]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/lpfc/lpfc_sli.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / lpfc / lpfc_sli.c
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21
22 #include <linux/blkdev.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/lockdep.h>
28
29 #include <scsi/scsi.h>
30 #include <scsi/scsi_cmnd.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport_fc.h>
34 #include <scsi/fc/fc_fs.h>
35 #include <linux/aer.h>
36
37 #include "lpfc_hw4.h"
38 #include "lpfc_hw.h"
39 #include "lpfc_sli.h"
40 #include "lpfc_sli4.h"
41 #include "lpfc_nl.h"
42 #include "lpfc_disc.h"
43 #include "lpfc_scsi.h"
44 #include "lpfc.h"
45 #include "lpfc_crtn.h"
46 #include "lpfc_logmsg.h"
47 #include "lpfc_compat.h"
48 #include "lpfc_debugfs.h"
49 #include "lpfc_vport.h"
50 #include "lpfc_version.h"
51
52 /* There are only four IOCB completion types. */
53 typedef enum _lpfc_iocb_type {
54 LPFC_UNKNOWN_IOCB,
55 LPFC_UNSOL_IOCB,
56 LPFC_SOL_IOCB,
57 LPFC_ABORT_IOCB
58 } lpfc_iocb_type;
59
60
61 /* Provide function prototypes local to this module. */
62 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
63 uint32_t);
64 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
65 uint8_t *, uint32_t *);
66 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
67 struct lpfc_iocbq *);
68 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
69 struct hbq_dmabuf *);
70 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *,
71 struct lpfc_cqe *);
72 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *,
73 int);
74 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *,
75 uint32_t);
76 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
77 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
78
79 static IOCB_t *
80 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
81 {
82 return &iocbq->iocb;
83 }
84
85 /**
86 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
87 * @q: The Work Queue to operate on.
88 * @wqe: The work Queue Entry to put on the Work queue.
89 *
90 * This routine will copy the contents of @wqe to the next available entry on
91 * the @q. This function will then ring the Work Queue Doorbell to signal the
92 * HBA to start processing the Work Queue Entry. This function returns 0 if
93 * successful. If no entries are available on @q then this function will return
94 * -ENOMEM.
95 * The caller is expected to hold the hbalock when calling this routine.
96 **/
97 static uint32_t
98 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
99 {
100 union lpfc_wqe *temp_wqe;
101 struct lpfc_register doorbell;
102 uint32_t host_index;
103 uint32_t idx;
104
105 /* sanity check on queue memory */
106 if (unlikely(!q))
107 return -ENOMEM;
108 temp_wqe = q->qe[q->host_index].wqe;
109
110 /* If the host has not yet processed the next entry then we are done */
111 idx = ((q->host_index + 1) % q->entry_count);
112 if (idx == q->hba_index) {
113 q->WQ_overflow++;
114 return -ENOMEM;
115 }
116 q->WQ_posted++;
117 /* set consumption flag every once in a while */
118 if (!((q->host_index + 1) % q->entry_repost))
119 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
120 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
121 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
122 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
123
124 /* Update the host index before invoking device */
125 host_index = q->host_index;
126
127 q->host_index = idx;
128
129 /* Ring Doorbell */
130 doorbell.word0 = 0;
131 if (q->db_format == LPFC_DB_LIST_FORMAT) {
132 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
133 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index);
134 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
135 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
136 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
137 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
138 } else {
139 return -EINVAL;
140 }
141 writel(doorbell.word0, q->db_regaddr);
142
143 return 0;
144 }
145
146 /**
147 * lpfc_sli4_wq_release - Updates internal hba index for WQ
148 * @q: The Work Queue to operate on.
149 * @index: The index to advance the hba index to.
150 *
151 * This routine will update the HBA index of a queue to reflect consumption of
152 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
153 * an entry the host calls this function to update the queue's internal
154 * pointers. This routine returns the number of entries that were consumed by
155 * the HBA.
156 **/
157 static uint32_t
158 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
159 {
160 uint32_t released = 0;
161
162 /* sanity check on queue memory */
163 if (unlikely(!q))
164 return 0;
165
166 if (q->hba_index == index)
167 return 0;
168 do {
169 q->hba_index = ((q->hba_index + 1) % q->entry_count);
170 released++;
171 } while (q->hba_index != index);
172 return released;
173 }
174
175 /**
176 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
177 * @q: The Mailbox Queue to operate on.
178 * @wqe: The Mailbox Queue Entry to put on the Work queue.
179 *
180 * This routine will copy the contents of @mqe to the next available entry on
181 * the @q. This function will then ring the Work Queue Doorbell to signal the
182 * HBA to start processing the Work Queue Entry. This function returns 0 if
183 * successful. If no entries are available on @q then this function will return
184 * -ENOMEM.
185 * The caller is expected to hold the hbalock when calling this routine.
186 **/
187 static uint32_t
188 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
189 {
190 struct lpfc_mqe *temp_mqe;
191 struct lpfc_register doorbell;
192
193 /* sanity check on queue memory */
194 if (unlikely(!q))
195 return -ENOMEM;
196 temp_mqe = q->qe[q->host_index].mqe;
197
198 /* If the host has not yet processed the next entry then we are done */
199 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
200 return -ENOMEM;
201 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
202 /* Save off the mailbox pointer for completion */
203 q->phba->mbox = (MAILBOX_t *)temp_mqe;
204
205 /* Update the host index before invoking device */
206 q->host_index = ((q->host_index + 1) % q->entry_count);
207
208 /* Ring Doorbell */
209 doorbell.word0 = 0;
210 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
211 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
212 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
213 return 0;
214 }
215
216 /**
217 * lpfc_sli4_mq_release - Updates internal hba index for MQ
218 * @q: The Mailbox Queue to operate on.
219 *
220 * This routine will update the HBA index of a queue to reflect consumption of
221 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
222 * an entry the host calls this function to update the queue's internal
223 * pointers. This routine returns the number of entries that were consumed by
224 * the HBA.
225 **/
226 static uint32_t
227 lpfc_sli4_mq_release(struct lpfc_queue *q)
228 {
229 /* sanity check on queue memory */
230 if (unlikely(!q))
231 return 0;
232
233 /* Clear the mailbox pointer for completion */
234 q->phba->mbox = NULL;
235 q->hba_index = ((q->hba_index + 1) % q->entry_count);
236 return 1;
237 }
238
239 /**
240 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
241 * @q: The Event Queue to get the first valid EQE from
242 *
243 * This routine will get the first valid Event Queue Entry from @q, update
244 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
245 * the Queue (no more work to do), or the Queue is full of EQEs that have been
246 * processed, but not popped back to the HBA then this routine will return NULL.
247 **/
248 static struct lpfc_eqe *
249 lpfc_sli4_eq_get(struct lpfc_queue *q)
250 {
251 struct lpfc_eqe *eqe;
252 uint32_t idx;
253
254 /* sanity check on queue memory */
255 if (unlikely(!q))
256 return NULL;
257 eqe = q->qe[q->hba_index].eqe;
258
259 /* If the next EQE is not valid then we are done */
260 if (!bf_get_le32(lpfc_eqe_valid, eqe))
261 return NULL;
262 /* If the host has not yet processed the next entry then we are done */
263 idx = ((q->hba_index + 1) % q->entry_count);
264 if (idx == q->host_index)
265 return NULL;
266
267 q->hba_index = idx;
268
269 /*
270 * insert barrier for instruction interlock : data from the hardware
271 * must have the valid bit checked before it can be copied and acted
272 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
273 * instructions allowing action on content before valid bit checked,
274 * add barrier here as well. May not be needed as "content" is a
275 * single 32-bit entity here (vs multi word structure for cq's).
276 */
277 mb();
278 return eqe;
279 }
280
281 /**
282 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
283 * @q: The Event Queue to disable interrupts
284 *
285 **/
286 static inline void
287 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
288 {
289 struct lpfc_register doorbell;
290
291 doorbell.word0 = 0;
292 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
293 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
294 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
295 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
296 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
297 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
298 }
299
300 /**
301 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
302 * @q: The Event Queue that the host has completed processing for.
303 * @arm: Indicates whether the host wants to arms this CQ.
304 *
305 * This routine will mark all Event Queue Entries on @q, from the last
306 * known completed entry to the last entry that was processed, as completed
307 * by clearing the valid bit for each completion queue entry. Then it will
308 * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
309 * The internal host index in the @q will be updated by this routine to indicate
310 * that the host has finished processing the entries. The @arm parameter
311 * indicates that the queue should be rearmed when ringing the doorbell.
312 *
313 * This function will return the number of EQEs that were popped.
314 **/
315 uint32_t
316 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
317 {
318 uint32_t released = 0;
319 struct lpfc_eqe *temp_eqe;
320 struct lpfc_register doorbell;
321
322 /* sanity check on queue memory */
323 if (unlikely(!q))
324 return 0;
325
326 /* while there are valid entries */
327 while (q->hba_index != q->host_index) {
328 temp_eqe = q->qe[q->host_index].eqe;
329 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
330 released++;
331 q->host_index = ((q->host_index + 1) % q->entry_count);
332 }
333 if (unlikely(released == 0 && !arm))
334 return 0;
335
336 /* ring doorbell for number popped */
337 doorbell.word0 = 0;
338 if (arm) {
339 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
340 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
341 }
342 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
343 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
344 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
345 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
346 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
347 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
348 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
349 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
350 readl(q->phba->sli4_hba.EQCQDBregaddr);
351 return released;
352 }
353
354 /**
355 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
356 * @q: The Completion Queue to get the first valid CQE from
357 *
358 * This routine will get the first valid Completion Queue Entry from @q, update
359 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
360 * the Queue (no more work to do), or the Queue is full of CQEs that have been
361 * processed, but not popped back to the HBA then this routine will return NULL.
362 **/
363 static struct lpfc_cqe *
364 lpfc_sli4_cq_get(struct lpfc_queue *q)
365 {
366 struct lpfc_cqe *cqe;
367 uint32_t idx;
368
369 /* sanity check on queue memory */
370 if (unlikely(!q))
371 return NULL;
372
373 /* If the next CQE is not valid then we are done */
374 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
375 return NULL;
376 /* If the host has not yet processed the next entry then we are done */
377 idx = ((q->hba_index + 1) % q->entry_count);
378 if (idx == q->host_index)
379 return NULL;
380
381 cqe = q->qe[q->hba_index].cqe;
382 q->hba_index = idx;
383
384 /*
385 * insert barrier for instruction interlock : data from the hardware
386 * must have the valid bit checked before it can be copied and acted
387 * upon. Speculative instructions were allowing a bcopy at the start
388 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
389 * after our return, to copy data before the valid bit check above
390 * was done. As such, some of the copied data was stale. The barrier
391 * ensures the check is before any data is copied.
