]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/libsas/sas_expander.c
c9e3dc024bc3c2a1248e91c6b34bb47d43688b6b
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
34
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40
41 /* ---------- SMP task management ---------- */
42
43 static void smp_task_timedout(unsigned long _task)
44 {
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
47
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53 complete(&task->completion);
54 }
55
56 static void smp_task_done(struct sas_task *task)
57 {
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
68 {
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
78
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84 task->task_done = smp_task_done;
85
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
90
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
97 }
98
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
107 }
108 }
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
131 }
132 }
133 ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
137 }
138 return res;
139 }
140
141 /* ---------- Allocations ---------- */
142
143 static inline void *alloc_smp_req(int size)
144 {
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
149 }
150
151 static inline void *alloc_smp_resp(int size)
152 {
153 return kzalloc(size, GFP_KERNEL);
154 }
155
156 /* ---------- Expander configuration ---------- */
157
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
160 {
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
167
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
173 }
174
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 break;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 break;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
185 }
186
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 phy->attached_phy_id = dr->attached_phy_id;
197 phy->phy_change_count = dr->change_count;
198 phy->routing_attr = dr->routing_attr;
199 phy->virtual = dr->virtual;
200 phy->last_da_index = -1;
201
202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203 phy->phy->identify.target_port_protocols = phy->attached_tproto;
204 phy->phy->identify.phy_identifier = phy_id;
205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207 phy->phy->minimum_linkrate = dr->pmin_linkrate;
208 phy->phy->maximum_linkrate = dr->pmax_linkrate;
209 phy->phy->negotiated_linkrate = phy->linkrate;
210
211 if (!rediscover)
212 if (sas_phy_add(phy->phy)) {
213 sas_phy_free(phy->phy);
214 return;
215 }
216
217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218 SAS_ADDR(dev->sas_addr), phy->phy_id,
219 phy->routing_attr == TABLE_ROUTING ? 'T' :
220 phy->routing_attr == DIRECT_ROUTING ? 'D' :
221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222 SAS_ADDR(phy->attached_sas_addr));
223
224 return;
225 }
226
227 #define DISCOVER_REQ_SIZE 16
228 #define DISCOVER_RESP_SIZE 56
229
230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231 u8 *disc_resp, int single)
232 {
233 int i, res;
234
235 disc_req[9] = single;
236 for (i = 1 ; i < 3; i++) {
237 struct discover_resp *dr;
238
239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240 disc_resp, DISCOVER_RESP_SIZE);
241 if (res)
242 return res;
243 /* This is detecting a failure to transmit initial
244 * dev to host FIS as described in section G.5 of
245 * sas-2 r 04b */
246 dr = &((struct smp_resp *)disc_resp)->disc;
247 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248 SAS_ADDR_SIZE) == 0) {
249 sas_printk("Found loopback topology, just ignore it!\n");
250 return 0;
251 }
252 if (!(dr->attached_dev_type == 0 &&
253 dr->attached_sata_dev))
254 break;
255 /* In order to generate the dev to host FIS, we
256 * send a link reset to the expander port */
257 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258 /* Wait for the reset to trigger the negotiation */
259 msleep(500);
260 }
261 sas_set_ex_phy(dev, single, disc_resp);
262 return 0;
263 }
264
265 static int sas_ex_phy_discover(struct domain_device *dev, int single)
266 {
267 struct expander_device *ex = &dev->ex_dev;
268 int res = 0;
269 u8 *disc_req;
270 u8 *disc_resp;
271
272 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273 if (!disc_req)
274 return -ENOMEM;
275
276 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277 if (!disc_resp) {
278 kfree(disc_req);
279 return -ENOMEM;
280 }
281
282 disc_req[1] = SMP_DISCOVER;
283
284 if (0 <= single && single < ex->num_phys) {
285 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286 } else {
287 int i;
288
289 for (i = 0; i < ex->num_phys; i++) {
290 res = sas_ex_phy_discover_helper(dev, disc_req,
291 disc_resp, i);
292 if (res)
293 goto out_err;
294 }
295 }
296 out_err:
297 kfree(disc_resp);
298 kfree(disc_req);
299 return res;
300 }
301
302 static int sas_expander_discover(struct domain_device *dev)
303 {
304 struct expander_device *ex = &dev->ex_dev;
305 int res = -ENOMEM;
306
307 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308 if (!ex->ex_phy)
309 return -ENOMEM;
310
311 res = sas_ex_phy_discover(dev, -1);
312 if (res)
313 goto out_err;
314
315 return 0;
316 out_err:
317 kfree(ex->ex_phy);
318 ex->ex_phy = NULL;
319 return res;
320 }
321
322 #define MAX_EXPANDER_PHYS 128
323
324 static void ex_assign_report_general(struct domain_device *dev,
325 struct smp_resp *resp)
326 {
327 struct report_general_resp *rg = &resp->rg;
328
329 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332 dev->ex_dev.conf_route_table = rg->conf_route_table;
333 dev->ex_dev.configuring = rg->configuring;
334 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
335 }
336
337 #define RG_REQ_SIZE 8
338 #define RG_RESP_SIZE 32
339
340 static int sas_ex_general(struct domain_device *dev)
341 {
342 u8 *rg_req;
343 struct smp_resp *rg_resp;
344 int res;
345 int i;
346
347 rg_req = alloc_smp_req(RG_REQ_SIZE);
348 if (!rg_req)
