]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/lpfc/lpfc_sli.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / lpfc / lpfc_sli.c
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21
22 #include <linux/blkdev.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/lockdep.h>
28
29 #include <scsi/scsi.h>
30 #include <scsi/scsi_cmnd.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport_fc.h>
34 #include <scsi/fc/fc_fs.h>
35 #include <linux/aer.h>
36
37 #include "lpfc_hw4.h"
38 #include "lpfc_hw.h"
39 #include "lpfc_sli.h"
40 #include "lpfc_sli4.h"
41 #include "lpfc_nl.h"
42 #include "lpfc_disc.h"
43 #include "lpfc_scsi.h"
44 #include "lpfc.h"
45 #include "lpfc_crtn.h"
46 #include "lpfc_logmsg.h"
47 #include "lpfc_compat.h"
48 #include "lpfc_debugfs.h"
49 #include "lpfc_vport.h"
50 #include "lpfc_version.h"
51
52 /* There are only four IOCB completion types. */
53 typedef enum _lpfc_iocb_type {
54 LPFC_UNKNOWN_IOCB,
55 LPFC_UNSOL_IOCB,
56 LPFC_SOL_IOCB,
57 LPFC_ABORT_IOCB
58 } lpfc_iocb_type;
59
60
61 /* Provide function prototypes local to this module. */
62 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
63 uint32_t);
64 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
65 uint8_t *, uint32_t *);
66 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
67 struct lpfc_iocbq *);
68 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
69 struct hbq_dmabuf *);
70 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *,
71 struct lpfc_cqe *);
72 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *,
73 int);
74 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *,
75 uint32_t);
76 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
77 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
78
79 static IOCB_t *
80 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
81 {
82 return &iocbq->iocb;
83 }
84
85 /**
86 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
87 * @q: The Work Queue to operate on.
88 * @wqe: The work Queue Entry to put on the Work queue.
89 *
90 * This routine will copy the contents of @wqe to the next available entry on
91 * the @q. This function will then ring the Work Queue Doorbell to signal the
92 * HBA to start processing the Work Queue Entry. This function returns 0 if
93 * successful. If no entries are available on @q then this function will return
94 * -ENOMEM.
95 * The caller is expected to hold the hbalock when calling this routine.
96 **/
97 static uint32_t
98 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
99 {
100 union lpfc_wqe *temp_wqe;
101 struct lpfc_register doorbell;
102 uint32_t host_index;
103 uint32_t idx;
104
105 /* sanity check on queue memory */
106 if (unlikely(!q))
107 return -ENOMEM;
108 temp_wqe = q->qe[q->host_index].wqe;
109
110 /* If the host has not yet processed the next entry then we are done */
111 idx = ((q->host_index + 1) % q->entry_count);
112 if (idx == q->hba_index) {
113 q->WQ_overflow++;
114 return -ENOMEM;
115 }
116 q->WQ_posted++;
117 /* set consumption flag every once in a while */
118 if (!((q->host_index + 1) % q->entry_repost))
119 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
120 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
121 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
122 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
123
124 /* Update the host index before invoking device */
125 host_index = q->host_index;
126
127 q->host_index = idx;
128
129 /* Ring Doorbell */
130 doorbell.word0 = 0;
131 if (q->db_format == LPFC_DB_LIST_FORMAT) {
132 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
133 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index);
134 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
135 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
136 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
137 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
138 } else {
139 return -EINVAL;
140 }
141 writel(doorbell.word0, q->db_regaddr);
142
143 return 0;
144 }
145
146 /**
147 * lpfc_sli4_wq_release - Updates internal hba index for WQ
148 * @q: The Work Queue to operate on.
149 * @index: The index to advance the hba index to.
150 *
151 * This routine will update the HBA index of a queue to reflect consumption of
152 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
153 * an entry the host calls this function to update the queue's internal
154 * pointers. This routine returns the number of entries that were consumed by
155 * the HBA.
156 **/
157 static uint32_t
158 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
159 {
160 uint32_t released = 0;
161
162 /* sanity check on queue memory */
163 if (unlikely(!q))
164 return 0;
165
166 if (q->hba_index == index)
167 return 0;
168 do {
169 q->hba_index = ((q->hba_index + 1) % q->entry_count);
170 released++;
171 } while (q->hba_index != index);
172 return released;
173 }
174
175 /**
176 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
177 * @q: The Mailbox Queue to operate on.
178 * @wqe: The Mailbox Queue Entry to put on the Work queue.
179 *
180 * This routine will copy the contents of @mqe to the next available entry on
181 * the @q. This function will then ring the Work Queue Doorbell to signal the
182 * HBA to start processing the Work Queue Entry. This function returns 0 if
183 * successful. If no entries are available on @q then this function will return
184 * -ENOMEM.
185 * The caller is expected to hold the hbalock when calling this routine.
186 **/
187 static uint32_t
188 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
189 {
190 struct lpfc_mqe *temp_mqe;
191 struct lpfc_register doorbell;
192
193 /* sanity check on queue memory */
194 if (unlikely(!q))
195 return -ENOMEM;
196 temp_mqe = q->qe[q->host_index].mqe;
197
198 /* If the host has not yet processed the next entry then we are done */
199 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
200 return -ENOMEM;
201 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
202 /* Save off the mailbox pointer for completion */
203 q->phba->mbox = (MAILBOX_t *)temp_mqe;
204
205 /* Update the host index before invoking device */
206 q->host_index = ((q->host_index + 1) % q->entry_count);
207
208 /* Ring Doorbell */
209 doorbell.word0 = 0;
210 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
211 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
212 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
213 return 0;
214 }
215
216 /**
217 * lpfc_sli4_mq_release - Updates internal hba index for MQ
218 * @q: The Mailbox Queue to operate on.
219 *
220 * This routine will update the HBA index of a queue to reflect consumption of
221 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
222 * an entry the host calls this function to update the queue's internal
223 * pointers. This routine returns the number of entries that were consumed by
224 * the HBA.
225 **/
226 static uint32_t
227 lpfc_sli4_mq_release(struct lpfc_queue *q)
228 {
229 /* sanity check on queue memory */
230 if (unlikely(!q))
231 return 0;
232
233 /* Clear the mailbox pointer for completion */
234 q->phba->mbox = NULL;
235 q->hba_index = ((q->hba_index + 1) % q->entry_count);
236 return 1;
237 }
238
239 /**
240 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
241 * @q: The Event Queue to get the first valid EQE from
242 *
243 * This routine will get the first valid Event Queue Entry from @q, update
244 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
245 * the Queue (no more work to do), or the Queue is full of EQEs that have been
246 * processed, but not popped back to the HBA then this routine will return NULL.
247 **/
248 static struct lpfc_eqe *
249 lpfc_sli4_eq_get(struct lpfc_queue *q)
250 {
251 struct lpfc_eqe *eqe;
252 uint32_t idx;
253
254 /* sanity check on queue memory */
255 if (unlikely(!q))
256 return NULL;
257 eqe = q->qe[q->hba_index].eqe;
258
259 /* If the next EQE is not valid then we are done */
260 if (!bf_get_le32(lpfc_eqe_valid, eqe))
261 return NULL;
262 /* If the host has not yet processed the next entry then we are done */
263 idx = ((q->hba_index + 1) % q->entry_count);
264 if (idx == q->host_index)
265 return NULL;
266
267 q->hba_index = idx;
268
269 /*
270 * insert barrier for instruction interlock : data from the hardware
271 * must have the valid bit checked before it can be copied and acted
272 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
273 * instructions allowing action on content before valid bit checked,
274 * add barrier here as well. May not be needed as "content" is a
275 * single 32-bit entity here (vs multi word structure for cq's).
276 */
277 mb();
278 return eqe;
279 }
280
281 /**
282 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
283 * @q: The Event Queue to disable interrupts
284 *
285 **/
286 static inline void
287 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
288 {
289 struct lpfc_register doorbell;
290
291 doorbell.word0 = 0;
292 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
293 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
294 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
295 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
296 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
297 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
298 }
299
300 /**
301 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
302 * @q: The Event Queue that the host has completed processing for.
303 * @arm: Indicates whether the host wants to arms this CQ.
304 *
305 * This routine will mark all Event Queue Entries on @q, from the last
306 * known completed entry to the last entry that was processed, as completed
307 * by clearing the valid bit for each completion queue entry. Then it will
308 * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
309 * The internal host index in the @q will be updated by this routine to indicate
310 * that the host has finished processing the entries. The @arm parameter
311 * indicates that the queue should be rearmed when ringing the doorbell.
312 *
313 * This function will return the number of EQEs that were popped.
314 **/
315 uint32_t
316 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
317 {
318 uint32_t released = 0;
319 struct lpfc_eqe *temp_eqe;
320 struct lpfc_register doorbell;
321
322 /* sanity check on queue memory */
323 if (unlikely(!q))
324 return 0;
325
326 /* while there are valid entries */
327 while (q->hba_index != q->host_index) {
328 temp_eqe = q->qe[q->host_index].eqe;
329 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
330 released++;
331 q->host_index = ((q->host_index + 1) % q->entry_count);
332 }
333 if (unlikely(released == 0 && !arm))
334 return 0;
335
336 /* ring doorbell for number popped */
337 doorbell.word0 = 0;
338 if (arm) {
339 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
340 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
341 }
342 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
343 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
344 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
345 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
346 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
347 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
348 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
349 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
350 readl(q->phba->sli4_hba.EQCQDBregaddr);
351 return released;
352 }
353
354 /**
355 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
356 * @q: The Completion Queue to get the first valid CQE from
357 *
358 * This routine will get the first valid Completion Queue Entry from @q, update
359 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
360 * the Queue (no more work to do), or the Queue is full of CQEs that have been
361 * processed, but not popped back to the HBA then this routine will return NULL.
362 **/
363 static struct lpfc_cqe *
364 lpfc_sli4_cq_get(struct lpfc_queue *q)
365 {
366 struct lpfc_cqe *cqe;
367 uint32_t idx;
368
369 /* sanity check on queue memory */
370 if (unlikely(!q))
371 return NULL;
372
373 /* If the next CQE is not valid then we are done */
374 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
375 return NULL;
376 /* If the host has not yet processed the next entry then we are done */
377 idx = ((q->hba_index + 1) % q->entry_count);
378 if (idx == q->host_index)
379 return NULL;
380
381 cqe = q->qe[q->hba_index].cqe;
382 q->hba_index = idx;
383
384 /*
385 * insert barrier for instruction interlock : data from the hardware
386 * must have the valid bit checked before it can be copied and acted
387 * upon. Speculative instructions were allowing a bcopy at the start
388 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
389 * after our return, to copy data before the valid bit check above
390 * was done. As such, some of the copied data was stale. The barrier
391 * ensures the check is before any data is copied.
392 */
393 mb();
394 return cqe;
395 }
396
397 /**
398 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
399 * @q: The Completion Queue that the host has completed processing for.
400 * @arm: Indicates whether the host wants to arms this CQ.
401 *
402 * This routine will mark all Completion queue entries on @q, from the last
403 * known completed entry to the last entry that was processed, as completed
404 * by clearing the valid bit for each completion queue entry. Then it will
405 * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
406 * The internal host index in the @q will be updated by this routine to indicate
407 * that the host has finished processing the entries. The @arm parameter
408 * indicates that the queue should be rearmed when ringing the doorbell.
409 *
410 * This function will return the number of CQEs that were released.
411 **/
412 uint32_t
413 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
414 {
415 uint32_t released = 0;
416 struct lpfc_cqe *temp_qe;
417 struct lpfc_register doorbell;
418
419 /* sanity check on queue memory */
420 if (unlikely(!q))
421 return 0;
422 /* while there are valid entries */
423 while (q->hba_index != q->host_index) {
424 temp_qe = q->qe[q->host_index].cqe;
425 bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
426 released++;
427 q->host_index = ((q->host_index + 1) % q->entry_count);
428 }
429 if (unlikely(released == 0 && !arm))
430 return 0;
431
432 /* ring doorbell for number popped */
433 doorbell.word0 = 0;
434 if (arm)
435 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
436 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
437 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
438 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
439 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
440 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
441 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
442 return released;
443 }
444
445 /**
446 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
447 * @q: The Header Receive Queue to operate on.
448 * @wqe: The Receive Queue Entry to put on the Receive queue.
449 *
450 * This routine will copy the contents of @wqe to the next available entry on
451 * the @q. This function will then ring the Receive Queue Doorbell to signal the
452 * HBA to start processing the Receive Queue Entry. This function returns the
453 * index that the rqe was copied to if successful. If no entries are available
454 * on @q then this function will return -ENOMEM.
455 * The caller is expected to hold the hbalock when calling this routine.
456 **/
457 static int
458 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
459 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
460 {
461 struct lpfc_rqe *temp_hrqe;
462 struct lpfc_rqe *temp_drqe;
463 struct lpfc_register doorbell;
464 int put_index;
465
466 /* sanity check on queue memory */
467 if (unlikely(!hq) || unlikely(!dq))
468 return -ENOMEM;
469 put_index = hq->host_index;
470 temp_hrqe = hq->qe[hq->host_index].rqe;
471 temp_drqe = dq->qe[dq->host_index].rqe;
472
473 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
474 return -EINVAL;
475 if (hq->host_index != dq->host_index)
476 return -EINVAL;
477 /* If the host has not yet processed the next entry then we are done */
478 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index)
479 return -EBUSY;
480 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
481 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
482
483 /* Update the host index to point to the next slot */
484 hq->host_index = ((hq->host_index + 1) % hq->entry_count);
485 dq->host_index = ((dq->host_index + 1) % dq->entry_count);
486
487 /* Ring The Header Receive Queue Doorbell */
488 if (!(hq->host_index % hq->entry_repost)) {
489 doorbell.word0 = 0;
490 if (hq->db_format == LPFC_DB_RING_FORMAT) {
491 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
492 hq->entry_repost);
493 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
494 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
495 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
496 hq->entry_repost);
497 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
498 hq->host_index);
499 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
500 } else {
501 return -EINVAL;
502 }
503 writel(doorbell.word0, hq->db_regaddr);
504 }
505 return put_index;
506 }
507
508 /**
509 * lpfc_sli4_rq_release - Updates internal hba index for RQ
510 * @q: The Header Receive Queue to operate on.
511 *
512 * This routine will update the HBA index of a queue to reflect consumption of
513 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
514 * consumed an entry the host calls this function to update the queue's
515 * internal pointers. This routine returns the number of entries that were
516 * consumed by the HBA.
517 **/
518 static uint32_t
519 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
520 {
521 /* sanity check on queue memory */
522 if (unlikely(!hq) || unlikely(!dq))
523 return 0;
524
525 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
526 return 0;
527 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
528 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
529 return 1;
530 }
531
532 /**
533 * lpfc_cmd_iocb - Get next command iocb entry in the ring
534 * @phba: Pointer to HBA context object.
535 * @pring: Pointer to driver SLI ring object.
536 *
537 * This function returns pointer to next command iocb entry
538 * in the command ring. The caller must hold hbalock to prevent
539 * other threads consume the next command iocb.
540 * SLI-2/SLI-3 provide different sized iocbs.
541 **/
542 static inline IOCB_t *
543 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
544 {
545 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
546 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
547 }
548
549 /**
550 * lpfc_resp_iocb - Get next response iocb entry in the ring
551 * @phba: Pointer to HBA context object.
552 * @pring: Pointer to driver SLI ring object.
553 *
554 * This function returns pointer to next response iocb entry
555 * in the response ring. The caller must hold hbalock to make sure
556 * that no other thread consume the next response iocb.
557 * SLI-2/SLI-3 provide different sized iocbs.
558 **/
559 static inline IOCB_t *
560 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
561 {
562 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
563 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
564 }
565
566 /**
567 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
568 * @phba: Pointer to HBA context object.
569 *
570 * This function is called with hbalock held. This function
571 * allocates a new driver iocb object from the iocb pool. If the
572 * allocation is successful, it returns pointer to the newly
573 * allocated iocb object else it returns NULL.
574 **/
575 struct lpfc_iocbq *
576 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
577 {
578 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
579 struct lpfc_iocbq * iocbq = NULL;
580
581 lockdep_assert_held(&phba->hbalock);
582
583 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
584 if (iocbq)
585 phba->iocb_cnt++;
586 if (phba->iocb_cnt > phba->iocb_max)
587 phba->iocb_max = phba->iocb_cnt;
588 return iocbq;
589 }
590
591 /**
592 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
593 * @phba: Pointer to HBA context object.
594 * @xritag: XRI value.
595 *
596 * This function clears the sglq pointer from the array of acive
597 * sglq's. The xritag that is passed in is used to index into the
598 * array. Before the xritag can be used it needs to be adjusted
599 * by subtracting the xribase.
600 *
601 * Returns sglq ponter = success, NULL = Failure.
602 **/
603 static struct lpfc_sglq *
604 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
605 {
606 struct lpfc_sglq *sglq;
607
608 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
609 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
610 return sglq;
611 }
612
613 /**
614 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
615 * @phba: Pointer to HBA context object.
616 * @xritag: XRI value.
617 *
618 * This function returns the sglq pointer from the array of acive
619 * sglq's. The xritag that is passed in is used to index into the
620 * array. Before the xritag can be used it needs to be adjusted
621 * by subtracting the xribase.
622 *
623 * Returns sglq ponter = success, NULL = Failure.
624 **/
625 struct lpfc_sglq *
626 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
627 {
628 struct lpfc_sglq *sglq;
629
630 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
631 return sglq;
632 }
633
634 /**
635 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
636 * @phba: Pointer to HBA context object.
637 * @xritag: xri used in this exchange.
638 * @rrq: The RRQ to be cleared.
639 *
640 **/
641 void
642 lpfc_clr_rrq_active(struct lpfc_hba *phba,
643 uint16_t xritag,
644 struct lpfc_node_rrq *rrq)
645 {
646 struct lpfc_nodelist *ndlp = NULL;
647
648 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
649 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
650
651 /* The target DID could have been swapped (cable swap)
652 * we should use the ndlp from the findnode if it is
653 * available.
654 */
655 if ((!ndlp) && rrq->ndlp)
656 ndlp = rrq->ndlp;
657
658 if (!ndlp)
659 goto out;
660
661 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
662 rrq->send_rrq = 0;
663 rrq->xritag = 0;
664 rrq->rrq_stop_time = 0;
665 }
666 out:
667 mempool_free(rrq, phba->rrq_pool);
668 }
669
670 /**
671 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
672 * @phba: Pointer to HBA context object.
673 *
674 * This function is called with hbalock held. This function
675 * Checks if stop_time (ratov from setting rrq active) has
676 * been reached, if it has and the send_rrq flag is set then
677 * it will call lpfc_send_rrq. If the send_rrq flag is not set
678 * then it will just call the routine to clear the rrq and
679 * free the rrq resource.
680 * The timer is set to the next rrq that is going to expire before
681 * leaving the routine.
682 *
683 **/
684 void
685 lpfc_handle_rrq_active(struct lpfc_hba *phba)
686 {
687 struct lpfc_node_rrq *rrq;
688 struct lpfc_node_rrq *nextrrq;
689 unsigned long next_time;
690 unsigned long iflags;
691 LIST_HEAD(send_rrq);
692
693 spin_lock_irqsave(&phba->hbalock, iflags);
694 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
695 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
696 list_for_each_entry_safe(rrq, nextrrq,
697 &phba->active_rrq_list, list) {
698 if (time_after(jiffies, rrq->rrq_stop_time))
699 list_move(&rrq->list, &send_rrq);
700 else if (time_before(rrq->rrq_stop_time, next_time))
701 next_time = rrq->rrq_stop_time;
702 }
703 spin_unlock_irqrestore(&phba->hbalock, iflags);
704 if ((!list_empty(&phba->active_rrq_list)) &&
705 (!(phba->pport->load_flag & FC_UNLOADING)))
706 mod_timer(&phba->rrq_tmr, next_time);
707 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
708 list_del(&rrq->list);
709 if (!rrq->send_rrq)
710 /* this call will free the rrq */
711 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
712 else if (lpfc_send_rrq(phba, rrq)) {
713 /* if we send the rrq then the completion handler
714 * will clear the bit in the xribitmap.
715 */
716 lpfc_clr_rrq_active(phba, rrq->xritag,
717 rrq);
718 }
719 }
720 }
721
722 /**
723 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
724 * @vport: Pointer to vport context object.
725 * @xri: The xri used in the exchange.
726 * @did: The targets DID for this exchange.
727 *
728 * returns NULL = rrq not found in the phba->active_rrq_list.
729 * rrq = rrq for this xri and target.
730 **/
731 struct lpfc_node_rrq *
732 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
733 {
734 struct lpfc_hba *phba = vport->phba;
735 struct lpfc_node_rrq *rrq;
736 struct lpfc_node_rrq *nextrrq;
737 unsigned long iflags;
738
739 if (phba->sli_rev != LPFC_SLI_REV4)
740 return NULL;
741 spin_lock_irqsave(&phba->hbalock, iflags);
742 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
743 if (rrq->vport == vport && rrq->xritag == xri &&
744 rrq->nlp_DID == did){
745 list_del(&rrq->list);
746 spin_unlock_irqrestore(&phba->hbalock, iflags);
747 return rrq;
748 }
749 }
750 spin_unlock_irqrestore(&phba->hbalock, iflags);
751 return NULL;
752 }
753
754 /**
755 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
756 * @vport: Pointer to vport context object.
757 * @ndlp: Pointer to the lpfc_node_list structure.
758 * If ndlp is NULL Remove all active RRQs for this vport from the
759 * phba->active_rrq_list and clear the rrq.
760 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
761 **/
762 void
763 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
764
765 {
766 struct lpfc_hba *phba = vport->phba;
767 struct lpfc_node_rrq *rrq;
768 struct lpfc_node_rrq *nextrrq;
769 unsigned long iflags;
770 LIST_HEAD(rrq_list);
771
772 if (phba->sli_rev != LPFC_SLI_REV4)
773 return;
774 if (!ndlp) {
775 lpfc_sli4_vport_delete_els_xri_aborted(vport);
776 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
777 }
778 spin_lock_irqsave(&phba->hbalock, iflags);
779 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
780 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
781 list_move(&rrq->list, &rrq_list);
782 spin_unlock_irqrestore(&phba->hbalock, iflags);
783
784 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
785 list_del(&rrq->list);
786 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
787 }
788 }
789
790 /**
791 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
792 * @phba: Pointer to HBA context object.
793 * @ndlp: Targets nodelist pointer for this exchange.
794 * @xritag the xri in the bitmap to test.
795 *
796 * This function is called with hbalock held. This function
797 * returns 0 = rrq not active for this xri
798 * 1 = rrq is valid for this xri.
799 **/
800 int
801 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
802 uint16_t xritag)
803 {
804 lockdep_assert_held(&phba->hbalock);
805 if (!ndlp)
806 return 0;
807 if (!ndlp->active_rrqs_xri_bitmap)
808 return 0;
809 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
810 return 1;
811 else
812 return 0;
813 }
814
815 /**
816 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
817 * @phba: Pointer to HBA context object.
818 * @ndlp: nodelist pointer for this target.
819 * @xritag: xri used in this exchange.
820 * @rxid: Remote Exchange ID.
821 * @send_rrq: Flag used to determine if we should send rrq els cmd.
822 *
823 * This function takes the hbalock.
824 * The active bit is always set in the active rrq xri_bitmap even
825 * if there is no slot avaiable for the other rrq information.
826 *
827 * returns 0 rrq actived for this xri
828 * < 0 No memory or invalid ndlp.
829 **/
830 int
831 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
832 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
833 {
834 unsigned long iflags;
835 struct lpfc_node_rrq *rrq;
836 int empty;
837
838 if (!ndlp)
839 return -EINVAL;
840
841 if (!phba->cfg_enable_rrq)
842 return -EINVAL;
843
844 spin_lock_irqsave(&phba->hbalock, iflags);
845 if (phba->pport->load_flag & FC_UNLOADING) {
846 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
847 goto out;
848 }
849
850 /*
851 * set the active bit even if there is no mem available.
852 */
853 if (NLP_CHK_FREE_REQ(ndlp))
854 goto out;
855
856 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
857 goto out;
858
859 if (!ndlp->active_rrqs_xri_bitmap)
860 goto out;
861
862 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
863 goto out;
864
865 spin_unlock_irqrestore(&phba->hbalock, iflags);
866 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
867 if (!rrq) {
868 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
869 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
870 " DID:0x%x Send:%d\n",
871 xritag, rxid, ndlp->nlp_DID, send_rrq);
872 return -EINVAL;
873 }
874 if (phba->cfg_enable_rrq == 1)
875 rrq->send_rrq = send_rrq;
876 else
877 rrq->send_rrq = 0;
878 rrq->xritag = xritag;
879 rrq->rrq_stop_time = jiffies +
880 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
881 rrq->ndlp = ndlp;
882 rrq->nlp_DID = ndlp->nlp_DID;
883 rrq->vport = ndlp->vport;
884 rrq->rxid = rxid;
885 spin_lock_irqsave(&phba->hbalock, iflags);
886 empty = list_empty(&phba->active_rrq_list);
887 list_add_tail(&rrq->list, &phba->active_rrq_list);
888 phba->hba_flag |= HBA_RRQ_ACTIVE;
889 if (empty)
890 lpfc_worker_wake_up(phba);
891 spin_unlock_irqrestore(&phba->hbalock, iflags);
892 return 0;
893 out:
894 spin_unlock_irqrestore(&phba->hbalock, iflags);
895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
896 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
897 " DID:0x%x Send:%d\n",
898 xritag, rxid, ndlp->nlp_DID, send_rrq);
899 return -EINVAL;
900 }
901
902 /**
903 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool
904 * @phba: Pointer to HBA context object.
905 * @piocb: Pointer to the iocbq.
906 *
907 * This function is called with the ring lock held. This function
908 * gets a new driver sglq object from the sglq list. If the
909 * list is not empty then it is successful, it returns pointer to the newly
910 * allocated sglq object else it returns NULL.
911 **/
912 static struct lpfc_sglq *
913 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
914 {
915 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list;
916 struct lpfc_sglq *sglq = NULL;
917 struct lpfc_sglq *start_sglq = NULL;
918 struct lpfc_scsi_buf *lpfc_cmd;
919 struct lpfc_nodelist *ndlp;
920 int found = 0;
921
922 lockdep_assert_held(&phba->hbalock);
923
924 if (piocbq->iocb_flag & LPFC_IO_FCP) {
925 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
926 ndlp = lpfc_cmd->rdata->pnode;
927 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
928 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
929 ndlp = piocbq->context_un.ndlp;
930 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
931 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
932 ndlp = NULL;
933 else
934 ndlp = piocbq->context_un.ndlp;
935 } else {
936 ndlp = piocbq->context1;
937 }
938
939 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list);
940 start_sglq = sglq;
941 while (!found) {
942 if (!sglq)
943 return NULL;
944 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) {
945 /* This xri has an rrq outstanding for this DID.
946 * put it back in the list and get another xri.
947 */
948 list_add_tail(&sglq->list, lpfc_sgl_list);
949 sglq = NULL;
950 list_remove_head(lpfc_sgl_list, sglq,
951 struct lpfc_sglq, list);
952 if (sglq == start_sglq) {
953 sglq = NULL;
954 break;
955 } else
956 continue;
957 }
958 sglq->ndlp = ndlp;
959 found = 1;
960 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
961 sglq->state = SGL_ALLOCATED;
962 }
963 return sglq;
964 }
965
966 /**
967 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
968 * @phba: Pointer to HBA context object.
969 *
970 * This function is called with no lock held. This function
971 * allocates a new driver iocb object from the iocb pool. If the
972 * allocation is successful, it returns pointer to the newly
973 * allocated iocb object else it returns NULL.
974 **/
975 struct lpfc_iocbq *
976 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
977 {
978 struct lpfc_iocbq * iocbq = NULL;
979 unsigned long iflags;
980
981 spin_lock_irqsave(&phba->hbalock, iflags);
982 iocbq = __lpfc_sli_get_iocbq(phba);
983 spin_unlock_irqrestore(&phba->hbalock, iflags);
984 return iocbq;
985 }
986
987 /**
988 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
989 * @phba: Pointer to HBA context object.
990 * @iocbq: Pointer to driver iocb object.
991 *
992 * This function is called with hbalock held to release driver
993 * iocb object to the iocb pool. The iotag in the iocb object
994 * does not change for each use of the iocb object. This function
995 * clears all other fields of the iocb object when it is freed.
996 * The sqlq structure that holds the xritag and phys and virtual
997 * mappings for the scatter gather list is retrieved from the
998 * active array of sglq. The get of the sglq pointer also clears
999 * the entry in the array. If the status of the IO indiactes that
1000 * this IO was aborted then the sglq entry it put on the
1001 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1002 * IO has good status or fails for any other reason then the sglq
1003 * entry is added to the free list (lpfc_sgl_list).
1004 **/
1005 static void
1006 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1007 {
1008 struct lpfc_sglq *sglq;
1009 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1010 unsigned long iflag = 0;
1011 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
1012
1013 lockdep_assert_held(&phba->hbalock);
1014
1015 if (iocbq->sli4_xritag == NO_XRI)
1016 sglq = NULL;
1017 else
1018 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1019
1020
1021 if (sglq) {
1022 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1023 (sglq->state != SGL_XRI_ABORTED)) {
1024 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock,
1025 iflag);
1026 list_add(&sglq->list,
1027 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1028 spin_unlock_irqrestore(
1029 &phba->sli4_hba.abts_sgl_list_lock, iflag);
1030 } else {
1031 spin_lock_irqsave(&pring->ring_lock, iflag);
1032 sglq->state = SGL_FREED;
1033 sglq->ndlp = NULL;
1034 list_add_tail(&sglq->list,
1035 &phba->sli4_hba.lpfc_sgl_list);
1036 spin_unlock_irqrestore(&pring->ring_lock, iflag);
1037
1038 /* Check if TXQ queue needs to be serviced */
1039 if (!list_empty(&pring->txq))
1040 lpfc_worker_wake_up(phba);
1041 }
1042 }
1043
1044
1045 /*
1046 * Clean all volatile data fields, preserve iotag and node struct.
1047 */
1048 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1049 iocbq->sli4_lxritag = NO_XRI;
1050 iocbq->sli4_xritag = NO_XRI;
1051 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1052 }
1053
1054
1055 /**
1056 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1057 * @phba: Pointer to HBA context object.
1058 * @iocbq: Pointer to driver iocb object.
1059 *
1060 * This function is called with hbalock held to release driver
1061 * iocb object to the iocb pool. The iotag in the iocb object
1062 * does not change for each use of the iocb object. This function
1063 * clears all other fields of the iocb object when it is freed.
1064 **/
1065 static void
1066 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1067 {
1068 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1069
1070 lockdep_assert_held(&phba->hbalock);
1071
1072 /*
1073 * Clean all volatile data fields, preserve iotag and node struct.
1074 */
1075 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1076 iocbq->sli4_xritag = NO_XRI;
1077 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1078 }
1079
1080 /**
1081 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1082 * @phba: Pointer to HBA context object.
1083 * @iocbq: Pointer to driver iocb object.
1084 *
1085 * This function is called with hbalock held to release driver
1086 * iocb object to the iocb pool. The iotag in the iocb object
1087 * does not change for each use of the iocb object. This function
1088 * clears all other fields of the iocb object when it is freed.
1089 **/
1090 static void
1091 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1092 {
1093 lockdep_assert_held(&phba->hbalock);
1094
1095 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1096 phba->iocb_cnt--;
1097 }
1098
1099 /**
1100 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1101 * @phba: Pointer to HBA context object.
1102 * @iocbq: Pointer to driver iocb object.
1103 *
1104 * This function is called with no lock held to release the iocb to
1105 * iocb pool.
1106 **/
1107 void
1108 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1109 {
1110 unsigned long iflags;
1111
1112 /*
1113 * Clean all volatile data fields, preserve iotag and node struct.
1114 */
1115 spin_lock_irqsave(&phba->hbalock, iflags);
1116 __lpfc_sli_release_iocbq(phba, iocbq);
1117 spin_unlock_irqrestore(&phba->hbalock, iflags);
1118 }
1119
1120 /**
1121 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1122 * @phba: Pointer to HBA context object.
1123 * @iocblist: List of IOCBs.
1124 * @ulpstatus: ULP status in IOCB command field.
1125 * @ulpWord4: ULP word-4 in IOCB command field.
1126 *
1127 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1128 * on the list by invoking the complete callback function associated with the
1129 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1130 * fields.
1131 **/
1132 void
1133 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1134 uint32_t ulpstatus, uint32_t ulpWord4)
1135 {
1136 struct lpfc_iocbq *piocb;
1137
1138 while (!list_empty(iocblist)) {
1139 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1140 if (!piocb->iocb_cmpl)
1141 lpfc_sli_release_iocbq(phba, piocb);
1142 else {
1143 piocb->iocb.ulpStatus = ulpstatus;
1144 piocb->iocb.un.ulpWord[4] = ulpWord4;
1145 (piocb->iocb_cmpl) (phba, piocb, piocb);
1146 }
1147 }
1148 return;
1149 }
1150
1151 /**
1152 * lpfc_sli_iocb_cmd_type - Get the iocb type
1153 * @iocb_cmnd: iocb command code.
1154 *
1155 * This function is called by ring event handler function to get the iocb type.
1156 * This function translates the iocb command to an iocb command type used to
1157 * decide the final disposition of each completed IOCB.
1158 * The function returns
1159 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1160 * LPFC_SOL_IOCB if it is a solicited iocb completion
1161 * LPFC_ABORT_IOCB if it is an abort iocb
1162 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1163 *
1164 * The caller is not required to hold any lock.
1165 **/
1166 static lpfc_iocb_type
1167 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1168 {
1169 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1170
1171 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1172 return 0;
1173
1174 switch (iocb_cmnd) {
1175 case CMD_XMIT_SEQUENCE_CR:
1176 case CMD_XMIT_SEQUENCE_CX:
1177 case CMD_XMIT_BCAST_CN:
1178 case CMD_XMIT_BCAST_CX:
1179 case CMD_ELS_REQUEST_CR:
1180 case CMD_ELS_REQUEST_CX:
1181 case CMD_CREATE_XRI_CR:
1182 case CMD_CREATE_XRI_CX:
1183 case CMD_GET_RPI_CN:
1184 case CMD_XMIT_ELS_RSP_CX:
1185 case CMD_GET_RPI_CR:
1186 case CMD_FCP_IWRITE_CR:
1187 case CMD_FCP_IWRITE_CX:
1188 case CMD_FCP_IREAD_CR:
1189 case CMD_FCP_IREAD_CX:
1190 case CMD_FCP_ICMND_CR:
1191 case CMD_FCP_ICMND_CX:
1192 case CMD_FCP_TSEND_CX:
1193 case CMD_FCP_TRSP_CX:
1194 case CMD_FCP_TRECEIVE_CX:
1195 case CMD_FCP_AUTO_TRSP_CX:
1196 case CMD_ADAPTER_MSG:
1197 case CMD_ADAPTER_DUMP:
1198 case CMD_XMIT_SEQUENCE64_CR:
1199 case CMD_XMIT_SEQUENCE64_CX:
1200 case CMD_XMIT_BCAST64_CN:
1201 case CMD_XMIT_BCAST64_CX:
1202 case CMD_ELS_REQUEST64_CR:
1203 case CMD_ELS_REQUEST64_CX:
1204 case CMD_FCP_IWRITE64_CR:
1205 case CMD_FCP_IWRITE64_CX:
1206 case CMD_FCP_IREAD64_CR:
1207 case CMD_FCP_IREAD64_CX:
1208 case CMD_FCP_ICMND64_CR:
1209 case CMD_FCP_ICMND64_CX:
1210 case CMD_FCP_TSEND64_CX:
1211 case CMD_FCP_TRSP64_CX:
1212 case CMD_FCP_TRECEIVE64_CX:
1213 case CMD_GEN_REQUEST64_CR:
1214 case CMD_GEN_REQUEST64_CX:
1215 case CMD_XMIT_ELS_RSP64_CX:
1216 case DSSCMD_IWRITE64_CR:
1217 case DSSCMD_IWRITE64_CX:
1218 case DSSCMD_IREAD64_CR:
1219 case DSSCMD_IREAD64_CX:
1220 type = LPFC_SOL_IOCB;
1221 break;
1222 case CMD_ABORT_XRI_CN:
1223 case CMD_ABORT_XRI_CX:
1224 case CMD_CLOSE_XRI_CN:
1225 case CMD_CLOSE_XRI_CX:
1226 case CMD_XRI_ABORTED_CX:
1227 case CMD_ABORT_MXRI64_CN:
1228 case CMD_XMIT_BLS_RSP64_CX:
1229 type = LPFC_ABORT_IOCB;
1230 break;
1231 case CMD_RCV_SEQUENCE_CX:
1232 case CMD_RCV_ELS_REQ_CX:
1233 case CMD_RCV_SEQUENCE64_CX:
1234 case CMD_RCV_ELS_REQ64_CX:
1235 case CMD_ASYNC_STATUS:
1236 case CMD_IOCB_RCV_SEQ64_CX:
1237 case CMD_IOCB_RCV_ELS64_CX:
1238 case CMD_IOCB_RCV_CONT64_CX:
1239 case CMD_IOCB_RET_XRI64_CX:
1240 type = LPFC_UNSOL_IOCB;
1241 break;
1242 case CMD_IOCB_XMIT_MSEQ64_CR:
1243 case CMD_IOCB_XMIT_MSEQ64_CX:
1244 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1245 case CMD_IOCB_RCV_ELS_LIST64_CX:
1246 case CMD_IOCB_CLOSE_EXTENDED_CN:
1247 case CMD_IOCB_ABORT_EXTENDED_CN:
1248 case CMD_IOCB_RET_HBQE64_CN:
1249 case CMD_IOCB_FCP_IBIDIR64_CR:
1250 case CMD_IOCB_FCP_IBIDIR64_CX:
1251 case CMD_IOCB_FCP_ITASKMGT64_CX:
1252 case CMD_IOCB_LOGENTRY_CN:
1253 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1254 printk("%s - Unhandled SLI-3 Command x%x\n",
1255 __func__, iocb_cmnd);
1256 type = LPFC_UNKNOWN_IOCB;
1257 break;
1258 default:
1259 type = LPFC_UNKNOWN_IOCB;
1260 break;
1261 }
1262
1263 return type;
1264 }
1265
1266 /**
1267 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1268 * @phba: Pointer to HBA context object.
1269 *
1270 * This function is called from SLI initialization code
1271 * to configure every ring of the HBA's SLI interface. The
1272 * caller is not required to hold any lock. This function issues
1273 * a config_ring mailbox command for each ring.
1274 * This function returns zero if successful else returns a negative
1275 * error code.
1276 **/
1277 static int
1278 lpfc_sli_ring_map(struct lpfc_hba *phba)
1279 {
1280 struct lpfc_sli *psli = &phba->sli;
1281 LPFC_MBOXQ_t *pmb;
1282 MAILBOX_t *pmbox;
1283 int i, rc, ret = 0;
1284
1285 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1286 if (!pmb)
1287 return -ENOMEM;
1288 pmbox = &pmb->u.mb;
1289 phba->link_state = LPFC_INIT_MBX_CMDS;
1290 for (i = 0; i < psli->num_rings; i++) {
1291 lpfc_config_ring(phba, i, pmb);
1292 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1293 if (rc != MBX_SUCCESS) {
1294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1295 "0446 Adapter failed to init (%d), "
1296 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1297 "ring %d\n",
1298 rc, pmbox->mbxCommand,
1299 pmbox->mbxStatus, i);
1300 phba->link_state = LPFC_HBA_ERROR;
1301 ret = -ENXIO;
1302 break;
1303 }
1304 }
1305 mempool_free(pmb, phba->mbox_mem_pool);
1306 return ret;
1307 }
1308
1309 /**
1310 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1311 * @phba: Pointer to HBA context object.
1312 * @pring: Pointer to driver SLI ring object.
1313 * @piocb: Pointer to the driver iocb object.
1314 *
1315 * This function is called with hbalock held. The function adds the
1316 * new iocb to txcmplq of the given ring. This function always returns
1317 * 0. If this function is called for ELS ring, this function checks if
1318 * there is a vport associated with the ELS command. This function also
1319 * starts els_tmofunc timer if this is an ELS command.
1320 **/
1321 static int
1322 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1323 struct lpfc_iocbq *piocb)
1324 {
1325 lockdep_assert_held(&phba->hbalock);
1326
1327 BUG_ON(!piocb);
1328
1329 list_add_tail(&piocb->list, &pring->txcmplq);
1330 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1331
1332 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1333 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1334 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1335 BUG_ON(!piocb->vport);
1336 if (!(piocb->vport->load_flag & FC_UNLOADING))
1337 mod_timer(&piocb->vport->els_tmofunc,
1338 jiffies +
1339 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1340 }
1341
1342 return 0;
1343 }
1344
1345 /**
1346 * lpfc_sli_ringtx_get - Get first element of the txq
1347 * @phba: Pointer to HBA context object.
1348 * @pring: Pointer to driver SLI ring object.
1349 *
1350 * This function is called with hbalock held to get next
1351 * iocb in txq of the given ring. If there is any iocb in
1352 * the txq, the function returns first iocb in the list after
1353 * removing the iocb from the list, else it returns NULL.
1354 **/
1355 struct lpfc_iocbq *
1356 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1357 {
1358 struct lpfc_iocbq *cmd_iocb;
1359
1360 lockdep_assert_held(&phba->hbalock);
1361
1362 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1363 return cmd_iocb;
1364 }
1365
1366 /**
1367 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1368 * @phba: Pointer to HBA context object.
1369 * @pring: Pointer to driver SLI ring object.
1370 *
1371 * This function is called with hbalock held and the caller must post the
1372 * iocb without releasing the lock. If the caller releases the lock,
1373 * iocb slot returned by the function is not guaranteed to be available.
1374 * The function returns pointer to the next available iocb slot if there
1375 * is available slot in the ring, else it returns NULL.
1376 * If the get index of the ring is ahead of the put index, the function
1377 * will post an error attention event to the worker thread to take the
1378 * HBA to offline state.
1379 **/
1380 static IOCB_t *
1381 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1382 {
1383 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1384 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1385
1386 lockdep_assert_held(&phba->hbalock);
1387
1388 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1389 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1390 pring->sli.sli3.next_cmdidx = 0;
1391
1392 if (unlikely(pring->sli.sli3.local_getidx ==
1393 pring->sli.sli3.next_cmdidx)) {
1394
1395 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1396
1397 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1399 "0315 Ring %d issue: portCmdGet %d "
1400 "is bigger than cmd ring %d\n",
1401 pring->ringno,
1402 pring->sli.sli3.local_getidx,
1403 max_cmd_idx);
1404
1405 phba->link_state = LPFC_HBA_ERROR;
1406 /*
1407 * All error attention handlers are posted to
1408 * worker thread
1409 */
1410 phba->work_ha |= HA_ERATT;
1411 phba->work_hs = HS_FFER3;
1412
1413 lpfc_worker_wake_up(phba);
1414
1415 return NULL;
1416 }
1417
1418 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1419 return NULL;
1420 }
1421
1422 return lpfc_cmd_iocb(phba, pring);
1423 }
1424
1425 /**
1426 * lpfc_sli_next_iotag - Get an iotag for the iocb
1427 * @phba: Pointer to HBA context object.
1428 * @iocbq: Pointer to driver iocb object.
1429 *
1430 * This function gets an iotag for the iocb. If there is no unused iotag and
1431 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1432 * array and assigns a new iotag.
1433 * The function returns the allocated iotag if successful, else returns zero.
1434 * Zero is not a valid iotag.
1435 * The caller is not required to hold any lock.
1436 **/
1437 uint16_t
1438 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1439 {
1440 struct lpfc_iocbq **new_arr;
1441 struct lpfc_iocbq **old_arr;
1442 size_t new_len;
1443 struct lpfc_sli *psli = &phba->sli;
1444 uint16_t iotag;
1445
1446 spin_lock_irq(&phba->hbalock);
1447 iotag = psli->last_iotag;
1448 if(++iotag < psli->iocbq_lookup_len) {
1449 psli->last_iotag = iotag;
1450 psli->iocbq_lookup[iotag] = iocbq;
1451 spin_unlock_irq(&phba->hbalock);
1452 iocbq->iotag = iotag;
1453 return iotag;
1454 } else if (psli->iocbq_lookup_len < (0xffff
1455 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1456 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1457 spin_unlock_irq(&phba->hbalock);
1458 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1459 GFP_KERNEL);
1460 if (new_arr) {
1461 spin_lock_irq(&phba->hbalock);
1462 old_arr = psli->iocbq_lookup;
1463 if (new_len <= psli->iocbq_lookup_len) {
1464 /* highly unprobable case */
1465 kfree(new_arr);
1466 iotag = psli->last_iotag;
1467 if(++iotag < psli->iocbq_lookup_len) {
1468 psli->last_iotag = iotag;
1469 psli->iocbq_lookup[iotag] = iocbq;
1470 spin_unlock_irq(&phba->hbalock);
1471 iocbq->iotag = iotag;
1472 return iotag;
1473 }
1474 spin_unlock_irq(&phba->hbalock);
1475 return 0;
1476 }
1477 if (psli->iocbq_lookup)
1478 memcpy(new_arr, old_arr,
1479 ((psli->last_iotag + 1) *
1480 sizeof (struct lpfc_iocbq *)));
1481 psli->iocbq_lookup = new_arr;
1482 psli->iocbq_lookup_len = new_len;
1483 psli->last_iotag = iotag;
1484 psli->iocbq_lookup[iotag] = iocbq;
1485 spin_unlock_irq(&phba->hbalock);
1486 iocbq->iotag = iotag;
1487 kfree(old_arr);
1488 return iotag;
1489 }
1490 } else
1491 spin_unlock_irq(&phba->hbalock);
1492
1493 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1494 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1495 psli->last_iotag);
1496
1497 return 0;
1498 }
1499
1500 /**
1501 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1502 * @phba: Pointer to HBA context object.
1503 * @pring: Pointer to driver SLI ring object.
1504 * @iocb: Pointer to iocb slot in the ring.
1505 * @nextiocb: Pointer to driver iocb object which need to be
1506 * posted to firmware.
1507 *
1508 * This function is called with hbalock held to post a new iocb to
1509 * the firmware. This function copies the new iocb to ring iocb slot and
1510 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1511 * a completion call back for this iocb else the function will free the
1512 * iocb object.
1513 **/
1514 static void
1515 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1516 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1517 {
1518 lockdep_assert_held(&phba->hbalock);
1519 /*
1520 * Set up an iotag
1521 */
1522 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1523
1524
1525 if (pring->ringno == LPFC_ELS_RING) {
1526 lpfc_debugfs_slow_ring_trc(phba,
1527 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1528 *(((uint32_t *) &nextiocb->iocb) + 4),
1529 *(((uint32_t *) &nextiocb->iocb) + 6),
1530 *(((uint32_t *) &nextiocb->iocb) + 7));
1531 }
1532
1533 /*
1534 * Issue iocb command to adapter
1535 */
1536 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1537 wmb();
1538 pring->stats.iocb_cmd++;
1539
1540 /*
1541 * If there is no completion routine to call, we can release the
1542 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1543 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1544 */
1545 if (nextiocb->iocb_cmpl)
1546 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1547 else
1548 __lpfc_sli_release_iocbq(phba, nextiocb);
1549
1550 /*
1551 * Let the HBA know what IOCB slot will be the next one the
1552 * driver will put a command into.
1553 */
1554 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1555 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1556 }
1557
1558 /**
1559 * lpfc_sli_update_full_ring - Update the chip attention register
1560 * @phba: Pointer to HBA context object.
1561 * @pring: Pointer to driver SLI ring object.
1562 *
1563 * The caller is not required to hold any lock for calling this function.
1564 * This function updates the chip attention bits for the ring to inform firmware
1565 * that there are pending work to be done for this ring and requests an
1566 * interrupt when there is space available in the ring. This function is
1567 * called when the driver is unable to post more iocbs to the ring due
1568 * to unavailability of space in the ring.
1569 **/
1570 static void
1571 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1572 {
1573 int ringno = pring->ringno;
1574
1575 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1576
1577 wmb();
1578
1579 /*
1580 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1581 * The HBA will tell us when an IOCB entry is available.
1582 */
1583 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1584 readl(phba->CAregaddr); /* flush */
1585
1586 pring->stats.iocb_cmd_full++;
1587 }
1588
1589 /**
1590 * lpfc_sli_update_ring - Update chip attention register
1591 * @phba: Pointer to HBA context object.
1592 * @pring: Pointer to driver SLI ring object.
1593 *
1594 * This function updates the chip attention register bit for the
1595 * given ring to inform HBA that there is more work to be done
1596 * in this ring. The caller is not required to hold any lock.
1597 **/
1598 static void
1599 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1600 {
1601 int ringno = pring->ringno;
1602
1603 /*
1604 * Tell the HBA that there is work to do in this ring.
1605 */
1606 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1607 wmb();
1608 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1609 readl(phba->CAregaddr); /* flush */
1610 }
1611 }
1612
1613 /**
1614 * lpfc_sli_resume_iocb - Process iocbs in the txq
1615 * @phba: Pointer to HBA context object.
1616 * @pring: Pointer to driver SLI ring object.
1617 *
1618 * This function is called with hbalock held to post pending iocbs
1619 * in the txq to the firmware. This function is called when driver
1620 * detects space available in the ring.
1621 **/
1622 static void
1623 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1624 {
1625 IOCB_t *iocb;
1626 struct lpfc_iocbq *nextiocb;
1627
1628 lockdep_assert_held(&phba->hbalock);
1629
1630 /*
1631 * Check to see if:
1632 * (a) there is anything on the txq to send
1633 * (b) link is up
1634 * (c) link attention events can be processed (fcp ring only)
1635 * (d) IOCB processing is not blocked by the outstanding mbox command.
1636 */
1637
1638 if (lpfc_is_link_up(phba) &&
1639 (!list_empty(&pring->txq)) &&
1640 (pring->ringno != phba->sli.fcp_ring ||
1641 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1642
1643 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1644 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1645 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1646
1647 if (iocb)
1648 lpfc_sli_update_ring(phba, pring);
1649 else
1650 lpfc_sli_update_full_ring(phba, pring);
1651 }
1652
1653 return;
1654 }
1655
1656 /**
1657 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1658 * @phba: Pointer to HBA context object.
1659 * @hbqno: HBQ number.
1660 *
1661 * This function is called with hbalock held to get the next
1662 * available slot for the given HBQ. If there is free slot
1663 * available for the HBQ it will return pointer to the next available
1664 * HBQ entry else it will return NULL.
1665 **/
1666 static struct lpfc_hbq_entry *
1667 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1668 {
1669 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1670
1671 lockdep_assert_held(&phba->hbalock);
1672
1673 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1674 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1675 hbqp->next_hbqPutIdx = 0;
1676
1677 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1678 uint32_t raw_index = phba->hbq_get[hbqno];
1679 uint32_t getidx = le32_to_cpu(raw_index);
1680
1681 hbqp->local_hbqGetIdx = getidx;
1682
1683 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1684 lpfc_printf_log(phba, KERN_ERR,
1685 LOG_SLI | LOG_VPORT,
1686 "1802 HBQ %d: local_hbqGetIdx "
1687 "%u is > than hbqp->entry_count %u\n",
1688 hbqno, hbqp->local_hbqGetIdx,
1689 hbqp->entry_count);
1690
1691 phba->link_state = LPFC_HBA_ERROR;
1692 return NULL;
1693 }
1694
1695 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1696 return NULL;
1697 }
1698
1699 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1700 hbqp->hbqPutIdx;
1701 }
1702
1703 /**
1704 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1705 * @phba: Pointer to HBA context object.
1706 *
1707 * This function is called with no lock held to free all the
1708 * hbq buffers while uninitializing the SLI interface. It also
1709 * frees the HBQ buffers returned by the firmware but not yet
1710 * processed by the upper layers.
1711 **/
1712 void
1713 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1714 {
1715 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1716 struct hbq_dmabuf *hbq_buf;
1717 unsigned long flags;
1718 int i, hbq_count;
1719 uint32_t hbqno;
1720
1721 hbq_count = lpfc_sli_hbq_count();
1722 /* Return all memory used by all HBQs */
1723 spin_lock_irqsave(&phba->hbalock, flags);
1724 for (i = 0; i < hbq_count; ++i) {
1725 list_for_each_entry_safe(dmabuf, next_dmabuf,
1726 &phba->hbqs[i].hbq_buffer_list, list) {
1727 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1728 list_del(&hbq_buf->dbuf.list);
1729 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1730 }
1731 phba->hbqs[i].buffer_count = 0;
1732 }
1733 /* Return all HBQ buffer that are in-fly */
1734 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list,
1735 list) {
1736 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1737 list_del(&hbq_buf->dbuf.list);
1738 if (hbq_buf->tag == -1) {
1739 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1740 (phba, hbq_buf);
1741 } else {
1742 hbqno = hbq_buf->tag >> 16;
1743 if (hbqno >= LPFC_MAX_HBQS)
1744 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1745 (phba, hbq_buf);
1746 else
1747 (phba->hbqs[hbqno].hbq_free_buffer)(phba,
1748 hbq_buf);
1749 }
1750 }
1751
1752 /* Mark the HBQs not in use */
1753 phba->hbq_in_use = 0;
1754 spin_unlock_irqrestore(&phba->hbalock, flags);
1755 }
1756
1757 /**
1758 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1759 * @phba: Pointer to HBA context object.
1760 * @hbqno: HBQ number.
1761 * @hbq_buf: Pointer to HBQ buffer.
1762 *
1763 * This function is called with the hbalock held to post a
1764 * hbq buffer to the firmware. If the function finds an empty
1765 * slot in the HBQ, it will post the buffer. The function will return
1766 * pointer to the hbq entry if it successfully post the buffer
1767 * else it will return NULL.
1768 **/
1769 static int
1770 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1771 struct hbq_dmabuf *hbq_buf)
1772 {
1773 lockdep_assert_held(&phba->hbalock);
1774 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1775 }
1776
1777 /**
1778 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1779 * @phba: Pointer to HBA context object.
1780 * @hbqno: HBQ number.
1781 * @hbq_buf: Pointer to HBQ buffer.
1782 *
1783 * This function is called with the hbalock held to post a hbq buffer to the
1784 * firmware. If the function finds an empty slot in the HBQ, it will post the
1785 * buffer and place it on the hbq_buffer_list. The function will return zero if
1786 * it successfully post the buffer else it will return an error.
1787 **/
1788 static int
1789 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1790 struct hbq_dmabuf *hbq_buf)
1791 {
1792 struct lpfc_hbq_entry *hbqe;
1793 dma_addr_t physaddr = hbq_buf->dbuf.phys;
1794
1795 lockdep_assert_held(&phba->hbalock);
1796 /* Get next HBQ entry slot to use */
1797 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1798 if (hbqe) {
1799 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1800
1801 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1802 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
1803 hbqe->bde.tus.f.bdeSize = hbq_buf->size;
1804 hbqe->bde.tus.f.bdeFlags = 0;
1805 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1806 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1807 /* Sync SLIM */
1808 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1809 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1810 /* flush */
1811 readl(phba->hbq_put + hbqno);
1812 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1813 return 0;
1814 } else
1815 return -ENOMEM;
1816 }
1817
1818 /**
1819 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1820 * @phba: Pointer to HBA context object.
1821 * @hbqno: HBQ number.
1822 * @hbq_buf: Pointer to HBQ buffer.
1823 *
1824 * This function is called with the hbalock held to post an RQE to the SLI4
1825 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1826 * the hbq_buffer_list and return zero, otherwise it will return an error.
1827 **/
1828 static int
1829 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1830 struct hbq_dmabuf *hbq_buf)
1831 {
1832 int rc;
1833 struct lpfc_rqe hrqe;
1834 struct lpfc_rqe drqe;
1835
1836 lockdep_assert_held(&phba->hbalock);
1837 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1838 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1839 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1840 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1841 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
1842 &hrqe, &drqe);
1843 if (rc < 0)
1844 return rc;
1845 hbq_buf->tag = rc;
1846 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1847 return 0;
1848 }
1849
1850 /* HBQ for ELS and CT traffic. */
1851 static struct lpfc_hbq_init lpfc_els_hbq = {
1852 .rn = 1,
1853 .entry_count = 256,
1854 .mask_count = 0,
1855 .profile = 0,
1856 .ring_mask = (1 << LPFC_ELS_RING),
1857 .buffer_count = 0,
1858 .init_count = 40,
1859 .add_count = 40,
1860 };
1861
1862 /* HBQ for the extra ring if needed */
1863 static struct lpfc_hbq_init lpfc_extra_hbq = {
1864 .rn = 1,
1865 .entry_count = 200,
1866 .mask_count = 0,
1867 .profile = 0,
1868 .ring_mask = (1 << LPFC_EXTRA_RING),
1869 .buffer_count = 0,
1870 .init_count = 0,
1871 .add_count = 5,
1872 };
1873
1874 /* Array of HBQs */
1875 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1876 &lpfc_els_hbq,
1877 &lpfc_extra_hbq,
1878 };
1879
1880 /**
1881 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1882 * @phba: Pointer to HBA context object.
1883 * @hbqno: HBQ number.
1884 * @count: Number of HBQ buffers to be posted.
1885 *
1886 * This function is called with no lock held to post more hbq buffers to the
1887 * given HBQ. The function returns the number of HBQ buffers successfully
1888 * posted.
1889 **/
1890 static int
1891 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1892 {
1893 uint32_t i, posted = 0;
1894 unsigned long flags;
1895 struct hbq_dmabuf *hbq_buffer;
1896 LIST_HEAD(hbq_buf_list);
1897 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1898 return 0;
1899
1900 if ((phba->hbqs[hbqno].buffer_count + count) >
1901 lpfc_hbq_defs[hbqno]->entry_count)
1902 count = lpfc_hbq_defs[hbqno]->entry_count -
1903 phba->hbqs[hbqno].buffer_count;
1904 if (!count)
1905 return 0;
1906 /* Allocate HBQ entries */
1907 for (i = 0; i < count; i++) {
1908 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1909 if (!hbq_buffer)
1910 break;
1911 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1912 }
1913 /* Check whether HBQ is still in use */
1914 spin_lock_irqsave(&phba->hbalock, flags);
1915 if (!phba->hbq_in_use)
1916 goto err;
1917 while (!list_empty(&hbq_buf_list)) {
1918 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1919 dbuf.list);
1920 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1921 (hbqno << 16));
1922 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1923 phba->hbqs[hbqno].buffer_count++;
1924 posted++;
1925 } else
1926 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1927 }
1928 spin_unlock_irqrestore(&phba->hbalock, flags);
1929 return posted;
1930 err:
1931 spin_unlock_irqrestore(&phba->hbalock, flags);
1932 while (!list_empty(&hbq_buf_list)) {
1933 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1934 dbuf.list);
1935 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1936 }
1937 return 0;
1938 }
1939
1940 /**
1941 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1942 * @phba: Pointer to HBA context object.
1943 * @qno: HBQ number.
1944 *
1945 * This function posts more buffers to the HBQ. This function
1946 * is called with no lock held. The function returns the number of HBQ entries
1947 * successfully allocated.
1948 **/
1949 int
1950 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1951 {
1952 if (phba->sli_rev == LPFC_SLI_REV4)
1953 return 0;
1954 else
1955 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1956 lpfc_hbq_defs[qno]->add_count);
1957 }
1958
1959 /**
1960 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
1961 * @phba: Pointer to HBA context object.
1962 * @qno: HBQ queue number.
1963 *
1964 * This function is called from SLI initialization code path with
1965 * no lock held to post initial HBQ buffers to firmware. The
1966 * function returns the number of HBQ entries successfully allocated.
1967 **/
1968 static int
1969 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
1970 {
1971 if (phba->sli_rev == LPFC_SLI_REV4)
1972 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1973 lpfc_hbq_defs[qno]->entry_count);
1974 else
1975 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1976 lpfc_hbq_defs[qno]->init_count);
1977 }
1978
1979 /**
1980 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
1981 * @phba: Pointer to HBA context object.
1982 * @hbqno: HBQ number.
1983 *
1984 * This function removes the first hbq buffer on an hbq list and returns a
1985 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
1986 **/
1987 static struct hbq_dmabuf *
1988 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
1989 {
1990 struct lpfc_dmabuf *d_buf;
1991
1992 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
1993 if (!d_buf)
1994 return NULL;
1995 return container_of(d_buf, struct hbq_dmabuf, dbuf);
1996 }
1997
1998 /**
1999 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2000 * @phba: Pointer to HBA context object.
2001 * @tag: Tag of the hbq buffer.
2002 *
2003 * This function searches for the hbq buffer associated with the given tag in
2004 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2005 * otherwise it returns NULL.
2006 **/
2007 static struct hbq_dmabuf *
2008 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2009 {
2010 struct lpfc_dmabuf *d_buf;
2011 struct hbq_dmabuf *hbq_buf;
2012 uint32_t hbqno;
2013
2014 hbqno = tag >> 16;
2015 if (hbqno >= LPFC_MAX_HBQS)
2016 return NULL;
2017
2018 spin_lock_irq(&phba->hbalock);
2019 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2020 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2021 if (hbq_buf->tag == tag) {
2022 spin_unlock_irq(&phba->hbalock);
2023 return hbq_buf;
2024 }
2025 }
2026 spin_unlock_irq(&phba->hbalock);
2027 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2028 "1803 Bad hbq tag. Data: x%x x%x\n",
2029 tag, phba->hbqs[tag >> 16].buffer_count);
2030 return NULL;
2031 }
2032
2033 /**
2034 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2035 * @phba: Pointer to HBA context object.
2036 * @hbq_buffer: Pointer to HBQ buffer.
2037 *
2038 * This function is called with hbalock. This function gives back
2039 * the hbq buffer to firmware. If the HBQ does not have space to
2040 * post the buffer, it will free the buffer.
2041 **/
2042 void
2043 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2044 {
2045 uint32_t hbqno;
2046
2047 if (hbq_buffer) {
2048 hbqno = hbq_buffer->tag >> 16;
2049 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2050 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2051 }
2052 }
2053
2054 /**
2055 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2056 * @mbxCommand: mailbox command code.
2057 *
2058 * This function is called by the mailbox event handler function to verify
2059 * that the completed mailbox command is a legitimate mailbox command. If the
2060 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2061 * and the mailbox event handler will take the HBA offline.
2062 **/
2063 static int
2064 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2065 {
2066 uint8_t ret;
2067
2068 switch (mbxCommand) {
2069 case MBX_LOAD_SM:
2070 case MBX_READ_NV:
2071 case MBX_WRITE_NV:
2072 case MBX_WRITE_VPARMS:
2073 case MBX_RUN_BIU_DIAG:
2074 case MBX_INIT_LINK:
2075 case MBX_DOWN_LINK:
2076 case MBX_CONFIG_LINK:
2077 case MBX_CONFIG_RING:
2078 case MBX_RESET_RING:
2079 case MBX_READ_CONFIG:
2080 case MBX_READ_RCONFIG:
2081 case MBX_READ_SPARM:
2082 case MBX_READ_STATUS:
2083 case MBX_READ_RPI:
2084 case MBX_READ_XRI:
2085 case MBX_READ_REV:
2086 case MBX_READ_LNK_STAT:
2087 case MBX_REG_LOGIN:
2088 case MBX_UNREG_LOGIN:
2089 case MBX_CLEAR_LA:
2090 case MBX_DUMP_MEMORY:
2091 case MBX_DUMP_CONTEXT:
2092 case MBX_RUN_DIAGS:
2093 case MBX_RESTART:
2094 case MBX_UPDATE_CFG:
2095 case MBX_DOWN_LOAD:
2096 case MBX_DEL_LD_ENTRY:
2097 case MBX_RUN_PROGRAM:
2098 case MBX_SET_MASK:
2099 case MBX_SET_VARIABLE:
2100 case MBX_UNREG_D_ID:
2101 case MBX_KILL_BOARD:
2102 case MBX_CONFIG_FARP:
2103 case MBX_BEACON:
2104 case MBX_LOAD_AREA:
2105 case MBX_RUN_BIU_DIAG64:
2106 case MBX_CONFIG_PORT:
2107 case MBX_READ_SPARM64:
2108 case MBX_READ_RPI64:
2109 case MBX_REG_LOGIN64:
2110 case MBX_READ_TOPOLOGY:
2111 case MBX_WRITE_WWN:
2112 case MBX_SET_DEBUG:
2113 case MBX_LOAD_EXP_ROM:
2114 case MBX_ASYNCEVT_ENABLE:
2115 case MBX_REG_VPI:
2116 case MBX_UNREG_VPI:
2117 case MBX_HEARTBEAT:
2118 case MBX_PORT_CAPABILITIES:
2119 case MBX_PORT_IOV_CONTROL:
2120 case MBX_SLI4_CONFIG:
2121 case MBX_SLI4_REQ_FTRS:
2122 case MBX_REG_FCFI:
2123 case MBX_UNREG_FCFI:
2124 case MBX_REG_VFI:
2125 case MBX_UNREG_VFI:
2126 case MBX_INIT_VPI:
2127 case MBX_INIT_VFI:
2128 case MBX_RESUME_RPI:
2129 case MBX_READ_EVENT_LOG_STATUS:
2130 case MBX_READ_EVENT_LOG:
2131 case MBX_SECURITY_MGMT:
2132 case MBX_AUTH_PORT:
2133 case MBX_ACCESS_VDATA:
2134 ret = mbxCommand;
2135 break;
2136 default:
2137 ret = MBX_SHUTDOWN;
2138 break;
2139 }
2140 return ret;
2141 }
2142
2143 /**
2144 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2145 * @phba: Pointer to HBA context object.
2146 * @pmboxq: Pointer to mailbox command.
2147 *
2148 * This is completion handler function for mailbox commands issued from
2149 * lpfc_sli_issue_mbox_wait function. This function is called by the
2150 * mailbox event handler function with no lock held. This function
2151 * will wake up thread waiting on the wait queue pointed by context1
2152 * of the mailbox.
2153 **/
2154 void
2155 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2156 {
2157 wait_queue_head_t *pdone_q;
2158 unsigned long drvr_flag;
2159
2160 /*
2161 * If pdone_q is empty, the driver thread gave up waiting and
2162 * continued running.
2163 */
2164 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2165 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2166 pdone_q = (wait_queue_head_t *) pmboxq->context1;
2167 if (pdone_q)
2168 wake_up_interruptible(pdone_q);
2169 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2170 return;
2171 }
2172
2173
2174 /**
2175 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2176 * @phba: Pointer to HBA context object.
2177 * @pmb: Pointer to mailbox object.
2178 *
2179 * This function is the default mailbox completion handler. It
2180 * frees the memory resources associated with the completed mailbox
2181 * command. If the completed command is a REG_LOGIN mailbox command,
2182 * this function will issue a UREG_LOGIN to re-claim the RPI.
2183 **/
2184 void
2185 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2186 {
2187 struct lpfc_vport *vport = pmb->vport;
2188 struct lpfc_dmabuf *mp;
2189 struct lpfc_nodelist *ndlp;
2190 struct Scsi_Host *shost;
2191 uint16_t rpi, vpi;
2192 int rc;
2193
2194 mp = (struct lpfc_dmabuf *) (pmb->context1);
2195
2196 if (mp) {
2197 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2198 kfree(mp);
2199 }
2200
2201 /*
2202 * If a REG_LOGIN succeeded after node is destroyed or node
2203 * is in re-discovery driver need to cleanup the RPI.
2204 */
2205 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2206 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2207 !pmb->u.mb.mbxStatus) {
2208 rpi = pmb->u.mb.un.varWords[0];
2209 vpi = pmb->u.mb.un.varRegLogin.vpi;
2210 lpfc_unreg_login(phba, vpi, rpi, pmb);
2211 pmb->vport = vport;
2212 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2213 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2214 if (rc != MBX_NOT_FINISHED)
2215 return;
2216 }
2217
2218 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2219 !(phba->pport->load_flag & FC_UNLOADING) &&
2220 !pmb->u.mb.mbxStatus) {
2221 shost = lpfc_shost_from_vport(vport);
2222 spin_lock_irq(shost->host_lock);
2223 vport->vpi_state |= LPFC_VPI_REGISTERED;
2224 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2225 spin_unlock_irq(shost->host_lock);
2226 }
2227
2228 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2229 ndlp = (struct lpfc_nodelist *)pmb->context2;
2230 lpfc_nlp_put(ndlp);
2231 pmb->context2 = NULL;
2232 }
2233
2234 /* Check security permission status on INIT_LINK mailbox command */
2235 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2236 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2237 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2238 "2860 SLI authentication is required "
2239 "for INIT_LINK but has not done yet\n");
2240
2241 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2242 lpfc_sli4_mbox_cmd_free(phba, pmb);
2243 else
2244 mempool_free(pmb, phba->mbox_mem_pool);
2245 }
2246 /**
2247 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2248 * @phba: Pointer to HBA context object.
2249 * @pmb: Pointer to mailbox object.
2250 *
2251 * This function is the unreg rpi mailbox completion handler. It
2252 * frees the memory resources associated with the completed mailbox
2253 * command. An additional refrenece is put on the ndlp to prevent
2254 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2255 * the unreg mailbox command completes, this routine puts the
2256 * reference back.