392 */
393 mb();
394 return cqe;
395 }
396
397 /**
398 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
399 * @q: The Completion Queue that the host has completed processing for.
400 * @arm: Indicates whether the host wants to arms this CQ.
401 *
402 * This routine will mark all Completion queue entries on @q, from the last
403 * known completed entry to the last entry that was processed, as completed
404 * by clearing the valid bit for each completion queue entry. Then it will
405 * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
406 * The internal host index in the @q will be updated by this routine to indicate
407 * that the host has finished processing the entries. The @arm parameter
408 * indicates that the queue should be rearmed when ringing the doorbell.
409 *
410 * This function will return the number of CQEs that were released.
411 **/
412 uint32_t
413 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
414 {
415 uint32_t released = 0;
416 struct lpfc_cqe *temp_qe;
417 struct lpfc_register doorbell;
418
419 /* sanity check on queue memory */
420 if (unlikely(!q))
421 return 0;
422 /* while there are valid entries */
423 while (q->hba_index != q->host_index) {
424 temp_qe = q->qe[q->host_index].cqe;
425 bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
426 released++;
427 q->host_index = ((q->host_index + 1) % q->entry_count);
428 }
429 if (unlikely(released == 0 && !arm))
430 return 0;
431
432 /* ring doorbell for number popped */
433 doorbell.word0 = 0;
434 if (arm)
435 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
436 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
437 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
438 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
439 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
440 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
441 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
442 return released;
443 }
444
445 /**
446 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
447 * @q: The Header Receive Queue to operate on.
448 * @wqe: The Receive Queue Entry to put on the Receive queue.
449 *
450 * This routine will copy the contents of @wqe to the next available entry on
451 * the @q. This function will then ring the Receive Queue Doorbell to signal the
452 * HBA to start processing the Receive Queue Entry. This function returns the
453 * index that the rqe was copied to if successful. If no entries are available
454 * on @q then this function will return -ENOMEM.
455 * The caller is expected to hold the hbalock when calling this routine.
456 **/
457 static int
458 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
459 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
460 {
461 struct lpfc_rqe *temp_hrqe;
462 struct lpfc_rqe *temp_drqe;
463 struct lpfc_register doorbell;
464 int put_index;
465
466 /* sanity check on queue memory */
467 if (unlikely(!hq) || unlikely(!dq))
468 return -ENOMEM;
469 put_index = hq->host_index;
470 temp_hrqe = hq->qe[hq->host_index].rqe;
471 temp_drqe = dq->qe[dq->host_index].rqe;
472
473 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
474 return -EINVAL;
475 if (hq->host_index != dq->host_index)
476 return -EINVAL;
477 /* If the host has not yet processed the next entry then we are done */
478 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index)
479 return -EBUSY;
480 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
481 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
482
483 /* Update the host index to point to the next slot */
484 hq->host_index = ((hq->host_index + 1) % hq->entry_count);
485 dq->host_index = ((dq->host_index + 1) % dq->entry_count);
486
487 /* Ring The Header Receive Queue Doorbell */
488 if (!(hq->host_index % hq->entry_repost)) {
489 doorbell.word0 = 0;
490 if (hq->db_format == LPFC_DB_RING_FORMAT) {
491 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
492 hq->entry_repost);
493 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
494 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
495 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
496 hq->entry_repost);
497 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
498 hq->host_index);
499 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
500 } else {
501 return -EINVAL;
502 }
503 writel(doorbell.word0, hq->db_regaddr);
504 }
505 return put_index;
506 }
507
508 /**
509 * lpfc_sli4_rq_release - Updates internal hba index for RQ
510 * @q: The Header Receive Queue to operate on.
511 *
512 * This routine will update the HBA index of a queue to reflect consumption of
513 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
514 * consumed an entry the host calls this function to update the queue's
515 * internal pointers. This routine returns the number of entries that were
516 * consumed by the HBA.
517 **/
518 static uint32_t
519 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
520 {
521 /* sanity check on queue memory */
522 if (unlikely(!hq) || unlikely(!dq))
523 return 0;
524
525 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
526 return 0;
527 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
528 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
529 return 1;
530 }
531
532 /**
533 * lpfc_cmd_iocb - Get next command iocb entry in the ring
534 * @phba: Pointer to HBA context object.
535 * @pring: Pointer to driver SLI ring object.
536 *
537 * This function returns pointer to next command iocb entry
538 * in the command ring. The caller must hold hbalock to prevent
539 * other threads consume the next command iocb.
540 * SLI-2/SLI-3 provide different sized iocbs.
541 **/
542 static inline IOCB_t *
543 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
544 {
545 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
546 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
547 }
548
549 /**
550 * lpfc_resp_iocb - Get next response iocb entry in the ring
551 * @phba: Pointer to HBA context object.
552 * @pring: Pointer to driver SLI ring object.
553 *
554 * This function returns pointer to next response iocb entry
555 * in the response ring. The caller must hold hbalock to make sure
556 * that no other thread consume the next response iocb.
557 * SLI-2/SLI-3 provide different sized iocbs.
558 **/
559 static inline IOCB_t *
560 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
561 {
562 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
563 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
564 }
565
566 /**
567 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
568 * @phba: Pointer to HBA context object.
569 *
570 * This function is called with hbalock held. This function
571 * allocates a new driver iocb object from the iocb pool. If the
572 * allocation is successful, it returns pointer to the newly
573 * allocated iocb object else it returns NULL.
574 **/
575 struct lpfc_iocbq *
576 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
577 {
578 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
579 struct lpfc_iocbq * iocbq = NULL;
580
581 lockdep_assert_held(&phba->hbalock);
582
583 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
584 if (iocbq)
585 phba->iocb_cnt++;
586 if (phba->iocb_cnt > phba->iocb_max)
587 phba->iocb_max = phba->iocb_cnt;
588 return iocbq;
589 }
590
591 /**
592 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
593 * @phba: Pointer to HBA context object.
594 * @xritag: XRI value.
595 *
596 * This function clears the sglq pointer from the array of acive
597 * sglq's. The xritag that is passed in is used to index into the
598 * array. Before the xritag can be used it needs to be adjusted
599 * by subtracting the xribase.
600 *
601 * Returns sglq ponter = success, NULL = Failure.
602 **/
603 static struct lpfc_sglq *
604 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
605 {
606 struct lpfc_sglq *sglq;
607
608 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
609 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
610 return sglq;
611 }
612
613 /**
614 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
615 * @phba: Pointer to HBA context object.
616 * @xritag: XRI value.
617 *
618 * This function returns the sglq pointer from the array of acive
619 * sglq's. The xritag that is passed in is used to index into the
620 * array. Before the xritag can be used it needs to be adjusted
621 * by subtracting the xribase.
622 *
623 * Returns sglq ponter = success, NULL = Failure.
624 **/
625 struct lpfc_sglq *
626 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
627 {
628 struct lpfc_sglq *sglq;
629
630 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
631 return sglq;
632 }
633
634 /**
635 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
636 * @phba: Pointer to HBA context object.
637 * @xritag: xri used in this exchange.
638 * @rrq: The RRQ to be cleared.
639 *
640 **/
641 void
642 lpfc_clr_rrq_active(struct lpfc_hba *phba,
643 uint16_t xritag,
644 struct lpfc_node_rrq *rrq)
645 {
646 struct lpfc_nodelist *ndlp = NULL;
647
648 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
649 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
650
651 /* The target DID could have been swapped (cable swap)
652 * we should use the ndlp from the findnode if it is
653 * available.
654 */
655 if ((!ndlp) && rrq->ndlp)
656 ndlp = rrq->ndlp;
657
658 if (!ndlp)
659 goto out;
660
661 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
662 rrq->send_rrq = 0;
663 rrq->xritag = 0;
664 rrq->rrq_stop_time = 0;
665 }
666 out:
667 mempool_free(rrq, phba->rrq_pool);
668 }
669
670 /**
671 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
672 * @phba: Pointer to HBA context object.
673 *
674 * This function is called with hbalock held. This function
675 * Checks if stop_time (ratov from setting rrq active) has
676 * been reached, if it has and the send_rrq flag is set then
677 * it will call lpfc_send_rrq. If the send_rrq flag is not set
678 * then it will just call the routine to clear the rrq and
679 * free the rrq resource.
680 * The timer is set to the next rrq that is going to expire before
681 * leaving the routine.
682 *
683 **/
684 void
685 lpfc_handle_rrq_active(struct lpfc_hba *phba)
686 {
687 struct lpfc_node_rrq *rrq;
688 struct lpfc_node_rrq *nextrrq;
689 unsigned long next_time;
690 unsigned long iflags;
691 LIST_HEAD(send_rrq);
692
693 spin_lock_irqsave(&phba->hbalock, iflags);
694 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
695 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
696 list_for_each_entry_safe(rrq, nextrrq,
697 &phba->active_rrq_list, list) {
698 if (time_after(jiffies, rrq->rrq_stop_time))
699 list_move(&rrq->list, &send_rrq);
700 else if (time_before(rrq->rrq_stop_time, next_time))
701 next_time = rrq->rrq_stop_time;
702 }
703 spin_unlock_irqrestore(&phba->hbalock, iflags);
704 if ((!list_empty(&phba->active_rrq_list)) &&
705 (!(phba->pport->load_flag & FC_UNLOADING)))
706 mod_timer(&phba->rrq_tmr, next_time);
707 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
708 list_del(&rrq->list);
709 if (!rrq->send_rrq)
710 /* this call will free the rrq */
711 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
712 else if (lpfc_send_rrq(phba, rrq)) {
713 /* if we send the rrq then the completion handler
714 * will clear the bit in the xribitmap.
715 */
716 lpfc_clr_rrq_active(phba, rrq->xritag,
717 rrq);
718 }
719 }
720 }
721
722 /**
723 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
724 * @vport: Pointer to vport context object.
725 * @xri: The xri used in the exchange.
726 * @did: The targets DID for this exchange.