349 return -ENOMEM;
350
351 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
352 if (!rg_resp) {
353 kfree(rg_req);
354 return -ENOMEM;
355 }
356
357 rg_req[1] = SMP_REPORT_GENERAL;
358
359 for (i = 0; i < 5; i++) {
360 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
361 RG_RESP_SIZE);
362
363 if (res) {
364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365 SAS_ADDR(dev->sas_addr), res);
366 goto out;
367 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369 SAS_ADDR(dev->sas_addr), rg_resp->result);
370 res = rg_resp->result;
371 goto out;
372 }
373
374 ex_assign_report_general(dev, rg_resp);
375
376 if (dev->ex_dev.configuring) {
377 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378 SAS_ADDR(dev->sas_addr));
379 schedule_timeout_interruptible(5*HZ);
380 } else
381 break;
382 }
383 out:
384 kfree(rg_req);
385 kfree(rg_resp);
386 return res;
387 }
388
389 static void ex_assign_manuf_info(struct domain_device *dev, void
390 *_mi_resp)
391 {
392 u8 *mi_resp = _mi_resp;
393 struct sas_rphy *rphy = dev->rphy;
394 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
395
396 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
397 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
398 memcpy(edev->product_rev, mi_resp + 36,
399 SAS_EXPANDER_PRODUCT_REV_LEN);
400
401 if (mi_resp[8] & 1) {
402 memcpy(edev->component_vendor_id, mi_resp + 40,
403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
404 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
405 edev->component_revision_id = mi_resp[50];
406 }
407 }
408
409 #define MI_REQ_SIZE 8
410 #define MI_RESP_SIZE 64
411
412 static int sas_ex_manuf_info(struct domain_device *dev)
413 {
414 u8 *mi_req;
415 u8 *mi_resp;
416 int res;
417
418 mi_req = alloc_smp_req(MI_REQ_SIZE);
419 if (!mi_req)
420 return -ENOMEM;
421
422 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
423 if (!mi_resp) {
424 kfree(mi_req);
425 return -ENOMEM;
426 }
427
428 mi_req[1] = SMP_REPORT_MANUF_INFO;
429
430 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
431 if (res) {
432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433 SAS_ADDR(dev->sas_addr), res);
434 goto out;
435 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437 SAS_ADDR(dev->sas_addr), mi_resp[2]);
438 goto out;
439 }
440
441 ex_assign_manuf_info(dev, mi_resp);
442 out:
443 kfree(mi_req);
444 kfree(mi_resp);
445 return res;
446 }
447
448 #define PC_REQ_SIZE 44
449 #define PC_RESP_SIZE 8
450
451 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
452 enum phy_func phy_func,
453 struct sas_phy_linkrates *rates)
454 {
455 u8 *pc_req;
456 u8 *pc_resp;
457 int res;
458
459 pc_req = alloc_smp_req(PC_REQ_SIZE);
460 if (!pc_req)
461 return -ENOMEM;
462
463 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
464 if (!pc_resp) {
465 kfree(pc_req);
466 return -ENOMEM;
467 }
468
469 pc_req[1] = SMP_PHY_CONTROL;
470 pc_req[9] = phy_id;
471 pc_req[10]= phy_func;
472 if (rates) {
473 pc_req[32] = rates->minimum_linkrate << 4;
474 pc_req[33] = rates->maximum_linkrate << 4;
475 }
476
477 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
478
479 kfree(pc_resp);
480 kfree(pc_req);
481 return res;
482 }
483
484 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
485 {
486 struct expander_device *ex = &dev->ex_dev;
487 struct ex_phy *phy = &ex->ex_phy[phy_id];
488
489 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
490 phy->linkrate = SAS_PHY_DISABLED;
491 }
492
493 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
494 {
495 struct expander_device *ex = &dev->ex_dev;
496 int i;
497
498 for (i = 0; i < ex->num_phys; i++) {
499 struct ex_phy *phy = &ex->ex_phy[i];
500
501 if (phy->phy_state == PHY_VACANT ||
502 phy->phy_state == PHY_NOT_PRESENT)
503 continue;
504
505 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
506 sas_ex_disable_phy(dev, i);
507 }
508 }
509
510 static int sas_dev_present_in_domain(struct asd_sas_port *port,
511 u8 *sas_addr)
512 {
513 struct domain_device *dev;
514
515 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
516 return 1;
517 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
518 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
519 return 1;
520 }
521 return 0;
522 }
523
524 #define RPEL_REQ_SIZE 16
525 #define RPEL_RESP_SIZE 32
526 int sas_smp_get_phy_events(struct sas_phy *phy)
527 {
528 int res;
529 u8 *req;
530 u8 *resp;
531 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
532 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
533
534 req = alloc_smp_req(RPEL_REQ_SIZE);
535 if (!req)
536 return -ENOMEM;
537
538 resp = alloc_smp_resp(RPEL_RESP_SIZE);
539 if (!resp) {
540 kfree(req);
541 return -ENOMEM;
542 }
543
544 req[1] = SMP_REPORT_PHY_ERR_LOG;
545 req[9] = phy->number;
546
547 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
548 resp, RPEL_RESP_SIZE);
549
550 if (!res)
551 goto out;
552
553 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
554 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
555 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
556 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
557
558 out:
559 kfree(resp);
560 return res;
561
562 }
563
564 #ifdef CONFIG_SCSI_SAS_ATA
565
566 #define RPS_REQ_SIZE 16
567 #define RPS_RESP_SIZE 60
568
569 static int sas_get_report_phy_sata(struct domain_device *dev,
570 int phy_id,
571 struct smp_resp *rps_resp)
572 {
573 int res;
574 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
575 u8 *resp = (u8 *)rps_resp;
576
577 if (!rps_req)
578 return -ENOMEM;
579
580 rps_req[1] = SMP_REPORT_PHY_SATA;
581 rps_req[9] = phy_id;
582
583 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
584 rps_resp, RPS_RESP_SIZE);
585
586 /* 0x34 is the FIS type for the D2H fis. There's a potential
587 * standards cockup here. sas-2 explicitly specifies the FIS
588 * should be encoded so that FIS type is in resp[24].