2257 *
2258 **/
2259 void
2260 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2261 {
2262 struct lpfc_vport *vport = pmb->vport;
2263 struct lpfc_nodelist *ndlp;
2264
2265 ndlp = pmb->context1;
2266 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2267 if (phba->sli_rev == LPFC_SLI_REV4 &&
2268 (bf_get(lpfc_sli_intf_if_type,
2269 &phba->sli4_hba.sli_intf) ==
2270 LPFC_SLI_INTF_IF_TYPE_2)) {
2271 if (ndlp) {
2272 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2273 "0010 UNREG_LOGIN vpi:%x "
2274 "rpi:%x DID:%x map:%x %p\n",
2275 vport->vpi, ndlp->nlp_rpi,
2276 ndlp->nlp_DID,
2277 ndlp->nlp_usg_map, ndlp);
2278 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2279 lpfc_nlp_put(ndlp);
2280 }
2281 }
2282 }
2283
2284 mempool_free(pmb, phba->mbox_mem_pool);
2285 }
2286
2287 /**
2288 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2289 * @phba: Pointer to HBA context object.
2290 *
2291 * This function is called with no lock held. This function processes all
2292 * the completed mailbox commands and gives it to upper layers. The interrupt
2293 * service routine processes mailbox completion interrupt and adds completed
2294 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2295 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2296 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2297 * function returns the mailbox commands to the upper layer by calling the
2298 * completion handler function of each mailbox.
2299 **/
2300 int
2301 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2302 {
2303 MAILBOX_t *pmbox;
2304 LPFC_MBOXQ_t *pmb;
2305 int rc;
2306 LIST_HEAD(cmplq);
2307
2308 phba->sli.slistat.mbox_event++;
2309
2310 /* Get all completed mailboxe buffers into the cmplq */
2311 spin_lock_irq(&phba->hbalock);
2312 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2313 spin_unlock_irq(&phba->hbalock);
2314
2315 /* Get a Mailbox buffer to setup mailbox commands for callback */
2316 do {
2317 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2318 if (pmb == NULL)
2319 break;
2320
2321 pmbox = &pmb->u.mb;
2322
2323 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2324 if (pmb->vport) {
2325 lpfc_debugfs_disc_trc(pmb->vport,
2326 LPFC_DISC_TRC_MBOX_VPORT,
2327 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2328 (uint32_t)pmbox->mbxCommand,
2329 pmbox->un.varWords[0],
2330 pmbox->un.varWords[1]);
2331 }
2332 else {
2333 lpfc_debugfs_disc_trc(phba->pport,
2334 LPFC_DISC_TRC_MBOX,
2335 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2336 (uint32_t)pmbox->mbxCommand,
2337 pmbox->un.varWords[0],
2338 pmbox->un.varWords[1]);
2339 }
2340 }
2341
2342 /*
2343 * It is a fatal error if unknown mbox command completion.
2344 */
2345 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2346 MBX_SHUTDOWN) {
2347 /* Unknown mailbox command compl */
2348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2349 "(%d):0323 Unknown Mailbox command "
2350 "x%x (x%x/x%x) Cmpl\n",
2351 pmb->vport ? pmb->vport->vpi : 0,
2352 pmbox->mbxCommand,
2353 lpfc_sli_config_mbox_subsys_get(phba,
2354 pmb),
2355 lpfc_sli_config_mbox_opcode_get(phba,
2356 pmb));
2357 phba->link_state = LPFC_HBA_ERROR;
2358 phba->work_hs = HS_FFER3;
2359 lpfc_handle_eratt(phba);
2360 continue;
2361 }
2362
2363 if (pmbox->mbxStatus) {
2364 phba->sli.slistat.mbox_stat_err++;
2365 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2366 /* Mbox cmd cmpl error - RETRYing */
2367 lpfc_printf_log(phba, KERN_INFO,
2368 LOG_MBOX | LOG_SLI,
2369 "(%d):0305 Mbox cmd cmpl "
2370 "error - RETRYing Data: x%x "
2371 "(x%x/x%x) x%x x%x x%x\n",
2372 pmb->vport ? pmb->vport->vpi : 0,
2373 pmbox->mbxCommand,
2374 lpfc_sli_config_mbox_subsys_get(phba,
2375 pmb),
2376 lpfc_sli_config_mbox_opcode_get(phba,
2377 pmb),
2378 pmbox->mbxStatus,
2379 pmbox->un.varWords[0],
2380 pmb->vport->port_state);
2381 pmbox->mbxStatus = 0;
2382 pmbox->mbxOwner = OWN_HOST;
2383 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2384 if (rc != MBX_NOT_FINISHED)
2385 continue;
2386 }
2387 }
2388
2389 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2390 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2391 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2392 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2393 "x%x x%x x%x\n",
2394 pmb->vport ? pmb->vport->vpi : 0,
2395 pmbox->mbxCommand,
2396 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2397 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2398 pmb->mbox_cmpl,
2399 *((uint32_t *) pmbox),
2400 pmbox->un.varWords[0],
2401 pmbox->un.varWords[1],
2402 pmbox->un.varWords[2],
2403 pmbox->un.varWords[3],
2404 pmbox->un.varWords[4],
2405 pmbox->un.varWords[5],
2406 pmbox->un.varWords[6],
2407 pmbox->un.varWords[7],
2408 pmbox->un.varWords[8],
2409 pmbox->un.varWords[9],
2410 pmbox->un.varWords[10]);
2411
2412 if (pmb->mbox_cmpl)
2413 pmb->mbox_cmpl(phba,pmb);
2414 } while (1);
2415 return 0;
2416 }
2417
2418 /**
2419 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2420 * @phba: Pointer to HBA context object.
2421 * @pring: Pointer to driver SLI ring object.
2422 * @tag: buffer tag.
2423 *
2424 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2425 * is set in the tag the buffer is posted for a particular exchange,
2426 * the function will return the buffer without replacing the buffer.
2427 * If the buffer is for unsolicited ELS or CT traffic, this function
2428 * returns the buffer and also posts another buffer to the firmware.
2429 **/
2430 static struct lpfc_dmabuf *
2431 lpfc_sli_get_buff(struct lpfc_hba *phba,
2432 struct lpfc_sli_ring *pring,
2433 uint32_t tag)
2434 {
2435 struct hbq_dmabuf *hbq_entry;
2436
2437 if (tag & QUE_BUFTAG_BIT)
2438 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2439 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2440 if (!hbq_entry)
2441 return NULL;
2442 return &hbq_entry->dbuf;
2443 }
2444
2445 /**
2446 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2447 * @phba: Pointer to HBA context object.
2448 * @pring: Pointer to driver SLI ring object.
2449 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2450 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2451 * @fch_type: the type for the first frame of the sequence.
2452 *
2453 * This function is called with no lock held. This function uses the r_ctl and
2454 * type of the received sequence to find the correct callback function to call
2455 * to process the sequence.
2456 **/
2457 static int
2458 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2459 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2460 uint32_t fch_type)
2461 {
2462 int i;
2463
2464 /* unSolicited Responses */
2465 if (pring->prt[0].profile) {
2466 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2467 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2468 saveq);
2469 return 1;
2470 }
2471 /* We must search, based on rctl / type
2472 for the right routine */
2473 for (i = 0; i < pring->num_mask; i++) {
2474 if ((pring->prt[i].rctl == fch_r_ctl) &&
2475 (pring->prt[i].type == fch_type)) {
2476 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2477 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2478 (phba, pring, saveq);
2479 return 1;
2480 }
2481 }
2482 return 0;
2483 }
2484
2485 /**
2486 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2487 * @phba: Pointer to HBA context object.
2488 * @pring: Pointer to driver SLI ring object.
2489 * @saveq: Pointer to the unsolicited iocb.
2490 *
2491 * This function is called with no lock held by the ring event handler
2492 * when there is an unsolicited iocb posted to the response ring by the
2493 * firmware. This function gets the buffer associated with the iocbs
2494 * and calls the event handler for the ring. This function handles both
2495 * qring buffers and hbq buffers.
2496 * When the function returns 1 the caller can free the iocb object otherwise
2497 * upper layer functions will free the iocb objects.
2498 **/
2499 static int
2500 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2501 struct lpfc_iocbq *saveq)
2502 {
2503 IOCB_t * irsp;
2504 WORD5 * w5p;
2505 uint32_t Rctl, Type;
2506 struct lpfc_iocbq *iocbq;
2507 struct lpfc_dmabuf *dmzbuf;
2508
2509 irsp = &(saveq->iocb);
2510
2511 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2512 if (pring->lpfc_sli_rcv_async_status)
2513 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2514 else
2515 lpfc_printf_log(phba,
2516 KERN_WARNING,
2517 LOG_SLI,
2518 "0316 Ring %d handler: unexpected "
2519 "ASYNC_STATUS iocb received evt_code "
2520 "0x%x\n",
2521 pring->ringno,
2522 irsp->un.asyncstat.evt_code);
2523 return 1;
2524 }
2525
2526 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2527 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2528 if (irsp->ulpBdeCount > 0) {
2529 dmzbuf = lpfc_sli_get_buff(phba, pring,
2530 irsp->un.ulpWord[3]);
2531 lpfc_in_buf_free(phba, dmzbuf);
2532 }
2533
2534 if (irsp->ulpBdeCount > 1) {
2535 dmzbuf = lpfc_sli_get_buff(phba, pring,
2536 irsp->unsli3.sli3Words[3]);
2537 lpfc_in_buf_free(phba, dmzbuf);
2538 }
2539
2540 if (irsp->ulpBdeCount > 2) {
2541 dmzbuf = lpfc_sli_get_buff(phba, pring,
2542 irsp->unsli3.sli3Words[7]);
2543 lpfc_in_buf_free(phba, dmzbuf);
2544 }
2545
2546 return 1;
2547 }
2548
2549 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2550 if (irsp->ulpBdeCount != 0) {
2551 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2552 irsp->un.ulpWord[3]);
2553 if (!saveq->context2)
2554 lpfc_printf_log(phba,
2555 KERN_ERR,
2556 LOG_SLI,
2557 "0341 Ring %d Cannot find buffer for "
2558 "an unsolicited iocb. tag 0x%x\n",
2559 pring->ringno,
2560 irsp->un.ulpWord[3]);
2561 }
2562 if (irsp->ulpBdeCount == 2) {
2563 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2564 irsp->unsli3.sli3Words[7]);
2565 if (!saveq->context3)
2566 lpfc_printf_log(phba,
2567 KERN_ERR,
2568 LOG_SLI,
2569 "0342 Ring %d Cannot find buffer for an"
2570 " unsolicited iocb. tag 0x%x\n",
2571 pring->ringno,
2572 irsp->unsli3.sli3Words[7]);
2573 }
2574 list_for_each_entry(iocbq, &saveq->list, list) {
2575 irsp = &(iocbq->iocb);
2576 if (irsp->ulpBdeCount != 0) {
2577 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2578 irsp->un.ulpWord[3]);
2579 if (!iocbq->context2)
2580 lpfc_printf_log(phba,
2581 KERN_ERR,
2582 LOG_SLI,
2583 "0343 Ring %d Cannot find "
2584 "buffer for an unsolicited iocb"
2585 ". tag 0x%x\n", pring->ringno,
2586 irsp->un.ulpWord[3]);
2587 }
2588 if (irsp->ulpBdeCount == 2) {
2589 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2590 irsp->unsli3.sli3Words[7]);
2591 if (!iocbq->context3)
2592 lpfc_printf_log(phba,
2593 KERN_ERR,
2594 LOG_SLI,
2595 "0344 Ring %d Cannot find "
2596 "buffer for an unsolicited "
2597 "iocb. tag 0x%x\n",
2598 pring->ringno,
2599 irsp->unsli3.sli3Words[7]);
2600 }
2601 }
2602 }
2603 if (irsp->ulpBdeCount != 0 &&
2604 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2605 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2606 int found = 0;
2607
2608 /* search continue save q for same XRI */
2609 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2610 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2611 saveq->iocb.unsli3.rcvsli3.ox_id) {
2612 list_add_tail(&saveq->list, &iocbq->list);
2613 found = 1;
2614 break;
2615 }
2616 }
2617 if (!found)
2618 list_add_tail(&saveq->clist,
2619 &pring->iocb_continue_saveq);
2620 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2621 list_del_init(&iocbq->clist);
2622 saveq = iocbq;
2623 irsp = &(saveq->iocb);
2624 } else
2625 return 0;
2626 }
2627 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2628 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2629 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2630 Rctl = FC_RCTL_ELS_REQ;
2631 Type = FC_TYPE_ELS;
2632 } else {
2633 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2634 Rctl = w5p->hcsw.Rctl;
2635 Type = w5p->hcsw.Type;
2636
2637 /* Firmware Workaround */
2638 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2639 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2640 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2641 Rctl = FC_RCTL_ELS_REQ;
2642 Type = FC_TYPE_ELS;
2643 w5p->hcsw.Rctl = Rctl;
2644 w5p->hcsw.Type = Type;
2645 }
2646 }
2647
2648 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2649 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2650 "0313 Ring %d handler: unexpected Rctl x%x "
2651 "Type x%x received\n",
2652 pring->ringno, Rctl, Type);
2653
2654 return 1;
2655 }
2656
2657 /**
2658 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2659 * @phba: Pointer to HBA context object.
2660 * @pring: Pointer to driver SLI ring object.
2661 * @prspiocb: Pointer to response iocb object.
2662 *
2663 * This function looks up the iocb_lookup table to get the command iocb
2664 * corresponding to the given response iocb using the iotag of the
2665 * response iocb. This function is called with the hbalock held.
2666 * This function returns the command iocb object if it finds the command
2667 * iocb else returns NULL.
2668 **/
2669 static struct lpfc_iocbq *
2670 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2671 struct lpfc_sli_ring *pring,
2672 struct lpfc_iocbq *prspiocb)
2673 {
2674 struct lpfc_iocbq *cmd_iocb = NULL;
2675 uint16_t iotag;
2676 lockdep_assert_held(&phba->hbalock);
2677
2678 iotag = prspiocb->iocb.ulpIoTag;
2679
2680 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2681 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2682 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2683 /* remove from txcmpl queue list */
2684 list_del_init(&cmd_iocb->list);
2685 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2686 return cmd_iocb;
2687 }
2688 }
2689
2690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2691 "0317 iotag x%x is out of "
2692 "range: max iotag x%x wd0 x%x\n",
2693 iotag, phba->sli.last_iotag,
2694 *(((uint32_t *) &prspiocb->iocb) + 7));
2695 return NULL;
2696 }
2697
2698 /**
2699 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2700 * @phba: Pointer to HBA context object.
2701 * @pring: Pointer to driver SLI ring object.
2702 * @iotag: IOCB tag.
2703 *
2704 * This function looks up the iocb_lookup table to get the command iocb
2705 * corresponding to the given iotag. This function is called with the
2706 * hbalock held.
2707 * This function returns the command iocb object if it finds the command
2708 * iocb else returns NULL.
2709 **/
2710 static struct lpfc_iocbq *
2711 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2712 struct lpfc_sli_ring *pring, uint16_t iotag)
2713 {
2714 struct lpfc_iocbq *cmd_iocb;
2715
2716 lockdep_assert_held(&phba->hbalock);
2717 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2718 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2719 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2720 /* remove from txcmpl queue list */
2721 list_del_init(&cmd_iocb->list);
2722 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2723 return cmd_iocb;
2724 }
2725 }
2726
2727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2728 "0372 iotag x%x is out of range: max iotag (x%x)\n",
2729 iotag, phba->sli.last_iotag);
2730 return NULL;
2731 }
2732
2733 /**
2734 * lpfc_sli_process_sol_iocb - process solicited iocb completion
2735 * @phba: Pointer to HBA context object.
2736 * @pring: Pointer to driver SLI ring object.
2737 * @saveq: Pointer to the response iocb to be processed.
2738 *
2739 * This function is called by the ring event handler for non-fcp
2740 * rings when there is a new response iocb in the response ring.
2741 * The caller is not required to hold any locks. This function
2742 * gets the command iocb associated with the response iocb and
2743 * calls the completion handler for the command iocb. If there
2744 * is no completion handler, the function will free the resources
2745 * associated with command iocb. If the response iocb is for
2746 * an already aborted command iocb, the status of the completion
2747 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2748 * This function always returns 1.
2749 **/
2750 static int
2751 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2752 struct lpfc_iocbq *saveq)
2753 {
2754 struct lpfc_iocbq *cmdiocbp;
2755 int rc = 1;
2756 unsigned long iflag;
2757
2758 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
2759 spin_lock_irqsave(&phba->hbalock, iflag);
2760 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2761 spin_unlock_irqrestore(&phba->hbalock, iflag);
2762
2763 if (cmdiocbp) {
2764 if (cmdiocbp->iocb_cmpl) {
2765 /*
2766 * If an ELS command failed send an event to mgmt
2767 * application.
2768 */
2769 if (saveq->iocb.ulpStatus &&
2770 (pring->ringno == LPFC_ELS_RING) &&
2771 (cmdiocbp->iocb.ulpCommand ==
2772 CMD_ELS_REQUEST64_CR))
2773 lpfc_send_els_failure_event(phba,
2774 cmdiocbp, saveq);
2775
2776 /*
2777 * Post all ELS completions to the worker thread.
2778 * All other are passed to the completion callback.
2779 */
2780 if (pring->ringno == LPFC_ELS_RING) {
2781 if ((phba->sli_rev < LPFC_SLI_REV4) &&
2782 (cmdiocbp->iocb_flag &
2783 LPFC_DRIVER_ABORTED)) {
2784 spin_lock_irqsave(&phba->hbalock,
2785 iflag);
2786 cmdiocbp->iocb_flag &=
2787 ~LPFC_DRIVER_ABORTED;
2788 spin_unlock_irqrestore(&phba->hbalock,
2789 iflag);
2790 saveq->iocb.ulpStatus =
2791 IOSTAT_LOCAL_REJECT;
2792 saveq->iocb.un.ulpWord[4] =
2793 IOERR_SLI_ABORTED;
2794
2795 /* Firmware could still be in progress
2796 * of DMAing payload, so don't free data
2797 * buffer till after a hbeat.
2798 */
2799 spin_lock_irqsave(&phba->hbalock,
2800 iflag);
2801 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2802 spin_unlock_irqrestore(&phba->hbalock,
2803 iflag);
2804 }
2805 if (phba->sli_rev == LPFC_SLI_REV4) {
2806 if (saveq->iocb_flag &
2807 LPFC_EXCHANGE_BUSY) {
2808 /* Set cmdiocb flag for the
2809 * exchange busy so sgl (xri)
2810 * will not be released until
2811 * the abort xri is received
2812 * from hba.
2813 */
2814 spin_lock_irqsave(
2815 &phba->hbalock, iflag);
2816 cmdiocbp->iocb_flag |=
2817 LPFC_EXCHANGE_BUSY;
2818 spin_unlock_irqrestore(
2819 &phba->hbalock, iflag);
2820 }
2821 if (cmdiocbp->iocb_flag &
2822 LPFC_DRIVER_ABORTED) {
2823 /*
2824 * Clear LPFC_DRIVER_ABORTED
2825 * bit in case it was driver
2826 * initiated abort.
2827 */
2828 spin_lock_irqsave(
2829 &phba->hbalock, iflag);
2830 cmdiocbp->iocb_flag &=
2831 ~LPFC_DRIVER_ABORTED;
2832 spin_unlock_irqrestore(
2833 &phba->hbalock, iflag);
2834 cmdiocbp->iocb.ulpStatus =
2835 IOSTAT_LOCAL_REJECT;
2836 cmdiocbp->iocb.un.ulpWord[4] =
2837 IOERR_ABORT_REQUESTED;
2838 /*
2839 * For SLI4, irsiocb contains
2840 * NO_XRI in sli_xritag, it
2841 * shall not affect releasing
2842 * sgl (xri) process.
2843 */
2844 saveq->iocb.ulpStatus =
2845 IOSTAT_LOCAL_REJECT;
2846 saveq->iocb.un.ulpWord[4] =
2847 IOERR_SLI_ABORTED;
2848 spin_lock_irqsave(
2849 &phba->hbalock, iflag);
2850 saveq->iocb_flag |=
2851 LPFC_DELAY_MEM_FREE;
2852 spin_unlock_irqrestore(
2853 &phba->hbalock, iflag);
2854 }
2855 }
2856 }
2857 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2858 } else
2859 lpfc_sli_release_iocbq(phba, cmdiocbp);
2860 } else {
2861 /*
2862 * Unknown initiating command based on the response iotag.
2863 * This could be the case on the ELS ring because of
2864 * lpfc_els_abort().
2865 */
2866 if (pring->ringno != LPFC_ELS_RING) {
2867 /*
2868 * Ring <ringno> handler: unexpected completion IoTag
2869 * <IoTag>
2870 */
2871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2872 "0322 Ring %d handler: "
2873 "unexpected completion IoTag x%x "
2874 "Data: x%x x%x x%x x%x\n",
2875 pring->ringno,
2876 saveq->iocb.ulpIoTag,
2877 saveq->iocb.ulpStatus,
2878 saveq->iocb.un.ulpWord[4],
2879 saveq->iocb.ulpCommand,
2880 saveq->iocb.ulpContext);
2881 }
2882 }
2883
2884 return rc;
2885 }
2886
2887 /**
2888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2889 * @phba: Pointer to HBA context object.
2890 * @pring: Pointer to driver SLI ring object.
2891 *
2892 * This function is called from the iocb ring event handlers when
2893 * put pointer is ahead of the get pointer for a ring. This function signal
2894 * an error attention condition to the worker thread and the worker
2895 * thread will transition the HBA to offline state.
2896 **/
2897 static void
2898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2899 {
2900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2901 /*
2902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2903 * rsp ring <portRspMax>
2904 */
2905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2906 "0312 Ring %d handler: portRspPut %d "
2907 "is bigger than rsp ring %d\n",
2908 pring->ringno, le32_to_cpu(pgp->rspPutInx),
2909 pring->sli.sli3.numRiocb);
2910
2911 phba->link_state = LPFC_HBA_ERROR;
2912
2913 /*
2914 * All error attention handlers are posted to
2915 * worker thread
2916 */
2917 phba->work_ha |= HA_ERATT;
2918 phba->work_hs = HS_FFER3;
2919
2920 lpfc_worker_wake_up(phba);
2921
2922 return;
2923 }
2924
2925 /**
2926 * lpfc_poll_eratt - Error attention polling timer timeout handler
2927 * @ptr: Pointer to address of HBA context object.
2928 *
2929 * This function is invoked by the Error Attention polling timer when the
2930 * timer times out. It will check the SLI Error Attention register for
2931 * possible attention events. If so, it will post an Error Attention event
2932 * and wake up worker thread to process it. Otherwise, it will set up the
2933 * Error Attention polling timer for the next poll.
2934 **/
2935 void lpfc_poll_eratt(unsigned long ptr)
2936 {
2937 struct lpfc_hba *phba;
2938 uint32_t eratt = 0;
2939 uint64_t sli_intr, cnt;
2940
2941 phba = (struct lpfc_hba *)ptr;
2942
2943 /* Here we will also keep track of interrupts per sec of the hba */
2944 sli_intr = phba->sli.slistat.sli_intr;
2945
2946 if (phba->sli.slistat.sli_prev_intr > sli_intr)
2947 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
2948 sli_intr);
2949 else
2950 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
2951
2952 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
2953 do_div(cnt, phba->eratt_poll_interval);
2954 phba->sli.slistat.sli_ips = cnt;
2955
2956 phba->sli.slistat.sli_prev_intr = sli_intr;
2957
2958 /* Check chip HA register for error event */
2959 eratt = lpfc_sli_check_eratt(phba);
2960
2961 if (eratt)
2962 /* Tell the worker thread there is work to do */
2963 lpfc_worker_wake_up(phba);
2964 else
2965 /* Restart the timer for next eratt poll */
2966 mod_timer(&phba->eratt_poll,
2967 jiffies +
2968 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
2969 return;
2970 }
2971
2972
2973 /**
2974 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
2975 * @phba: Pointer to HBA context object.
2976 * @pring: Pointer to driver SLI ring object.
2977 * @mask: Host attention register mask for this ring.
2978 *
2979 * This function is called from the interrupt context when there is a ring
2980 * event for the fcp ring. The caller does not hold any lock.
2981 * The function processes each response iocb in the response ring until it
2982 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
2983 * LE bit set. The function will call the completion handler of the command iocb
2984 * if the response iocb indicates a completion for a command iocb or it is
2985 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
2986 * function if this is an unsolicited iocb.
2987 * This routine presumes LPFC_FCP_RING handling and doesn't bother
2988 * to check it explicitly.
2989 */
2990 int
2991 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
2992 struct lpfc_sli_ring *pring, uint32_t mask)
2993 {
2994 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2995 IOCB_t *irsp = NULL;
2996 IOCB_t *entry = NULL;
2997 struct lpfc_iocbq *cmdiocbq = NULL;
2998 struct lpfc_iocbq rspiocbq;
2999 uint32_t status;
3000 uint32_t portRspPut, portRspMax;
3001 int rc = 1;
3002 lpfc_iocb_type type;
3003 unsigned long iflag;
3004 uint32_t rsp_cmpl = 0;
3005
3006 spin_lock_irqsave(&phba->hbalock, iflag);
3007 pring->stats.iocb_event++;
3008
3009 /*
3010 * The next available response entry should never exceed the maximum
3011 * entries. If it does, treat it as an adapter hardware error.
3012 */
3013 portRspMax = pring->sli.sli3.numRiocb;
3014 portRspPut = le32_to_cpu(pgp->rspPutInx);
3015 if (unlikely(portRspPut >= portRspMax)) {
3016 lpfc_sli_rsp_pointers_error(phba, pring);
3017 spin_unlock_irqrestore(&phba->hbalock, iflag);
3018 return 1;
3019 }
3020 if (phba->fcp_ring_in_use) {
3021 spin_unlock_irqrestore(&phba->hbalock, iflag);
3022 return 1;
3023 } else
3024 phba->fcp_ring_in_use = 1;
3025
3026 rmb();
3027 while (pring->sli.sli3.rspidx != portRspPut) {
3028 /*
3029 * Fetch an entry off the ring and copy it into a local data
3030 * structure. The copy involves a byte-swap since the
3031 * network byte order and pci byte orders are different.
3032 */
3033 entry = lpfc_resp_iocb(phba, pring);
3034 phba->last_completion_time = jiffies;
3035
3036 if (++pring->sli.sli3.rspidx >= portRspMax)
3037 pring->sli.sli3.rspidx = 0;
3038
3039 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3040 (uint32_t *) &rspiocbq.iocb,
3041 phba->iocb_rsp_size);
3042 INIT_LIST_HEAD(&(rspiocbq.list));
3043 irsp = &rspiocbq.iocb;
3044
3045 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3046 pring->stats.iocb_rsp++;
3047 rsp_cmpl++;
3048
3049 if (unlikely(irsp->ulpStatus)) {
3050 /*
3051 * If resource errors reported from HBA, reduce
3052 * queuedepths of the SCSI device.
3053 */
3054 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3055 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3056 IOERR_NO_RESOURCES)) {
3057 spin_unlock_irqrestore(&phba->hbalock, iflag);
3058 phba->lpfc_rampdown_queue_depth(phba);
3059 spin_lock_irqsave(&phba->hbalock, iflag);
3060 }
3061
3062 /* Rsp ring <ringno> error: IOCB */
3063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3064 "0336 Rsp Ring %d error: IOCB Data: "
3065 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3066 pring->ringno,
3067 irsp->un.ulpWord[0],
3068 irsp->un.ulpWord[1],
3069 irsp->un.ulpWord[2],
3070 irsp->un.ulpWord[3],
3071 irsp->un.ulpWord[4],
3072 irsp->un.ulpWord[5],
3073 *(uint32_t *)&irsp->un1,
3074 *((uint32_t *)&irsp->un1 + 1));
3075 }
3076
3077 switch (type) {
3078 case LPFC_ABORT_IOCB:
3079 case LPFC_SOL_IOCB:
3080 /*
3081 * Idle exchange closed via ABTS from port. No iocb
3082 * resources need to be recovered.
3083 */
3084 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3085 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3086 "0333 IOCB cmd 0x%x"
3087 " processed. Skipping"
3088 " completion\n",
3089 irsp->ulpCommand);
3090 break;
3091 }
3092
3093 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3094 &rspiocbq);
3095 if (unlikely(!cmdiocbq))
3096 break;
3097 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3098 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3099 if (cmdiocbq->iocb_cmpl) {
3100 spin_unlock_irqrestore(&phba->hbalock, iflag);
3101 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3102 &rspiocbq);
3103 spin_lock_irqsave(&phba->hbalock, iflag);
3104 }
3105 break;
3106 case LPFC_UNSOL_IOCB:
3107 spin_unlock_irqrestore(&phba->hbalock, iflag);
3108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3109 spin_lock_irqsave(&phba->hbalock, iflag);
3110 break;
3111 default:
3112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3113 char adaptermsg[LPFC_MAX_ADPTMSG];
3114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3115 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3116 MAX_MSG_DATA);
3117 dev_warn(&((phba->pcidev)->dev),
3118 "lpfc%d: %s\n",
3119 phba->brd_no, adaptermsg);
3120 } else {
3121 /* Unknown IOCB command */
3122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3123 "0334 Unknown IOCB command "
3124 "Data: x%x, x%x x%x x%x x%x\n",
3125 type, irsp->ulpCommand,
3126 irsp->ulpStatus,
3127 irsp->ulpIoTag,
3128 irsp->ulpContext);
3129 }
3130 break;
3131 }
3132
3133 /*
3134 * The response IOCB has been processed. Update the ring
3135 * pointer in SLIM. If the port response put pointer has not
3136 * been updated, sync the pgp->rspPutInx and fetch the new port
3137 * response put pointer.
3138 */
3139 writel(pring->sli.sli3.rspidx,
3140 &phba->host_gp[pring->ringno].rspGetInx);
3141
3142 if (pring->sli.sli3.rspidx == portRspPut)
3143 portRspPut = le32_to_cpu(pgp->rspPutInx);
3144 }
3145
3146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3147 pring->stats.iocb_rsp_full++;
3148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3149 writel(status, phba->CAregaddr);
3150 readl(phba->CAregaddr);
3151 }
3152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3154 pring->stats.iocb_cmd_empty++;
3155
3156 /* Force update of the local copy of cmdGetInx */
3157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3158 lpfc_sli_resume_iocb(phba, pring);
3159
3160 if ((pring->lpfc_sli_cmd_available))
3161 (pring->lpfc_sli_cmd_available) (phba, pring);
3162
3163 }
3164
3165 phba->fcp_ring_in_use = 0;
3166 spin_unlock_irqrestore(&phba->hbalock, iflag);
3167 return rc;
3168 }
3169
3170 /**
3171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3172 * @phba: Pointer to HBA context object.
3173 * @pring: Pointer to driver SLI ring object.
3174 * @rspiocbp: Pointer to driver response IOCB object.
3175 *
3176 * This function is called from the worker thread when there is a slow-path
3177 * response IOCB to process. This function chains all the response iocbs until
3178 * seeing the iocb with the LE bit set. The function will call
3179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3180 * completion of a command iocb. The function will call the
3181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3182 * The function frees the resources or calls the completion handler if this
3183 * iocb is an abort completion. The function returns NULL when the response
3184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3185 * this function shall chain the iocb on to the iocb_continueq and return the
3186 * response iocb passed in.
3187 **/
3188 static struct lpfc_iocbq *
3189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3190 struct lpfc_iocbq *rspiocbp)
3191 {
3192 struct lpfc_iocbq *saveq;
3193 struct lpfc_iocbq *cmdiocbp;
3194 struct lpfc_iocbq *next_iocb;
3195 IOCB_t *irsp = NULL;
3196 uint32_t free_saveq;
3197 uint8_t iocb_cmd_type;
3198 lpfc_iocb_type type;
3199 unsigned long iflag;
3200 int rc;
3201
3202 spin_lock_irqsave(&phba->hbalock, iflag);
3203 /* First add the response iocb to the countinueq list */
3204 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3205 pring->iocb_continueq_cnt++;
3206
3207 /* Now, determine whether the list is completed for processing */
3208 irsp = &rspiocbp->iocb;
3209 if (irsp->ulpLe) {
3210 /*
3211 * By default, the driver expects to free all resources
3212 * associated with this iocb completion.
3213 */
3214 free_saveq = 1;
3215 saveq = list_get_first(&pring->iocb_continueq,
3216 struct lpfc_iocbq, list);
3217 irsp = &(saveq->iocb);
3218 list_del_init(&pring->iocb_continueq);
3219 pring->iocb_continueq_cnt = 0;
3220
3221 pring->stats.iocb_rsp++;
3222
3223 /*
3224 * If resource errors reported from HBA, reduce
3225 * queuedepths of the SCSI device.
3226 */
3227 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3228 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3229 IOERR_NO_RESOURCES)) {
3230 spin_unlock_irqrestore(&phba->hbalock, iflag);
3231 phba->lpfc_rampdown_queue_depth(phba);
3232 spin_lock_irqsave(&phba->hbalock, iflag);
3233 }
3234
3235 if (irsp->ulpStatus) {
3236 /* Rsp ring <ringno> error: IOCB */
3237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3238 "0328 Rsp Ring %d error: "
3239 "IOCB Data: "
3240 "x%x x%x x%x x%x "
3241 "x%x x%x x%x x%x "
3242 "x%x x%x x%x x%x "
3243 "x%x x%x x%x x%x\n",
3244 pring->ringno,
3245 irsp->un.ulpWord[0],
3246 irsp->un.ulpWord[1],
3247 irsp->un.ulpWord[2],
3248 irsp->un.ulpWord[3],
3249 irsp->un.ulpWord[4],
3250 irsp->un.ulpWord[5],
3251 *(((uint32_t *) irsp) + 6),
3252 *(((uint32_t *) irsp) + 7),
3253 *(((uint32_t *) irsp) + 8),
3254 *(((uint32_t *) irsp) + 9),
3255 *(((uint32_t *) irsp) + 10),
3256 *(((uint32_t *) irsp) + 11),
3257 *(((uint32_t *) irsp) + 12),
3258 *(((uint32_t *) irsp) + 13),
3259 *(((uint32_t *) irsp) + 14),
3260 *(((uint32_t *) irsp) + 15));
3261 }
3262
3263 /*
3264 * Fetch the IOCB command type and call the correct completion
3265 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3266 * get freed back to the lpfc_iocb_list by the discovery
3267 * kernel thread.
3268 */
3269 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3270 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3271 switch (type) {
3272 case LPFC_SOL_IOCB:
3273 spin_unlock_irqrestore(&phba->hbalock, iflag);
3274 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3275 spin_lock_irqsave(&phba->hbalock, iflag);
3276 break;
3277
3278 case LPFC_UNSOL_IOCB:
3279 spin_unlock_irqrestore(&phba->hbalock, iflag);
3280 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3281 spin_lock_irqsave(&phba->hbalock, iflag);
3282 if (!rc)
3283 free_saveq = 0;
3284 break;
3285
3286 case LPFC_ABORT_IOCB:
3287 cmdiocbp = NULL;
3288 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3289 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3290 saveq);
3291 if (cmdiocbp) {
3292 /* Call the specified completion routine */
3293 if (cmdiocbp->iocb_cmpl) {
3294 spin_unlock_irqrestore(&phba->hbalock,
3295 iflag);
3296 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3297 saveq);
3298 spin_lock_irqsave(&phba->hbalock,
3299 iflag);
3300 } else
3301 __lpfc_sli_release_iocbq(phba,
3302 cmdiocbp);
3303 }
3304 break;
3305
3306 case LPFC_UNKNOWN_IOCB:
3307 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3308 char adaptermsg[LPFC_MAX_ADPTMSG];
3309 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3310 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3311 MAX_MSG_DATA);
3312 dev_warn(&((phba->pcidev)->dev),
3313 "lpfc%d: %s\n",
3314 phba->brd_no, adaptermsg);
3315 } else {
3316 /* Unknown IOCB command */
3317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3318 "0335 Unknown IOCB "
3319 "command Data: x%x "
3320 "x%x x%x x%x\n",
3321 irsp->ulpCommand,
3322 irsp->ulpStatus,
3323 irsp->ulpIoTag,
3324 irsp->ulpContext);
3325 }
3326 break;
3327 }
3328
3329 if (free_saveq) {
3330 list_for_each_entry_safe(rspiocbp, next_iocb,
3331 &saveq->list, list) {
3332 list_del_init(&rspiocbp->list);
3333 __lpfc_sli_release_iocbq(phba, rspiocbp);
3334 }
3335 __lpfc_sli_release_iocbq(phba, saveq);
3336 }
3337 rspiocbp = NULL;
3338 }
3339 spin_unlock_irqrestore(&phba->hbalock, iflag);
3340 return rspiocbp;
3341 }
3342
3343 /**
3344 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3345 * @phba: Pointer to HBA context object.
3346 * @pring: Pointer to driver SLI ring object.
3347 * @mask: Host attention register mask for this ring.
3348 *
3349 * This routine wraps the actual slow_ring event process routine from the
3350 * API jump table function pointer from the lpfc_hba struct.
3351 **/
3352 void
3353 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3354 struct lpfc_sli_ring *pring, uint32_t mask)
3355 {
3356 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3357 }
3358
3359 /**
3360 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3361 * @phba: Pointer to HBA context object.
3362 * @pring: Pointer to driver SLI ring object.
3363 * @mask: Host attention register mask for this ring.
3364 *
3365 * This function is called from the worker thread when there is a ring event
3366 * for non-fcp rings. The caller does not hold any lock. The function will
3367 * remove each response iocb in the response ring and calls the handle
3368 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3369 **/
3370 static void
3371 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3372 struct lpfc_sli_ring *pring, uint32_t mask)
3373 {
3374 struct lpfc_pgp *pgp;
3375 IOCB_t *entry;
3376 IOCB_t *irsp = NULL;
3377 struct lpfc_iocbq *rspiocbp = NULL;
3378 uint32_t portRspPut, portRspMax;
3379 unsigned long iflag;
3380 uint32_t status;
3381
3382 pgp = &phba->port_gp[pring->ringno];
3383 spin_lock_irqsave(&phba->hbalock, iflag);
3384 pring->stats.iocb_event++;
3385
3386 /*
3387 * The next available response entry should never exceed the maximum
3388 * entries. If it does, treat it as an adapter hardware error.
3389 */
3390 portRspMax = pring->sli.sli3.numRiocb;
3391 portRspPut = le32_to_cpu(pgp->rspPutInx);
3392 if (portRspPut >= portRspMax) {
3393 /*
3394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3395 * rsp ring <portRspMax>
3396 */
3397 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3398 "0303 Ring %d handler: portRspPut %d "
3399 "is bigger than rsp ring %d\n",
3400 pring->ringno, portRspPut, portRspMax);
3401
3402 phba->link_state = LPFC_HBA_ERROR;
3403 spin_unlock_irqrestore(&phba->hbalock, iflag);
3404
3405 phba->work_hs = HS_FFER3;
3406 lpfc_handle_eratt(phba);
3407
3408 return;
3409 }
3410
3411 rmb();
3412 while (pring->sli.sli3.rspidx != portRspPut) {
3413 /*
3414 * Build a completion list and call the appropriate handler.
3415 * The process is to get the next available response iocb, get
3416 * a free iocb from the list, copy the response data into the
3417 * free iocb, insert to the continuation list, and update the
3418 * next response index to slim. This process makes response
3419 * iocb's in the ring available to DMA as fast as possible but
3420 * pays a penalty for a copy operation. Since the iocb is
3421 * only 32 bytes, this penalty is considered small relative to
3422 * the PCI reads for register values and a slim write. When
3423 * the ulpLe field is set, the entire Command has been
3424 * received.
3425 */
3426 entry = lpfc_resp_iocb(phba, pring);
3427
3428 phba->last_completion_time = jiffies;
3429 rspiocbp = __lpfc_sli_get_iocbq(phba);
3430 if (rspiocbp == NULL) {
3431 printk(KERN_ERR "%s: out of buffers! Failing "
3432 "completion.\n", __func__);
3433 break;
3434 }
3435
3436 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3437 phba->iocb_rsp_size);
3438 irsp = &rspiocbp->iocb;
3439
3440 if (++pring->sli.sli3.rspidx >= portRspMax)
3441 pring->sli.sli3.rspidx = 0;
3442
3443 if (pring->ringno == LPFC_ELS_RING) {
3444 lpfc_debugfs_slow_ring_trc(phba,
3445 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3446 *(((uint32_t *) irsp) + 4),
3447 *(((uint32_t *) irsp) + 6),
3448 *(((uint32_t *) irsp) + 7));
3449 }
3450
3451 writel(pring->sli.sli3.rspidx,
3452 &phba->host_gp[pring->ringno].rspGetInx);
3453
3454 spin_unlock_irqrestore(&phba->hbalock, iflag);
3455 /* Handle the response IOCB */
3456 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3457 spin_lock_irqsave(&phba->hbalock, iflag);
3458
3459 /*
3460 * If the port response put pointer has not been updated, sync
3461 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3462 * response put pointer.
3463 */
3464 if (pring->sli.sli3.rspidx == portRspPut) {
3465 portRspPut = le32_to_cpu(pgp->rspPutInx);
3466 }
3467 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3468
3469 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3470 /* At least one response entry has been freed */
3471 pring->stats.iocb_rsp_full++;
3472 /* SET RxRE_RSP in Chip Att register */
3473 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3474 writel(status, phba->CAregaddr);
3475 readl(phba->CAregaddr); /* flush */
3476 }
3477 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3478 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3479 pring->stats.iocb_cmd_empty++;
3480
3481 /* Force update of the local copy of cmdGetInx */
3482 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3483 lpfc_sli_resume_iocb(phba, pring);
3484
3485 if ((pring->lpfc_sli_cmd_available))
3486 (pring->lpfc_sli_cmd_available) (phba, pring);
3487
3488 }
3489
3490 spin_unlock_irqrestore(&phba->hbalock, iflag);
3491 return;
3492 }
3493
3494 /**
3495 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3496 * @phba: Pointer to HBA context object.
3497 * @pring: Pointer to driver SLI ring object.
3498 * @mask: Host attention register mask for this ring.
3499 *
3500 * This function is called from the worker thread when there is a pending
3501 * ELS response iocb on the driver internal slow-path response iocb worker
3502 * queue. The caller does not hold any lock. The function will remove each
3503 * response iocb from the response worker queue and calls the handle
3504 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3505 **/
3506 static void
3507 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3508 struct lpfc_sli_ring *pring, uint32_t mask)
3509 {
3510 struct lpfc_iocbq *irspiocbq;
3511 struct hbq_dmabuf *dmabuf;
3512 struct lpfc_cq_event *cq_event;
3513 unsigned long iflag;
3514
3515 spin_lock_irqsave(&phba->hbalock, iflag);
3516 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3517 spin_unlock_irqrestore(&phba->hbalock, iflag);
3518 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3519 /* Get the response iocb from the head of work queue */
3520 spin_lock_irqsave(&phba->hbalock, iflag);
3521 list_remove_head(&phba->sli4_hba.sp_queue_event,
3522 cq_event, struct lpfc_cq_event, list);
3523 spin_unlock_irqrestore(&phba->hbalock, iflag);
3524
3525 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3526 case CQE_CODE_COMPL_WQE:
3527 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3528 cq_event);
3529 /* Translate ELS WCQE to response IOCBQ */
3530 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3531 irspiocbq);
3532 if (irspiocbq)
3533 lpfc_sli_sp_handle_rspiocb(phba, pring,
3534 irspiocbq);
3535 break;
3536 case CQE_CODE_RECEIVE:
3537 case CQE_CODE_RECEIVE_V1:
3538 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3539 cq_event);
3540 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3541 break;
3542 default:
3543 break;
3544 }
3545 }
3546 }
3547
3548 /**
3549 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3550 * @phba: Pointer to HBA context object.
3551 * @pring: Pointer to driver SLI ring object.
3552 *
3553 * This function aborts all iocbs in the given ring and frees all the iocb
3554 * objects in txq. This function issues an abort iocb for all the iocb commands
3555 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3556 * the return of this function. The caller is not required to hold any locks.
3557 **/
3558 void
3559 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3560 {
3561 LIST_HEAD(completions);
3562 struct lpfc_iocbq *iocb, *next_iocb;
3563
3564 if (pring->ringno == LPFC_ELS_RING) {
3565 lpfc_fabric_abort_hba(phba);
3566 }
3567
3568 /* Error everything on txq and txcmplq
3569 * First do the txq.
3570 */
3571 if (phba->sli_rev >= LPFC_SLI_REV4) {
3572 spin_lock_irq(&pring->ring_lock);
3573 list_splice_init(&pring->txq, &completions);
3574 pring->txq_cnt = 0;
3575 spin_unlock_irq(&pring->ring_lock);
3576
3577 spin_lock_irq(&phba->hbalock);
3578 /* Next issue ABTS for everything on the txcmplq */
3579 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3580 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3581 spin_unlock_irq(&phba->hbalock);
3582 } else {
3583 spin_lock_irq(&phba->hbalock);
3584 list_splice_init(&pring->txq, &completions);
3585 pring->txq_cnt = 0;
3586
3587 /* Next issue ABTS for everything on the txcmplq */
3588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3589 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3590 spin_unlock_irq(&phba->hbalock);
3591 }
3592
3593 /* Cancel all the IOCBs from the completions list */
3594 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3595 IOERR_SLI_ABORTED);
3596 }
3597
3598 /**
3599 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3600 * @phba: Pointer to HBA context object.
3601 * @pring: Pointer to driver SLI ring object.
3602 *
3603 * This function aborts all iocbs in FCP rings and frees all the iocb
3604 * objects in txq. This function issues an abort iocb for all the iocb commands
3605 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3606 * the return of this function. The caller is not required to hold any locks.
3607 **/
3608 void
3609 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3610 {
3611 struct lpfc_sli *psli = &phba->sli;
3612 struct lpfc_sli_ring *pring;
3613 uint32_t i;
3614
3615 /* Look on all the FCP Rings for the iotag */
3616 if (phba->sli_rev >= LPFC_SLI_REV4) {
3617 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3618 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS];
3619 lpfc_sli_abort_iocb_ring(phba, pring);
3620 }
3621 } else {
3622 pring = &psli->ring[psli->fcp_ring];
3623 lpfc_sli_abort_iocb_ring(phba, pring);
3624 }
3625 }
3626
3627
3628 /**
3629 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3630 * @phba: Pointer to HBA context object.
3631 *
3632 * This function flushes all iocbs in the fcp ring and frees all the iocb
3633 * objects in txq and txcmplq. This function will not issue abort iocbs
3634 * for all the iocb commands in txcmplq, they will just be returned with
3635 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3636 * slot has been permanently disabled.
3637 **/
3638 void
3639 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3640 {
3641 LIST_HEAD(txq);
3642 LIST_HEAD(txcmplq);
3643 struct lpfc_sli *psli = &phba->sli;
3644 struct lpfc_sli_ring *pring;
3645 uint32_t i;
3646
3647 spin_lock_irq(&phba->hbalock);
3648 /* Indicate the I/O queues are flushed */
3649 phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3650 spin_unlock_irq(&phba->hbalock);
3651
3652 /* Look on all the FCP Rings for the iotag */
3653 if (phba->sli_rev >= LPFC_SLI_REV4) {
3654 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3655 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS];
3656
3657 spin_lock_irq(&pring->ring_lock);
3658 /* Retrieve everything on txq */
3659 list_splice_init(&pring->txq, &txq);
3660 /* Retrieve everything on the txcmplq */
3661 list_splice_init(&pring->txcmplq, &txcmplq);
3662 pring->txq_cnt = 0;
3663 pring->txcmplq_cnt = 0;
3664 spin_unlock_irq(&pring->ring_lock);
3665
3666 /* Flush the txq */
3667 lpfc_sli_cancel_iocbs(phba, &txq,
3668 IOSTAT_LOCAL_REJECT,
3669 IOERR_SLI_DOWN);
3670 /* Flush the txcmpq */
3671 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3672 IOSTAT_LOCAL_REJECT,
3673 IOERR_SLI_DOWN);
3674 }
3675 } else {
3676 pring = &psli->ring[psli->fcp_ring];
3677
3678 spin_lock_irq(&phba->hbalock);
3679 /* Retrieve everything on txq */
3680 list_splice_init(&pring->txq, &txq);
3681 /* Retrieve everything on the txcmplq */
3682 list_splice_init(&pring->txcmplq, &txcmplq);
3683 pring->txq_cnt = 0;
3684 pring->txcmplq_cnt = 0;
3685 spin_unlock_irq(&phba->hbalock);
3686
3687 /* Flush the txq */
3688 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3689 IOERR_SLI_DOWN);
3690 /* Flush the txcmpq */
3691 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3692 IOERR_SLI_DOWN);
3693 }
3694 }
3695
3696 /**
3697 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3698 * @phba: Pointer to HBA context object.
3699 * @mask: Bit mask to be checked.
3700 *
3701 * This function reads the host status register and compares
3702 * with the provided bit mask to check if HBA completed
3703 * the restart. This function will wait in a loop for the
3704 * HBA to complete restart. If the HBA does not restart within
3705 * 15 iterations, the function will reset the HBA again. The
3706 * function returns 1 when HBA fail to restart otherwise returns
3707 * zero.
3708 **/
3709 static int
3710 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3711 {
3712 uint32_t status;
3713 int i = 0;
3714 int retval = 0;
3715
3716 /* Read the HBA Host Status Register */
3717 if (lpfc_readl(phba->HSregaddr, &status))
3718 return 1;
3719
3720 /*
3721 * Check status register every 100ms for 5 retries, then every
3722 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3723 * every 2.5 sec for 4.
3724 * Break our of the loop if errors occurred during init.
3725 */
3726 while (((status & mask) != mask) &&
3727 !(status & HS_FFERM) &&
3728 i++ < 20) {
3729
3730 if (i <= 5)
3731 msleep(10);
3732 else if (i <= 10)
3733 msleep(500);
3734 else
3735 msleep(2500);
3736
3737 if (i == 15) {
3738 /* Do post */
3739 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3740 lpfc_sli_brdrestart(phba);
3741 }
3742 /* Read the HBA Host Status Register */
3743 if (lpfc_readl(phba->HSregaddr, &status)) {
3744 retval = 1;
3745 break;
3746 }
3747 }
3748
3749 /* Check to see if any errors occurred during init */
3750 if ((status & HS_FFERM) || (i >= 20)) {
3751 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3752 "2751 Adapter failed to restart, "
3753 "status reg x%x, FW Data: A8 x%x AC x%x\n",
3754 status,
3755 readl(phba->MBslimaddr + 0xa8),
3756 readl(phba->MBslimaddr + 0xac));
3757 phba->link_state = LPFC_HBA_ERROR;
3758 retval = 1;
3759 }
3760
3761 return retval;
3762 }
3763
3764 /**
3765 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3766 * @phba: Pointer to HBA context object.
3767 * @mask: Bit mask to be checked.
3768 *
3769 * This function checks the host status register to check if HBA is
3770 * ready. This function will wait in a loop for the HBA to be ready
3771 * If the HBA is not ready , the function will will reset the HBA PCI
3772 * function again. The function returns 1 when HBA fail to be ready
3773 * otherwise returns zero.
3774 **/
3775 static int
3776 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3777 {
3778 uint32_t status;
3779 int retval = 0;
3780
3781 /* Read the HBA Host Status Register */
3782 status = lpfc_sli4_post_status_check(phba);
3783
3784 if (status) {
3785 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3786 lpfc_sli_brdrestart(phba);
3787 status = lpfc_sli4_post_status_check(phba);
3788 }
3789
3790 /* Check to see if any errors occurred during init */
3791 if (status) {
3792 phba->link_state = LPFC_HBA_ERROR;
3793 retval = 1;
3794 } else
3795 phba->sli4_hba.intr_enable = 0;
3796
3797 return retval;
3798 }
3799
3800 /**
3801 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3802 * @phba: Pointer to HBA context object.
3803 * @mask: Bit mask to be checked.
3804 *
3805 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3806 * from the API jump table function pointer from the lpfc_hba struct.
3807 **/
3808 int
3809 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3810 {
3811 return phba->lpfc_sli_brdready(phba, mask);
3812 }
3813
3814 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3815
3816 /**
3817 * lpfc_reset_barrier - Make HBA ready for HBA reset
3818 * @phba: Pointer to HBA context object.
3819 *
3820 * This function is called before resetting an HBA. This function is called
3821 * with hbalock held and requests HBA to quiesce DMAs before a reset.
3822 **/
3823 void lpfc_reset_barrier(struct lpfc_hba *phba)
3824 {
3825 uint32_t __iomem *resp_buf;
3826 uint32_t __iomem *mbox_buf;
3827 volatile uint32_t mbox;
3828 uint32_t hc_copy, ha_copy, resp_data;
3829 int i;
3830 uint8_t hdrtype;
3831
3832 lockdep_assert_held(&phba->hbalock);
3833
3834 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
3835 if (hdrtype != 0x80 ||
3836 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
3837 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
3838 return;
3839
3840 /*
3841 * Tell the other part of the chip to suspend temporarily all
3842 * its DMA activity.
3843 */
3844 resp_buf = phba->MBslimaddr;
3845
3846 /* Disable the error attention */
3847 if (lpfc_readl(phba->HCregaddr, &hc_copy))
3848 return;
3849 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
3850 readl(phba->HCregaddr); /* flush */
3851 phba->link_flag |= LS_IGNORE_ERATT;
3852
3853 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3854 return;
3855 if (ha_copy & HA_ERATT) {
3856 /* Clear Chip error bit */
3857 writel(HA_ERATT, phba->HAregaddr);
3858 phba->pport->stopped = 1;
3859 }
3860
3861 mbox = 0;
3862 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
3863 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
3864
3865 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
3866 mbox_buf = phba->MBslimaddr;
3867 writel(mbox, mbox_buf);
3868
3869 for (i = 0; i < 50; i++) {
3870 if (lpfc_readl((resp_buf + 1), &resp_data))
3871 return;
3872 if (resp_data != ~(BARRIER_TEST_PATTERN))
3873 mdelay(1);
3874 else
3875 break;
3876 }
3877 resp_data = 0;
3878 if (lpfc_readl((resp_buf + 1), &resp_data))
3879 return;
3880 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
3881 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
3882 phba->pport->stopped)
3883 goto restore_hc;
3884 else
3885 goto clear_errat;
3886 }
3887
3888 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
3889 resp_data = 0;
3890 for (i = 0; i < 500; i++) {
3891 if (lpfc_readl(resp_buf, &resp_data))
3892 return;
3893 if (resp_data != mbox)
3894 mdelay(1);
3895 else
3896 break;
3897 }
3898
3899 clear_errat:
3900
3901 while (++i < 500) {
3902 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3903 return;
3904 if (!(ha_copy & HA_ERATT))
3905 mdelay(1);
3906 else
3907 break;
3908 }
3909
3910 if (readl(phba->HAregaddr) & HA_ERATT) {
3911 writel(HA_ERATT, phba->HAregaddr);
3912 phba->pport->stopped = 1;
3913 }
3914
3915 restore_hc:
3916 phba->link_flag &= ~LS_IGNORE_ERATT;
3917 writel(hc_copy, phba->HCregaddr);
3918 readl(phba->HCregaddr); /* flush */
3919 }
3920
3921 /**
3922 * lpfc_sli_brdkill - Issue a kill_board mailbox command
3923 * @phba: Pointer to HBA context object.
3924 *
3925 * This function issues a kill_board mailbox command and waits for
3926 * the error attention interrupt. This function is called for stopping
3927 * the firmware processing. The caller is not required to hold any
3928 * locks. This function calls lpfc_hba_down_post function to free
3929 * any pending commands after the kill. The function will return 1 when it
3930 * fails to kill the board else will return 0.
3931 **/
3932 int
3933 lpfc_sli_brdkill(struct lpfc_hba *phba)
3934 {
3935 struct lpfc_sli *psli;
3936 LPFC_MBOXQ_t *pmb;
3937 uint32_t status;
3938 uint32_t ha_copy;
3939 int retval;
3940 int i = 0;
3941
3942 psli = &phba->sli;
3943
3944 /* Kill HBA */
3945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3946 "0329 Kill HBA Data: x%x x%x\n",
3947 phba->pport->port_state, psli->sli_flag);
3948
3949 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
3950 if (!pmb)
3951 return 1;
3952
3953 /* Disable the error attention */
3954 spin_lock_irq(&phba->hbalock);
3955 if (lpfc_readl(phba->HCregaddr, &status)) {
3956 spin_unlock_irq(&phba->hbalock);
3957 mempool_free(pmb, phba->mbox_mem_pool);
3958 return 1;
3959 }
3960 status &= ~HC_ERINT_ENA;
3961 writel(status, phba->HCregaddr);
3962 readl(phba->HCregaddr); /* flush */
3963 phba->link_flag |= LS_IGNORE_ERATT;
3964 spin_unlock_irq(&phba->hbalock);
3965
3966 lpfc_kill_board(phba, pmb);
3967 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
3968 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3969
3970 if (retval != MBX_SUCCESS) {
3971 if (retval != MBX_BUSY)
3972 mempool_free(pmb, phba->mbox_mem_pool);
3973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3974 "2752 KILL_BOARD command failed retval %d\n",
3975 retval);
3976 spin_lock_irq(&phba->hbalock);
3977 phba->link_flag &= ~LS_IGNORE_ERATT;
3978 spin_unlock_irq(&phba->hbalock);
3979 return 1;
3980 }
3981
3982 spin_lock_irq(&phba->hbalock);
3983 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
3984 spin_unlock_irq(&phba->hbalock);
3985
3986 mempool_free(pmb, phba->mbox_mem_pool);
3987
3988 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
3989 * attention every 100ms for 3 seconds. If we don't get ERATT after
3990 * 3 seconds we still set HBA_ERROR state because the status of the
3991 * board is now undefined.
3992 */
3993 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3994 return 1;
3995 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
3996 mdelay(100);
3997 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3998 return 1;
3999 }
4000
4001 del_timer_sync(&psli->mbox_tmo);
4002 if (ha_copy & HA_ERATT) {
4003 writel(HA_ERATT, phba->HAregaddr);
4004 phba->pport->stopped = 1;
4005 }
4006 spin_lock_irq(&phba->hbalock);
4007 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4008 psli->mbox_active = NULL;
4009 phba->link_flag &= ~LS_IGNORE_ERATT;
4010 spin_unlock_irq(&phba->hbalock);
4011
4012 lpfc_hba_down_post(phba);
4013 phba->link_state = LPFC_HBA_ERROR;
4014
4015 return ha_copy & HA_ERATT ? 0 : 1;
4016 }
4017
4018 /**
4019 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4020 * @phba: Pointer to HBA context object.
4021 *
4022 * This function resets the HBA by writing HC_INITFF to the control
4023 * register. After the HBA resets, this function resets all the iocb ring
4024 * indices. This function disables PCI layer parity checking during
4025 * the reset.
4026 * This function returns 0 always.
4027 * The caller is not required to hold any locks.
4028 **/
4029 int
4030 lpfc_sli_brdreset(struct lpfc_hba *phba)
4031 {
4032 struct lpfc_sli *psli;
4033 struct lpfc_sli_ring *pring;
4034 uint16_t cfg_value;
4035 int i;
4036
4037 psli = &phba->sli;
4038
4039 /* Reset HBA */
4040 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4041 "0325 Reset HBA Data: x%x x%x\n",
4042 phba->pport->port_state, psli->sli_flag);
4043
4044 /* perform board reset */
4045 phba->fc_eventTag = 0;
4046 phba->link_events = 0;
4047 phba->pport->fc_myDID = 0;
4048 phba->pport->fc_prevDID = 0;
4049
4050 /* Turn off parity checking and serr during the physical reset */
4051 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4052 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4053 (cfg_value &
4054 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4055
4056 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4057
4058 /* Now toggle INITFF bit in the Host Control Register */
4059 writel(HC_INITFF, phba->HCregaddr);
4060 mdelay(1);
4061 readl(phba->HCregaddr); /* flush */
4062 writel(0, phba->HCregaddr);
4063 readl(phba->HCregaddr); /* flush */
4064
4065 /* Restore PCI cmd register */
4066 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4067
4068 /* Initialize relevant SLI info */
4069 for (i = 0; i < psli->num_rings; i++) {
4070 pring = &psli->ring[i];
4071 pring->flag = 0;
4072 pring->sli.sli3.rspidx = 0;
4073 pring->sli.sli3.next_cmdidx = 0;
4074 pring->sli.sli3.local_getidx = 0;
4075 pring->sli.sli3.cmdidx = 0;
4076 pring->missbufcnt = 0;
4077 }
4078
4079 phba->link_state = LPFC_WARM_START;
4080 return 0;
4081 }
4082
4083 /**
4084 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4085 * @phba: Pointer to HBA context object.
4086 *
4087 * This function resets a SLI4 HBA. This function disables PCI layer parity
4088 * checking during resets the device. The caller is not required to hold
4089 * any locks.
4090 *
4091 * This function returns 0 always.
4092 **/
4093 int
4094 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4095 {
4096 struct lpfc_sli *psli = &phba->sli;
4097 uint16_t cfg_value;
4098 int rc = 0;
4099
4100 /* Reset HBA */
4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4102 "0295 Reset HBA Data: x%x x%x x%x\n",
4103 phba->pport->port_state, psli->sli_flag,
4104 phba->hba_flag);
4105
4106 /* perform board reset */
4107 phba->fc_eventTag = 0;
4108 phba->link_events = 0;
4109 phba->pport->fc_myDID = 0;
4110 phba->pport->fc_prevDID = 0;
4111
4112 spin_lock_irq(&phba->hbalock);
4113 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4114 phba->fcf.fcf_flag = 0;
4115 spin_unlock_irq(&phba->hbalock);
4116
4117 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4118 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4119 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4120 return rc;
4121 }
4122
4123 /* Now physically reset the device */
4124 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4125 "0389 Performing PCI function reset!\n");
4126
4127 /* Turn off parity checking and serr during the physical reset */
4128 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4129 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4130 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4131
4132 /* Perform FCoE PCI function reset before freeing queue memory */
4133 rc = lpfc_pci_function_reset(phba);
4134 lpfc_sli4_queue_destroy(phba);
4135
4136 /* Restore PCI cmd register */
4137 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4138
4139 return rc;
4140 }
4141
4142 /**
4143 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4144 * @phba: Pointer to HBA context object.
4145 *
4146 * This function is called in the SLI initialization code path to
4147 * restart the HBA. The caller is not required to hold any lock.
4148 * This function writes MBX_RESTART mailbox command to the SLIM and
4149 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4150 * function to free any pending commands. The function enables
4151 * POST only during the first initialization. The function returns zero.
4152 * The function does not guarantee completion of MBX_RESTART mailbox
4153 * command before the return of this function.
4154 **/
4155 static int
4156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4157 {
4158 MAILBOX_t *mb;
4159 struct lpfc_sli *psli;
4160 volatile uint32_t word0;
4161 void __iomem *to_slim;
4162 uint32_t hba_aer_enabled;
4163
4164 spin_lock_irq(&phba->hbalock);
4165
4166 /* Take PCIe device Advanced Error Reporting (AER) state */
4167 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4168
4169 psli = &phba->sli;
4170
4171 /* Restart HBA */
4172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4173 "0337 Restart HBA Data: x%x x%x\n",
4174 phba->pport->port_state, psli->sli_flag);
4175
4176 word0 = 0;
4177 mb = (MAILBOX_t *) &word0;
4178 mb->mbxCommand = MBX_RESTART;
4179 mb->mbxHc = 1;
4180
4181 lpfc_reset_barrier(phba);
4182
4183 to_slim = phba->MBslimaddr;
4184 writel(*(uint32_t *) mb, to_slim);
4185 readl(to_slim); /* flush */
4186
4187 /* Only skip post after fc_ffinit is completed */
4188 if (phba->pport->port_state)
4189 word0 = 1; /* This is really setting up word1 */
4190 else
4191 word0 = 0; /* This is really setting up word1 */
4192 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4193 writel(*(uint32_t *) mb, to_slim);
4194 readl(to_slim); /* flush */
4195
4196 lpfc_sli_brdreset(phba);
4197 phba->pport->stopped = 0;
4198 phba->link_state = LPFC_INIT_START;
4199 phba->hba_flag = 0;
4200 spin_unlock_irq(&phba->hbalock);
4201
4202 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4203 psli->stats_start = get_seconds();
4204
4205 /* Give the INITFF and Post time to settle. */
4206 mdelay(100);
4207
4208 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4209 if (hba_aer_enabled)
4210 pci_disable_pcie_error_reporting(phba->pcidev);
4211
4212 lpfc_hba_down_post(phba);
4213
4214 return 0;
4215 }
4216
4217 /**
4218 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4219 * @phba: Pointer to HBA context object.
4220 *
4221 * This function is called in the SLI initialization code path to restart
4222 * a SLI4 HBA. The caller is not required to hold any lock.
4223 * At the end of the function, it calls lpfc_hba_down_post function to
4224 * free any pending commands.
4225 **/
4226 static int
4227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4228 {
4229 struct lpfc_sli *psli = &phba->sli;
4230 uint32_t hba_aer_enabled;
4231 int rc;
4232
4233 /* Restart HBA */
4234 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4235 "0296 Restart HBA Data: x%x x%x\n",
4236 phba->pport->port_state, psli->sli_flag);
4237
4238 /* Take PCIe device Advanced Error Reporting (AER) state */
4239 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4240
4241 rc = lpfc_sli4_brdreset(phba);
4242
4243 spin_lock_irq(&phba->hbalock);
4244 phba->pport->stopped = 0;
4245 phba->link_state = LPFC_INIT_START;
4246 phba->hba_flag = 0;
4247 spin_unlock_irq(&phba->hbalock);
4248
4249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4250 psli->stats_start = get_seconds();
4251
4252 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4253 if (hba_aer_enabled)
4254 pci_disable_pcie_error_reporting(phba->pcidev);
4255
4256 lpfc_hba_down_post(phba);
4257
4258 return rc;
4259 }
4260
4261 /**
4262 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4263 * @phba: Pointer to HBA context object.
4264 *
4265 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4266 * API jump table function pointer from the lpfc_hba struct.
4267 **/
4268 int
4269 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4270 {
4271 return phba->lpfc_sli_brdrestart(phba);
4272 }
4273
4274 /**
4275 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4276 * @phba: Pointer to HBA context object.
4277 *
4278 * This function is called after a HBA restart to wait for successful
4279 * restart of the HBA. Successful restart of the HBA is indicated by
4280 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4281 * iteration, the function will restart the HBA again. The function returns
4282 * zero if HBA successfully restarted else returns negative error code.
4283 **/
4284 static int
4285 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4286 {
4287 uint32_t status, i = 0;
4288
4289 /* Read the HBA Host Status Register */
4290 if (lpfc_readl(phba->HSregaddr, &status))
4291 return -EIO;
4292
4293 /* Check status register to see what current state is */
4294 i = 0;
4295 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4296
4297 /* Check every 10ms for 10 retries, then every 100ms for 90
4298 * retries, then every 1 sec for 50 retires for a total of
4299 * ~60 seconds before reset the board again and check every
4300 * 1 sec for 50 retries. The up to 60 seconds before the
4301 * board ready is required by the Falcon FIPS zeroization
4302 * complete, and any reset the board in between shall cause
4303 * restart of zeroization, further delay the board ready.
4304 */
4305 if (i++ >= 200) {
4306 /* Adapter failed to init, timeout, status reg
4307 <status> */
4308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4309 "0436 Adapter failed to init, "
4310 "timeout, status reg x%x, "
4311 "FW Data: A8 x%x AC x%x\n", status,
4312 readl(phba->MBslimaddr + 0xa8),
4313 readl(phba->MBslimaddr + 0xac));
4314 phba->link_state = LPFC_HBA_ERROR;
4315 return -ETIMEDOUT;
4316 }
4317
4318 /* Check to see if any errors occurred during init */
4319 if (status & HS_FFERM) {
4320 /* ERROR: During chipset initialization */
4321 /* Adapter failed to init, chipset, status reg
4322 <status> */
4323 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4324 "0437 Adapter failed to init, "
4325 "chipset, status reg x%x, "
4326 "FW Data: A8 x%x AC x%x\n", status,
4327 readl(phba->MBslimaddr + 0xa8),
4328 readl(phba->MBslimaddr + 0xac));
4329 phba->link_state = LPFC_HBA_ERROR;
4330 return -EIO;
4331 }
4332
4333 if (i <= 10)
4334 msleep(10);
4335 else if (i <= 100)
4336 msleep(100);
4337 else
4338 msleep(1000);
4339
4340 if (i == 150) {
4341 /* Do post */
4342 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4343 lpfc_sli_brdrestart(phba);
4344 }
4345 /* Read the HBA Host Status Register */
4346 if (lpfc_readl(phba->HSregaddr, &status))
4347 return -EIO;
4348 }
4349
4350 /* Check to see if any errors occurred during init */
4351 if (status & HS_FFERM) {
4352 /* ERROR: During chipset initialization */
4353 /* Adapter failed to init, chipset, status reg <status> */
4354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4355 "0438 Adapter failed to init, chipset, "
4356 "status reg x%x, "
4357 "FW Data: A8 x%x AC x%x\n", status,
4358 readl(phba->MBslimaddr + 0xa8),
4359 readl(phba->MBslimaddr + 0xac));
4360 phba->link_state = LPFC_HBA_ERROR;
4361 return -EIO;
4362 }
4363
4364 /* Clear all interrupt enable conditions */
4365 writel(0, phba->HCregaddr);
4366 readl(phba->HCregaddr); /* flush */
4367
4368 /* setup host attn register */
4369 writel(0xffffffff, phba->HAregaddr);
4370 readl(phba->HAregaddr); /* flush */
4371 return 0;
4372 }
4373
4374 /**
4375 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4376 *
4377 * This function calculates and returns the number of HBQs required to be
4378 * configured.