727 *
728 * returns NULL = rrq not found in the phba->active_rrq_list.
729 * rrq = rrq for this xri and target.
730 **/
731 struct lpfc_node_rrq *
732 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
733 {
734 struct lpfc_hba *phba = vport->phba;
735 struct lpfc_node_rrq *rrq;
736 struct lpfc_node_rrq *nextrrq;
737 unsigned long iflags;
738
739 if (phba->sli_rev != LPFC_SLI_REV4)
740 return NULL;
741 spin_lock_irqsave(&phba->hbalock, iflags);
742 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
743 if (rrq->vport == vport && rrq->xritag == xri &&
744 rrq->nlp_DID == did){
745 list_del(&rrq->list);
746 spin_unlock_irqrestore(&phba->hbalock, iflags);
747 return rrq;
748 }
749 }
750 spin_unlock_irqrestore(&phba->hbalock, iflags);
751 return NULL;
752 }
753
754 /**
755 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
756 * @vport: Pointer to vport context object.
757 * @ndlp: Pointer to the lpfc_node_list structure.
758 * If ndlp is NULL Remove all active RRQs for this vport from the
759 * phba->active_rrq_list and clear the rrq.
760 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
761 **/
762 void
763 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
764
765 {
766 struct lpfc_hba *phba = vport->phba;
767 struct lpfc_node_rrq *rrq;
768 struct lpfc_node_rrq *nextrrq;
769 unsigned long iflags;
770 LIST_HEAD(rrq_list);
771
772 if (phba->sli_rev != LPFC_SLI_REV4)
773 return;
774 if (!ndlp) {
775 lpfc_sli4_vport_delete_els_xri_aborted(vport);
776 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
777 }
778 spin_lock_irqsave(&phba->hbalock, iflags);
779 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
780 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
781 list_move(&rrq->list, &rrq_list);
782 spin_unlock_irqrestore(&phba->hbalock, iflags);
783
784 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
785 list_del(&rrq->list);
786 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
787 }
788 }
789
790 /**
791 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
792 * @phba: Pointer to HBA context object.
793 * @ndlp: Targets nodelist pointer for this exchange.
794 * @xritag the xri in the bitmap to test.
795 *
796 * This function is called with hbalock held. This function
797 * returns 0 = rrq not active for this xri
798 * 1 = rrq is valid for this xri.
799 **/
800 int
801 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
802 uint16_t xritag)
803 {
804 lockdep_assert_held(&phba->hbalock);
805 if (!ndlp)
806 return 0;
807 if (!ndlp->active_rrqs_xri_bitmap)
808 return 0;
809 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
810 return 1;
811 else
812 return 0;
813 }
814
815 /**
816 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
817 * @phba: Pointer to HBA context object.
818 * @ndlp: nodelist pointer for this target.
819 * @xritag: xri used in this exchange.
820 * @rxid: Remote Exchange ID.
821 * @send_rrq: Flag used to determine if we should send rrq els cmd.
822 *
823 * This function takes the hbalock.
824 * The active bit is always set in the active rrq xri_bitmap even
825 * if there is no slot avaiable for the other rrq information.
826 *
827 * returns 0 rrq actived for this xri
828 * < 0 No memory or invalid ndlp.
829 **/
830 int
831 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
832 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
833 {
834 unsigned long iflags;
835 struct lpfc_node_rrq *rrq;
836 int empty;
837
838 if (!ndlp)
839 return -EINVAL;
840
841 if (!phba->cfg_enable_rrq)
842 return -EINVAL;
843
844 spin_lock_irqsave(&phba->hbalock, iflags);
845 if (phba->pport->load_flag & FC_UNLOADING) {
846 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
847 goto out;
848 }
849
850 /*
851 * set the active bit even if there is no mem available.
852 */
853 if (NLP_CHK_FREE_REQ(ndlp))
854 goto out;
855
856 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
857 goto out;
858
859 if (!ndlp->active_rrqs_xri_bitmap)
860 goto out;
861
862 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
863 goto out;
864
865 spin_unlock_irqrestore(&phba->hbalock, iflags);
866 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
867 if (!rrq) {
868 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
869 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
870 " DID:0x%x Send:%d\n",
871 xritag, rxid, ndlp->nlp_DID, send_rrq);
872 return -EINVAL;
873 }
874 if (phba->cfg_enable_rrq == 1)
875 rrq->send_rrq = send_rrq;
876 else
877 rrq->send_rrq = 0;
878 rrq->xritag = xritag;
879 rrq->rrq_stop_time = jiffies +
880 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
881 rrq->ndlp = ndlp;
882 rrq->nlp_DID = ndlp->nlp_DID;
883 rrq->vport = ndlp->vport;
884 rrq->rxid = rxid;
885 spin_lock_irqsave(&phba->hbalock, iflags);
886 empty = list_empty(&phba->active_rrq_list);
887 list_add_tail(&rrq->list, &phba->active_rrq_list);
888 phba->hba_flag |= HBA_RRQ_ACTIVE;
889 if (empty)
890 lpfc_worker_wake_up(phba);
891 spin_unlock_irqrestore(&phba->hbalock, iflags);
892 return 0;
893 out:
894 spin_unlock_irqrestore(&phba->hbalock, iflags);
895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
896 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
897 " DID:0x%x Send:%d\n",
898 xritag, rxid, ndlp->nlp_DID, send_rrq);
899 return -EINVAL;
900 }
901
902 /**
903 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool
904 * @phba: Pointer to HBA context object.
905 * @piocb: Pointer to the iocbq.
906 *
907 * This function is called with the ring lock held. This function
908 * gets a new driver sglq object from the sglq list. If the
909 * list is not empty then it is successful, it returns pointer to the newly
910 * allocated sglq object else it returns NULL.
911 **/
912 static struct lpfc_sglq *
913 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
914 {
915 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list;
916 struct lpfc_sglq *sglq = NULL;
917 struct lpfc_sglq *start_sglq = NULL;
918 struct lpfc_scsi_buf *lpfc_cmd;
919 struct lpfc_nodelist *ndlp;
920 int found = 0;
921
922 lockdep_assert_held(&phba->hbalock);
923
924 if (piocbq->iocb_flag & LPFC_IO_FCP) {
925 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
926 ndlp = lpfc_cmd->rdata->pnode;
927 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
928 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
929 ndlp = piocbq->context_un.ndlp;
930 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
931 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
932 ndlp = NULL;
933 else
934 ndlp = piocbq->context_un.ndlp;
935 } else {
936 ndlp = piocbq->context1;
937 }
938
939 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list);
940 start_sglq = sglq;
941 while (!found) {
942 if (!sglq)
943 return NULL;
944 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) {
945 /* This xri has an rrq outstanding for this DID.
946 * put it back in the list and get another xri.
947 */
948 list_add_tail(&sglq->list, lpfc_sgl_list);
949 sglq = NULL;
950 list_remove_head(lpfc_sgl_list, sglq,
951 struct lpfc_sglq, list);
952 if (sglq == start_sglq) {
953 sglq = NULL;
954 break;
955 } else
956 continue;
957 }
958 sglq->ndlp = ndlp;
959 found = 1;
960 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
961 sglq->state = SGL_ALLOCATED;
962 }
963 return sglq;
964 }
965
966 /**
967 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
968 * @phba: Pointer to HBA context object.
969 *
970 * This function is called with no lock held. This function
971 * allocates a new driver iocb object from the iocb pool. If the
972 * allocation is successful, it returns pointer to the newly
973 * allocated iocb object else it returns NULL.
974 **/
975 struct lpfc_iocbq *
976 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
977 {
978 struct lpfc_iocbq * iocbq = NULL;
979 unsigned long iflags;
980
981 spin_lock_irqsave(&phba->hbalock, iflags);
982 iocbq = __lpfc_sli_get_iocbq(phba);
983 spin_unlock_irqrestore(&phba->hbalock, iflags);
984 return iocbq;
985 }
986
987 /**
988 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
989 * @phba: Pointer to HBA context object.
990 * @iocbq: Pointer to driver iocb object.
991 *
992 * This function is called with hbalock held to release driver
993 * iocb object to the iocb pool. The iotag in the iocb object
994 * does not change for each use of the iocb object. This function
995 * clears all other fields of the iocb object when it is freed.
996 * The sqlq structure that holds the xritag and phys and virtual
997 * mappings for the scatter gather list is retrieved from the
998 * active array of sglq. The get of the sglq pointer also clears
999 * the entry in the array. If the status of the IO indiactes that
1000 * this IO was aborted then the sglq entry it put on the
1001 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1002 * IO has good status or fails for any other reason then the sglq
1003 * entry is added to the free list (lpfc_sgl_list).
1004 **/
1005 static void
1006 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1007 {
1008 struct lpfc_sglq *sglq;
1009 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1010 unsigned long iflag = 0;
1011 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
1012
1013 lockdep_assert_held(&phba->hbalock);
1014
1015 if (iocbq->sli4_xritag == NO_XRI)
1016 sglq = NULL;
1017 else
1018 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1019
1020
1021 if (sglq) {
1022 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1023 (sglq->state != SGL_XRI_ABORTED)) {
1024 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock,
1025 iflag);
1026 list_add(&sglq->list,
1027 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1028 spin_unlock_irqrestore(
1029 &phba->sli4_hba.abts_sgl_list_lock, iflag);
1030 } else {
1031 spin_lock_irqsave(&pring->ring_lock, iflag);
1032 sglq->state = SGL_FREED;
1033 sglq->ndlp = NULL;
1034 list_add_tail(&sglq->list,
1035 &phba->sli4_hba.lpfc_sgl_list);
1036 spin_unlock_irqrestore(&pring->ring_lock, iflag);
1037
1038 /* Check if TXQ queue needs to be serviced */
1039 if (!list_empty(&pring->txq))
1040 lpfc_worker_wake_up(phba);
1041 }
1042 }
1043
1044
1045 /*
1046 * Clean all volatile data fields, preserve iotag and node struct.
1047 */
1048 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1049 iocbq->sli4_lxritag = NO_XRI;
1050 iocbq->sli4_xritag = NO_XRI;
1051 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1052 }
1053
1054
1055 /**
1056 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1057 * @phba: Pointer to HBA context object.
1058 * @iocbq: Pointer to driver iocb object.
