp;
2436
2437 free_mempool:
2438 mempool_destroy(mp->ep_pool);
2439 free_mp:
2440 kfree(mp);
2441 return NULL;
2442 }
2443 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2444
2445 /**
2446 * fc_exch_mgr_free() - Free all exchange managers on a local port
2447 * @lport: The local port whose EMs are to be freed
2448 */
2449 void fc_exch_mgr_free(struct fc_lport *lport)
2450 {
2451 struct fc_exch_mgr_anchor *ema, *next;
2452
2453 flush_workqueue(fc_exch_workqueue);
2454 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2455 fc_exch_mgr_del(ema);
2456 }
2457 EXPORT_SYMBOL(fc_exch_mgr_free);
2458
2459 /**
2460 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2461 * upon 'xid'.
2462 * @f_ctl: f_ctl
2463 * @lport: The local port the frame was received on
2464 * @fh: The received frame header
2465 */
2466 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2467 struct fc_lport *lport,
2468 struct fc_frame_header *fh)
2469 {
2470 struct fc_exch_mgr_anchor *ema;
2471 u16 xid;
2472
2473 if (f_ctl & FC_FC_EX_CTX)
2474 xid = ntohs(fh->fh_ox_id);
2475 else {
2476 xid = ntohs(fh->fh_rx_id);
2477 if (xid == FC_XID_UNKNOWN)
2478 return list_entry(lport->ema_list.prev,
2479 typeof(*ema), ema_list);
2480 }
2481
2482 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2483 if ((xid >= ema->mp->min_xid) &&
2484 (xid <= ema->mp->max_xid))
2485 return ema;
2486 }
2487 return NULL;
2488 }
2489 /**
2490 * fc_exch_recv() - Handler for received frames
2491 * @lport: The local port the frame was received on
2492 * @fp: The received frame
2493 */
2494 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2495 {
2496 struct fc_frame_header *fh = fc_frame_header_get(fp);
2497 struct fc_exch_mgr_anchor *ema;
2498 u32 f_ctl;
2499
2500 /* lport lock ? */
2501 if (!lport || lport->state == LPORT_ST_DISABLED) {
2502 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2503 "has not been initialized correctly\n");
2504 fc_frame_free(fp);
2505 return;
2506 }
2507
2508 f_ctl = ntoh24(fh->fh_f_ctl);
2509 ema = fc_find_ema(f_ctl, lport, fh);
2510 if (!ema) {
2511 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2512 "fc_ctl <0x%x>, xid <0x%x>\n",
2513 f_ctl,
2514 (f_ctl & FC_FC_EX_CTX) ?
2515 ntohs(fh->fh_ox_id) :
2516 ntohs(fh->fh_rx_id));
2517 fc_frame_free(fp);
2518 return;
2519 }
2520
2521 /*
2522 * If frame is marked invalid, just drop it.
2523 */
2524 switch (fr_eof(fp)) {
2525 case FC_EOF_T:
2526 if (f_ctl & FC_FC_END_SEQ)
2527 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2528 /* fall through */
2529 case FC_EOF_N:
2530 if (fh->fh_type == FC_TYPE_BLS)
2531 fc_exch_recv_bls(ema->mp, fp);
2532 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2533 FC_FC_EX_CTX)
2534 fc_exch_recv_seq_resp(ema->mp, fp);
2535 else if (f_ctl & FC_FC_SEQ_CTX)
2536 fc_exch_recv_resp(ema->mp, fp);
2537 else /* no EX_CTX and no SEQ_CTX */
2538 fc_exch_recv_req(lport, ema->mp, fp);
2539 break;
2540 default:
2541 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2542 fr_eof(fp));
2543 fc_frame_free(fp);
2544 }
2545 }
2546 EXPORT_SYMBOL(fc_exch_recv);
2547
2548 /**
2549 * fc_exch_init() - Initialize the exchange layer for a local port
2550 * @lport: The local port to initialize the exchange layer for
2551 */
2552 int fc_exch_init(struct fc_lport *lport)
2553 {
2554 if (!lport->tt.seq_start_next)
2555 lport->tt.seq_start_next = fc_seq_start_next;
2556
2557 if (!lport->tt.seq_set_resp)
2558 lport->tt.seq_set_resp = fc_seq_set_resp;
2559
2560 if (!lport->tt.exch_seq_send)
2561 lport->tt.exch_seq_send = fc_exch_seq_send;
2562
2563 if (!lport->tt.seq_send)
2564 lport->tt.seq_send = fc_seq_send;
2565
2566 if (!lport->tt.seq_els_rsp_send)
2567 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2568
2569 if (!lport->tt.exch_done)
2570 lport->tt.exch_done = fc_exch_done;
2571
2572 if (!lport->tt.exch_mgr_reset)
2573 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2574
2575 if (!lport->tt.seq_exch_abort)
2576 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2577
2578 if (!lport->tt.seq_assign)
2579 lport->tt.seq_assign = fc_seq_assign;
2580
2581 if (!lport->tt.seq_release)
2582 lport->tt.seq_release = fc_seq_release;
2583
2584 return 0;
2585 }
2586 EXPORT_SYMBOL(fc_exch_init);
2587
2588 /**
2589 * fc_setup_exch_mgr() - Setup an exchange manager
2590 */
2591 int fc_setup_exch_mgr(void)
2592 {
2593 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2594 0, SLAB_HWCACHE_ALIGN, NULL);
2595 if (!fc_em_cachep)
2596 return -ENOMEM;
2597
2598 /*
2599 * Initialize fc_cpu_mask and fc_cpu_order. The
2600 * fc_cpu_mask is set for nr_cpu_ids rounded up
2601 * to order of 2's * power and order is stored
2602 * in fc_cpu_order as this is later required in
2603 * mapping between an exch id and exch array index
2604 * in per cpu exch pool.
2605 *
2606 * This round up is required to align fc_cpu_mask
2607 * to exchange id's lower bits such that all incoming
2608 * frames of an exchange gets delivered to the same
2609 * cpu on which exchange originated by simple bitwise
2610 * AND operation between fc_cpu_mask and exchange id.
2611 */
2612 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2613 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2614
2615 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2616 if (!fc_exch_workqueue)
2617 goto err;
2618 return 0;
2619 err:
2620 kmem_cache_destroy(fc_em_cachep);
2621 return -ENOMEM;
2622 }
2623
2624 /**
2625 * fc_destroy_exch_mgr() - Destroy an exchange manager
2626 */
2627 void fc_destroy_exch_mgr(void)
2628 {
2629 destroy_workqueue(fc_exch_workqueue);
2630 kmem_cache_destroy(fc_em_cachep);
2631 }