589 * However, some expanders endian reverse this. Undo the
590 * reversal here */
591 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
592 int i;
593
594 for (i = 0; i < 5; i++) {
595 int j = 24 + (i*4);
596 u8 a, b;
597 a = resp[j + 0];
598 b = resp[j + 1];
599 resp[j + 0] = resp[j + 3];
600 resp[j + 1] = resp[j + 2];
601 resp[j + 2] = b;
602 resp[j + 3] = a;
603 }
604 }
605
606 kfree(rps_req);
607 return res;
608 }
609 #endif
610
611 static void sas_ex_get_linkrate(struct domain_device *parent,
612 struct domain_device *child,
613 struct ex_phy *parent_phy)
614 {
615 struct expander_device *parent_ex = &parent->ex_dev;
616 struct sas_port *port;
617 int i;
618
619 child->pathways = 0;
620
621 port = parent_phy->port;
622
623 for (i = 0; i < parent_ex->num_phys; i++) {
624 struct ex_phy *phy = &parent_ex->ex_phy[i];
625
626 if (phy->phy_state == PHY_VACANT ||
627 phy->phy_state == PHY_NOT_PRESENT)
628 continue;
629
630 if (SAS_ADDR(phy->attached_sas_addr) ==
631 SAS_ADDR(child->sas_addr)) {
632
633 child->min_linkrate = min(parent->min_linkrate,
634 phy->linkrate);
635 child->max_linkrate = max(parent->max_linkrate,
636 phy->linkrate);
637 child->pathways++;
638 sas_port_add_phy(port, phy->phy);
639 }
640 }
641 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
642 child->pathways = min(child->pathways, parent->pathways);
643 }
644
645 static struct domain_device *sas_ex_discover_end_dev(
646 struct domain_device *parent, int phy_id)
647 {
648 struct expander_device *parent_ex = &parent->ex_dev;
649 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
650 struct domain_device *child = NULL;
651 struct sas_rphy *rphy;
652 int res;
653
654 if (phy->attached_sata_host || phy->attached_sata_ps)
655 return NULL;
656
657 child = kzalloc(sizeof(*child), GFP_KERNEL);
658 if (!child)
659 return NULL;
660
661 child->parent = parent;
662 child->port = parent->port;
663 child->iproto = phy->attached_iproto;
664 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
665 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
666 if (!phy->port) {
667 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
668 if (unlikely(!phy->port))
669 goto out_err;
670 if (unlikely(sas_port_add(phy->port) != 0)) {
671 sas_port_free(phy->port);
672 goto out_err;
673 }
674 }
675 sas_ex_get_linkrate(parent, child, phy);
676
677 #ifdef CONFIG_SCSI_SAS_ATA
678 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
679 child->dev_type = SATA_DEV;
680 if (phy->attached_tproto & SAS_PROTOCOL_STP)
681 child->tproto = phy->attached_tproto;
682 if (phy->attached_sata_dev)
683 child->tproto |= SATA_DEV;
684 res = sas_get_report_phy_sata(parent, phy_id,
685 &child->sata_dev.rps_resp);
686 if (res) {
687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688 "0x%x\n", SAS_ADDR(parent->sas_addr),
689 phy_id, res);
690 goto out_free;
691 }
692 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
693 sizeof(struct dev_to_host_fis));
694
695 rphy = sas_end_device_alloc(phy->port);
696 if (unlikely(!rphy))
697 goto out_free;
698
699 sas_init_dev(child);
700
701 child->rphy = rphy;
702
703 spin_lock_irq(&parent->port->dev_list_lock);
704 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
705 spin_unlock_irq(&parent->port->dev_list_lock);
706
707 res = sas_discover_sata(child);
708 if (res) {
709 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710 "%016llx:0x%x returned 0x%x\n",
711 SAS_ADDR(child->sas_addr),
712 SAS_ADDR(parent->sas_addr), phy_id, res);
713 goto out_list_del;
714 }
715 } else
716 #endif
717 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
718 child->dev_type = SAS_END_DEV;
719 rphy = sas_end_device_alloc(phy->port);
720 /* FIXME: error handling */
721 if (unlikely(!rphy))
722 goto out_free;
723 child->tproto = phy->attached_tproto;
724 sas_init_dev(child);
725
726 child->rphy = rphy;
727 sas_fill_in_rphy(child, rphy);
728
729 spin_lock_irq(&parent->port->dev_list_lock);
730 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
731 spin_unlock_irq(&parent->port->dev_list_lock);
732
733 res = sas_discover_end_dev(child);
734 if (res) {
735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736 "at %016llx:0x%x returned 0x%x\n",
737 SAS_ADDR(child->sas_addr),
738 SAS_ADDR(parent->sas_addr), phy_id, res);
739 goto out_list_del;
740 }
741 } else {
742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
744 phy_id);
745 goto out_free;
746 }
747
748 list_add_tail(&child->siblings, &parent_ex->children);
749 return child;
750
751 out_list_del:
752 sas_rphy_free(child->rphy);
753 child->rphy = NULL;
754 list_del(&child->dev_list_node);
755 out_free:
756 sas_port_delete(phy->port);
757 out_err:
758 phy->port = NULL;
759 kfree(child);
760 return NULL;
761 }
762
763 /* See if this phy is part of a wide port */
764 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
765 {
766 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
767 int i;
768
769 for (i = 0; i < parent->ex_dev.num_phys; i++) {
770 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
771
772 if (ephy == phy)
773 continue;
774
775 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
776 SAS_ADDR_SIZE) && ephy->port) {
777 sas_port_add_phy(ephy->port, phy->phy);
778 phy->port = ephy->port;
779 phy->phy_state = PHY_DEVICE_DISCOVERED;
780 return 0;
781 }
782 }
783
784 return -ENODEV;
785 }
786
787 static struct domain_device *sas_ex_discover_expander(
788 struct domain_device *parent, int phy_id)
789 {
790 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
791 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
792 struct domain_device *child = NULL;
793 struct sas_rphy *rphy;
794 struct sas_expander_device *edev;
795 struct asd_sas_port *port;
796 int res;
797
798 if (phy->routing_attr == DIRECT_ROUTING) {
799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
800 "allowed\n",
801 SAS_ADDR(parent->sas_addr), phy_id,
802 SAS_ADDR(phy->attached_sas_addr),
803 phy->attached_phy_id);
804 return NULL;
805 }
806 child = kzalloc(sizeof(*child), GFP_KERNEL);
807 if (!child)
808 return NULL;
809
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 /* FIXME: better error handling */
812 BUG_ON(sas_port_add(phy->port) != 0);
813
814
815 switch (phy->attached_dev_type) {
816 case EDGE_DEV:
817 rphy = sas_expander_alloc(phy->port,
818 SAS_EDGE_EXPANDER_DEVICE);
819 break;