1059 *
1060 * This function is called with hbalock held to release driver
1061 * iocb object to the iocb pool. The iotag in the iocb object
1062 * does not change for each use of the iocb object. This function
1063 * clears all other fields of the iocb object when it is freed.
1064 **/
1065 static void
1066 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1067 {
1068 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1069
1070 lockdep_assert_held(&phba->hbalock);
1071
1072 /*
1073 * Clean all volatile data fields, preserve iotag and node struct.
1074 */
1075 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1076 iocbq->sli4_xritag = NO_XRI;
1077 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1078 }
1079
1080 /**
1081 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1082 * @phba: Pointer to HBA context object.
1083 * @iocbq: Pointer to driver iocb object.
1084 *
1085 * This function is called with hbalock held to release driver
1086 * iocb object to the iocb pool. The iotag in the iocb object
1087 * does not change for each use of the iocb object. This function
1088 * clears all other fields of the iocb object when it is freed.
1089 **/
1090 static void
1091 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1092 {
1093 lockdep_assert_held(&phba->hbalock);
1094
1095 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1096 phba->iocb_cnt--;
1097 }
1098
1099 /**
1100 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1101 * @phba: Pointer to HBA context object.
1102 * @iocbq: Pointer to driver iocb object.
1103 *
1104 * This function is called with no lock held to release the iocb to
1105 * iocb pool.
1106 **/
1107 void
1108 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1109 {
1110 unsigned long iflags;
1111
1112 /*
1113 * Clean all volatile data fields, preserve iotag and node struct.
1114 */
1115 spin_lock_irqsave(&phba->hbalock, iflags);
1116 __lpfc_sli_release_iocbq(phba, iocbq);
1117 spin_unlock_irqrestore(&phba->hbalock, iflags);
1118 }
1119
1120 /**
1121 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1122 * @phba: Pointer to HBA context object.
1123 * @iocblist: List of IOCBs.
1124 * @ulpstatus: ULP status in IOCB command field.
1125 * @ulpWord4: ULP word-4 in IOCB command field.
1126 *
1127 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1128 * on the list by invoking the complete callback function associated with the
1129 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1130 * fields.
1131 **/
1132 void
1133 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1134 uint32_t ulpstatus, uint32_t ulpWord4)
1135 {
1136 struct lpfc_iocbq *piocb;
1137
1138 while (!list_empty(iocblist)) {
1139 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1140 if (!piocb->iocb_cmpl)
1141 lpfc_sli_release_iocbq(phba, piocb);
1142 else {
1143 piocb->iocb.ulpStatus = ulpstatus;
1144 piocb->iocb.un.ulpWord[4] = ulpWord4;
1145 (piocb->iocb_cmpl) (phba, piocb, piocb);
1146 }
1147 }
1148 return;
1149 }
1150
1151 /**
1152 * lpfc_sli_iocb_cmd_type - Get the iocb type
1153 * @iocb_cmnd: iocb command code.
1154 *
1155 * This function is called by ring event handler function to get the iocb type.
1156 * This function translates the iocb command to an iocb command type used to
1157 * decide the final disposition of each completed IOCB.
1158 * The function returns
1159 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1160 * LPFC_SOL_IOCB if it is a solicited iocb completion
1161 * LPFC_ABORT_IOCB if it is an abort iocb
1162 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1163 *
1164 * The caller is not required to hold any lock.
1165 **/
1166 static lpfc_iocb_type
1167 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1168 {
1169 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1170
1171 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1172 return 0;
1173
1174 switch (iocb_cmnd) {
1175 case CMD_XMIT_SEQUENCE_CR:
1176 case CMD_XMIT_SEQUENCE_CX:
1177 case CMD_XMIT_BCAST_CN:
1178 case CMD_XMIT_BCAST_CX:
1179 case CMD_ELS_REQUEST_CR:
1180 case CMD_ELS_REQUEST_CX:
1181 case CMD_CREATE_XRI_CR:
1182 case CMD_CREATE_XRI_CX:
1183 case CMD_GET_RPI_CN:
1184 case CMD_XMIT_ELS_RSP_CX:
1185 case CMD_GET_RPI_CR:
1186 case CMD_FCP_IWRITE_CR:
1187 case CMD_FCP_IWRITE_CX:
1188 case CMD_FCP_IREAD_CR:
1189 case CMD_FCP_IREAD_CX:
1190 case CMD_FCP_ICMND_CR:
1191 case CMD_FCP_ICMND_CX:
1192 case CMD_FCP_TSEND_CX:
1193 case CMD_FCP_TRSP_CX:
1194 case CMD_FCP_TRECEIVE_CX:
1195 case CMD_FCP_AUTO_TRSP_CX:
1196 case CMD_ADAPTER_MSG:
1197 case CMD_ADAPTER_DUMP:
1198 case CMD_XMIT_SEQUENCE64_CR:
1199 case CMD_XMIT_SEQUENCE64_CX:
1200 case CMD_XMIT_BCAST64_CN:
1201 case CMD_XMIT_BCAST64_CX:
1202 case CMD_ELS_REQUEST64_CR:
1203 case CMD_ELS_REQUEST64_CX:
1204 case CMD_FCP_IWRITE64_CR:
1205 case CMD_FCP_IWRITE64_CX:
1206 case CMD_FCP_IREAD64_CR:
1207 case CMD_FCP_IREAD64_CX:
1208 case CMD_FCP_ICMND64_CR:
1209 case CMD_FCP_ICMND64_CX:
1210 case CMD_FCP_TSEND64_CX:
1211 case CMD_FCP_TRSP64_CX:
1212 case CMD_FCP_TRECEIVE64_CX:
1213 case CMD_GEN_REQUEST64_CR:
1214 case CMD_GEN_REQUEST64_CX:
1215 case CMD_XMIT_ELS_RSP64_CX:
1216 case DSSCMD_IWRITE64_CR:
1217 case DSSCMD_IWRITE64_CX:
1218 case DSSCMD_IREAD64_CR:
1219 case DSSCMD_IREAD64_CX:
1220 type = LPFC_SOL_IOCB;
1221 break;
1222 case CMD_ABORT_XRI_CN:
1223 case CMD_ABORT_XRI_CX:
1224 case CMD_CLOSE_XRI_CN:
1225 case CMD_CLOSE_XRI_CX:
1226 case CMD_XRI_ABORTED_CX:
1227 case CMD_ABORT_MXRI64_CN:
1228 case CMD_XMIT_BLS_RSP64_CX:
1229 type = LPFC_ABORT_IOCB;
1230 break;
1231 case CMD_RCV_SEQUENCE_CX:
1232 case CMD_RCV_ELS_REQ_CX:
1233 case CMD_RCV_SEQUENCE64_CX:
1234 case CMD_RCV_ELS_REQ64_CX:
1235 case CMD_ASYNC_STATUS:
1236 case CMD_IOCB_RCV_SEQ64_CX:
1237 case CMD_IOCB_RCV_ELS64_CX:
1238 case CMD_IOCB_RCV_CONT64_CX:
1239 case CMD_IOCB_RET_XRI64_CX:
1240 type = LPFC_UNSOL_IOCB;
1241 break;
1242 case CMD_IOCB_XMIT_MSEQ64_CR:
1243 case CMD_IOCB_XMIT_MSEQ64_CX:
1244 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1245 case CMD_IOCB_RCV_ELS_LIST64_CX:
1246 case CMD_IOCB_CLOSE_EXTENDED_CN:
1247 case CMD_IOCB_ABORT_EXTENDED_CN:
1248 case CMD_IOCB_RET_HBQE64_CN:
1249 case CMD_IOCB_FCP_IBIDIR64_CR:
1250 case CMD_IOCB_FCP_IBIDIR64_CX:
1251 case CMD_IOCB_FCP_ITASKMGT64_CX:
1252 case CMD_IOCB_LOGENTRY_CN:
1253 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1254 printk("%s - Unhandled SLI-3 Command x%x\n",
1255 __func__, iocb_cmnd);
1256 type = LPFC_UNKNOWN_IOCB;
1257 break;
1258 default:
1259 type = LPFC_UNKNOWN_IOCB;
1260 break;
1261 }
1262
1263 return type;
1264 }
1265
1266 /**
1267 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1268 * @phba: Pointer to HBA context object.
1269 *
1270 * This function is called from SLI initialization code
1271 * to configure every ring of the HBA's SLI interface. The
1272 * caller is not required to hold any lock. This function issues
1273 * a config_ring mailbox command for each ring.
1274 * This function returns zero if successful else returns a negative
1275 * error code.
1276 **/
1277 static int
1278 lpfc_sli_ring_map(struct lpfc_hba *phba)
1279 {
1280 struct lpfc_sli *psli = &phba->sli;
1281 LPFC_MBOXQ_t *pmb;
1282 MAILBOX_t *pmbox;
1283 int i, rc, ret = 0;
1284
1285 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1286 if (!pmb)
1287 return -ENOMEM;
1288 pmbox = &pmb->u.mb;
1289 phba->link_state = LPFC_INIT_MBX_CMDS;
1290 for (i = 0; i < psli->num_rings; i++) {
1291 lpfc_config_ring(phba, i, pmb);
1292 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1293 if (rc != MBX_SUCCESS) {
1294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1295 "0446 Adapter failed to init (%d), "
1296 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1297 "ring %d\n",
1298 rc, pmbox->mbxCommand,
1299 pmbox->mbxStatus, i);
1300 phba->link_state = LPFC_HBA_ERROR;
1301 ret = -ENXIO;
1302 break;
1303 }
1304 }
1305 mempool_free(pmb, phba->mbox_mem_pool);
1306 return ret;
1307 }
1308
1309 /**
1310 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1311 * @phba: Pointer to HBA context object.
1312 * @pring: Pointer to driver SLI ring object.
1313 * @piocb: Pointer to the driver iocb object.
1314 *
1315 * This function is called with hbalock held. The function adds the
1316 * new iocb to txcmplq of the given ring. This function always returns
1317 * 0. If this function is called for ELS ring, this function checks if
1318 * there is a vport associated with the ELS command. This function also
1319 * starts els_tmofunc timer if this is an ELS command.