4379 **/
4380 int
4381 lpfc_sli_hbq_count(void)
4382 {
4383 return ARRAY_SIZE(lpfc_hbq_defs);
4384 }
4385
4386 /**
4387 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4388 *
4389 * This function adds the number of hbq entries in every HBQ to get
4390 * the total number of hbq entries required for the HBA and returns
4391 * the total count.
4392 **/
4393 static int
4394 lpfc_sli_hbq_entry_count(void)
4395 {
4396 int hbq_count = lpfc_sli_hbq_count();
4397 int count = 0;
4398 int i;
4399
4400 for (i = 0; i < hbq_count; ++i)
4401 count += lpfc_hbq_defs[i]->entry_count;
4402 return count;
4403 }
4404
4405 /**
4406 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4407 *
4408 * This function calculates amount of memory required for all hbq entries
4409 * to be configured and returns the total memory required.
4410 **/
4411 int
4412 lpfc_sli_hbq_size(void)
4413 {
4414 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4415 }
4416
4417 /**
4418 * lpfc_sli_hbq_setup - configure and initialize HBQs
4419 * @phba: Pointer to HBA context object.
4420 *
4421 * This function is called during the SLI initialization to configure
4422 * all the HBQs and post buffers to the HBQ. The caller is not
4423 * required to hold any locks. This function will return zero if successful
4424 * else it will return negative error code.
4425 **/
4426 static int
4427 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4428 {
4429 int hbq_count = lpfc_sli_hbq_count();
4430 LPFC_MBOXQ_t *pmb;
4431 MAILBOX_t *pmbox;
4432 uint32_t hbqno;
4433 uint32_t hbq_entry_index;
4434
4435 /* Get a Mailbox buffer to setup mailbox
4436 * commands for HBA initialization
4437 */
4438 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4439
4440 if (!pmb)
4441 return -ENOMEM;
4442
4443 pmbox = &pmb->u.mb;
4444
4445 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4446 phba->link_state = LPFC_INIT_MBX_CMDS;
4447 phba->hbq_in_use = 1;
4448
4449 hbq_entry_index = 0;
4450 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4451 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4452 phba->hbqs[hbqno].hbqPutIdx = 0;
4453 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4454 phba->hbqs[hbqno].entry_count =
4455 lpfc_hbq_defs[hbqno]->entry_count;
4456 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4457 hbq_entry_index, pmb);
4458 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4459
4460 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4461 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4462 mbxStatus <status>, ring <num> */
4463
4464 lpfc_printf_log(phba, KERN_ERR,
4465 LOG_SLI | LOG_VPORT,
4466 "1805 Adapter failed to init. "
4467 "Data: x%x x%x x%x\n",
4468 pmbox->mbxCommand,
4469 pmbox->mbxStatus, hbqno);
4470
4471 phba->link_state = LPFC_HBA_ERROR;
4472 mempool_free(pmb, phba->mbox_mem_pool);
4473 return -ENXIO;
4474 }
4475 }
4476 phba->hbq_count = hbq_count;
4477
4478 mempool_free(pmb, phba->mbox_mem_pool);
4479
4480 /* Initially populate or replenish the HBQs */
4481 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4482 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4483 return 0;
4484 }
4485
4486 /**
4487 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4488 * @phba: Pointer to HBA context object.
4489 *
4490 * This function is called during the SLI initialization to configure
4491 * all the HBQs and post buffers to the HBQ. The caller is not
4492 * required to hold any locks. This function will return zero if successful
4493 * else it will return negative error code.
4494 **/
4495 static int
4496 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4497 {
4498 phba->hbq_in_use = 1;
4499 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count;
4500 phba->hbq_count = 1;
4501 /* Initially populate or replenish the HBQs */
4502 lpfc_sli_hbqbuf_init_hbqs(phba, 0);
4503 return 0;
4504 }
4505
4506 /**
4507 * lpfc_sli_config_port - Issue config port mailbox command
4508 * @phba: Pointer to HBA context object.
4509 * @sli_mode: sli mode - 2/3
4510 *
4511 * This function is called by the sli intialization code path
4512 * to issue config_port mailbox command. This function restarts the
4513 * HBA firmware and issues a config_port mailbox command to configure
4514 * the SLI interface in the sli mode specified by sli_mode
4515 * variable. The caller is not required to hold any locks.
4516 * The function returns 0 if successful, else returns negative error
4517 * code.
4518 **/
4519 int
4520 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4521 {
4522 LPFC_MBOXQ_t *pmb;
4523 uint32_t resetcount = 0, rc = 0, done = 0;
4524
4525 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4526 if (!pmb) {
4527 phba->link_state = LPFC_HBA_ERROR;
4528 return -ENOMEM;
4529 }
4530
4531 phba->sli_rev = sli_mode;
4532 while (resetcount < 2 && !done) {
4533 spin_lock_irq(&phba->hbalock);
4534 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4535 spin_unlock_irq(&phba->hbalock);
4536 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4537 lpfc_sli_brdrestart(phba);
4538 rc = lpfc_sli_chipset_init(phba);
4539 if (rc)
4540 break;
4541
4542 spin_lock_irq(&phba->hbalock);
4543 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4544 spin_unlock_irq(&phba->hbalock);
4545 resetcount++;
4546
4547 /* Call pre CONFIG_PORT mailbox command initialization. A
4548 * value of 0 means the call was successful. Any other
4549 * nonzero value is a failure, but if ERESTART is returned,
4550 * the driver may reset the HBA and try again.
4551 */
4552 rc = lpfc_config_port_prep(phba);
4553 if (rc == -ERESTART) {
4554 phba->link_state = LPFC_LINK_UNKNOWN;
4555 continue;
4556 } else if (rc)
4557 break;
4558
4559 phba->link_state = LPFC_INIT_MBX_CMDS;
4560 lpfc_config_port(phba, pmb);
4561 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4562 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4563 LPFC_SLI3_HBQ_ENABLED |
4564 LPFC_SLI3_CRP_ENABLED |
4565 LPFC_SLI3_BG_ENABLED |
4566 LPFC_SLI3_DSS_ENABLED);
4567 if (rc != MBX_SUCCESS) {
4568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4569 "0442 Adapter failed to init, mbxCmd x%x "
4570 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4571 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4572 spin_lock_irq(&phba->hbalock);
4573 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4574 spin_unlock_irq(&phba->hbalock);
4575 rc = -ENXIO;
4576 } else {
4577 /* Allow asynchronous mailbox command to go through */
4578 spin_lock_irq(&phba->hbalock);
4579 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4580 spin_unlock_irq(&phba->hbalock);
4581 done = 1;
4582
4583 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4584 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4585 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4586 "3110 Port did not grant ASABT\n");
4587 }
4588 }
4589 if (!done) {
4590 rc = -EINVAL;
4591 goto do_prep_failed;
4592 }
4593 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4594 if (!pmb->u.mb.un.varCfgPort.cMA) {
4595 rc = -ENXIO;
4596 goto do_prep_failed;
4597 }
4598 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4599 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4600 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4601 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4602 phba->max_vpi : phba->max_vports;
4603
4604 } else
4605 phba->max_vpi = 0;
4606 phba->fips_level = 0;
4607 phba->fips_spec_rev = 0;
4608 if (pmb->u.mb.un.varCfgPort.gdss) {
4609 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4610 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4611 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4612 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4613 "2850 Security Crypto Active. FIPS x%d "
4614 "(Spec Rev: x%d)",
4615 phba->fips_level, phba->fips_spec_rev);
4616 }
4617 if (pmb->u.mb.un.varCfgPort.sec_err) {
4618 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4619 "2856 Config Port Security Crypto "
4620 "Error: x%x ",
4621 pmb->u.mb.un.varCfgPort.sec_err);
4622 }
4623 if (pmb->u.mb.un.varCfgPort.gerbm)
4624 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
4625 if (pmb->u.mb.un.varCfgPort.gcrp)
4626 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
4627
4628 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
4629 phba->port_gp = phba->mbox->us.s3_pgp.port;
4630
4631 if (phba->cfg_enable_bg) {
4632 if (pmb->u.mb.un.varCfgPort.gbg)
4633 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4634 else
4635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4636 "0443 Adapter did not grant "
4637 "BlockGuard\n");
4638 }
4639 } else {
4640 phba->hbq_get = NULL;
4641 phba->port_gp = phba->mbox->us.s2.port;
4642 phba->max_vpi = 0;
4643 }
4644 do_prep_failed:
4645 mempool_free(pmb, phba->mbox_mem_pool);
4646 return rc;
4647 }
4648
4649
4650 /**
4651 * lpfc_sli_hba_setup - SLI intialization function
4652 * @phba: Pointer to HBA context object.
4653 *
4654 * This function is the main SLI intialization function. This function
4655 * is called by the HBA intialization code, HBA reset code and HBA
4656 * error attention handler code. Caller is not required to hold any
4657 * locks. This function issues config_port mailbox command to configure
4658 * the SLI, setup iocb rings and HBQ rings. In the end the function
4659 * calls the config_port_post function to issue init_link mailbox
4660 * command and to start the discovery. The function will return zero
4661 * if successful, else it will return negative error code.
4662 **/
4663 int
4664 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4665 {
4666 uint32_t rc;
4667 int mode = 3, i;
4668 int longs;
4669
4670 switch (phba->cfg_sli_mode) {
4671 case 2:
4672 if (phba->cfg_enable_npiv) {
4673 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4674 "1824 NPIV enabled: Override sli_mode "
4675 "parameter (%d) to auto (0).\n",
4676 phba->cfg_sli_mode);
4677 break;
4678 }
4679 mode = 2;
4680 break;
4681 case 0:
4682 case 3:
4683 break;
4684 default:
4685 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4686 "1819 Unrecognized sli_mode parameter: %d.\n",
4687 phba->cfg_sli_mode);
4688
4689 break;
4690 }
4691 phba->fcp_embed_io = 0; /* SLI4 FC support only */
4692
4693 rc = lpfc_sli_config_port(phba, mode);
4694
4695 if (rc && phba->cfg_sli_mode == 3)
4696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4697 "1820 Unable to select SLI-3. "
4698 "Not supported by adapter.\n");
4699 if (rc && mode != 2)
4700 rc = lpfc_sli_config_port(phba, 2);
4701 else if (rc && mode == 2)
4702 rc = lpfc_sli_config_port(phba, 3);
4703 if (rc)
4704 goto lpfc_sli_hba_setup_error;
4705
4706 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4707 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4708 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4709 if (!rc) {
4710 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4711 "2709 This device supports "
4712 "Advanced Error Reporting (AER)\n");
4713 spin_lock_irq(&phba->hbalock);
4714 phba->hba_flag |= HBA_AER_ENABLED;
4715 spin_unlock_irq(&phba->hbalock);
4716 } else {
4717 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4718 "2708 This device does not support "
4719 "Advanced Error Reporting (AER): %d\n",
4720 rc);
4721 phba->cfg_aer_support = 0;
4722 }
4723 }
4724
4725 if (phba->sli_rev == 3) {
4726 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4727 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4728 } else {
4729 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4730 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4731 phba->sli3_options = 0;
4732 }
4733
4734 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4735 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
4736 phba->sli_rev, phba->max_vpi);
4737 rc = lpfc_sli_ring_map(phba);
4738
4739 if (rc)
4740 goto lpfc_sli_hba_setup_error;
4741
4742 /* Initialize VPIs. */
4743 if (phba->sli_rev == LPFC_SLI_REV3) {
4744 /*
4745 * The VPI bitmask and physical ID array are allocated
4746 * and initialized once only - at driver load. A port
4747 * reset doesn't need to reinitialize this memory.
4748 */
4749 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
4750 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
4751 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long),
4752 GFP_KERNEL);
4753 if (!phba->vpi_bmask) {
4754 rc = -ENOMEM;
4755 goto lpfc_sli_hba_setup_error;
4756 }
4757
4758 phba->vpi_ids = kzalloc(
4759 (phba->max_vpi+1) * sizeof(uint16_t),
4760 GFP_KERNEL);
4761 if (!phba->vpi_ids) {
4762 kfree(phba->vpi_bmask);
4763 rc = -ENOMEM;
4764 goto lpfc_sli_hba_setup_error;
4765 }
4766 for (i = 0; i < phba->max_vpi; i++)
4767 phba->vpi_ids[i] = i;
4768 }
4769 }
4770
4771 /* Init HBQs */
4772 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4773 rc = lpfc_sli_hbq_setup(phba);
4774 if (rc)
4775 goto lpfc_sli_hba_setup_error;
4776 }
4777 spin_lock_irq(&phba->hbalock);
4778 phba->sli.sli_flag |= LPFC_PROCESS_LA;
4779 spin_unlock_irq(&phba->hbalock);
4780
4781 rc = lpfc_config_port_post(phba);
4782 if (rc)
4783 goto lpfc_sli_hba_setup_error;
4784
4785 return rc;
4786
4787 lpfc_sli_hba_setup_error:
4788 phba->link_state = LPFC_HBA_ERROR;
4789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4790 "0445 Firmware initialization failed\n");
4791 return rc;
4792 }
4793
4794 /**
4795 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4796 * @phba: Pointer to HBA context object.
4797 * @mboxq: mailbox pointer.
4798 * This function issue a dump mailbox command to read config region
4799 * 23 and parse the records in the region and populate driver
4800 * data structure.
4801 **/
4802 static int
4803 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
4804 {
4805 LPFC_MBOXQ_t *mboxq;
4806 struct lpfc_dmabuf *mp;
4807 struct lpfc_mqe *mqe;
4808 uint32_t data_length;
4809 int rc;
4810
4811 /* Program the default value of vlan_id and fc_map */
4812 phba->valid_vlan = 0;
4813 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
4814 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
4815 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
4816
4817 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4818 if (!mboxq)
4819 return -ENOMEM;
4820
4821 mqe = &mboxq->u.mqe;
4822 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
4823 rc = -ENOMEM;
4824 goto out_free_mboxq;
4825 }
4826
4827 mp = (struct lpfc_dmabuf *) mboxq->context1;
4828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4829
4830 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4831 "(%d):2571 Mailbox cmd x%x Status x%x "
4832 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4833 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4834 "CQ: x%x x%x x%x x%x\n",
4835 mboxq->vport ? mboxq->vport->vpi : 0,
4836 bf_get(lpfc_mqe_command, mqe),
4837 bf_get(lpfc_mqe_status, mqe),
4838 mqe->un.mb_words[0], mqe->un.mb_words[1],
4839 mqe->un.mb_words[2], mqe->un.mb_words[3],
4840 mqe->un.mb_words[4], mqe->un.mb_words[5],
4841 mqe->un.mb_words[6], mqe->un.mb_words[7],
4842 mqe->un.mb_words[8], mqe->un.mb_words[9],
4843 mqe->un.mb_words[10], mqe->un.mb_words[11],
4844 mqe->un.mb_words[12], mqe->un.mb_words[13],
4845 mqe->un.mb_words[14], mqe->un.mb_words[15],
4846 mqe->un.mb_words[16], mqe->un.mb_words[50],
4847 mboxq->mcqe.word0,
4848 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
4849 mboxq->mcqe.trailer);
4850
4851 if (rc) {
4852 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4853 kfree(mp);
4854 rc = -EIO;
4855 goto out_free_mboxq;
4856 }
4857 data_length = mqe->un.mb_words[5];
4858 if (data_length > DMP_RGN23_SIZE) {
4859 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4860 kfree(mp);
4861 rc = -EIO;
4862 goto out_free_mboxq;
4863 }
4864
4865 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
4866 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4867 kfree(mp);
4868 rc = 0;
4869
4870 out_free_mboxq:
4871 mempool_free(mboxq, phba->mbox_mem_pool);
4872 return rc;
4873 }
4874
4875 /**
4876 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
4877 * @phba: pointer to lpfc hba data structure.
4878 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
4879 * @vpd: pointer to the memory to hold resulting port vpd data.
4880 * @vpd_size: On input, the number of bytes allocated to @vpd.
4881 * On output, the number of data bytes in @vpd.
4882 *
4883 * This routine executes a READ_REV SLI4 mailbox command. In
4884 * addition, this routine gets the port vpd data.
4885 *
4886 * Return codes
4887 * 0 - successful
4888 * -ENOMEM - could not allocated memory.
4889 **/
4890 static int
4891 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
4892 uint8_t *vpd, uint32_t *vpd_size)
4893 {
4894 int rc = 0;
4895 uint32_t dma_size;
4896 struct lpfc_dmabuf *dmabuf;
4897 struct lpfc_mqe *mqe;
4898
4899 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
4900 if (!dmabuf)
4901 return -ENOMEM;
4902
4903 /*
4904 * Get a DMA buffer for the vpd data resulting from the READ_REV
4905 * mailbox command.
4906 */
4907 dma_size = *vpd_size;
4908 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
4909 &dmabuf->phys, GFP_KERNEL);
4910 if (!dmabuf->virt) {
4911 kfree(dmabuf);
4912 return -ENOMEM;
4913 }
4914
4915 /*
4916 * The SLI4 implementation of READ_REV conflicts at word1,
4917 * bits 31:16 and SLI4 adds vpd functionality not present
4918 * in SLI3. This code corrects the conflicts.
4919 */
4920 lpfc_read_rev(phba, mboxq);
4921 mqe = &mboxq->u.mqe;
4922 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
4923 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
4924 mqe->un.read_rev.word1 &= 0x0000FFFF;
4925 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
4926 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
4927
4928 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4929 if (rc) {
4930 dma_free_coherent(&phba->pcidev->dev, dma_size,
4931 dmabuf->virt, dmabuf->phys);
4932 kfree(dmabuf);
4933 return -EIO;
4934 }
4935
4936 /*
4937 * The available vpd length cannot be bigger than the
4938 * DMA buffer passed to the port. Catch the less than
4939 * case and update the caller's size.
4940 */
4941 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
4942 *vpd_size = mqe->un.read_rev.avail_vpd_len;
4943
4944 memcpy(vpd, dmabuf->virt, *vpd_size);
4945
4946 dma_free_coherent(&phba->pcidev->dev, dma_size,
4947 dmabuf->virt, dmabuf->phys);
4948 kfree(dmabuf);
4949 return 0;
4950 }
4951
4952 /**
4953 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
4954 * @phba: pointer to lpfc hba data structure.
4955 *
4956 * This routine retrieves SLI4 device physical port name this PCI function
4957 * is attached to.
4958 *
4959 * Return codes
4960 * 0 - successful
4961 * otherwise - failed to retrieve physical port name
4962 **/
4963 static int
4964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
4965 {
4966 LPFC_MBOXQ_t *mboxq;
4967 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
4968 struct lpfc_controller_attribute *cntl_attr;
4969 struct lpfc_mbx_get_port_name *get_port_name;
4970 void *virtaddr = NULL;
4971 uint32_t alloclen, reqlen;
4972 uint32_t shdr_status, shdr_add_status;
4973 union lpfc_sli4_cfg_shdr *shdr;
4974 char cport_name = 0;
4975 int rc;
4976
4977 /* We assume nothing at this point */
4978 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
4979 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
4980
4981 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4982 if (!mboxq)
4983 return -ENOMEM;
4984 /* obtain link type and link number via READ_CONFIG */
4985 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
4986 lpfc_sli4_read_config(phba);
4987 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
4988 goto retrieve_ppname;
4989
4990 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
4991 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
4992 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
4993 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
4994 LPFC_SLI4_MBX_NEMBED);
4995 if (alloclen < reqlen) {
4996 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4997 "3084 Allocated DMA memory size (%d) is "
4998 "less than the requested DMA memory size "
4999 "(%d)\n", alloclen, reqlen);
5000 rc = -ENOMEM;
5001 goto out_free_mboxq;
5002 }
5003 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5004 virtaddr = mboxq->sge_array->addr[0];
5005 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5006 shdr = &mbx_cntl_attr->cfg_shdr;
5007 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5008 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5009 if (shdr_status || shdr_add_status || rc) {
5010 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5011 "3085 Mailbox x%x (x%x/x%x) failed, "
5012 "rc:x%x, status:x%x, add_status:x%x\n",
5013 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5014 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5015 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5016 rc, shdr_status, shdr_add_status);
5017 rc = -ENXIO;
5018 goto out_free_mboxq;
5019 }
5020 cntl_attr = &mbx_cntl_attr->cntl_attr;
5021 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5022 phba->sli4_hba.lnk_info.lnk_tp =
5023 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5024 phba->sli4_hba.lnk_info.lnk_no =
5025 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5026 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5027 "3086 lnk_type:%d, lnk_numb:%d\n",
5028 phba->sli4_hba.lnk_info.lnk_tp,
5029 phba->sli4_hba.lnk_info.lnk_no);
5030
5031 retrieve_ppname:
5032 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5033 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5034 sizeof(struct lpfc_mbx_get_port_name) -
5035 sizeof(struct lpfc_sli4_cfg_mhdr),
5036 LPFC_SLI4_MBX_EMBED);
5037 get_port_name = &mboxq->u.mqe.un.get_port_name;
5038 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5039 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5040 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5041 phba->sli4_hba.lnk_info.lnk_tp);
5042 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5043 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5045 if (shdr_status || shdr_add_status || rc) {
5046 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5047 "3087 Mailbox x%x (x%x/x%x) failed: "
5048 "rc:x%x, status:x%x, add_status:x%x\n",
5049 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5050 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5051 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5052 rc, shdr_status, shdr_add_status);
5053 rc = -ENXIO;
5054 goto out_free_mboxq;
5055 }
5056 switch (phba->sli4_hba.lnk_info.lnk_no) {
5057 case LPFC_LINK_NUMBER_0:
5058 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5059 &get_port_name->u.response);
5060 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5061 break;
5062 case LPFC_LINK_NUMBER_1:
5063 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5064 &get_port_name->u.response);
5065 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5066 break;
5067 case LPFC_LINK_NUMBER_2:
5068 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5069 &get_port_name->u.response);
5070 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5071 break;
5072 case LPFC_LINK_NUMBER_3:
5073 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5074 &get_port_name->u.response);
5075 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5076 break;
5077 default:
5078 break;
5079 }
5080
5081 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5082 phba->Port[0] = cport_name;
5083 phba->Port[1] = '\0';
5084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5085 "3091 SLI get port name: %s\n", phba->Port);
5086 }
5087
5088 out_free_mboxq:
5089 if (rc != MBX_TIMEOUT) {
5090 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5091 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5092 else
5093 mempool_free(mboxq, phba->mbox_mem_pool);
5094 }
5095 return rc;
5096 }
5097
5098 /**
5099 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5100 * @phba: pointer to lpfc hba data structure.
5101 *
5102 * This routine is called to explicitly arm the SLI4 device's completion and
5103 * event queues
5104 **/
5105 static void
5106 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5107 {
5108 int fcp_eqidx;
5109
5110 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
5111 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
5112 fcp_eqidx = 0;
5113 if (phba->sli4_hba.fcp_cq) {
5114 do {
5115 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx],
5116 LPFC_QUEUE_REARM);
5117 } while (++fcp_eqidx < phba->cfg_fcp_io_channel);
5118 }
5119
5120 if (phba->cfg_fof)
5121 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM);
5122
5123 if (phba->sli4_hba.hba_eq) {
5124 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel;
5125 fcp_eqidx++)
5126 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx],
5127 LPFC_QUEUE_REARM);
5128 }
5129
5130 if (phba->cfg_fof)
5131 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM);
5132 }
5133
5134 /**
5135 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5136 * @phba: Pointer to HBA context object.
5137 * @type: The resource extent type.
5138 * @extnt_count: buffer to hold port available extent count.
5139 * @extnt_size: buffer to hold element count per extent.
5140 *
5141 * This function calls the port and retrievs the number of available
5142 * extents and their size for a particular extent type.
5143 *
5144 * Returns: 0 if successful. Nonzero otherwise.
5145 **/
5146 int
5147 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5148 uint16_t *extnt_count, uint16_t *extnt_size)
5149 {
5150 int rc = 0;
5151 uint32_t length;
5152 uint32_t mbox_tmo;
5153 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5154 LPFC_MBOXQ_t *mbox;
5155
5156 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5157 if (!mbox)
5158 return -ENOMEM;
5159
5160 /* Find out how many extents are available for this resource type */
5161 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5162 sizeof(struct lpfc_sli4_cfg_mhdr));
5163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5164 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5165 length, LPFC_SLI4_MBX_EMBED);
5166
5167 /* Send an extents count of 0 - the GET doesn't use it. */
5168 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5169 LPFC_SLI4_MBX_EMBED);
5170 if (unlikely(rc)) {
5171 rc = -EIO;
5172 goto err_exit;
5173 }
5174
5175 if (!phba->sli4_hba.intr_enable)
5176 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5177 else {
5178 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5179 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5180 }
5181 if (unlikely(rc)) {
5182 rc = -EIO;
5183 goto err_exit;
5184 }
5185
5186 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5187 if (bf_get(lpfc_mbox_hdr_status,
5188 &rsrc_info->header.cfg_shdr.response)) {
5189 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5190 "2930 Failed to get resource extents "
5191 "Status 0x%x Add'l Status 0x%x\n",
5192 bf_get(lpfc_mbox_hdr_status,
5193 &rsrc_info->header.cfg_shdr.response),
5194 bf_get(lpfc_mbox_hdr_add_status,
5195 &rsrc_info->header.cfg_shdr.response));
5196 rc = -EIO;
5197 goto err_exit;
5198 }
5199
5200 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5201 &rsrc_info->u.rsp);
5202 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5203 &rsrc_info->u.rsp);
5204
5205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5206 "3162 Retrieved extents type-%d from port: count:%d, "
5207 "size:%d\n", type, *extnt_count, *extnt_size);
5208
5209 err_exit:
5210 mempool_free(mbox, phba->mbox_mem_pool);
5211 return rc;
5212 }
5213
5214 /**
5215 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5216 * @phba: Pointer to HBA context object.
5217 * @type: The extent type to check.
5218 *
5219 * This function reads the current available extents from the port and checks
5220 * if the extent count or extent size has changed since the last access.
5221 * Callers use this routine post port reset to understand if there is a
5222 * extent reprovisioning requirement.
5223 *
5224 * Returns:
5225 * -Error: error indicates problem.
5226 * 1: Extent count or size has changed.
5227 * 0: No changes.
5228 **/
5229 static int
5230 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5231 {
5232 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5233 uint16_t size_diff, rsrc_ext_size;
5234 int rc = 0;
5235 struct lpfc_rsrc_blks *rsrc_entry;
5236 struct list_head *rsrc_blk_list = NULL;
5237
5238 size_diff = 0;
5239 curr_ext_cnt = 0;
5240 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5241 &rsrc_ext_cnt,
5242 &rsrc_ext_size);
5243 if (unlikely(rc))
5244 return -EIO;
5245
5246 switch (type) {
5247 case LPFC_RSC_TYPE_FCOE_RPI:
5248 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5249 break;
5250 case LPFC_RSC_TYPE_FCOE_VPI:
5251 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5252 break;
5253 case LPFC_RSC_TYPE_FCOE_XRI:
5254 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5255 break;
5256 case LPFC_RSC_TYPE_FCOE_VFI:
5257 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5258 break;
5259 default:
5260 break;
5261 }
5262
5263 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5264 curr_ext_cnt++;
5265 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5266 size_diff++;
5267 }
5268
5269 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5270 rc = 1;
5271
5272 return rc;
5273 }
5274
5275 /**
5276 * lpfc_sli4_cfg_post_extnts -
5277 * @phba: Pointer to HBA context object.
5278 * @extnt_cnt - number of available extents.
5279 * @type - the extent type (rpi, xri, vfi, vpi).
5280 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5281 * @mbox - pointer to the caller's allocated mailbox structure.
5282 *
5283 * This function executes the extents allocation request. It also
5284 * takes care of the amount of memory needed to allocate or get the
5285 * allocated extents. It is the caller's responsibility to evaluate
5286 * the response.
5287 *
5288 * Returns:
5289 * -Error: Error value describes the condition found.
5290 * 0: if successful
5291 **/
5292 static int
5293 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5294 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5295 {
5296 int rc = 0;
5297 uint32_t req_len;
5298 uint32_t emb_len;
5299 uint32_t alloc_len, mbox_tmo;
5300
5301 /* Calculate the total requested length of the dma memory */
5302 req_len = extnt_cnt * sizeof(uint16_t);
5303
5304 /*
5305 * Calculate the size of an embedded mailbox. The uint32_t
5306 * accounts for extents-specific word.
5307 */
5308 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5309 sizeof(uint32_t);
5310
5311 /*
5312 * Presume the allocation and response will fit into an embedded
5313 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5314 */
5315 *emb = LPFC_SLI4_MBX_EMBED;
5316 if (req_len > emb_len) {
5317 req_len = extnt_cnt * sizeof(uint16_t) +
5318 sizeof(union lpfc_sli4_cfg_shdr) +
5319 sizeof(uint32_t);
5320 *emb = LPFC_SLI4_MBX_NEMBED;
5321 }
5322
5323 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5324 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5325 req_len, *emb);
5326 if (alloc_len < req_len) {
5327 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5328 "2982 Allocated DMA memory size (x%x) is "
5329 "less than the requested DMA memory "
5330 "size (x%x)\n", alloc_len, req_len);
5331 return -ENOMEM;
5332 }
5333 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5334 if (unlikely(rc))
5335 return -EIO;
5336
5337 if (!phba->sli4_hba.intr_enable)
5338 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5339 else {
5340 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5341 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5342 }
5343
5344 if (unlikely(rc))
5345 rc = -EIO;
5346 return rc;
5347 }
5348
5349 /**
5350 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5351 * @phba: Pointer to HBA context object.
5352 * @type: The resource extent type to allocate.
5353 *
5354 * This function allocates the number of elements for the specified
5355 * resource type.
5356 **/
5357 static int
5358 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5359 {
5360 bool emb = false;
5361 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5362 uint16_t rsrc_id, rsrc_start, j, k;
5363 uint16_t *ids;
5364 int i, rc;
5365 unsigned long longs;
5366 unsigned long *bmask;
5367 struct lpfc_rsrc_blks *rsrc_blks;
5368 LPFC_MBOXQ_t *mbox;
5369 uint32_t length;
5370 struct lpfc_id_range *id_array = NULL;
5371 void *virtaddr = NULL;
5372 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5373 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5374 struct list_head *ext_blk_list;
5375
5376 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5377 &rsrc_cnt,
5378 &rsrc_size);
5379 if (unlikely(rc))
5380 return -EIO;
5381
5382 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5383 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5384 "3009 No available Resource Extents "
5385 "for resource type 0x%x: Count: 0x%x, "
5386 "Size 0x%x\n", type, rsrc_cnt,
5387 rsrc_size);
5388 return -ENOMEM;
5389 }
5390
5391 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5392 "2903 Post resource extents type-0x%x: "
5393 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5394
5395 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5396 if (!mbox)
5397 return -ENOMEM;
5398
5399 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5400 if (unlikely(rc)) {
5401 rc = -EIO;
5402 goto err_exit;
5403 }
5404
5405 /*
5406 * Figure out where the response is located. Then get local pointers
5407 * to the response data. The port does not guarantee to respond to
5408 * all extents counts request so update the local variable with the
5409 * allocated count from the port.
5410 */
5411 if (emb == LPFC_SLI4_MBX_EMBED) {
5412 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5413 id_array = &rsrc_ext->u.rsp.id[0];
5414 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5415 } else {
5416 virtaddr = mbox->sge_array->addr[0];
5417 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5418 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5419 id_array = &n_rsrc->id;
5420 }
5421
5422 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5423 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5424
5425 /*
5426 * Based on the resource size and count, correct the base and max
5427 * resource values.
5428 */
5429 length = sizeof(struct lpfc_rsrc_blks);
5430 switch (type) {
5431 case LPFC_RSC_TYPE_FCOE_RPI:
5432 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5433 sizeof(unsigned long),
5434 GFP_KERNEL);
5435 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5436 rc = -ENOMEM;
5437 goto err_exit;
5438 }
5439 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt *
5440 sizeof(uint16_t),
5441 GFP_KERNEL);
5442 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5443 kfree(phba->sli4_hba.rpi_bmask);
5444 rc = -ENOMEM;
5445 goto err_exit;
5446 }
5447
5448 /*
5449 * The next_rpi was initialized with the maximum available
5450 * count but the port may allocate a smaller number. Catch
5451 * that case and update the next_rpi.
5452 */
5453 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5454
5455 /* Initialize local ptrs for common extent processing later. */
5456 bmask = phba->sli4_hba.rpi_bmask;
5457 ids = phba->sli4_hba.rpi_ids;
5458 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5459 break;
5460 case LPFC_RSC_TYPE_FCOE_VPI:
5461 phba->vpi_bmask = kzalloc(longs *
5462 sizeof(unsigned long),
5463 GFP_KERNEL);
5464 if (unlikely(!phba->vpi_bmask)) {
5465 rc = -ENOMEM;
5466 goto err_exit;
5467 }
5468 phba->vpi_ids = kzalloc(rsrc_id_cnt *
5469 sizeof(uint16_t),
5470 GFP_KERNEL);
5471 if (unlikely(!phba->vpi_ids)) {
5472 kfree(phba->vpi_bmask);
5473 rc = -ENOMEM;
5474 goto err_exit;
5475 }
5476
5477 /* Initialize local ptrs for common extent processing later. */
5478 bmask = phba->vpi_bmask;
5479 ids = phba->vpi_ids;
5480 ext_blk_list = &phba->lpfc_vpi_blk_list;
5481 break;
5482 case LPFC_RSC_TYPE_FCOE_XRI:
5483 phba->sli4_hba.xri_bmask = kzalloc(longs *
5484 sizeof(unsigned long),
5485 GFP_KERNEL);
5486 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5487 rc = -ENOMEM;
5488 goto err_exit;
5489 }
5490 phba->sli4_hba.max_cfg_param.xri_used = 0;
5491 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt *
5492 sizeof(uint16_t),
5493 GFP_KERNEL);
5494 if (unlikely(!phba->sli4_hba.xri_ids)) {
5495 kfree(phba->sli4_hba.xri_bmask);
5496 rc = -ENOMEM;
5497 goto err_exit;
5498 }
5499
5500 /* Initialize local ptrs for common extent processing later. */
5501 bmask = phba->sli4_hba.xri_bmask;
5502 ids = phba->sli4_hba.xri_ids;
5503 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5504 break;
5505 case LPFC_RSC_TYPE_FCOE_VFI:
5506 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5507 sizeof(unsigned long),
5508 GFP_KERNEL);
5509 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5510 rc = -ENOMEM;
5511 goto err_exit;
5512 }
5513 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt *
5514 sizeof(uint16_t),
5515 GFP_KERNEL);
5516 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5517 kfree(phba->sli4_hba.vfi_bmask);
5518 rc = -ENOMEM;
5519 goto err_exit;
5520 }
5521
5522 /* Initialize local ptrs for common extent processing later. */
5523 bmask = phba->sli4_hba.vfi_bmask;
5524 ids = phba->sli4_hba.vfi_ids;
5525 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5526 break;
5527 default:
5528 /* Unsupported Opcode. Fail call. */
5529 id_array = NULL;
5530 bmask = NULL;
5531 ids = NULL;
5532 ext_blk_list = NULL;
5533 goto err_exit;
5534 }
5535
5536 /*
5537 * Complete initializing the extent configuration with the
5538 * allocated ids assigned to this function. The bitmask serves
5539 * as an index into the array and manages the available ids. The
5540 * array just stores the ids communicated to the port via the wqes.
5541 */
5542 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5543 if ((i % 2) == 0)
5544 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5545 &id_array[k]);
5546 else
5547 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5548 &id_array[k]);
5549
5550 rsrc_blks = kzalloc(length, GFP_KERNEL);
5551 if (unlikely(!rsrc_blks)) {
5552 rc = -ENOMEM;
5553 kfree(bmask);
5554 kfree(ids);
5555 goto err_exit;
5556 }
5557 rsrc_blks->rsrc_start = rsrc_id;
5558 rsrc_blks->rsrc_size = rsrc_size;
5559 list_add_tail(&rsrc_blks->list, ext_blk_list);
5560 rsrc_start = rsrc_id;
5561 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0))
5562 phba->sli4_hba.scsi_xri_start = rsrc_start +
5563 lpfc_sli4_get_els_iocb_cnt(phba);
5564
5565 while (rsrc_id < (rsrc_start + rsrc_size)) {
5566 ids[j] = rsrc_id;
5567 rsrc_id++;
5568 j++;
5569 }
5570 /* Entire word processed. Get next word.*/
5571 if ((i % 2) == 1)
5572 k++;
5573 }
5574 err_exit:
5575 lpfc_sli4_mbox_cmd_free(phba, mbox);
5576 return rc;
5577 }
5578
5579 /**
5580 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
5581 * @phba: Pointer to HBA context object.
5582 * @type: the extent's type.
5583 *
5584 * This function deallocates all extents of a particular resource type.
5585 * SLI4 does not allow for deallocating a particular extent range. It
5586 * is the caller's responsibility to release all kernel memory resources.
5587 **/
5588 static int
5589 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
5590 {
5591 int rc;
5592 uint32_t length, mbox_tmo = 0;
5593 LPFC_MBOXQ_t *mbox;
5594 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
5595 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
5596
5597 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5598 if (!mbox)
5599 return -ENOMEM;
5600
5601 /*
5602 * This function sends an embedded mailbox because it only sends the
5603 * the resource type. All extents of this type are released by the
5604 * port.
5605 */
5606 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
5607 sizeof(struct lpfc_sli4_cfg_mhdr));
5608 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5609 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
5610 length, LPFC_SLI4_MBX_EMBED);
5611
5612 /* Send an extents count of 0 - the dealloc doesn't use it. */
5613 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5614 LPFC_SLI4_MBX_EMBED);
5615 if (unlikely(rc)) {
5616 rc = -EIO;
5617 goto out_free_mbox;
5618 }
5619 if (!phba->sli4_hba.intr_enable)
5620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5621 else {
5622 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5623 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5624 }
5625 if (unlikely(rc)) {
5626 rc = -EIO;
5627 goto out_free_mbox;
5628 }
5629
5630 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
5631 if (bf_get(lpfc_mbox_hdr_status,
5632 &dealloc_rsrc->header.cfg_shdr.response)) {
5633 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5634 "2919 Failed to release resource extents "
5635 "for type %d - Status 0x%x Add'l Status 0x%x. "
5636 "Resource memory not released.\n",
5637 type,
5638 bf_get(lpfc_mbox_hdr_status,
5639 &dealloc_rsrc->header.cfg_shdr.response),
5640 bf_get(lpfc_mbox_hdr_add_status,
5641 &dealloc_rsrc->header.cfg_shdr.response));
5642 rc = -EIO;
5643 goto out_free_mbox;
5644 }
5645
5646 /* Release kernel memory resources for the specific type. */
5647 switch (type) {
5648 case LPFC_RSC_TYPE_FCOE_VPI:
5649 kfree(phba->vpi_bmask);
5650 kfree(phba->vpi_ids);
5651 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5652 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5653 &phba->lpfc_vpi_blk_list, list) {
5654 list_del_init(&rsrc_blk->list);
5655 kfree(rsrc_blk);
5656 }
5657 phba->sli4_hba.max_cfg_param.vpi_used = 0;
5658 break;
5659 case LPFC_RSC_TYPE_FCOE_XRI:
5660 kfree(phba->sli4_hba.xri_bmask);
5661 kfree(phba->sli4_hba.xri_ids);
5662 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5663 &phba->sli4_hba.lpfc_xri_blk_list, list) {
5664 list_del_init(&rsrc_blk->list);
5665 kfree(rsrc_blk);
5666 }
5667 break;
5668 case LPFC_RSC_TYPE_FCOE_VFI:
5669 kfree(phba->sli4_hba.vfi_bmask);
5670 kfree(phba->sli4_hba.vfi_ids);
5671 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5672 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5673 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
5674 list_del_init(&rsrc_blk->list);
5675 kfree(rsrc_blk);
5676 }
5677 break;
5678 case LPFC_RSC_TYPE_FCOE_RPI:
5679 /* RPI bitmask and physical id array are cleaned up earlier. */
5680 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5681 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
5682 list_del_init(&rsrc_blk->list);
5683 kfree(rsrc_blk);
5684 }
5685 break;
5686 default:
5687 break;
5688 }
5689
5690 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5691
5692 out_free_mbox:
5693 mempool_free(mbox, phba->mbox_mem_pool);
5694 return rc;
5695 }
5696
5697 static void
5698 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
5699 uint32_t feature)
5700 {
5701 uint32_t len;
5702
5703 len = sizeof(struct lpfc_mbx_set_feature) -
5704 sizeof(struct lpfc_sli4_cfg_mhdr);
5705 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5706 LPFC_MBOX_OPCODE_SET_FEATURES, len,
5707 LPFC_SLI4_MBX_EMBED);
5708
5709 switch (feature) {
5710 case LPFC_SET_UE_RECOVERY:
5711 bf_set(lpfc_mbx_set_feature_UER,
5712 &mbox->u.mqe.un.set_feature, 1);
5713 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
5714 mbox->u.mqe.un.set_feature.param_len = 8;
5715 break;
5716 case LPFC_SET_MDS_DIAGS:
5717 bf_set(lpfc_mbx_set_feature_mds,
5718 &mbox->u.mqe.un.set_feature, 1);
5719 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
5720 &mbox->u.mqe.un.set_feature, 0);
5721 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
5722 mbox->u.mqe.un.set_feature.param_len = 8;
5723 break;
5724 }
5725
5726 return;
5727 }
5728
5729 /**
5730 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
5731 * @phba: Pointer to HBA context object.
5732 *
5733 * This function allocates all SLI4 resource identifiers.
5734 **/
5735 int
5736 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
5737 {
5738 int i, rc, error = 0;
5739 uint16_t count, base;
5740 unsigned long longs;
5741
5742 if (!phba->sli4_hba.rpi_hdrs_in_use)
5743 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
5744 if (phba->sli4_hba.extents_in_use) {
5745 /*
5746 * The port supports resource extents. The XRI, VPI, VFI, RPI
5747 * resource extent count must be read and allocated before
5748 * provisioning the resource id arrays.
5749 */
5750 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5751 LPFC_IDX_RSRC_RDY) {
5752 /*
5753 * Extent-based resources are set - the driver could
5754 * be in a port reset. Figure out if any corrective
5755 * actions need to be taken.
5756 */
5757 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5758 LPFC_RSC_TYPE_FCOE_VFI);
5759 if (rc != 0)
5760 error++;
5761 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5762 LPFC_RSC_TYPE_FCOE_VPI);
5763 if (rc != 0)
5764 error++;
5765 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5766 LPFC_RSC_TYPE_FCOE_XRI);
5767 if (rc != 0)
5768 error++;
5769 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5770 LPFC_RSC_TYPE_FCOE_RPI);
5771 if (rc != 0)
5772 error++;
5773
5774 /*
5775 * It's possible that the number of resources
5776 * provided to this port instance changed between
5777 * resets. Detect this condition and reallocate
5778 * resources. Otherwise, there is no action.
5779 */
5780 if (error) {
5781 lpfc_printf_log(phba, KERN_INFO,
5782 LOG_MBOX | LOG_INIT,
5783 "2931 Detected extent resource "
5784 "change. Reallocating all "
5785 "extents.\n");
5786 rc = lpfc_sli4_dealloc_extent(phba,
5787 LPFC_RSC_TYPE_FCOE_VFI);
5788 rc = lpfc_sli4_dealloc_extent(phba,
5789 LPFC_RSC_TYPE_FCOE_VPI);
5790 rc = lpfc_sli4_dealloc_extent(phba,
5791 LPFC_RSC_TYPE_FCOE_XRI);
5792 rc = lpfc_sli4_dealloc_extent(phba,
5793 LPFC_RSC_TYPE_FCOE_RPI);
5794 } else
5795 return 0;
5796 }
5797
5798 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5799 if (unlikely(rc))
5800 goto err_exit;
5801
5802 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5803 if (unlikely(rc))
5804 goto err_exit;
5805
5806 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5807 if (unlikely(rc))
5808 goto err_exit;
5809
5810 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5811 if (unlikely(rc))
5812 goto err_exit;
5813 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5814 LPFC_IDX_RSRC_RDY);
5815 return rc;
5816 } else {
5817 /*
5818 * The port does not support resource extents. The XRI, VPI,
5819 * VFI, RPI resource ids were determined from READ_CONFIG.
5820 * Just allocate the bitmasks and provision the resource id
5821 * arrays. If a port reset is active, the resources don't
5822 * need any action - just exit.
5823 */
5824 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5825 LPFC_IDX_RSRC_RDY) {
5826 lpfc_sli4_dealloc_resource_identifiers(phba);
5827 lpfc_sli4_remove_rpis(phba);
5828 }
5829 /* RPIs. */
5830 count = phba->sli4_hba.max_cfg_param.max_rpi;
5831 if (count <= 0) {
5832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5833 "3279 Invalid provisioning of "
5834 "rpi:%d\n", count);
5835 rc = -EINVAL;
5836 goto err_exit;
5837 }
5838 base = phba->sli4_hba.max_cfg_param.rpi_base;
5839 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5840 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5841 sizeof(unsigned long),
5842 GFP_KERNEL);
5843 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5844 rc = -ENOMEM;
5845 goto err_exit;
5846 }
5847 phba->sli4_hba.rpi_ids = kzalloc(count *
5848 sizeof(uint16_t),
5849 GFP_KERNEL);
5850 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5851 rc = -ENOMEM;
5852 goto free_rpi_bmask;
5853 }
5854
5855 for (i = 0; i < count; i++)
5856 phba->sli4_hba.rpi_ids[i] = base + i;
5857
5858 /* VPIs. */
5859 count = phba->sli4_hba.max_cfg_param.max_vpi;
5860 if (count <= 0) {
5861 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5862 "3280 Invalid provisioning of "
5863 "vpi:%d\n", count);
5864 rc = -EINVAL;
5865 goto free_rpi_ids;
5866 }
5867 base = phba->sli4_hba.max_cfg_param.vpi_base;
5868 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5869 phba->vpi_bmask = kzalloc(longs *
5870 sizeof(unsigned long),
5871 GFP_KERNEL);
5872 if (unlikely(!phba->vpi_bmask)) {
5873 rc = -ENOMEM;
5874 goto free_rpi_ids;
5875 }
5876 phba->vpi_ids = kzalloc(count *
5877 sizeof(uint16_t),
5878 GFP_KERNEL);
5879 if (unlikely(!phba->vpi_ids)) {
5880 rc = -ENOMEM;
5881 goto free_vpi_bmask;
5882 }
5883
5884 for (i = 0; i < count; i++)
5885 phba->vpi_ids[i] = base + i;
5886
5887 /* XRIs. */
5888 count = phba->sli4_hba.max_cfg_param.max_xri;
5889 if (count <= 0) {
5890 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5891 "3281 Invalid provisioning of "
5892 "xri:%d\n", count);
5893 rc = -EINVAL;
5894 goto free_vpi_ids;
5895 }
5896 base = phba->sli4_hba.max_cfg_param.xri_base;
5897 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5898 phba->sli4_hba.xri_bmask = kzalloc(longs *
5899 sizeof(unsigned long),
5900 GFP_KERNEL);
5901 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5902 rc = -ENOMEM;
5903 goto free_vpi_ids;
5904 }
5905 phba->sli4_hba.max_cfg_param.xri_used = 0;
5906 phba->sli4_hba.xri_ids = kzalloc(count *
5907 sizeof(uint16_t),
5908 GFP_KERNEL);
5909 if (unlikely(!phba->sli4_hba.xri_ids)) {
5910 rc = -ENOMEM;
5911 goto free_xri_bmask;
5912 }
5913
5914 for (i = 0; i < count; i++)
5915 phba->sli4_hba.xri_ids[i] = base + i;
5916
5917 /* VFIs. */
5918 count = phba->sli4_hba.max_cfg_param.max_vfi;
5919 if (count <= 0) {
5920 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5921 "3282 Invalid provisioning of "
5922 "vfi:%d\n", count);
5923 rc = -EINVAL;
5924 goto free_xri_ids;
5925 }
5926 base = phba->sli4_hba.max_cfg_param.vfi_base;
5927 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5928 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5929 sizeof(unsigned long),
5930 GFP_KERNEL);
5931 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5932 rc = -ENOMEM;
5933 goto free_xri_ids;
5934 }
5935 phba->sli4_hba.vfi_ids = kzalloc(count *
5936 sizeof(uint16_t),
5937 GFP_KERNEL);
5938 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5939 rc = -ENOMEM;
5940 goto free_vfi_bmask;
5941 }
5942
5943 for (i = 0; i < count; i++)
5944 phba->sli4_hba.vfi_ids[i] = base + i;
5945
5946 /*
5947 * Mark all resources ready. An HBA reset doesn't need
5948 * to reset the initialization.
5949 */
5950 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5951 LPFC_IDX_RSRC_RDY);
5952 return 0;
5953 }
5954
5955 free_vfi_bmask:
5956 kfree(phba->sli4_hba.vfi_bmask);
5957 free_xri_ids:
5958 kfree(phba->sli4_hba.xri_ids);
5959 free_xri_bmask:
5960 kfree(phba->sli4_hba.xri_bmask);
5961 free_vpi_ids:
5962 kfree(phba->vpi_ids);
5963 free_vpi_bmask:
5964 kfree(phba->vpi_bmask);
5965 free_rpi_ids:
5966 kfree(phba->sli4_hba.rpi_ids);
5967 free_rpi_bmask:
5968 kfree(phba->sli4_hba.rpi_bmask);
5969 err_exit:
5970 return rc;
5971 }
5972
5973 /**
5974 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
5975 * @phba: Pointer to HBA context object.
5976 *
5977 * This function allocates the number of elements for the specified
5978 * resource type.
5979 **/
5980 int
5981 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
5982 {
5983 if (phba->sli4_hba.extents_in_use) {
5984 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5985 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5986 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5987 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5988 } else {
5989 kfree(phba->vpi_bmask);
5990 phba->sli4_hba.max_cfg_param.vpi_used = 0;
5991 kfree(phba->vpi_ids);
5992 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5993 kfree(phba->sli4_hba.xri_bmask);
5994 kfree(phba->sli4_hba.xri_ids);
5995 kfree(phba->sli4_hba.vfi_bmask);
5996 kfree(phba->sli4_hba.vfi_ids);
5997 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5998 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5999 }
6000
6001 return 0;
6002 }
6003
6004 /**
6005 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6006 * @phba: Pointer to HBA context object.
6007 * @type: The resource extent type.
6008 * @extnt_count: buffer to hold port extent count response
6009 * @extnt_size: buffer to hold port extent size response.
6010 *
6011 * This function calls the port to read the host allocated extents
6012 * for a particular type.
6013 **/
6014 int
6015 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6016 uint16_t *extnt_cnt, uint16_t *extnt_size)
6017 {
6018 bool emb;
6019 int rc = 0;
6020 uint16_t curr_blks = 0;
6021 uint32_t req_len, emb_len;
6022 uint32_t alloc_len, mbox_tmo;
6023 struct list_head *blk_list_head;
6024 struct lpfc_rsrc_blks *rsrc_blk;
6025 LPFC_MBOXQ_t *mbox;
6026 void *virtaddr = NULL;
6027 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6028 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6029 union lpfc_sli4_cfg_shdr *shdr;
6030
6031 switch (type) {
6032 case LPFC_RSC_TYPE_FCOE_VPI:
6033 blk_list_head = &phba->lpfc_vpi_blk_list;
6034 break;
6035 case LPFC_RSC_TYPE_FCOE_XRI:
6036 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6037 break;
6038 case LPFC_RSC_TYPE_FCOE_VFI:
6039 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6040 break;
6041 case LPFC_RSC_TYPE_FCOE_RPI:
6042 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6043 break;
6044 default:
6045 return -EIO;
6046 }
6047
6048 /* Count the number of extents currently allocatd for this type. */
6049 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6050 if (curr_blks == 0) {
6051 /*
6052 * The GET_ALLOCATED mailbox does not return the size,
6053 * just the count. The size should be just the size
6054 * stored in the current allocated block and all sizes
6055 * for an extent type are the same so set the return
6056 * value now.
6057 */
6058 *extnt_size = rsrc_blk->rsrc_size;
6059 }
6060 curr_blks++;
6061 }
6062
6063 /*
6064 * Calculate the size of an embedded mailbox. The uint32_t
6065 * accounts for extents-specific word.
6066 */
6067 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6068 sizeof(uint32_t);
6069
6070 /*
6071 * Presume the allocation and response will fit into an embedded
6072 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6073 */
6074 emb = LPFC_SLI4_MBX_EMBED;
6075 req_len = emb_len;
6076 if (req_len > emb_len) {
6077 req_len = curr_blks * sizeof(uint16_t) +
6078 sizeof(union lpfc_sli4_cfg_shdr) +
6079 sizeof(uint32_t);
6080 emb = LPFC_SLI4_MBX_NEMBED;
6081 }
6082
6083 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6084 if (!mbox)
6085 return -ENOMEM;
6086 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6087
6088 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6089 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6090 req_len, emb);
6091 if (alloc_len < req_len) {
6092 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6093 "2983 Allocated DMA memory size (x%x) is "
6094 "less than the requested DMA memory "
6095 "size (x%x)\n", alloc_len, req_len);
6096 rc = -ENOMEM;
6097 goto err_exit;
6098 }
6099 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6100 if (unlikely(rc)) {
6101 rc = -EIO;
6102 goto err_exit;
6103 }
6104
6105 if (!phba->sli4_hba.intr_enable)
6106 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6107 else {
6108 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6109 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6110 }
6111
6112 if (unlikely(rc)) {
6113 rc = -EIO;
6114 goto err_exit;
6115 }
6116
6117 /*
6118 * Figure out where the response is located. Then get local pointers
6119 * to the response data. The port does not guarantee to respond to
6120 * all extents counts request so update the local variable with the
6121 * allocated count from the port.
6122 */
6123 if (emb == LPFC_SLI4_MBX_EMBED) {
6124 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6125 shdr = &rsrc_ext->header.cfg_shdr;
6126 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6127 } else {
6128 virtaddr = mbox->sge_array->addr[0];
6129 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6130 shdr = &n_rsrc->cfg_shdr;
6131 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6132 }
6133
6134 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6135 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6136 "2984 Failed to read allocated resources "
6137 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6138 type,
6139 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6140 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6141 rc = -EIO;
6142 goto err_exit;
6143 }
6144 err_exit:
6145 lpfc_sli4_mbox_cmd_free(phba, mbox);
6146 return rc;
6147 }
6148
6149 /**
6150 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block
6151 * @phba: pointer to lpfc hba data structure.
6152 *
6153 * This routine walks the list of els buffers that have been allocated and
6154 * repost them to the port by using SGL block post. This is needed after a
6155 * pci_function_reset/warm_start or start. It attempts to construct blocks
6156 * of els buffer sgls which contains contiguous xris and uses the non-embedded
6157 * SGL block post mailbox commands to post them to the port. For single els
6158 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6159 * mailbox command for posting.
6160 *
6161 * Returns: 0 = success, non-zero failure.
6162 **/
6163 static int
6164 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba)
6165 {
6166 struct lpfc_sglq *sglq_entry = NULL;
6167 struct lpfc_sglq *sglq_entry_next = NULL;
6168 struct lpfc_sglq *sglq_entry_first = NULL;
6169 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0;
6170 int last_xritag = NO_XRI;
6171 struct lpfc_sli_ring *pring;
6172 LIST_HEAD(prep_sgl_list);
6173 LIST_HEAD(blck_sgl_list);
6174 LIST_HEAD(allc_sgl_list);
6175 LIST_HEAD(post_sgl_list);
6176 LIST_HEAD(free_sgl_list);
6177
6178 pring = &phba->sli.ring[LPFC_ELS_RING];
6179 spin_lock_irq(&phba->hbalock);
6180 spin_lock(&pring->ring_lock);
6181 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list);
6182 spin_unlock(&pring->ring_lock);
6183 spin_unlock_irq(&phba->hbalock);
6184
6185 total_cnt = phba->sli4_hba.els_xri_cnt;
6186 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6187 &allc_sgl_list, list) {
6188 list_del_init(&sglq_entry->list);
6189 block_cnt++;
6190 if ((last_xritag != NO_XRI) &&
6191 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6192 /* a hole in xri block, form a sgl posting block */
6193 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6194 post_cnt = block_cnt - 1;
6195 /* prepare list for next posting block */
6196 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6197 block_cnt = 1;
6198 } else {
6199 /* prepare list for next posting block */
6200 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6201 /* enough sgls for non-embed sgl mbox command */
6202 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6203 list_splice_init(&prep_sgl_list,
6204 &blck_sgl_list);
6205 post_cnt = block_cnt;
6206 block_cnt = 0;
6207 }
6208 }
6209 num_posted++;
6210
6211 /* keep track of last sgl's xritag */
6212 last_xritag = sglq_entry->sli4_xritag;
6213
6214 /* end of repost sgl list condition for els buffers */
6215 if (num_posted == phba->sli4_hba.els_xri_cnt) {
6216 if (post_cnt == 0) {
6217 list_splice_init(&prep_sgl_list,
6218 &blck_sgl_list);
6219 post_cnt = block_cnt;
6220 } else if (block_cnt == 1) {
6221 status = lpfc_sli4_post_sgl(phba,
6222 sglq_entry->phys, 0,
6223 sglq_entry->sli4_xritag);
6224 if (!status) {
6225 /* successful, put sgl to posted list */
6226 list_add_tail(&sglq_entry->list,
6227 &post_sgl_list);
6228 } else {
6229 /* Failure, put sgl to free list */
6230 lpfc_printf_log(phba, KERN_WARNING,
6231 LOG_SLI,
6232 "3159 Failed to post els "
6233 "sgl, xritag:x%x\n",
6234 sglq_entry->sli4_xritag);
6235 list_add_tail(&sglq_entry->list,
6236 &free_sgl_list);
6237 total_cnt--;
6238 }
6239 }
6240 }
6241
6242 /* continue until a nembed page worth of sgls */
6243 if (post_cnt == 0)
6244 continue;
6245
6246 /* post the els buffer list sgls as a block */
6247 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list,
6248 post_cnt);
6249
6250 if (!status) {
6251 /* success, put sgl list to posted sgl list */
6252 list_splice_init(&blck_sgl_list, &post_sgl_list);
6253 } else {
6254 /* Failure, put sgl list to free sgl list */
6255 sglq_entry_first = list_first_entry(&blck_sgl_list,
6256 struct lpfc_sglq,
6257 list);
6258 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6259 "3160 Failed to post els sgl-list, "
6260 "xritag:x%x-x%x\n",
6261 sglq_entry_first->sli4_xritag,
6262 (sglq_entry_first->sli4_xritag +
6263 post_cnt - 1));
6264 list_splice_init(&blck_sgl_list, &free_sgl_list);
6265 total_cnt -= post_cnt;
6266 }
6267
6268 /* don't reset xirtag due to hole in xri block */
6269 if (block_cnt == 0)
6270 last_xritag = NO_XRI;
6271
6272 /* reset els sgl post count for next round of posting */
6273 post_cnt = 0;
6274 }
6275 /* update the number of XRIs posted for ELS */
6276 phba->sli4_hba.els_xri_cnt = total_cnt;
6277
6278 /* free the els sgls failed to post */
6279 lpfc_free_sgl_list(phba, &free_sgl_list);
6280
6281 /* push els sgls posted to the availble list */
6282 if (!list_empty(&post_sgl_list)) {
6283 spin_lock_irq(&phba->hbalock);
6284 spin_lock(&pring->ring_lock);
6285 list_splice_init(&post_sgl_list,
6286 &phba->sli4_hba.lpfc_sgl_list);
6287 spin_unlock(&pring->ring_lock);
6288 spin_unlock_irq(&phba->hbalock);
6289 } else {
6290 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6291 "3161 Failure to post els sgl to port.\n");
6292 return -EIO;
6293 }
6294 return 0;
6295 }
6296
6297 void
6298 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6299 {
6300 uint32_t len;
6301
6302 len = sizeof(struct lpfc_mbx_set_host_data) -
6303 sizeof(struct lpfc_sli4_cfg_mhdr);
6304 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6305 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6306 LPFC_SLI4_MBX_EMBED);
6307
6308 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
6309 mbox->u.mqe.un.set_host_data.param_len = 8;
6310 snprintf(mbox->u.mqe.un.set_host_data.data,
6311 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
6312 "Linux %s v"LPFC_DRIVER_VERSION,
6313 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
6314 }
6315
6316 /**
6317 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function
6318 * @phba: Pointer to HBA context object.
6319 *
6320 * This function is the main SLI4 device intialization PCI function. This
6321 * function is called by the HBA intialization code, HBA reset code and
6322 * HBA error attention handler code. Caller is not required to hold any
6323 * locks.
6324 **/
6325 int
6326 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
6327 {
6328 int rc;
6329 LPFC_MBOXQ_t *mboxq;
6330 struct lpfc_mqe *mqe;
6331 uint8_t *vpd;
6332 uint32_t vpd_size;
6333 uint32_t ftr_rsp = 0;
6334 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
6335 struct lpfc_vport *vport = phba->pport;
6336 struct lpfc_dmabuf *mp;
6337
6338 /* Perform a PCI function reset to start from clean */
6339 rc = lpfc_pci_function_reset(phba);
6340 if (unlikely(rc))
6341 return -ENODEV;
6342
6343 /* Check the HBA Host Status Register for readyness */
6344 rc = lpfc_sli4_post_status_check(phba);
6345 if (unlikely(rc))
6346 return -ENODEV;
6347 else {
6348 spin_lock_irq(&phba->hbalock);
6349 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
6350 spin_unlock_irq(&phba->hbalock);
6351 }
6352
6353 /*
6354 * Allocate a single mailbox container for initializing the
6355 * port.
6356 */
6357 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6358 if (!mboxq)
6359 return -ENOMEM;
6360
6361 /* Issue READ_REV to collect vpd and FW information. */
6362 vpd_size = SLI4_PAGE_SIZE;
6363 vpd = kzalloc(vpd_size, GFP_KERNEL);
6364 if (!vpd) {
6365 rc = -ENOMEM;
6366 goto out_free_mbox;
6367 }
6368
6369 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
6370 if (unlikely(rc)) {
6371 kfree(vpd);
6372 goto out_free_mbox;
6373 }
6374
6375 mqe = &mboxq->u.mqe;
6376 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
6377 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
6378 phba->hba_flag |= HBA_FCOE_MODE;
6379 phba->fcp_embed_io = 0; /* SLI4 FC support only */
6380 } else {
6381 phba->hba_flag &= ~HBA_FCOE_MODE;
6382 }
6383
6384 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
6385 LPFC_DCBX_CEE_MODE)
6386 phba->hba_flag |= HBA_FIP_SUPPORT;
6387 else
6388 phba->hba_flag &= ~HBA_FIP_SUPPORT;
6389
6390 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
6391
6392 if (phba->sli_rev != LPFC_SLI_REV4) {
6393 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6394 "0376 READ_REV Error. SLI Level %d "
6395 "FCoE enabled %d\n",
6396 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
6397 rc = -EIO;
6398 kfree(vpd);
6399 goto out_free_mbox;
6400 }
6401
6402 /*
6403 * Continue initialization with default values even if driver failed
6404 * to read FCoE param config regions, only read parameters if the
6405 * board is FCoE
6406 */
6407 if (phba->hba_flag & HBA_FCOE_MODE &&
6408 lpfc_sli4_read_fcoe_params(phba))
6409 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
6410 "2570 Failed to read FCoE parameters\n");
6411
6412 /*
6413 * Retrieve sli4 device physical port name, failure of doing it
6414 * is considered as non-fatal.
6415 */
6416 rc = lpfc_sli4_retrieve_pport_name(phba);
6417 if (!rc)
6418 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6419 "3080 Successful retrieving SLI4 device "
6420 "physical port name: %s.\n", phba->Port);
6421
6422 /*
6423 * Evaluate the read rev and vpd data. Populate the driver
6424 * state with the results. If this routine fails, the failure
6425 * is not fatal as the driver will use generic values.
6426 */
6427 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
6428 if (unlikely(!rc)) {
6429 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6430 "0377 Error %d parsing vpd. "
6431 "Using defaults.\n", rc);
6432 rc = 0;
6433 }
6434 kfree(vpd);
6435
6436 /* Save information as VPD data */
6437 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
6438 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
6439 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
6440 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
6441 &mqe->un.read_rev);
6442 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
6443 &mqe->un.read_rev);
6444 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
6445 &mqe->un.read_rev);
6446 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
6447 &mqe->un.read_rev);
6448 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
6449 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
6450 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
6451 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
6452 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
6453 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
6454 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6455 "(%d):0380 READ_REV Status x%x "
6456 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
6457 mboxq->vport ? mboxq->vport->vpi : 0,
6458 bf_get(lpfc_mqe_status, mqe),
6459 phba->vpd.rev.opFwName,
6460 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
6461 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
6462
6463 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
6464 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
6465 if (phba->pport->cfg_lun_queue_depth > rc) {
6466 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6467 "3362 LUN queue depth changed from %d to %d\n",
6468 phba->pport->cfg_lun_queue_depth, rc);
6469 phba->pport->cfg_lun_queue_depth = rc;
6470 }
6471
6472 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
6473 LPFC_SLI_INTF_IF_TYPE_0) {
6474 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
6475 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6476 if (rc == MBX_SUCCESS) {
6477 phba->hba_flag |= HBA_RECOVERABLE_UE;
6478 /* Set 1Sec interval to detect UE */
6479 phba->eratt_poll_interval = 1;
6480 phba->sli4_hba.ue_to_sr = bf_get(
6481 lpfc_mbx_set_feature_UESR,
6482 &mboxq->u.mqe.un.set_feature);
6483 phba->sli4_hba.ue_to_rp = bf_get(
6484 lpfc_mbx_set_feature_UERP,
6485 &mboxq->u.mqe.un.set_feature);
6486 }
6487 }
6488
6489 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
6490 /* Enable MDS Diagnostics only if the SLI Port supports it */
6491 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
6492 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6493 if (rc != MBX_SUCCESS)
6494 phba->mds_diags_support = 0;
6495 }
6496
6497 /*
6498 * Discover the port's supported feature set and match it against the
6499 * hosts requests.
6500 */
6501 lpfc_request_features(phba, mboxq);
6502 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6503 if (unlikely(rc)) {
6504 rc = -EIO;
6505 goto out_free_mbox;
6506 }
6507
6508 /*
6509 * The port must support FCP initiator mode as this is the
6510 * only mode running in the host.
6511 */
6512 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
6513 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6514 "0378 No support for fcpi mode.\n");
6515 ftr_rsp++;
6516 }
6517 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
6518 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
6519 else
6520 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
6521 /*
6522 * If the port cannot support the host's requested features
6523 * then turn off the global config parameters to disable the
6524 * feature in the driver. This is not a fatal error.
6525 */
6526 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
6527 if (phba->cfg_enable_bg) {
6528 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))
6529 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
6530 else
6531 ftr_rsp++;
6532 }
6533
6534 if (phba->max_vpi && phba->cfg_enable_npiv &&
6535 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6536 ftr_rsp++;
6537
6538 if (ftr_rsp) {
6539 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6540 "0379 Feature Mismatch Data: x%08x %08x "
6541 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
6542 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
6543 phba->cfg_enable_npiv, phba->max_vpi);
6544 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
6545 phba->cfg_enable_bg = 0;
6546 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6547 phba->cfg_enable_npiv = 0;
6548 }
6549
6550 /* These SLI3 features are assumed in SLI4 */
6551 spin_lock_irq(&phba->hbalock);
6552 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
6553 spin_unlock_irq(&phba->hbalock);
6554
6555 /*
6556 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
6557 * calls depends on these resources to complete port setup.
6558 */
6559 rc = lpfc_sli4_alloc_resource_identifiers(phba);
6560 if (rc) {
6561 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6562 "2920 Failed to alloc Resource IDs "
6563 "rc = x%x\n", rc);
6564 goto out_free_mbox;
6565 }
6566
6567 lpfc_set_host_data(phba, mboxq);
6568
6569 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6570 if (rc) {
6571 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6572 "2134 Failed to set host os driver version %x",
6573 rc);
6574 }
6575
6576 /* Read the port's service parameters. */
6577 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
6578 if (rc) {
6579 phba->link_state = LPFC_HBA_ERROR;
6580 rc = -ENOMEM;
6581 goto out_free_mbox;
6582 }
6583
6584 mboxq->vport = vport;
6585 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6586 mp = (struct lpfc_dmabuf *) mboxq->context1;
6587 if (rc == MBX_SUCCESS) {
6588 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
6589 rc = 0;
6590 }
6591
6592 /*
6593 * This memory was allocated by the lpfc_read_sparam routine. Release
6594 * it to the mbuf pool.