820 case FANOUT_DEV:
821 rphy = sas_expander_alloc(phy->port,
822 SAS_FANOUT_EXPANDER_DEVICE);
823 break;
824 default:
825 rphy = NULL; /* shut gcc up */
826 BUG();
827 }
828 port = parent->port;
829 child->rphy = rphy;
830 edev = rphy_to_expander_device(rphy);
831 child->dev_type = phy->attached_dev_type;
832 child->parent = parent;
833 child->port = port;
834 child->iproto = phy->attached_iproto;
835 child->tproto = phy->attached_tproto;
836 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
837 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
838 sas_ex_get_linkrate(parent, child, phy);
839 edev->level = parent_ex->level + 1;
840 parent->port->disc.max_level = max(parent->port->disc.max_level,
841 edev->level);
842 sas_init_dev(child);
843 sas_fill_in_rphy(child, rphy);
844 sas_rphy_add(rphy);
845
846 spin_lock_irq(&parent->port->dev_list_lock);
847 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
848 spin_unlock_irq(&parent->port->dev_list_lock);
849
850 res = sas_discover_expander(child);
851 if (res) {
852 spin_lock_irq(&parent->port->dev_list_lock);
853 list_del(&child->dev_list_node);
854 spin_unlock_irq(&parent->port->dev_list_lock);
855 kfree(child);
856 return NULL;
857 }
858 list_add_tail(&child->siblings, &parent->ex_dev.children);
859 return child;
860 }
861
862 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
863 {
864 struct expander_device *ex = &dev->ex_dev;
865 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
866 struct domain_device *child = NULL;
867 int res = 0;
868
869 /* Phy state */
870 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
871 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
872 res = sas_ex_phy_discover(dev, phy_id);
873 if (res)
874 return res;
875 }
876
877 /* Parent and domain coherency */
878 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
879 SAS_ADDR(dev->port->sas_addr))) {
880 sas_add_parent_port(dev, phy_id);
881 return 0;
882 }
883 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
884 SAS_ADDR(dev->parent->sas_addr))) {
885 sas_add_parent_port(dev, phy_id);
886 if (ex_phy->routing_attr == TABLE_ROUTING)
887 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
888 return 0;
889 }
890
891 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
892 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
893
894 if (ex_phy->attached_dev_type == NO_DEVICE) {
895 if (ex_phy->routing_attr == DIRECT_ROUTING) {
896 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
897 sas_configure_routing(dev, ex_phy->attached_sas_addr);
898 }
899 return 0;
900 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
901 return 0;
902
903 if (ex_phy->attached_dev_type != SAS_END_DEV &&
904 ex_phy->attached_dev_type != FANOUT_DEV &&
905 ex_phy->attached_dev_type != EDGE_DEV) {
906 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
907 "phy 0x%x\n", ex_phy->attached_dev_type,
908 SAS_ADDR(dev->sas_addr),
909 phy_id);
910 return 0;
911 }
912
913 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
914 if (res) {
915 SAS_DPRINTK("configure routing for dev %016llx "
916 "reported 0x%x. Forgotten\n",
917 SAS_ADDR(ex_phy->attached_sas_addr), res);
918 sas_disable_routing(dev, ex_phy->attached_sas_addr);
919 return res;
920 }
921
922 res = sas_ex_join_wide_port(dev, phy_id);
923 if (!res) {
924 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
925 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
926 return res;
927 }
928
929 switch (ex_phy->attached_dev_type) {
930 case SAS_END_DEV:
931 child = sas_ex_discover_end_dev(dev, phy_id);
932 break;
933 case FANOUT_DEV:
934 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
935 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
936 "attached to ex %016llx phy 0x%x\n",
937 SAS_ADDR(ex_phy->attached_sas_addr),
938 ex_phy->attached_phy_id,
939 SAS_ADDR(dev->sas_addr),
940 phy_id);
941 sas_ex_disable_phy(dev, phy_id);
942 break;
943 } else
944 memcpy(dev->port->disc.fanout_sas_addr,
945 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
946 /* fallthrough */
947 case EDGE_DEV:
948 child = sas_ex_discover_expander(dev, phy_id);
949 break;
950 default:
951 break;
952 }
953
954 if (child) {
955 int i;
956
957 for (i = 0; i < ex->num_phys; i++) {
958 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
959 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
960 continue;
961 /*
962 * Due to races, the phy might not get added to the
963 * wide port, so we add the phy to the wide port here.
964 */
965 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
966 SAS_ADDR(child->sas_addr)) {
967 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
968 res = sas_ex_join_wide_port(dev, i);
969 if (!res)
970 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
971 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
972
973 }
974 }
975 }
976
977 return res;
978 }
979
980 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
981 {
982 struct expander_device *ex = &dev->ex_dev;
983 int i;
984
985 for (i = 0; i < ex->num_phys; i++) {
986 struct ex_phy *phy = &ex->ex_phy[i];
987
988 if (phy->phy_state == PHY_VACANT ||
989 phy->phy_state == PHY_NOT_PRESENT)
990 continue;
991
992 if ((phy->attached_dev_type == EDGE_DEV ||
993 phy->attached_dev_type == FANOUT_DEV) &&
994 phy->routing_attr == SUBTRACTIVE_ROUTING) {
995
996 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
997
998 return 1;
999 }
1000 }
1001 return 0;
1002 }
1003
1004 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005 {
1006 struct expander_device *ex = &dev->ex_dev;
1007 struct domain_device *child;
1008 u8 sub_addr[8] = {0, };
1009
1010 list_for_each_entry(child, &ex->children, siblings) {
1011 if (child->dev_type != EDGE_DEV &&
1012 child->dev_type != FANOUT_DEV)
1013 continue;
1014 if (sub_addr[0] == 0) {
1015 sas_find_sub_addr(child, sub_addr);
1016 continue;
1017 } else {
1018 u8 s2[8];
1019
1020 if (sas_find_sub_addr(child, s2) &&
1021 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024 "diverges from subtractive "
1025 "boundary %016llx\n",
1026 SAS_ADDR(dev->sas_addr),
1027 SAS_ADDR(child->sas_addr),
1028 SAS_ADDR(s2),
1029 SAS_ADDR(sub_addr));
1030
1031 sas_ex_disable_port(child, s2);
1032 }
1033 }
1034 }
1035 return 0;
1036 }
1037 /**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046 {
1047 struct expander_device *ex = &dev->ex_dev;