1320 **/
1321 static int
1322 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1323 struct lpfc_iocbq *piocb)
1324 {
1325 lockdep_assert_held(&phba->hbalock);
1326
1327 BUG_ON(!piocb);
1328
1329 list_add_tail(&piocb->list, &pring->txcmplq);
1330 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1331
1332 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1333 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1334 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1335 BUG_ON(!piocb->vport);
1336 if (!(piocb->vport->load_flag & FC_UNLOADING))
1337 mod_timer(&piocb->vport->els_tmofunc,
1338 jiffies +
1339 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1340 }
1341
1342 return 0;
1343 }
1344
1345 /**
1346 * lpfc_sli_ringtx_get - Get first element of the txq
1347 * @phba: Pointer to HBA context object.
1348 * @pring: Pointer to driver SLI ring object.
1349 *
1350 * This function is called with hbalock held to get next
1351 * iocb in txq of the given ring. If there is any iocb in
1352 * the txq, the function returns first iocb in the list after
1353 * removing the iocb from the list, else it returns NULL.
1354 **/
1355 struct lpfc_iocbq *
1356 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1357 {
1358 struct lpfc_iocbq *cmd_iocb;
1359
1360 lockdep_assert_held(&phba->hbalock);
1361
1362 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1363 return cmd_iocb;
1364 }
1365
1366 /**
1367 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1368 * @phba: Pointer to HBA context object.
1369 * @pring: Pointer to driver SLI ring object.
1370 *
1371 * This function is called with hbalock held and the caller must post the
1372 * iocb without releasing the lock. If the caller releases the lock,
1373 * iocb slot returned by the function is not guaranteed to be available.
1374 * The function returns pointer to the next available iocb slot if there
1375 * is available slot in the ring, else it returns NULL.
1376 * If the get index of the ring is ahead of the put index, the function
1377 * will post an error attention event to the worker thread to take the
1378 * HBA to offline state.
1379 **/
1380 static IOCB_t *
1381 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1382 {
1383 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1384 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1385
1386 lockdep_assert_held(&phba->hbalock);
1387
1388 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1389 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1390 pring->sli.sli3.next_cmdidx = 0;
1391
1392 if (unlikely(pring->sli.sli3.local_getidx ==
1393 pring->sli.sli3.next_cmdidx)) {
1394
1395 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1396
1397 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1399 "0315 Ring %d issue: portCmdGet %d "
1400 "is bigger than cmd ring %d\n",
1401 pring->ringno,
1402 pring->sli.sli3.local_getidx,
1403 max_cmd_idx);
1404
1405 phba->link_state = LPFC_HBA_ERROR;
1406 /*
1407 * All error attention handlers are posted to
1408 * worker thread
1409 */
1410 phba->work_ha |= HA_ERATT;
1411 phba->work_hs = HS_FFER3;
1412
1413 lpfc_worker_wake_up(phba);
1414
1415 return NULL;
1416 }
1417
1418 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1419 return NULL;
1420 }
1421
1422 return lpfc_cmd_iocb(phba, pring);
1423 }
1424
1425 /**
1426 * lpfc_sli_next_iotag - Get an iotag for the iocb
1427 * @phba: Pointer to HBA context object.
1428 * @iocbq: Pointer to driver iocb object.
1429 *
1430 * This function gets an iotag for the iocb. If there is no unused iotag and
1431 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1432 * array and assigns a new iotag.
1433 * The function returns the allocated iotag if successful, else returns zero.
1434 * Zero is not a valid iotag.
1435 * The caller is not required to hold any lock.
1436 **/
1437 uint16_t
1438 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1439 {
1440 struct lpfc_iocbq **new_arr;
1441 struct lpfc_iocbq **old_arr;
1442 size_t new_len;
1443 struct lpfc_sli *psli = &phba->sli;
1444 uint16_t iotag;
1445
1446 spin_lock_irq(&phba->hbalock);
1447 iotag = psli->last_iotag;
1448 if(++iotag < psli->iocbq_lookup_len) {
1449 psli->last_iotag = iotag;
1450 psli->iocbq_lookup[iotag] = iocbq;
1451 spin_unlock_irq(&phba->hbalock);
1452 iocbq->iotag = iotag;
1453 return iotag;
1454 } else if (psli->iocbq_lookup_len < (0xffff
1455 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1456 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1457 spin_unlock_irq(&phba->hbalock);
1458 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1459 GFP_KERNEL);
1460 if (new_arr) {
1461 spin_lock_irq(&phba->hbalock);
1462 old_arr = psli->iocbq_lookup;
1463 if (new_len <= psli->iocbq_lookup_len) {
1464 /* highly unprobable case */
1465 kfree(new_arr);
1466 iotag = psli->last_iotag;
1467 if(++iotag < psli->iocbq_lookup_len) {
1468 psli->last_iotag = iotag;
1469 psli->iocbq_lookup[iotag] = iocbq;
1470 spin_unlock_irq(&phba->hbalock);
1471 iocbq->iotag = iotag;
1472 return iotag;
1473 }
1474 spin_unlock_irq(&phba->hbalock);
1475 return 0;
1476 }
1477 if (psli->iocbq_lookup)
1478 memcpy(new_arr, old_arr,
1479 ((psli->last_iotag + 1) *
1480 sizeof (struct lpfc_iocbq *)));
1481 psli->iocbq_lookup = new_arr;
1482 psli->iocbq_lookup_len = new_len;
1483 psli->last_iotag = iotag;
1484 psli->iocbq_lookup[iotag] = iocbq;
1485 spin_unlock_irq(&phba->hbalock);
1486 iocbq->iotag = iotag;
1487 kfree(old_arr);
1488 return iotag;
1489 }
1490 } else
1491 spin_unlock_irq(&phba->hbalock);
1492
1493 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1494 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1495 psli->last_iotag);
1496
1497 return 0;
1498 }
1499
1500 /**
1501 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1502 * @phba: Pointer to HBA context object.
1503 * @pring: Pointer to driver SLI ring object.
1504 * @iocb: Pointer to iocb slot in the ring.
1505 * @nextiocb: Pointer to driver iocb object which need to be
1506 * posted to firmware.
1507 *
1508 * This function is called with hbalock held to post a new iocb to
1509 * the firmware. This function copies the new iocb to ring iocb slot and
1510 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1511 * a completion call back for this iocb else the function will free the
1512 * iocb object.
1513 **/
1514 static void
1515 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1516 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1517 {
1518 lockdep_assert_held(&phba->hbalock);
1519 /*
1520 * Set up an iotag
1521 */
1522 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1523
1524
1525 if (pring->ringno == LPFC_ELS_RING) {
1526 lpfc_debugfs_slow_ring_trc(phba,
1527 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1528 *(((uint32_t *) &nextiocb->iocb) + 4),
1529 *(((uint32_t *) &nextiocb->iocb) + 6),
1530 *(((uint32_t *) &nextiocb->iocb) + 7));
1531 }
1532
1533 /*
1534 * Issue iocb command to adapter
1535 */
1536 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1537 wmb();
1538 pring->stats.iocb_cmd++;
1539
1540 /*
1541 * If there is no completion routine to call, we can release the
1542 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1543 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1544 */
1545 if (nextiocb->iocb_cmpl)
1546 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1547 else
1548 __lpfc_sli_release_iocbq(phba, nextiocb);
1549
1550 /*
1551 * Let the HBA know what IOCB slot will be the next one the
1552 * driver will put a command into.
1553 */
1554 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1555 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1556 }
1557
1558 /**
1559 * lpfc_sli_update_full_ring - Update the chip attention register
1560 * @phba: Pointer to HBA context object.
1561 * @pring: Pointer to driver SLI ring object.
1562 *
1563 * The caller is not required to hold any lock for calling this function.
1564 * This function updates the chip attention bits for the ring to inform firmware
1565 * that there are pending work to be done for this ring and requests an
1566 * interrupt when there is space available in the ring. This function is
1567 * called when the driver is unable to post more iocbs to the ring due
1568 * to unavailability of space in the ring.
1569 **/
1570 static void
1571 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1572 {
1573 int ringno = pring->ringno;
1574
1575 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1576
1577 wmb();
1578
1579 /*
1580 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1581 * The HBA will tell us when an IOCB entry is available.
1582 */
1583 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1584 readl(phba->CAregaddr); /* flush */
1585
1586 pring->stats.iocb_cmd_full++;
1587 }
1588
1589 /**
1590 * lpfc_sli_update_ring - Update chip attention register
1591 * @phba: Pointer to HBA context object.
1592 * @pring: Pointer to driver SLI ring object.
1593 *
1594 * This function updates the chip attention register bit for the
1595 * given ring to inform HBA that there is more work to be done
1596 * in this ring. The caller is not required to hold any lock.
1597 **/
1598 static void
1599 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1600 {
1601 int ringno = pring->ringno;
1602
1603 /*
1604 * Tell the HBA that there is work to do in this ring.
1605 */
1606 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1607 wmb();
1608 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1609 readl(phba->CAregaddr); /* flush */
1610 }
1611 }
1612
1613 /**
1614 * lpfc_sli_resume_iocb - Process iocbs in the txq
1615 * @phba: Pointer to HBA context object.
1616 * @pring: Pointer to driver SLI ring object.
1617 *
1618 * This function is called with hbalock held to post pending iocbs
1619 * in the txq to the firmware. This function is called when driver
1620 * detects space available in the ring.
1621 **/
1622 static void
1623 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1624 {
1625 IOCB_t *iocb;
1626 struct lpfc_iocbq *nextiocb;
1627
1628 lockdep_assert_held(&phba->hbalock);
1629
1630 /*
1631 * Check to see if:
1632 * (a) there is anything on the txq to send
1633 * (b) link is up
1634 * (c) link attention events can be processed (fcp ring only)
1635 * (d) IOCB processing is not blocked by the outstanding mbox command.
1636 */
1637
1638 if (lpfc_is_link_up(phba) &&
1639 (!list_empty(&pring->txq)) &&
1640 (pring->ringno != phba->sli.fcp_ring ||
1641 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1642
1643 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1644 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1645 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1646
1647 if (iocb)
1648 lpfc_sli_update_ring(phba, pring);
1649 else
1650 lpfc_sli_update_full_ring(phba, pring);
1651 }
1652
1653 return;
1654 }
1655
1656 /**
1657 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1658 * @phba: Pointer to HBA context object.
1659 * @hbqno: HBQ number.
1660 *
1661 * This function is called with hbalock held to get the next
1662 * available slot for the given HBQ. If there is free slot
1663 * available for the HBQ it will return pointer to the next available
1664 * HBQ entry else it will return NULL.