6595 */
6596 lpfc_mbuf_free(phba, mp->virt, mp->phys);
6597 kfree(mp);
6598 mboxq->context1 = NULL;
6599 if (unlikely(rc)) {
6600 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6601 "0382 READ_SPARAM command failed "
6602 "status %d, mbxStatus x%x\n",
6603 rc, bf_get(lpfc_mqe_status, mqe));
6604 phba->link_state = LPFC_HBA_ERROR;
6605 rc = -EIO;
6606 goto out_free_mbox;
6607 }
6608
6609 lpfc_update_vport_wwn(vport);
6610
6611 /* Update the fc_host data structures with new wwn. */
6612 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
6613 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
6614
6615 /* update host els and scsi xri-sgl sizes and mappings */
6616 rc = lpfc_sli4_xri_sgl_update(phba);
6617 if (unlikely(rc)) {
6618 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6619 "1400 Failed to update xri-sgl size and "
6620 "mapping: %d\n", rc);
6621 goto out_free_mbox;
6622 }
6623
6624 /* register the els sgl pool to the port */
6625 rc = lpfc_sli4_repost_els_sgl_list(phba);
6626 if (unlikely(rc)) {
6627 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6628 "0582 Error %d during els sgl post "
6629 "operation\n", rc);
6630 rc = -ENODEV;
6631 goto out_free_mbox;
6632 }
6633
6634 /* register the allocated scsi sgl pool to the port */
6635 rc = lpfc_sli4_repost_scsi_sgl_list(phba);
6636 if (unlikely(rc)) {
6637 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6638 "0383 Error %d during scsi sgl post "
6639 "operation\n", rc);
6640 /* Some Scsi buffers were moved to the abort scsi list */
6641 /* A pci function reset will repost them */
6642 rc = -ENODEV;
6643 goto out_free_mbox;
6644 }
6645
6646 /* Post the rpi header region to the device. */
6647 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
6648 if (unlikely(rc)) {
6649 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6650 "0393 Error %d during rpi post operation\n",
6651 rc);
6652 rc = -ENODEV;
6653 goto out_free_mbox;
6654 }
6655 lpfc_sli4_node_prep(phba);
6656
6657 /* Create all the SLI4 queues */
6658 rc = lpfc_sli4_queue_create(phba);
6659 if (rc) {
6660 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6661 "3089 Failed to allocate queues\n");
6662 rc = -ENODEV;
6663 goto out_stop_timers;
6664 }
6665 /* Set up all the queues to the device */
6666 rc = lpfc_sli4_queue_setup(phba);
6667 if (unlikely(rc)) {
6668 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6669 "0381 Error %d during queue setup.\n ", rc);
6670 goto out_destroy_queue;
6671 }
6672
6673 /* Arm the CQs and then EQs on device */
6674 lpfc_sli4_arm_cqeq_intr(phba);
6675
6676 /* Indicate device interrupt mode */
6677 phba->sli4_hba.intr_enable = 1;
6678
6679 /* Allow asynchronous mailbox command to go through */
6680 spin_lock_irq(&phba->hbalock);
6681 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
6682 spin_unlock_irq(&phba->hbalock);
6683
6684 /* Post receive buffers to the device */
6685 lpfc_sli4_rb_setup(phba);
6686
6687 /* Reset HBA FCF states after HBA reset */
6688 phba->fcf.fcf_flag = 0;
6689 phba->fcf.current_rec.flag = 0;
6690
6691 /* Start the ELS watchdog timer */
6692 mod_timer(&vport->els_tmofunc,
6693 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
6694
6695 /* Start heart beat timer */
6696 mod_timer(&phba->hb_tmofunc,
6697 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
6698 phba->hb_outstanding = 0;
6699 phba->last_completion_time = jiffies;
6700
6701 /* Start error attention (ERATT) polling timer */
6702 mod_timer(&phba->eratt_poll,
6703 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
6704
6705 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
6706 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
6707 rc = pci_enable_pcie_error_reporting(phba->pcidev);
6708 if (!rc) {
6709 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6710 "2829 This device supports "
6711 "Advanced Error Reporting (AER)\n");
6712 spin_lock_irq(&phba->hbalock);
6713 phba->hba_flag |= HBA_AER_ENABLED;
6714 spin_unlock_irq(&phba->hbalock);
6715 } else {
6716 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6717 "2830 This device does not support "
6718 "Advanced Error Reporting (AER)\n");
6719 phba->cfg_aer_support = 0;
6720 }
6721 rc = 0;
6722 }
6723
6724 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
6725 /*
6726 * The FC Port needs to register FCFI (index 0)
6727 */
6728 lpfc_reg_fcfi(phba, mboxq);
6729 mboxq->vport = phba->pport;
6730 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6731 if (rc != MBX_SUCCESS)
6732 goto out_unset_queue;
6733 rc = 0;
6734 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
6735 &mboxq->u.mqe.un.reg_fcfi);
6736
6737 /* Check if the port is configured to be disabled */
6738 lpfc_sli_read_link_ste(phba);
6739 }
6740
6741 /*
6742 * The port is ready, set the host's link state to LINK_DOWN
6743 * in preparation for link interrupts.
6744 */
6745 spin_lock_irq(&phba->hbalock);
6746 phba->link_state = LPFC_LINK_DOWN;
6747 spin_unlock_irq(&phba->hbalock);
6748 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
6749 (phba->hba_flag & LINK_DISABLED)) {
6750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
6751 "3103 Adapter Link is disabled.\n");
6752 lpfc_down_link(phba, mboxq);
6753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6754 if (rc != MBX_SUCCESS) {
6755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
6756 "3104 Adapter failed to issue "
6757 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
6758 goto out_unset_queue;
6759 }
6760 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
6761 /* don't perform init_link on SLI4 FC port loopback test */
6762 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
6763 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
6764 if (rc)
6765 goto out_unset_queue;
6766 }
6767 }
6768 mempool_free(mboxq, phba->mbox_mem_pool);
6769 return rc;
6770 out_unset_queue:
6771 /* Unset all the queues set up in this routine when error out */
6772 lpfc_sli4_queue_unset(phba);
6773 out_destroy_queue:
6774 lpfc_sli4_queue_destroy(phba);
6775 out_stop_timers:
6776 lpfc_stop_hba_timers(phba);
6777 out_free_mbox:
6778 mempool_free(mboxq, phba->mbox_mem_pool);
6779 return rc;
6780 }
6781
6782 /**
6783 * lpfc_mbox_timeout - Timeout call back function for mbox timer
6784 * @ptr: context object - pointer to hba structure.
6785 *
6786 * This is the callback function for mailbox timer. The mailbox
6787 * timer is armed when a new mailbox command is issued and the timer
6788 * is deleted when the mailbox complete. The function is called by
6789 * the kernel timer code when a mailbox does not complete within
6790 * expected time. This function wakes up the worker thread to
6791 * process the mailbox timeout and returns. All the processing is
6792 * done by the worker thread function lpfc_mbox_timeout_handler.
6793 **/
6794 void
6795 lpfc_mbox_timeout(unsigned long ptr)
6796 {
6797 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
6798 unsigned long iflag;
6799 uint32_t tmo_posted;
6800
6801 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
6802 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
6803 if (!tmo_posted)
6804 phba->pport->work_port_events |= WORKER_MBOX_TMO;
6805 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
6806
6807 if (!tmo_posted)
6808 lpfc_worker_wake_up(phba);
6809 return;
6810 }
6811
6812 /**
6813 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
6814 * are pending
6815 * @phba: Pointer to HBA context object.
6816 *
6817 * This function checks if any mailbox completions are present on the mailbox
6818 * completion queue.
6819 **/
6820 static bool
6821 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
6822 {
6823
6824 uint32_t idx;
6825 struct lpfc_queue *mcq;
6826 struct lpfc_mcqe *mcqe;
6827 bool pending_completions = false;
6828
6829 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
6830 return false;
6831
6832 /* Check for completions on mailbox completion queue */
6833
6834 mcq = phba->sli4_hba.mbx_cq;
6835 idx = mcq->hba_index;
6836 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) {
6837 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
6838 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
6839 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
6840 pending_completions = true;
6841 break;
6842 }
6843 idx = (idx + 1) % mcq->entry_count;
6844 if (mcq->hba_index == idx)
6845 break;
6846 }
6847 return pending_completions;
6848
6849 }
6850
6851 /**
6852 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
6853 * that were missed.
6854 * @phba: Pointer to HBA context object.
6855 *
6856 * For sli4, it is possible to miss an interrupt. As such mbox completions
6857 * maybe missed causing erroneous mailbox timeouts to occur. This function
6858 * checks to see if mbox completions are on the mailbox completion queue
6859 * and will process all the completions associated with the eq for the
6860 * mailbox completion queue.
6861 **/
6862 bool
6863 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
6864 {
6865
6866 uint32_t eqidx;
6867 struct lpfc_queue *fpeq = NULL;
6868 struct lpfc_eqe *eqe;
6869 bool mbox_pending;
6870
6871 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
6872 return false;
6873
6874 /* Find the eq associated with the mcq */
6875
6876 if (phba->sli4_hba.hba_eq)
6877 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++)
6878 if (phba->sli4_hba.hba_eq[eqidx]->queue_id ==
6879 phba->sli4_hba.mbx_cq->assoc_qid) {
6880 fpeq = phba->sli4_hba.hba_eq[eqidx];
6881 break;
6882 }
6883 if (!fpeq)
6884 return false;
6885
6886 /* Turn off interrupts from this EQ */
6887
6888 lpfc_sli4_eq_clr_intr(fpeq);
6889
6890 /* Check to see if a mbox completion is pending */
6891
6892 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
6893
6894 /*
6895 * If a mbox completion is pending, process all the events on EQ
6896 * associated with the mbox completion queue (this could include
6897 * mailbox commands, async events, els commands, receive queue data
6898 * and fcp commands)
6899 */
6900
6901 if (mbox_pending)
6902 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
6903 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
6904 fpeq->EQ_processed++;
6905 }
6906
6907 /* Always clear and re-arm the EQ */
6908
6909 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
6910
6911 return mbox_pending;
6912
6913 }
6914
6915 /**
6916 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
6917 * @phba: Pointer to HBA context object.
6918 *
6919 * This function is called from worker thread when a mailbox command times out.
6920 * The caller is not required to hold any locks. This function will reset the
6921 * HBA and recover all the pending commands.
6922 **/
6923 void
6924 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
6925 {
6926 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
6927 MAILBOX_t *mb = NULL;
6928
6929 struct lpfc_sli *psli = &phba->sli;
6930
6931 /* If the mailbox completed, process the completion and return */
6932 if (lpfc_sli4_process_missed_mbox_completions(phba))
6933 return;
6934
6935 if (pmbox != NULL)
6936 mb = &pmbox->u.mb;
6937 /* Check the pmbox pointer first. There is a race condition
6938 * between the mbox timeout handler getting executed in the
6939 * worklist and the mailbox actually completing. When this
6940 * race condition occurs, the mbox_active will be NULL.
6941 */
6942 spin_lock_irq(&phba->hbalock);
6943 if (pmbox == NULL) {
6944 lpfc_printf_log(phba, KERN_WARNING,
6945 LOG_MBOX | LOG_SLI,
6946 "0353 Active Mailbox cleared - mailbox timeout "
6947 "exiting\n");
6948 spin_unlock_irq(&phba->hbalock);
6949 return;
6950 }
6951
6952 /* Mbox cmd <mbxCommand> timeout */
6953 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6954 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
6955 mb->mbxCommand,
6956 phba->pport->port_state,
6957 phba->sli.sli_flag,
6958 phba->sli.mbox_active);
6959 spin_unlock_irq(&phba->hbalock);
6960
6961 /* Setting state unknown so lpfc_sli_abort_iocb_ring
6962 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
6963 * it to fail all outstanding SCSI IO.
6964 */
6965 spin_lock_irq(&phba->pport->work_port_lock);
6966 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
6967 spin_unlock_irq(&phba->pport->work_port_lock);
6968 spin_lock_irq(&phba->hbalock);
6969 phba->link_state = LPFC_LINK_UNKNOWN;
6970 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
6971 spin_unlock_irq(&phba->hbalock);
6972
6973 lpfc_sli_abort_fcp_rings(phba);
6974
6975 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6976 "0345 Resetting board due to mailbox timeout\n");
6977
6978 /* Reset the HBA device */
6979 lpfc_reset_hba(phba);
6980 }
6981
6982 /**
6983 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
6984 * @phba: Pointer to HBA context object.
6985 * @pmbox: Pointer to mailbox object.
6986 * @flag: Flag indicating how the mailbox need to be processed.
6987 *
6988 * This function is called by discovery code and HBA management code
6989 * to submit a mailbox command to firmware with SLI-3 interface spec. This
6990 * function gets the hbalock to protect the data structures.
6991 * The mailbox command can be submitted in polling mode, in which case
6992 * this function will wait in a polling loop for the completion of the
6993 * mailbox.
6994 * If the mailbox is submitted in no_wait mode (not polling) the
6995 * function will submit the command and returns immediately without waiting
6996 * for the mailbox completion. The no_wait is supported only when HBA
6997 * is in SLI2/SLI3 mode - interrupts are enabled.
6998 * The SLI interface allows only one mailbox pending at a time. If the
6999 * mailbox is issued in polling mode and there is already a mailbox
7000 * pending, then the function will return an error. If the mailbox is issued
7001 * in NO_WAIT mode and there is a mailbox pending already, the function
7002 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7003 * The sli layer owns the mailbox object until the completion of mailbox
7004 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7005 * return codes the caller owns the mailbox command after the return of
7006 * the function.
7007 **/
7008 static int
7009 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7010 uint32_t flag)
7011 {
7012 MAILBOX_t *mbx;
7013 struct lpfc_sli *psli = &phba->sli;
7014 uint32_t status, evtctr;
7015 uint32_t ha_copy, hc_copy;
7016 int i;
7017 unsigned long timeout;
7018 unsigned long drvr_flag = 0;
7019 uint32_t word0, ldata;
7020 void __iomem *to_slim;
7021 int processing_queue = 0;
7022
7023 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7024 if (!pmbox) {
7025 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7026 /* processing mbox queue from intr_handler */
7027 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7028 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7029 return MBX_SUCCESS;
7030 }
7031 processing_queue = 1;
7032 pmbox = lpfc_mbox_get(phba);
7033 if (!pmbox) {
7034 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7035 return MBX_SUCCESS;
7036 }
7037 }
7038
7039 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7040 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7041 if(!pmbox->vport) {
7042 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7043 lpfc_printf_log(phba, KERN_ERR,
7044 LOG_MBOX | LOG_VPORT,
7045 "1806 Mbox x%x failed. No vport\n",
7046 pmbox->u.mb.mbxCommand);
7047 dump_stack();
7048 goto out_not_finished;
7049 }
7050 }
7051
7052 /* If the PCI channel is in offline state, do not post mbox. */
7053 if (unlikely(pci_channel_offline(phba->pcidev))) {
7054 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7055 goto out_not_finished;
7056 }
7057
7058 /* If HBA has a deferred error attention, fail the iocb. */
7059 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7060 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7061 goto out_not_finished;
7062 }
7063
7064 psli = &phba->sli;
7065
7066 mbx = &pmbox->u.mb;
7067 status = MBX_SUCCESS;
7068
7069 if (phba->link_state == LPFC_HBA_ERROR) {
7070 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7071
7072 /* Mbox command <mbxCommand> cannot issue */
7073 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7074 "(%d):0311 Mailbox command x%x cannot "
7075 "issue Data: x%x x%x\n",
7076 pmbox->vport ? pmbox->vport->vpi : 0,
7077 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7078 goto out_not_finished;
7079 }
7080
7081 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7082 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7083 !(hc_copy & HC_MBINT_ENA)) {
7084 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7085 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7086 "(%d):2528 Mailbox command x%x cannot "
7087 "issue Data: x%x x%x\n",
7088 pmbox->vport ? pmbox->vport->vpi : 0,
7089 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7090 goto out_not_finished;
7091 }
7092 }
7093
7094 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7095 /* Polling for a mbox command when another one is already active
7096 * is not allowed in SLI. Also, the driver must have established
7097 * SLI2 mode to queue and process multiple mbox commands.
7098 */
7099
7100 if (flag & MBX_POLL) {
7101 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7102
7103 /* Mbox command <mbxCommand> cannot issue */
7104 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7105 "(%d):2529 Mailbox command x%x "
7106 "cannot issue Data: x%x x%x\n",
7107 pmbox->vport ? pmbox->vport->vpi : 0,
7108 pmbox->u.mb.mbxCommand,
7109 psli->sli_flag, flag);
7110 goto out_not_finished;
7111 }
7112
7113 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
7114 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7115 /* Mbox command <mbxCommand> cannot issue */
7116 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7117 "(%d):2530 Mailbox command x%x "
7118 "cannot issue Data: x%x x%x\n",
7119 pmbox->vport ? pmbox->vport->vpi : 0,
7120 pmbox->u.mb.mbxCommand,
7121 psli->sli_flag, flag);
7122 goto out_not_finished;
7123 }
7124
7125 /* Another mailbox command is still being processed, queue this
7126 * command to be processed later.
7127 */
7128 lpfc_mbox_put(phba, pmbox);
7129
7130 /* Mbox cmd issue - BUSY */
7131 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7132 "(%d):0308 Mbox cmd issue - BUSY Data: "
7133 "x%x x%x x%x x%x\n",
7134 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
7135 mbx->mbxCommand, phba->pport->port_state,
7136 psli->sli_flag, flag);
7137
7138 psli->slistat.mbox_busy++;
7139 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7140
7141 if (pmbox->vport) {
7142 lpfc_debugfs_disc_trc(pmbox->vport,
7143 LPFC_DISC_TRC_MBOX_VPORT,
7144 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
7145 (uint32_t)mbx->mbxCommand,
7146 mbx->un.varWords[0], mbx->un.varWords[1]);
7147 }
7148 else {
7149 lpfc_debugfs_disc_trc(phba->pport,
7150 LPFC_DISC_TRC_MBOX,
7151 "MBOX Bsy: cmd:x%x mb:x%x x%x",
7152 (uint32_t)mbx->mbxCommand,
7153 mbx->un.varWords[0], mbx->un.varWords[1]);
7154 }
7155
7156 return MBX_BUSY;
7157 }
7158
7159 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7160
7161 /* If we are not polling, we MUST be in SLI2 mode */
7162 if (flag != MBX_POLL) {
7163 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
7164 (mbx->mbxCommand != MBX_KILL_BOARD)) {
7165 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7166 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7167 /* Mbox command <mbxCommand> cannot issue */
7168 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7169 "(%d):2531 Mailbox command x%x "
7170 "cannot issue Data: x%x x%x\n",
7171 pmbox->vport ? pmbox->vport->vpi : 0,
7172 pmbox->u.mb.mbxCommand,
7173 psli->sli_flag, flag);
7174 goto out_not_finished;
7175 }
7176 /* timeout active mbox command */
7177 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7178 1000);
7179 mod_timer(&psli->mbox_tmo, jiffies + timeout);
7180 }
7181
7182 /* Mailbox cmd <cmd> issue */
7183 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7184 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
7185 "x%x\n",
7186 pmbox->vport ? pmbox->vport->vpi : 0,
7187 mbx->mbxCommand, phba->pport->port_state,
7188 psli->sli_flag, flag);
7189
7190 if (mbx->mbxCommand != MBX_HEARTBEAT) {
7191 if (pmbox->vport) {
7192 lpfc_debugfs_disc_trc(pmbox->vport,
7193 LPFC_DISC_TRC_MBOX_VPORT,
7194 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7195 (uint32_t)mbx->mbxCommand,
7196 mbx->un.varWords[0], mbx->un.varWords[1]);
7197 }
7198 else {
7199 lpfc_debugfs_disc_trc(phba->pport,
7200 LPFC_DISC_TRC_MBOX,
7201 "MBOX Send: cmd:x%x mb:x%x x%x",
7202 (uint32_t)mbx->mbxCommand,
7203 mbx->un.varWords[0], mbx->un.varWords[1]);
7204 }
7205 }
7206
7207 psli->slistat.mbox_cmd++;
7208 evtctr = psli->slistat.mbox_event;
7209
7210 /* next set own bit for the adapter and copy over command word */
7211 mbx->mbxOwner = OWN_CHIP;
7212
7213 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7214 /* Populate mbox extension offset word. */
7215 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
7216 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7217 = (uint8_t *)phba->mbox_ext
7218 - (uint8_t *)phba->mbox;
7219 }
7220
7221 /* Copy the mailbox extension data */
7222 if (pmbox->in_ext_byte_len && pmbox->context2) {
7223 lpfc_sli_pcimem_bcopy(pmbox->context2,
7224 (uint8_t *)phba->mbox_ext,
7225 pmbox->in_ext_byte_len);
7226 }
7227 /* Copy command data to host SLIM area */
7228 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7229 } else {
7230 /* Populate mbox extension offset word. */
7231 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
7232 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7233 = MAILBOX_HBA_EXT_OFFSET;
7234
7235 /* Copy the mailbox extension data */
7236 if (pmbox->in_ext_byte_len && pmbox->context2) {
7237 lpfc_memcpy_to_slim(phba->MBslimaddr +
7238 MAILBOX_HBA_EXT_OFFSET,
7239 pmbox->context2, pmbox->in_ext_byte_len);
7240
7241 }
7242 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7243 /* copy command data into host mbox for cmpl */
7244 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7245 }
7246
7247 /* First copy mbox command data to HBA SLIM, skip past first
7248 word */
7249 to_slim = phba->MBslimaddr + sizeof (uint32_t);
7250 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
7251 MAILBOX_CMD_SIZE - sizeof (uint32_t));
7252
7253 /* Next copy over first word, with mbxOwner set */
7254 ldata = *((uint32_t *)mbx);
7255 to_slim = phba->MBslimaddr;
7256 writel(ldata, to_slim);
7257 readl(to_slim); /* flush */
7258
7259 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7260 /* switch over to host mailbox */
7261 psli->sli_flag |= LPFC_SLI_ACTIVE;
7262 }
7263 }
7264
7265 wmb();
7266
7267 switch (flag) {
7268 case MBX_NOWAIT:
7269 /* Set up reference to mailbox command */
7270 psli->mbox_active = pmbox;
7271 /* Interrupt board to do it */
7272 writel(CA_MBATT, phba->CAregaddr);
7273 readl(phba->CAregaddr); /* flush */
7274 /* Don't wait for it to finish, just return */
7275 break;
7276
7277 case MBX_POLL:
7278 /* Set up null reference to mailbox command */
7279 psli->mbox_active = NULL;
7280 /* Interrupt board to do it */
7281 writel(CA_MBATT, phba->CAregaddr);
7282 readl(phba->CAregaddr); /* flush */
7283
7284 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7285 /* First read mbox status word */
7286 word0 = *((uint32_t *)phba->mbox);
7287 word0 = le32_to_cpu(word0);
7288 } else {
7289 /* First read mbox status word */
7290 if (lpfc_readl(phba->MBslimaddr, &word0)) {
7291 spin_unlock_irqrestore(&phba->hbalock,
7292 drvr_flag);
7293 goto out_not_finished;
7294 }
7295 }
7296
7297 /* Read the HBA Host Attention Register */
7298 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7299 spin_unlock_irqrestore(&phba->hbalock,
7300 drvr_flag);
7301 goto out_not_finished;
7302 }
7303 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7304 1000) + jiffies;
7305 i = 0;
7306 /* Wait for command to complete */
7307 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
7308 (!(ha_copy & HA_MBATT) &&
7309 (phba->link_state > LPFC_WARM_START))) {
7310 if (time_after(jiffies, timeout)) {
7311 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7312 spin_unlock_irqrestore(&phba->hbalock,
7313 drvr_flag);
7314 goto out_not_finished;
7315 }
7316
7317 /* Check if we took a mbox interrupt while we were
7318 polling */
7319 if (((word0 & OWN_CHIP) != OWN_CHIP)
7320 && (evtctr != psli->slistat.mbox_event))
7321 break;
7322
7323 if (i++ > 10) {
7324 spin_unlock_irqrestore(&phba->hbalock,
7325 drvr_flag);
7326 msleep(1);
7327 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7328 }
7329
7330 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7331 /* First copy command data */
7332 word0 = *((uint32_t *)phba->mbox);
7333 word0 = le32_to_cpu(word0);
7334 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7335 MAILBOX_t *slimmb;
7336 uint32_t slimword0;
7337 /* Check real SLIM for any errors */
7338 slimword0 = readl(phba->MBslimaddr);
7339 slimmb = (MAILBOX_t *) & slimword0;
7340 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
7341 && slimmb->mbxStatus) {
7342 psli->sli_flag &=
7343 ~LPFC_SLI_ACTIVE;
7344 word0 = slimword0;
7345 }
7346 }
7347 } else {
7348 /* First copy command data */
7349 word0 = readl(phba->MBslimaddr);
7350 }
7351 /* Read the HBA Host Attention Register */
7352 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7353 spin_unlock_irqrestore(&phba->hbalock,
7354 drvr_flag);
7355 goto out_not_finished;
7356 }
7357 }
7358
7359 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7360 /* copy results back to user */
7361 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE);
7362 /* Copy the mailbox extension data */
7363 if (pmbox->out_ext_byte_len && pmbox->context2) {
7364 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
7365 pmbox->context2,
7366 pmbox->out_ext_byte_len);
7367 }
7368 } else {
7369 /* First copy command data */
7370 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
7371 MAILBOX_CMD_SIZE);
7372 /* Copy the mailbox extension data */
7373 if (pmbox->out_ext_byte_len && pmbox->context2) {
7374 lpfc_memcpy_from_slim(pmbox->context2,
7375 phba->MBslimaddr +
7376 MAILBOX_HBA_EXT_OFFSET,
7377 pmbox->out_ext_byte_len);
7378 }
7379 }
7380
7381 writel(HA_MBATT, phba->HAregaddr);
7382 readl(phba->HAregaddr); /* flush */
7383
7384 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7385 status = mbx->mbxStatus;
7386 }
7387
7388 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7389 return status;
7390
7391 out_not_finished:
7392 if (processing_queue) {
7393 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
7394 lpfc_mbox_cmpl_put(phba, pmbox);
7395 }
7396 return MBX_NOT_FINISHED;
7397 }
7398
7399 /**
7400 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
7401 * @phba: Pointer to HBA context object.
7402 *
7403 * The function blocks the posting of SLI4 asynchronous mailbox commands from
7404 * the driver internal pending mailbox queue. It will then try to wait out the
7405 * possible outstanding mailbox command before return.
7406 *
7407 * Returns:
7408 * 0 - the outstanding mailbox command completed; otherwise, the wait for
7409 * the outstanding mailbox command timed out.
7410 **/
7411 static int
7412 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
7413 {
7414 struct lpfc_sli *psli = &phba->sli;
7415 int rc = 0;
7416 unsigned long timeout = 0;
7417
7418 /* Mark the asynchronous mailbox command posting as blocked */
7419 spin_lock_irq(&phba->hbalock);
7420 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
7421 /* Determine how long we might wait for the active mailbox
7422 * command to be gracefully completed by firmware.
7423 */
7424 if (phba->sli.mbox_active)
7425 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
7426 phba->sli.mbox_active) *
7427 1000) + jiffies;
7428 spin_unlock_irq(&phba->hbalock);
7429
7430 /* Make sure the mailbox is really active */
7431 if (timeout)
7432 lpfc_sli4_process_missed_mbox_completions(phba);
7433
7434 /* Wait for the outstnading mailbox command to complete */
7435 while (phba->sli.mbox_active) {
7436 /* Check active mailbox complete status every 2ms */
7437 msleep(2);
7438 if (time_after(jiffies, timeout)) {
7439 /* Timeout, marked the outstanding cmd not complete */
7440 rc = 1;
7441 break;
7442 }
7443 }
7444
7445 /* Can not cleanly block async mailbox command, fails it */
7446 if (rc) {
7447 spin_lock_irq(&phba->hbalock);
7448 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7449 spin_unlock_irq(&phba->hbalock);
7450 }
7451 return rc;
7452 }
7453
7454 /**
7455 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
7456 * @phba: Pointer to HBA context object.
7457 *
7458 * The function unblocks and resume posting of SLI4 asynchronous mailbox
7459 * commands from the driver internal pending mailbox queue. It makes sure
7460 * that there is no outstanding mailbox command before resuming posting
7461 * asynchronous mailbox commands. If, for any reason, there is outstanding
7462 * mailbox command, it will try to wait it out before resuming asynchronous
7463 * mailbox command posting.
7464 **/
7465 static void
7466 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
7467 {
7468 struct lpfc_sli *psli = &phba->sli;
7469
7470 spin_lock_irq(&phba->hbalock);
7471 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7472 /* Asynchronous mailbox posting is not blocked, do nothing */
7473 spin_unlock_irq(&phba->hbalock);
7474 return;
7475 }
7476
7477 /* Outstanding synchronous mailbox command is guaranteed to be done,
7478 * successful or timeout, after timing-out the outstanding mailbox
7479 * command shall always be removed, so just unblock posting async
7480 * mailbox command and resume
7481 */
7482 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7483 spin_unlock_irq(&phba->hbalock);
7484
7485 /* wake up worker thread to post asynchronlous mailbox command */
7486 lpfc_worker_wake_up(phba);
7487 }
7488
7489 /**
7490 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
7491 * @phba: Pointer to HBA context object.
7492 * @mboxq: Pointer to mailbox object.
7493 *
7494 * The function waits for the bootstrap mailbox register ready bit from
7495 * port for twice the regular mailbox command timeout value.
7496 *
7497 * 0 - no timeout on waiting for bootstrap mailbox register ready.
7498 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
7499 **/
7500 static int
7501 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7502 {
7503 uint32_t db_ready;
7504 unsigned long timeout;
7505 struct lpfc_register bmbx_reg;
7506
7507 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
7508 * 1000) + jiffies;
7509
7510 do {
7511 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
7512 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
7513 if (!db_ready)
7514 msleep(2);
7515
7516 if (time_after(jiffies, timeout))
7517 return MBXERR_ERROR;
7518 } while (!db_ready);
7519
7520 return 0;
7521 }
7522
7523 /**
7524 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
7525 * @phba: Pointer to HBA context object.
7526 * @mboxq: Pointer to mailbox object.
7527 *
7528 * The function posts a mailbox to the port. The mailbox is expected
7529 * to be comletely filled in and ready for the port to operate on it.
7530 * This routine executes a synchronous completion operation on the
7531 * mailbox by polling for its completion.
7532 *
7533 * The caller must not be holding any locks when calling this routine.
7534 *
7535 * Returns:
7536 * MBX_SUCCESS - mailbox posted successfully
7537 * Any of the MBX error values.
7538 **/
7539 static int
7540 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7541 {
7542 int rc = MBX_SUCCESS;
7543 unsigned long iflag;
7544 uint32_t mcqe_status;
7545 uint32_t mbx_cmnd;
7546 struct lpfc_sli *psli = &phba->sli;
7547 struct lpfc_mqe *mb = &mboxq->u.mqe;
7548 struct lpfc_bmbx_create *mbox_rgn;
7549 struct dma_address *dma_address;
7550
7551 /*
7552 * Only one mailbox can be active to the bootstrap mailbox region
7553 * at a time and there is no queueing provided.
7554 */
7555 spin_lock_irqsave(&phba->hbalock, iflag);
7556 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7557 spin_unlock_irqrestore(&phba->hbalock, iflag);
7558 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7559 "(%d):2532 Mailbox command x%x (x%x/x%x) "
7560 "cannot issue Data: x%x x%x\n",
7561 mboxq->vport ? mboxq->vport->vpi : 0,
7562 mboxq->u.mb.mbxCommand,
7563 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7564 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7565 psli->sli_flag, MBX_POLL);
7566 return MBXERR_ERROR;
7567 }
7568 /* The server grabs the token and owns it until release */
7569 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7570 phba->sli.mbox_active = mboxq;
7571 spin_unlock_irqrestore(&phba->hbalock, iflag);
7572
7573 /* wait for bootstrap mbox register for readyness */
7574 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7575 if (rc)
7576 goto exit;
7577
7578 /*
7579 * Initialize the bootstrap memory region to avoid stale data areas
7580 * in the mailbox post. Then copy the caller's mailbox contents to
7581 * the bmbx mailbox region.
7582 */
7583 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
7584 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
7585 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
7586 sizeof(struct lpfc_mqe));
7587
7588 /* Post the high mailbox dma address to the port and wait for ready. */
7589 dma_address = &phba->sli4_hba.bmbx.dma_address;
7590 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
7591
7592 /* wait for bootstrap mbox register for hi-address write done */
7593 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7594 if (rc)
7595 goto exit;
7596
7597 /* Post the low mailbox dma address to the port. */
7598 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
7599
7600 /* wait for bootstrap mbox register for low address write done */
7601 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7602 if (rc)
7603 goto exit;
7604
7605 /*
7606 * Read the CQ to ensure the mailbox has completed.
7607 * If so, update the mailbox status so that the upper layers
7608 * can complete the request normally.
7609 */
7610 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
7611 sizeof(struct lpfc_mqe));
7612 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
7613 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
7614 sizeof(struct lpfc_mcqe));
7615 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
7616 /*
7617 * When the CQE status indicates a failure and the mailbox status
7618 * indicates success then copy the CQE status into the mailbox status
7619 * (and prefix it with x4000).
7620 */
7621 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
7622 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
7623 bf_set(lpfc_mqe_status, mb,
7624 (LPFC_MBX_ERROR_RANGE | mcqe_status));
7625 rc = MBXERR_ERROR;
7626 } else
7627 lpfc_sli4_swap_str(phba, mboxq);
7628
7629 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7630 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
7631 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
7632 " x%x x%x CQ: x%x x%x x%x x%x\n",
7633 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7634 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7635 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7636 bf_get(lpfc_mqe_status, mb),
7637 mb->un.mb_words[0], mb->un.mb_words[1],
7638 mb->un.mb_words[2], mb->un.mb_words[3],
7639 mb->un.mb_words[4], mb->un.mb_words[5],
7640 mb->un.mb_words[6], mb->un.mb_words[7],
7641 mb->un.mb_words[8], mb->un.mb_words[9],
7642 mb->un.mb_words[10], mb->un.mb_words[11],
7643 mb->un.mb_words[12], mboxq->mcqe.word0,
7644 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
7645 mboxq->mcqe.trailer);
7646 exit:
7647 /* We are holding the token, no needed for lock when release */
7648 spin_lock_irqsave(&phba->hbalock, iflag);
7649 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7650 phba->sli.mbox_active = NULL;
7651 spin_unlock_irqrestore(&phba->hbalock, iflag);
7652 return rc;
7653 }
7654
7655 /**
7656 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
7657 * @phba: Pointer to HBA context object.
7658 * @pmbox: Pointer to mailbox object.
7659 * @flag: Flag indicating how the mailbox need to be processed.
7660 *
7661 * This function is called by discovery code and HBA management code to submit
7662 * a mailbox command to firmware with SLI-4 interface spec.
7663 *
7664 * Return codes the caller owns the mailbox command after the return of the
7665 * function.
7666 **/
7667 static int
7668 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
7669 uint32_t flag)
7670 {
7671 struct lpfc_sli *psli = &phba->sli;
7672 unsigned long iflags;
7673 int rc;
7674
7675 /* dump from issue mailbox command if setup */
7676 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
7677
7678 rc = lpfc_mbox_dev_check(phba);
7679 if (unlikely(rc)) {
7680 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7681 "(%d):2544 Mailbox command x%x (x%x/x%x) "
7682 "cannot issue Data: x%x x%x\n",
7683 mboxq->vport ? mboxq->vport->vpi : 0,
7684 mboxq->u.mb.mbxCommand,
7685 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7686 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7687 psli->sli_flag, flag);
7688 goto out_not_finished;
7689 }
7690
7691 /* Detect polling mode and jump to a handler */
7692 if (!phba->sli4_hba.intr_enable) {
7693 if (flag == MBX_POLL)
7694 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7695 else
7696 rc = -EIO;
7697 if (rc != MBX_SUCCESS)
7698 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7699 "(%d):2541 Mailbox command x%x "
7700 "(x%x/x%x) failure: "
7701 "mqe_sta: x%x mcqe_sta: x%x/x%x "
7702 "Data: x%x x%x\n,",
7703 mboxq->vport ? mboxq->vport->vpi : 0,
7704 mboxq->u.mb.mbxCommand,
7705 lpfc_sli_config_mbox_subsys_get(phba,
7706 mboxq),
7707 lpfc_sli_config_mbox_opcode_get(phba,
7708 mboxq),
7709 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
7710 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
7711 bf_get(lpfc_mcqe_ext_status,
7712 &mboxq->mcqe),
7713 psli->sli_flag, flag);
7714 return rc;
7715 } else if (flag == MBX_POLL) {
7716 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7717 "(%d):2542 Try to issue mailbox command "
7718 "x%x (x%x/x%x) synchronously ahead of async"
7719 "mailbox command queue: x%x x%x\n",
7720 mboxq->vport ? mboxq->vport->vpi : 0,
7721 mboxq->u.mb.mbxCommand,
7722 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7723 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7724 psli->sli_flag, flag);
7725 /* Try to block the asynchronous mailbox posting */
7726 rc = lpfc_sli4_async_mbox_block(phba);
7727 if (!rc) {
7728 /* Successfully blocked, now issue sync mbox cmd */
7729 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7730 if (rc != MBX_SUCCESS)
7731 lpfc_printf_log(phba, KERN_WARNING,
7732 LOG_MBOX | LOG_SLI,
7733 "(%d):2597 Sync Mailbox command "
7734 "x%x (x%x/x%x) failure: "
7735 "mqe_sta: x%x mcqe_sta: x%x/x%x "
7736 "Data: x%x x%x\n,",
7737 mboxq->vport ? mboxq->vport->vpi : 0,
7738 mboxq->u.mb.mbxCommand,
7739 lpfc_sli_config_mbox_subsys_get(phba,
7740 mboxq),
7741 lpfc_sli_config_mbox_opcode_get(phba,
7742 mboxq),
7743 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
7744 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
7745 bf_get(lpfc_mcqe_ext_status,
7746 &mboxq->mcqe),
7747 psli->sli_flag, flag);
7748 /* Unblock the async mailbox posting afterward */
7749 lpfc_sli4_async_mbox_unblock(phba);
7750 }
7751 return rc;
7752 }
7753
7754 /* Now, interrupt mode asynchrous mailbox command */
7755 rc = lpfc_mbox_cmd_check(phba, mboxq);
7756 if (rc) {
7757 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7758 "(%d):2543 Mailbox command x%x (x%x/x%x) "
7759 "cannot issue Data: x%x x%x\n",
7760 mboxq->vport ? mboxq->vport->vpi : 0,
7761 mboxq->u.mb.mbxCommand,
7762 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7763 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7764 psli->sli_flag, flag);
7765 goto out_not_finished;
7766 }
7767
7768 /* Put the mailbox command to the driver internal FIFO */
7769 psli->slistat.mbox_busy++;
7770 spin_lock_irqsave(&phba->hbalock, iflags);
7771 lpfc_mbox_put(phba, mboxq);
7772 spin_unlock_irqrestore(&phba->hbalock, iflags);
7773 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7774 "(%d):0354 Mbox cmd issue - Enqueue Data: "
7775 "x%x (x%x/x%x) x%x x%x x%x\n",
7776 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
7777 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7778 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7779 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7780 phba->pport->port_state,
7781 psli->sli_flag, MBX_NOWAIT);
7782 /* Wake up worker thread to transport mailbox command from head */
7783 lpfc_worker_wake_up(phba);
7784
7785 return MBX_BUSY;
7786
7787 out_not_finished:
7788 return MBX_NOT_FINISHED;
7789 }
7790
7791 /**
7792 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
7793 * @phba: Pointer to HBA context object.
7794 *
7795 * This function is called by worker thread to send a mailbox command to
7796 * SLI4 HBA firmware.
7797 *
7798 **/
7799 int
7800 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
7801 {
7802 struct lpfc_sli *psli = &phba->sli;
7803 LPFC_MBOXQ_t *mboxq;
7804 int rc = MBX_SUCCESS;
7805 unsigned long iflags;
7806 struct lpfc_mqe *mqe;
7807 uint32_t mbx_cmnd;
7808
7809 /* Check interrupt mode before post async mailbox command */
7810 if (unlikely(!phba->sli4_hba.intr_enable))
7811 return MBX_NOT_FINISHED;
7812
7813 /* Check for mailbox command service token */
7814 spin_lock_irqsave(&phba->hbalock, iflags);
7815 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7816 spin_unlock_irqrestore(&phba->hbalock, iflags);
7817 return MBX_NOT_FINISHED;
7818 }
7819 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7820 spin_unlock_irqrestore(&phba->hbalock, iflags);
7821 return MBX_NOT_FINISHED;
7822 }
7823 if (unlikely(phba->sli.mbox_active)) {
7824 spin_unlock_irqrestore(&phba->hbalock, iflags);
7825 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7826 "0384 There is pending active mailbox cmd\n");
7827 return MBX_NOT_FINISHED;
7828 }
7829 /* Take the mailbox command service token */
7830 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7831
7832 /* Get the next mailbox command from head of queue */
7833 mboxq = lpfc_mbox_get(phba);
7834
7835 /* If no more mailbox command waiting for post, we're done */
7836 if (!mboxq) {
7837 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7838 spin_unlock_irqrestore(&phba->hbalock, iflags);
7839 return MBX_SUCCESS;
7840 }
7841 phba->sli.mbox_active = mboxq;
7842 spin_unlock_irqrestore(&phba->hbalock, iflags);
7843
7844 /* Check device readiness for posting mailbox command */
7845 rc = lpfc_mbox_dev_check(phba);
7846 if (unlikely(rc))
7847 /* Driver clean routine will clean up pending mailbox */
7848 goto out_not_finished;
7849
7850 /* Prepare the mbox command to be posted */
7851 mqe = &mboxq->u.mqe;
7852 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
7853
7854 /* Start timer for the mbox_tmo and log some mailbox post messages */
7855 mod_timer(&psli->mbox_tmo, (jiffies +
7856 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
7857
7858 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7859 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
7860 "x%x x%x\n",
7861 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7862 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7863 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7864 phba->pport->port_state, psli->sli_flag);
7865
7866 if (mbx_cmnd != MBX_HEARTBEAT) {
7867 if (mboxq->vport) {
7868 lpfc_debugfs_disc_trc(mboxq->vport,
7869 LPFC_DISC_TRC_MBOX_VPORT,
7870 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7871 mbx_cmnd, mqe->un.mb_words[0],
7872 mqe->un.mb_words[1]);
7873 } else {
7874 lpfc_debugfs_disc_trc(phba->pport,
7875 LPFC_DISC_TRC_MBOX,
7876 "MBOX Send: cmd:x%x mb:x%x x%x",
7877 mbx_cmnd, mqe->un.mb_words[0],
7878 mqe->un.mb_words[1]);
7879 }
7880 }
7881 psli->slistat.mbox_cmd++;
7882
7883 /* Post the mailbox command to the port */
7884 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
7885 if (rc != MBX_SUCCESS) {
7886 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7887 "(%d):2533 Mailbox command x%x (x%x/x%x) "
7888 "cannot issue Data: x%x x%x\n",
7889 mboxq->vport ? mboxq->vport->vpi : 0,
7890 mboxq->u.mb.mbxCommand,
7891 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7892 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7893 psli->sli_flag, MBX_NOWAIT);
7894 goto out_not_finished;
7895 }
7896
7897 return rc;
7898
7899 out_not_finished:
7900 spin_lock_irqsave(&phba->hbalock, iflags);
7901 if (phba->sli.mbox_active) {
7902 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
7903 __lpfc_mbox_cmpl_put(phba, mboxq);
7904 /* Release the token */
7905 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7906 phba->sli.mbox_active = NULL;
7907 }
7908 spin_unlock_irqrestore(&phba->hbalock, iflags);
7909
7910 return MBX_NOT_FINISHED;
7911 }
7912
7913 /**
7914 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
7915 * @phba: Pointer to HBA context object.
7916 * @pmbox: Pointer to mailbox object.
7917 * @flag: Flag indicating how the mailbox need to be processed.
7918 *
7919 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
7920 * the API jump table function pointer from the lpfc_hba struct.
7921 *
7922 * Return codes the caller owns the mailbox command after the return of the
7923 * function.
7924 **/
7925 int
7926 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
7927 {
7928 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
7929 }
7930
7931 /**
7932 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
7933 * @phba: The hba struct for which this call is being executed.
7934 * @dev_grp: The HBA PCI-Device group number.
7935 *
7936 * This routine sets up the mbox interface API function jump table in @phba
7937 * struct.
7938 * Returns: 0 - success, -ENODEV - failure.
7939 **/
7940 int
7941 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7942 {
7943
7944 switch (dev_grp) {
7945 case LPFC_PCI_DEV_LP:
7946 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
7947 phba->lpfc_sli_handle_slow_ring_event =
7948 lpfc_sli_handle_slow_ring_event_s3;
7949 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
7950 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
7951 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
7952 break;
7953 case LPFC_PCI_DEV_OC:
7954 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
7955 phba->lpfc_sli_handle_slow_ring_event =
7956 lpfc_sli_handle_slow_ring_event_s4;
7957 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
7958 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
7959 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
7960 break;
7961 default:
7962 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7963 "1420 Invalid HBA PCI-device group: 0x%x\n",
7964 dev_grp);
7965 return -ENODEV;
7966 break;
7967 }
7968 return 0;
7969 }
7970
7971 /**
7972 * __lpfc_sli_ringtx_put - Add an iocb to the txq
7973 * @phba: Pointer to HBA context object.
7974 * @pring: Pointer to driver SLI ring object.
7975 * @piocb: Pointer to address of newly added command iocb.
7976 *
7977 * This function is called with hbalock held to add a command
7978 * iocb to the txq when SLI layer cannot submit the command iocb
7979 * to the ring.
7980 **/
7981 void
7982 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7983 struct lpfc_iocbq *piocb)
7984 {
7985 lockdep_assert_held(&phba->hbalock);
7986 /* Insert the caller's iocb in the txq tail for later processing. */
7987 list_add_tail(&piocb->list, &pring->txq);
7988 }
7989
7990 /**
7991 * lpfc_sli_next_iocb - Get the next iocb in the txq
7992 * @phba: Pointer to HBA context object.
7993 * @pring: Pointer to driver SLI ring object.
7994 * @piocb: Pointer to address of newly added command iocb.
7995 *
7996 * This function is called with hbalock held before a new
7997 * iocb is submitted to the firmware. This function checks
7998 * txq to flush the iocbs in txq to Firmware before
7999 * submitting new iocbs to the Firmware.
8000 * If there are iocbs in the txq which need to be submitted
8001 * to firmware, lpfc_sli_next_iocb returns the first element
8002 * of the txq after dequeuing it from txq.
8003 * If there is no iocb in the txq then the function will return
8004 * *piocb and *piocb is set to NULL. Caller needs to check
8005 * *piocb to find if there are more commands in the txq.
8006 **/
8007 static struct lpfc_iocbq *
8008 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8009 struct lpfc_iocbq **piocb)
8010 {
8011 struct lpfc_iocbq * nextiocb;
8012
8013 lockdep_assert_held(&phba->hbalock);
8014
8015 nextiocb = lpfc_sli_ringtx_get(phba, pring);
8016 if (!nextiocb) {
8017 nextiocb = *piocb;
8018 *piocb = NULL;
8019 }
8020
8021 return nextiocb;
8022 }
8023
8024 /**
8025 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8026 * @phba: Pointer to HBA context object.
8027 * @ring_number: SLI ring number to issue iocb on.
8028 * @piocb: Pointer to command iocb.
8029 * @flag: Flag indicating if this command can be put into txq.
8030 *
8031 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8032 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8033 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8034 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8035 * this function allows only iocbs for posting buffers. This function finds
8036 * next available slot in the command ring and posts the command to the
8037 * available slot and writes the port attention register to request HBA start
8038 * processing new iocb. If there is no slot available in the ring and
8039 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8040 * the function returns IOCB_BUSY.
8041 *
8042 * This function is called with hbalock held. The function will return success
8043 * after it successfully submit the iocb to firmware or after adding to the
8044 * txq.
8045 **/
8046 static int
8047 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8048 struct lpfc_iocbq *piocb, uint32_t flag)
8049 {
8050 struct lpfc_iocbq *nextiocb;
8051 IOCB_t *iocb;
8052 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
8053
8054 lockdep_assert_held(&phba->hbalock);
8055
8056 if (piocb->iocb_cmpl && (!piocb->vport) &&
8057 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8058 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8059 lpfc_printf_log(phba, KERN_ERR,
8060 LOG_SLI | LOG_VPORT,
8061 "1807 IOCB x%x failed. No vport\n",
8062 piocb->iocb.ulpCommand);
8063 dump_stack();
8064 return IOCB_ERROR;
8065 }
8066
8067
8068 /* If the PCI channel is in offline state, do not post iocbs. */
8069 if (unlikely(pci_channel_offline(phba->pcidev)))
8070 return IOCB_ERROR;
8071
8072 /* If HBA has a deferred error attention, fail the iocb. */
8073 if (unlikely(phba->hba_flag & DEFER_ERATT))
8074 return IOCB_ERROR;
8075
8076 /*
8077 * We should never get an IOCB if we are in a < LINK_DOWN state
8078 */
8079 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8080 return IOCB_ERROR;
8081
8082 /*
8083 * Check to see if we are blocking IOCB processing because of a
8084 * outstanding event.
8085 */
8086 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8087 goto iocb_busy;
8088
8089 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8090 /*
8091 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8092 * can be issued if the link is not up.
8093 */
8094 switch (piocb->iocb.ulpCommand) {
8095 case CMD_GEN_REQUEST64_CR:
8096 case CMD_GEN_REQUEST64_CX:
8097 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8098 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8099 FC_RCTL_DD_UNSOL_CMD) ||
8100 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
8101 MENLO_TRANSPORT_TYPE))
8102
8103 goto iocb_busy;
8104 break;
8105 case CMD_QUE_RING_BUF_CN:
8106 case CMD_QUE_RING_BUF64_CN:
8107 /*
8108 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
8109 * completion, iocb_cmpl MUST be 0.
8110 */
8111 if (piocb->iocb_cmpl)
8112 piocb->iocb_cmpl = NULL;
8113 /*FALLTHROUGH*/
8114 case CMD_CREATE_XRI_CR:
8115 case CMD_CLOSE_XRI_CN:
8116 case CMD_CLOSE_XRI_CX:
8117 break;
8118 default:
8119 goto iocb_busy;
8120 }
8121
8122 /*
8123 * For FCP commands, we must be in a state where we can process link
8124 * attention events.
8125 */
8126 } else if (unlikely(pring->ringno == phba->sli.fcp_ring &&
8127 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
8128 goto iocb_busy;
8129 }
8130
8131 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
8132 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
8133 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
8134
8135 if (iocb)
8136 lpfc_sli_update_ring(phba, pring);
8137 else
8138 lpfc_sli_update_full_ring(phba, pring);
8139
8140 if (!piocb)
8141 return IOCB_SUCCESS;
8142
8143 goto out_busy;
8144
8145 iocb_busy:
8146 pring->stats.iocb_cmd_delay++;
8147
8148 out_busy:
8149
8150 if (!(flag & SLI_IOCB_RET_IOCB)) {
8151 __lpfc_sli_ringtx_put(phba, pring, piocb);
8152 return IOCB_SUCCESS;
8153 }
8154
8155 return IOCB_BUSY;
8156 }
8157
8158 /**
8159 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
8160 * @phba: Pointer to HBA context object.
8161 * @piocb: Pointer to command iocb.
8162 * @sglq: Pointer to the scatter gather queue object.
8163 *
8164 * This routine converts the bpl or bde that is in the IOCB
8165 * to a sgl list for the sli4 hardware. The physical address
8166 * of the bpl/bde is converted back to a virtual address.
8167 * If the IOCB contains a BPL then the list of BDE's is
8168 * converted to sli4_sge's. If the IOCB contains a single
8169 * BDE then it is converted to a single sli_sge.
8170 * The IOCB is still in cpu endianess so the contents of
8171 * the bpl can be used without byte swapping.
8172 *
8173 * Returns valid XRI = Success, NO_XRI = Failure.
8174 **/
8175 static uint16_t
8176 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
8177 struct lpfc_sglq *sglq)
8178 {
8179 uint16_t xritag = NO_XRI;
8180 struct ulp_bde64 *bpl = NULL;
8181 struct ulp_bde64 bde;
8182 struct sli4_sge *sgl = NULL;
8183 struct lpfc_dmabuf *dmabuf;
8184 IOCB_t *icmd;
8185 int numBdes = 0;
8186 int i = 0;
8187 uint32_t offset = 0; /* accumulated offset in the sg request list */
8188 int inbound = 0; /* number of sg reply entries inbound from firmware */
8189
8190 if (!piocbq || !sglq)
8191 return xritag;
8192
8193 sgl = (struct sli4_sge *)sglq->sgl;
8194 icmd = &piocbq->iocb;
8195 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
8196 return sglq->sli4_xritag;
8197 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8198 numBdes = icmd->un.genreq64.bdl.bdeSize /
8199 sizeof(struct ulp_bde64);
8200 /* The addrHigh and addrLow fields within the IOCB
8201 * have not been byteswapped yet so there is no
8202 * need to swap them back.
8203 */
8204 if (piocbq->context3)
8205 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
8206 else
8207 return xritag;
8208
8209 bpl = (struct ulp_bde64 *)dmabuf->virt;
8210 if (!bpl)
8211 return xritag;
8212
8213 for (i = 0; i < numBdes; i++) {
8214 /* Should already be byte swapped. */
8215 sgl->addr_hi = bpl->addrHigh;
8216 sgl->addr_lo = bpl->addrLow;
8217
8218 sgl->word2 = le32_to_cpu(sgl->word2);
8219 if ((i+1) == numBdes)
8220 bf_set(lpfc_sli4_sge_last, sgl, 1);
8221 else
8222 bf_set(lpfc_sli4_sge_last, sgl, 0);
8223 /* swap the size field back to the cpu so we
8224 * can assign it to the sgl.
8225 */
8226 bde.tus.w = le32_to_cpu(bpl->tus.w);
8227 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
8228 /* The offsets in the sgl need to be accumulated
8229 * separately for the request and reply lists.
8230 * The request is always first, the reply follows.
8231 */
8232 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
8233 /* add up the reply sg entries */
8234 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
8235 inbound++;
8236 /* first inbound? reset the offset */
8237 if (inbound == 1)
8238 offset = 0;
8239 bf_set(lpfc_sli4_sge_offset, sgl, offset);
8240 bf_set(lpfc_sli4_sge_type, sgl,
8241 LPFC_SGE_TYPE_DATA);
8242 offset += bde.tus.f.bdeSize;
8243 }
8244 sgl->word2 = cpu_to_le32(sgl->word2);
8245 bpl++;
8246 sgl++;
8247 }
8248 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
8249 /* The addrHigh and addrLow fields of the BDE have not
8250 * been byteswapped yet so they need to be swapped
8251 * before putting them in the sgl.
8252 */
8253 sgl->addr_hi =
8254 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
8255 sgl->addr_lo =
8256 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
8257 sgl->word2 = le32_to_cpu(sgl->word2);
8258 bf_set(lpfc_sli4_sge_last, sgl, 1);
8259 sgl->word2 = cpu_to_le32(sgl->word2);
8260 sgl->sge_len =
8261 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
8262 }
8263 return sglq->sli4_xritag;
8264 }
8265
8266 /**
8267 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
8268 * @phba: Pointer to HBA context object.
8269 * @piocb: Pointer to command iocb.
8270 * @wqe: Pointer to the work queue entry.
8271 *
8272 * This routine converts the iocb command to its Work Queue Entry
8273 * equivalent. The wqe pointer should not have any fields set when
8274 * this routine is called because it will memcpy over them.
8275 * This routine does not set the CQ_ID or the WQEC bits in the
8276 * wqe.
8277 *
8278 * Returns: 0 = Success, IOCB_ERROR = Failure.
8279 **/
8280 static int
8281 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
8282 union lpfc_wqe *wqe)
8283 {
8284 uint32_t xmit_len = 0, total_len = 0;
8285 uint8_t ct = 0;
8286 uint32_t fip;
8287 uint32_t abort_tag;
8288 uint8_t command_type = ELS_COMMAND_NON_FIP;
8289 uint8_t cmnd;
8290 uint16_t xritag;
8291 uint16_t abrt_iotag;
8292 struct lpfc_iocbq *abrtiocbq;
8293 struct ulp_bde64 *bpl = NULL;
8294 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
8295 int numBdes, i;
8296 struct ulp_bde64 bde;
8297 struct lpfc_nodelist *ndlp;
8298 uint32_t *pcmd;
8299 uint32_t if_type;
8300
8301 fip = phba->hba_flag & HBA_FIP_SUPPORT;
8302 /* The fcp commands will set command type */
8303 if (iocbq->iocb_flag & LPFC_IO_FCP)
8304 command_type = FCP_COMMAND;
8305 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
8306 command_type = ELS_COMMAND_FIP;
8307 else
8308 command_type = ELS_COMMAND_NON_FIP;
8309
8310 if (phba->fcp_embed_io)
8311 memset(wqe, 0, sizeof(union lpfc_wqe128));
8312 /* Some of the fields are in the right position already */
8313 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
8314 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */
8315 wqe->generic.wqe_com.word10 = 0;
8316
8317 abort_tag = (uint32_t) iocbq->iotag;
8318 xritag = iocbq->sli4_xritag;
8319 /* words0-2 bpl convert bde */
8320 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8321 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8322 sizeof(struct ulp_bde64);
8323 bpl = (struct ulp_bde64 *)
8324 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
8325 if (!bpl)
8326 return IOCB_ERROR;
8327
8328 /* Should already be byte swapped. */
8329 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
8330 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
8331 /* swap the size field back to the cpu so we
8332 * can assign it to the sgl.
8333 */
8334 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
8335 xmit_len = wqe->generic.bde.tus.f.bdeSize;
8336 total_len = 0;
8337 for (i = 0; i < numBdes; i++) {
8338 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8339 total_len += bde.tus.f.bdeSize;
8340 }
8341 } else
8342 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
8343
8344 iocbq->iocb.ulpIoTag = iocbq->iotag;
8345 cmnd = iocbq->iocb.ulpCommand;
8346
8347 switch (iocbq->iocb.ulpCommand) {
8348 case CMD_ELS_REQUEST64_CR:
8349 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
8350 ndlp = iocbq->context_un.ndlp;
8351 else
8352 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8353 if (!iocbq->iocb.ulpLe) {
8354 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8355 "2007 Only Limited Edition cmd Format"
8356 " supported 0x%x\n",
8357 iocbq->iocb.ulpCommand);
8358 return IOCB_ERROR;
8359 }
8360
8361 wqe->els_req.payload_len = xmit_len;
8362 /* Els_reguest64 has a TMO */
8363 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
8364 iocbq->iocb.ulpTimeout);
8365 /* Need a VF for word 4 set the vf bit*/
8366 bf_set(els_req64_vf, &wqe->els_req, 0);
8367 /* And a VFID for word 12 */
8368 bf_set(els_req64_vfid, &wqe->els_req, 0);
8369 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8370 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8371 iocbq->iocb.ulpContext);
8372 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
8373 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
8374 /* CCP CCPE PV PRI in word10 were set in the memcpy */
8375 if (command_type == ELS_COMMAND_FIP)
8376 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
8377 >> LPFC_FIP_ELS_ID_SHIFT);
8378 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8379 iocbq->context2)->virt);
8380 if_type = bf_get(lpfc_sli_intf_if_type,
8381 &phba->sli4_hba.sli_intf);
8382 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8383 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
8384 *pcmd == ELS_CMD_SCR ||
8385 *pcmd == ELS_CMD_FDISC ||
8386 *pcmd == ELS_CMD_LOGO ||
8387 *pcmd == ELS_CMD_PLOGI)) {
8388 bf_set(els_req64_sp, &wqe->els_req, 1);
8389 bf_set(els_req64_sid, &wqe->els_req,
8390 iocbq->vport->fc_myDID);
8391 if ((*pcmd == ELS_CMD_FLOGI) &&
8392 !(phba->fc_topology ==
8393 LPFC_TOPOLOGY_LOOP))
8394 bf_set(els_req64_sid, &wqe->els_req, 0);
8395 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
8396 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8397 phba->vpi_ids[iocbq->vport->vpi]);
8398 } else if (pcmd && iocbq->context1) {
8399 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
8400 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8401 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8402 }
8403 }
8404 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
8405 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8406 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
8407 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
8408 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
8409 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
8410 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8411 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
8412 wqe->els_req.max_response_payload_len = total_len - xmit_len;
8413 break;
8414 case CMD_XMIT_SEQUENCE64_CX:
8415 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
8416 iocbq->iocb.un.ulpWord[3]);
8417 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
8418 iocbq->iocb.unsli3.rcvsli3.ox_id);
8419 /* The entire sequence is transmitted for this IOCB */
8420 xmit_len = total_len;
8421 cmnd = CMD_XMIT_SEQUENCE64_CR;
8422 if (phba->link_flag & LS_LOOPBACK_MODE)
8423 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
8424 case CMD_XMIT_SEQUENCE64_CR:
8425 /* word3 iocb=io_tag32 wqe=reserved */
8426 wqe->xmit_sequence.rsvd3 = 0;
8427 /* word4 relative_offset memcpy */
8428 /* word5 r_ctl/df_ctl memcpy */
8429 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
8430 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
8431 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
8432 LPFC_WQE_IOD_WRITE);
8433 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
8434 LPFC_WQE_LENLOC_WORD12);
8435 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
8436 wqe->xmit_sequence.xmit_len = xmit_len;
8437 command_type = OTHER_COMMAND;
8438 break;
8439 case CMD_XMIT_BCAST64_CN:
8440 /* word3 iocb=iotag32 wqe=seq_payload_len */
8441 wqe->xmit_bcast64.seq_payload_len = xmit_len;
8442 /* word4 iocb=rsvd wqe=rsvd */
8443 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
8444 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
8445 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
8446 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8447 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
8448 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
8449 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
8450 LPFC_WQE_LENLOC_WORD3);
8451 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
8452 break;
8453 case CMD_FCP_IWRITE64_CR:
8454 command_type = FCP_COMMAND_DATA_OUT;
8455 /* word3 iocb=iotag wqe=payload_offset_len */
8456 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8457 bf_set(payload_offset_len, &wqe->fcp_iwrite,
8458 xmit_len + sizeof(struct fcp_rsp));
8459 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
8460 0);
8461 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8462 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8463 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
8464 iocbq->iocb.ulpFCP2Rcvy);
8465 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
8466 /* Always open the exchange */
8467 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
8468 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
8469 LPFC_WQE_LENLOC_WORD4);
8470 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
8471 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
8472 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8473 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
8474 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
8475 if (iocbq->priority) {
8476 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8477 (iocbq->priority << 1));
8478 } else {
8479 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8480 (phba->cfg_XLanePriority << 1));
8481 }
8482 }
8483 /* Note, word 10 is already initialized to 0 */
8484
8485 if (phba->fcp_embed_io) {
8486 struct lpfc_scsi_buf *lpfc_cmd;
8487 struct sli4_sge *sgl;
8488 union lpfc_wqe128 *wqe128;
8489 struct fcp_cmnd *fcp_cmnd;
8490 uint32_t *ptr;
8491
8492 /* 128 byte wqe support here */
8493 wqe128 = (union lpfc_wqe128 *)wqe;
8494
8495 lpfc_cmd = iocbq->context1;
8496 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8497 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8498
8499 /* Word 0-2 - FCP_CMND */
8500 wqe128->generic.bde.tus.f.bdeFlags =
8501 BUFF_TYPE_BDE_IMMED;
8502 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8503 wqe128->generic.bde.addrHigh = 0;
8504 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8505
8506 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1);
8507
8508 /* Word 22-29 FCP CMND Payload */
8509 ptr = &wqe128->words[22];
8510 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8511 }
8512 break;
8513 case CMD_FCP_IREAD64_CR:
8514 /* word3 iocb=iotag wqe=payload_offset_len */
8515 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8516 bf_set(payload_offset_len, &wqe->fcp_iread,
8517 xmit_len + sizeof(struct fcp_rsp));
8518 bf_set(cmd_buff_len, &wqe->fcp_iread,
8519 0);
8520 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8521 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8522 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
8523 iocbq->iocb.ulpFCP2Rcvy);
8524 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
8525 /* Always open the exchange */
8526 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
8527 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
8528 LPFC_WQE_LENLOC_WORD4);
8529 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
8530 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
8531 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8532 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
8533 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
8534 if (iocbq->priority) {
8535 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8536 (iocbq->priority << 1));
8537 } else {
8538 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8539 (phba->cfg_XLanePriority << 1));
8540 }
8541 }
8542 /* Note, word 10 is already initialized to 0 */
8543
8544 if (phba->fcp_embed_io) {
8545 struct lpfc_scsi_buf *lpfc_cmd;
8546 struct sli4_sge *sgl;
8547 union lpfc_wqe128 *wqe128;
8548 struct fcp_cmnd *fcp_cmnd;
8549 uint32_t *ptr;
8550
8551 /* 128 byte wqe support here */
8552 wqe128 = (union lpfc_wqe128 *)wqe;
8553
8554 lpfc_cmd = iocbq->context1;
8555 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8556 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8557
8558 /* Word 0-2 - FCP_CMND */
8559 wqe128->generic.bde.tus.f.bdeFlags =
8560 BUFF_TYPE_BDE_IMMED;
8561 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8562 wqe128->generic.bde.addrHigh = 0;
8563 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8564
8565 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1);
8566
8567 /* Word 22-29 FCP CMND Payload */
8568 ptr = &wqe128->words[22];
8569 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8570 }
8571 break;
8572 case CMD_FCP_ICMND64_CR:
8573 /* word3 iocb=iotag wqe=payload_offset_len */
8574 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8575 bf_set(payload_offset_len, &wqe->fcp_icmd,
8576 xmit_len + sizeof(struct fcp_rsp));
8577 bf_set(cmd_buff_len, &wqe->fcp_icmd,
8578 0);
8579 /* word3 iocb=IO_TAG wqe=reserved */
8580 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
8581 /* Always open the exchange */
8582 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
8583 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
8584 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
8585 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
8586 LPFC_WQE_LENLOC_NONE);
8587 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
8588 iocbq->iocb.ulpFCP2Rcvy);
8589 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8590 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
8591 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
8592 if (iocbq->priority) {
8593 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8594 (iocbq->priority << 1));
8595 } else {
8596 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8597 (phba->cfg_XLanePriority << 1));
8598 }
8599 }
8600 /* Note, word 10 is already initialized to 0 */
8601
8602 if (phba->fcp_embed_io) {
8603 struct lpfc_scsi_buf *lpfc_cmd;
8604 struct sli4_sge *sgl;
8605 union lpfc_wqe128 *wqe128;
8606 struct fcp_cmnd *fcp_cmnd;
8607 uint32_t *ptr;
8608
8609 /* 128 byte wqe support here */
8610 wqe128 = (union lpfc_wqe128 *)wqe;
8611
8612 lpfc_cmd = iocbq->context1;
8613 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8614 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8615
8616 /* Word 0-2 - FCP_CMND */
8617 wqe128->generic.bde.tus.f.bdeFlags =
8618 BUFF_TYPE_BDE_IMMED;
8619 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8620 wqe128->generic.bde.addrHigh = 0;
8621 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8622
8623 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1);
8624
8625 /* Word 22-29 FCP CMND Payload */
8626 ptr = &wqe128->words[22];
8627 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8628 }
8629 break;
8630 case CMD_GEN_REQUEST64_CR:
8631 /* For this command calculate the xmit length of the
8632 * request bde.
8633 */
8634 xmit_len = 0;
8635 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8636 sizeof(struct ulp_bde64);
8637 for (i = 0; i < numBdes; i++) {
8638 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8639 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
8640 break;
8641 xmit_len += bde.tus.f.bdeSize;
8642 }
8643 /* word3 iocb=IO_TAG wqe=request_payload_len */
8644 wqe->gen_req.request_payload_len = xmit_len;
8645 /* word4 iocb=parameter wqe=relative_offset memcpy */
8646 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
8647 /* word6 context tag copied in memcpy */
8648 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
8649 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8650 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8651 "2015 Invalid CT %x command 0x%x\n",
8652 ct, iocbq->iocb.ulpCommand);
8653 return IOCB_ERROR;
8654 }
8655 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
8656 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
8657 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
8658 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
8659 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
8660 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
8661 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8662 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
8663 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
8664 command_type = OTHER_COMMAND;
8665 break;
8666 case CMD_XMIT_ELS_RSP64_CX:
8667 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8668 /* words0-2 BDE memcpy */
8669 /* word3 iocb=iotag32 wqe=response_payload_len */
8670 wqe->xmit_els_rsp.response_payload_len = xmit_len;
8671 /* word4 */
8672 wqe->xmit_els_rsp.word4 = 0;
8673 /* word5 iocb=rsvd wge=did */
8674 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
8675 iocbq->iocb.un.xseq64.xmit_els_remoteID);
8676
8677 if_type = bf_get(lpfc_sli_intf_if_type,
8678 &phba->sli4_hba.sli_intf);
8679 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8680 if (iocbq->vport->fc_flag & FC_PT2PT) {
8681 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
8682 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
8683 iocbq->vport->fc_myDID);
8684 if (iocbq->vport->fc_myDID == Fabric_DID) {
8685 bf_set(wqe_els_did,
8686 &wqe->xmit_els_rsp.wqe_dest, 0);
8687 }
8688 }
8689 }
8690 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
8691 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8692 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
8693 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
8694 iocbq->iocb.unsli3.rcvsli3.ox_id);
8695 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
8696 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
8697 phba->vpi_ids[iocbq->vport->vpi]);
8698 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
8699 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
8700 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
8701 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
8702 LPFC_WQE_LENLOC_WORD3);
8703 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
8704 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
8705 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8706 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8707 iocbq->context2)->virt);
8708 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
8709 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
8710 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
8711 iocbq->vport->fc_myDID);
8712 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
8713 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
8714 phba->vpi_ids[phba->pport->vpi]);
8715 }
8716 command_type = OTHER_COMMAND;
8717 break;
8718 case CMD_CLOSE_XRI_CN:
8719 case CMD_ABORT_XRI_CN:
8720 case CMD_ABORT_XRI_CX:
8721 /* words 0-2 memcpy should be 0 rserved */
8722 /* port will send abts */
8723 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
8724 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
8725 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
8726 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
8727 } else
8728 fip = 0;
8729
8730 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
8731 /*
8732 * The link is down, or the command was ELS_FIP
8733 * so the fw does not need to send abts
8734 * on the wire.