1048 int i = 0, end = ex->num_phys;
1049 int res = 0;
1050
1051 if (0 <= single && single < end) {
1052 i = single;
1053 end = i+1;
1054 }
1055
1056 for ( ; i < end; i++) {
1057 struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059 if (ex_phy->phy_state == PHY_VACANT ||
1060 ex_phy->phy_state == PHY_NOT_PRESENT ||
1061 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062 continue;
1063
1064 switch (ex_phy->linkrate) {
1065 case SAS_PHY_DISABLED:
1066 case SAS_PHY_RESET_PROBLEM:
1067 case SAS_SATA_PORT_SELECTOR:
1068 continue;
1069 default:
1070 res = sas_ex_discover_dev(dev, i);
1071 if (res)
1072 break;
1073 continue;
1074 }
1075 }
1076
1077 if (!res)
1078 sas_check_level_subtractive_boundary(dev);
1079
1080 return res;
1081 }
1082
1083 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084 {
1085 struct expander_device *ex = &dev->ex_dev;
1086 int i;
1087 u8 *sub_sas_addr = NULL;
1088
1089 if (dev->dev_type != EDGE_DEV)
1090 return 0;
1091
1092 for (i = 0; i < ex->num_phys; i++) {
1093 struct ex_phy *phy = &ex->ex_phy[i];
1094
1095 if (phy->phy_state == PHY_VACANT ||
1096 phy->phy_state == PHY_NOT_PRESENT)
1097 continue;
1098
1099 if ((phy->attached_dev_type == FANOUT_DEV ||
1100 phy->attached_dev_type == EDGE_DEV) &&
1101 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103 if (!sub_sas_addr)
1104 sub_sas_addr = &phy->attached_sas_addr[0];
1105 else if (SAS_ADDR(sub_sas_addr) !=
1106 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108 SAS_DPRINTK("ex %016llx phy 0x%x "
1109 "diverges(%016llx) on subtractive "
1110 "boundary(%016llx). Disabled\n",
1111 SAS_ADDR(dev->sas_addr), i,
1112 SAS_ADDR(phy->attached_sas_addr),
1113 SAS_ADDR(sub_sas_addr));
1114 sas_ex_disable_phy(dev, i);
1115 }
1116 }
1117 }
1118 return 0;
1119 }
1120
1121 static void sas_print_parent_topology_bug(struct domain_device *child,
1122 struct ex_phy *parent_phy,
1123 struct ex_phy *child_phy)
1124 {
1125 static const char ra_char[] = {
1126 [DIRECT_ROUTING] = 'D',
1127 [SUBTRACTIVE_ROUTING] = 'S',
1128 [TABLE_ROUTING] = 'T',
1129 };
1130 static const char *ex_type[] = {
1131 [EDGE_DEV] = "edge",
1132 [FANOUT_DEV] = "fanout",
1133 };
1134 struct domain_device *parent = child->parent;
1135
1136 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137 "has %c:%c routing link!\n",
1138
1139 ex_type[parent->dev_type],
1140 SAS_ADDR(parent->sas_addr),
1141 parent_phy->phy_id,
1142
1143 ex_type[child->dev_type],
1144 SAS_ADDR(child->sas_addr),
1145 child_phy->phy_id,
1146
1147 ra_char[parent_phy->routing_attr],
1148 ra_char[child_phy->routing_attr]);
1149 }
1150
1151 static int sas_check_eeds(struct domain_device *child,
1152 struct ex_phy *parent_phy,
1153 struct ex_phy *child_phy)
1154 {
1155 int res = 0;
1156 struct domain_device *parent = child->parent;
1157
1158 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159 res = -ENODEV;
1160 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161 "phy S:0x%x, while there is a fanout ex %016llx\n",
1162 SAS_ADDR(parent->sas_addr),
1163 parent_phy->phy_id,
1164 SAS_ADDR(child->sas_addr),
1165 child_phy->phy_id,
1166 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169 SAS_ADDR_SIZE);
1170 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171 SAS_ADDR_SIZE);
1172 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173 SAS_ADDR(parent->sas_addr)) ||
1174 (SAS_ADDR(parent->port->disc.eeds_a) ==
1175 SAS_ADDR(child->sas_addr)))
1176 &&
1177 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178 SAS_ADDR(parent->sas_addr)) ||
1179 (SAS_ADDR(parent->port->disc.eeds_b) ==
1180 SAS_ADDR(child->sas_addr))))
1181 ;
1182 else {
1183 res = -ENODEV;
1184 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185 "phy 0x%x link forms a third EEDS!\n",
1186 SAS_ADDR(parent->sas_addr),
1187 parent_phy->phy_id,
1188 SAS_ADDR(child->sas_addr),
1189 child_phy->phy_id);
1190 }
1191
1192 return res;
1193 }
1194
1195 /* Here we spill over 80 columns. It is intentional.
1196 */
1197 static int sas_check_parent_topology(struct domain_device *child)
1198 {
1199 struct expander_device *child_ex = &child->ex_dev;
1200 struct expander_device *parent_ex;
1201 int i;
1202 int res = 0;
1203
1204 if (!child->parent)
1205 return 0;
1206
1207 if (child->parent->dev_type != EDGE_DEV &&
1208 child->parent->dev_type != FANOUT_DEV)
1209 return 0;
1210
1211 parent_ex = &child->parent->ex_dev;
1212
1213 for (i = 0; i < parent_ex->num_phys; i++) {
1214 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215 struct ex_phy *child_phy;
1216
1217 if (parent_phy->phy_state == PHY_VACANT ||
1218 parent_phy->phy_state == PHY_NOT_PRESENT)
1219 continue;
1220
1221 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222 continue;
1223
1224 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226 switch (child->parent->dev_type) {
1227 case EDGE_DEV:
1228 if (child->dev_type == FANOUT_DEV) {
1229 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230 child_phy->routing_attr != TABLE_ROUTING) {
1231 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232 res = -ENODEV;
1233 }
1234 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236 res = sas_check_eeds(child, parent_phy, child_phy);
1237 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1238 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239 res = -ENODEV;
1240 }
1241 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244 res = -ENODEV;
1245 }
1246 break;
1247 case FANOUT_DEV:
1248 if (parent_phy->routing_attr != TABLE_ROUTING ||
1249 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251 res = -ENODEV;
1252 }
1253 break;
1254 default:
1255 break;
1256 }
1257 }
1258
1259 return res;
1260 }
1261
1262 #define RRI_REQ_SIZE 16
1263 #define RRI_RESP_SIZE 44
1264
1265 static int sas_configure_present(struct domain_device *dev, int phy_id,
1266 u8 *sas_addr, int *index, int *present)
1267 {
1268 int i, res = 0;
1269 struct expander_device *ex = &dev->ex_dev;
1270 struct ex_phy *phy = &ex->ex_phy[phy_id];
1271 u8 *rri_req;
1272 u8 *rri_resp;
1273
1274 *present = 0;
1275 *index = 0;
1276
1277 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278 if (!rri_req)
1279 return -ENOMEM;
1280
1281 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282 if (!rri_resp) {
1283 kfree(rri_req);
1284 return -ENOMEM;
1285 }
1286