1665 **/
1666 static struct lpfc_hbq_entry *
1667 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1668 {
1669 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1670
1671 lockdep_assert_held(&phba->hbalock);
1672
1673 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1674 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1675 hbqp->next_hbqPutIdx = 0;
1676
1677 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1678 uint32_t raw_index = phba->hbq_get[hbqno];
1679 uint32_t getidx = le32_to_cpu(raw_index);
1680
1681 hbqp->local_hbqGetIdx = getidx;
1682
1683 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1684 lpfc_printf_log(phba, KERN_ERR,
1685 LOG_SLI | LOG_VPORT,
1686 "1802 HBQ %d: local_hbqGetIdx "
1687 "%u is > than hbqp->entry_count %u\n",
1688 hbqno, hbqp->local_hbqGetIdx,
1689 hbqp->entry_count);
1690
1691 phba->link_state = LPFC_HBA_ERROR;
1692 return NULL;
1693 }
1694
1695 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1696 return NULL;
1697 }
1698
1699 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1700 hbqp->hbqPutIdx;
1701 }
1702
1703 /**
1704 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1705 * @phba: Pointer to HBA context object.
1706 *
1707 * This function is called with no lock held to free all the
1708 * hbq buffers while uninitializing the SLI interface. It also
1709 * frees the HBQ buffers returned by the firmware but not yet
1710 * processed by the upper layers.
1711 **/
1712 void
1713 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1714 {
1715 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1716 struct hbq_dmabuf *hbq_buf;
1717 unsigned long flags;
1718 int i, hbq_count;
1719 uint32_t hbqno;
1720
1721 hbq_count = lpfc_sli_hbq_count();
1722 /* Return all memory used by all HBQs */
1723 spin_lock_irqsave(&phba->hbalock, flags);
1724 for (i = 0; i < hbq_count; ++i) {
1725 list_for_each_entry_safe(dmabuf, next_dmabuf,
1726 &phba->hbqs[i].hbq_buffer_list, list) {
1727 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1728 list_del(&hbq_buf->dbuf.list);
1729 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1730 }
1731 phba->hbqs[i].buffer_count = 0;
1732 }
1733 /* Return all HBQ buffer that are in-fly */
1734 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list,
1735 list) {
1736 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1737 list_del(&hbq_buf->dbuf.list);
1738 if (hbq_buf->tag == -1) {
1739 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1740 (phba, hbq_buf);
1741 } else {
1742 hbqno = hbq_buf->tag >> 16;
1743 if (hbqno >= LPFC_MAX_HBQS)
1744 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1745 (phba, hbq_buf);
1746 else
1747 (phba->hbqs[hbqno].hbq_free_buffer)(phba,
1748 hbq_buf);
1749 }
1750 }
1751
1752 /* Mark the HBQs not in use */
1753 phba->hbq_in_use = 0;
1754 spin_unlock_irqrestore(&phba->hbalock, flags);
1755 }
1756
1757 /**
1758 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1759 * @phba: Pointer to HBA context object.
1760 * @hbqno: HBQ number.
1761 * @hbq_buf: Pointer to HBQ buffer.
1762 *
1763 * This function is called with the hbalock held to post a
1764 * hbq buffer to the firmware. If the function finds an empty
1765 * slot in the HBQ, it will post the buffer. The function will return
1766 * pointer to the hbq entry if it successfully post the buffer
1767 * else it will return NULL.
1768 **/
1769 static int
1770 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1771 struct hbq_dmabuf *hbq_buf)
1772 {
1773 lockdep_assert_held(&phba->hbalock);
1774 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1775 }
1776
1777 /**
1778 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1779 * @phba: Pointer to HBA context object.
1780 * @hbqno: HBQ number.
1781 * @hbq_buf: Pointer to HBQ buffer.
1782 *
1783 * This function is called with the hbalock held to post a hbq buffer to the
1784 * firmware. If the function finds an empty slot in the HBQ, it will post the
1785 * buffer and place it on the hbq_buffer_list. The function will return zero if
1786 * it successfully post the buffer else it will return an error.
1787 **/
1788 static int
1789 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1790 struct hbq_dmabuf *hbq_buf)
1791 {
1792 struct lpfc_hbq_entry *hbqe;
1793 dma_addr_t physaddr = hbq_buf->dbuf.phys;
1794
1795 lockdep_assert_held(&phba->hbalock);
1796 /* Get next HBQ entry slot to use */
1797 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1798 if (hbqe) {
1799 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1800
1801 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1802 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
1803 hbqe->bde.tus.f.bdeSize = hbq_buf->size;
1804 hbqe->bde.tus.f.bdeFlags = 0;
1805 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1806 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1807 /* Sync SLIM */
1808 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1809 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1810 /* flush */
1811 readl(phba->hbq_put + hbqno);
1812 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1813 return 0;
1814 } else
1815 return -ENOMEM;
1816 }
1817
1818 /**
1819 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1820 * @phba: Pointer to HBA context object.
1821 * @hbqno: HBQ number.
1822 * @hbq_buf: Pointer to HBQ buffer.
1823 *
1824 * This function is called with the hbalock held to post an RQE to the SLI4
1825 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1826 * the hbq_buffer_list and return zero, otherwise it will return an error.
1827 **/
1828 static int
1829 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1830 struct hbq_dmabuf *hbq_buf)
1831 {
1832 int rc;
1833 struct lpfc_rqe hrqe;
1834 struct lpfc_rqe drqe;
1835
1836 lockdep_assert_held(&phba->hbalock);
1837 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1838 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1839 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1840 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1841 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
1842 &hrqe, &drqe);
1843 if (rc < 0)
1844 return rc;
1845 hbq_buf->tag = rc;
1846 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1847 return 0;
1848 }
1849
1850 /* HBQ for ELS and CT traffic. */
1851 static struct lpfc_hbq_init lpfc_els_hbq = {
1852 .rn = 1,
1853 .entry_count = 256,
1854 .mask_count = 0,
1855 .profile = 0,
1856 .ring_mask = (1 << LPFC_ELS_RING),
1857 .buffer_count = 0,
1858 .init_count = 40,
1859 .add_count = 40,
1860 };
1861
1862 /* HBQ for the extra ring if needed */
1863 static struct lpfc_hbq_init lpfc_extra_hbq = {
1864 .rn = 1,
1865 .entry_count = 200,
1866 .mask_count = 0,
1867 .profile = 0,
1868 .ring_mask = (1 << LPFC_EXTRA_RING),
1869 .buffer_count = 0,
1870 .init_count = 0,
1871 .add_count = 5,
1872 };
1873
1874 /* Array of HBQs */
1875 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1876 &lpfc_els_hbq,
1877 &lpfc_extra_hbq,
1878 };
1879
1880 /**
1881 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1882 * @phba: Pointer to HBA context object.
1883 * @hbqno: HBQ number.
1884 * @count: Number of HBQ buffers to be posted.
1885 *
1886 * This function is called with no lock held to post more hbq buffers to the
1887 * given HBQ. The function returns the number of HBQ buffers successfully
1888 * posted.
1889 **/
1890 static int
1891 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1892 {
1893 uint32_t i, posted = 0;
1894 unsigned long flags;
1895 struct hbq_dmabuf *hbq_buffer;
1896 LIST_HEAD(hbq_buf_list);
1897 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1898 return 0;
1899
1900 if ((phba->hbqs[hbqno].buffer_count + count) >
1901 lpfc_hbq_defs[hbqno]->entry_count)
1902 count = lpfc_hbq_defs[hbqno]->entry_count -
1903 phba->hbqs[hbqno].buffer_count;
1904 if (!count)
1905 return 0;
1906 /* Allocate HBQ entries */
1907 for (i = 0; i < count; i++) {
1908 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1909 if (!hbq_buffer)
1910 break;
1911 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1912 }
1913 /* Check whether HBQ is still in use */
1914 spin_lock_irqsave(&phba->hbalock, flags);
1915 if (!phba->hbq_in_use)
1916 goto err;
1917 while (!list_empty(&hbq_buf_list)) {
1918 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1919 dbuf.list);
1920 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1921 (hbqno << 16));
1922 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1923 phba->hbqs[hbqno].buffer_count++;
1924 posted++;
1925 } else
1926 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1927 }
1928 spin_unlock_irqrestore(&phba->hbalock, flags);
1929 return posted;
1930 err:
1931 spin_unlock_irqrestore(&phba->hbalock, flags);
1932 while (!list_empty(&hbq_buf_list)) {
1933 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1934 dbuf.list);
1935 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1936 }
1937 return 0;
1938 }
1939
1940 /**
1941 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1942 * @phba: Pointer to HBA context object.
1943 * @qno: HBQ number.
1944 *
1945 * This function posts more buffers to the HBQ. This function
1946 * is called with no lock held. The function returns the number of HBQ entries
1947 * successfully allocated.
1948 **/
1949 int
1950 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1951 {
1952 if (phba->sli_rev == LPFC_SLI_REV4)
1953 return 0;
1954 else
1955 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1956 lpfc_hbq_defs[qno]->add_count);
1957 }
1958
1959 /**
1960 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
1961 * @phba: Pointer to HBA context object.
1962 * @qno: HBQ queue number.
1963 *
1964 * This function is called from SLI initialization code path with
1965 * no lock held to post initial HBQ buffers to firmware. The
1966 * function returns the number of HBQ entries successfully allocated.
1967 **/
1968 static int
1969 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
1970 {
1971 if (phba->sli_rev == LPFC_SLI_REV4)
1972 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1973 lpfc_hbq_defs[qno]->entry_count);
1974 else
1975 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1976 lpfc_hbq_defs[qno]->init_count);
1977 }
1978
1979 /**
1980 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
1981 * @phba: Pointer to HBA context object.
1982 * @hbqno: HBQ number.
1983 *
1984 * This function removes the first hbq buffer on an hbq list and returns a
1985 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
1986 **/
1987 static struct hbq_dmabuf *
1988 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
1989 {
1990 struct lpfc_dmabuf *d_buf;
1991
1992 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
1993 if (!d_buf)
1994 return NULL;
1995 return container_of(d_buf, struct hbq_dmabuf, dbuf);
1996 }
1997
1998 /**
1999 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2000 * @phba: Pointer to HBA context object.
2001 * @tag: Tag of the hbq buffer.
2002 *
2003 * This function searches for the hbq buffer associated with the given tag in
2004 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2005 * otherwise it returns NULL.