8735 */
8736 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
8737 else
8738 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
8739 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
8740 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
8741 wqe->abort_cmd.rsrvd5 = 0;
8742 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
8743 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8744 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
8745 /*
8746 * The abort handler will send us CMD_ABORT_XRI_CN or
8747 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
8748 */
8749 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
8750 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
8751 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
8752 LPFC_WQE_LENLOC_NONE);
8753 cmnd = CMD_ABORT_XRI_CX;
8754 command_type = OTHER_COMMAND;
8755 xritag = 0;
8756 break;
8757 case CMD_XMIT_BLS_RSP64_CX:
8758 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8759 /* As BLS ABTS RSP WQE is very different from other WQEs,
8760 * we re-construct this WQE here based on information in
8761 * iocbq from scratch.
8762 */
8763 memset(wqe, 0, sizeof(union lpfc_wqe));
8764 /* OX_ID is invariable to who sent ABTS to CT exchange */
8765 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
8766 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
8767 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
8768 LPFC_ABTS_UNSOL_INT) {
8769 /* ABTS sent by initiator to CT exchange, the
8770 * RX_ID field will be filled with the newly
8771 * allocated responder XRI.
8772 */
8773 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
8774 iocbq->sli4_xritag);
8775 } else {
8776 /* ABTS sent by responder to CT exchange, the
8777 * RX_ID field will be filled with the responder
8778 * RX_ID from ABTS.
8779 */
8780 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
8781 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
8782 }
8783 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
8784 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
8785
8786 /* Use CT=VPI */
8787 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
8788 ndlp->nlp_DID);
8789 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
8790 iocbq->iocb.ulpContext);
8791 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
8792 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
8793 phba->vpi_ids[phba->pport->vpi]);
8794 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
8795 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
8796 LPFC_WQE_LENLOC_NONE);
8797 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
8798 command_type = OTHER_COMMAND;
8799 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
8800 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
8801 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
8802 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
8803 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
8804 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
8805 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
8806 }
8807
8808 break;
8809 case CMD_XRI_ABORTED_CX:
8810 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
8811 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
8812 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
8813 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
8814 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
8815 default:
8816 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8817 "2014 Invalid command 0x%x\n",
8818 iocbq->iocb.ulpCommand);
8819 return IOCB_ERROR;
8820 break;
8821 }
8822
8823 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
8824 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
8825 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
8826 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
8827 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
8828 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
8829 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
8830 LPFC_IO_DIF_INSERT);
8831 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
8832 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
8833 wqe->generic.wqe_com.abort_tag = abort_tag;
8834 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
8835 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
8836 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
8837 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
8838 return 0;
8839 }
8840
8841 /**
8842 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
8843 * @phba: Pointer to HBA context object.
8844 * @ring_number: SLI ring number to issue iocb on.
8845 * @piocb: Pointer to command iocb.
8846 * @flag: Flag indicating if this command can be put into txq.
8847 *
8848 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
8849 * an iocb command to an HBA with SLI-4 interface spec.
8850 *
8851 * This function is called with hbalock held. The function will return success
8852 * after it successfully submit the iocb to firmware or after adding to the
8853 * txq.
8854 **/
8855 static int
8856 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
8857 struct lpfc_iocbq *piocb, uint32_t flag)
8858 {
8859 struct lpfc_sglq *sglq;
8860 union lpfc_wqe *wqe;
8861 union lpfc_wqe128 wqe128;
8862 struct lpfc_queue *wq;
8863 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
8864
8865 lockdep_assert_held(&phba->hbalock);
8866
8867 /*
8868 * The WQE can be either 64 or 128 bytes,
8869 * so allocate space on the stack assuming the largest.
8870 */
8871 wqe = (union lpfc_wqe *)&wqe128;
8872
8873 if (piocb->sli4_xritag == NO_XRI) {
8874 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
8875 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
8876 sglq = NULL;
8877 else {
8878 if (!list_empty(&pring->txq)) {
8879 if (!(flag & SLI_IOCB_RET_IOCB)) {
8880 __lpfc_sli_ringtx_put(phba,
8881 pring, piocb);
8882 return IOCB_SUCCESS;
8883 } else {
8884 return IOCB_BUSY;
8885 }
8886 } else {
8887 sglq = __lpfc_sli_get_sglq(phba, piocb);
8888 if (!sglq) {
8889 if (!(flag & SLI_IOCB_RET_IOCB)) {
8890 __lpfc_sli_ringtx_put(phba,
8891 pring,
8892 piocb);
8893 return IOCB_SUCCESS;
8894 } else
8895 return IOCB_BUSY;
8896 }
8897 }
8898 }
8899 } else if (piocb->iocb_flag & LPFC_IO_FCP) {
8900 /* These IO's already have an XRI and a mapped sgl. */
8901 sglq = NULL;
8902 } else {
8903 /*
8904 * This is a continuation of a commandi,(CX) so this
8905 * sglq is on the active list
8906 */
8907 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
8908 if (!sglq)
8909 return IOCB_ERROR;
8910 }
8911
8912 if (sglq) {
8913 piocb->sli4_lxritag = sglq->sli4_lxritag;
8914 piocb->sli4_xritag = sglq->sli4_xritag;
8915 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
8916 return IOCB_ERROR;
8917 }
8918
8919 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe))
8920 return IOCB_ERROR;
8921
8922 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
8923 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
8924 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) {
8925 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx];
8926 } else {
8927 wq = phba->sli4_hba.oas_wq;
8928 }
8929 if (lpfc_sli4_wq_put(wq, wqe))
8930 return IOCB_ERROR;
8931 } else {
8932 if (unlikely(!phba->sli4_hba.els_wq))
8933 return IOCB_ERROR;
8934 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe))
8935 return IOCB_ERROR;
8936 }
8937 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
8938
8939 return 0;
8940 }
8941
8942 /**
8943 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
8944 *
8945 * This routine wraps the actual lockless version for issusing IOCB function
8946 * pointer from the lpfc_hba struct.
8947 *
8948 * Return codes:
8949 * IOCB_ERROR - Error
8950 * IOCB_SUCCESS - Success
8951 * IOCB_BUSY - Busy
8952 **/
8953 int
8954 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
8955 struct lpfc_iocbq *piocb, uint32_t flag)
8956 {
8957 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
8958 }
8959
8960 /**
8961 * lpfc_sli_api_table_setup - Set up sli api function jump table
8962 * @phba: The hba struct for which this call is being executed.
8963 * @dev_grp: The HBA PCI-Device group number.
8964 *
8965 * This routine sets up the SLI interface API function jump table in @phba
8966 * struct.
8967 * Returns: 0 - success, -ENODEV - failure.
8968 **/
8969 int
8970 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8971 {
8972
8973 switch (dev_grp) {
8974 case LPFC_PCI_DEV_LP:
8975 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
8976 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
8977 break;
8978 case LPFC_PCI_DEV_OC:
8979 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
8980 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
8981 break;
8982 default:
8983 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8984 "1419 Invalid HBA PCI-device group: 0x%x\n",
8985 dev_grp);
8986 return -ENODEV;
8987 break;
8988 }
8989 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
8990 return 0;
8991 }
8992
8993 /**
8994 * lpfc_sli_calc_ring - Calculates which ring to use
8995 * @phba: Pointer to HBA context object.
8996 * @ring_number: Initial ring
8997 * @piocb: Pointer to command iocb.
8998 *
8999 * For SLI4, FCP IO can deferred to one fo many WQs, based on
9000 * fcp_wqidx, thus we need to calculate the corresponding ring.
9001 * Since ABORTS must go on the same WQ of the command they are
9002 * aborting, we use command's fcp_wqidx.
9003 */
9004 static int
9005 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number,
9006 struct lpfc_iocbq *piocb)
9007 {
9008 if (phba->sli_rev < LPFC_SLI_REV4)
9009 return ring_number;
9010
9011 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9012 if (!(phba->cfg_fof) ||
9013 (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9014 if (unlikely(!phba->sli4_hba.fcp_wq))
9015 return LPFC_HBA_ERROR;
9016 /*
9017 * for abort iocb fcp_wqidx should already
9018 * be setup based on what work queue we used.
9019 */
9020 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX))
9021 piocb->fcp_wqidx =
9022 lpfc_sli4_scmd_to_wqidx_distr(phba,
9023 piocb->context1);
9024 ring_number = MAX_SLI3_CONFIGURED_RINGS +
9025 piocb->fcp_wqidx;
9026 } else {
9027 if (unlikely(!phba->sli4_hba.oas_wq))
9028 return LPFC_HBA_ERROR;
9029 piocb->fcp_wqidx = 0;
9030 ring_number = LPFC_FCP_OAS_RING;
9031 }
9032 }
9033 return ring_number;
9034 }
9035
9036 /**
9037 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9038 * @phba: Pointer to HBA context object.
9039 * @pring: Pointer to driver SLI ring object.
9040 * @piocb: Pointer to command iocb.
9041 * @flag: Flag indicating if this command can be put into txq.
9042 *
9043 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9044 * function. This function gets the hbalock and calls
9045 * __lpfc_sli_issue_iocb function and will return the error returned
9046 * by __lpfc_sli_issue_iocb function. This wrapper is used by
9047 * functions which do not hold hbalock.
9048 **/
9049 int
9050 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9051 struct lpfc_iocbq *piocb, uint32_t flag)
9052 {
9053 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
9054 struct lpfc_sli_ring *pring;
9055 struct lpfc_queue *fpeq;
9056 struct lpfc_eqe *eqe;
9057 unsigned long iflags;
9058 int rc, idx;
9059
9060 if (phba->sli_rev == LPFC_SLI_REV4) {
9061 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb);
9062 if (unlikely(ring_number == LPFC_HBA_ERROR))
9063 return IOCB_ERROR;
9064 idx = piocb->fcp_wqidx;
9065
9066 pring = &phba->sli.ring[ring_number];
9067 spin_lock_irqsave(&pring->ring_lock, iflags);
9068 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9069 spin_unlock_irqrestore(&pring->ring_lock, iflags);
9070
9071 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) {
9072 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx];
9073
9074 if (atomic_dec_and_test(&fcp_eq_hdl->
9075 fcp_eq_in_use)) {
9076
9077 /* Get associated EQ with this index */
9078 fpeq = phba->sli4_hba.hba_eq[idx];
9079
9080 /* Turn off interrupts from this EQ */
9081 lpfc_sli4_eq_clr_intr(fpeq);
9082
9083 /*
9084 * Process all the events on FCP EQ
9085 */
9086 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9087 lpfc_sli4_hba_handle_eqe(phba,
9088 eqe, idx);
9089 fpeq->EQ_processed++;
9090 }
9091
9092 /* Always clear and re-arm the EQ */
9093 lpfc_sli4_eq_release(fpeq,
9094 LPFC_QUEUE_REARM);
9095 }
9096 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
9097 }
9098 } else {
9099 /* For now, SLI2/3 will still use hbalock */
9100 spin_lock_irqsave(&phba->hbalock, iflags);
9101 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9102 spin_unlock_irqrestore(&phba->hbalock, iflags);
9103 }
9104 return rc;
9105 }
9106
9107 /**
9108 * lpfc_extra_ring_setup - Extra ring setup function
9109 * @phba: Pointer to HBA context object.
9110 *
9111 * This function is called while driver attaches with the
9112 * HBA to setup the extra ring. The extra ring is used
9113 * only when driver needs to support target mode functionality
9114 * or IP over FC functionalities.
9115 *
9116 * This function is called with no lock held.
9117 **/
9118 static int
9119 lpfc_extra_ring_setup( struct lpfc_hba *phba)
9120 {
9121 struct lpfc_sli *psli;
9122 struct lpfc_sli_ring *pring;
9123
9124 psli = &phba->sli;
9125
9126 /* Adjust cmd/rsp ring iocb entries more evenly */
9127
9128 /* Take some away from the FCP ring */
9129 pring = &psli->ring[psli->fcp_ring];
9130 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9131 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9132 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9133 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9134
9135 /* and give them to the extra ring */
9136 pring = &psli->ring[psli->extra_ring];
9137
9138 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9139 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9140 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9141 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9142
9143 /* Setup default profile for this ring */
9144 pring->iotag_max = 4096;
9145 pring->num_mask = 1;
9146 pring->prt[0].profile = 0; /* Mask 0 */
9147 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
9148 pring->prt[0].type = phba->cfg_multi_ring_type;
9149 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
9150 return 0;
9151 }
9152
9153 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
9154 * @phba: Pointer to HBA context object.
9155 * @iocbq: Pointer to iocb object.
9156 *
9157 * The async_event handler calls this routine when it receives
9158 * an ASYNC_STATUS_CN event from the port. The port generates
9159 * this event when an Abort Sequence request to an rport fails
9160 * twice in succession. The abort could be originated by the
9161 * driver or by the port. The ABTS could have been for an ELS
9162 * or FCP IO. The port only generates this event when an ABTS
9163 * fails to complete after one retry.
9164 */
9165 static void
9166 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
9167 struct lpfc_iocbq *iocbq)
9168 {
9169 struct lpfc_nodelist *ndlp = NULL;
9170 uint16_t rpi = 0, vpi = 0;
9171 struct lpfc_vport *vport = NULL;
9172
9173 /* The rpi in the ulpContext is vport-sensitive. */
9174 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
9175 rpi = iocbq->iocb.ulpContext;
9176
9177 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9178 "3092 Port generated ABTS async event "
9179 "on vpi %d rpi %d status 0x%x\n",
9180 vpi, rpi, iocbq->iocb.ulpStatus);
9181
9182 vport = lpfc_find_vport_by_vpid(phba, vpi);
9183 if (!vport)
9184 goto err_exit;
9185 ndlp = lpfc_findnode_rpi(vport, rpi);
9186 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
9187 goto err_exit;
9188
9189 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
9190 lpfc_sli_abts_recover_port(vport, ndlp);
9191 return;
9192
9193 err_exit:
9194 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9195 "3095 Event Context not found, no "
9196 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
9197 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
9198 vpi, rpi);
9199 }
9200
9201 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
9202 * @phba: pointer to HBA context object.
9203 * @ndlp: nodelist pointer for the impacted rport.
9204 * @axri: pointer to the wcqe containing the failed exchange.
9205 *
9206 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
9207 * port. The port generates this event when an abort exchange request to an
9208 * rport fails twice in succession with no reply. The abort could be originated
9209 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
9210 */
9211 void
9212 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
9213 struct lpfc_nodelist *ndlp,
9214 struct sli4_wcqe_xri_aborted *axri)
9215 {
9216 struct lpfc_vport *vport;
9217 uint32_t ext_status = 0;
9218
9219 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
9220 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9221 "3115 Node Context not found, driver "
9222 "ignoring abts err event\n");
9223 return;
9224 }
9225
9226 vport = ndlp->vport;
9227 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9228 "3116 Port generated FCP XRI ABORT event on "
9229 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
9230 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
9231 bf_get(lpfc_wcqe_xa_xri, axri),
9232 bf_get(lpfc_wcqe_xa_status, axri),
9233 axri->parameter);
9234
9235 /*
9236 * Catch the ABTS protocol failure case. Older OCe FW releases returned
9237 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
9238 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
9239 */
9240 ext_status = axri->parameter & IOERR_PARAM_MASK;
9241 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
9242 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
9243 lpfc_sli_abts_recover_port(vport, ndlp);
9244 }
9245
9246 /**
9247 * lpfc_sli_async_event_handler - ASYNC iocb handler function
9248 * @phba: Pointer to HBA context object.
9249 * @pring: Pointer to driver SLI ring object.
9250 * @iocbq: Pointer to iocb object.
9251 *
9252 * This function is called by the slow ring event handler
9253 * function when there is an ASYNC event iocb in the ring.
9254 * This function is called with no lock held.
9255 * Currently this function handles only temperature related
9256 * ASYNC events. The function decodes the temperature sensor
9257 * event message and posts events for the management applications.
9258 **/
9259 static void
9260 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
9261 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
9262 {
9263 IOCB_t *icmd;
9264 uint16_t evt_code;
9265 struct temp_event temp_event_data;
9266 struct Scsi_Host *shost;
9267 uint32_t *iocb_w;
9268
9269 icmd = &iocbq->iocb;
9270 evt_code = icmd->un.asyncstat.evt_code;
9271
9272 switch (evt_code) {
9273 case ASYNC_TEMP_WARN:
9274 case ASYNC_TEMP_SAFE:
9275 temp_event_data.data = (uint32_t) icmd->ulpContext;
9276 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
9277 if (evt_code == ASYNC_TEMP_WARN) {
9278 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
9279 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9280 "0347 Adapter is very hot, please take "
9281 "corrective action. temperature : %d Celsius\n",
9282 (uint32_t) icmd->ulpContext);
9283 } else {
9284 temp_event_data.event_code = LPFC_NORMAL_TEMP;
9285 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9286 "0340 Adapter temperature is OK now. "
9287 "temperature : %d Celsius\n",
9288 (uint32_t) icmd->ulpContext);
9289 }
9290
9291 /* Send temperature change event to applications */
9292 shost = lpfc_shost_from_vport(phba->pport);
9293 fc_host_post_vendor_event(shost, fc_get_event_number(),
9294 sizeof(temp_event_data), (char *) &temp_event_data,
9295 LPFC_NL_VENDOR_ID);
9296 break;
9297 case ASYNC_STATUS_CN:
9298 lpfc_sli_abts_err_handler(phba, iocbq);
9299 break;
9300 default:
9301 iocb_w = (uint32_t *) icmd;
9302 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9303 "0346 Ring %d handler: unexpected ASYNC_STATUS"
9304 " evt_code 0x%x\n"
9305 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
9306 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
9307 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
9308 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
9309 pring->ringno, icmd->un.asyncstat.evt_code,
9310 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
9311 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
9312 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
9313 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
9314
9315 break;
9316 }
9317 }
9318
9319
9320 /**
9321 * lpfc_sli_setup - SLI ring setup function
9322 * @phba: Pointer to HBA context object.
9323 *
9324 * lpfc_sli_setup sets up rings of the SLI interface with
9325 * number of iocbs per ring and iotags. This function is
9326 * called while driver attach to the HBA and before the
9327 * interrupts are enabled. So there is no need for locking.
9328 *
9329 * This function always returns 0.
9330 **/
9331 int
9332 lpfc_sli_setup(struct lpfc_hba *phba)
9333 {
9334 int i, totiocbsize = 0;
9335 struct lpfc_sli *psli = &phba->sli;
9336 struct lpfc_sli_ring *pring;
9337
9338 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
9339 if (phba->sli_rev == LPFC_SLI_REV4)
9340 psli->num_rings += phba->cfg_fcp_io_channel;
9341 psli->sli_flag = 0;
9342 psli->fcp_ring = LPFC_FCP_RING;
9343 psli->next_ring = LPFC_FCP_NEXT_RING;
9344 psli->extra_ring = LPFC_EXTRA_RING;
9345
9346 psli->iocbq_lookup = NULL;
9347 psli->iocbq_lookup_len = 0;
9348 psli->last_iotag = 0;
9349
9350 for (i = 0; i < psli->num_rings; i++) {
9351 pring = &psli->ring[i];
9352 switch (i) {
9353 case LPFC_FCP_RING: /* ring 0 - FCP */
9354 /* numCiocb and numRiocb are used in config_port */
9355 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
9356 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
9357 pring->sli.sli3.numCiocb +=
9358 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9359 pring->sli.sli3.numRiocb +=
9360 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9361 pring->sli.sli3.numCiocb +=
9362 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9363 pring->sli.sli3.numRiocb +=
9364 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9365 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9366 SLI3_IOCB_CMD_SIZE :
9367 SLI2_IOCB_CMD_SIZE;
9368 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9369 SLI3_IOCB_RSP_SIZE :
9370 SLI2_IOCB_RSP_SIZE;
9371 pring->iotag_ctr = 0;
9372 pring->iotag_max =
9373 (phba->cfg_hba_queue_depth * 2);
9374 pring->fast_iotag = pring->iotag_max;
9375 pring->num_mask = 0;
9376 break;
9377 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
9378 /* numCiocb and numRiocb are used in config_port */
9379 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
9380 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
9381 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9382 SLI3_IOCB_CMD_SIZE :
9383 SLI2_IOCB_CMD_SIZE;
9384 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9385 SLI3_IOCB_RSP_SIZE :
9386 SLI2_IOCB_RSP_SIZE;
9387 pring->iotag_max = phba->cfg_hba_queue_depth;
9388 pring->num_mask = 0;
9389 break;
9390 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
9391 /* numCiocb and numRiocb are used in config_port */
9392 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
9393 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
9394 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9395 SLI3_IOCB_CMD_SIZE :
9396 SLI2_IOCB_CMD_SIZE;
9397 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9398 SLI3_IOCB_RSP_SIZE :
9399 SLI2_IOCB_RSP_SIZE;
9400 pring->fast_iotag = 0;
9401 pring->iotag_ctr = 0;
9402 pring->iotag_max = 4096;
9403 pring->lpfc_sli_rcv_async_status =
9404 lpfc_sli_async_event_handler;
9405 pring->num_mask = LPFC_MAX_RING_MASK;
9406 pring->prt[0].profile = 0; /* Mask 0 */
9407 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9408 pring->prt[0].type = FC_TYPE_ELS;
9409 pring->prt[0].lpfc_sli_rcv_unsol_event =
9410 lpfc_els_unsol_event;
9411 pring->prt[1].profile = 0; /* Mask 1 */
9412 pring->prt[1].rctl = FC_RCTL_ELS_REP;
9413 pring->prt[1].type = FC_TYPE_ELS;
9414 pring->prt[1].lpfc_sli_rcv_unsol_event =
9415 lpfc_els_unsol_event;
9416 pring->prt[2].profile = 0; /* Mask 2 */
9417 /* NameServer Inquiry */
9418 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9419 /* NameServer */
9420 pring->prt[2].type = FC_TYPE_CT;
9421 pring->prt[2].lpfc_sli_rcv_unsol_event =
9422 lpfc_ct_unsol_event;
9423 pring->prt[3].profile = 0; /* Mask 3 */
9424 /* NameServer response */
9425 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9426 /* NameServer */
9427 pring->prt[3].type = FC_TYPE_CT;
9428 pring->prt[3].lpfc_sli_rcv_unsol_event =
9429 lpfc_ct_unsol_event;
9430 break;
9431 }
9432 totiocbsize += (pring->sli.sli3.numCiocb *
9433 pring->sli.sli3.sizeCiocb) +
9434 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
9435 }
9436 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
9437 /* Too many cmd / rsp ring entries in SLI2 SLIM */
9438 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
9439 "SLI2 SLIM Data: x%x x%lx\n",
9440 phba->brd_no, totiocbsize,
9441 (unsigned long) MAX_SLIM_IOCB_SIZE);
9442 }
9443 if (phba->cfg_multi_ring_support == 2)
9444 lpfc_extra_ring_setup(phba);
9445
9446 return 0;
9447 }
9448
9449 /**
9450 * lpfc_sli_queue_setup - Queue initialization function
9451 * @phba: Pointer to HBA context object.
9452 *
9453 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each
9454 * ring. This function also initializes ring indices of each ring.
9455 * This function is called during the initialization of the SLI
9456 * interface of an HBA.
9457 * This function is called with no lock held and always returns
9458 * 1.
9459 **/
9460 int
9461 lpfc_sli_queue_setup(struct lpfc_hba *phba)
9462 {
9463 struct lpfc_sli *psli;
9464 struct lpfc_sli_ring *pring;
9465 int i;
9466
9467 psli = &phba->sli;
9468 spin_lock_irq(&phba->hbalock);
9469 INIT_LIST_HEAD(&psli->mboxq);
9470 INIT_LIST_HEAD(&psli->mboxq_cmpl);
9471 /* Initialize list headers for txq and txcmplq as double linked lists */
9472 for (i = 0; i < psli->num_rings; i++) {
9473 pring = &psli->ring[i];
9474 pring->ringno = i;
9475 pring->sli.sli3.next_cmdidx = 0;
9476 pring->sli.sli3.local_getidx = 0;
9477 pring->sli.sli3.cmdidx = 0;
9478 pring->flag = 0;
9479 INIT_LIST_HEAD(&pring->txq);
9480 INIT_LIST_HEAD(&pring->txcmplq);
9481 INIT_LIST_HEAD(&pring->iocb_continueq);
9482 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
9483 INIT_LIST_HEAD(&pring->postbufq);
9484 spin_lock_init(&pring->ring_lock);
9485 }
9486 spin_unlock_irq(&phba->hbalock);
9487 return 1;
9488 }
9489
9490 /**
9491 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
9492 * @phba: Pointer to HBA context object.
9493 *
9494 * This routine flushes the mailbox command subsystem. It will unconditionally
9495 * flush all the mailbox commands in the three possible stages in the mailbox
9496 * command sub-system: pending mailbox command queue; the outstanding mailbox
9497 * command; and completed mailbox command queue. It is caller's responsibility
9498 * to make sure that the driver is in the proper state to flush the mailbox
9499 * command sub-system. Namely, the posting of mailbox commands into the
9500 * pending mailbox command queue from the various clients must be stopped;
9501 * either the HBA is in a state that it will never works on the outstanding
9502 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
9503 * mailbox command has been completed.
9504 **/
9505 static void
9506 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
9507 {
9508 LIST_HEAD(completions);
9509 struct lpfc_sli *psli = &phba->sli;
9510 LPFC_MBOXQ_t *pmb;
9511 unsigned long iflag;
9512
9513 /* Flush all the mailbox commands in the mbox system */
9514 spin_lock_irqsave(&phba->hbalock, iflag);
9515 /* The pending mailbox command queue */
9516 list_splice_init(&phba->sli.mboxq, &completions);
9517 /* The outstanding active mailbox command */
9518 if (psli->mbox_active) {
9519 list_add_tail(&psli->mbox_active->list, &completions);
9520 psli->mbox_active = NULL;
9521 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9522 }
9523 /* The completed mailbox command queue */
9524 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
9525 spin_unlock_irqrestore(&phba->hbalock, iflag);
9526
9527 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
9528 while (!list_empty(&completions)) {
9529 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
9530 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
9531 if (pmb->mbox_cmpl)
9532 pmb->mbox_cmpl(phba, pmb);
9533 }
9534 }
9535
9536 /**
9537 * lpfc_sli_host_down - Vport cleanup function
9538 * @vport: Pointer to virtual port object.
9539 *
9540 * lpfc_sli_host_down is called to clean up the resources
9541 * associated with a vport before destroying virtual
9542 * port data structures.
9543 * This function does following operations:
9544 * - Free discovery resources associated with this virtual
9545 * port.
9546 * - Free iocbs associated with this virtual port in
9547 * the txq.
9548 * - Send abort for all iocb commands associated with this
9549 * vport in txcmplq.
9550 *
9551 * This function is called with no lock held and always returns 1.
9552 **/
9553 int
9554 lpfc_sli_host_down(struct lpfc_vport *vport)
9555 {
9556 LIST_HEAD(completions);
9557 struct lpfc_hba *phba = vport->phba;
9558 struct lpfc_sli *psli = &phba->sli;
9559 struct lpfc_sli_ring *pring;
9560 struct lpfc_iocbq *iocb, *next_iocb;
9561 int i;
9562 unsigned long flags = 0;
9563 uint16_t prev_pring_flag;
9564
9565 lpfc_cleanup_discovery_resources(vport);
9566
9567 spin_lock_irqsave(&phba->hbalock, flags);
9568 for (i = 0; i < psli->num_rings; i++) {
9569 pring = &psli->ring[i];
9570 prev_pring_flag = pring->flag;
9571 /* Only slow rings */
9572 if (pring->ringno == LPFC_ELS_RING) {
9573 pring->flag |= LPFC_DEFERRED_RING_EVENT;
9574 /* Set the lpfc data pending flag */
9575 set_bit(LPFC_DATA_READY, &phba->data_flags);
9576 }
9577 /*
9578 * Error everything on the txq since these iocbs have not been
9579 * given to the FW yet.
9580 */
9581 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) {
9582 if (iocb->vport != vport)
9583 continue;
9584 list_move_tail(&iocb->list, &completions);
9585 }
9586
9587 /* Next issue ABTS for everything on the txcmplq */
9588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq,
9589 list) {
9590 if (iocb->vport != vport)
9591 continue;
9592 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
9593 }
9594
9595 pring->flag = prev_pring_flag;
9596 }
9597
9598 spin_unlock_irqrestore(&phba->hbalock, flags);
9599
9600 /* Cancel all the IOCBs from the completions list */
9601 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
9602 IOERR_SLI_DOWN);
9603 return 1;
9604 }
9605
9606 /**
9607 * lpfc_sli_hba_down - Resource cleanup function for the HBA
9608 * @phba: Pointer to HBA context object.
9609 *
9610 * This function cleans up all iocb, buffers, mailbox commands
9611 * while shutting down the HBA. This function is called with no
9612 * lock held and always returns 1.
9613 * This function does the following to cleanup driver resources:
9614 * - Free discovery resources for each virtual port
9615 * - Cleanup any pending fabric iocbs
9616 * - Iterate through the iocb txq and free each entry
9617 * in the list.
9618 * - Free up any buffer posted to the HBA
9619 * - Free mailbox commands in the mailbox queue.
9620 **/
9621 int
9622 lpfc_sli_hba_down(struct lpfc_hba *phba)
9623 {
9624 LIST_HEAD(completions);
9625 struct lpfc_sli *psli = &phba->sli;
9626 struct lpfc_sli_ring *pring;
9627 struct lpfc_dmabuf *buf_ptr;
9628 unsigned long flags = 0;
9629 int i;
9630
9631 /* Shutdown the mailbox command sub-system */
9632 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
9633
9634 lpfc_hba_down_prep(phba);
9635
9636 lpfc_fabric_abort_hba(phba);
9637
9638 spin_lock_irqsave(&phba->hbalock, flags);
9639 for (i = 0; i < psli->num_rings; i++) {
9640 pring = &psli->ring[i];
9641 /* Only slow rings */
9642 if (pring->ringno == LPFC_ELS_RING) {
9643 pring->flag |= LPFC_DEFERRED_RING_EVENT;
9644 /* Set the lpfc data pending flag */
9645 set_bit(LPFC_DATA_READY, &phba->data_flags);
9646 }
9647
9648 /*
9649 * Error everything on the txq since these iocbs have not been
9650 * given to the FW yet.
9651 */
9652 list_splice_init(&pring->txq, &completions);
9653 }
9654 spin_unlock_irqrestore(&phba->hbalock, flags);
9655
9656 /* Cancel all the IOCBs from the completions list */
9657 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
9658 IOERR_SLI_DOWN);
9659
9660 spin_lock_irqsave(&phba->hbalock, flags);
9661 list_splice_init(&phba->elsbuf, &completions);
9662 phba->elsbuf_cnt = 0;
9663 phba->elsbuf_prev_cnt = 0;
9664 spin_unlock_irqrestore(&phba->hbalock, flags);
9665
9666 while (!list_empty(&completions)) {
9667 list_remove_head(&completions, buf_ptr,
9668 struct lpfc_dmabuf, list);
9669 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
9670 kfree(buf_ptr);
9671 }
9672
9673 /* Return any active mbox cmds */
9674 del_timer_sync(&psli->mbox_tmo);
9675
9676 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
9677 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9678 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
9679
9680 return 1;
9681 }
9682
9683 /**
9684 * lpfc_sli_pcimem_bcopy - SLI memory copy function
9685 * @srcp: Source memory pointer.
9686 * @destp: Destination memory pointer.
9687 * @cnt: Number of words required to be copied.
9688 *
9689 * This function is used for copying data between driver memory
9690 * and the SLI memory. This function also changes the endianness
9691 * of each word if native endianness is different from SLI
9692 * endianness. This function can be called with or without
9693 * lock.
9694 **/
9695 void
9696 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
9697 {
9698 uint32_t *src = srcp;
9699 uint32_t *dest = destp;
9700 uint32_t ldata;
9701 int i;
9702
9703 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
9704 ldata = *src;
9705 ldata = le32_to_cpu(ldata);
9706 *dest = ldata;
9707 src++;
9708 dest++;
9709 }
9710 }
9711
9712
9713 /**
9714 * lpfc_sli_bemem_bcopy - SLI memory copy function
9715 * @srcp: Source memory pointer.
9716 * @destp: Destination memory pointer.
9717 * @cnt: Number of words required to be copied.
9718 *
9719 * This function is used for copying data between a data structure
9720 * with big endian representation to local endianness.
9721 * This function can be called with or without lock.
9722 **/
9723 void
9724 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
9725 {
9726 uint32_t *src = srcp;
9727 uint32_t *dest = destp;
9728 uint32_t ldata;
9729 int i;
9730
9731 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
9732 ldata = *src;
9733 ldata = be32_to_cpu(ldata);
9734 *dest = ldata;
9735 src++;
9736 dest++;
9737 }
9738 }
9739
9740 /**
9741 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
9742 * @phba: Pointer to HBA context object.
9743 * @pring: Pointer to driver SLI ring object.
9744 * @mp: Pointer to driver buffer object.
9745 *
9746 * This function is called with no lock held.
9747 * It always return zero after adding the buffer to the postbufq
9748 * buffer list.
9749 **/
9750 int
9751 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9752 struct lpfc_dmabuf *mp)
9753 {
9754 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
9755 later */
9756 spin_lock_irq(&phba->hbalock);
9757 list_add_tail(&mp->list, &pring->postbufq);
9758 pring->postbufq_cnt++;
9759 spin_unlock_irq(&phba->hbalock);
9760 return 0;
9761 }
9762
9763 /**
9764 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
9765 * @phba: Pointer to HBA context object.
9766 *
9767 * When HBQ is enabled, buffers are searched based on tags. This function
9768 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
9769 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
9770 * does not conflict with tags of buffer posted for unsolicited events.
9771 * The function returns the allocated tag. The function is called with
9772 * no locks held.
9773 **/
9774 uint32_t
9775 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
9776 {
9777 spin_lock_irq(&phba->hbalock);
9778 phba->buffer_tag_count++;
9779 /*
9780 * Always set the QUE_BUFTAG_BIT to distiguish between
9781 * a tag assigned by HBQ.
9782 */
9783 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
9784 spin_unlock_irq(&phba->hbalock);
9785 return phba->buffer_tag_count;
9786 }
9787
9788 /**
9789 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
9790 * @phba: Pointer to HBA context object.
9791 * @pring: Pointer to driver SLI ring object.
9792 * @tag: Buffer tag.
9793 *
9794 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
9795 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
9796 * iocb is posted to the response ring with the tag of the buffer.
9797 * This function searches the pring->postbufq list using the tag
9798 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
9799 * iocb. If the buffer is found then lpfc_dmabuf object of the
9800 * buffer is returned to the caller else NULL is returned.
9801 * This function is called with no lock held.
9802 **/
9803 struct lpfc_dmabuf *
9804 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9805 uint32_t tag)
9806 {
9807 struct lpfc_dmabuf *mp, *next_mp;
9808 struct list_head *slp = &pring->postbufq;
9809
9810 /* Search postbufq, from the beginning, looking for a match on tag */
9811 spin_lock_irq(&phba->hbalock);
9812 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
9813 if (mp->buffer_tag == tag) {
9814 list_del_init(&mp->list);
9815 pring->postbufq_cnt--;
9816 spin_unlock_irq(&phba->hbalock);
9817 return mp;
9818 }
9819 }
9820
9821 spin_unlock_irq(&phba->hbalock);
9822 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9823 "0402 Cannot find virtual addr for buffer tag on "
9824 "ring %d Data x%lx x%p x%p x%x\n",
9825 pring->ringno, (unsigned long) tag,
9826 slp->next, slp->prev, pring->postbufq_cnt);
9827
9828 return NULL;
9829 }
9830
9831 /**
9832 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
9833 * @phba: Pointer to HBA context object.
9834 * @pring: Pointer to driver SLI ring object.
9835 * @phys: DMA address of the buffer.
9836 *
9837 * This function searches the buffer list using the dma_address
9838 * of unsolicited event to find the driver's lpfc_dmabuf object
9839 * corresponding to the dma_address. The function returns the
9840 * lpfc_dmabuf object if a buffer is found else it returns NULL.
9841 * This function is called by the ct and els unsolicited event
9842 * handlers to get the buffer associated with the unsolicited
9843 * event.
9844 *
9845 * This function is called with no lock held.
9846 **/
9847 struct lpfc_dmabuf *
9848 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9849 dma_addr_t phys)
9850 {
9851 struct lpfc_dmabuf *mp, *next_mp;
9852 struct list_head *slp = &pring->postbufq;
9853
9854 /* Search postbufq, from the beginning, looking for a match on phys */
9855 spin_lock_irq(&phba->hbalock);
9856 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
9857 if (mp->phys == phys) {
9858 list_del_init(&mp->list);
9859 pring->postbufq_cnt--;
9860 spin_unlock_irq(&phba->hbalock);
9861 return mp;
9862 }
9863 }
9864
9865 spin_unlock_irq(&phba->hbalock);
9866 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9867 "0410 Cannot find virtual addr for mapped buf on "
9868 "ring %d Data x%llx x%p x%p x%x\n",
9869 pring->ringno, (unsigned long long)phys,
9870 slp->next, slp->prev, pring->postbufq_cnt);
9871 return NULL;
9872 }
9873
9874 /**
9875 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
9876 * @phba: Pointer to HBA context object.
9877 * @cmdiocb: Pointer to driver command iocb object.
9878 * @rspiocb: Pointer to driver response iocb object.
9879 *
9880 * This function is the completion handler for the abort iocbs for
9881 * ELS commands. This function is called from the ELS ring event
9882 * handler with no lock held. This function frees memory resources
9883 * associated with the abort iocb.
9884 **/
9885 static void
9886 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9887 struct lpfc_iocbq *rspiocb)
9888 {
9889 IOCB_t *irsp = &rspiocb->iocb;
9890 uint16_t abort_iotag, abort_context;
9891 struct lpfc_iocbq *abort_iocb = NULL;
9892
9893 if (irsp->ulpStatus) {
9894
9895 /*
9896 * Assume that the port already completed and returned, or
9897 * will return the iocb. Just Log the message.
9898 */
9899 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
9900 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
9901
9902 spin_lock_irq(&phba->hbalock);
9903 if (phba->sli_rev < LPFC_SLI_REV4) {
9904 if (abort_iotag != 0 &&
9905 abort_iotag <= phba->sli.last_iotag)
9906 abort_iocb =
9907 phba->sli.iocbq_lookup[abort_iotag];
9908 } else
9909 /* For sli4 the abort_tag is the XRI,
9910 * so the abort routine puts the iotag of the iocb
9911 * being aborted in the context field of the abort
9912 * IOCB.
9913 */
9914 abort_iocb = phba->sli.iocbq_lookup[abort_context];
9915
9916 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
9917 "0327 Cannot abort els iocb %p "
9918 "with tag %x context %x, abort status %x, "
9919 "abort code %x\n",
9920 abort_iocb, abort_iotag, abort_context,
9921 irsp->ulpStatus, irsp->un.ulpWord[4]);
9922
9923 spin_unlock_irq(&phba->hbalock);
9924 }
9925 lpfc_sli_release_iocbq(phba, cmdiocb);
9926 return;
9927 }
9928
9929 /**
9930 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
9931 * @phba: Pointer to HBA context object.
9932 * @cmdiocb: Pointer to driver command iocb object.
9933 * @rspiocb: Pointer to driver response iocb object.
9934 *
9935 * The function is called from SLI ring event handler with no
9936 * lock held. This function is the completion handler for ELS commands
9937 * which are aborted. The function frees memory resources used for
9938 * the aborted ELS commands.
9939 **/
9940 static void
9941 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9942 struct lpfc_iocbq *rspiocb)
9943 {
9944 IOCB_t *irsp = &rspiocb->iocb;
9945
9946 /* ELS cmd tag <ulpIoTag> completes */
9947 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
9948 "0139 Ignoring ELS cmd tag x%x completion Data: "
9949 "x%x x%x x%x\n",
9950 irsp->ulpIoTag, irsp->ulpStatus,
9951 irsp->un.ulpWord[4], irsp->ulpTimeout);
9952 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
9953 lpfc_ct_free_iocb(phba, cmdiocb);
9954 else
9955 lpfc_els_free_iocb(phba, cmdiocb);
9956 return;
9957 }
9958
9959 /**
9960 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
9961 * @phba: Pointer to HBA context object.
9962 * @pring: Pointer to driver SLI ring object.
9963 * @cmdiocb: Pointer to driver command iocb object.
9964 *
9965 * This function issues an abort iocb for the provided command iocb down to
9966 * the port. Other than the case the outstanding command iocb is an abort
9967 * request, this function issues abort out unconditionally. This function is
9968 * called with hbalock held. The function returns 0 when it fails due to
9969 * memory allocation failure or when the command iocb is an abort request.
9970 **/
9971 static int
9972 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9973 struct lpfc_iocbq *cmdiocb)
9974 {
9975 struct lpfc_vport *vport = cmdiocb->vport;
9976 struct lpfc_iocbq *abtsiocbp;
9977 IOCB_t *icmd = NULL;
9978 IOCB_t *iabt = NULL;
9979 int ring_number;
9980 int retval;
9981 unsigned long iflags;
9982
9983 lockdep_assert_held(&phba->hbalock);
9984
9985 /*
9986 * There are certain command types we don't want to abort. And we
9987 * don't want to abort commands that are already in the process of
9988 * being aborted.
9989 */
9990 icmd = &cmdiocb->iocb;
9991 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
9992 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
9993 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
9994 return 0;
9995
9996 /* issue ABTS for this IOCB based on iotag */
9997 abtsiocbp = __lpfc_sli_get_iocbq(phba);
9998 if (abtsiocbp == NULL)
9999 return 0;
10000
10001 /* This signals the response to set the correct status
10002 * before calling the completion handler
10003 */
10004 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10005
10006 iabt = &abtsiocbp->iocb;
10007 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
10008 iabt->un.acxri.abortContextTag = icmd->ulpContext;
10009 if (phba->sli_rev == LPFC_SLI_REV4) {
10010 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
10011 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
10012 }
10013 else
10014 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
10015 iabt->ulpLe = 1;
10016 iabt->ulpClass = icmd->ulpClass;
10017
10018 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10019 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx;
10020 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
10021 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
10022 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
10023 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
10024
10025 if (phba->link_state >= LPFC_LINK_UP)
10026 iabt->ulpCommand = CMD_ABORT_XRI_CN;
10027 else
10028 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
10029
10030 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
10031
10032 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
10033 "0339 Abort xri x%x, original iotag x%x, "
10034 "abort cmd iotag x%x\n",
10035 iabt->un.acxri.abortIoTag,
10036 iabt->un.acxri.abortContextTag,
10037 abtsiocbp->iotag);
10038
10039 if (phba->sli_rev == LPFC_SLI_REV4) {
10040 ring_number =
10041 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp);
10042 if (unlikely(ring_number == LPFC_HBA_ERROR))
10043 return 0;
10044 pring = &phba->sli.ring[ring_number];
10045 /* Note: both hbalock and ring_lock need to be set here */
10046 spin_lock_irqsave(&pring->ring_lock, iflags);
10047 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10048 abtsiocbp, 0);
10049 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10050 } else {
10051 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10052 abtsiocbp, 0);
10053 }
10054
10055 if (retval)
10056 __lpfc_sli_release_iocbq(phba, abtsiocbp);
10057
10058 /*
10059 * Caller to this routine should check for IOCB_ERROR
10060 * and handle it properly. This routine no longer removes
10061 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10062 */
10063 return retval;
10064 }
10065
10066 /**
10067 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
10068 * @phba: Pointer to HBA context object.
10069 * @pring: Pointer to driver SLI ring object.
10070 * @cmdiocb: Pointer to driver command iocb object.
10071 *
10072 * This function issues an abort iocb for the provided command iocb. In case
10073 * of unloading, the abort iocb will not be issued to commands on the ELS
10074 * ring. Instead, the callback function shall be changed to those commands
10075 * so that nothing happens when them finishes. This function is called with
10076 * hbalock held. The function returns 0 when the command iocb is an abort
10077 * request.
10078 **/
10079 int
10080 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10081 struct lpfc_iocbq *cmdiocb)
10082 {
10083 struct lpfc_vport *vport = cmdiocb->vport;
10084 int retval = IOCB_ERROR;
10085 IOCB_t *icmd = NULL;
10086
10087 lockdep_assert_held(&phba->hbalock);
10088
10089 /*
10090 * There are certain command types we don't want to abort. And we
10091 * don't want to abort commands that are already in the process of
10092 * being aborted.
10093 */
10094 icmd = &cmdiocb->iocb;
10095 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10096 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10097 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10098 return 0;
10099
10100 /*
10101 * If we're unloading, don't abort iocb on the ELS ring, but change
10102 * the callback so that nothing happens when it finishes.
10103 */
10104 if ((vport->load_flag & FC_UNLOADING) &&
10105 (pring->ringno == LPFC_ELS_RING)) {
10106 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
10107 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
10108 else
10109 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
10110 goto abort_iotag_exit;
10111 }
10112
10113 /* Now, we try to issue the abort to the cmdiocb out */
10114 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
10115
10116 abort_iotag_exit:
10117 /*
10118 * Caller to this routine should check for IOCB_ERROR
10119 * and handle it properly. This routine no longer removes
10120 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10121 */
10122 return retval;
10123 }
10124
10125 /**
10126 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
10127 * @phba: pointer to lpfc HBA data structure.
10128 *
10129 * This routine will abort all pending and outstanding iocbs to an HBA.
10130 **/
10131 void
10132 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
10133 {
10134 struct lpfc_sli *psli = &phba->sli;
10135 struct lpfc_sli_ring *pring;
10136 int i;
10137
10138 for (i = 0; i < psli->num_rings; i++) {
10139 pring = &psli->ring[i];
10140 lpfc_sli_abort_iocb_ring(phba, pring);
10141 }
10142 }
10143
10144 /**
10145 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
10146 * @iocbq: Pointer to driver iocb object.
10147 * @vport: Pointer to driver virtual port object.
10148 * @tgt_id: SCSI ID of the target.
10149 * @lun_id: LUN ID of the scsi device.
10150 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
10151 *
10152 * This function acts as an iocb filter for functions which abort or count
10153 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
10154 * 0 if the filtering criteria is met for the given iocb and will return
10155 * 1 if the filtering criteria is not met.
10156 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
10157 * given iocb is for the SCSI device specified by vport, tgt_id and
10158 * lun_id parameter.
10159 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
10160 * given iocb is for the SCSI target specified by vport and tgt_id
10161 * parameters.
10162 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
10163 * given iocb is for the SCSI host associated with the given vport.
10164 * This function is called with no locks held.
10165 **/
10166 static int
10167 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
10168 uint16_t tgt_id, uint64_t lun_id,
10169 lpfc_ctx_cmd ctx_cmd)
10170 {
10171 struct lpfc_scsi_buf *lpfc_cmd;
10172 int rc = 1;
10173
10174 if (!(iocbq->iocb_flag & LPFC_IO_FCP))
10175 return rc;
10176
10177 if (iocbq->vport != vport)
10178 return rc;
10179
10180 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10181
10182 if (lpfc_cmd->pCmd == NULL)
10183 return rc;
10184
10185 switch (ctx_cmd) {
10186 case LPFC_CTX_LUN:
10187 if ((lpfc_cmd->rdata->pnode) &&
10188 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
10189 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
10190 rc = 0;
10191 break;
10192 case LPFC_CTX_TGT:
10193 if ((lpfc_cmd->rdata->pnode) &&
10194 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
10195 rc = 0;
10196 break;
10197 case LPFC_CTX_HOST:
10198 rc = 0;
10199 break;
10200 default:
10201 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
10202 __func__, ctx_cmd);
10203 break;
10204 }
10205
10206 return rc;
10207 }
10208
10209 /**
10210 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
10211 * @vport: Pointer to virtual port.
10212 * @tgt_id: SCSI ID of the target.
10213 * @lun_id: LUN ID of the scsi device.
10214 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10215 *
10216 * This function returns number of FCP commands pending for the vport.
10217 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
10218 * commands pending on the vport associated with SCSI device specified
10219 * by tgt_id and lun_id parameters.
10220 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
10221 * commands pending on the vport associated with SCSI target specified
10222 * by tgt_id parameter.
10223 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
10224 * commands pending on the vport.
10225 * This function returns the number of iocbs which satisfy the filter.
10226 * This function is called without any lock held.
10227 **/
10228 int
10229 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
10230 lpfc_ctx_cmd ctx_cmd)
10231 {
10232 struct lpfc_hba *phba = vport->phba;
10233 struct lpfc_iocbq *iocbq;
10234 int sum, i;
10235
10236 spin_lock_irq(&phba->hbalock);
10237 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
10238 iocbq = phba->sli.iocbq_lookup[i];
10239
10240 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
10241 ctx_cmd) == 0)
10242 sum++;
10243 }
10244 spin_unlock_irq(&phba->hbalock);
10245
10246 return sum;
10247 }
10248
10249 /**
10250 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
10251 * @phba: Pointer to HBA context object
10252 * @cmdiocb: Pointer to command iocb object.
10253 * @rspiocb: Pointer to response iocb object.
10254 *
10255 * This function is called when an aborted FCP iocb completes. This
10256 * function is called by the ring event handler with no lock held.
10257 * This function frees the iocb.
10258 **/
10259 void
10260 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10261 struct lpfc_iocbq *rspiocb)
10262 {
10263 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10264 "3096 ABORT_XRI_CN completing on rpi x%x "
10265 "original iotag x%x, abort cmd iotag x%x "
10266 "status 0x%x, reason 0x%x\n",
10267 cmdiocb->iocb.un.acxri.abortContextTag,
10268 cmdiocb->iocb.un.acxri.abortIoTag,
10269 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
10270 rspiocb->iocb.un.ulpWord[4]);
10271 lpfc_sli_release_iocbq(phba, cmdiocb);
10272 return;
10273 }
10274
10275 /**
10276 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
10277 * @vport: Pointer to virtual port.
10278 * @pring: Pointer to driver SLI ring object.
10279 * @tgt_id: SCSI ID of the target.
10280 * @lun_id: LUN ID of the scsi device.
10281 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10282 *
10283 * This function sends an abort command for every SCSI command
10284 * associated with the given virtual port pending on the ring
10285 * filtered by lpfc_sli_validate_fcp_iocb function.
10286 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
10287 * FCP iocbs associated with lun specified by tgt_id and lun_id
10288 * parameters
10289 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
10290 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10291 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
10292 * FCP iocbs associated with virtual port.
10293 * This function returns number of iocbs it failed to abort.
10294 * This function is called with no locks held.
10295 **/
10296 int
10297 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10298 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
10299 {
10300 struct lpfc_hba *phba = vport->phba;
10301 struct lpfc_iocbq *iocbq;
10302 struct lpfc_iocbq *abtsiocb;
10303 IOCB_t *cmd = NULL;
10304 int errcnt = 0, ret_val = 0;
10305 int i;
10306
10307 for (i = 1; i <= phba->sli.last_iotag; i++) {
10308 iocbq = phba->sli.iocbq_lookup[i];
10309
10310 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10311 abort_cmd) != 0)
10312 continue;
10313
10314 /*
10315 * If the iocbq is already being aborted, don't take a second
10316 * action, but do count it.
10317 */
10318 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10319 continue;
10320
10321 /* issue ABTS for this IOCB based on iotag */
10322 abtsiocb = lpfc_sli_get_iocbq(phba);
10323 if (abtsiocb == NULL) {
10324 errcnt++;
10325 continue;
10326 }
10327
10328 /* indicate the IO is being aborted by the driver. */
10329 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10330
10331 cmd = &iocbq->iocb;
10332 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10333 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
10334 if (phba->sli_rev == LPFC_SLI_REV4)
10335 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
10336 else
10337 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
10338 abtsiocb->iocb.ulpLe = 1;
10339 abtsiocb->iocb.ulpClass = cmd->ulpClass;
10340 abtsiocb->vport = vport;
10341
10342 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10343 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx;
10344 if (iocbq->iocb_flag & LPFC_IO_FCP)
10345 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
10346 if (iocbq->iocb_flag & LPFC_IO_FOF)
10347 abtsiocb->iocb_flag |= LPFC_IO_FOF;
10348
10349 if (lpfc_is_link_up(phba))
10350 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
10351 else
10352 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
10353
10354 /* Setup callback routine and issue the command. */
10355 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
10356 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
10357 abtsiocb, 0);
10358 if (ret_val == IOCB_ERROR) {
10359 lpfc_sli_release_iocbq(phba, abtsiocb);
10360 errcnt++;
10361 continue;
10362 }
10363 }
10364
10365 return errcnt;
10366 }
10367
10368 /**
10369 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
10370 * @vport: Pointer to virtual port.
10371 * @pring: Pointer to driver SLI ring object.
10372 * @tgt_id: SCSI ID of the target.
10373 * @lun_id: LUN ID of the scsi device.
10374 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10375 *
10376 * This function sends an abort command for every SCSI command
10377 * associated with the given virtual port pending on the ring
10378 * filtered by lpfc_sli_validate_fcp_iocb function.
10379 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
10380 * FCP iocbs associated with lun specified by tgt_id and lun_id
10381 * parameters
10382 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
10383 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10384 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
10385 * FCP iocbs associated with virtual port.
10386 * This function returns number of iocbs it aborted .
10387 * This function is called with no locks held right after a taskmgmt
10388 * command is sent.
10389 **/
10390 int
10391 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10392 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
10393 {
10394 struct lpfc_hba *phba = vport->phba;
10395 struct lpfc_scsi_buf *lpfc_cmd;
10396 struct lpfc_iocbq *abtsiocbq;
10397 struct lpfc_nodelist *ndlp;
10398 struct lpfc_iocbq *iocbq;
10399 IOCB_t *icmd;
10400 int sum, i, ret_val;
10401 unsigned long iflags;
10402 struct lpfc_sli_ring *pring_s4;
10403 uint32_t ring_number;
10404
10405 spin_lock_irq(&phba->hbalock);
10406
10407 /* all I/Os are in process of being flushed */
10408 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
10409 spin_unlock_irq(&phba->hbalock);
10410 return 0;
10411 }
10412 sum = 0;
10413
10414 for (i = 1; i <= phba->sli.last_iotag; i++) {
10415 iocbq = phba->sli.iocbq_lookup[i];
10416
10417 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10418 cmd) != 0)
10419 continue;
10420
10421 /*
10422 * If the iocbq is already being aborted, don't take a second
10423 * action, but do count it.
10424 */
10425 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10426 continue;
10427
10428 /* issue ABTS for this IOCB based on iotag */
10429 abtsiocbq = __lpfc_sli_get_iocbq(phba);
10430 if (abtsiocbq == NULL)
10431 continue;
10432
10433 icmd = &iocbq->iocb;
10434 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10435 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
10436 if (phba->sli_rev == LPFC_SLI_REV4)
10437 abtsiocbq->iocb.un.acxri.abortIoTag =
10438 iocbq->sli4_xritag;
10439 else
10440 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
10441 abtsiocbq->iocb.ulpLe = 1;
10442 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
10443 abtsiocbq->vport = vport;
10444
10445 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10446 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx;
10447 if (iocbq->iocb_flag & LPFC_IO_FCP)
10448 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
10449 if (iocbq->iocb_flag & LPFC_IO_FOF)
10450 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
10451
10452 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10453 ndlp = lpfc_cmd->rdata->pnode;
10454
10455 if (lpfc_is_link_up(phba) &&
10456 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
10457 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
10458 else
10459 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
10460
10461 /* Setup callback routine and issue the command. */
10462 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
10463
10464 /*
10465 * Indicate the IO is being aborted by the driver and set
10466 * the caller's flag into the aborted IO.
10467 */
10468 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10469
10470 if (phba->sli_rev == LPFC_SLI_REV4) {
10471 ring_number = MAX_SLI3_CONFIGURED_RINGS +
10472 iocbq->fcp_wqidx;
10473 pring_s4 = &phba->sli.ring[ring_number];
10474 /* Note: both hbalock and ring_lock must be set here */
10475 spin_lock_irqsave(&pring_s4->ring_lock, iflags);
10476 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
10477 abtsiocbq, 0);
10478 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags);
10479 } else {
10480 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
10481 abtsiocbq, 0);
10482 }
10483
10484
10485 if (ret_val == IOCB_ERROR)
10486 __lpfc_sli_release_iocbq(phba, abtsiocbq);
10487 else
10488 sum++;
10489 }
10490 spin_unlock_irq(&phba->hbalock);
10491 return sum;
10492 }
10493
10494 /**
10495 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
10496 * @phba: Pointer to HBA context object.
10497 * @cmdiocbq: Pointer to command iocb.
10498 * @rspiocbq: Pointer to response iocb.
10499 *
10500 * This function is the completion handler for iocbs issued using
10501 * lpfc_sli_issue_iocb_wait function. This function is called by the
10502 * ring event handler function without any lock held. This function
10503 * can be called from both worker thread context and interrupt
10504 * context. This function also can be called from other thread which
10505 * cleans up the SLI layer objects.
10506 * This function copy the contents of the response iocb to the
10507 * response iocb memory object provided by the caller of
10508 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
10509 * sleeps for the iocb completion.
10510 **/
10511 static void
10512 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
10513 struct lpfc_iocbq *cmdiocbq,
10514 struct lpfc_iocbq *rspiocbq)
10515 {
10516 wait_queue_head_t *pdone_q;
10517 unsigned long iflags;
10518 struct lpfc_scsi_buf *lpfc_cmd;
10519
10520 spin_lock_irqsave(&phba->hbalock, iflags);
10521 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
10522
10523 /*
10524 * A time out has occurred for the iocb. If a time out
10525 * completion handler has been supplied, call it. Otherwise,
10526 * just free the iocbq.
10527 */
10528
10529 spin_unlock_irqrestore(&phba->hbalock, iflags);
10530 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
10531 cmdiocbq->wait_iocb_cmpl = NULL;
10532 if (cmdiocbq->iocb_cmpl)
10533 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
10534 else
10535 lpfc_sli_release_iocbq(phba, cmdiocbq);
10536 return;
10537 }
10538
10539 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
10540 if (cmdiocbq->context2 && rspiocbq)
10541 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
10542 &rspiocbq->iocb, sizeof(IOCB_t));
10543
10544 /* Set the exchange busy flag for task management commands */
10545 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
10546 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
10547 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
10548 cur_iocbq);
10549 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
10550 }
10551
10552 pdone_q = cmdiocbq->context_un.wait_queue;
10553 if (pdone_q)
10554 wake_up(pdone_q);
10555 spin_unlock_irqrestore(&phba->hbalock, iflags);
10556 return;
10557 }
10558
10559 /**
10560 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
10561 * @phba: Pointer to HBA context object..
10562 * @piocbq: Pointer to command iocb.
10563 * @flag: Flag to test.
10564 *
10565 * This routine grabs the hbalock and then test the iocb_flag to
10566 * see if the passed in flag is set.
10567 * Returns:
10568 * 1 if flag is set.
10569 * 0 if flag is not set.
10570 **/
10571 static int
10572 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
10573 struct lpfc_iocbq *piocbq, uint32_t flag)
10574 {
10575 unsigned long iflags;
10576 int ret;
10577
10578 spin_lock_irqsave(&phba->hbalock, iflags);
10579 ret = piocbq->iocb_flag & flag;
10580 spin_unlock_irqrestore(&phba->hbalock, iflags);
10581 return ret;
10582
10583 }
10584
10585 /**
10586 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
10587 * @phba: Pointer to HBA context object..
10588 * @pring: Pointer to sli ring.
10589 * @piocb: Pointer to command iocb.
10590 * @prspiocbq: Pointer to response iocb.
10591 * @timeout: Timeout in number of seconds.
10592 *
10593 * This function issues the iocb to firmware and waits for the
10594 * iocb to complete. The iocb_cmpl field of the shall be used
10595 * to handle iocbs which time out. If the field is NULL, the
10596 * function shall free the iocbq structure. If more clean up is
10597 * needed, the caller is expected to provide a completion function
10598 * that will provide the needed clean up. If the iocb command is
10599 * not completed within timeout seconds, the function will either
10600 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
10601 * completion function set in the iocb_cmpl field and then return
10602 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
10603 * resources if this function returns IOCB_TIMEDOUT.
10604 * The function waits for the iocb completion using an
10605 * non-interruptible wait.
10606 * This function will sleep while waiting for iocb completion.
10607 * So, this function should not be called from any context which
10608 * does not allow sleeping. Due to the same reason, this function
10609 * cannot be called with interrupt disabled.
10610 * This function assumes that the iocb completions occur while
10611 * this function sleep. So, this function cannot be called from
10612 * the thread which process iocb completion for this ring.
10613 * This function clears the iocb_flag of the iocb object before
10614 * issuing the iocb and the iocb completion handler sets this
10615 * flag and wakes this thread when the iocb completes.
10616 * The contents of the response iocb will be copied to prspiocbq
10617 * by the completion handler when the command completes.
10618 * This function returns IOCB_SUCCESS when success.
10619 * This function is called with no lock held.
10620 **/
10621 int
10622 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
10623 uint32_t ring_number,
10624 struct lpfc_iocbq *piocb,
10625 struct lpfc_iocbq *prspiocbq,
10626 uint32_t timeout)
10627 {
10628 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
10629 long timeleft, timeout_req = 0;
10630 int retval = IOCB_SUCCESS;
10631 uint32_t creg_val;
10632 struct lpfc_iocbq *iocb;
10633 int txq_cnt = 0;
10634 int txcmplq_cnt = 0;
10635 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
10636 unsigned long iflags;
10637 bool iocb_completed = true;
10638
10639 /*
10640 * If the caller has provided a response iocbq buffer, then context2
10641 * is NULL or its an error.
10642 */
10643 if (prspiocbq) {
10644 if (piocb->context2)
10645 return IOCB_ERROR;
10646 piocb->context2 = prspiocbq;
10647 }
10648
10649 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
10650 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
10651 piocb->context_un.wait_queue = &done_q;
10652 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
10653
10654 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
10655 if (lpfc_readl(phba->HCregaddr, &creg_val))
10656 return IOCB_ERROR;
10657 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
10658 writel(creg_val, phba->HCregaddr);
10659 readl(phba->HCregaddr); /* flush */
10660 }
10661
10662 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
10663 SLI_IOCB_RET_IOCB);
10664 if (retval == IOCB_SUCCESS) {
10665 timeout_req = msecs_to_jiffies(timeout * 1000);
10666 timeleft = wait_event_timeout(done_q,
10667 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
10668 timeout_req);
10669 spin_lock_irqsave(&phba->hbalock, iflags);
10670 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
10671
10672 /*
10673 * IOCB timed out. Inform the wake iocb wait
10674 * completion function and set local status
10675 */
10676
10677 iocb_completed = false;
10678 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
10679 }
10680 spin_unlock_irqrestore(&phba->hbalock, iflags);
10681 if (iocb_completed) {
10682 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10683 "0331 IOCB wake signaled\n");
10684 /* Note: we are not indicating if the IOCB has a success
10685 * status or not - that's for the caller to check.
10686 * IOCB_SUCCESS means just that the command was sent and
10687 * completed. Not that it completed successfully.
10688 * */
10689 } else if (timeleft == 0) {
10690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10691 "0338 IOCB wait timeout error - no "
10692 "wake response Data x%x\n", timeout);
10693 retval = IOCB_TIMEDOUT;
10694 } else {
10695 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10696 "0330 IOCB wake NOT set, "
10697 "Data x%x x%lx\n",
10698 timeout, (timeleft / jiffies));
10699 retval = IOCB_TIMEDOUT;
10700 }
10701 } else if (retval == IOCB_BUSY) {
10702 if (phba->cfg_log_verbose & LOG_SLI) {
10703 list_for_each_entry(iocb, &pring->txq, list) {
10704 txq_cnt++;
10705 }
10706 list_for_each_entry(iocb, &pring->txcmplq, list) {
10707 txcmplq_cnt++;
10708 }
10709 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10710 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
10711 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
10712 }
10713 return retval;
10714 } else {
10715 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10716 "0332 IOCB wait issue failed, Data x%x\n",
10717 retval);
10718 retval = IOCB_ERROR;
10719 }
10720
10721 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
10722 if (lpfc_readl(phba->HCregaddr, &creg_val))
10723 return IOCB_ERROR;
10724 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
10725 writel(creg_val, phba->HCregaddr);
10726 readl(phba->HCregaddr); /* flush */
10727 }
10728
10729 if (prspiocbq)
10730 piocb->context2 = NULL;
10731
10732 piocb->context_un.wait_queue = NULL;
10733 piocb->iocb_cmpl = NULL;
10734 return retval;
10735 }
10736
10737 /**
10738 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
10739 * @phba: Pointer to HBA context object.
10740 * @pmboxq: Pointer to driver mailbox object.
10741 * @timeout: Timeout in number of seconds.
10742 *
10743 * This function issues the mailbox to firmware and waits for the
10744 * mailbox command to complete. If the mailbox command is not
10745 * completed within timeout seconds, it returns MBX_TIMEOUT.
10746 * The function waits for the mailbox completion using an
10747 * interruptible wait. If the thread is woken up due to a
10748 * signal, MBX_TIMEOUT error is returned to the caller. Caller
10749 * should not free the mailbox resources, if this function returns
10750 * MBX_TIMEOUT.
10751 * This function will sleep while waiting for mailbox completion.
10752 * So, this function should not be called from any context which
10753 * does not allow sleeping. Due to the same reason, this function
10754 * cannot be called with interrupt disabled.
10755 * This function assumes that the mailbox completion occurs while
10756 * this function sleep. So, this function cannot be called from
10757 * the worker thread which processes mailbox completion.
10758 * This function is called in the context of HBA management
10759 * applications.
10760 * This function returns MBX_SUCCESS when successful.
10761 * This function is called with no lock held.
10762 **/
10763 int
10764 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
10765 uint32_t timeout)
10766 {
10767 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
10768 MAILBOX_t *mb = NULL;
10769 int retval;
10770 unsigned long flag;
10771
10772 /* The caller might set context1 for extended buffer */
10773 if (pmboxq->context1)
10774 mb = (MAILBOX_t *)pmboxq->context1;
10775
10776 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
10777 /* setup wake call as IOCB callback */
10778 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
10779 /* setup context field to pass wait_queue pointer to wake function */
10780 pmboxq->context1 = &done_q;
10781
10782 /* now issue the command */
10783 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
10784 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
10785 wait_event_interruptible_timeout(done_q,
10786 pmboxq->mbox_flag & LPFC_MBX_WAKE,
10787 msecs_to_jiffies(timeout * 1000));
10788
10789 spin_lock_irqsave(&phba->hbalock, flag);
10790 /* restore the possible extended buffer for free resource */
10791 pmboxq->context1 = (uint8_t *)mb;
10792 /*
10793 * if LPFC_MBX_WAKE flag is set the mailbox is completed
10794 * else do not free the resources.
10795 */
10796 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
10797 retval = MBX_SUCCESS;
10798 } else {
10799 retval = MBX_TIMEOUT;
10800 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10801 }
10802 spin_unlock_irqrestore(&phba->hbalock, flag);
10803 } else {
10804 /* restore the possible extended buffer for free resource */
10805 pmboxq->context1 = (uint8_t *)mb;
10806 }
10807
10808 return retval;
10809 }
10810
10811 /**
10812 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
10813 * @phba: Pointer to HBA context.
10814 *
10815 * This function is called to shutdown the driver's mailbox sub-system.
10816 * It first marks the mailbox sub-system is in a block state to prevent
10817 * the asynchronous mailbox command from issued off the pending mailbox
10818 * command queue. If the mailbox command sub-system shutdown is due to
10819 * HBA error conditions such as EEH or ERATT, this routine shall invoke
10820 * the mailbox sub-system flush routine to forcefully bring down the
10821 * mailbox sub-system. Otherwise, if it is due to normal condition (such
10822 * as with offline or HBA function reset), this routine will wait for the
10823 * outstanding mailbox command to complete before invoking the mailbox
10824 * sub-system flush routine to gracefully bring down mailbox sub-system.
10825 **/
10826 void
10827 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
10828 {
10829 struct lpfc_sli *psli = &phba->sli;
10830 unsigned long timeout;
10831
10832 if (mbx_action == LPFC_MBX_NO_WAIT) {
10833 /* delay 100ms for port state */
10834 msleep(100);
10835 lpfc_sli_mbox_sys_flush(phba);
10836 return;
10837 }
10838 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
10839
10840 spin_lock_irq(&phba->hbalock);
10841 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
10842
10843 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
10844 /* Determine how long we might wait for the active mailbox
10845 * command to be gracefully completed by firmware.
10846 */
10847 if (phba->sli.mbox_active)
10848 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
10849 phba->sli.mbox_active) *
10850 1000) + jiffies;
10851 spin_unlock_irq(&phba->hbalock);
10852
10853 while (phba->sli.mbox_active) {
10854 /* Check active mailbox complete status every 2ms */
10855 msleep(2);
10856 if (time_after(jiffies, timeout))
10857 /* Timeout, let the mailbox flush routine to
10858 * forcefully release active mailbox command
10859 */
10860 break;
10861 }
10862 } else
10863 spin_unlock_irq(&phba->hbalock);
10864
10865 lpfc_sli_mbox_sys_flush(phba);
10866 }
10867
10868 /**
10869 * lpfc_sli_eratt_read - read sli-3 error attention events
10870 * @phba: Pointer to HBA context.
10871 *
10872 * This function is called to read the SLI3 device error attention registers
10873 * for possible error attention events. The caller must hold the hostlock
10874 * with spin_lock_irq().
10875 *
10876 * This function returns 1 when there is Error Attention in the Host Attention
10877 * Register and returns 0 otherwise.