1287 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288 rri_req[9] = phy_id;
1289
1290 for (i = 0; i < ex->max_route_indexes ; i++) {
1291 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293 RRI_RESP_SIZE);
1294 if (res)
1295 goto out;
1296 res = rri_resp[2];
1297 if (res == SMP_RESP_NO_INDEX) {
1298 SAS_DPRINTK("overflow of indexes: dev %016llx "
1299 "phy 0x%x index 0x%x\n",
1300 SAS_ADDR(dev->sas_addr), phy_id, i);
1301 goto out;
1302 } else if (res != SMP_RESP_FUNC_ACC) {
1303 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304 "result 0x%x\n", __func__,
1305 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306 goto out;
1307 }
1308 if (SAS_ADDR(sas_addr) != 0) {
1309 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310 *index = i;
1311 if ((rri_resp[12] & 0x80) == 0x80)
1312 *present = 0;
1313 else
1314 *present = 1;
1315 goto out;
1316 } else if (SAS_ADDR(rri_resp+16) == 0) {
1317 *index = i;
1318 *present = 0;
1319 goto out;
1320 }
1321 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1322 phy->last_da_index < i) {
1323 phy->last_da_index = i;
1324 *index = i;
1325 *present = 0;
1326 goto out;
1327 }
1328 }
1329 res = -1;
1330 out:
1331 kfree(rri_req);
1332 kfree(rri_resp);
1333 return res;
1334 }
1335
1336 #define CRI_REQ_SIZE 44
1337 #define CRI_RESP_SIZE 8
1338
1339 static int sas_configure_set(struct domain_device *dev, int phy_id,
1340 u8 *sas_addr, int index, int include)
1341 {
1342 int res;
1343 u8 *cri_req;
1344 u8 *cri_resp;
1345
1346 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347 if (!cri_req)
1348 return -ENOMEM;
1349
1350 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351 if (!cri_resp) {
1352 kfree(cri_req);
1353 return -ENOMEM;
1354 }
1355
1356 cri_req[1] = SMP_CONF_ROUTE_INFO;
1357 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358 cri_req[9] = phy_id;
1359 if (SAS_ADDR(sas_addr) == 0 || !include)
1360 cri_req[12] |= 0x80;
1361 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364 CRI_RESP_SIZE);
1365 if (res)
1366 goto out;
1367 res = cri_resp[2];
1368 if (res == SMP_RESP_NO_INDEX) {
1369 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370 "index 0x%x\n",
1371 SAS_ADDR(dev->sas_addr), phy_id, index);
1372 }
1373 out:
1374 kfree(cri_req);
1375 kfree(cri_resp);
1376 return res;
1377 }
1378
1379 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380 u8 *sas_addr, int include)
1381 {
1382 int index;
1383 int present;
1384 int res;
1385
1386 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387 if (res)
1388 return res;
1389 if (include ^ present)
1390 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392 return res;
1393 }
1394
1395 /**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
1400 */
1401 static int sas_configure_parent(struct domain_device *parent,
1402 struct domain_device *child,
1403 u8 *sas_addr, int include)
1404 {
1405 struct expander_device *ex_parent = &parent->ex_dev;
1406 int res = 0;
1407 int i;
1408
1409 if (parent->parent) {
1410 res = sas_configure_parent(parent->parent, parent, sas_addr,
1411 include);
1412 if (res)
1413 return res;
1414 }
1415
1416 if (ex_parent->conf_route_table == 0) {
1417 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418 SAS_ADDR(parent->sas_addr));
1419 return 0;
1420 }
1421
1422 for (i = 0; i < ex_parent->num_phys; i++) {
1423 struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425 if ((phy->routing_attr == TABLE_ROUTING) &&
1426 (SAS_ADDR(phy->attached_sas_addr) ==
1427 SAS_ADDR(child->sas_addr))) {
1428 res = sas_configure_phy(parent, i, sas_addr, include);
1429 if (res)
1430 return res;
1431 }
1432 }
1433
1434 return res;
1435 }
1436
1437 /**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443 {
1444 if (dev->parent)
1445 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446 return 0;
1447 }
1448
1449 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1450 {
1451 if (dev->parent)
1452 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453 return 0;
1454 }
1455
1456 /**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462 static int sas_discover_expander(struct domain_device *dev)
1463 {
1464 int res;
1465
1466 res = sas_notify_lldd_dev_found(dev);
1467 if (res)
1468 return res;
1469
1470 res = sas_ex_general(dev);
1471 if (res)
1472 goto out_err;
1473 res = sas_ex_manuf_info(dev);
1474 if (res)
1475 goto out_err;
1476
1477 res = sas_expander_discover(dev);
1478 if (res) {
1479 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480 SAS_ADDR(dev->sas_addr), res);
1481 goto out_err;
1482 }
1483
1484 sas_check_ex_subtractive_boundary(dev);
1485 res = sas_check_parent_topology(dev);
1486 if (res)
1487 goto out_err;
1488 return 0;
1489 out_err:
1490 sas_notify_lldd_dev_gone(dev);
1491 return res;
1492 }
1493
1494 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495 {
1496 int res = 0;
1497 struct domain_device *dev;
1498
1499 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500 if (dev->dev_type == EDGE_DEV ||
1501 dev->dev_type == FANOUT_DEV) {
1502 struct sas_expander_device *ex =
1503 rphy_to_expander_device(dev->rphy);
1504
1505 if (level == ex->level)
1506 res = sas_ex_discover_devices(dev, -1);
1507 else if (level > 0)
1508 res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510 }
1511 }
1512
1513 return res;
1514 }
1515
1516 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517 {
1518 int res;
1519 int level;
1520
1521 do {
1522 level = port->disc.max_level;
1523 res = sas_ex_level_discovery(port, level);
1524 mb();
1525 } while (level < port->disc.max_level);
1526
1527 return res;
1528 }
1529
1530 int sas_discover_root_expander(struct domain_device *dev)
1531 {
1532 int res;
1533 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535 res = sas_rphy_add(dev->rphy);
1536 if (res)
1537 goto out_err;
1538
1539 ex->level = dev->port->disc.max_level; /* 0 */
1540 res = sas_discover_expander(dev);
1541 if (res)
1542 goto out_err2;
1543
1544 sas_ex_bfs_disc(dev->port);
1545
1546 return res;
1547
1548 out_err2:
1549 sas_rphy_remove(dev->rphy);
1550 out_err:
1551 return res;
1552 }
1553
1554 /* ---------- Domain revalidation ---------- */
1555
1556 static int sas_get_phy_discover(struct domain_device *dev,
1557 int phy_id, struct smp_resp *disc_resp)
1558 {
1559 int res;
1560 u8 *disc_req;
1561
1562 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563 if (!disc_req)
1564 return -ENOMEM;