2006 **/
2007 static struct hbq_dmabuf *
2008 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2009 {
2010 struct lpfc_dmabuf *d_buf;
2011 struct hbq_dmabuf *hbq_buf;
2012 uint32_t hbqno;
2013
2014 hbqno = tag >> 16;
2015 if (hbqno >= LPFC_MAX_HBQS)
2016 return NULL;
2017
2018 spin_lock_irq(&phba->hbalock);
2019 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2020 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2021 if (hbq_buf->tag == tag) {
2022 spin_unlock_irq(&phba->hbalock);
2023 return hbq_buf;
2024 }
2025 }
2026 spin_unlock_irq(&phba->hbalock);
2027 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2028 "1803 Bad hbq tag. Data: x%x x%x\n",
2029 tag, phba->hbqs[tag >> 16].buffer_count);
2030 return NULL;
2031 }
2032
2033 /**
2034 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2035 * @phba: Pointer to HBA context object.
2036 * @hbq_buffer: Pointer to HBQ buffer.
2037 *
2038 * This function is called with hbalock. This function gives back
2039 * the hbq buffer to firmware. If the HBQ does not have space to
2040 * post the buffer, it will free the buffer.
2041 **/
2042 void
2043 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2044 {
2045 uint32_t hbqno;
2046
2047 if (hbq_buffer) {
2048 hbqno = hbq_buffer->tag >> 16;
2049 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2050 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2051 }
2052 }
2053
2054 /**
2055 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2056 * @mbxCommand: mailbox command code.
2057 *
2058 * This function is called by the mailbox event handler function to verify
2059 * that the completed mailbox command is a legitimate mailbox command. If the
2060 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2061 * and the mailbox event handler will take the HBA offline.
2062 **/
2063 static int
2064 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2065 {
2066 uint8_t ret;
2067
2068 switch (mbxCommand) {
2069 case MBX_LOAD_SM:
2070 case MBX_READ_NV:
2071 case MBX_WRITE_NV:
2072 case MBX_WRITE_VPARMS:
2073 case MBX_RUN_BIU_DIAG:
2074 case MBX_INIT_LINK:
2075 case MBX_DOWN_LINK:
2076 case MBX_CONFIG_LINK:
2077 case MBX_CONFIG_RING:
2078 case MBX_RESET_RING:
2079 case MBX_READ_CONFIG:
2080 case MBX_READ_RCONFIG:
2081 case MBX_READ_SPARM:
2082 case MBX_READ_STATUS:
2083 case MBX_READ_RPI:
2084 case MBX_READ_XRI:
2085 case MBX_READ_REV:
2086 case MBX_READ_LNK_STAT:
2087 case MBX_REG_LOGIN:
2088 case MBX_UNREG_LOGIN:
2089 case MBX_CLEAR_LA:
2090 case MBX_DUMP_MEMORY:
2091 case MBX_DUMP_CONTEXT:
2092 case MBX_RUN_DIAGS:
2093 case MBX_RESTART:
2094 case MBX_UPDATE_CFG:
2095 case MBX_DOWN_LOAD:
2096 case MBX_DEL_LD_ENTRY:
2097 case MBX_RUN_PROGRAM:
2098 case MBX_SET_MASK:
2099 case MBX_SET_VARIABLE:
2100 case MBX_UNREG_D_ID:
2101 case MBX_KILL_BOARD:
2102 case MBX_CONFIG_FARP:
2103 case MBX_BEACON:
2104 case MBX_LOAD_AREA:
2105 case MBX_RUN_BIU_DIAG64:
2106 case MBX_CONFIG_PORT:
2107 case MBX_READ_SPARM64:
2108 case MBX_READ_RPI64:
2109 case MBX_REG_LOGIN64:
2110 case MBX_READ_TOPOLOGY:
2111 case MBX_WRITE_WWN:
2112 case MBX_SET_DEBUG:
2113 case MBX_LOAD_EXP_ROM:
2114 case MBX_ASYNCEVT_ENABLE:
2115 case MBX_REG_VPI:
2116 case MBX_UNREG_VPI:
2117 case MBX_HEARTBEAT:
2118 case MBX_PORT_CAPABILITIES:
2119 case MBX_PORT_IOV_CONTROL:
2120 case MBX_SLI4_CONFIG:
2121 case MBX_SLI4_REQ_FTRS:
2122 case MBX_REG_FCFI:
2123 case MBX_UNREG_FCFI:
2124 case MBX_REG_VFI:
2125 case MBX_UNREG_VFI:
2126 case MBX_INIT_VPI:
2127 case MBX_INIT_VFI:
2128 case MBX_RESUME_RPI:
2129 case MBX_READ_EVENT_LOG_STATUS:
2130 case MBX_READ_EVENT_LOG:
2131 case MBX_SECURITY_MGMT:
2132 case MBX_AUTH_PORT:
2133 case MBX_ACCESS_VDATA:
2134 ret = mbxCommand;
2135 break;
2136 default:
2137 ret = MBX_SHUTDOWN;
2138 break;
2139 }
2140 return ret;
2141 }
2142
2143 /**
2144 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2145 * @phba: Pointer to HBA context object.
2146 * @pmboxq: Pointer to mailbox command.
2147 *
2148 * This is completion handler function for mailbox commands issued from
2149 * lpfc_sli_issue_mbox_wait function. This function is called by the
2150 * mailbox event handler function with no lock held. This function
2151 * will wake up thread waiting on the wait queue pointed by context1
2152 * of the mailbox.
2153 **/
2154 void
2155 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2156 {
2157 wait_queue_head_t *pdone_q;
2158 unsigned long drvr_flag;
2159
2160 /*
2161 * If pdone_q is empty, the driver thread gave up waiting and
2162 * continued running.
2163 */
2164 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2165 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2166 pdone_q = (wait_queue_head_t *) pmboxq->context1;
2167 if (pdone_q)
2168 wake_up_interruptible(pdone_q);
2169 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2170 return;
2171 }
2172
2173
2174 /**
2175 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2176 * @phba: Pointer to HBA context object.
2177 * @pmb: Pointer to mailbox object.
2178 *
2179 * This function is the default mailbox completion handler. It
2180 * frees the memory resources associated with the completed mailbox
2181 * command. If the completed command is a REG_LOGIN mailbox command,
2182 * this function will issue a UREG_LOGIN to re-claim the RPI.
2183 **/
2184 void
2185 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2186 {
2187 struct lpfc_vport *vport = pmb->vport;
2188 struct lpfc_dmabuf *mp;
2189 struct lpfc_nodelist *ndlp;
2190 struct Scsi_Host *shost;
2191 uint16_t rpi, vpi;
2192 int rc;
2193
2194 mp = (struct lpfc_dmabuf *) (pmb->context1);
2195
2196 if (mp) {
2197 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2198 kfree(mp);
2199 }
2200
2201 /*
2202 * If a REG_LOGIN succeeded after node is destroyed or node
2203 * is in re-discovery driver need to cleanup the RPI.
2204 */
2205 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2206 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2207 !pmb->u.mb.mbxStatus) {
2208 rpi = pmb->u.mb.un.varWords[0];
2209 vpi = pmb->u.mb.un.varRegLogin.vpi;
2210 lpfc_unreg_login(phba, vpi, rpi, pmb);
2211 pmb->vport = vport;
2212 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2213 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2214 if (rc != MBX_NOT_FINISHED)
2215 return;
2216 }
2217
2218 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2219 !(phba->pport->load_flag & FC_UNLOADING) &&
2220 !pmb->u.mb.mbxStatus) {
2221 shost = lpfc_shost_from_vport(vport);
2222 spin_lock_irq(shost->host_lock);
2223 vport->vpi_state |= LPFC_VPI_REGISTERED;
2224 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2225 spin_unlock_irq(shost->host_lock);
2226 }
2227
2228 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2229 ndlp = (struct lpfc_nodelist *)pmb->context2;
2230 lpfc_nlp_put(ndlp);
2231 pmb->context2 = NULL;
2232 }
2233
2234 /* Check security permission status on INIT_LINK mailbox command */
2235 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2236 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2237 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2238 "2860 SLI authentication is required "
2239 "for INIT_LINK but has not done yet\n");
2240
2241 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2242 lpfc_sli4_mbox_cmd_free(phba, pmb);
2243 else
2244 mempool_free(pmb, phba->mbox_mem_pool);
2245 }
2246 /**
2247 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2248 * @phba: Pointer to HBA context object.
2249 * @pmb: Pointer to mailbox object.
2250 *
2251 * This function is the unreg rpi mailbox completion handler. It
2252 * frees the memory resources associated with the completed mailbox
2253 * command. An additional refrenece is put on the ndlp to prevent
2254 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2255 * the unreg mailbox command completes, this routine puts the
2256 * reference back.
2257 *
2258 **/
2259 void
2260 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2261 {
2262 struct lpfc_vport *vport = pmb->vport;
2263 struct lpfc_nodelist *ndlp;
2264
2265 ndlp = pmb->context1;
2266 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2267 if (phba->sli_rev == LPFC_SLI_REV4 &&
2268 (bf_get(lpfc_sli_intf_if_type,
2269 &phba->sli4_hba.sli_intf) ==
2270 LPFC_SLI_INTF_IF_TYPE_2)) {
2271 if (ndlp) {
2272 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2273 "0010 UNREG_LOGIN vpi:%x "
2274 "rpi:%x DID:%x map:%x %p\n",
2275 vport->vpi, ndlp->nlp_rpi,
2276 ndlp->nlp_DID,
2277 ndlp->nlp_usg_map, ndlp);
2278 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2279 lpfc_nlp_put(ndlp);
2280 }
2281 }
2282 }
2283
2284 mempool_free(pmb, phba->mbox_mem_pool);
2285 }
2286
2287 /**
2288 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2289 * @phba: Pointer to HBA context object.
2290 *
2291 * This function is called with no lock held. This function processes all
2292 * the completed mailbox commands and gives it to upper layers. The interrupt
2293 * service routine processes mailbox completion interrupt and adds completed
2294 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2295 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2296 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2297 * function returns the mailbox commands to the upper layer by calling the
2298 * completion handler function of each mailbox.