10878 **/
10879 static int
10880 lpfc_sli_eratt_read(struct lpfc_hba *phba)
10881 {
10882 uint32_t ha_copy;
10883
10884 /* Read chip Host Attention (HA) register */
10885 if (lpfc_readl(phba->HAregaddr, &ha_copy))
10886 goto unplug_err;
10887
10888 if (ha_copy & HA_ERATT) {
10889 /* Read host status register to retrieve error event */
10890 if (lpfc_sli_read_hs(phba))
10891 goto unplug_err;
10892
10893 /* Check if there is a deferred error condition is active */
10894 if ((HS_FFER1 & phba->work_hs) &&
10895 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
10896 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
10897 phba->hba_flag |= DEFER_ERATT;
10898 /* Clear all interrupt enable conditions */
10899 writel(0, phba->HCregaddr);
10900 readl(phba->HCregaddr);
10901 }
10902
10903 /* Set the driver HA work bitmap */
10904 phba->work_ha |= HA_ERATT;
10905 /* Indicate polling handles this ERATT */
10906 phba->hba_flag |= HBA_ERATT_HANDLED;
10907 return 1;
10908 }
10909 return 0;
10910
10911 unplug_err:
10912 /* Set the driver HS work bitmap */
10913 phba->work_hs |= UNPLUG_ERR;
10914 /* Set the driver HA work bitmap */
10915 phba->work_ha |= HA_ERATT;
10916 /* Indicate polling handles this ERATT */
10917 phba->hba_flag |= HBA_ERATT_HANDLED;
10918 return 1;
10919 }
10920
10921 /**
10922 * lpfc_sli4_eratt_read - read sli-4 error attention events
10923 * @phba: Pointer to HBA context.
10924 *
10925 * This function is called to read the SLI4 device error attention registers
10926 * for possible error attention events. The caller must hold the hostlock
10927 * with spin_lock_irq().
10928 *
10929 * This function returns 1 when there is Error Attention in the Host Attention
10930 * Register and returns 0 otherwise.
10931 **/
10932 static int
10933 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
10934 {
10935 uint32_t uerr_sta_hi, uerr_sta_lo;
10936 uint32_t if_type, portsmphr;
10937 struct lpfc_register portstat_reg;
10938
10939 /*
10940 * For now, use the SLI4 device internal unrecoverable error
10941 * registers for error attention. This can be changed later.
10942 */
10943 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10944 switch (if_type) {
10945 case LPFC_SLI_INTF_IF_TYPE_0:
10946 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
10947 &uerr_sta_lo) ||
10948 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
10949 &uerr_sta_hi)) {
10950 phba->work_hs |= UNPLUG_ERR;
10951 phba->work_ha |= HA_ERATT;
10952 phba->hba_flag |= HBA_ERATT_HANDLED;
10953 return 1;
10954 }
10955 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
10956 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
10957 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10958 "1423 HBA Unrecoverable error: "
10959 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
10960 "ue_mask_lo_reg=0x%x, "
10961 "ue_mask_hi_reg=0x%x\n",
10962 uerr_sta_lo, uerr_sta_hi,
10963 phba->sli4_hba.ue_mask_lo,
10964 phba->sli4_hba.ue_mask_hi);
10965 phba->work_status[0] = uerr_sta_lo;
10966 phba->work_status[1] = uerr_sta_hi;
10967 phba->work_ha |= HA_ERATT;
10968 phba->hba_flag |= HBA_ERATT_HANDLED;
10969 return 1;
10970 }
10971 break;
10972 case LPFC_SLI_INTF_IF_TYPE_2:
10973 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
10974 &portstat_reg.word0) ||
10975 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
10976 &portsmphr)){
10977 phba->work_hs |= UNPLUG_ERR;
10978 phba->work_ha |= HA_ERATT;
10979 phba->hba_flag |= HBA_ERATT_HANDLED;
10980 return 1;
10981 }
10982 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
10983 phba->work_status[0] =
10984 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
10985 phba->work_status[1] =
10986 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
10987 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10988 "2885 Port Status Event: "
10989 "port status reg 0x%x, "
10990 "port smphr reg 0x%x, "
10991 "error 1=0x%x, error 2=0x%x\n",
10992 portstat_reg.word0,
10993 portsmphr,
10994 phba->work_status[0],
10995 phba->work_status[1]);
10996 phba->work_ha |= HA_ERATT;
10997 phba->hba_flag |= HBA_ERATT_HANDLED;
10998 return 1;
10999 }
11000 break;
11001 case LPFC_SLI_INTF_IF_TYPE_1:
11002 default:
11003 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11004 "2886 HBA Error Attention on unsupported "
11005 "if type %d.", if_type);
11006 return 1;
11007 }
11008
11009 return 0;
11010 }
11011
11012 /**
11013 * lpfc_sli_check_eratt - check error attention events
11014 * @phba: Pointer to HBA context.
11015 *
11016 * This function is called from timer soft interrupt context to check HBA's
11017 * error attention register bit for error attention events.
11018 *
11019 * This function returns 1 when there is Error Attention in the Host Attention
11020 * Register and returns 0 otherwise.
11021 **/
11022 int
11023 lpfc_sli_check_eratt(struct lpfc_hba *phba)
11024 {
11025 uint32_t ha_copy;
11026
11027 /* If somebody is waiting to handle an eratt, don't process it
11028 * here. The brdkill function will do this.
11029 */
11030 if (phba->link_flag & LS_IGNORE_ERATT)
11031 return 0;
11032
11033 /* Check if interrupt handler handles this ERATT */
11034 spin_lock_irq(&phba->hbalock);
11035 if (phba->hba_flag & HBA_ERATT_HANDLED) {
11036 /* Interrupt handler has handled ERATT */
11037 spin_unlock_irq(&phba->hbalock);
11038 return 0;
11039 }
11040
11041 /*
11042 * If there is deferred error attention, do not check for error
11043 * attention
11044 */
11045 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11046 spin_unlock_irq(&phba->hbalock);
11047 return 0;
11048 }
11049
11050 /* If PCI channel is offline, don't process it */
11051 if (unlikely(pci_channel_offline(phba->pcidev))) {
11052 spin_unlock_irq(&phba->hbalock);
11053 return 0;
11054 }
11055
11056 switch (phba->sli_rev) {
11057 case LPFC_SLI_REV2:
11058 case LPFC_SLI_REV3:
11059 /* Read chip Host Attention (HA) register */
11060 ha_copy = lpfc_sli_eratt_read(phba);
11061 break;
11062 case LPFC_SLI_REV4:
11063 /* Read device Uncoverable Error (UERR) registers */
11064 ha_copy = lpfc_sli4_eratt_read(phba);
11065 break;
11066 default:
11067 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11068 "0299 Invalid SLI revision (%d)\n",
11069 phba->sli_rev);
11070 ha_copy = 0;
11071 break;
11072 }
11073 spin_unlock_irq(&phba->hbalock);
11074
11075 return ha_copy;
11076 }
11077
11078 /**
11079 * lpfc_intr_state_check - Check device state for interrupt handling
11080 * @phba: Pointer to HBA context.
11081 *
11082 * This inline routine checks whether a device or its PCI slot is in a state
11083 * that the interrupt should be handled.
11084 *
11085 * This function returns 0 if the device or the PCI slot is in a state that
11086 * interrupt should be handled, otherwise -EIO.
11087 */
11088 static inline int
11089 lpfc_intr_state_check(struct lpfc_hba *phba)
11090 {
11091 /* If the pci channel is offline, ignore all the interrupts */
11092 if (unlikely(pci_channel_offline(phba->pcidev)))
11093 return -EIO;
11094
11095 /* Update device level interrupt statistics */
11096 phba->sli.slistat.sli_intr++;
11097
11098 /* Ignore all interrupts during initialization. */
11099 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
11100 return -EIO;
11101
11102 return 0;
11103 }
11104
11105 /**
11106 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
11107 * @irq: Interrupt number.
11108 * @dev_id: The device context pointer.
11109 *
11110 * This function is directly called from the PCI layer as an interrupt
11111 * service routine when device with SLI-3 interface spec is enabled with
11112 * MSI-X multi-message interrupt mode and there are slow-path events in
11113 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
11114 * interrupt mode, this function is called as part of the device-level
11115 * interrupt handler. When the PCI slot is in error recovery or the HBA
11116 * is undergoing initialization, the interrupt handler will not process
11117 * the interrupt. The link attention and ELS ring attention events are
11118 * handled by the worker thread. The interrupt handler signals the worker
11119 * thread and returns for these events. This function is called without
11120 * any lock held. It gets the hbalock to access and update SLI data
11121 * structures.
11122 *
11123 * This function returns IRQ_HANDLED when interrupt is handled else it
11124 * returns IRQ_NONE.
11125 **/
11126 irqreturn_t
11127 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
11128 {
11129 struct lpfc_hba *phba;
11130 uint32_t ha_copy, hc_copy;
11131 uint32_t work_ha_copy;
11132 unsigned long status;
11133 unsigned long iflag;
11134 uint32_t control;
11135
11136 MAILBOX_t *mbox, *pmbox;
11137 struct lpfc_vport *vport;
11138 struct lpfc_nodelist *ndlp;
11139 struct lpfc_dmabuf *mp;
11140 LPFC_MBOXQ_t *pmb;
11141 int rc;
11142
11143 /*
11144 * Get the driver's phba structure from the dev_id and
11145 * assume the HBA is not interrupting.
11146 */
11147 phba = (struct lpfc_hba *)dev_id;
11148
11149 if (unlikely(!phba))
11150 return IRQ_NONE;
11151
11152 /*
11153 * Stuff needs to be attented to when this function is invoked as an
11154 * individual interrupt handler in MSI-X multi-message interrupt mode
11155 */
11156 if (phba->intr_type == MSIX) {
11157 /* Check device state for handling interrupt */
11158 if (lpfc_intr_state_check(phba))
11159 return IRQ_NONE;
11160 /* Need to read HA REG for slow-path events */
11161 spin_lock_irqsave(&phba->hbalock, iflag);
11162 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11163 goto unplug_error;
11164 /* If somebody is waiting to handle an eratt don't process it
11165 * here. The brdkill function will do this.
11166 */
11167 if (phba->link_flag & LS_IGNORE_ERATT)
11168 ha_copy &= ~HA_ERATT;
11169 /* Check the need for handling ERATT in interrupt handler */
11170 if (ha_copy & HA_ERATT) {
11171 if (phba->hba_flag & HBA_ERATT_HANDLED)
11172 /* ERATT polling has handled ERATT */
11173 ha_copy &= ~HA_ERATT;
11174 else
11175 /* Indicate interrupt handler handles ERATT */
11176 phba->hba_flag |= HBA_ERATT_HANDLED;
11177 }
11178
11179 /*
11180 * If there is deferred error attention, do not check for any
11181 * interrupt.
11182 */
11183 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11184 spin_unlock_irqrestore(&phba->hbalock, iflag);
11185 return IRQ_NONE;
11186 }
11187
11188 /* Clear up only attention source related to slow-path */
11189 if (lpfc_readl(phba->HCregaddr, &hc_copy))
11190 goto unplug_error;
11191
11192 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
11193 HC_LAINT_ENA | HC_ERINT_ENA),
11194 phba->HCregaddr);
11195 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
11196 phba->HAregaddr);
11197 writel(hc_copy, phba->HCregaddr);
11198 readl(phba->HAregaddr); /* flush */
11199 spin_unlock_irqrestore(&phba->hbalock, iflag);
11200 } else
11201 ha_copy = phba->ha_copy;
11202
11203 work_ha_copy = ha_copy & phba->work_ha_mask;
11204
11205 if (work_ha_copy) {
11206 if (work_ha_copy & HA_LATT) {
11207 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
11208 /*
11209 * Turn off Link Attention interrupts
11210 * until CLEAR_LA done
11211 */
11212 spin_lock_irqsave(&phba->hbalock, iflag);
11213 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
11214 if (lpfc_readl(phba->HCregaddr, &control))
11215 goto unplug_error;
11216 control &= ~HC_LAINT_ENA;
11217 writel(control, phba->HCregaddr);
11218 readl(phba->HCregaddr); /* flush */
11219 spin_unlock_irqrestore(&phba->hbalock, iflag);
11220 }
11221 else
11222 work_ha_copy &= ~HA_LATT;
11223 }
11224
11225 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
11226 /*
11227 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
11228 * the only slow ring.
11229 */
11230 status = (work_ha_copy &
11231 (HA_RXMASK << (4*LPFC_ELS_RING)));
11232 status >>= (4*LPFC_ELS_RING);
11233 if (status & HA_RXMASK) {
11234 spin_lock_irqsave(&phba->hbalock, iflag);
11235 if (lpfc_readl(phba->HCregaddr, &control))
11236 goto unplug_error;
11237
11238 lpfc_debugfs_slow_ring_trc(phba,
11239 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
11240 control, status,
11241 (uint32_t)phba->sli.slistat.sli_intr);
11242
11243 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
11244 lpfc_debugfs_slow_ring_trc(phba,
11245 "ISR Disable ring:"
11246 "pwork:x%x hawork:x%x wait:x%x",
11247 phba->work_ha, work_ha_copy,
11248 (uint32_t)((unsigned long)
11249 &phba->work_waitq));
11250
11251 control &=
11252 ~(HC_R0INT_ENA << LPFC_ELS_RING);
11253 writel(control, phba->HCregaddr);
11254 readl(phba->HCregaddr); /* flush */
11255 }
11256 else {
11257 lpfc_debugfs_slow_ring_trc(phba,
11258 "ISR slow ring: pwork:"
11259 "x%x hawork:x%x wait:x%x",
11260 phba->work_ha, work_ha_copy,
11261 (uint32_t)((unsigned long)
11262 &phba->work_waitq));
11263 }
11264 spin_unlock_irqrestore(&phba->hbalock, iflag);
11265 }
11266 }
11267 spin_lock_irqsave(&phba->hbalock, iflag);
11268 if (work_ha_copy & HA_ERATT) {
11269 if (lpfc_sli_read_hs(phba))
11270 goto unplug_error;
11271 /*
11272 * Check if there is a deferred error condition
11273 * is active
11274 */
11275 if ((HS_FFER1 & phba->work_hs) &&
11276 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11277 HS_FFER6 | HS_FFER7 | HS_FFER8) &
11278 phba->work_hs)) {
11279 phba->hba_flag |= DEFER_ERATT;
11280 /* Clear all interrupt enable conditions */
11281 writel(0, phba->HCregaddr);
11282 readl(phba->HCregaddr);
11283 }
11284 }
11285
11286 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
11287 pmb = phba->sli.mbox_active;
11288 pmbox = &pmb->u.mb;
11289 mbox = phba->mbox;
11290 vport = pmb->vport;
11291
11292 /* First check out the status word */
11293 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
11294 if (pmbox->mbxOwner != OWN_HOST) {
11295 spin_unlock_irqrestore(&phba->hbalock, iflag);
11296 /*
11297 * Stray Mailbox Interrupt, mbxCommand <cmd>
11298 * mbxStatus <status>
11299 */
11300 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11301 LOG_SLI,
11302 "(%d):0304 Stray Mailbox "
11303 "Interrupt mbxCommand x%x "
11304 "mbxStatus x%x\n",
11305 (vport ? vport->vpi : 0),
11306 pmbox->mbxCommand,
11307 pmbox->mbxStatus);
11308 /* clear mailbox attention bit */
11309 work_ha_copy &= ~HA_MBATT;
11310 } else {
11311 phba->sli.mbox_active = NULL;
11312 spin_unlock_irqrestore(&phba->hbalock, iflag);
11313 phba->last_completion_time = jiffies;
11314 del_timer(&phba->sli.mbox_tmo);
11315 if (pmb->mbox_cmpl) {
11316 lpfc_sli_pcimem_bcopy(mbox, pmbox,
11317 MAILBOX_CMD_SIZE);
11318 if (pmb->out_ext_byte_len &&
11319 pmb->context2)
11320 lpfc_sli_pcimem_bcopy(
11321 phba->mbox_ext,
11322 pmb->context2,
11323 pmb->out_ext_byte_len);
11324 }
11325 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11326 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11327
11328 lpfc_debugfs_disc_trc(vport,
11329 LPFC_DISC_TRC_MBOX_VPORT,
11330 "MBOX dflt rpi: : "
11331 "status:x%x rpi:x%x",
11332 (uint32_t)pmbox->mbxStatus,
11333 pmbox->un.varWords[0], 0);
11334
11335 if (!pmbox->mbxStatus) {
11336 mp = (struct lpfc_dmabuf *)
11337 (pmb->context1);
11338 ndlp = (struct lpfc_nodelist *)
11339 pmb->context2;
11340
11341 /* Reg_LOGIN of dflt RPI was
11342 * successful. new lets get
11343 * rid of the RPI using the
11344 * same mbox buffer.
11345 */
11346 lpfc_unreg_login(phba,
11347 vport->vpi,
11348 pmbox->un.varWords[0],
11349 pmb);
11350 pmb->mbox_cmpl =
11351 lpfc_mbx_cmpl_dflt_rpi;
11352 pmb->context1 = mp;
11353 pmb->context2 = ndlp;
11354 pmb->vport = vport;
11355 rc = lpfc_sli_issue_mbox(phba,
11356 pmb,
11357 MBX_NOWAIT);
11358 if (rc != MBX_BUSY)
11359 lpfc_printf_log(phba,
11360 KERN_ERR,
11361 LOG_MBOX | LOG_SLI,
11362 "0350 rc should have"
11363 "been MBX_BUSY\n");
11364 if (rc != MBX_NOT_FINISHED)
11365 goto send_current_mbox;
11366 }
11367 }
11368 spin_lock_irqsave(
11369 &phba->pport->work_port_lock,
11370 iflag);
11371 phba->pport->work_port_events &=
11372 ~WORKER_MBOX_TMO;
11373 spin_unlock_irqrestore(
11374 &phba->pport->work_port_lock,
11375 iflag);
11376 lpfc_mbox_cmpl_put(phba, pmb);
11377 }
11378 } else
11379 spin_unlock_irqrestore(&phba->hbalock, iflag);
11380
11381 if ((work_ha_copy & HA_MBATT) &&
11382 (phba->sli.mbox_active == NULL)) {
11383 send_current_mbox:
11384 /* Process next mailbox command if there is one */
11385 do {
11386 rc = lpfc_sli_issue_mbox(phba, NULL,
11387 MBX_NOWAIT);
11388 } while (rc == MBX_NOT_FINISHED);
11389 if (rc != MBX_SUCCESS)
11390 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11391 LOG_SLI, "0349 rc should be "
11392 "MBX_SUCCESS\n");
11393 }
11394
11395 spin_lock_irqsave(&phba->hbalock, iflag);
11396 phba->work_ha |= work_ha_copy;
11397 spin_unlock_irqrestore(&phba->hbalock, iflag);
11398 lpfc_worker_wake_up(phba);
11399 }
11400 return IRQ_HANDLED;
11401 unplug_error:
11402 spin_unlock_irqrestore(&phba->hbalock, iflag);
11403 return IRQ_HANDLED;
11404
11405 } /* lpfc_sli_sp_intr_handler */
11406
11407 /**
11408 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
11409 * @irq: Interrupt number.
11410 * @dev_id: The device context pointer.
11411 *
11412 * This function is directly called from the PCI layer as an interrupt
11413 * service routine when device with SLI-3 interface spec is enabled with
11414 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
11415 * ring event in the HBA. However, when the device is enabled with either
11416 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
11417 * device-level interrupt handler. When the PCI slot is in error recovery
11418 * or the HBA is undergoing initialization, the interrupt handler will not
11419 * process the interrupt. The SCSI FCP fast-path ring event are handled in
11420 * the intrrupt context. This function is called without any lock held.
11421 * It gets the hbalock to access and update SLI data structures.
11422 *
11423 * This function returns IRQ_HANDLED when interrupt is handled else it
11424 * returns IRQ_NONE.
11425 **/
11426 irqreturn_t
11427 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
11428 {
11429 struct lpfc_hba *phba;
11430 uint32_t ha_copy;
11431 unsigned long status;
11432 unsigned long iflag;
11433
11434 /* Get the driver's phba structure from the dev_id and
11435 * assume the HBA is not interrupting.
11436 */
11437 phba = (struct lpfc_hba *) dev_id;
11438
11439 if (unlikely(!phba))
11440 return IRQ_NONE;
11441
11442 /*
11443 * Stuff needs to be attented to when this function is invoked as an
11444 * individual interrupt handler in MSI-X multi-message interrupt mode
11445 */
11446 if (phba->intr_type == MSIX) {
11447 /* Check device state for handling interrupt */
11448 if (lpfc_intr_state_check(phba))
11449 return IRQ_NONE;
11450 /* Need to read HA REG for FCP ring and other ring events */
11451 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11452 return IRQ_HANDLED;
11453 /* Clear up only attention source related to fast-path */
11454 spin_lock_irqsave(&phba->hbalock, iflag);
11455 /*
11456 * If there is deferred error attention, do not check for
11457 * any interrupt.
11458 */
11459 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11460 spin_unlock_irqrestore(&phba->hbalock, iflag);
11461 return IRQ_NONE;
11462 }
11463 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
11464 phba->HAregaddr);
11465 readl(phba->HAregaddr); /* flush */
11466 spin_unlock_irqrestore(&phba->hbalock, iflag);
11467 } else
11468 ha_copy = phba->ha_copy;
11469
11470 /*
11471 * Process all events on FCP ring. Take the optimized path for FCP IO.
11472 */
11473 ha_copy &= ~(phba->work_ha_mask);
11474
11475 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
11476 status >>= (4*LPFC_FCP_RING);
11477 if (status & HA_RXMASK)
11478 lpfc_sli_handle_fast_ring_event(phba,
11479 &phba->sli.ring[LPFC_FCP_RING],
11480 status);
11481
11482 if (phba->cfg_multi_ring_support == 2) {
11483 /*
11484 * Process all events on extra ring. Take the optimized path
11485 * for extra ring IO.
11486 */
11487 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
11488 status >>= (4*LPFC_EXTRA_RING);
11489 if (status & HA_RXMASK) {
11490 lpfc_sli_handle_fast_ring_event(phba,
11491 &phba->sli.ring[LPFC_EXTRA_RING],
11492 status);
11493 }
11494 }
11495 return IRQ_HANDLED;
11496 } /* lpfc_sli_fp_intr_handler */
11497
11498 /**
11499 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
11500 * @irq: Interrupt number.
11501 * @dev_id: The device context pointer.
11502 *
11503 * This function is the HBA device-level interrupt handler to device with
11504 * SLI-3 interface spec, called from the PCI layer when either MSI or
11505 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
11506 * requires driver attention. This function invokes the slow-path interrupt
11507 * attention handling function and fast-path interrupt attention handling
11508 * function in turn to process the relevant HBA attention events. This
11509 * function is called without any lock held. It gets the hbalock to access
11510 * and update SLI data structures.
11511 *
11512 * This function returns IRQ_HANDLED when interrupt is handled, else it
11513 * returns IRQ_NONE.
11514 **/
11515 irqreturn_t
11516 lpfc_sli_intr_handler(int irq, void *dev_id)
11517 {
11518 struct lpfc_hba *phba;
11519 irqreturn_t sp_irq_rc, fp_irq_rc;
11520 unsigned long status1, status2;
11521 uint32_t hc_copy;
11522
11523 /*
11524 * Get the driver's phba structure from the dev_id and
11525 * assume the HBA is not interrupting.
11526 */
11527 phba = (struct lpfc_hba *) dev_id;
11528
11529 if (unlikely(!phba))
11530 return IRQ_NONE;
11531
11532 /* Check device state for handling interrupt */
11533 if (lpfc_intr_state_check(phba))
11534 return IRQ_NONE;
11535
11536 spin_lock(&phba->hbalock);
11537 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
11538 spin_unlock(&phba->hbalock);
11539 return IRQ_HANDLED;
11540 }
11541
11542 if (unlikely(!phba->ha_copy)) {
11543 spin_unlock(&phba->hbalock);
11544 return IRQ_NONE;
11545 } else if (phba->ha_copy & HA_ERATT) {
11546 if (phba->hba_flag & HBA_ERATT_HANDLED)
11547 /* ERATT polling has handled ERATT */
11548 phba->ha_copy &= ~HA_ERATT;
11549 else
11550 /* Indicate interrupt handler handles ERATT */
11551 phba->hba_flag |= HBA_ERATT_HANDLED;
11552 }
11553
11554 /*
11555 * If there is deferred error attention, do not check for any interrupt.
11556 */
11557 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11558 spin_unlock(&phba->hbalock);
11559 return IRQ_NONE;
11560 }
11561
11562 /* Clear attention sources except link and error attentions */
11563 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
11564 spin_unlock(&phba->hbalock);
11565 return IRQ_HANDLED;
11566 }
11567 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
11568 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
11569 phba->HCregaddr);
11570 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
11571 writel(hc_copy, phba->HCregaddr);
11572 readl(phba->HAregaddr); /* flush */
11573 spin_unlock(&phba->hbalock);
11574
11575 /*
11576 * Invokes slow-path host attention interrupt handling as appropriate.
11577 */
11578
11579 /* status of events with mailbox and link attention */
11580 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
11581
11582 /* status of events with ELS ring */
11583 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
11584 status2 >>= (4*LPFC_ELS_RING);
11585
11586 if (status1 || (status2 & HA_RXMASK))
11587 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
11588 else
11589 sp_irq_rc = IRQ_NONE;
11590
11591 /*
11592 * Invoke fast-path host attention interrupt handling as appropriate.
11593 */
11594
11595 /* status of events with FCP ring */
11596 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
11597 status1 >>= (4*LPFC_FCP_RING);
11598
11599 /* status of events with extra ring */
11600 if (phba->cfg_multi_ring_support == 2) {
11601 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
11602 status2 >>= (4*LPFC_EXTRA_RING);
11603 } else
11604 status2 = 0;
11605
11606 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
11607 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
11608 else
11609 fp_irq_rc = IRQ_NONE;
11610
11611 /* Return device-level interrupt handling status */
11612 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
11613 } /* lpfc_sli_intr_handler */
11614
11615 /**
11616 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
11617 * @phba: pointer to lpfc hba data structure.
11618 *
11619 * This routine is invoked by the worker thread to process all the pending
11620 * SLI4 FCP abort XRI events.
11621 **/
11622 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
11623 {
11624 struct lpfc_cq_event *cq_event;
11625
11626 /* First, declare the fcp xri abort event has been handled */
11627 spin_lock_irq(&phba->hbalock);
11628 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
11629 spin_unlock_irq(&phba->hbalock);
11630 /* Now, handle all the fcp xri abort events */
11631 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
11632 /* Get the first event from the head of the event queue */
11633 spin_lock_irq(&phba->hbalock);
11634 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
11635 cq_event, struct lpfc_cq_event, list);
11636 spin_unlock_irq(&phba->hbalock);
11637 /* Notify aborted XRI for FCP work queue */
11638 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
11639 /* Free the event processed back to the free pool */
11640 lpfc_sli4_cq_event_release(phba, cq_event);
11641 }
11642 }
11643
11644 /**
11645 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
11646 * @phba: pointer to lpfc hba data structure.
11647 *
11648 * This routine is invoked by the worker thread to process all the pending
11649 * SLI4 els abort xri events.
11650 **/
11651 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
11652 {
11653 struct lpfc_cq_event *cq_event;
11654
11655 /* First, declare the els xri abort event has been handled */
11656 spin_lock_irq(&phba->hbalock);
11657 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
11658 spin_unlock_irq(&phba->hbalock);
11659 /* Now, handle all the els xri abort events */
11660 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
11661 /* Get the first event from the head of the event queue */
11662 spin_lock_irq(&phba->hbalock);
11663 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11664 cq_event, struct lpfc_cq_event, list);
11665 spin_unlock_irq(&phba->hbalock);
11666 /* Notify aborted XRI for ELS work queue */
11667 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
11668 /* Free the event processed back to the free pool */
11669 lpfc_sli4_cq_event_release(phba, cq_event);
11670 }
11671 }
11672
11673 /**
11674 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
11675 * @phba: pointer to lpfc hba data structure
11676 * @pIocbIn: pointer to the rspiocbq
11677 * @pIocbOut: pointer to the cmdiocbq
11678 * @wcqe: pointer to the complete wcqe
11679 *
11680 * This routine transfers the fields of a command iocbq to a response iocbq
11681 * by copying all the IOCB fields from command iocbq and transferring the
11682 * completion status information from the complete wcqe.
11683 **/
11684 static void
11685 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
11686 struct lpfc_iocbq *pIocbIn,
11687 struct lpfc_iocbq *pIocbOut,
11688 struct lpfc_wcqe_complete *wcqe)
11689 {
11690 int numBdes, i;
11691 unsigned long iflags;
11692 uint32_t status, max_response;
11693 struct lpfc_dmabuf *dmabuf;
11694 struct ulp_bde64 *bpl, bde;
11695 size_t offset = offsetof(struct lpfc_iocbq, iocb);
11696
11697 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
11698 sizeof(struct lpfc_iocbq) - offset);
11699 /* Map WCQE parameters into irspiocb parameters */
11700 status = bf_get(lpfc_wcqe_c_status, wcqe);
11701 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
11702 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
11703 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
11704 pIocbIn->iocb.un.fcpi.fcpi_parm =
11705 pIocbOut->iocb.un.fcpi.fcpi_parm -
11706 wcqe->total_data_placed;
11707 else
11708 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
11709 else {
11710 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
11711 switch (pIocbOut->iocb.ulpCommand) {
11712 case CMD_ELS_REQUEST64_CR:
11713 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
11714 bpl = (struct ulp_bde64 *)dmabuf->virt;
11715 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
11716 max_response = bde.tus.f.bdeSize;
11717 break;
11718 case CMD_GEN_REQUEST64_CR:
11719 max_response = 0;
11720 if (!pIocbOut->context3)
11721 break;
11722 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
11723 sizeof(struct ulp_bde64);
11724 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
11725 bpl = (struct ulp_bde64 *)dmabuf->virt;
11726 for (i = 0; i < numBdes; i++) {
11727 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
11728 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
11729 max_response += bde.tus.f.bdeSize;
11730 }
11731 break;
11732 default:
11733 max_response = wcqe->total_data_placed;
11734 break;
11735 }
11736 if (max_response < wcqe->total_data_placed)
11737 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
11738 else
11739 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
11740 wcqe->total_data_placed;
11741 }
11742
11743 /* Convert BG errors for completion status */
11744 if (status == CQE_STATUS_DI_ERROR) {
11745 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
11746
11747 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
11748 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
11749 else
11750 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
11751
11752 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
11753 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
11754 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11755 BGS_GUARD_ERR_MASK;
11756 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
11757 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11758 BGS_APPTAG_ERR_MASK;
11759 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
11760 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11761 BGS_REFTAG_ERR_MASK;
11762
11763 /* Check to see if there was any good data before the error */
11764 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
11765 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11766 BGS_HI_WATER_MARK_PRESENT_MASK;
11767 pIocbIn->iocb.unsli3.sli3_bg.bghm =
11768 wcqe->total_data_placed;
11769 }
11770
11771 /*
11772 * Set ALL the error bits to indicate we don't know what
11773 * type of error it is.
11774 */
11775 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
11776 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11777 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
11778 BGS_GUARD_ERR_MASK);
11779 }
11780
11781 /* Pick up HBA exchange busy condition */
11782 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
11783 spin_lock_irqsave(&phba->hbalock, iflags);
11784 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
11785 spin_unlock_irqrestore(&phba->hbalock, iflags);
11786 }
11787 }
11788
11789 /**
11790 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
11791 * @phba: Pointer to HBA context object.
11792 * @wcqe: Pointer to work-queue completion queue entry.
11793 *
11794 * This routine handles an ELS work-queue completion event and construct
11795 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
11796 * discovery engine to handle.
11797 *
11798 * Return: Pointer to the receive IOCBQ, NULL otherwise.
11799 **/
11800 static struct lpfc_iocbq *
11801 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
11802 struct lpfc_iocbq *irspiocbq)
11803 {
11804 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
11805 struct lpfc_iocbq *cmdiocbq;
11806 struct lpfc_wcqe_complete *wcqe;
11807 unsigned long iflags;
11808
11809 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
11810 spin_lock_irqsave(&pring->ring_lock, iflags);
11811 pring->stats.iocb_event++;
11812 /* Look up the ELS command IOCB and create pseudo response IOCB */
11813 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
11814 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11815 /* Put the iocb back on the txcmplq */
11816 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
11817 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11818
11819 if (unlikely(!cmdiocbq)) {
11820 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11821 "0386 ELS complete with no corresponding "
11822 "cmdiocb: iotag (%d)\n",
11823 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11824 lpfc_sli_release_iocbq(phba, irspiocbq);
11825 return NULL;
11826 }
11827
11828 /* Fake the irspiocbq and copy necessary response information */
11829 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
11830
11831 return irspiocbq;
11832 }
11833
11834 /**
11835 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
11836 * @phba: Pointer to HBA context object.
11837 * @cqe: Pointer to mailbox completion queue entry.
11838 *
11839 * This routine process a mailbox completion queue entry with asynchrous
11840 * event.
11841 *
11842 * Return: true if work posted to worker thread, otherwise false.
11843 **/
11844 static bool
11845 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
11846 {
11847 struct lpfc_cq_event *cq_event;
11848 unsigned long iflags;
11849
11850 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11851 "0392 Async Event: word0:x%x, word1:x%x, "
11852 "word2:x%x, word3:x%x\n", mcqe->word0,
11853 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
11854
11855 /* Allocate a new internal CQ_EVENT entry */
11856 cq_event = lpfc_sli4_cq_event_alloc(phba);
11857 if (!cq_event) {
11858 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11859 "0394 Failed to allocate CQ_EVENT entry\n");
11860 return false;
11861 }
11862
11863 /* Move the CQE into an asynchronous event entry */
11864 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
11865 spin_lock_irqsave(&phba->hbalock, iflags);
11866 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
11867 /* Set the async event flag */
11868 phba->hba_flag |= ASYNC_EVENT;
11869 spin_unlock_irqrestore(&phba->hbalock, iflags);
11870
11871 return true;
11872 }
11873
11874 /**
11875 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
11876 * @phba: Pointer to HBA context object.
11877 * @cqe: Pointer to mailbox completion queue entry.
11878 *
11879 * This routine process a mailbox completion queue entry with mailbox
11880 * completion event.
11881 *
11882 * Return: true if work posted to worker thread, otherwise false.
11883 **/
11884 static bool
11885 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
11886 {
11887 uint32_t mcqe_status;
11888 MAILBOX_t *mbox, *pmbox;
11889 struct lpfc_mqe *mqe;
11890 struct lpfc_vport *vport;
11891 struct lpfc_nodelist *ndlp;
11892 struct lpfc_dmabuf *mp;
11893 unsigned long iflags;
11894 LPFC_MBOXQ_t *pmb;
11895 bool workposted = false;
11896 int rc;
11897
11898 /* If not a mailbox complete MCQE, out by checking mailbox consume */
11899 if (!bf_get(lpfc_trailer_completed, mcqe))
11900 goto out_no_mqe_complete;
11901
11902 /* Get the reference to the active mbox command */
11903 spin_lock_irqsave(&phba->hbalock, iflags);
11904 pmb = phba->sli.mbox_active;
11905 if (unlikely(!pmb)) {
11906 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
11907 "1832 No pending MBOX command to handle\n");
11908 spin_unlock_irqrestore(&phba->hbalock, iflags);
11909 goto out_no_mqe_complete;
11910 }
11911 spin_unlock_irqrestore(&phba->hbalock, iflags);
11912 mqe = &pmb->u.mqe;
11913 pmbox = (MAILBOX_t *)&pmb->u.mqe;
11914 mbox = phba->mbox;
11915 vport = pmb->vport;
11916
11917 /* Reset heartbeat timer */
11918 phba->last_completion_time = jiffies;
11919 del_timer(&phba->sli.mbox_tmo);
11920
11921 /* Move mbox data to caller's mailbox region, do endian swapping */
11922 if (pmb->mbox_cmpl && mbox)
11923 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
11924
11925 /*
11926 * For mcqe errors, conditionally move a modified error code to
11927 * the mbox so that the error will not be missed.
11928 */
11929 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
11930 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
11931 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
11932 bf_set(lpfc_mqe_status, mqe,
11933 (LPFC_MBX_ERROR_RANGE | mcqe_status));
11934 }
11935 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11936 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11937 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
11938 "MBOX dflt rpi: status:x%x rpi:x%x",
11939 mcqe_status,
11940 pmbox->un.varWords[0], 0);
11941 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
11942 mp = (struct lpfc_dmabuf *)(pmb->context1);
11943 ndlp = (struct lpfc_nodelist *)pmb->context2;
11944 /* Reg_LOGIN of dflt RPI was successful. Now lets get
11945 * RID of the PPI using the same mbox buffer.
11946 */
11947 lpfc_unreg_login(phba, vport->vpi,
11948 pmbox->un.varWords[0], pmb);
11949 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
11950 pmb->context1 = mp;
11951 pmb->context2 = ndlp;
11952 pmb->vport = vport;
11953 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
11954 if (rc != MBX_BUSY)
11955 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11956 LOG_SLI, "0385 rc should "
11957 "have been MBX_BUSY\n");
11958 if (rc != MBX_NOT_FINISHED)
11959 goto send_current_mbox;
11960 }
11961 }
11962 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
11963 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11964 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
11965
11966 /* There is mailbox completion work to do */
11967 spin_lock_irqsave(&phba->hbalock, iflags);
11968 __lpfc_mbox_cmpl_put(phba, pmb);
11969 phba->work_ha |= HA_MBATT;
11970 spin_unlock_irqrestore(&phba->hbalock, iflags);
11971 workposted = true;
11972
11973 send_current_mbox:
11974 spin_lock_irqsave(&phba->hbalock, iflags);
11975 /* Release the mailbox command posting token */
11976 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11977 /* Setting active mailbox pointer need to be in sync to flag clear */
11978 phba->sli.mbox_active = NULL;
11979 spin_unlock_irqrestore(&phba->hbalock, iflags);
11980 /* Wake up worker thread to post the next pending mailbox command */
11981 lpfc_worker_wake_up(phba);
11982 out_no_mqe_complete:
11983 if (bf_get(lpfc_trailer_consumed, mcqe))
11984 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
11985 return workposted;
11986 }
11987
11988 /**
11989 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
11990 * @phba: Pointer to HBA context object.
11991 * @cqe: Pointer to mailbox completion queue entry.
11992 *
11993 * This routine process a mailbox completion queue entry, it invokes the
11994 * proper mailbox complete handling or asynchrous event handling routine
11995 * according to the MCQE's async bit.
11996 *
11997 * Return: true if work posted to worker thread, otherwise false.
11998 **/
11999 static bool
12000 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
12001 {
12002 struct lpfc_mcqe mcqe;
12003 bool workposted;
12004
12005 /* Copy the mailbox MCQE and convert endian order as needed */
12006 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
12007
12008 /* Invoke the proper event handling routine */
12009 if (!bf_get(lpfc_trailer_async, &mcqe))
12010 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
12011 else
12012 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
12013 return workposted;
12014 }
12015
12016 /**
12017 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
12018 * @phba: Pointer to HBA context object.
12019 * @cq: Pointer to associated CQ
12020 * @wcqe: Pointer to work-queue completion queue entry.
12021 *
12022 * This routine handles an ELS work-queue completion event.
12023 *
12024 * Return: true if work posted to worker thread, otherwise false.
12025 **/
12026 static bool
12027 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12028 struct lpfc_wcqe_complete *wcqe)
12029 {
12030 struct lpfc_iocbq *irspiocbq;
12031 unsigned long iflags;
12032 struct lpfc_sli_ring *pring = cq->pring;
12033 int txq_cnt = 0;
12034 int txcmplq_cnt = 0;
12035 int fcp_txcmplq_cnt = 0;
12036
12037 /* Get an irspiocbq for later ELS response processing use */
12038 irspiocbq = lpfc_sli_get_iocbq(phba);
12039 if (!irspiocbq) {
12040 if (!list_empty(&pring->txq))
12041 txq_cnt++;
12042 if (!list_empty(&pring->txcmplq))
12043 txcmplq_cnt++;
12044 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq))
12045 fcp_txcmplq_cnt++;
12046 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12047 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
12048 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
12049 txq_cnt, phba->iocb_cnt,
12050 fcp_txcmplq_cnt,
12051 txcmplq_cnt);
12052 return false;
12053 }
12054
12055 /* Save off the slow-path queue event for work thread to process */
12056 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
12057 spin_lock_irqsave(&phba->hbalock, iflags);
12058 list_add_tail(&irspiocbq->cq_event.list,
12059 &phba->sli4_hba.sp_queue_event);
12060 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12061 spin_unlock_irqrestore(&phba->hbalock, iflags);
12062
12063 return true;
12064 }
12065
12066 /**
12067 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
12068 * @phba: Pointer to HBA context object.
12069 * @wcqe: Pointer to work-queue completion queue entry.
12070 *
12071 * This routine handles slow-path WQ entry comsumed event by invoking the
12072 * proper WQ release routine to the slow-path WQ.
12073 **/
12074 static void
12075 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
12076 struct lpfc_wcqe_release *wcqe)
12077 {
12078 /* sanity check on queue memory */
12079 if (unlikely(!phba->sli4_hba.els_wq))
12080 return;
12081 /* Check for the slow-path ELS work queue */
12082 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
12083 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
12084 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12085 else
12086 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12087 "2579 Slow-path wqe consume event carries "
12088 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
12089 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
12090 phba->sli4_hba.els_wq->queue_id);
12091 }
12092
12093 /**
12094 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
12095 * @phba: Pointer to HBA context object.
12096 * @cq: Pointer to a WQ completion queue.
12097 * @wcqe: Pointer to work-queue completion queue entry.
12098 *
12099 * This routine handles an XRI abort event.
12100 *
12101 * Return: true if work posted to worker thread, otherwise false.
12102 **/
12103 static bool
12104 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
12105 struct lpfc_queue *cq,
12106 struct sli4_wcqe_xri_aborted *wcqe)
12107 {
12108 bool workposted = false;
12109 struct lpfc_cq_event *cq_event;
12110 unsigned long iflags;
12111
12112 /* Allocate a new internal CQ_EVENT entry */
12113 cq_event = lpfc_sli4_cq_event_alloc(phba);
12114 if (!cq_event) {
12115 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12116 "0602 Failed to allocate CQ_EVENT entry\n");
12117 return false;
12118 }
12119
12120 /* Move the CQE into the proper xri abort event list */
12121 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
12122 switch (cq->subtype) {
12123 case LPFC_FCP:
12124 spin_lock_irqsave(&phba->hbalock, iflags);
12125 list_add_tail(&cq_event->list,
12126 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
12127 /* Set the fcp xri abort event flag */
12128 phba->hba_flag |= FCP_XRI_ABORT_EVENT;
12129 spin_unlock_irqrestore(&phba->hbalock, iflags);
12130 workposted = true;
12131 break;
12132 case LPFC_ELS:
12133 spin_lock_irqsave(&phba->hbalock, iflags);
12134 list_add_tail(&cq_event->list,
12135 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
12136 /* Set the els xri abort event flag */
12137 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
12138 spin_unlock_irqrestore(&phba->hbalock, iflags);
12139 workposted = true;
12140 break;
12141 default:
12142 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12143 "0603 Invalid work queue CQE subtype (x%x)\n",
12144 cq->subtype);
12145 workposted = false;
12146 break;
12147 }
12148 return workposted;
12149 }
12150
12151 /**
12152 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
12153 * @phba: Pointer to HBA context object.
12154 * @rcqe: Pointer to receive-queue completion queue entry.
12155 *
12156 * This routine process a receive-queue completion queue entry.
12157 *
12158 * Return: true if work posted to worker thread, otherwise false.
12159 **/
12160 static bool
12161 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
12162 {
12163 bool workposted = false;
12164 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
12165 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
12166 struct hbq_dmabuf *dma_buf;
12167 uint32_t status, rq_id;
12168 unsigned long iflags;
12169
12170 /* sanity check on queue memory */
12171 if (unlikely(!hrq) || unlikely(!drq))
12172 return workposted;
12173
12174 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
12175 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
12176 else
12177 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
12178 if (rq_id != hrq->queue_id)
12179 goto out;
12180
12181 status = bf_get(lpfc_rcqe_status, rcqe);
12182 switch (status) {
12183 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
12184 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12185 "2537 Receive Frame Truncated!!\n");
12186 hrq->RQ_buf_trunc++;
12187 case FC_STATUS_RQ_SUCCESS:
12188 lpfc_sli4_rq_release(hrq, drq);
12189 spin_lock_irqsave(&phba->hbalock, iflags);
12190 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
12191 if (!dma_buf) {
12192 hrq->RQ_no_buf_found++;
12193 spin_unlock_irqrestore(&phba->hbalock, iflags);
12194 goto out;
12195 }
12196 hrq->RQ_rcv_buf++;
12197 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
12198 /* save off the frame for the word thread to process */
12199 list_add_tail(&dma_buf->cq_event.list,
12200 &phba->sli4_hba.sp_queue_event);
12201 /* Frame received */
12202 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12203 spin_unlock_irqrestore(&phba->hbalock, iflags);
12204 workposted = true;
12205 break;
12206 case FC_STATUS_INSUFF_BUF_NEED_BUF:
12207 case FC_STATUS_INSUFF_BUF_FRM_DISC:
12208 hrq->RQ_no_posted_buf++;
12209 /* Post more buffers if possible */
12210 spin_lock_irqsave(&phba->hbalock, iflags);
12211 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
12212 spin_unlock_irqrestore(&phba->hbalock, iflags);
12213 workposted = true;
12214 break;
12215 }
12216 out:
12217 return workposted;
12218 }
12219
12220 /**
12221 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
12222 * @phba: Pointer to HBA context object.
12223 * @cq: Pointer to the completion queue.
12224 * @wcqe: Pointer to a completion queue entry.
12225 *
12226 * This routine process a slow-path work-queue or receive queue completion queue
12227 * entry.
12228 *
12229 * Return: true if work posted to worker thread, otherwise false.
12230 **/
12231 static bool
12232 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12233 struct lpfc_cqe *cqe)
12234 {
12235 struct lpfc_cqe cqevt;
12236 bool workposted = false;
12237
12238 /* Copy the work queue CQE and convert endian order if needed */
12239 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
12240
12241 /* Check and process for different type of WCQE and dispatch */
12242 switch (bf_get(lpfc_cqe_code, &cqevt)) {
12243 case CQE_CODE_COMPL_WQE:
12244 /* Process the WQ/RQ complete event */
12245 phba->last_completion_time = jiffies;
12246 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
12247 (struct lpfc_wcqe_complete *)&cqevt);
12248 break;
12249 case CQE_CODE_RELEASE_WQE:
12250 /* Process the WQ release event */
12251 lpfc_sli4_sp_handle_rel_wcqe(phba,
12252 (struct lpfc_wcqe_release *)&cqevt);
12253 break;
12254 case CQE_CODE_XRI_ABORTED:
12255 /* Process the WQ XRI abort event */
12256 phba->last_completion_time = jiffies;
12257 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
12258 (struct sli4_wcqe_xri_aborted *)&cqevt);
12259 break;
12260 case CQE_CODE_RECEIVE:
12261 case CQE_CODE_RECEIVE_V1:
12262 /* Process the RQ event */
12263 phba->last_completion_time = jiffies;
12264 workposted = lpfc_sli4_sp_handle_rcqe(phba,
12265 (struct lpfc_rcqe *)&cqevt);
12266 break;
12267 default:
12268 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12269 "0388 Not a valid WCQE code: x%x\n",
12270 bf_get(lpfc_cqe_code, &cqevt));
12271 break;
12272 }
12273 return workposted;
12274 }
12275
12276 /**
12277 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
12278 * @phba: Pointer to HBA context object.
12279 * @eqe: Pointer to fast-path event queue entry.
12280 *
12281 * This routine process a event queue entry from the slow-path event queue.
12282 * It will check the MajorCode and MinorCode to determine this is for a
12283 * completion event on a completion queue, if not, an error shall be logged
12284 * and just return. Otherwise, it will get to the corresponding completion
12285 * queue and process all the entries on that completion queue, rearm the
12286 * completion queue, and then return.
12287 *
12288 **/
12289 static void
12290 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
12291 struct lpfc_queue *speq)
12292 {
12293 struct lpfc_queue *cq = NULL, *childq;
12294 struct lpfc_cqe *cqe;
12295 bool workposted = false;
12296 int ecount = 0;
12297 uint16_t cqid;
12298
12299 /* Get the reference to the corresponding CQ */
12300 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12301
12302 list_for_each_entry(childq, &speq->child_list, list) {
12303 if (childq->queue_id == cqid) {
12304 cq = childq;
12305 break;
12306 }
12307 }
12308 if (unlikely(!cq)) {
12309 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12310 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12311 "0365 Slow-path CQ identifier "
12312 "(%d) does not exist\n", cqid);
12313 return;
12314 }
12315
12316 /* Process all the entries to the CQ */
12317 switch (cq->type) {
12318 case LPFC_MCQ:
12319 while ((cqe = lpfc_sli4_cq_get(cq))) {
12320 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
12321 if (!(++ecount % cq->entry_repost))
12322 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12323 cq->CQ_mbox++;
12324 }
12325 break;
12326 case LPFC_WCQ:
12327 while ((cqe = lpfc_sli4_cq_get(cq))) {
12328 if (cq->subtype == LPFC_FCP)
12329 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq,
12330 cqe);
12331 else
12332 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
12333 cqe);
12334 if (!(++ecount % cq->entry_repost))
12335 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12336 }
12337
12338 /* Track the max number of CQEs processed in 1 EQ */
12339 if (ecount > cq->CQ_max_cqe)
12340 cq->CQ_max_cqe = ecount;
12341 break;
12342 default:
12343 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12344 "0370 Invalid completion queue type (%d)\n",
12345 cq->type);
12346 return;
12347 }
12348
12349 /* Catch the no cq entry condition, log an error */
12350 if (unlikely(ecount == 0))
12351 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12352 "0371 No entry from the CQ: identifier "
12353 "(x%x), type (%d)\n", cq->queue_id, cq->type);
12354
12355 /* In any case, flash and re-arm the RCQ */
12356 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12357
12358 /* wake up worker thread if there are works to be done */
12359 if (workposted)
12360 lpfc_worker_wake_up(phba);
12361 }
12362
12363 /**
12364 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
12365 * @phba: Pointer to HBA context object.
12366 * @cq: Pointer to associated CQ
12367 * @wcqe: Pointer to work-queue completion queue entry.
12368 *
12369 * This routine process a fast-path work queue completion entry from fast-path
12370 * event queue for FCP command response completion.
12371 **/
12372 static void
12373 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12374 struct lpfc_wcqe_complete *wcqe)
12375 {
12376 struct lpfc_sli_ring *pring = cq->pring;
12377 struct lpfc_iocbq *cmdiocbq;
12378 struct lpfc_iocbq irspiocbq;
12379 unsigned long iflags;
12380
12381 /* Check for response status */
12382 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
12383 /* If resource errors reported from HBA, reduce queue
12384 * depth of the SCSI device.
12385 */
12386 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
12387 IOSTAT_LOCAL_REJECT)) &&
12388 ((wcqe->parameter & IOERR_PARAM_MASK) ==
12389 IOERR_NO_RESOURCES))
12390 phba->lpfc_rampdown_queue_depth(phba);
12391
12392 /* Log the error status */
12393 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12394 "0373 FCP complete error: status=x%x, "
12395 "hw_status=x%x, total_data_specified=%d, "
12396 "parameter=x%x, word3=x%x\n",
12397 bf_get(lpfc_wcqe_c_status, wcqe),
12398 bf_get(lpfc_wcqe_c_hw_status, wcqe),
12399 wcqe->total_data_placed, wcqe->parameter,
12400 wcqe->word3);
12401 }
12402
12403 /* Look up the FCP command IOCB and create pseudo response IOCB */
12404 spin_lock_irqsave(&pring->ring_lock, iflags);
12405 pring->stats.iocb_event++;
12406 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12407 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12408 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12409 if (unlikely(!cmdiocbq)) {
12410 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12411 "0374 FCP complete with no corresponding "
12412 "cmdiocb: iotag (%d)\n",
12413 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12414 return;
12415 }
12416 if (unlikely(!cmdiocbq->iocb_cmpl)) {
12417 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12418 "0375 FCP cmdiocb not callback function "
12419 "iotag: (%d)\n",
12420 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12421 return;
12422 }
12423
12424 /* Fake the irspiocb and copy necessary response information */
12425 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
12426
12427 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
12428 spin_lock_irqsave(&phba->hbalock, iflags);
12429 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
12430 spin_unlock_irqrestore(&phba->hbalock, iflags);
12431 }
12432
12433 /* Pass the cmd_iocb and the rsp state to the upper layer */
12434 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
12435 }
12436
12437 /**
12438 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
12439 * @phba: Pointer to HBA context object.
12440 * @cq: Pointer to completion queue.
12441 * @wcqe: Pointer to work-queue completion queue entry.
12442 *
12443 * This routine handles an fast-path WQ entry comsumed event by invoking the
12444 * proper WQ release routine to the slow-path WQ.
12445 **/
12446 static void
12447 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12448 struct lpfc_wcqe_release *wcqe)
12449 {
12450 struct lpfc_queue *childwq;
12451 bool wqid_matched = false;
12452 uint16_t fcp_wqid;
12453
12454 /* Check for fast-path FCP work queue release */
12455 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
12456 list_for_each_entry(childwq, &cq->child_list, list) {
12457 if (childwq->queue_id == fcp_wqid) {
12458 lpfc_sli4_wq_release(childwq,
12459 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12460 wqid_matched = true;
12461 break;
12462 }
12463 }
12464 /* Report warning log message if no match found */
12465 if (wqid_matched != true)
12466 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12467 "2580 Fast-path wqe consume event carries "
12468 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid);
12469 }
12470
12471 /**
12472 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry
12473 * @cq: Pointer to the completion queue.
12474 * @eqe: Pointer to fast-path completion queue entry.
12475 *
12476 * This routine process a fast-path work queue completion entry from fast-path
12477 * event queue for FCP command response completion.
12478 **/
12479 static int
12480 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12481 struct lpfc_cqe *cqe)
12482 {
12483 struct lpfc_wcqe_release wcqe;
12484 bool workposted = false;
12485
12486 /* Copy the work queue CQE and convert endian order if needed */
12487 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
12488
12489 /* Check and process for different type of WCQE and dispatch */
12490 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
12491 case CQE_CODE_COMPL_WQE:
12492 cq->CQ_wq++;
12493 /* Process the WQ complete event */
12494 phba->last_completion_time = jiffies;
12495 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
12496 (struct lpfc_wcqe_complete *)&wcqe);
12497 break;
12498 case CQE_CODE_RELEASE_WQE:
12499 cq->CQ_release_wqe++;
12500 /* Process the WQ release event */
12501 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
12502 (struct lpfc_wcqe_release *)&wcqe);
12503 break;
12504 case CQE_CODE_XRI_ABORTED:
12505 cq->CQ_xri_aborted++;
12506 /* Process the WQ XRI abort event */
12507 phba->last_completion_time = jiffies;
12508 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
12509 (struct sli4_wcqe_xri_aborted *)&wcqe);
12510 break;
12511 default:
12512 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12513 "0144 Not a valid WCQE code: x%x\n",
12514 bf_get(lpfc_wcqe_c_code, &wcqe));
12515 break;
12516 }
12517 return workposted;
12518 }
12519
12520 /**
12521 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
12522 * @phba: Pointer to HBA context object.
12523 * @eqe: Pointer to fast-path event queue entry.
12524 *
12525 * This routine process a event queue entry from the fast-path event queue.
12526 * It will check the MajorCode and MinorCode to determine this is for a
12527 * completion event on a completion queue, if not, an error shall be logged
12528 * and just return. Otherwise, it will get to the corresponding completion
12529 * queue and process all the entries on the completion queue, rearm the
12530 * completion queue, and then return.
12531 **/
12532 static void
12533 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
12534 uint32_t qidx)
12535 {
12536 struct lpfc_queue *cq;
12537 struct lpfc_cqe *cqe;
12538 bool workposted = false;
12539 uint16_t cqid;
12540 int ecount = 0;
12541
12542 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
12543 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12544 "0366 Not a valid completion "
12545 "event: majorcode=x%x, minorcode=x%x\n",
12546 bf_get_le32(lpfc_eqe_major_code, eqe),
12547 bf_get_le32(lpfc_eqe_minor_code, eqe));
12548 return;
12549 }
12550
12551 /* Get the reference to the corresponding CQ */
12552 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12553
12554 /* Check if this is a Slow path event */
12555 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) {
12556 lpfc_sli4_sp_handle_eqe(phba, eqe,
12557 phba->sli4_hba.hba_eq[qidx]);
12558 return;
12559 }
12560
12561 if (unlikely(!phba->sli4_hba.fcp_cq)) {
12562 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12563 "3146 Fast-path completion queues "
12564 "does not exist\n");
12565 return;
12566 }
12567 cq = phba->sli4_hba.fcp_cq[qidx];
12568 if (unlikely(!cq)) {
12569 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12570 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12571 "0367 Fast-path completion queue "
12572 "(%d) does not exist\n", qidx);
12573 return;
12574 }
12575
12576 if (unlikely(cqid != cq->queue_id)) {
12577 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12578 "0368 Miss-matched fast-path completion "
12579 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
12580 cqid, cq->queue_id);
12581 return;
12582 }
12583
12584 /* Process all the entries to the CQ */
12585 while ((cqe = lpfc_sli4_cq_get(cq))) {
12586 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe);
12587 if (!(++ecount % cq->entry_repost))
12588 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12589 }
12590
12591 /* Track the max number of CQEs processed in 1 EQ */
12592 if (ecount > cq->CQ_max_cqe)
12593 cq->CQ_max_cqe = ecount;
12594
12595 /* Catch the no cq entry condition */
12596 if (unlikely(ecount == 0))
12597 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12598 "0369 No entry from fast-path completion "
12599 "queue fcpcqid=%d\n", cq->queue_id);
12600
12601 /* In any case, flash and re-arm the CQ */
12602 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12603
12604 /* wake up worker thread if there are works to be done */
12605 if (workposted)
12606 lpfc_worker_wake_up(phba);
12607 }
12608
12609 static void
12610 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
12611 {
12612 struct lpfc_eqe *eqe;
12613
12614 /* walk all the EQ entries and drop on the floor */
12615 while ((eqe = lpfc_sli4_eq_get(eq)))
12616 ;
12617
12618 /* Clear and re-arm the EQ */
12619 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
12620 }
12621
12622
12623 /**
12624 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
12625 * entry
12626 * @phba: Pointer to HBA context object.
12627 * @eqe: Pointer to fast-path event queue entry.
12628 *
12629 * This routine process a event queue entry from the Flash Optimized Fabric
12630 * event queue. It will check the MajorCode and MinorCode to determine this
12631 * is for a completion event on a completion queue, if not, an error shall be
12632 * logged and just return. Otherwise, it will get to the corresponding
12633 * completion queue and process all the entries on the completion queue, rearm
12634 * the completion queue, and then return.
12635 **/
12636 static void
12637 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
12638 {
12639 struct lpfc_queue *cq;
12640 struct lpfc_cqe *cqe;
12641 bool workposted = false;
12642 uint16_t cqid;
12643 int ecount = 0;
12644
12645 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
12646 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12647 "9147 Not a valid completion "
12648 "event: majorcode=x%x, minorcode=x%x\n",
12649 bf_get_le32(lpfc_eqe_major_code, eqe),
12650 bf_get_le32(lpfc_eqe_minor_code, eqe));
12651 return;
12652 }
12653
12654 /* Get the reference to the corresponding CQ */
12655 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12656
12657 /* Next check for OAS */
12658 cq = phba->sli4_hba.oas_cq;
12659 if (unlikely(!cq)) {
12660 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12661 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12662 "9148 OAS completion queue "
12663 "does not exist\n");
12664 return;
12665 }
12666
12667 if (unlikely(cqid != cq->queue_id)) {
12668 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12669 "9149 Miss-matched fast-path compl "
12670 "queue id: eqcqid=%d, fcpcqid=%d\n",
12671 cqid, cq->queue_id);
12672 return;
12673 }
12674
12675 /* Process all the entries to the OAS CQ */
12676 while ((cqe = lpfc_sli4_cq_get(cq))) {
12677 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe);
12678 if (!(++ecount % cq->entry_repost))
12679 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12680 }
12681
12682 /* Track the max number of CQEs processed in 1 EQ */
12683 if (ecount > cq->CQ_max_cqe)
12684 cq->CQ_max_cqe = ecount;
12685
12686 /* Catch the no cq entry condition */
12687 if (unlikely(ecount == 0))
12688 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12689 "9153 No entry from fast-path completion "
12690 "queue fcpcqid=%d\n", cq->queue_id);
12691
12692 /* In any case, flash and re-arm the CQ */
12693 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12694
12695 /* wake up worker thread if there are works to be done */
12696 if (workposted)
12697 lpfc_worker_wake_up(phba);
12698 }
12699
12700 /**
12701 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
12702 * @irq: Interrupt number.
12703 * @dev_id: The device context pointer.
12704 *
12705 * This function is directly called from the PCI layer as an interrupt
12706 * service routine when device with SLI-4 interface spec is enabled with
12707 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
12708 * IOCB ring event in the HBA. However, when the device is enabled with either
12709 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12710 * device-level interrupt handler. When the PCI slot is in error recovery
12711 * or the HBA is undergoing initialization, the interrupt handler will not
12712 * process the interrupt. The Flash Optimized Fabric ring event are handled in
12713 * the intrrupt context. This function is called without any lock held.
12714 * It gets the hbalock to access and update SLI data structures. Note that,
12715 * the EQ to CQ are one-to-one map such that the EQ index is
12716 * equal to that of CQ index.
12717 *
12718 * This function returns IRQ_HANDLED when interrupt is handled else it
12719 * returns IRQ_NONE.
12720 **/
12721 irqreturn_t
12722 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
12723 {
12724 struct lpfc_hba *phba;
12725 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
12726 struct lpfc_queue *eq;
12727 struct lpfc_eqe *eqe;
12728 unsigned long iflag;
12729 int ecount = 0;
12730
12731 /* Get the driver's phba structure from the dev_id */
12732 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id;
12733 phba = fcp_eq_hdl->phba;
12734
12735 if (unlikely(!phba))
12736 return IRQ_NONE;
12737
12738 /* Get to the EQ struct associated with this vector */
12739 eq = phba->sli4_hba.fof_eq;
12740 if (unlikely(!eq))
12741 return IRQ_NONE;
12742
12743 /* Check device state for handling interrupt */
12744 if (unlikely(lpfc_intr_state_check(phba))) {
12745 eq->EQ_badstate++;
12746 /* Check again for link_state with lock held */
12747 spin_lock_irqsave(&phba->hbalock, iflag);
12748 if (phba->link_state < LPFC_LINK_DOWN)
12749 /* Flush, clear interrupt, and rearm the EQ */
12750 lpfc_sli4_eq_flush(phba, eq);
12751 spin_unlock_irqrestore(&phba->hbalock, iflag);
12752 return IRQ_NONE;
12753 }
12754
12755 /*
12756 * Process all the event on FCP fast-path EQ
12757 */
12758 while ((eqe = lpfc_sli4_eq_get(eq))) {
12759 lpfc_sli4_fof_handle_eqe(phba, eqe);
12760 if (!(++ecount % eq->entry_repost))
12761 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM);
12762 eq->EQ_processed++;
12763 }
12764
12765 /* Track the max number of EQEs processed in 1 intr */
12766 if (ecount > eq->EQ_max_eqe)
12767 eq->EQ_max_eqe = ecount;
12768
12769
12770 if (unlikely(ecount == 0)) {
12771 eq->EQ_no_entry++;
12772
12773 if (phba->intr_type == MSIX)
12774 /* MSI-X treated interrupt served as no EQ share INT */
12775 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12776 "9145 MSI-X interrupt with no EQE\n");
12777 else {
12778 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12779 "9146 ISR interrupt with no EQE\n");
12780 /* Non MSI-X treated on interrupt as EQ share INT */
12781 return IRQ_NONE;
12782 }
12783 }
12784 /* Always clear and re-arm the fast-path EQ */
12785 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
12786 return IRQ_HANDLED;
12787 }
12788
12789 /**
12790 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
12791 * @irq: Interrupt number.
12792 * @dev_id: The device context pointer.
12793 *
12794 * This function is directly called from the PCI layer as an interrupt
12795 * service routine when device with SLI-4 interface spec is enabled with
12796 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12797 * ring event in the HBA. However, when the device is enabled with either
12798 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12799 * device-level interrupt handler. When the PCI slot is in error recovery
12800 * or the HBA is undergoing initialization, the interrupt handler will not
12801 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12802 * the intrrupt context. This function is called without any lock held.
12803 * It gets the hbalock to access and update SLI data structures. Note that,
12804 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
12805 * equal to that of FCP CQ index.
12806 *
12807 * The link attention and ELS ring attention events are handled
12808 * by the worker thread. The interrupt handler signals the worker thread
12809 * and returns for these events. This function is called without any lock
12810 * held. It gets the hbalock to access and update SLI data structures.
12811 *
12812 * This function returns IRQ_HANDLED when interrupt is handled else it
12813 * returns IRQ_NONE.
12814 **/
12815 irqreturn_t
12816 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
12817 {
12818 struct lpfc_hba *phba;
12819 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
12820 struct lpfc_queue *fpeq;
12821 struct lpfc_eqe *eqe;
12822 unsigned long iflag;
12823 int ecount = 0;
12824 int fcp_eqidx;
12825
12826 /* Get the driver's phba structure from the dev_id */
12827 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id;
12828 phba = fcp_eq_hdl->phba;
12829 fcp_eqidx = fcp_eq_hdl->idx;
12830
12831 if (unlikely(!phba))
12832 return IRQ_NONE;
12833 if (unlikely(!phba->sli4_hba.hba_eq))
12834 return IRQ_NONE;
12835
12836 /* Get to the EQ struct associated with this vector */
12837 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx];
12838 if (unlikely(!fpeq))
12839 return IRQ_NONE;
12840
12841 if (lpfc_fcp_look_ahead) {
12842 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use))
12843 lpfc_sli4_eq_clr_intr(fpeq);
12844 else {
12845 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12846 return IRQ_NONE;
12847 }
12848 }
12849
12850 /* Check device state for handling interrupt */
12851 if (unlikely(lpfc_intr_state_check(phba))) {
12852 fpeq->EQ_badstate++;
12853 /* Check again for link_state with lock held */
12854 spin_lock_irqsave(&phba->hbalock, iflag);
12855 if (phba->link_state < LPFC_LINK_DOWN)
12856 /* Flush, clear interrupt, and rearm the EQ */
12857 lpfc_sli4_eq_flush(phba, fpeq);
12858 spin_unlock_irqrestore(&phba->hbalock, iflag);
12859 if (lpfc_fcp_look_ahead)
12860 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12861 return IRQ_NONE;
12862 }
12863
12864 /*
12865 * Process all the event on FCP fast-path EQ
12866 */
12867 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
12868 if (eqe == NULL)
12869 break;
12870
12871 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx);
12872 if (!(++ecount % fpeq->entry_repost))
12873 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM);
12874 fpeq->EQ_processed++;
12875 }
12876
12877 /* Track the max number of EQEs processed in 1 intr */
12878 if (ecount > fpeq->EQ_max_eqe)
12879 fpeq->EQ_max_eqe = ecount;
12880
12881 /* Always clear and re-arm the fast-path EQ */
12882 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
12883
12884 if (unlikely(ecount == 0)) {
12885 fpeq->EQ_no_entry++;
12886
12887 if (lpfc_fcp_look_ahead) {
12888 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12889 return IRQ_NONE;
12890 }
12891
12892 if (phba->intr_type == MSIX)
12893 /* MSI-X treated interrupt served as no EQ share INT */
12894 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12895 "0358 MSI-X interrupt with no EQE\n");
12896 else
12897 /* Non MSI-X treated on interrupt as EQ share INT */
12898 return IRQ_NONE;
12899 }
12900
12901 if (lpfc_fcp_look_ahead)
12902 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12903 return IRQ_HANDLED;
12904 } /* lpfc_sli4_fp_intr_handler */
12905
12906 /**
12907 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
12908 * @irq: Interrupt number.
12909 * @dev_id: The device context pointer.
12910 *
12911 * This function is the device-level interrupt handler to device with SLI-4
12912 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
12913 * interrupt mode is enabled and there is an event in the HBA which requires
12914 * driver attention. This function invokes the slow-path interrupt attention
12915 * handling function and fast-path interrupt attention handling function in
12916 * turn to process the relevant HBA attention events. This function is called
12917 * without any lock held. It gets the hbalock to access and update SLI data
12918 * structures.
12919 *
12920 * This function returns IRQ_HANDLED when interrupt is handled, else it
12921 * returns IRQ_NONE.
12922 **/
12923 irqreturn_t
12924 lpfc_sli4_intr_handler(int irq, void *dev_id)
12925 {
12926 struct lpfc_hba *phba;
12927 irqreturn_t hba_irq_rc;
12928 bool hba_handled = false;
12929 int fcp_eqidx;
12930
12931 /* Get the driver's phba structure from the dev_id */
12932 phba = (struct lpfc_hba *)dev_id;
12933
12934 if (unlikely(!phba))
12935 return IRQ_NONE;
12936
12937 /*
12938 * Invoke fast-path host attention interrupt handling as appropriate.
12939 */
12940 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) {
12941 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
12942 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]);
12943 if (hba_irq_rc == IRQ_HANDLED)
12944 hba_handled |= true;
12945 }
12946
12947 if (phba->cfg_fof) {
12948 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
12949 &phba->sli4_hba.fcp_eq_hdl[0]);
12950 if (hba_irq_rc == IRQ_HANDLED)
12951 hba_handled |= true;
12952 }
12953
12954 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
12955 } /* lpfc_sli4_intr_handler */
12956
12957 /**
12958 * lpfc_sli4_queue_free - free a queue structure and associated memory
12959 * @queue: The queue structure to free.