1565
1566 disc_req[1] = SMP_DISCOVER;
1567 disc_req[9] = phy_id;
1568
1569 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570 disc_resp, DISCOVER_RESP_SIZE);
1571 if (res)
1572 goto out;
1573 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574 res = disc_resp->result;
1575 goto out;
1576 }
1577 out:
1578 kfree(disc_req);
1579 return res;
1580 }
1581
1582 static int sas_get_phy_change_count(struct domain_device *dev,
1583 int phy_id, int *pcc)
1584 {
1585 int res;
1586 struct smp_resp *disc_resp;
1587
1588 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589 if (!disc_resp)
1590 return -ENOMEM;
1591
1592 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593 if (!res)
1594 *pcc = disc_resp->disc.change_count;
1595
1596 kfree(disc_resp);
1597 return res;
1598 }
1599
1600 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601 int phy_id, u8 *attached_sas_addr)
1602 {
1603 int res;
1604 struct smp_resp *disc_resp;
1605 struct discover_resp *dr;
1606
1607 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608 if (!disc_resp)
1609 return -ENOMEM;
1610 dr = &disc_resp->disc;
1611
1612 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613 if (!res) {
1614 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615 if (dr->attached_dev_type == 0)
1616 memset(attached_sas_addr, 0, 8);
1617 }
1618 kfree(disc_resp);
1619 return res;
1620 }
1621
1622 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623 int from_phy, bool update)
1624 {
1625 struct expander_device *ex = &dev->ex_dev;
1626 int res = 0;
1627 int i;
1628
1629 for (i = from_phy; i < ex->num_phys; i++) {
1630 int phy_change_count = 0;
1631
1632 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633 if (res)
1634 goto out;
1635 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1636 if (update)
1637 ex->ex_phy[i].phy_change_count =
1638 phy_change_count;
1639 *phy_id = i;
1640 return 0;
1641 }
1642 }
1643 out:
1644 return res;
1645 }
1646
1647 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648 {
1649 int res;
1650 u8 *rg_req;
1651 struct smp_resp *rg_resp;
1652
1653 rg_req = alloc_smp_req(RG_REQ_SIZE);
1654 if (!rg_req)
1655 return -ENOMEM;
1656
1657 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658 if (!rg_resp) {
1659 kfree(rg_req);
1660 return -ENOMEM;
1661 }
1662
1663 rg_req[1] = SMP_REPORT_GENERAL;
1664
1665 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666 RG_RESP_SIZE);
1667 if (res)
1668 goto out;
1669 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670 res = rg_resp->result;
1671 goto out;
1672 }
1673
1674 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1675 out:
1676 kfree(rg_resp);
1677 kfree(rg_req);
1678 return res;
1679 }
1680 /**
1681 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695 static int sas_find_bcast_dev(struct domain_device *dev,
1696 struct domain_device **src_dev)
1697 {
1698 struct expander_device *ex = &dev->ex_dev;
1699 int ex_change_count = -1;
1700 int phy_id = -1;
1701 int res;
1702 struct domain_device *ch;
1703
1704 res = sas_get_ex_change_count(dev, &ex_change_count);
1705 if (res)
1706 goto out;
1707 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708 /* Just detect if this expander phys phy change count changed,
1709 * in order to determine if this expander originate BROADCAST,
1710 * and do not update phy change count field in our structure.
1711 */
1712 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713 if (phy_id != -1) {
1714 *src_dev = dev;
1715 ex->ex_change_count = ex_change_count;
1716 SAS_DPRINTK("Expander phy change count has changed\n");
1717 return res;
1718 } else
1719 SAS_DPRINTK("Expander phys DID NOT change\n");
1720 }
1721 list_for_each_entry(ch, &ex->children, siblings) {
1722 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723 res = sas_find_bcast_dev(ch, src_dev);
1724 if (*src_dev)
1725 return res;
1726 }
1727 }
1728 out:
1729 return res;
1730 }
1731
1732 static void sas_unregister_ex_tree(struct domain_device *dev)
1733 {
1734 struct expander_device *ex = &dev->ex_dev;
1735 struct domain_device *child, *n;
1736
1737 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738 child->gone = 1;
1739 if (child->dev_type == EDGE_DEV ||
1740 child->dev_type == FANOUT_DEV)
1741 sas_unregister_ex_tree(child);
1742 else
1743 sas_unregister_dev(child);
1744 }
1745 sas_unregister_dev(dev);
1746 }
1747
1748 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749 int phy_id, bool last)
1750 {
1751 struct expander_device *ex_dev = &parent->ex_dev;
1752 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753 struct domain_device *child, *n;
1754 if (last) {
1755 list_for_each_entry_safe(child, n,
1756 &ex_dev->children, siblings) {
1757 if (SAS_ADDR(child->sas_addr) ==
1758 SAS_ADDR(phy->attached_sas_addr)) {
1759 child->gone = 1;
1760 if (child->dev_type == EDGE_DEV ||
1761 child->dev_type == FANOUT_DEV)
1762 sas_unregister_ex_tree(child);
1763 else
1764 sas_unregister_dev(child);
1765 break;
1766 }
1767 }
1768 parent->gone = 1;
1769 sas_disable_routing(parent, phy->attached_sas_addr);
1770 }
1771 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772 sas_port_delete_phy(phy->port, phy->phy);
1773 if (phy->port->num_phys == 0)
1774 sas_port_delete(phy->port);
1775 phy->port = NULL;
1776 }
1777
1778 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1779 const int level)
1780 {
1781 struct expander_device *ex_root = &root->ex_dev;
1782 struct domain_device *child;
1783 int res = 0;
1784
1785 list_for_each_entry(child, &ex_root->children, siblings) {
1786 if (child->dev_type == EDGE_DEV ||
1787 child->dev_type == FANOUT_DEV) {
1788 struct sas_expander_device *ex =
1789 rphy_to_expander_device(child->rphy);
1790
1791 if (level > ex->level)
1792 res = sas_discover_bfs_by_root_level(child,
1793 level);
1794 else if (level == ex->level)
1795 res = sas_ex_discover_devices(child, -1);
1796 }
1797 }
1798 return res;
1799 }
1800
1801 static int sas_discover_bfs_by_root(struct domain_device *dev)
1802 {
1803 int res;
1804 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1805 int level = ex->level+1;
1806
1807 res = sas_ex_discover_devices(dev, -1);
1808 if (res)
1809 goto out;
1810 do {
1811 res = sas_discover_bfs_by_root_level(dev, level);
1812 mb();
1813 level += 1;
1814 } while (level <= dev->port->disc.max_level);
1815 out:
1816 return res;