12960 *
12961 * This function frees a queue structure and the DMAable memory used for
12962 * the host resident queue. This function must be called after destroying the
12963 * queue on the HBA.
12964 **/
12965 void
12966 lpfc_sli4_queue_free(struct lpfc_queue *queue)
12967 {
12968 struct lpfc_dmabuf *dmabuf;
12969
12970 if (!queue)
12971 return;
12972
12973 while (!list_empty(&queue->page_list)) {
12974 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
12975 list);
12976 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
12977 dmabuf->virt, dmabuf->phys);
12978 kfree(dmabuf);
12979 }
12980 kfree(queue);
12981 return;
12982 }
12983
12984 /**
12985 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
12986 * @phba: The HBA that this queue is being created on.
12987 * @entry_size: The size of each queue entry for this queue.
12988 * @entry count: The number of entries that this queue will handle.
12989 *
12990 * This function allocates a queue structure and the DMAable memory used for
12991 * the host resident queue. This function must be called before creating the
12992 * queue on the HBA.
12993 **/
12994 struct lpfc_queue *
12995 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
12996 uint32_t entry_count)
12997 {
12998 struct lpfc_queue *queue;
12999 struct lpfc_dmabuf *dmabuf;
13000 int x, total_qe_count;
13001 void *dma_pointer;
13002 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13003
13004 if (!phba->sli4_hba.pc_sli4_params.supported)
13005 hw_page_size = SLI4_PAGE_SIZE;
13006
13007 queue = kzalloc(sizeof(struct lpfc_queue) +
13008 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
13009 if (!queue)
13010 return NULL;
13011 queue->page_count = (ALIGN(entry_size * entry_count,
13012 hw_page_size))/hw_page_size;
13013 INIT_LIST_HEAD(&queue->list);
13014 INIT_LIST_HEAD(&queue->page_list);
13015 INIT_LIST_HEAD(&queue->child_list);
13016 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
13017 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
13018 if (!dmabuf)
13019 goto out_fail;
13020 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
13021 hw_page_size, &dmabuf->phys,
13022 GFP_KERNEL);
13023 if (!dmabuf->virt) {
13024 kfree(dmabuf);
13025 goto out_fail;
13026 }
13027 dmabuf->buffer_tag = x;
13028 list_add_tail(&dmabuf->list, &queue->page_list);
13029 /* initialize queue's entry array */
13030 dma_pointer = dmabuf->virt;
13031 for (; total_qe_count < entry_count &&
13032 dma_pointer < (hw_page_size + dmabuf->virt);
13033 total_qe_count++, dma_pointer += entry_size) {
13034 queue->qe[total_qe_count].address = dma_pointer;
13035 }
13036 }
13037 queue->entry_size = entry_size;
13038 queue->entry_count = entry_count;
13039
13040 /*
13041 * entry_repost is calculated based on the number of entries in the
13042 * queue. This works out except for RQs. If buffers are NOT initially
13043 * posted for every RQE, entry_repost should be adjusted accordingly.
13044 */
13045 queue->entry_repost = (entry_count >> 3);
13046 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST)
13047 queue->entry_repost = LPFC_QUEUE_MIN_REPOST;
13048 queue->phba = phba;
13049
13050 return queue;
13051 out_fail:
13052 lpfc_sli4_queue_free(queue);
13053 return NULL;
13054 }
13055
13056 /**
13057 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
13058 * @phba: HBA structure that indicates port to create a queue on.
13059 * @pci_barset: PCI BAR set flag.
13060 *
13061 * This function shall perform iomap of the specified PCI BAR address to host
13062 * memory address if not already done so and return it. The returned host
13063 * memory address can be NULL.
13064 */
13065 static void __iomem *
13066 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
13067 {
13068 if (!phba->pcidev)
13069 return NULL;
13070
13071 switch (pci_barset) {
13072 case WQ_PCI_BAR_0_AND_1:
13073 return phba->pci_bar0_memmap_p;
13074 case WQ_PCI_BAR_2_AND_3:
13075 return phba->pci_bar2_memmap_p;
13076 case WQ_PCI_BAR_4_AND_5:
13077 return phba->pci_bar4_memmap_p;
13078 default:
13079 break;
13080 }
13081 return NULL;
13082 }
13083
13084 /**
13085 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs
13086 * @phba: HBA structure that indicates port to create a queue on.
13087 * @startq: The starting FCP EQ to modify
13088 *
13089 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
13090 *
13091 * The @phba struct is used to send mailbox command to HBA. The @startq
13092 * is used to get the starting FCP EQ to change.
13093 * This function is asynchronous and will wait for the mailbox
13094 * command to finish before continuing.
13095 *
13096 * On success this function will return a zero. If unable to allocate enough
13097 * memory this function will return -ENOMEM. If the queue create mailbox command
13098 * fails this function will return -ENXIO.
13099 **/
13100 int
13101 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq)
13102 {
13103 struct lpfc_mbx_modify_eq_delay *eq_delay;
13104 LPFC_MBOXQ_t *mbox;
13105 struct lpfc_queue *eq;
13106 int cnt, rc, length, status = 0;
13107 uint32_t shdr_status, shdr_add_status;
13108 uint32_t result;
13109 int fcp_eqidx;
13110 union lpfc_sli4_cfg_shdr *shdr;
13111 uint16_t dmult;
13112
13113 if (startq >= phba->cfg_fcp_io_channel)
13114 return 0;
13115
13116 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13117 if (!mbox)
13118 return -ENOMEM;
13119 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
13120 sizeof(struct lpfc_sli4_cfg_mhdr));
13121 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13122 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
13123 length, LPFC_SLI4_MBX_EMBED);
13124 eq_delay = &mbox->u.mqe.un.eq_delay;
13125
13126 /* Calculate delay multiper from maximum interrupt per second */
13127 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel;
13128 if (result > LPFC_DMULT_CONST)
13129 dmult = 0;
13130 else
13131 dmult = LPFC_DMULT_CONST/result - 1;
13132
13133 cnt = 0;
13134 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel;
13135 fcp_eqidx++) {
13136 eq = phba->sli4_hba.hba_eq[fcp_eqidx];
13137 if (!eq)
13138 continue;
13139 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
13140 eq_delay->u.request.eq[cnt].phase = 0;
13141 eq_delay->u.request.eq[cnt].delay_multi = dmult;
13142 cnt++;
13143 if (cnt >= LPFC_MAX_EQ_DELAY)
13144 break;
13145 }
13146 eq_delay->u.request.num_eq = cnt;
13147
13148 mbox->vport = phba->pport;
13149 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13150 mbox->context1 = NULL;
13151 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13152 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
13153 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13154 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13155 if (shdr_status || shdr_add_status || rc) {
13156 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13157 "2512 MODIFY_EQ_DELAY mailbox failed with "
13158 "status x%x add_status x%x, mbx status x%x\n",
13159 shdr_status, shdr_add_status, rc);
13160 status = -ENXIO;
13161 }
13162 mempool_free(mbox, phba->mbox_mem_pool);
13163 return status;
13164 }
13165
13166 /**
13167 * lpfc_eq_create - Create an Event Queue on the HBA
13168 * @phba: HBA structure that indicates port to create a queue on.
13169 * @eq: The queue structure to use to create the event queue.
13170 * @imax: The maximum interrupt per second limit.
13171 *
13172 * This function creates an event queue, as detailed in @eq, on a port,
13173 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
13174 *
13175 * The @phba struct is used to send mailbox command to HBA. The @eq struct
13176 * is used to get the entry count and entry size that are necessary to
13177 * determine the number of pages to allocate and use for this queue. This
13178 * function will send the EQ_CREATE mailbox command to the HBA to setup the
13179 * event queue. This function is asynchronous and will wait for the mailbox
13180 * command to finish before continuing.
13181 *
13182 * On success this function will return a zero. If unable to allocate enough
13183 * memory this function will return -ENOMEM. If the queue create mailbox command
13184 * fails this function will return -ENXIO.
13185 **/
13186 int
13187 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
13188 {
13189 struct lpfc_mbx_eq_create *eq_create;
13190 LPFC_MBOXQ_t *mbox;
13191 int rc, length, status = 0;
13192 struct lpfc_dmabuf *dmabuf;
13193 uint32_t shdr_status, shdr_add_status;
13194 union lpfc_sli4_cfg_shdr *shdr;
13195 uint16_t dmult;
13196 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13197
13198 /* sanity check on queue memory */
13199 if (!eq)
13200 return -ENODEV;
13201 if (!phba->sli4_hba.pc_sli4_params.supported)
13202 hw_page_size = SLI4_PAGE_SIZE;
13203
13204 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13205 if (!mbox)
13206 return -ENOMEM;
13207 length = (sizeof(struct lpfc_mbx_eq_create) -
13208 sizeof(struct lpfc_sli4_cfg_mhdr));
13209 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13210 LPFC_MBOX_OPCODE_EQ_CREATE,
13211 length, LPFC_SLI4_MBX_EMBED);
13212 eq_create = &mbox->u.mqe.un.eq_create;
13213 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
13214 eq->page_count);
13215 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
13216 LPFC_EQE_SIZE);
13217 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
13218 /* don't setup delay multiplier using EQ_CREATE */
13219 dmult = 0;
13220 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
13221 dmult);
13222 switch (eq->entry_count) {
13223 default:
13224 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13225 "0360 Unsupported EQ count. (%d)\n",
13226 eq->entry_count);
13227 if (eq->entry_count < 256)
13228 return -EINVAL;
13229 /* otherwise default to smallest count (drop through) */
13230 case 256:
13231 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13232 LPFC_EQ_CNT_256);
13233 break;
13234 case 512:
13235 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13236 LPFC_EQ_CNT_512);
13237 break;
13238 case 1024:
13239 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13240 LPFC_EQ_CNT_1024);
13241 break;
13242 case 2048:
13243 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13244 LPFC_EQ_CNT_2048);
13245 break;
13246 case 4096:
13247 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13248 LPFC_EQ_CNT_4096);
13249 break;
13250 }
13251 list_for_each_entry(dmabuf, &eq->page_list, list) {
13252 memset(dmabuf->virt, 0, hw_page_size);
13253 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13254 putPaddrLow(dmabuf->phys);
13255 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13256 putPaddrHigh(dmabuf->phys);
13257 }
13258 mbox->vport = phba->pport;
13259 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13260 mbox->context1 = NULL;
13261 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13262 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
13263 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13264 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13265 if (shdr_status || shdr_add_status || rc) {
13266 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13267 "2500 EQ_CREATE mailbox failed with "
13268 "status x%x add_status x%x, mbx status x%x\n",
13269 shdr_status, shdr_add_status, rc);
13270 status = -ENXIO;
13271 }
13272 eq->type = LPFC_EQ;
13273 eq->subtype = LPFC_NONE;
13274 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
13275 if (eq->queue_id == 0xFFFF)
13276 status = -ENXIO;
13277 eq->host_index = 0;
13278 eq->hba_index = 0;
13279
13280 mempool_free(mbox, phba->mbox_mem_pool);
13281 return status;
13282 }
13283
13284 /**
13285 * lpfc_cq_create - Create a Completion Queue on the HBA
13286 * @phba: HBA structure that indicates port to create a queue on.
13287 * @cq: The queue structure to use to create the completion queue.
13288 * @eq: The event queue to bind this completion queue to.
13289 *
13290 * This function creates a completion queue, as detailed in @wq, on a port,
13291 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
13292 *
13293 * The @phba struct is used to send mailbox command to HBA. The @cq struct
13294 * is used to get the entry count and entry size that are necessary to
13295 * determine the number of pages to allocate and use for this queue. The @eq
13296 * is used to indicate which event queue to bind this completion queue to. This
13297 * function will send the CQ_CREATE mailbox command to the HBA to setup the
13298 * completion queue. This function is asynchronous and will wait for the mailbox
13299 * command to finish before continuing.
13300 *
13301 * On success this function will return a zero. If unable to allocate enough
13302 * memory this function will return -ENOMEM. If the queue create mailbox command
13303 * fails this function will return -ENXIO.
13304 **/
13305 int
13306 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
13307 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
13308 {
13309 struct lpfc_mbx_cq_create *cq_create;
13310 struct lpfc_dmabuf *dmabuf;
13311 LPFC_MBOXQ_t *mbox;
13312 int rc, length, status = 0;
13313 uint32_t shdr_status, shdr_add_status;
13314 union lpfc_sli4_cfg_shdr *shdr;
13315 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13316
13317 /* sanity check on queue memory */
13318 if (!cq || !eq)
13319 return -ENODEV;
13320 if (!phba->sli4_hba.pc_sli4_params.supported)
13321 hw_page_size = SLI4_PAGE_SIZE;
13322
13323 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13324 if (!mbox)
13325 return -ENOMEM;
13326 length = (sizeof(struct lpfc_mbx_cq_create) -
13327 sizeof(struct lpfc_sli4_cfg_mhdr));
13328 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13329 LPFC_MBOX_OPCODE_CQ_CREATE,
13330 length, LPFC_SLI4_MBX_EMBED);
13331 cq_create = &mbox->u.mqe.un.cq_create;
13332 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
13333 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
13334 cq->page_count);
13335 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
13336 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
13337 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13338 phba->sli4_hba.pc_sli4_params.cqv);
13339 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
13340 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */
13341 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1);
13342 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
13343 eq->queue_id);
13344 } else {
13345 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
13346 eq->queue_id);
13347 }
13348 switch (cq->entry_count) {
13349 default:
13350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13351 "0361 Unsupported CQ count. (%d)\n",
13352 cq->entry_count);
13353 if (cq->entry_count < 256) {
13354 status = -EINVAL;
13355 goto out;
13356 }
13357 /* otherwise default to smallest count (drop through) */
13358 case 256:
13359 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
13360 LPFC_CQ_CNT_256);
13361 break;
13362 case 512:
13363 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
13364 LPFC_CQ_CNT_512);
13365 break;
13366 case 1024:
13367 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
13368 LPFC_CQ_CNT_1024);
13369 break;
13370 }
13371 list_for_each_entry(dmabuf, &cq->page_list, list) {
13372 memset(dmabuf->virt, 0, hw_page_size);
13373 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13374 putPaddrLow(dmabuf->phys);
13375 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13376 putPaddrHigh(dmabuf->phys);
13377 }
13378 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13379
13380 /* The IOCTL status is embedded in the mailbox subheader. */
13381 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13382 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13383 if (shdr_status || shdr_add_status || rc) {
13384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13385 "2501 CQ_CREATE mailbox failed with "
13386 "status x%x add_status x%x, mbx status x%x\n",
13387 shdr_status, shdr_add_status, rc);
13388 status = -ENXIO;
13389 goto out;
13390 }
13391 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
13392 if (cq->queue_id == 0xFFFF) {
13393 status = -ENXIO;
13394 goto out;
13395 }
13396 /* link the cq onto the parent eq child list */
13397 list_add_tail(&cq->list, &eq->child_list);
13398 /* Set up completion queue's type and subtype */
13399 cq->type = type;
13400 cq->subtype = subtype;
13401 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
13402 cq->assoc_qid = eq->queue_id;
13403 cq->host_index = 0;
13404 cq->hba_index = 0;
13405
13406 out:
13407 mempool_free(mbox, phba->mbox_mem_pool);
13408 return status;
13409 }
13410
13411 /**
13412 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
13413 * @phba: HBA structure that indicates port to create a queue on.
13414 * @mq: The queue structure to use to create the mailbox queue.
13415 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
13416 * @cq: The completion queue to associate with this cq.
13417 *
13418 * This function provides failback (fb) functionality when the
13419 * mq_create_ext fails on older FW generations. It's purpose is identical
13420 * to mq_create_ext otherwise.
13421 *
13422 * This routine cannot fail as all attributes were previously accessed and
13423 * initialized in mq_create_ext.
13424 **/
13425 static void
13426 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
13427 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
13428 {
13429 struct lpfc_mbx_mq_create *mq_create;
13430 struct lpfc_dmabuf *dmabuf;
13431 int length;
13432
13433 length = (sizeof(struct lpfc_mbx_mq_create) -
13434 sizeof(struct lpfc_sli4_cfg_mhdr));
13435 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13436 LPFC_MBOX_OPCODE_MQ_CREATE,
13437 length, LPFC_SLI4_MBX_EMBED);
13438 mq_create = &mbox->u.mqe.un.mq_create;
13439 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
13440 mq->page_count);
13441 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
13442 cq->queue_id);
13443 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
13444 switch (mq->entry_count) {
13445 case 16:
13446 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13447 LPFC_MQ_RING_SIZE_16);
13448 break;
13449 case 32:
13450 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13451 LPFC_MQ_RING_SIZE_32);
13452 break;
13453 case 64:
13454 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13455 LPFC_MQ_RING_SIZE_64);
13456 break;
13457 case 128:
13458 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13459 LPFC_MQ_RING_SIZE_128);
13460 break;
13461 }
13462 list_for_each_entry(dmabuf, &mq->page_list, list) {
13463 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13464 putPaddrLow(dmabuf->phys);
13465 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13466 putPaddrHigh(dmabuf->phys);
13467 }
13468 }
13469
13470 /**
13471 * lpfc_mq_create - Create a mailbox Queue on the HBA
13472 * @phba: HBA structure that indicates port to create a queue on.
13473 * @mq: The queue structure to use to create the mailbox queue.
13474 * @cq: The completion queue to associate with this cq.
13475 * @subtype: The queue's subtype.
13476 *
13477 * This function creates a mailbox queue, as detailed in @mq, on a port,
13478 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
13479 *
13480 * The @phba struct is used to send mailbox command to HBA. The @cq struct
13481 * is used to get the entry count and entry size that are necessary to
13482 * determine the number of pages to allocate and use for this queue. This
13483 * function will send the MQ_CREATE mailbox command to the HBA to setup the
13484 * mailbox queue. This function is asynchronous and will wait for the mailbox
13485 * command to finish before continuing.
13486 *
13487 * On success this function will return a zero. If unable to allocate enough
13488 * memory this function will return -ENOMEM. If the queue create mailbox command
13489 * fails this function will return -ENXIO.
13490 **/
13491 int32_t
13492 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
13493 struct lpfc_queue *cq, uint32_t subtype)
13494 {
13495 struct lpfc_mbx_mq_create *mq_create;
13496 struct lpfc_mbx_mq_create_ext *mq_create_ext;
13497 struct lpfc_dmabuf *dmabuf;
13498 LPFC_MBOXQ_t *mbox;
13499 int rc, length, status = 0;
13500 uint32_t shdr_status, shdr_add_status;
13501 union lpfc_sli4_cfg_shdr *shdr;
13502 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13503
13504 /* sanity check on queue memory */
13505 if (!mq || !cq)
13506 return -ENODEV;
13507 if (!phba->sli4_hba.pc_sli4_params.supported)
13508 hw_page_size = SLI4_PAGE_SIZE;
13509
13510 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13511 if (!mbox)
13512 return -ENOMEM;
13513 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
13514 sizeof(struct lpfc_sli4_cfg_mhdr));
13515 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13516 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
13517 length, LPFC_SLI4_MBX_EMBED);
13518
13519 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
13520 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
13521 bf_set(lpfc_mbx_mq_create_ext_num_pages,
13522 &mq_create_ext->u.request, mq->page_count);
13523 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
13524 &mq_create_ext->u.request, 1);
13525 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
13526 &mq_create_ext->u.request, 1);
13527 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
13528 &mq_create_ext->u.request, 1);
13529 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
13530 &mq_create_ext->u.request, 1);
13531 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
13532 &mq_create_ext->u.request, 1);
13533 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
13534 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13535 phba->sli4_hba.pc_sli4_params.mqv);
13536 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
13537 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
13538 cq->queue_id);
13539 else
13540 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
13541 cq->queue_id);
13542 switch (mq->entry_count) {
13543 default:
13544 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13545 "0362 Unsupported MQ count. (%d)\n",
13546 mq->entry_count);
13547 if (mq->entry_count < 16) {
13548 status = -EINVAL;
13549 goto out;
13550 }
13551 /* otherwise default to smallest count (drop through) */
13552 case 16:
13553 bf_set(lpfc_mq_context_ring_size,
13554 &mq_create_ext->u.request.context,
13555 LPFC_MQ_RING_SIZE_16);
13556 break;
13557 case 32:
13558 bf_set(lpfc_mq_context_ring_size,
13559 &mq_create_ext->u.request.context,
13560 LPFC_MQ_RING_SIZE_32);
13561 break;
13562 case 64:
13563 bf_set(lpfc_mq_context_ring_size,
13564 &mq_create_ext->u.request.context,
13565 LPFC_MQ_RING_SIZE_64);
13566 break;
13567 case 128:
13568 bf_set(lpfc_mq_context_ring_size,
13569 &mq_create_ext->u.request.context,
13570 LPFC_MQ_RING_SIZE_128);
13571 break;
13572 }
13573 list_for_each_entry(dmabuf, &mq->page_list, list) {
13574 memset(dmabuf->virt, 0, hw_page_size);
13575 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
13576 putPaddrLow(dmabuf->phys);
13577 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
13578 putPaddrHigh(dmabuf->phys);
13579 }
13580 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13581 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
13582 &mq_create_ext->u.response);
13583 if (rc != MBX_SUCCESS) {
13584 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13585 "2795 MQ_CREATE_EXT failed with "
13586 "status x%x. Failback to MQ_CREATE.\n",
13587 rc);
13588 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
13589 mq_create = &mbox->u.mqe.un.mq_create;
13590 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13591 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
13592 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
13593 &mq_create->u.response);
13594 }
13595
13596 /* The IOCTL status is embedded in the mailbox subheader. */
13597 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13598 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13599 if (shdr_status || shdr_add_status || rc) {
13600 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13601 "2502 MQ_CREATE mailbox failed with "
13602 "status x%x add_status x%x, mbx status x%x\n",
13603 shdr_status, shdr_add_status, rc);
13604 status = -ENXIO;
13605 goto out;
13606 }
13607 if (mq->queue_id == 0xFFFF) {
13608 status = -ENXIO;
13609 goto out;
13610 }
13611 mq->type = LPFC_MQ;
13612 mq->assoc_qid = cq->queue_id;
13613 mq->subtype = subtype;
13614 mq->host_index = 0;
13615 mq->hba_index = 0;
13616
13617 /* link the mq onto the parent cq child list */
13618 list_add_tail(&mq->list, &cq->child_list);
13619 out:
13620 mempool_free(mbox, phba->mbox_mem_pool);
13621 return status;
13622 }
13623
13624 /**
13625 * lpfc_wq_create - Create a Work Queue on the HBA
13626 * @phba: HBA structure that indicates port to create a queue on.
13627 * @wq: The queue structure to use to create the work queue.
13628 * @cq: The completion queue to bind this work queue to.
13629 * @subtype: The subtype of the work queue indicating its functionality.
13630 *
13631 * This function creates a work queue, as detailed in @wq, on a port, described
13632 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
13633 *
13634 * The @phba struct is used to send mailbox command to HBA. The @wq struct
13635 * is used to get the entry count and entry size that are necessary to
13636 * determine the number of pages to allocate and use for this queue. The @cq
13637 * is used to indicate which completion queue to bind this work queue to. This
13638 * function will send the WQ_CREATE mailbox command to the HBA to setup the
13639 * work queue. This function is asynchronous and will wait for the mailbox
13640 * command to finish before continuing.
13641 *
13642 * On success this function will return a zero. If unable to allocate enough
13643 * memory this function will return -ENOMEM. If the queue create mailbox command
13644 * fails this function will return -ENXIO.
13645 **/
13646 int
13647 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
13648 struct lpfc_queue *cq, uint32_t subtype)
13649 {
13650 struct lpfc_mbx_wq_create *wq_create;
13651 struct lpfc_dmabuf *dmabuf;
13652 LPFC_MBOXQ_t *mbox;
13653 int rc, length, status = 0;
13654 uint32_t shdr_status, shdr_add_status;
13655 union lpfc_sli4_cfg_shdr *shdr;
13656 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13657 struct dma_address *page;
13658 void __iomem *bar_memmap_p;
13659 uint32_t db_offset;
13660 uint16_t pci_barset;
13661
13662 /* sanity check on queue memory */
13663 if (!wq || !cq)
13664 return -ENODEV;
13665 if (!phba->sli4_hba.pc_sli4_params.supported)
13666 hw_page_size = SLI4_PAGE_SIZE;
13667
13668 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13669 if (!mbox)
13670 return -ENOMEM;
13671 length = (sizeof(struct lpfc_mbx_wq_create) -
13672 sizeof(struct lpfc_sli4_cfg_mhdr));
13673 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13674 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
13675 length, LPFC_SLI4_MBX_EMBED);
13676 wq_create = &mbox->u.mqe.un.wq_create;
13677 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
13678 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
13679 wq->page_count);
13680 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
13681 cq->queue_id);
13682
13683 /* wqv is the earliest version supported, NOT the latest */
13684 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13685 phba->sli4_hba.pc_sli4_params.wqv);
13686
13687 switch (phba->sli4_hba.pc_sli4_params.wqv) {
13688 case LPFC_Q_CREATE_VERSION_0:
13689 switch (wq->entry_size) {
13690 default:
13691 case 64:
13692 /* Nothing to do, version 0 ONLY supports 64 byte */
13693 page = wq_create->u.request.page;
13694 break;
13695 case 128:
13696 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
13697 LPFC_WQ_SZ128_SUPPORT)) {
13698 status = -ERANGE;
13699 goto out;
13700 }
13701 /* If we get here the HBA MUST also support V1 and
13702 * we MUST use it
13703 */
13704 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13705 LPFC_Q_CREATE_VERSION_1);
13706
13707 bf_set(lpfc_mbx_wq_create_wqe_count,
13708 &wq_create->u.request_1, wq->entry_count);
13709 bf_set(lpfc_mbx_wq_create_wqe_size,
13710 &wq_create->u.request_1,
13711 LPFC_WQ_WQE_SIZE_128);
13712 bf_set(lpfc_mbx_wq_create_page_size,
13713 &wq_create->u.request_1,
13714 (PAGE_SIZE/SLI4_PAGE_SIZE));
13715 page = wq_create->u.request_1.page;
13716 break;
13717 }
13718 break;
13719 case LPFC_Q_CREATE_VERSION_1:
13720 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
13721 wq->entry_count);
13722 switch (wq->entry_size) {
13723 default:
13724 case 64:
13725 bf_set(lpfc_mbx_wq_create_wqe_size,
13726 &wq_create->u.request_1,
13727 LPFC_WQ_WQE_SIZE_64);
13728 break;
13729 case 128:
13730 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
13731 LPFC_WQ_SZ128_SUPPORT)) {
13732 status = -ERANGE;
13733 goto out;
13734 }
13735 bf_set(lpfc_mbx_wq_create_wqe_size,
13736 &wq_create->u.request_1,
13737 LPFC_WQ_WQE_SIZE_128);
13738 break;
13739 }
13740 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1,
13741 (PAGE_SIZE/SLI4_PAGE_SIZE));
13742 page = wq_create->u.request_1.page;
13743 break;
13744 default:
13745 status = -ERANGE;
13746 goto out;
13747 }
13748
13749 list_for_each_entry(dmabuf, &wq->page_list, list) {
13750 memset(dmabuf->virt, 0, hw_page_size);
13751 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
13752 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
13753 }
13754
13755 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
13756 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
13757
13758 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13759 /* The IOCTL status is embedded in the mailbox subheader. */
13760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13762 if (shdr_status || shdr_add_status || rc) {
13763 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13764 "2503 WQ_CREATE mailbox failed with "
13765 "status x%x add_status x%x, mbx status x%x\n",
13766 shdr_status, shdr_add_status, rc);
13767 status = -ENXIO;
13768 goto out;
13769 }
13770 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
13771 if (wq->queue_id == 0xFFFF) {
13772 status = -ENXIO;
13773 goto out;
13774 }
13775 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
13776 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
13777 &wq_create->u.response);
13778 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
13779 (wq->db_format != LPFC_DB_RING_FORMAT)) {
13780 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13781 "3265 WQ[%d] doorbell format not "
13782 "supported: x%x\n", wq->queue_id,
13783 wq->db_format);
13784 status = -EINVAL;
13785 goto out;
13786 }
13787 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
13788 &wq_create->u.response);
13789 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
13790 if (!bar_memmap_p) {
13791 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13792 "3263 WQ[%d] failed to memmap pci "
13793 "barset:x%x\n", wq->queue_id,
13794 pci_barset);
13795 status = -ENOMEM;
13796 goto out;
13797 }
13798 db_offset = wq_create->u.response.doorbell_offset;
13799 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
13800 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
13801 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13802 "3252 WQ[%d] doorbell offset not "
13803 "supported: x%x\n", wq->queue_id,
13804 db_offset);
13805 status = -EINVAL;
13806 goto out;
13807 }
13808 wq->db_regaddr = bar_memmap_p + db_offset;
13809 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13810 "3264 WQ[%d]: barset:x%x, offset:x%x, "
13811 "format:x%x\n", wq->queue_id, pci_barset,
13812 db_offset, wq->db_format);
13813 } else {
13814 wq->db_format = LPFC_DB_LIST_FORMAT;
13815 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
13816 }
13817 wq->type = LPFC_WQ;
13818 wq->assoc_qid = cq->queue_id;
13819 wq->subtype = subtype;
13820 wq->host_index = 0;
13821 wq->hba_index = 0;
13822 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
13823
13824 /* link the wq onto the parent cq child list */
13825 list_add_tail(&wq->list, &cq->child_list);
13826 out:
13827 mempool_free(mbox, phba->mbox_mem_pool);
13828 return status;
13829 }
13830
13831 /**
13832 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ
13833 * @phba: HBA structure that indicates port to create a queue on.
13834 * @rq: The queue structure to use for the receive queue.
13835 * @qno: The associated HBQ number
13836 *
13837 *
13838 * For SLI4 we need to adjust the RQ repost value based on
13839 * the number of buffers that are initially posted to the RQ.
13840 */
13841 void
13842 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno)
13843 {
13844 uint32_t cnt;
13845
13846 /* sanity check on queue memory */
13847 if (!rq)
13848 return;
13849 cnt = lpfc_hbq_defs[qno]->entry_count;
13850
13851 /* Recalc repost for RQs based on buffers initially posted */
13852 cnt = (cnt >> 3);
13853 if (cnt < LPFC_QUEUE_MIN_REPOST)
13854 cnt = LPFC_QUEUE_MIN_REPOST;
13855
13856 rq->entry_repost = cnt;
13857 }
13858
13859 /**
13860 * lpfc_rq_create - Create a Receive Queue on the HBA
13861 * @phba: HBA structure that indicates port to create a queue on.
13862 * @hrq: The queue structure to use to create the header receive queue.
13863 * @drq: The queue structure to use to create the data receive queue.
13864 * @cq: The completion queue to bind this work queue to.
13865 *
13866 * This function creates a receive buffer queue pair , as detailed in @hrq and
13867 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
13868 * to the HBA.
13869 *
13870 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
13871 * struct is used to get the entry count that is necessary to determine the
13872 * number of pages to use for this queue. The @cq is used to indicate which
13873 * completion queue to bind received buffers that are posted to these queues to.
13874 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
13875 * receive queue pair. This function is asynchronous and will wait for the
13876 * mailbox command to finish before continuing.
13877 *
13878 * On success this function will return a zero. If unable to allocate enough
13879 * memory this function will return -ENOMEM. If the queue create mailbox command
13880 * fails this function will return -ENXIO.
13881 **/
13882 int
13883 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
13884 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
13885 {
13886 struct lpfc_mbx_rq_create *rq_create;
13887 struct lpfc_dmabuf *dmabuf;
13888 LPFC_MBOXQ_t *mbox;
13889 int rc, length, status = 0;
13890 uint32_t shdr_status, shdr_add_status;
13891 union lpfc_sli4_cfg_shdr *shdr;
13892 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13893 void __iomem *bar_memmap_p;
13894 uint32_t db_offset;
13895 uint16_t pci_barset;
13896
13897 /* sanity check on queue memory */
13898 if (!hrq || !drq || !cq)
13899 return -ENODEV;
13900 if (!phba->sli4_hba.pc_sli4_params.supported)
13901 hw_page_size = SLI4_PAGE_SIZE;
13902
13903 if (hrq->entry_count != drq->entry_count)
13904 return -EINVAL;
13905 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13906 if (!mbox)
13907 return -ENOMEM;
13908 length = (sizeof(struct lpfc_mbx_rq_create) -
13909 sizeof(struct lpfc_sli4_cfg_mhdr));
13910 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13911 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
13912 length, LPFC_SLI4_MBX_EMBED);
13913 rq_create = &mbox->u.mqe.un.rq_create;
13914 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
13915 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13916 phba->sli4_hba.pc_sli4_params.rqv);
13917 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
13918 bf_set(lpfc_rq_context_rqe_count_1,
13919 &rq_create->u.request.context,
13920 hrq->entry_count);
13921 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
13922 bf_set(lpfc_rq_context_rqe_size,
13923 &rq_create->u.request.context,
13924 LPFC_RQE_SIZE_8);
13925 bf_set(lpfc_rq_context_page_size,
13926 &rq_create->u.request.context,
13927 (PAGE_SIZE/SLI4_PAGE_SIZE));
13928 } else {
13929 switch (hrq->entry_count) {
13930 default:
13931 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13932 "2535 Unsupported RQ count. (%d)\n",
13933 hrq->entry_count);
13934 if (hrq->entry_count < 512) {
13935 status = -EINVAL;
13936 goto out;
13937 }
13938 /* otherwise default to smallest count (drop through) */
13939 case 512:
13940 bf_set(lpfc_rq_context_rqe_count,
13941 &rq_create->u.request.context,
13942 LPFC_RQ_RING_SIZE_512);
13943 break;
13944 case 1024:
13945 bf_set(lpfc_rq_context_rqe_count,
13946 &rq_create->u.request.context,
13947 LPFC_RQ_RING_SIZE_1024);
13948 break;
13949 case 2048:
13950 bf_set(lpfc_rq_context_rqe_count,
13951 &rq_create->u.request.context,
13952 LPFC_RQ_RING_SIZE_2048);
13953 break;
13954 case 4096:
13955 bf_set(lpfc_rq_context_rqe_count,
13956 &rq_create->u.request.context,
13957 LPFC_RQ_RING_SIZE_4096);
13958 break;
13959 }
13960 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
13961 LPFC_HDR_BUF_SIZE);
13962 }
13963 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
13964 cq->queue_id);
13965 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
13966 hrq->page_count);
13967 list_for_each_entry(dmabuf, &hrq->page_list, list) {
13968 memset(dmabuf->virt, 0, hw_page_size);
13969 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13970 putPaddrLow(dmabuf->phys);
13971 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13972 putPaddrHigh(dmabuf->phys);
13973 }
13974 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
13975 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
13976
13977 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13978 /* The IOCTL status is embedded in the mailbox subheader. */
13979 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13980 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13981 if (shdr_status || shdr_add_status || rc) {
13982 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13983 "2504 RQ_CREATE mailbox failed with "
13984 "status x%x add_status x%x, mbx status x%x\n",
13985 shdr_status, shdr_add_status, rc);
13986 status = -ENXIO;
13987 goto out;
13988 }
13989 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
13990 if (hrq->queue_id == 0xFFFF) {
13991 status = -ENXIO;
13992 goto out;
13993 }
13994
13995 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
13996 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
13997 &rq_create->u.response);
13998 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
13999 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
14000 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14001 "3262 RQ [%d] doorbell format not "
14002 "supported: x%x\n", hrq->queue_id,
14003 hrq->db_format);
14004 status = -EINVAL;
14005 goto out;
14006 }
14007
14008 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
14009 &rq_create->u.response);
14010 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
14011 if (!bar_memmap_p) {
14012 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14013 "3269 RQ[%d] failed to memmap pci "
14014 "barset:x%x\n", hrq->queue_id,
14015 pci_barset);
14016 status = -ENOMEM;
14017 goto out;
14018 }
14019
14020 db_offset = rq_create->u.response.doorbell_offset;
14021 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
14022 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
14023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14024 "3270 RQ[%d] doorbell offset not "
14025 "supported: x%x\n", hrq->queue_id,
14026 db_offset);
14027 status = -EINVAL;
14028 goto out;
14029 }
14030 hrq->db_regaddr = bar_memmap_p + db_offset;
14031 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14032 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
14033 "format:x%x\n", hrq->queue_id, pci_barset,
14034 db_offset, hrq->db_format);
14035 } else {
14036 hrq->db_format = LPFC_DB_RING_FORMAT;
14037 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
14038 }
14039 hrq->type = LPFC_HRQ;
14040 hrq->assoc_qid = cq->queue_id;
14041 hrq->subtype = subtype;
14042 hrq->host_index = 0;
14043 hrq->hba_index = 0;
14044
14045 /* now create the data queue */
14046 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14047 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
14048 length, LPFC_SLI4_MBX_EMBED);
14049 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14050 phba->sli4_hba.pc_sli4_params.rqv);
14051 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
14052 bf_set(lpfc_rq_context_rqe_count_1,
14053 &rq_create->u.request.context, hrq->entry_count);
14054 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE;
14055 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
14056 LPFC_RQE_SIZE_8);
14057 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
14058 (PAGE_SIZE/SLI4_PAGE_SIZE));
14059 } else {
14060 switch (drq->entry_count) {
14061 default:
14062 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14063 "2536 Unsupported RQ count. (%d)\n",
14064 drq->entry_count);
14065 if (drq->entry_count < 512) {
14066 status = -EINVAL;
14067 goto out;
14068 }
14069 /* otherwise default to smallest count (drop through) */
14070 case 512:
14071 bf_set(lpfc_rq_context_rqe_count,
14072 &rq_create->u.request.context,
14073 LPFC_RQ_RING_SIZE_512);
14074 break;
14075 case 1024:
14076 bf_set(lpfc_rq_context_rqe_count,
14077 &rq_create->u.request.context,
14078 LPFC_RQ_RING_SIZE_1024);
14079 break;
14080 case 2048:
14081 bf_set(lpfc_rq_context_rqe_count,
14082 &rq_create->u.request.context,
14083 LPFC_RQ_RING_SIZE_2048);
14084 break;
14085 case 4096:
14086 bf_set(lpfc_rq_context_rqe_count,
14087 &rq_create->u.request.context,
14088 LPFC_RQ_RING_SIZE_4096);
14089 break;
14090 }
14091 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
14092 LPFC_DATA_BUF_SIZE);
14093 }
14094 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
14095 cq->queue_id);
14096 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
14097 drq->page_count);
14098 list_for_each_entry(dmabuf, &drq->page_list, list) {
14099 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14100 putPaddrLow(dmabuf->phys);
14101 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14102 putPaddrHigh(dmabuf->phys);
14103 }
14104 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
14105 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
14106 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14107 /* The IOCTL status is embedded in the mailbox subheader. */
14108 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
14109 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14110 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14111 if (shdr_status || shdr_add_status || rc) {
14112 status = -ENXIO;
14113 goto out;
14114 }
14115 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
14116 if (drq->queue_id == 0xFFFF) {
14117 status = -ENXIO;
14118 goto out;
14119 }
14120 drq->type = LPFC_DRQ;
14121 drq->assoc_qid = cq->queue_id;
14122 drq->subtype = subtype;
14123 drq->host_index = 0;
14124 drq->hba_index = 0;
14125
14126 /* link the header and data RQs onto the parent cq child list */
14127 list_add_tail(&hrq->list, &cq->child_list);
14128 list_add_tail(&drq->list, &cq->child_list);
14129
14130 out:
14131 mempool_free(mbox, phba->mbox_mem_pool);
14132 return status;
14133 }
14134
14135 /**
14136 * lpfc_eq_destroy - Destroy an event Queue on the HBA
14137 * @eq: The queue structure associated with the queue to destroy.
14138 *
14139 * This function destroys a queue, as detailed in @eq by sending an mailbox
14140 * command, specific to the type of queue, to the HBA.
14141 *
14142 * The @eq struct is used to get the queue ID of the queue to destroy.
14143 *
14144 * On success this function will return a zero. If the queue destroy mailbox
14145 * command fails this function will return -ENXIO.
14146 **/
14147 int
14148 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
14149 {
14150 LPFC_MBOXQ_t *mbox;
14151 int rc, length, status = 0;
14152 uint32_t shdr_status, shdr_add_status;
14153 union lpfc_sli4_cfg_shdr *shdr;
14154
14155 /* sanity check on queue memory */
14156 if (!eq)
14157 return -ENODEV;
14158 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
14159 if (!mbox)
14160 return -ENOMEM;
14161 length = (sizeof(struct lpfc_mbx_eq_destroy) -
14162 sizeof(struct lpfc_sli4_cfg_mhdr));
14163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14164 LPFC_MBOX_OPCODE_EQ_DESTROY,
14165 length, LPFC_SLI4_MBX_EMBED);
14166 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
14167 eq->queue_id);
14168 mbox->vport = eq->phba->pport;
14169 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14170
14171 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
14172 /* The IOCTL status is embedded in the mailbox subheader. */
14173 shdr = (union lpfc_sli4_cfg_shdr *)
14174 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
14175 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14176 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14177 if (shdr_status || shdr_add_status || rc) {
14178 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14179 "2505 EQ_DESTROY mailbox failed with "
14180 "status x%x add_status x%x, mbx status x%x\n",
14181 shdr_status, shdr_add_status, rc);
14182 status = -ENXIO;
14183 }
14184
14185 /* Remove eq from any list */
14186 list_del_init(&eq->list);
14187 mempool_free(mbox, eq->phba->mbox_mem_pool);
14188 return status;
14189 }
14190
14191 /**
14192 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
14193 * @cq: The queue structure associated with the queue to destroy.
14194 *
14195 * This function destroys a queue, as detailed in @cq by sending an mailbox
14196 * command, specific to the type of queue, to the HBA.
14197 *
14198 * The @cq struct is used to get the queue ID of the queue to destroy.
14199 *
14200 * On success this function will return a zero. If the queue destroy mailbox
14201 * command fails this function will return -ENXIO.
14202 **/
14203 int
14204 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
14205 {
14206 LPFC_MBOXQ_t *mbox;
14207 int rc, length, status = 0;
14208 uint32_t shdr_status, shdr_add_status;
14209 union lpfc_sli4_cfg_shdr *shdr;
14210
14211 /* sanity check on queue memory */
14212 if (!cq)
14213 return -ENODEV;
14214 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
14215 if (!mbox)
14216 return -ENOMEM;
14217 length = (sizeof(struct lpfc_mbx_cq_destroy) -
14218 sizeof(struct lpfc_sli4_cfg_mhdr));
14219 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14220 LPFC_MBOX_OPCODE_CQ_DESTROY,
14221 length, LPFC_SLI4_MBX_EMBED);
14222 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
14223 cq->queue_id);
14224 mbox->vport = cq->phba->pport;
14225 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14226 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
14227 /* The IOCTL status is embedded in the mailbox subheader. */
14228 shdr = (union lpfc_sli4_cfg_shdr *)
14229 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
14230 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14231 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14232 if (shdr_status || shdr_add_status || rc) {
14233 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14234 "2506 CQ_DESTROY mailbox failed with "
14235 "status x%x add_status x%x, mbx status x%x\n",
14236 shdr_status, shdr_add_status, rc);
14237 status = -ENXIO;
14238 }
14239 /* Remove cq from any list */
14240 list_del_init(&cq->list);
14241 mempool_free(mbox, cq->phba->mbox_mem_pool);
14242 return status;
14243 }
14244
14245 /**
14246 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
14247 * @qm: The queue structure associated with the queue to destroy.
14248 *
14249 * This function destroys a queue, as detailed in @mq by sending an mailbox
14250 * command, specific to the type of queue, to the HBA.
14251 *
14252 * The @mq struct is used to get the queue ID of the queue to destroy.
14253 *
14254 * On success this function will return a zero. If the queue destroy mailbox
14255 * command fails this function will return -ENXIO.
14256 **/
14257 int
14258 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
14259 {
14260 LPFC_MBOXQ_t *mbox;
14261 int rc, length, status = 0;
14262 uint32_t shdr_status, shdr_add_status;
14263 union lpfc_sli4_cfg_shdr *shdr;
14264
14265 /* sanity check on queue memory */
14266 if (!mq)
14267 return -ENODEV;
14268 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
14269 if (!mbox)
14270 return -ENOMEM;
14271 length = (sizeof(struct lpfc_mbx_mq_destroy) -
14272 sizeof(struct lpfc_sli4_cfg_mhdr));
14273 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14274 LPFC_MBOX_OPCODE_MQ_DESTROY,
14275 length, LPFC_SLI4_MBX_EMBED);
14276 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
14277 mq->queue_id);
14278 mbox->vport = mq->phba->pport;
14279 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14280 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
14281 /* The IOCTL status is embedded in the mailbox subheader. */
14282 shdr = (union lpfc_sli4_cfg_shdr *)
14283 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
14284 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14285 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14286 if (shdr_status || shdr_add_status || rc) {
14287 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14288 "2507 MQ_DESTROY mailbox failed with "
14289 "status x%x add_status x%x, mbx status x%x\n",
14290 shdr_status, shdr_add_status, rc);
14291 status = -ENXIO;
14292 }
14293 /* Remove mq from any list */
14294 list_del_init(&mq->list);
14295 mempool_free(mbox, mq->phba->mbox_mem_pool);
14296 return status;
14297 }
14298
14299 /**
14300 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
14301 * @wq: The queue structure associated with the queue to destroy.
14302 *
14303 * This function destroys a queue, as detailed in @wq by sending an mailbox
14304 * command, specific to the type of queue, to the HBA.
14305 *
14306 * The @wq struct is used to get the queue ID of the queue to destroy.
14307 *
14308 * On success this function will return a zero. If the queue destroy mailbox
14309 * command fails this function will return -ENXIO.
14310 **/
14311 int
14312 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
14313 {
14314 LPFC_MBOXQ_t *mbox;
14315 int rc, length, status = 0;
14316 uint32_t shdr_status, shdr_add_status;
14317 union lpfc_sli4_cfg_shdr *shdr;
14318
14319 /* sanity check on queue memory */
14320 if (!wq)
14321 return -ENODEV;
14322 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
14323 if (!mbox)
14324 return -ENOMEM;
14325 length = (sizeof(struct lpfc_mbx_wq_destroy) -
14326 sizeof(struct lpfc_sli4_cfg_mhdr));
14327 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14328 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
14329 length, LPFC_SLI4_MBX_EMBED);
14330 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
14331 wq->queue_id);
14332 mbox->vport = wq->phba->pport;
14333 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14334 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
14335 shdr = (union lpfc_sli4_cfg_shdr *)
14336 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
14337 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14338 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14339 if (shdr_status || shdr_add_status || rc) {
14340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14341 "2508 WQ_DESTROY mailbox failed with "
14342 "status x%x add_status x%x, mbx status x%x\n",
14343 shdr_status, shdr_add_status, rc);
14344 status = -ENXIO;
14345 }
14346 /* Remove wq from any list */
14347 list_del_init(&wq->list);
14348 mempool_free(mbox, wq->phba->mbox_mem_pool);
14349 return status;
14350 }
14351
14352 /**
14353 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
14354 * @rq: The queue structure associated with the queue to destroy.
14355 *
14356 * This function destroys a queue, as detailed in @rq by sending an mailbox
14357 * command, specific to the type of queue, to the HBA.
14358 *
14359 * The @rq struct is used to get the queue ID of the queue to destroy.
14360 *
14361 * On success this function will return a zero. If the queue destroy mailbox
14362 * command fails this function will return -ENXIO.
14363 **/
14364 int
14365 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
14366 struct lpfc_queue *drq)
14367 {
14368 LPFC_MBOXQ_t *mbox;
14369 int rc, length, status = 0;
14370 uint32_t shdr_status, shdr_add_status;
14371 union lpfc_sli4_cfg_shdr *shdr;
14372
14373 /* sanity check on queue memory */
14374 if (!hrq || !drq)
14375 return -ENODEV;
14376 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
14377 if (!mbox)
14378 return -ENOMEM;
14379 length = (sizeof(struct lpfc_mbx_rq_destroy) -
14380 sizeof(struct lpfc_sli4_cfg_mhdr));
14381 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14382 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
14383 length, LPFC_SLI4_MBX_EMBED);
14384 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
14385 hrq->queue_id);
14386 mbox->vport = hrq->phba->pport;
14387 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14388 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
14389 /* The IOCTL status is embedded in the mailbox subheader. */
14390 shdr = (union lpfc_sli4_cfg_shdr *)
14391 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
14392 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14393 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14394 if (shdr_status || shdr_add_status || rc) {
14395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14396 "2509 RQ_DESTROY mailbox failed with "
14397 "status x%x add_status x%x, mbx status x%x\n",
14398 shdr_status, shdr_add_status, rc);
14399 if (rc != MBX_TIMEOUT)
14400 mempool_free(mbox, hrq->phba->mbox_mem_pool);
14401 return -ENXIO;
14402 }
14403 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
14404 drq->queue_id);
14405 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
14406 shdr = (union lpfc_sli4_cfg_shdr *)
14407 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
14408 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14409 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14410 if (shdr_status || shdr_add_status || rc) {
14411 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14412 "2510 RQ_DESTROY mailbox failed with "
14413 "status x%x add_status x%x, mbx status x%x\n",
14414 shdr_status, shdr_add_status, rc);
14415 status = -ENXIO;
14416 }
14417 list_del_init(&hrq->list);
14418 list_del_init(&drq->list);
14419 mempool_free(mbox, hrq->phba->mbox_mem_pool);
14420 return status;
14421 }
14422
14423 /**
14424 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
14425 * @phba: The virtual port for which this call being executed.
14426 * @pdma_phys_addr0: Physical address of the 1st SGL page.
14427 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
14428 * @xritag: the xritag that ties this io to the SGL pages.
14429 *
14430 * This routine will post the sgl pages for the IO that has the xritag
14431 * that is in the iocbq structure. The xritag is assigned during iocbq
14432 * creation and persists for as long as the driver is loaded.
14433 * if the caller has fewer than 256 scatter gather segments to map then
14434 * pdma_phys_addr1 should be 0.
14435 * If the caller needs to map more than 256 scatter gather segment then
14436 * pdma_phys_addr1 should be a valid physical address.
14437 * physical address for SGLs must be 64 byte aligned.
14438 * If you are going to map 2 SGL's then the first one must have 256 entries
14439 * the second sgl can have between 1 and 256 entries.
14440 *
14441 * Return codes:
14442 * 0 - Success
14443 * -ENXIO, -ENOMEM - Failure
14444 **/
14445 int
14446 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
14447 dma_addr_t pdma_phys_addr0,
14448 dma_addr_t pdma_phys_addr1,
14449 uint16_t xritag)
14450 {
14451 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
14452 LPFC_MBOXQ_t *mbox;
14453 int rc;
14454 uint32_t shdr_status, shdr_add_status;
14455 uint32_t mbox_tmo;
14456 union lpfc_sli4_cfg_shdr *shdr;
14457
14458 if (xritag == NO_XRI) {
14459 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14460 "0364 Invalid param:\n");
14461 return -EINVAL;
14462 }
14463
14464 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14465 if (!mbox)
14466 return -ENOMEM;
14467
14468 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14469 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
14470 sizeof(struct lpfc_mbx_post_sgl_pages) -
14471 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
14472
14473 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
14474 &mbox->u.mqe.un.post_sgl_pages;
14475 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
14476 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
14477
14478 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
14479 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
14480 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
14481 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
14482
14483 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
14484 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
14485 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
14486 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
14487 if (!phba->sli4_hba.intr_enable)
14488 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14489 else {
14490 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
14491 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
14492 }
14493 /* The IOCTL status is embedded in the mailbox subheader. */
14494 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
14495 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14496 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14497 if (rc != MBX_TIMEOUT)
14498 mempool_free(mbox, phba->mbox_mem_pool);
14499 if (shdr_status || shdr_add_status || rc) {
14500 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14501 "2511 POST_SGL mailbox failed with "
14502 "status x%x add_status x%x, mbx status x%x\n",
14503 shdr_status, shdr_add_status, rc);
14504 }
14505 return 0;
14506 }
14507
14508 /**
14509 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
14510 * @phba: pointer to lpfc hba data structure.
14511 *
14512 * This routine is invoked to post rpi header templates to the
14513 * HBA consistent with the SLI-4 interface spec. This routine
14514 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
14515 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
14516 *
14517 * Returns
14518 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
14519 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
14520 **/
14521 static uint16_t
14522 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
14523 {
14524 unsigned long xri;
14525
14526 /*
14527 * Fetch the next logical xri. Because this index is logical,
14528 * the driver starts at 0 each time.
14529 */
14530 spin_lock_irq(&phba->hbalock);
14531 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
14532 phba->sli4_hba.max_cfg_param.max_xri, 0);
14533 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
14534 spin_unlock_irq(&phba->hbalock);
14535 return NO_XRI;
14536 } else {
14537 set_bit(xri, phba->sli4_hba.xri_bmask);
14538 phba->sli4_hba.max_cfg_param.xri_used++;
14539 }
14540 spin_unlock_irq(&phba->hbalock);
14541 return xri;
14542 }
14543
14544 /**
14545 * lpfc_sli4_free_xri - Release an xri for reuse.
14546 * @phba: pointer to lpfc hba data structure.
14547 *
14548 * This routine is invoked to release an xri to the pool of
14549 * available rpis maintained by the driver.
14550 **/
14551 static void
14552 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
14553 {
14554 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
14555 phba->sli4_hba.max_cfg_param.xri_used--;
14556 }
14557 }
14558
14559 /**
14560 * lpfc_sli4_free_xri - Release an xri for reuse.
14561 * @phba: pointer to lpfc hba data structure.
14562 *
14563 * This routine is invoked to release an xri to the pool of
14564 * available rpis maintained by the driver.
14565 **/
14566 void
14567 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
14568 {
14569 spin_lock_irq(&phba->hbalock);
14570 __lpfc_sli4_free_xri(phba, xri);
14571 spin_unlock_irq(&phba->hbalock);
14572 }
14573
14574 /**
14575 * lpfc_sli4_next_xritag - Get an xritag for the io
14576 * @phba: Pointer to HBA context object.
14577 *
14578 * This function gets an xritag for the iocb. If there is no unused xritag
14579 * it will return 0xffff.
14580 * The function returns the allocated xritag if successful, else returns zero.
14581 * Zero is not a valid xritag.
14582 * The caller is not required to hold any lock.
14583 **/
14584 uint16_t
14585 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
14586 {
14587 uint16_t xri_index;
14588
14589 xri_index = lpfc_sli4_alloc_xri(phba);
14590 if (xri_index == NO_XRI)
14591 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14592 "2004 Failed to allocate XRI.last XRITAG is %d"
14593 " Max XRI is %d, Used XRI is %d\n",
14594 xri_index,
14595 phba->sli4_hba.max_cfg_param.max_xri,
14596 phba->sli4_hba.max_cfg_param.xri_used);
14597 return xri_index;
14598 }
14599
14600 /**
14601 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port.
14602 * @phba: pointer to lpfc hba data structure.
14603 * @post_sgl_list: pointer to els sgl entry list.
14604 * @count: number of els sgl entries on the list.
14605 *
14606 * This routine is invoked to post a block of driver's sgl pages to the
14607 * HBA using non-embedded mailbox command. No Lock is held. This routine
14608 * is only called when the driver is loading and after all IO has been
14609 * stopped.
14610 **/
14611 static int
14612 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba,
14613 struct list_head *post_sgl_list,
14614 int post_cnt)
14615 {
14616 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
14617 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
14618 struct sgl_page_pairs *sgl_pg_pairs;
14619 void *viraddr;
14620 LPFC_MBOXQ_t *mbox;
14621 uint32_t reqlen, alloclen, pg_pairs;
14622 uint32_t mbox_tmo;
14623 uint16_t xritag_start = 0;
14624 int rc = 0;
14625 uint32_t shdr_status, shdr_add_status;
14626 union lpfc_sli4_cfg_shdr *shdr;
14627
14628 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) +
14629 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
14630 if (reqlen > SLI4_PAGE_SIZE) {
14631 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
14632 "2559 Block sgl registration required DMA "
14633 "size (%d) great than a page\n", reqlen);
14634 return -ENOMEM;
14635 }
14636 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14637 if (!mbox)
14638 return -ENOMEM;
14639
14640 /* Allocate DMA memory and set up the non-embedded mailbox command */
14641 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14642 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
14643 LPFC_SLI4_MBX_NEMBED);
14644
14645 if (alloclen < reqlen) {
14646 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14647 "0285 Allocated DMA memory size (%d) is "
14648 "less than the requested DMA memory "
14649 "size (%d)\n", alloclen, reqlen);
14650 lpfc_sli4_mbox_cmd_free(phba, mbox);
14651 return -ENOMEM;
14652 }
14653 /* Set up the SGL pages in the non-embedded DMA pages */
14654 viraddr = mbox->sge_array->addr[0];
14655 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
14656 sgl_pg_pairs = &sgl->sgl_pg_pairs;
14657
14658 pg_pairs = 0;
14659 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
14660 /* Set up the sge entry */
14661 sgl_pg_pairs->sgl_pg0_addr_lo =
14662 cpu_to_le32(putPaddrLow(sglq_entry->phys));
14663 sgl_pg_pairs->sgl_pg0_addr_hi =
14664 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
14665 sgl_pg_pairs->sgl_pg1_addr_lo =
14666 cpu_to_le32(putPaddrLow(0));
14667 sgl_pg_pairs->sgl_pg1_addr_hi =
14668 cpu_to_le32(putPaddrHigh(0));
14669
14670 /* Keep the first xritag on the list */
14671 if (pg_pairs == 0)
14672 xritag_start = sglq_entry->sli4_xritag;
14673 sgl_pg_pairs++;
14674 pg_pairs++;
14675 }
14676
14677 /* Complete initialization and perform endian conversion. */
14678 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
14679 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt);
14680 sgl->word0 = cpu_to_le32(sgl->word0);
14681 if (!phba->sli4_hba.intr_enable)
14682 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14683 else {
14684 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
14685 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
14686 }
14687 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
14688 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14689 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14690 if (rc != MBX_TIMEOUT)
14691 lpfc_sli4_mbox_cmd_free(phba, mbox);
14692 if (shdr_status || shdr_add_status || rc) {
14693 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14694 "2513 POST_SGL_BLOCK mailbox command failed "
14695 "status x%x add_status x%x mbx status x%x\n",
14696 shdr_status, shdr_add_status, rc);
14697 rc = -ENXIO;
14698 }
14699 return rc;
14700 }
14701
14702 /**
14703 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
14704 * @phba: pointer to lpfc hba data structure.
14705 * @sblist: pointer to scsi buffer list.
14706 * @count: number of scsi buffers on the list.
14707 *
14708 * This routine is invoked to post a block of @count scsi sgl pages from a
14709 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
14710 * No Lock is held.
14711 *
14712 **/
14713 int
14714 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
14715 struct list_head *sblist,
14716 int count)
14717 {
14718 struct lpfc_scsi_buf *psb;
14719 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
14720 struct sgl_page_pairs *sgl_pg_pairs;
14721 void *viraddr;
14722 LPFC_MBOXQ_t *mbox;
14723 uint32_t reqlen, alloclen, pg_pairs;
14724 uint32_t mbox_tmo;
14725 uint16_t xritag_start = 0;
14726 int rc = 0;
14727 uint32_t shdr_status, shdr_add_status;
14728 dma_addr_t pdma_phys_bpl1;
14729 union lpfc_sli4_cfg_shdr *shdr;
14730
14731 /* Calculate the requested length of the dma memory */
14732 reqlen = count * sizeof(struct sgl_page_pairs) +
14733 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
14734 if (reqlen > SLI4_PAGE_SIZE) {
14735 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
14736 "0217 Block sgl registration required DMA "
14737 "size (%d) great than a page\n", reqlen);
14738 return -ENOMEM;
14739 }
14740 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14741 if (!mbox) {
14742 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14743 "0283 Failed to allocate mbox cmd memory\n");
14744 return -ENOMEM;
14745 }
14746
14747 /* Allocate DMA memory and set up the non-embedded mailbox command */
14748 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14749 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
14750 LPFC_SLI4_MBX_NEMBED);
14751
14752 if (alloclen < reqlen) {
14753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14754 "2561 Allocated DMA memory size (%d) is "
14755 "less than the requested DMA memory "
14756 "size (%d)\n", alloclen, reqlen);
14757 lpfc_sli4_mbox_cmd_free(phba, mbox);
14758 return -ENOMEM;
14759 }
14760
14761 /* Get the first SGE entry from the non-embedded DMA memory */
14762 viraddr = mbox->sge_array->addr[0];
14763
14764 /* Set up the SGL pages in the non-embedded DMA pages */
14765 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
14766 sgl_pg_pairs = &sgl->sgl_pg_pairs;
14767
14768 pg_pairs = 0;
14769 list_for_each_entry(psb, sblist, list) {
14770 /* Set up the sge entry */
14771 sgl_pg_pairs->sgl_pg0_addr_lo =
14772 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
14773 sgl_pg_pairs->sgl_pg0_addr_hi =
14774 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
14775 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
14776 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
14777 else
14778 pdma_phys_bpl1 = 0;
14779 sgl_pg_pairs->sgl_pg1_addr_lo =
14780 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
14781 sgl_pg_pairs->sgl_pg1_addr_hi =
14782 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
14783 /* Keep the first xritag on the list */
14784 if (pg_pairs == 0)
14785 xritag_start = psb->cur_iocbq.sli4_xritag;
14786 sgl_pg_pairs++;
14787 pg_pairs++;
14788 }
14789 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
14790 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
14791 /* Perform endian conversion if necessary */
14792 sgl->word0 = cpu_to_le32(sgl->word0);
14793
14794 if (!phba->sli4_hba.intr_enable)
14795 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14796 else {
14797 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
14798 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
14799 }
14800 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
14801 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14802 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14803 if (rc != MBX_TIMEOUT)
14804 lpfc_sli4_mbox_cmd_free(phba, mbox);
14805 if (shdr_status || shdr_add_status || rc) {
14806 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14807 "2564 POST_SGL_BLOCK mailbox command failed "
14808 "status x%x add_status x%x mbx status x%x\n",
14809 shdr_status, shdr_add_status, rc);
14810 rc = -ENXIO;
14811 }
14812 return rc;
14813 }
14814
14815 /**
14816 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
14817 * @phba: pointer to lpfc_hba struct that the frame was received on
14818 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
14819 *
14820 * This function checks the fields in the @fc_hdr to see if the FC frame is a
14821 * valid type of frame that the LPFC driver will handle. This function will
14822 * return a zero if the frame is a valid frame or a non zero value when the
14823 * frame does not pass the check.
14824 **/
14825 static int
14826 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
14827 {
14828 /* make rctl_names static to save stack space */
14829 static char *rctl_names[] = FC_RCTL_NAMES_INIT;
14830 char *type_names[] = FC_TYPE_NAMES_INIT;
14831 struct fc_vft_header *fc_vft_hdr;
14832 uint32_t *header = (uint32_t *) fc_hdr;
14833
14834 switch (fc_hdr->fh_r_ctl) {
14835 case FC_RCTL_DD_UNCAT: /* uncategorized information */
14836 case FC_RCTL_DD_SOL_DATA: /* solicited data */
14837 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
14838 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
14839 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
14840 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
14841 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
14842 case FC_RCTL_DD_CMD_STATUS: /* command status */
14843 case FC_RCTL_ELS_REQ: /* extended link services request */
14844 case FC_RCTL_ELS_REP: /* extended link services reply */
14845 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
14846 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
14847 case FC_RCTL_BA_NOP: /* basic link service NOP */
14848 case FC_RCTL_BA_ABTS: /* basic link service abort */
14849 case FC_RCTL_BA_RMC: /* remove connection */
14850 case FC_RCTL_BA_ACC: /* basic accept */
14851 case FC_RCTL_BA_RJT: /* basic reject */
14852 case FC_RCTL_BA_PRMT:
14853 case FC_RCTL_ACK_1: /* acknowledge_1 */
14854 case FC_RCTL_ACK_0: /* acknowledge_0 */
14855 case FC_RCTL_P_RJT: /* port reject */
14856 case FC_RCTL_F_RJT: /* fabric reject */
14857 case FC_RCTL_P_BSY: /* port busy */
14858 case FC_RCTL_F_BSY: /* fabric busy to data frame */
14859 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
14860 case FC_RCTL_LCR: /* link credit reset */
14861 case FC_RCTL_END: /* end */
14862 break;
14863 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
14864 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
14865 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
14866 return lpfc_fc_frame_check(phba, fc_hdr);
14867 default:
14868 goto drop;
14869 }
14870 switch (fc_hdr->fh_type) {
14871 case FC_TYPE_BLS:
14872 case FC_TYPE_ELS:
14873 case FC_TYPE_FCP:
14874 case FC_TYPE_CT:
14875 break;
14876 case FC_TYPE_IP:
14877 case FC_TYPE_ILS:
14878 default:
14879 goto drop;
14880 }
14881
14882 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
14883 "2538 Received frame rctl:%s (x%x), type:%s (x%x), "
14884 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
14885 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl,
14886 type_names[fc_hdr->fh_type], fc_hdr->fh_type,
14887 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
14888 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
14889 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
14890 be32_to_cpu(header[6]));
14891 return 0;
14892 drop:
14893 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
14894 "2539 Dropped frame rctl:%s type:%s\n",
14895 rctl_names[fc_hdr->fh_r_ctl],
14896 type_names[fc_hdr->fh_type]);
14897 return 1;
14898 }
14899
14900 /**
14901 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
14902 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
14903 *
14904 * This function processes the FC header to retrieve the VFI from the VF
14905 * header, if one exists. This function will return the VFI if one exists
14906 * or 0 if no VSAN Header exists.
14907 **/
14908 static uint32_t
14909 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
14910 {
14911 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
14912
14913 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
14914 return 0;
14915 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
14916 }
14917
14918 /**
14919 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
14920 * @phba: Pointer to the HBA structure to search for the vport on
14921 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
14922 * @fcfi: The FC Fabric ID that the frame came from
14923 *
14924 * This function searches the @phba for a vport that matches the content of the
14925 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
14926 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
14927 * returns the matching vport pointer or NULL if unable to match frame to a
14928 * vport.
14929 **/
14930 static struct lpfc_vport *
14931 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
14932 uint16_t fcfi)
14933 {
14934 struct lpfc_vport **vports;
14935 struct lpfc_vport *vport = NULL;
14936 int i;
14937 uint32_t did = (fc_hdr->fh_d_id[0] << 16 |
14938 fc_hdr->fh_d_id[1] << 8 |
14939 fc_hdr->fh_d_id[2]);
14940
14941 if (did == Fabric_DID)
14942 return phba->pport;
14943 if ((phba->pport->fc_flag & FC_PT2PT) &&
14944 !(phba->link_state == LPFC_HBA_READY))
14945 return phba->pport;
14946
14947 vports = lpfc_create_vport_work_array(phba);
14948 if (vports != NULL)
14949 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
14950 if (phba->fcf.fcfi == fcfi &&
14951 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
14952 vports[i]->fc_myDID == did) {
14953 vport = vports[i];
14954 break;
14955 }
14956 }
14957 lpfc_destroy_vport_work_array(phba, vports);
14958 return vport;
14959 }
14960
14961 /**
14962 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
14963 * @vport: The vport to work on.
14964 *
14965 * This function updates the receive sequence time stamp for this vport. The
14966 * receive sequence time stamp indicates the time that the last frame of the
14967 * the sequence that has been idle for the longest amount of time was received.
14968 * the driver uses this time stamp to indicate if any received sequences have
14969 * timed out.
14970 **/
14971 static void
14972 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
14973 {
14974 struct lpfc_dmabuf *h_buf;
14975 struct hbq_dmabuf *dmabuf = NULL;
14976
14977 /* get the oldest sequence on the rcv list */
14978 h_buf = list_get_first(&vport->rcv_buffer_list,
14979 struct lpfc_dmabuf, list);
14980 if (!h_buf)
14981 return;
14982 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
14983 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
14984 }
14985
14986 /**
14987 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
14988 * @vport: The vport that the received sequences were sent to.
14989 *
14990 * This function cleans up all outstanding received sequences. This is called
14991 * by the driver when a link event or user action invalidates all the received
14992 * sequences.
14993 **/
14994 void
14995 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
14996 {
14997 struct lpfc_dmabuf *h_buf, *hnext;
14998 struct lpfc_dmabuf *d_buf, *dnext;
14999 struct hbq_dmabuf *dmabuf = NULL;
15000
15001 /* start with the oldest sequence on the rcv list */
15002 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
15003 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15004 list_del_init(&dmabuf->hbuf.list);
15005 list_for_each_entry_safe(d_buf, dnext,
15006 &dmabuf->dbuf.list, list) {
15007 list_del_init(&d_buf->list);
15008 lpfc_in_buf_free(vport->phba, d_buf);
15009 }
15010 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
15011 }
15012 }
15013
15014 /**
15015 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
15016 * @vport: The vport that the received sequences were sent to.
15017 *
15018 * This function determines whether any received sequences have timed out by
15019 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
15020 * indicates that there is at least one timed out sequence this routine will
15021 * go through the received sequences one at a time from most inactive to most
15022 * active to determine which ones need to be cleaned up. Once it has determined
15023 * that a sequence needs to be cleaned up it will simply free up the resources
15024 * without sending an abort.