1817 }
1818
1819 static int sas_discover_new(struct domain_device *dev, int phy_id)
1820 {
1821 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1822 struct domain_device *child;
1823 bool found = false;
1824 int res, i;
1825
1826 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1827 SAS_ADDR(dev->sas_addr), phy_id);
1828 res = sas_ex_phy_discover(dev, phy_id);
1829 if (res)
1830 goto out;
1831 /* to support the wide port inserted */
1832 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1833 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1834 if (i == phy_id)
1835 continue;
1836 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1837 SAS_ADDR(ex_phy->attached_sas_addr)) {
1838 found = true;
1839 break;
1840 }
1841 }
1842 if (found) {
1843 sas_ex_join_wide_port(dev, phy_id);
1844 return 0;
1845 }
1846 res = sas_ex_discover_devices(dev, phy_id);
1847 if (!res)
1848 goto out;
1849 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1850 if (SAS_ADDR(child->sas_addr) ==
1851 SAS_ADDR(ex_phy->attached_sas_addr)) {
1852 if (child->dev_type == EDGE_DEV ||
1853 child->dev_type == FANOUT_DEV)
1854 res = sas_discover_bfs_by_root(child);
1855 break;
1856 }
1857 }
1858 out:
1859 return res;
1860 }
1861
1862 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1863 {
1864 struct expander_device *ex = &dev->ex_dev;
1865 struct ex_phy *phy = &ex->ex_phy[phy_id];
1866 u8 attached_sas_addr[8];
1867 int res;
1868
1869 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1870 switch (res) {
1871 case SMP_RESP_NO_PHY:
1872 phy->phy_state = PHY_NOT_PRESENT;
1873 sas_unregister_devs_sas_addr(dev, phy_id, last);
1874 goto out; break;
1875 case SMP_RESP_PHY_VACANT:
1876 phy->phy_state = PHY_VACANT;
1877 sas_unregister_devs_sas_addr(dev, phy_id, last);
1878 goto out; break;
1879 case SMP_RESP_FUNC_ACC:
1880 break;
1881 }
1882
1883 if (SAS_ADDR(attached_sas_addr) == 0) {
1884 phy->phy_state = PHY_EMPTY;
1885 sas_unregister_devs_sas_addr(dev, phy_id, last);
1886 } else if (SAS_ADDR(attached_sas_addr) ==
1887 SAS_ADDR(phy->attached_sas_addr)) {
1888 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1889 SAS_ADDR(dev->sas_addr), phy_id);
1890 sas_ex_phy_discover(dev, phy_id);
1891 } else
1892 res = sas_discover_new(dev, phy_id);
1893 out:
1894 return res;
1895 }
1896
1897 /**
1898 * sas_rediscover - revalidate the domain.
1899 * @dev:domain device to be detect.
1900 * @phy_id: the phy id will be detected.
1901 *
1902 * NOTE: this process _must_ quit (return) as soon as any connection
1903 * errors are encountered. Connection recovery is done elsewhere.
1904 * Discover process only interrogates devices in order to discover the
1905 * domain.For plugging out, we un-register the device only when it is
1906 * the last phy in the port, for other phys in this port, we just delete it
1907 * from the port.For inserting, we do discovery when it is the
1908 * first phy,for other phys in this port, we add it to the port to
1909 * forming the wide-port.
1910 */
1911 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1912 {
1913 struct expander_device *ex = &dev->ex_dev;
1914 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1915 int res = 0;
1916 int i;
1917 bool last = true; /* is this the last phy of the port */
1918
1919 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1920 SAS_ADDR(dev->sas_addr), phy_id);
1921
1922 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1923 for (i = 0; i < ex->num_phys; i++) {
1924 struct ex_phy *phy = &ex->ex_phy[i];
1925
1926 if (i == phy_id)
1927 continue;
1928 if (SAS_ADDR(phy->attached_sas_addr) ==
1929 SAS_ADDR(changed_phy->attached_sas_addr)) {
1930 SAS_DPRINTK("phy%d part of wide port with "
1931 "phy%d\n", phy_id, i);
1932 last = false;
1933 break;
1934 }
1935 }
1936 res = sas_rediscover_dev(dev, phy_id, last);
1937 } else
1938 res = sas_discover_new(dev, phy_id);
1939 return res;
1940 }
1941
1942 /**
1943 * sas_revalidate_domain -- revalidate the domain
1944 * @port: port to the domain of interest
1945 *
1946 * NOTE: this process _must_ quit (return) as soon as any connection
1947 * errors are encountered. Connection recovery is done elsewhere.
1948 * Discover process only interrogates devices in order to discover the
1949 * domain.
1950 */
1951 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1952 {
1953 int res;
1954 struct domain_device *dev = NULL;
1955
1956 res = sas_find_bcast_dev(port_dev, &dev);
1957 if (res)
1958 goto out;
1959 if (dev) {
1960 struct expander_device *ex = &dev->ex_dev;
1961 int i = 0, phy_id;
1962
1963 do {
1964 phy_id = -1;
1965 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1966 if (phy_id == -1)
1967 break;
1968 res = sas_rediscover(dev, phy_id);
1969 i = phy_id + 1;
1970 } while (i < ex->num_phys);
1971 }
1972 out:
1973 return res;
1974 }
1975
1976 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1977 struct request *req)
1978 {
1979 struct domain_device *dev;
1980 int ret, type;
1981 struct request *rsp = req->next_rq;
1982
1983 if (!rsp) {
1984 printk("%s: space for a smp response is missing\n",
1985 __func__);
1986 return -EINVAL;
1987 }
1988
1989 /* no rphy means no smp target support (ie aic94xx host) */
1990 if (!rphy)
1991 return sas_smp_host_handler(shost, req, rsp);
1992
1993 type = rphy->identify.device_type;
1994
1995 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1996 type != SAS_FANOUT_EXPANDER_DEVICE) {
1997 printk("%s: can we send a smp request to a device?\n",
1998 __func__);
1999 return -EINVAL;
2000 }
2001
2002 dev = sas_find_dev_by_rphy(rphy);
2003 if (!dev) {
2004 printk("%s: fail to find a domain_device?\n", __func__);
2005 return -EINVAL;
2006 }
2007
2008 /* do we need to support multiple segments? */
2009 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2010 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2011 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2012 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2013 return -EINVAL;
2014 }
2015
2016 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2017 bio_data(rsp->bio), blk_rq_bytes(rsp));
2018 if (ret > 0) {
2019 /* positive number is the untransferred residual */
2020 rsp->resid_len = ret;
2021 req->resid_len = 0;
2022 ret = 0;
2023 } else if (ret == 0) {
2024 rsp->resid_len = 0;
2025 req->resid_len = 0;
2026 }
2027
2028 return ret;
2029 }