15025 **/
15026 void
15027 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
15028 {
15029 struct lpfc_dmabuf *h_buf, *hnext;
15030 struct lpfc_dmabuf *d_buf, *dnext;
15031 struct hbq_dmabuf *dmabuf = NULL;
15032 unsigned long timeout;
15033 int abort_count = 0;
15034
15035 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
15036 vport->rcv_buffer_time_stamp);
15037 if (list_empty(&vport->rcv_buffer_list) ||
15038 time_before(jiffies, timeout))
15039 return;
15040 /* start with the oldest sequence on the rcv list */
15041 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
15042 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15043 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
15044 dmabuf->time_stamp);
15045 if (time_before(jiffies, timeout))
15046 break;
15047 abort_count++;
15048 list_del_init(&dmabuf->hbuf.list);
15049 list_for_each_entry_safe(d_buf, dnext,
15050 &dmabuf->dbuf.list, list) {
15051 list_del_init(&d_buf->list);
15052 lpfc_in_buf_free(vport->phba, d_buf);
15053 }
15054 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
15055 }
15056 if (abort_count)
15057 lpfc_update_rcv_time_stamp(vport);
15058 }
15059
15060 /**
15061 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
15062 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
15063 *
15064 * This function searches through the existing incomplete sequences that have
15065 * been sent to this @vport. If the frame matches one of the incomplete
15066 * sequences then the dbuf in the @dmabuf is added to the list of frames that
15067 * make up that sequence. If no sequence is found that matches this frame then
15068 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
15069 * This function returns a pointer to the first dmabuf in the sequence list that
15070 * the frame was linked to.
15071 **/
15072 static struct hbq_dmabuf *
15073 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
15074 {
15075 struct fc_frame_header *new_hdr;
15076 struct fc_frame_header *temp_hdr;
15077 struct lpfc_dmabuf *d_buf;
15078 struct lpfc_dmabuf *h_buf;
15079 struct hbq_dmabuf *seq_dmabuf = NULL;
15080 struct hbq_dmabuf *temp_dmabuf = NULL;
15081 uint8_t found = 0;
15082
15083 INIT_LIST_HEAD(&dmabuf->dbuf.list);
15084 dmabuf->time_stamp = jiffies;
15085 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15086
15087 /* Use the hdr_buf to find the sequence that this frame belongs to */
15088 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
15089 temp_hdr = (struct fc_frame_header *)h_buf->virt;
15090 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
15091 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
15092 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
15093 continue;
15094 /* found a pending sequence that matches this frame */
15095 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15096 break;
15097 }
15098 if (!seq_dmabuf) {
15099 /*
15100 * This indicates first frame received for this sequence.
15101 * Queue the buffer on the vport's rcv_buffer_list.
15102 */
15103 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
15104 lpfc_update_rcv_time_stamp(vport);
15105 return dmabuf;
15106 }
15107 temp_hdr = seq_dmabuf->hbuf.virt;
15108 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
15109 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
15110 list_del_init(&seq_dmabuf->hbuf.list);
15111 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
15112 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
15113 lpfc_update_rcv_time_stamp(vport);
15114 return dmabuf;
15115 }
15116 /* move this sequence to the tail to indicate a young sequence */
15117 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
15118 seq_dmabuf->time_stamp = jiffies;
15119 lpfc_update_rcv_time_stamp(vport);
15120 if (list_empty(&seq_dmabuf->dbuf.list)) {
15121 temp_hdr = dmabuf->hbuf.virt;
15122 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
15123 return seq_dmabuf;
15124 }
15125 /* find the correct place in the sequence to insert this frame */
15126 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
15127 while (!found) {
15128 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15129 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
15130 /*
15131 * If the frame's sequence count is greater than the frame on
15132 * the list then insert the frame right after this frame
15133 */
15134 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
15135 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
15136 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
15137 found = 1;
15138 break;
15139 }
15140
15141 if (&d_buf->list == &seq_dmabuf->dbuf.list)
15142 break;
15143 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
15144 }
15145
15146 if (found)
15147 return seq_dmabuf;
15148 return NULL;
15149 }
15150
15151 /**
15152 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
15153 * @vport: pointer to a vitural port
15154 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15155 *
15156 * This function tries to abort from the partially assembed sequence, described
15157 * by the information from basic abbort @dmabuf. It checks to see whether such
15158 * partially assembled sequence held by the driver. If so, it shall free up all
15159 * the frames from the partially assembled sequence.
15160 *
15161 * Return
15162 * true -- if there is matching partially assembled sequence present and all
15163 * the frames freed with the sequence;
15164 * false -- if there is no matching partially assembled sequence present so
15165 * nothing got aborted in the lower layer driver
15166 **/
15167 static bool
15168 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
15169 struct hbq_dmabuf *dmabuf)
15170 {
15171 struct fc_frame_header *new_hdr;
15172 struct fc_frame_header *temp_hdr;
15173 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
15174 struct hbq_dmabuf *seq_dmabuf = NULL;
15175
15176 /* Use the hdr_buf to find the sequence that matches this frame */
15177 INIT_LIST_HEAD(&dmabuf->dbuf.list);
15178 INIT_LIST_HEAD(&dmabuf->hbuf.list);
15179 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15180 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
15181 temp_hdr = (struct fc_frame_header *)h_buf->virt;
15182 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
15183 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
15184 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
15185 continue;
15186 /* found a pending sequence that matches this frame */
15187 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15188 break;
15189 }
15190
15191 /* Free up all the frames from the partially assembled sequence */
15192 if (seq_dmabuf) {
15193 list_for_each_entry_safe(d_buf, n_buf,
15194 &seq_dmabuf->dbuf.list, list) {
15195 list_del_init(&d_buf->list);
15196 lpfc_in_buf_free(vport->phba, d_buf);
15197 }
15198 return true;
15199 }
15200 return false;
15201 }
15202
15203 /**
15204 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
15205 * @vport: pointer to a vitural port
15206 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15207 *
15208 * This function tries to abort from the assembed sequence from upper level
15209 * protocol, described by the information from basic abbort @dmabuf. It
15210 * checks to see whether such pending context exists at upper level protocol.
15211 * If so, it shall clean up the pending context.
15212 *
15213 * Return
15214 * true -- if there is matching pending context of the sequence cleaned
15215 * at ulp;
15216 * false -- if there is no matching pending context of the sequence present
15217 * at ulp.
15218 **/
15219 static bool
15220 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
15221 {
15222 struct lpfc_hba *phba = vport->phba;
15223 int handled;
15224
15225 /* Accepting abort at ulp with SLI4 only */
15226 if (phba->sli_rev < LPFC_SLI_REV4)
15227 return false;
15228
15229 /* Register all caring upper level protocols to attend abort */
15230 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
15231 if (handled)
15232 return true;
15233
15234 return false;
15235 }
15236
15237 /**
15238 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
15239 * @phba: Pointer to HBA context object.
15240 * @cmd_iocbq: pointer to the command iocbq structure.
15241 * @rsp_iocbq: pointer to the response iocbq structure.
15242 *
15243 * This function handles the sequence abort response iocb command complete
15244 * event. It properly releases the memory allocated to the sequence abort
15245 * accept iocb.
15246 **/
15247 static void
15248 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
15249 struct lpfc_iocbq *cmd_iocbq,
15250 struct lpfc_iocbq *rsp_iocbq)
15251 {
15252 struct lpfc_nodelist *ndlp;
15253
15254 if (cmd_iocbq) {
15255 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
15256 lpfc_nlp_put(ndlp);
15257 lpfc_nlp_not_used(ndlp);
15258 lpfc_sli_release_iocbq(phba, cmd_iocbq);
15259 }
15260
15261 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
15262 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
15263 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15264 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
15265 rsp_iocbq->iocb.ulpStatus,
15266 rsp_iocbq->iocb.un.ulpWord[4]);
15267 }
15268
15269 /**
15270 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
15271 * @phba: Pointer to HBA context object.
15272 * @xri: xri id in transaction.
15273 *
15274 * This function validates the xri maps to the known range of XRIs allocated an
15275 * used by the driver.
15276 **/
15277 uint16_t
15278 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
15279 uint16_t xri)
15280 {
15281 uint16_t i;
15282
15283 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
15284 if (xri == phba->sli4_hba.xri_ids[i])
15285 return i;
15286 }
15287 return NO_XRI;
15288 }
15289
15290 /**
15291 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
15292 * @phba: Pointer to HBA context object.
15293 * @fc_hdr: pointer to a FC frame header.
15294 *
15295 * This function sends a basic response to a previous unsol sequence abort
15296 * event after aborting the sequence handling.
15297 **/
15298 static void
15299 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
15300 struct fc_frame_header *fc_hdr, bool aborted)
15301 {
15302 struct lpfc_hba *phba = vport->phba;
15303 struct lpfc_iocbq *ctiocb = NULL;
15304 struct lpfc_nodelist *ndlp;
15305 uint16_t oxid, rxid, xri, lxri;
15306 uint32_t sid, fctl;
15307 IOCB_t *icmd;
15308 int rc;
15309
15310 if (!lpfc_is_link_up(phba))
15311 return;
15312
15313 sid = sli4_sid_from_fc_hdr(fc_hdr);
15314 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
15315 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
15316
15317 ndlp = lpfc_findnode_did(vport, sid);
15318 if (!ndlp) {
15319 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL);
15320 if (!ndlp) {
15321 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
15322 "1268 Failed to allocate ndlp for "
15323 "oxid:x%x SID:x%x\n", oxid, sid);
15324 return;
15325 }
15326 lpfc_nlp_init(vport, ndlp, sid);
15327 /* Put ndlp onto pport node list */
15328 lpfc_enqueue_node(vport, ndlp);
15329 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
15330 /* re-setup ndlp without removing from node list */
15331 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
15332 if (!ndlp) {
15333 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
15334 "3275 Failed to active ndlp found "
15335 "for oxid:x%x SID:x%x\n", oxid, sid);
15336 return;
15337 }
15338 }
15339
15340 /* Allocate buffer for rsp iocb */
15341 ctiocb = lpfc_sli_get_iocbq(phba);
15342 if (!ctiocb)
15343 return;
15344
15345 /* Extract the F_CTL field from FC_HDR */
15346 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
15347
15348 icmd = &ctiocb->iocb;
15349 icmd->un.xseq64.bdl.bdeSize = 0;
15350 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
15351 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
15352 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
15353 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
15354
15355 /* Fill in the rest of iocb fields */
15356 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
15357 icmd->ulpBdeCount = 0;
15358 icmd->ulpLe = 1;
15359 icmd->ulpClass = CLASS3;
15360 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
15361 ctiocb->context1 = lpfc_nlp_get(ndlp);
15362
15363 ctiocb->iocb_cmpl = NULL;
15364 ctiocb->vport = phba->pport;
15365 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
15366 ctiocb->sli4_lxritag = NO_XRI;
15367 ctiocb->sli4_xritag = NO_XRI;
15368
15369 if (fctl & FC_FC_EX_CTX)
15370 /* Exchange responder sent the abort so we
15371 * own the oxid.
15372 */
15373 xri = oxid;
15374 else
15375 xri = rxid;
15376 lxri = lpfc_sli4_xri_inrange(phba, xri);
15377 if (lxri != NO_XRI)
15378 lpfc_set_rrq_active(phba, ndlp, lxri,
15379 (xri == oxid) ? rxid : oxid, 0);
15380 /* For BA_ABTS from exchange responder, if the logical xri with
15381 * the oxid maps to the FCP XRI range, the port no longer has
15382 * that exchange context, send a BLS_RJT. Override the IOCB for
15383 * a BA_RJT.
15384 */
15385 if ((fctl & FC_FC_EX_CTX) &&
15386 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) {
15387 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
15388 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
15389 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
15390 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
15391 }
15392
15393 /* If BA_ABTS failed to abort a partially assembled receive sequence,
15394 * the driver no longer has that exchange, send a BLS_RJT. Override
15395 * the IOCB for a BA_RJT.
15396 */
15397 if (aborted == false) {
15398 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
15399 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
15400 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
15401 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
15402 }
15403
15404 if (fctl & FC_FC_EX_CTX) {
15405 /* ABTS sent by responder to CT exchange, construction
15406 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
15407 * field and RX_ID from ABTS for RX_ID field.
15408 */
15409 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
15410 } else {
15411 /* ABTS sent by initiator to CT exchange, construction
15412 * of BA_ACC will need to allocate a new XRI as for the
15413 * XRI_TAG field.
15414 */
15415 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
15416 }
15417 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
15418 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
15419
15420 /* Xmit CT abts response on exchange <xid> */
15421 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
15422 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
15423 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
15424
15425 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
15426 if (rc == IOCB_ERROR) {
15427 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
15428 "2925 Failed to issue CT ABTS RSP x%x on "
15429 "xri x%x, Data x%x\n",
15430 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
15431 phba->link_state);
15432 lpfc_nlp_put(ndlp);
15433 ctiocb->context1 = NULL;
15434 lpfc_sli_release_iocbq(phba, ctiocb);
15435 }
15436 }
15437
15438 /**
15439 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
15440 * @vport: Pointer to the vport on which this sequence was received
15441 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15442 *
15443 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
15444 * receive sequence is only partially assembed by the driver, it shall abort
15445 * the partially assembled frames for the sequence. Otherwise, if the
15446 * unsolicited receive sequence has been completely assembled and passed to
15447 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
15448 * unsolicited sequence has been aborted. After that, it will issue a basic
15449 * accept to accept the abort.
15450 **/
15451 static void
15452 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
15453 struct hbq_dmabuf *dmabuf)
15454 {
15455 struct lpfc_hba *phba = vport->phba;
15456 struct fc_frame_header fc_hdr;
15457 uint32_t fctl;
15458 bool aborted;
15459
15460 /* Make a copy of fc_hdr before the dmabuf being released */
15461 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
15462 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
15463
15464 if (fctl & FC_FC_EX_CTX) {
15465 /* ABTS by responder to exchange, no cleanup needed */
15466 aborted = true;
15467 } else {
15468 /* ABTS by initiator to exchange, need to do cleanup */
15469 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
15470 if (aborted == false)
15471 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
15472 }
15473 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15474
15475 /* Respond with BA_ACC or BA_RJT accordingly */
15476 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
15477 }
15478
15479 /**
15480 * lpfc_seq_complete - Indicates if a sequence is complete
15481 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15482 *
15483 * This function checks the sequence, starting with the frame described by
15484 * @dmabuf, to see if all the frames associated with this sequence are present.
15485 * the frames associated with this sequence are linked to the @dmabuf using the
15486 * dbuf list. This function looks for two major things. 1) That the first frame
15487 * has a sequence count of zero. 2) There is a frame with last frame of sequence
15488 * set. 3) That there are no holes in the sequence count. The function will
15489 * return 1 when the sequence is complete, otherwise it will return 0.
15490 **/
15491 static int
15492 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
15493 {
15494 struct fc_frame_header *hdr;
15495 struct lpfc_dmabuf *d_buf;
15496 struct hbq_dmabuf *seq_dmabuf;
15497 uint32_t fctl;
15498 int seq_count = 0;
15499
15500 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15501 /* make sure first fame of sequence has a sequence count of zero */
15502 if (hdr->fh_seq_cnt != seq_count)
15503 return 0;
15504 fctl = (hdr->fh_f_ctl[0] << 16 |
15505 hdr->fh_f_ctl[1] << 8 |
15506 hdr->fh_f_ctl[2]);
15507 /* If last frame of sequence we can return success. */
15508 if (fctl & FC_FC_END_SEQ)
15509 return 1;
15510 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
15511 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15512 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
15513 /* If there is a hole in the sequence count then fail. */
15514 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
15515 return 0;
15516 fctl = (hdr->fh_f_ctl[0] << 16 |
15517 hdr->fh_f_ctl[1] << 8 |
15518 hdr->fh_f_ctl[2]);
15519 /* If last frame of sequence we can return success. */
15520 if (fctl & FC_FC_END_SEQ)
15521 return 1;
15522 }
15523 return 0;
15524 }
15525
15526 /**
15527 * lpfc_prep_seq - Prep sequence for ULP processing
15528 * @vport: Pointer to the vport on which this sequence was received
15529 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15530 *
15531 * This function takes a sequence, described by a list of frames, and creates
15532 * a list of iocbq structures to describe the sequence. This iocbq list will be
15533 * used to issue to the generic unsolicited sequence handler. This routine
15534 * returns a pointer to the first iocbq in the list. If the function is unable
15535 * to allocate an iocbq then it throw out the received frames that were not
15536 * able to be described and return a pointer to the first iocbq. If unable to
15537 * allocate any iocbqs (including the first) this function will return NULL.
15538 **/
15539 static struct lpfc_iocbq *
15540 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
15541 {
15542 struct hbq_dmabuf *hbq_buf;
15543 struct lpfc_dmabuf *d_buf, *n_buf;
15544 struct lpfc_iocbq *first_iocbq, *iocbq;
15545 struct fc_frame_header *fc_hdr;
15546 uint32_t sid;
15547 uint32_t len, tot_len;
15548 struct ulp_bde64 *pbde;
15549
15550 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
15551 /* remove from receive buffer list */
15552 list_del_init(&seq_dmabuf->hbuf.list);
15553 lpfc_update_rcv_time_stamp(vport);
15554 /* get the Remote Port's SID */
15555 sid = sli4_sid_from_fc_hdr(fc_hdr);
15556 tot_len = 0;
15557 /* Get an iocbq struct to fill in. */
15558 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
15559 if (first_iocbq) {
15560 /* Initialize the first IOCB. */
15561 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
15562 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
15563
15564 /* Check FC Header to see what TYPE of frame we are rcv'ing */
15565 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
15566 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
15567 first_iocbq->iocb.un.rcvels.parmRo =
15568 sli4_did_from_fc_hdr(fc_hdr);
15569 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
15570 } else
15571 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
15572 first_iocbq->iocb.ulpContext = NO_XRI;
15573 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
15574 be16_to_cpu(fc_hdr->fh_ox_id);
15575 /* iocbq is prepped for internal consumption. Physical vpi. */
15576 first_iocbq->iocb.unsli3.rcvsli3.vpi =
15577 vport->phba->vpi_ids[vport->vpi];
15578 /* put the first buffer into the first IOCBq */
15579 tot_len = bf_get(lpfc_rcqe_length,
15580 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
15581
15582 first_iocbq->context2 = &seq_dmabuf->dbuf;
15583 first_iocbq->context3 = NULL;
15584 first_iocbq->iocb.ulpBdeCount = 1;
15585 if (tot_len > LPFC_DATA_BUF_SIZE)
15586 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
15587 LPFC_DATA_BUF_SIZE;
15588 else
15589 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
15590
15591 first_iocbq->iocb.un.rcvels.remoteID = sid;
15592
15593 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
15594 }
15595 iocbq = first_iocbq;
15596 /*
15597 * Each IOCBq can have two Buffers assigned, so go through the list
15598 * of buffers for this sequence and save two buffers in each IOCBq
15599 */
15600 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
15601 if (!iocbq) {
15602 lpfc_in_buf_free(vport->phba, d_buf);
15603 continue;
15604 }
15605 if (!iocbq->context3) {
15606 iocbq->context3 = d_buf;
15607 iocbq->iocb.ulpBdeCount++;
15608 /* We need to get the size out of the right CQE */
15609 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15610 len = bf_get(lpfc_rcqe_length,
15611 &hbq_buf->cq_event.cqe.rcqe_cmpl);
15612 pbde = (struct ulp_bde64 *)
15613 &iocbq->iocb.unsli3.sli3Words[4];
15614 if (len > LPFC_DATA_BUF_SIZE)
15615 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
15616 else
15617 pbde->tus.f.bdeSize = len;
15618
15619 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
15620 tot_len += len;
15621 } else {
15622 iocbq = lpfc_sli_get_iocbq(vport->phba);
15623 if (!iocbq) {
15624 if (first_iocbq) {
15625 first_iocbq->iocb.ulpStatus =
15626 IOSTAT_FCP_RSP_ERROR;
15627 first_iocbq->iocb.un.ulpWord[4] =
15628 IOERR_NO_RESOURCES;
15629 }
15630 lpfc_in_buf_free(vport->phba, d_buf);
15631 continue;
15632 }
15633 /* We need to get the size out of the right CQE */
15634 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15635 len = bf_get(lpfc_rcqe_length,
15636 &hbq_buf->cq_event.cqe.rcqe_cmpl);
15637 iocbq->context2 = d_buf;
15638 iocbq->context3 = NULL;
15639 iocbq->iocb.ulpBdeCount = 1;
15640 if (len > LPFC_DATA_BUF_SIZE)
15641 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
15642 LPFC_DATA_BUF_SIZE;
15643 else
15644 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
15645
15646 tot_len += len;
15647 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
15648
15649 iocbq->iocb.un.rcvels.remoteID = sid;
15650 list_add_tail(&iocbq->list, &first_iocbq->list);
15651 }
15652 }
15653 return first_iocbq;
15654 }
15655
15656 static void
15657 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
15658 struct hbq_dmabuf *seq_dmabuf)
15659 {
15660 struct fc_frame_header *fc_hdr;
15661 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
15662 struct lpfc_hba *phba = vport->phba;
15663
15664 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
15665 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
15666 if (!iocbq) {
15667 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15668 "2707 Ring %d handler: Failed to allocate "
15669 "iocb Rctl x%x Type x%x received\n",
15670 LPFC_ELS_RING,
15671 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
15672 return;
15673 }
15674 if (!lpfc_complete_unsol_iocb(phba,
15675 &phba->sli.ring[LPFC_ELS_RING],
15676 iocbq, fc_hdr->fh_r_ctl,
15677 fc_hdr->fh_type))
15678 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15679 "2540 Ring %d handler: unexpected Rctl "
15680 "x%x Type x%x received\n",
15681 LPFC_ELS_RING,
15682 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
15683
15684 /* Free iocb created in lpfc_prep_seq */
15685 list_for_each_entry_safe(curr_iocb, next_iocb,
15686 &iocbq->list, list) {
15687 list_del_init(&curr_iocb->list);
15688 lpfc_sli_release_iocbq(phba, curr_iocb);
15689 }
15690 lpfc_sli_release_iocbq(phba, iocbq);
15691 }
15692
15693 /**
15694 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
15695 * @phba: Pointer to HBA context object.
15696 *
15697 * This function is called with no lock held. This function processes all
15698 * the received buffers and gives it to upper layers when a received buffer
15699 * indicates that it is the final frame in the sequence. The interrupt
15700 * service routine processes received buffers at interrupt contexts and adds
15701 * received dma buffers to the rb_pend_list queue and signals the worker thread.
15702 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
15703 * appropriate receive function when the final frame in a sequence is received.
15704 **/
15705 void
15706 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
15707 struct hbq_dmabuf *dmabuf)
15708 {
15709 struct hbq_dmabuf *seq_dmabuf;
15710 struct fc_frame_header *fc_hdr;
15711 struct lpfc_vport *vport;
15712 uint32_t fcfi;
15713 uint32_t did;
15714
15715 /* Process each received buffer */
15716 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15717 /* check to see if this a valid type of frame */
15718 if (lpfc_fc_frame_check(phba, fc_hdr)) {
15719 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15720 return;
15721 }
15722 if ((bf_get(lpfc_cqe_code,
15723 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
15724 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
15725 &dmabuf->cq_event.cqe.rcqe_cmpl);
15726 else
15727 fcfi = bf_get(lpfc_rcqe_fcf_id,
15728 &dmabuf->cq_event.cqe.rcqe_cmpl);
15729
15730 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi);
15731 if (!vport) {
15732 /* throw out the frame */
15733 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15734 return;
15735 }
15736
15737 /* d_id this frame is directed to */
15738 did = sli4_did_from_fc_hdr(fc_hdr);
15739
15740 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
15741 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
15742 (did != Fabric_DID)) {
15743 /*
15744 * Throw out the frame if we are not pt2pt.
15745 * The pt2pt protocol allows for discovery frames
15746 * to be received without a registered VPI.
15747 */
15748 if (!(vport->fc_flag & FC_PT2PT) ||
15749 (phba->link_state == LPFC_HBA_READY)) {
15750 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15751 return;
15752 }
15753 }
15754
15755 /* Handle the basic abort sequence (BA_ABTS) event */
15756 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
15757 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
15758 return;
15759 }
15760
15761 /* Link this frame */
15762 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
15763 if (!seq_dmabuf) {
15764 /* unable to add frame to vport - throw it out */
15765 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15766 return;
15767 }
15768 /* If not last frame in sequence continue processing frames. */
15769 if (!lpfc_seq_complete(seq_dmabuf))
15770 return;
15771
15772 /* Send the complete sequence to the upper layer protocol */
15773 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
15774 }
15775
15776 /**
15777 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
15778 * @phba: pointer to lpfc hba data structure.
15779 *
15780 * This routine is invoked to post rpi header templates to the
15781 * HBA consistent with the SLI-4 interface spec. This routine
15782 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15783 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15784 *
15785 * This routine does not require any locks. It's usage is expected
15786 * to be driver load or reset recovery when the driver is
15787 * sequential.
15788 *
15789 * Return codes
15790 * 0 - successful
15791 * -EIO - The mailbox failed to complete successfully.
15792 * When this error occurs, the driver is not guaranteed
15793 * to have any rpi regions posted to the device and
15794 * must either attempt to repost the regions or take a
15795 * fatal error.
15796 **/
15797 int
15798 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
15799 {
15800 struct lpfc_rpi_hdr *rpi_page;
15801 uint32_t rc = 0;
15802 uint16_t lrpi = 0;
15803
15804 /* SLI4 ports that support extents do not require RPI headers. */
15805 if (!phba->sli4_hba.rpi_hdrs_in_use)
15806 goto exit;
15807 if (phba->sli4_hba.extents_in_use)
15808 return -EIO;
15809
15810 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
15811 /*
15812 * Assign the rpi headers a physical rpi only if the driver
15813 * has not initialized those resources. A port reset only
15814 * needs the headers posted.
15815 */
15816 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
15817 LPFC_RPI_RSRC_RDY)
15818 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
15819
15820 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
15821 if (rc != MBX_SUCCESS) {
15822 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15823 "2008 Error %d posting all rpi "
15824 "headers\n", rc);
15825 rc = -EIO;
15826 break;
15827 }
15828 }
15829
15830 exit:
15831 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
15832 LPFC_RPI_RSRC_RDY);
15833 return rc;
15834 }
15835
15836 /**
15837 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
15838 * @phba: pointer to lpfc hba data structure.
15839 * @rpi_page: pointer to the rpi memory region.
15840 *
15841 * This routine is invoked to post a single rpi header to the
15842 * HBA consistent with the SLI-4 interface spec. This memory region
15843 * maps up to 64 rpi context regions.
15844 *
15845 * Return codes
15846 * 0 - successful
15847 * -ENOMEM - No available memory
15848 * -EIO - The mailbox failed to complete successfully.
15849 **/
15850 int
15851 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
15852 {
15853 LPFC_MBOXQ_t *mboxq;
15854 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
15855 uint32_t rc = 0;
15856 uint32_t shdr_status, shdr_add_status;
15857 union lpfc_sli4_cfg_shdr *shdr;
15858
15859 /* SLI4 ports that support extents do not require RPI headers. */
15860 if (!phba->sli4_hba.rpi_hdrs_in_use)
15861 return rc;
15862 if (phba->sli4_hba.extents_in_use)
15863 return -EIO;
15864
15865 /* The port is notified of the header region via a mailbox command. */
15866 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15867 if (!mboxq) {
15868 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15869 "2001 Unable to allocate memory for issuing "
15870 "SLI_CONFIG_SPECIAL mailbox command\n");
15871 return -ENOMEM;
15872 }
15873
15874 /* Post all rpi memory regions to the port. */
15875 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
15876 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
15877 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
15878 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
15879 sizeof(struct lpfc_sli4_cfg_mhdr),
15880 LPFC_SLI4_MBX_EMBED);
15881
15882
15883 /* Post the physical rpi to the port for this rpi header. */
15884 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
15885 rpi_page->start_rpi);
15886 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
15887 hdr_tmpl, rpi_page->page_count);
15888
15889 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
15890 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
15891 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
15892 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
15893 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15894 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15895 if (rc != MBX_TIMEOUT)
15896 mempool_free(mboxq, phba->mbox_mem_pool);
15897 if (shdr_status || shdr_add_status || rc) {
15898 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15899 "2514 POST_RPI_HDR mailbox failed with "
15900 "status x%x add_status x%x, mbx status x%x\n",
15901 shdr_status, shdr_add_status, rc);
15902 rc = -ENXIO;
15903 }
15904 return rc;
15905 }
15906
15907 /**
15908 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
15909 * @phba: pointer to lpfc hba data structure.
15910 *
15911 * This routine is invoked to post rpi header templates to the
15912 * HBA consistent with the SLI-4 interface spec. This routine
15913 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15914 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15915 *
15916 * Returns
15917 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
15918 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
15919 **/
15920 int
15921 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
15922 {
15923 unsigned long rpi;
15924 uint16_t max_rpi, rpi_limit;
15925 uint16_t rpi_remaining, lrpi = 0;
15926 struct lpfc_rpi_hdr *rpi_hdr;
15927 unsigned long iflag;
15928
15929 /*
15930 * Fetch the next logical rpi. Because this index is logical,
15931 * the driver starts at 0 each time.
15932 */
15933 spin_lock_irqsave(&phba->hbalock, iflag);
15934 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
15935 rpi_limit = phba->sli4_hba.next_rpi;
15936
15937 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
15938 if (rpi >= rpi_limit)
15939 rpi = LPFC_RPI_ALLOC_ERROR;
15940 else {
15941 set_bit(rpi, phba->sli4_hba.rpi_bmask);
15942 phba->sli4_hba.max_cfg_param.rpi_used++;
15943 phba->sli4_hba.rpi_count++;
15944 }
15945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15946 "0001 rpi:%x max:%x lim:%x\n",
15947 (int) rpi, max_rpi, rpi_limit);
15948
15949 /*
15950 * Don't try to allocate more rpi header regions if the device limit
15951 * has been exhausted.
15952 */
15953 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
15954 (phba->sli4_hba.rpi_count >= max_rpi)) {
15955 spin_unlock_irqrestore(&phba->hbalock, iflag);
15956 return rpi;
15957 }
15958
15959 /*
15960 * RPI header postings are not required for SLI4 ports capable of
15961 * extents.
15962 */
15963 if (!phba->sli4_hba.rpi_hdrs_in_use) {
15964 spin_unlock_irqrestore(&phba->hbalock, iflag);
15965 return rpi;
15966 }
15967
15968 /*
15969 * If the driver is running low on rpi resources, allocate another
15970 * page now. Note that the next_rpi value is used because
15971 * it represents how many are actually in use whereas max_rpi notes
15972 * how many are supported max by the device.
15973 */
15974 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
15975 spin_unlock_irqrestore(&phba->hbalock, iflag);
15976 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
15977 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
15978 if (!rpi_hdr) {
15979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15980 "2002 Error Could not grow rpi "
15981 "count\n");
15982 } else {
15983 lrpi = rpi_hdr->start_rpi;
15984 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
15985 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
15986 }
15987 }
15988
15989 return rpi;
15990 }
15991
15992 /**
15993 * lpfc_sli4_free_rpi - Release an rpi for reuse.
15994 * @phba: pointer to lpfc hba data structure.
15995 *
15996 * This routine is invoked to release an rpi to the pool of
15997 * available rpis maintained by the driver.
15998 **/
15999 static void
16000 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
16001 {
16002 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
16003 phba->sli4_hba.rpi_count--;
16004 phba->sli4_hba.max_cfg_param.rpi_used--;
16005 }
16006 }
16007
16008 /**
16009 * lpfc_sli4_free_rpi - Release an rpi for reuse.
16010 * @phba: pointer to lpfc hba data structure.
16011 *
16012 * This routine is invoked to release an rpi to the pool of
16013 * available rpis maintained by the driver.
16014 **/
16015 void
16016 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
16017 {
16018 spin_lock_irq(&phba->hbalock);
16019 __lpfc_sli4_free_rpi(phba, rpi);
16020 spin_unlock_irq(&phba->hbalock);
16021 }
16022
16023 /**
16024 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
16025 * @phba: pointer to lpfc hba data structure.
16026 *
16027 * This routine is invoked to remove the memory region that
16028 * provided rpi via a bitmask.
16029 **/
16030 void
16031 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
16032 {
16033 kfree(phba->sli4_hba.rpi_bmask);
16034 kfree(phba->sli4_hba.rpi_ids);
16035 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
16036 }
16037
16038 /**
16039 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
16040 * @phba: pointer to lpfc hba data structure.
16041 *
16042 * This routine is invoked to remove the memory region that
16043 * provided rpi via a bitmask.
16044 **/
16045 int
16046 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
16047 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
16048 {
16049 LPFC_MBOXQ_t *mboxq;
16050 struct lpfc_hba *phba = ndlp->phba;
16051 int rc;
16052
16053 /* The port is notified of the header region via a mailbox command. */
16054 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16055 if (!mboxq)
16056 return -ENOMEM;
16057
16058 /* Post all rpi memory regions to the port. */
16059 lpfc_resume_rpi(mboxq, ndlp);
16060 if (cmpl) {
16061 mboxq->mbox_cmpl = cmpl;
16062 mboxq->context1 = arg;
16063 mboxq->context2 = ndlp;
16064 } else
16065 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16066 mboxq->vport = ndlp->vport;
16067 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16068 if (rc == MBX_NOT_FINISHED) {
16069 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16070 "2010 Resume RPI Mailbox failed "
16071 "status %d, mbxStatus x%x\n", rc,
16072 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
16073 mempool_free(mboxq, phba->mbox_mem_pool);
16074 return -EIO;
16075 }
16076 return 0;
16077 }
16078
16079 /**
16080 * lpfc_sli4_init_vpi - Initialize a vpi with the port
16081 * @vport: Pointer to the vport for which the vpi is being initialized
16082 *
16083 * This routine is invoked to activate a vpi with the port.
16084 *
16085 * Returns:
16086 * 0 success
16087 * -Evalue otherwise
16088 **/
16089 int
16090 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
16091 {
16092 LPFC_MBOXQ_t *mboxq;
16093 int rc = 0;
16094 int retval = MBX_SUCCESS;
16095 uint32_t mbox_tmo;
16096 struct lpfc_hba *phba = vport->phba;
16097 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16098 if (!mboxq)
16099 return -ENOMEM;
16100 lpfc_init_vpi(phba, mboxq, vport->vpi);
16101 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
16102 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
16103 if (rc != MBX_SUCCESS) {
16104 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
16105 "2022 INIT VPI Mailbox failed "
16106 "status %d, mbxStatus x%x\n", rc,
16107 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
16108 retval = -EIO;
16109 }
16110 if (rc != MBX_TIMEOUT)
16111 mempool_free(mboxq, vport->phba->mbox_mem_pool);
16112
16113 return retval;
16114 }
16115
16116 /**
16117 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
16118 * @phba: pointer to lpfc hba data structure.
16119 * @mboxq: Pointer to mailbox object.
16120 *
16121 * This routine is invoked to manually add a single FCF record. The caller
16122 * must pass a completely initialized FCF_Record. This routine takes
16123 * care of the nonembedded mailbox operations.
16124 **/
16125 static void
16126 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
16127 {
16128 void *virt_addr;
16129 union lpfc_sli4_cfg_shdr *shdr;
16130 uint32_t shdr_status, shdr_add_status;
16131
16132 virt_addr = mboxq->sge_array->addr[0];
16133 /* The IOCTL status is embedded in the mailbox subheader. */
16134 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
16135 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16136 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16137
16138 if ((shdr_status || shdr_add_status) &&
16139 (shdr_status != STATUS_FCF_IN_USE))
16140 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16141 "2558 ADD_FCF_RECORD mailbox failed with "
16142 "status x%x add_status x%x\n",
16143 shdr_status, shdr_add_status);
16144
16145 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16146 }
16147
16148 /**
16149 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
16150 * @phba: pointer to lpfc hba data structure.
16151 * @fcf_record: pointer to the initialized fcf record to add.
16152 *
16153 * This routine is invoked to manually add a single FCF record. The caller
16154 * must pass a completely initialized FCF_Record. This routine takes
16155 * care of the nonembedded mailbox operations.
16156 **/
16157 int
16158 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
16159 {
16160 int rc = 0;
16161 LPFC_MBOXQ_t *mboxq;
16162 uint8_t *bytep;
16163 void *virt_addr;
16164 struct lpfc_mbx_sge sge;
16165 uint32_t alloc_len, req_len;
16166 uint32_t fcfindex;
16167
16168 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16169 if (!mboxq) {
16170 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16171 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
16172 return -ENOMEM;
16173 }
16174
16175 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
16176 sizeof(uint32_t);
16177
16178 /* Allocate DMA memory and set up the non-embedded mailbox command */
16179 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
16180 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
16181 req_len, LPFC_SLI4_MBX_NEMBED);
16182 if (alloc_len < req_len) {
16183 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16184 "2523 Allocated DMA memory size (x%x) is "
16185 "less than the requested DMA memory "
16186 "size (x%x)\n", alloc_len, req_len);
16187 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16188 return -ENOMEM;
16189 }
16190
16191 /*
16192 * Get the first SGE entry from the non-embedded DMA memory. This
16193 * routine only uses a single SGE.
16194 */
16195 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
16196 virt_addr = mboxq->sge_array->addr[0];
16197 /*
16198 * Configure the FCF record for FCFI 0. This is the driver's
16199 * hardcoded default and gets used in nonFIP mode.
16200 */
16201 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
16202 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
16203 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
16204
16205 /*
16206 * Copy the fcf_index and the FCF Record Data. The data starts after
16207 * the FCoE header plus word10. The data copy needs to be endian
16208 * correct.
16209 */
16210 bytep += sizeof(uint32_t);
16211 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
16212 mboxq->vport = phba->pport;
16213 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
16214 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16215 if (rc == MBX_NOT_FINISHED) {
16216 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16217 "2515 ADD_FCF_RECORD mailbox failed with "
16218 "status 0x%x\n", rc);
16219 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16220 rc = -EIO;
16221 } else
16222 rc = 0;
16223
16224 return rc;
16225 }
16226
16227 /**
16228 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
16229 * @phba: pointer to lpfc hba data structure.
16230 * @fcf_record: pointer to the fcf record to write the default data.
16231 * @fcf_index: FCF table entry index.
16232 *
16233 * This routine is invoked to build the driver's default FCF record. The
16234 * values used are hardcoded. This routine handles memory initialization.
16235 *
16236 **/
16237 void
16238 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
16239 struct fcf_record *fcf_record,
16240 uint16_t fcf_index)
16241 {
16242 memset(fcf_record, 0, sizeof(struct fcf_record));
16243 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
16244 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
16245 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
16246 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
16247 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
16248 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
16249 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
16250 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
16251 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
16252 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
16253 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
16254 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
16255 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
16256 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
16257 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
16258 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
16259 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
16260 /* Set the VLAN bit map */
16261 if (phba->valid_vlan) {
16262 fcf_record->vlan_bitmap[phba->vlan_id / 8]
16263 = 1 << (phba->vlan_id % 8);
16264 }
16265 }
16266
16267 /**
16268 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
16269 * @phba: pointer to lpfc hba data structure.
16270 * @fcf_index: FCF table entry offset.
16271 *
16272 * This routine is invoked to scan the entire FCF table by reading FCF
16273 * record and processing it one at a time starting from the @fcf_index
16274 * for initial FCF discovery or fast FCF failover rediscovery.
16275 *
16276 * Return 0 if the mailbox command is submitted successfully, none 0
16277 * otherwise.
16278 **/
16279 int
16280 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
16281 {
16282 int rc = 0, error;
16283 LPFC_MBOXQ_t *mboxq;
16284
16285 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
16286 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
16287 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16288 if (!mboxq) {
16289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16290 "2000 Failed to allocate mbox for "
16291 "READ_FCF cmd\n");
16292 error = -ENOMEM;
16293 goto fail_fcf_scan;
16294 }
16295 /* Construct the read FCF record mailbox command */
16296 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
16297 if (rc) {
16298 error = -EINVAL;
16299 goto fail_fcf_scan;
16300 }
16301 /* Issue the mailbox command asynchronously */
16302 mboxq->vport = phba->pport;
16303 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
16304
16305 spin_lock_irq(&phba->hbalock);
16306 phba->hba_flag |= FCF_TS_INPROG;
16307 spin_unlock_irq(&phba->hbalock);
16308
16309 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16310 if (rc == MBX_NOT_FINISHED)
16311 error = -EIO;
16312 else {
16313 /* Reset eligible FCF count for new scan */
16314 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
16315 phba->fcf.eligible_fcf_cnt = 0;
16316 error = 0;
16317 }
16318 fail_fcf_scan:
16319 if (error) {
16320 if (mboxq)
16321 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16322 /* FCF scan failed, clear FCF_TS_INPROG flag */
16323 spin_lock_irq(&phba->hbalock);
16324 phba->hba_flag &= ~FCF_TS_INPROG;
16325 spin_unlock_irq(&phba->hbalock);
16326 }
16327 return error;
16328 }
16329
16330 /**
16331 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
16332 * @phba: pointer to lpfc hba data structure.
16333 * @fcf_index: FCF table entry offset.
16334 *
16335 * This routine is invoked to read an FCF record indicated by @fcf_index
16336 * and to use it for FLOGI roundrobin FCF failover.
16337 *
16338 * Return 0 if the mailbox command is submitted successfully, none 0
16339 * otherwise.
16340 **/
16341 int
16342 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
16343 {
16344 int rc = 0, error;
16345 LPFC_MBOXQ_t *mboxq;
16346
16347 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16348 if (!mboxq) {
16349 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
16350 "2763 Failed to allocate mbox for "
16351 "READ_FCF cmd\n");
16352 error = -ENOMEM;
16353 goto fail_fcf_read;
16354 }
16355 /* Construct the read FCF record mailbox command */
16356 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
16357 if (rc) {
16358 error = -EINVAL;
16359 goto fail_fcf_read;
16360 }
16361 /* Issue the mailbox command asynchronously */
16362 mboxq->vport = phba->pport;
16363 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
16364 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16365 if (rc == MBX_NOT_FINISHED)
16366 error = -EIO;
16367 else
16368 error = 0;
16369
16370 fail_fcf_read:
16371 if (error && mboxq)
16372 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16373 return error;
16374 }
16375
16376 /**
16377 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
16378 * @phba: pointer to lpfc hba data structure.
16379 * @fcf_index: FCF table entry offset.
16380 *
16381 * This routine is invoked to read an FCF record indicated by @fcf_index to
16382 * determine whether it's eligible for FLOGI roundrobin failover list.
16383 *
16384 * Return 0 if the mailbox command is submitted successfully, none 0
16385 * otherwise.
16386 **/
16387 int
16388 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
16389 {
16390 int rc = 0, error;
16391 LPFC_MBOXQ_t *mboxq;
16392
16393 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16394 if (!mboxq) {
16395 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
16396 "2758 Failed to allocate mbox for "
16397 "READ_FCF cmd\n");
16398 error = -ENOMEM;
16399 goto fail_fcf_read;
16400 }
16401 /* Construct the read FCF record mailbox command */
16402 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
16403 if (rc) {
16404 error = -EINVAL;
16405 goto fail_fcf_read;
16406 }
16407 /* Issue the mailbox command asynchronously */
16408 mboxq->vport = phba->pport;
16409 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
16410 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16411 if (rc == MBX_NOT_FINISHED)
16412 error = -EIO;
16413 else
16414 error = 0;
16415
16416 fail_fcf_read:
16417 if (error && mboxq)
16418 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16419 return error;
16420 }
16421
16422 /**
16423 * lpfc_check_next_fcf_pri_level
16424 * phba pointer to the lpfc_hba struct for this port.
16425 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
16426 * routine when the rr_bmask is empty. The FCF indecies are put into the
16427 * rr_bmask based on their priority level. Starting from the highest priority
16428 * to the lowest. The most likely FCF candidate will be in the highest
16429 * priority group. When this routine is called it searches the fcf_pri list for
16430 * next lowest priority group and repopulates the rr_bmask with only those
16431 * fcf_indexes.
16432 * returns:
16433 * 1=success 0=failure
16434 **/
16435 static int
16436 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
16437 {
16438 uint16_t next_fcf_pri;
16439 uint16_t last_index;
16440 struct lpfc_fcf_pri *fcf_pri;
16441 int rc;
16442 int ret = 0;
16443
16444 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
16445 LPFC_SLI4_FCF_TBL_INDX_MAX);
16446 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16447 "3060 Last IDX %d\n", last_index);
16448
16449 /* Verify the priority list has 2 or more entries */
16450 spin_lock_irq(&phba->hbalock);
16451 if (list_empty(&phba->fcf.fcf_pri_list) ||
16452 list_is_singular(&phba->fcf.fcf_pri_list)) {
16453 spin_unlock_irq(&phba->hbalock);
16454 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16455 "3061 Last IDX %d\n", last_index);
16456 return 0; /* Empty rr list */
16457 }
16458 spin_unlock_irq(&phba->hbalock);
16459
16460 next_fcf_pri = 0;
16461 /*
16462 * Clear the rr_bmask and set all of the bits that are at this
16463 * priority.
16464 */
16465 memset(phba->fcf.fcf_rr_bmask, 0,
16466 sizeof(*phba->fcf.fcf_rr_bmask));
16467 spin_lock_irq(&phba->hbalock);
16468 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
16469 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
16470 continue;
16471 /*
16472 * the 1st priority that has not FLOGI failed
16473 * will be the highest.
16474 */
16475 if (!next_fcf_pri)
16476 next_fcf_pri = fcf_pri->fcf_rec.priority;
16477 spin_unlock_irq(&phba->hbalock);
16478 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
16479 rc = lpfc_sli4_fcf_rr_index_set(phba,
16480 fcf_pri->fcf_rec.fcf_index);
16481 if (rc)
16482 return 0;
16483 }
16484 spin_lock_irq(&phba->hbalock);
16485 }
16486 /*
16487 * if next_fcf_pri was not set above and the list is not empty then
16488 * we have failed flogis on all of them. So reset flogi failed
16489 * and start at the beginning.
16490 */
16491 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
16492 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
16493 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
16494 /*
16495 * the 1st priority that has not FLOGI failed
16496 * will be the highest.
16497 */
16498 if (!next_fcf_pri)
16499 next_fcf_pri = fcf_pri->fcf_rec.priority;
16500 spin_unlock_irq(&phba->hbalock);
16501 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
16502 rc = lpfc_sli4_fcf_rr_index_set(phba,
16503 fcf_pri->fcf_rec.fcf_index);
16504 if (rc)
16505 return 0;
16506 }
16507 spin_lock_irq(&phba->hbalock);
16508 }
16509 } else
16510 ret = 1;
16511 spin_unlock_irq(&phba->hbalock);
16512
16513 return ret;
16514 }
16515 /**
16516 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
16517 * @phba: pointer to lpfc hba data structure.
16518 *
16519 * This routine is to get the next eligible FCF record index in a round
16520 * robin fashion. If the next eligible FCF record index equals to the
16521 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
16522 * shall be returned, otherwise, the next eligible FCF record's index
16523 * shall be returned.
16524 **/
16525 uint16_t
16526 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
16527 {
16528 uint16_t next_fcf_index;
16529
16530 initial_priority:
16531 /* Search start from next bit of currently registered FCF index */
16532 next_fcf_index = phba->fcf.current_rec.fcf_indx;
16533
16534 next_priority:
16535 /* Determine the next fcf index to check */
16536 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
16537 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
16538 LPFC_SLI4_FCF_TBL_INDX_MAX,
16539 next_fcf_index);
16540
16541 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
16542 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
16543 /*
16544 * If we have wrapped then we need to clear the bits that
16545 * have been tested so that we can detect when we should
16546 * change the priority level.
16547 */
16548 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
16549 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
16550 }
16551
16552
16553 /* Check roundrobin failover list empty condition */
16554 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
16555 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
16556 /*
16557 * If next fcf index is not found check if there are lower
16558 * Priority level fcf's in the fcf_priority list.
16559 * Set up the rr_bmask with all of the avaiable fcf bits
16560 * at that level and continue the selection process.
16561 */
16562 if (lpfc_check_next_fcf_pri_level(phba))
16563 goto initial_priority;
16564 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
16565 "2844 No roundrobin failover FCF available\n");
16566 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
16567 return LPFC_FCOE_FCF_NEXT_NONE;
16568 else {
16569 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
16570 "3063 Only FCF available idx %d, flag %x\n",
16571 next_fcf_index,
16572 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
16573 return next_fcf_index;
16574 }
16575 }
16576
16577 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
16578 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
16579 LPFC_FCF_FLOGI_FAILED) {
16580 if (list_is_singular(&phba->fcf.fcf_pri_list))
16581 return LPFC_FCOE_FCF_NEXT_NONE;
16582
16583 goto next_priority;
16584 }
16585
16586 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16587 "2845 Get next roundrobin failover FCF (x%x)\n",
16588 next_fcf_index);
16589
16590 return next_fcf_index;
16591 }
16592
16593 /**
16594 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
16595 * @phba: pointer to lpfc hba data structure.
16596 *
16597 * This routine sets the FCF record index in to the eligible bmask for
16598 * roundrobin failover search. It checks to make sure that the index
16599 * does not go beyond the range of the driver allocated bmask dimension
16600 * before setting the bit.
16601 *
16602 * Returns 0 if the index bit successfully set, otherwise, it returns
16603 * -EINVAL.
16604 **/
16605 int
16606 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
16607 {
16608 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
16609 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16610 "2610 FCF (x%x) reached driver's book "
16611 "keeping dimension:x%x\n",
16612 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
16613 return -EINVAL;
16614 }
16615 /* Set the eligible FCF record index bmask */
16616 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
16617
16618 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16619 "2790 Set FCF (x%x) to roundrobin FCF failover "
16620 "bmask\n", fcf_index);
16621
16622 return 0;
16623 }
16624
16625 /**
16626 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
16627 * @phba: pointer to lpfc hba data structure.
16628 *
16629 * This routine clears the FCF record index from the eligible bmask for
16630 * roundrobin failover search. It checks to make sure that the index
16631 * does not go beyond the range of the driver allocated bmask dimension
16632 * before clearing the bit.
16633 **/
16634 void
16635 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
16636 {
16637 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
16638 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
16639 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16640 "2762 FCF (x%x) reached driver's book "
16641 "keeping dimension:x%x\n",
16642 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
16643 return;
16644 }
16645 /* Clear the eligible FCF record index bmask */
16646 spin_lock_irq(&phba->hbalock);
16647 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
16648 list) {
16649 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
16650 list_del_init(&fcf_pri->list);
16651 break;
16652 }
16653 }
16654 spin_unlock_irq(&phba->hbalock);
16655 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
16656
16657 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16658 "2791 Clear FCF (x%x) from roundrobin failover "
16659 "bmask\n", fcf_index);
16660 }
16661
16662 /**
16663 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
16664 * @phba: pointer to lpfc hba data structure.
16665 *
16666 * This routine is the completion routine for the rediscover FCF table mailbox
16667 * command. If the mailbox command returned failure, it will try to stop the
16668 * FCF rediscover wait timer.
16669 **/
16670 static void
16671 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
16672 {
16673 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
16674 uint32_t shdr_status, shdr_add_status;
16675
16676 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
16677
16678 shdr_status = bf_get(lpfc_mbox_hdr_status,
16679 &redisc_fcf->header.cfg_shdr.response);
16680 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
16681 &redisc_fcf->header.cfg_shdr.response);
16682 if (shdr_status || shdr_add_status) {
16683 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16684 "2746 Requesting for FCF rediscovery failed "
16685 "status x%x add_status x%x\n",
16686 shdr_status, shdr_add_status);
16687 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
16688 spin_lock_irq(&phba->hbalock);
16689 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
16690 spin_unlock_irq(&phba->hbalock);
16691 /*
16692 * CVL event triggered FCF rediscover request failed,
16693 * last resort to re-try current registered FCF entry.
16694 */
16695 lpfc_retry_pport_discovery(phba);
16696 } else {
16697 spin_lock_irq(&phba->hbalock);
16698 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
16699 spin_unlock_irq(&phba->hbalock);
16700 /*
16701 * DEAD FCF event triggered FCF rediscover request
16702 * failed, last resort to fail over as a link down
16703 * to FCF registration.
16704 */
16705 lpfc_sli4_fcf_dead_failthrough(phba);
16706 }
16707 } else {
16708 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16709 "2775 Start FCF rediscover quiescent timer\n");
16710 /*
16711 * Start FCF rediscovery wait timer for pending FCF
16712 * before rescan FCF record table.
16713 */
16714 lpfc_fcf_redisc_wait_start_timer(phba);
16715 }
16716
16717 mempool_free(mbox, phba->mbox_mem_pool);
16718 }
16719
16720 /**
16721 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
16722 * @phba: pointer to lpfc hba data structure.
16723 *
16724 * This routine is invoked to request for rediscovery of the entire FCF table
16725 * by the port.
16726 **/
16727 int
16728 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
16729 {
16730 LPFC_MBOXQ_t *mbox;
16731 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
16732 int rc, length;
16733
16734 /* Cancel retry delay timers to all vports before FCF rediscover */
16735 lpfc_cancel_all_vport_retry_delay_timer(phba);
16736
16737 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16738 if (!mbox) {
16739 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16740 "2745 Failed to allocate mbox for "
16741 "requesting FCF rediscover.\n");
16742 return -ENOMEM;
16743 }
16744
16745 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
16746 sizeof(struct lpfc_sli4_cfg_mhdr));
16747 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16748 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
16749 length, LPFC_SLI4_MBX_EMBED);
16750
16751 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
16752 /* Set count to 0 for invalidating the entire FCF database */
16753 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
16754
16755 /* Issue the mailbox command asynchronously */
16756 mbox->vport = phba->pport;
16757 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
16758 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
16759
16760 if (rc == MBX_NOT_FINISHED) {
16761 mempool_free(mbox, phba->mbox_mem_pool);
16762 return -EIO;
16763 }
16764 return 0;
16765 }
16766
16767 /**
16768 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
16769 * @phba: pointer to lpfc hba data structure.
16770 *
16771 * This function is the failover routine as a last resort to the FCF DEAD
16772 * event when driver failed to perform fast FCF failover.
16773 **/
16774 void
16775 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
16776 {
16777 uint32_t link_state;
16778
16779 /*
16780 * Last resort as FCF DEAD event failover will treat this as
16781 * a link down, but save the link state because we don't want
16782 * it to be changed to Link Down unless it is already down.
16783 */
16784 link_state = phba->link_state;
16785 lpfc_linkdown(phba);
16786 phba->link_state = link_state;
16787
16788 /* Unregister FCF if no devices connected to it */
16789 lpfc_unregister_unused_fcf(phba);
16790 }
16791
16792 /**
16793 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
16794 * @phba: pointer to lpfc hba data structure.
16795 * @rgn23_data: pointer to configure region 23 data.
16796 *
16797 * This function gets SLI3 port configure region 23 data through memory dump
16798 * mailbox command. When it successfully retrieves data, the size of the data
16799 * will be returned, otherwise, 0 will be returned.
16800 **/
16801 static uint32_t
16802 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
16803 {
16804 LPFC_MBOXQ_t *pmb = NULL;
16805 MAILBOX_t *mb;
16806 uint32_t offset = 0;
16807 int rc;
16808
16809 if (!rgn23_data)
16810 return 0;
16811
16812 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16813 if (!pmb) {
16814 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16815 "2600 failed to allocate mailbox memory\n");
16816 return 0;
16817 }
16818 mb = &pmb->u.mb;
16819
16820 do {
16821 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
16822 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
16823
16824 if (rc != MBX_SUCCESS) {
16825 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16826 "2601 failed to read config "
16827 "region 23, rc 0x%x Status 0x%x\n",
16828 rc, mb->mbxStatus);
16829 mb->un.varDmp.word_cnt = 0;
16830 }
16831 /*
16832 * dump mem may return a zero when finished or we got a
16833 * mailbox error, either way we are done.
16834 */
16835 if (mb->un.varDmp.word_cnt == 0)
16836 break;
16837 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
16838 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
16839
16840 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
16841 rgn23_data + offset,
16842 mb->un.varDmp.word_cnt);
16843 offset += mb->un.varDmp.word_cnt;
16844 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
16845
16846 mempool_free(pmb, phba->mbox_mem_pool);
16847 return offset;
16848 }
16849
16850 /**
16851 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
16852 * @phba: pointer to lpfc hba data structure.
16853 * @rgn23_data: pointer to configure region 23 data.
16854 *
16855 * This function gets SLI4 port configure region 23 data through memory dump
16856 * mailbox command. When it successfully retrieves data, the size of the data
16857 * will be returned, otherwise, 0 will be returned.
16858 **/
16859 static uint32_t
16860 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
16861 {
16862 LPFC_MBOXQ_t *mboxq = NULL;
16863 struct lpfc_dmabuf *mp = NULL;
16864 struct lpfc_mqe *mqe;
16865 uint32_t data_length = 0;
16866 int rc;
16867
16868 if (!rgn23_data)
16869 return 0;
16870
16871 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16872 if (!mboxq) {
16873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16874 "3105 failed to allocate mailbox memory\n");
16875 return 0;
16876 }
16877
16878 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
16879 goto out;
16880 mqe = &mboxq->u.mqe;
16881 mp = (struct lpfc_dmabuf *) mboxq->context1;
16882 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
16883 if (rc)
16884 goto out;
16885 data_length = mqe->un.mb_words[5];
16886 if (data_length == 0)
16887 goto out;
16888 if (data_length > DMP_RGN23_SIZE) {
16889 data_length = 0;
16890 goto out;
16891 }
16892 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
16893 out:
16894 mempool_free(mboxq, phba->mbox_mem_pool);
16895 if (mp) {
16896 lpfc_mbuf_free(phba, mp->virt, mp->phys);
16897 kfree(mp);
16898 }
16899 return data_length;
16900 }
16901
16902 /**
16903 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
16904 * @phba: pointer to lpfc hba data structure.
16905 *
16906 * This function read region 23 and parse TLV for port status to
16907 * decide if the user disaled the port. If the TLV indicates the
16908 * port is disabled, the hba_flag is set accordingly.
16909 **/
16910 void
16911 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
16912 {
16913 uint8_t *rgn23_data = NULL;
16914 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
16915 uint32_t offset = 0;
16916
16917 /* Get adapter Region 23 data */
16918 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
16919 if (!rgn23_data)
16920 goto out;
16921
16922 if (phba->sli_rev < LPFC_SLI_REV4)
16923 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
16924 else {
16925 if_type = bf_get(lpfc_sli_intf_if_type,
16926 &phba->sli4_hba.sli_intf);
16927 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
16928 goto out;
16929 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
16930 }
16931
16932 if (!data_size)
16933 goto out;
16934
16935 /* Check the region signature first */
16936 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
16937 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16938 "2619 Config region 23 has bad signature\n");
16939 goto out;
16940 }
16941 offset += 4;
16942
16943 /* Check the data structure version */
16944 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
16945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16946 "2620 Config region 23 has bad version\n");
16947 goto out;
16948 }
16949 offset += 4;
16950
16951 /* Parse TLV entries in the region */
16952 while (offset < data_size) {
16953 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
16954 break;
16955 /*
16956 * If the TLV is not driver specific TLV or driver id is
16957 * not linux driver id, skip the record.
16958 */
16959 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
16960 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
16961 (rgn23_data[offset + 3] != 0)) {
16962 offset += rgn23_data[offset + 1] * 4 + 4;
16963 continue;
16964 }
16965
16966 /* Driver found a driver specific TLV in the config region */
16967 sub_tlv_len = rgn23_data[offset + 1] * 4;
16968 offset += 4;
16969 tlv_offset = 0;
16970
16971 /*
16972 * Search for configured port state sub-TLV.
16973 */
16974 while ((offset < data_size) &&
16975 (tlv_offset < sub_tlv_len)) {
16976 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
16977 offset += 4;
16978 tlv_offset += 4;
16979 break;
16980 }
16981 if (rgn23_data[offset] != PORT_STE_TYPE) {
16982 offset += rgn23_data[offset + 1] * 4 + 4;
16983 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
16984 continue;
16985 }
16986
16987 /* This HBA contains PORT_STE configured */
16988 if (!rgn23_data[offset + 2])
16989 phba->hba_flag |= LINK_DISABLED;
16990
16991 goto out;
16992 }
16993 }
16994
16995 out:
16996 kfree(rgn23_data);
16997 return;
16998 }
16999
17000 /**
17001 * lpfc_wr_object - write an object to the firmware
17002 * @phba: HBA structure that indicates port to create a queue on.
17003 * @dmabuf_list: list of dmabufs to write to the port.
17004 * @size: the total byte value of the objects to write to the port.
17005 * @offset: the current offset to be used to start the transfer.
17006 *
17007 * This routine will create a wr_object mailbox command to send to the port.
17008 * the mailbox command will be constructed using the dma buffers described in
17009 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
17010 * BDEs that the imbedded mailbox can support. The @offset variable will be
17011 * used to indicate the starting offset of the transfer and will also return
17012 * the offset after the write object mailbox has completed. @size is used to
17013 * determine the end of the object and whether the eof bit should be set.
17014 *
17015 * Return 0 is successful and offset will contain the the new offset to use
17016 * for the next write.
17017 * Return negative value for error cases.
17018 **/
17019 int
17020 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
17021 uint32_t size, uint32_t *offset)
17022 {
17023 struct lpfc_mbx_wr_object *wr_object;
17024 LPFC_MBOXQ_t *mbox;
17025 int rc = 0, i = 0;
17026 uint32_t shdr_status, shdr_add_status;
17027 uint32_t mbox_tmo;
17028 union lpfc_sli4_cfg_shdr *shdr;
17029 struct lpfc_dmabuf *dmabuf;
17030 uint32_t written = 0;
17031
17032 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17033 if (!mbox)
17034 return -ENOMEM;
17035
17036 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17037 LPFC_MBOX_OPCODE_WRITE_OBJECT,
17038 sizeof(struct lpfc_mbx_wr_object) -
17039 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17040
17041 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
17042 wr_object->u.request.write_offset = *offset;
17043 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
17044 wr_object->u.request.object_name[0] =
17045 cpu_to_le32(wr_object->u.request.object_name[0]);
17046 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
17047 list_for_each_entry(dmabuf, dmabuf_list, list) {
17048 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
17049 break;
17050 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
17051 wr_object->u.request.bde[i].addrHigh =
17052 putPaddrHigh(dmabuf->phys);
17053 if (written + SLI4_PAGE_SIZE >= size) {
17054 wr_object->u.request.bde[i].tus.f.bdeSize =
17055 (size - written);
17056 written += (size - written);
17057 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
17058 } else {
17059 wr_object->u.request.bde[i].tus.f.bdeSize =
17060 SLI4_PAGE_SIZE;
17061 written += SLI4_PAGE_SIZE;
17062 }
17063 i++;
17064 }
17065 wr_object->u.request.bde_count = i;
17066 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
17067 if (!phba->sli4_hba.intr_enable)
17068 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17069 else {
17070 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17071 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17072 }
17073 /* The IOCTL status is embedded in the mailbox subheader. */
17074 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
17075 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17076 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17077 if (rc != MBX_TIMEOUT)
17078 mempool_free(mbox, phba->mbox_mem_pool);
17079 if (shdr_status || shdr_add_status || rc) {
17080 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17081 "3025 Write Object mailbox failed with "
17082 "status x%x add_status x%x, mbx status x%x\n",
17083 shdr_status, shdr_add_status, rc);
17084 rc = -ENXIO;
17085 } else
17086 *offset += wr_object->u.response.actual_write_length;
17087 return rc;
17088 }
17089
17090 /**
17091 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
17092 * @vport: pointer to vport data structure.
17093 *
17094 * This function iterate through the mailboxq and clean up all REG_LOGIN
17095 * and REG_VPI mailbox commands associated with the vport. This function
17096 * is called when driver want to restart discovery of the vport due to
17097 * a Clear Virtual Link event.
17098 **/
17099 void
17100 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
17101 {
17102 struct lpfc_hba *phba = vport->phba;
17103 LPFC_MBOXQ_t *mb, *nextmb;
17104 struct lpfc_dmabuf *mp;
17105 struct lpfc_nodelist *ndlp;
17106 struct lpfc_nodelist *act_mbx_ndlp = NULL;
17107 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
17108 LIST_HEAD(mbox_cmd_list);
17109 uint8_t restart_loop;
17110
17111 /* Clean up internally queued mailbox commands with the vport */
17112 spin_lock_irq(&phba->hbalock);
17113 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
17114 if (mb->vport != vport)
17115 continue;
17116
17117 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
17118 (mb->u.mb.mbxCommand != MBX_REG_VPI))
17119 continue;
17120
17121 list_del(&mb->list);
17122 list_add_tail(&mb->list, &mbox_cmd_list);
17123 }
17124 /* Clean up active mailbox command with the vport */
17125 mb = phba->sli.mbox_active;
17126 if (mb && (mb->vport == vport)) {
17127 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
17128 (mb->u.mb.mbxCommand == MBX_REG_VPI))
17129 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17130 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
17131 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
17132 /* Put reference count for delayed processing */
17133 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
17134 /* Unregister the RPI when mailbox complete */
17135 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
17136 }
17137 }
17138 /* Cleanup any mailbox completions which are not yet processed */
17139 do {
17140 restart_loop = 0;
17141 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
17142 /*
17143 * If this mailox is already processed or it is
17144 * for another vport ignore it.
17145 */
17146 if ((mb->vport != vport) ||
17147 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
17148 continue;
17149
17150 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
17151 (mb->u.mb.mbxCommand != MBX_REG_VPI))
17152 continue;
17153
17154 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17155 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
17156 ndlp = (struct lpfc_nodelist *)mb->context2;
17157 /* Unregister the RPI when mailbox complete */
17158 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
17159 restart_loop = 1;
17160 spin_unlock_irq(&phba->hbalock);
17161 spin_lock(shost->host_lock);
17162 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
17163 spin_unlock(shost->host_lock);
17164 spin_lock_irq(&phba->hbalock);
17165 break;
17166 }
17167 }
17168 } while (restart_loop);
17169
17170 spin_unlock_irq(&phba->hbalock);
17171
17172 /* Release the cleaned-up mailbox commands */
17173 while (!list_empty(&mbox_cmd_list)) {
17174 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
17175 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
17176 mp = (struct lpfc_dmabuf *) (mb->context1);
17177 if (mp) {
17178 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
17179 kfree(mp);
17180 }
17181 ndlp = (struct lpfc_nodelist *) mb->context2;
17182 mb->context2 = NULL;
17183 if (ndlp) {
17184 spin_lock(shost->host_lock);
17185 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
17186 spin_unlock(shost->host_lock);
17187 lpfc_nlp_put(ndlp);
17188 }
17189 }
17190 mempool_free(mb, phba->mbox_mem_pool);
17191 }
17192
17193 /* Release the ndlp with the cleaned-up active mailbox command */
17194 if (act_mbx_ndlp) {
17195 spin_lock(shost->host_lock);
17196 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
17197 spin_unlock(shost->host_lock);
17198 lpfc_nlp_put(act_mbx_ndlp);
17199 }
17200 }
17201
17202 /**
17203 * lpfc_drain_txq - Drain the txq
17204 * @phba: Pointer to HBA context object.
17205 *
17206 * This function attempt to submit IOCBs on the txq
17207 * to the adapter. For SLI4 adapters, the txq contains
17208 * ELS IOCBs that have been deferred because the there
17209 * are no SGLs. This congestion can occur with large
17210 * vport counts during node discovery.
17211 **/
17212
17213 uint32_t
17214 lpfc_drain_txq(struct lpfc_hba *phba)
17215 {
17216 LIST_HEAD(completions);
17217 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
17218 struct lpfc_iocbq *piocbq = NULL;
17219 unsigned long iflags = 0;
17220 char *fail_msg = NULL;
17221 struct lpfc_sglq *sglq;
17222 union lpfc_wqe wqe;
17223 uint32_t txq_cnt = 0;
17224
17225 spin_lock_irqsave(&pring->ring_lock, iflags);
17226 list_for_each_entry(piocbq, &pring->txq, list) {
17227 txq_cnt++;
17228 }
17229
17230 if (txq_cnt > pring->txq_max)
17231 pring->txq_max = txq_cnt;
17232
17233 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17234
17235 while (!list_empty(&pring->txq)) {
17236 spin_lock_irqsave(&pring->ring_lock, iflags);
17237
17238 piocbq = lpfc_sli_ringtx_get(phba, pring);
17239 if (!piocbq) {
17240 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17241 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17242 "2823 txq empty and txq_cnt is %d\n ",
17243 txq_cnt);
17244 break;
17245 }
17246 sglq = __lpfc_sli_get_sglq(phba, piocbq);
17247 if (!sglq) {
17248 __lpfc_sli_ringtx_put(phba, pring, piocbq);
17249 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17250 break;
17251 }
17252 txq_cnt--;
17253
17254 /* The xri and iocb resources secured,
17255 * attempt to issue request
17256 */
17257 piocbq->sli4_lxritag = sglq->sli4_lxritag;
17258 piocbq->sli4_xritag = sglq->sli4_xritag;
17259 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
17260 fail_msg = "to convert bpl to sgl";
17261 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
17262 fail_msg = "to convert iocb to wqe";
17263 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe))
17264 fail_msg = " - Wq is full";
17265 else
17266 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
17267
17268 if (fail_msg) {
17269 /* Failed means we can't issue and need to cancel */
17270 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17271 "2822 IOCB failed %s iotag 0x%x "
17272 "xri 0x%x\n",
17273 fail_msg,
17274 piocbq->iotag, piocbq->sli4_xritag);
17275 list_add_tail(&piocbq->list, &completions);
17276 }
17277 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17278 }
17279
17280 /* Cancel all the IOCBs that cannot be issued */
17281 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
17282 IOERR_SLI_ABORTED);
17283
17284 return txq_cnt;
17285 }