2299 **/
2300 int
2301 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2302 {
2303 MAILBOX_t *pmbox;
2304 LPFC_MBOXQ_t *pmb;
2305 int rc;
2306 LIST_HEAD(cmplq);
2307
2308 phba->sli.slistat.mbox_event++;
2309
2310 /* Get all completed mailboxe buffers into the cmplq */
2311 spin_lock_irq(&phba->hbalock);
2312 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2313 spin_unlock_irq(&phba->hbalock);
2314
2315 /* Get a Mailbox buffer to setup mailbox commands for callback */
2316 do {
2317 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2318 if (pmb == NULL)
2319 break;
2320
2321 pmbox = &pmb->u.mb;
2322
2323 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2324 if (pmb->vport) {
2325 lpfc_debugfs_disc_trc(pmb->vport,
2326 LPFC_DISC_TRC_MBOX_VPORT,
2327 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2328 (uint32_t)pmbox->mbxCommand,
2329 pmbox->un.varWords[0],
2330 pmbox->un.varWords[1]);
2331 }
2332 else {
2333 lpfc_debugfs_disc_trc(phba->pport,
2334 LPFC_DISC_TRC_MBOX,
2335 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2336 (uint32_t)pmbox->mbxCommand,
2337 pmbox->un.varWords[0],
2338 pmbox->un.varWords[1]);
2339 }
2340 }
2341
2342 /*
2343 * It is a fatal error if unknown mbox command completion.
2344 */
2345 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2346 MBX_SHUTDOWN) {
2347 /* Unknown mailbox command compl */
2348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2349 "(%d):0323 Unknown Mailbox command "
2350 "x%x (x%x/x%x) Cmpl\n",
2351 pmb->vport ? pmb->vport->vpi : 0,
2352 pmbox->mbxCommand,
2353 lpfc_sli_config_mbox_subsys_get(phba,
2354 pmb),
2355 lpfc_sli_config_mbox_opcode_get(phba,
2356 pmb));
2357 phba->link_state = LPFC_HBA_ERROR;
2358 phba->work_hs = HS_FFER3;
2359 lpfc_handle_eratt(phba);
2360 continue;
2361 }
2362
2363 if (pmbox->mbxStatus) {
2364 phba->sli.slistat.mbox_stat_err++;
2365 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2366 /* Mbox cmd cmpl error - RETRYing */
2367 lpfc_printf_log(phba, KERN_INFO,
2368 LOG_MBOX | LOG_SLI,
2369 "(%d):0305 Mbox cmd cmpl "
2370 "error - RETRYing Data: x%x "
2371 "(x%x/x%x) x%x x%x x%x\n",
2372 pmb->vport ? pmb->vport->vpi : 0,
2373 pmbox->mbxCommand,
2374 lpfc_sli_config_mbox_subsys_get(phba,
2375 pmb),
2376 lpfc_sli_config_mbox_opcode_get(phba,
2377 pmb),
2378 pmbox->mbxStatus,
2379 pmbox->un.varWords[0],
2380 pmb->vport->port_state);
2381 pmbox->mbxStatus = 0;
2382 pmbox->mbxOwner = OWN_HOST;
2383 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2384 if (rc != MBX_NOT_FINISHED)
2385 continue;
2386 }
2387 }
2388
2389 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2390 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2391 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2392 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2393 "x%x x%x x%x\n",
2394 pmb->vport ? pmb->vport->vpi : 0,
2395 pmbox->mbxCommand,
2396 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2397 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2398 pmb->mbox_cmpl,
2399 *((uint32_t *) pmbox),
2400 pmbox->un.varWords[0],
2401 pmbox->un.varWords[1],
2402 pmbox->un.varWords[2],
2403 pmbox->un.varWords[3],
2404 pmbox->un.varWords[4],
2405 pmbox->un.varWords[5],
2406 pmbox->un.varWords[6],
2407 pmbox->un.varWords[7],
2408 pmbox->un.varWords[8],
2409 pmbox->un.varWords[9],
2410 pmbox->un.varWords[10]);
2411
2412 if (pmb->mbox_cmpl)
2413 pmb->mbox_cmpl(phba,pmb);
2414 } while (1);
2415 return 0;
2416 }
2417
2418 /**
2419 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2420 * @phba: Pointer to HBA context object.
2421 * @pring: Pointer to driver SLI ring object.
2422 * @tag: buffer tag.
2423 *
2424 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2425 * is set in the tag the buffer is posted for a particular exchange,
2426 * the function will return the buffer without replacing the buffer.
2427 * If the buffer is for unsolicited ELS or CT traffic, this function
2428 * returns the buffer and also posts another buffer to the firmware.
2429 **/
2430 static struct lpfc_dmabuf *
2431 lpfc_sli_get_buff(struct lpfc_hba *phba,
2432 struct lpfc_sli_ring *pring,
2433 uint32_t tag)
2434 {
2435 struct hbq_dmabuf *hbq_entry;
2436
2437 if (tag & QUE_BUFTAG_BIT)
2438 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2439 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2440 if (!hbq_entry)
2441 return NULL;
2442 return &hbq_entry->dbuf;
2443 }
2444
2445 /**
2446 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2447 * @phba: Pointer to HBA context object.
2448 * @pring: Pointer to driver SLI ring object.
2449 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2450 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2451 * @fch_type: the type for the first frame of the sequence.
2452 *
2453 * This function is called with no lock held. This function uses the r_ctl and
2454 * type of the received sequence to find the correct callback function to call
2455 * to process the sequence.
2456 **/
2457 static int
2458 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2459 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2460 uint32_t fch_type)
2461 {
2462 int i;
2463
2464 /* unSolicited Responses */
2465 if (pring->prt[0].profile) {
2466 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2467 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2468 saveq);
2469 return 1;
2470 }
2471 /* We must search, based on rctl / type
2472 for the right routine */
2473 for (i = 0; i < pring->num_mask; i++) {
2474 if ((pring->prt[i].rctl == fch_r_ctl) &&
2475 (pring->prt[i].type == fch_type)) {
2476 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2477 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2478 (phba, pring, saveq);
2479 return 1;
2480 }
2481 }
2482 return 0;
2483 }
2484
2485 /**
2486 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2487 * @phba: Pointer to HBA context object.
2488 * @pring: Pointer to driver SLI ring object.
2489 * @saveq: Pointer to the unsolicited iocb.
2490 *
2491 * This function is called with no lock held by the ring event handler
2492 * when there is an unsolicited iocb posted to the response ring by the
2493 * firmware. This function gets the buffer associated with the iocbs
2494 * and calls the event handler for the ring. This function handles both
2495 * qring buffers and hbq buffers.
2496 * When the function returns 1 the caller can free the iocb object otherwise
2497 * upper layer functions will free the iocb objects.
2498 **/
2499 static int
2500 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2501 struct lpfc_iocbq *saveq)
2502 {
2503 IOCB_t * irsp;
2504 WORD5 * w5p;
2505 uint32_t Rctl, Type;
2506 struct lpfc_iocbq *iocbq;
2507 struct lpfc_dmabuf *dmzbuf;
2508
2509 irsp = &(saveq->iocb);
2510
2511 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2512 if (pring->lpfc_sli_rcv_async_status)
2513 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2514 else
2515 lpfc_printf_log(phba,
2516 KERN_WARNING,
2517 LOG_SLI,
2518 "0316 Ring %d handler: unexpected "
2519 "ASYNC_STATUS iocb received evt_code "
2520 "0x%x\n",
2521 pring->ringno,
2522 irsp->un.asyncstat.evt_code);
2523 return 1;
2524 }
2525
2526 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2527 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2528 if (irsp->ulpBdeCount > 0) {
2529 dmzbuf = lpfc_sli_get_buff(phba, pring,
2530 irsp->un.ulpWord[3]);
2531 lpfc_in_buf_free(phba, dmzbuf);
2532 }
2533
2534 if (irsp->ulpBdeCount > 1) {
2535 dmzbuf = lpfc_sli_get_buff(phba, pring,
2536 irsp->unsli3.sli3Words[3]);
2537 lpfc_in_buf_free(phba, dmzbuf);
2538 }
2539
2540 if (irsp->ulpBdeCount > 2) {
2541 dmzbuf = lpfc_sli_get_buff(phba, pring,
2542 irsp->unsli3.sli3Words[7]);
2543 lpfc_in_buf_free(phba, dmzbuf);
2544 }
2545
2546 return 1;
2547 }
2548
2549 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2550 if (irsp->ulpBdeCount != 0) {
2551 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2552 irsp->un.ulpWord[3]);
2553 if (!saveq->context2)
2554 lpfc_printf_log(phba,
2555 KERN_ERR,
2556 LOG_SLI,
2557 "0341 Ring %d Cannot find buffer for "
2558 "an unsolicited iocb. tag 0x%x\n",
2559 pring->ringno,
2560 irsp->un.ulpWord[3]);
2561 }
2562 if (irsp->ulpBdeCount == 2) {
2563 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2564 irsp->unsli3.sli3Words[7]);
2565 if (!saveq->context3)
2566 lpfc_printf_log(phba,
2567 KERN_ERR,
2568 LOG_SLI,
2569 "0342 Ring %d Cannot find buffer for an"
2570 " unsolicited iocb. tag 0x%x\n",
2571 pring->ringno,
2572 irsp->unsli3.sli3Words[7]);
2573 }
2574 list_for_each_entry(iocbq, &saveq->list, list) {
2575 irsp = &(iocbq->iocb);
2576 if (irsp->ulpBdeCount != 0) {
2577 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2578 irsp->un.ulpWord[3]);
2579 if (!iocbq->context2)
2580 lpfc_printf_log(phba,
2581 KERN_ERR,
2582 LOG_SLI,
2583 "0343 Ring %d Cannot find "
2584 "buffer for an unsolicited iocb"
2585 ". tag 0x%x\n", pring->ringno,
2586 irsp->un.ulpWord[3]);
2587 }
2588 if (irsp->ulpBdeCount == 2) {
2589 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2590 irsp->unsli3.sli3Words[7]);
2591 if (!iocbq->context3)
2592 lpfc_printf_log(phba,
2593 KERN_ERR,
2594 LOG_SLI,
2595 "0344 Ring %d Cannot find "
2596 "buffer for an unsolicited "
2597 "iocb. tag 0x%x\n",
2598 pring->ringno,
2599 irsp->unsli3.sli3Words[7]);
2600 }
2601 }
2602 }
2603 if (irsp->ulpBdeCount != 0 &&
2604 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2605 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2606 int found = 0;
2607
2608 /* search continue save q for same XRI */
2609 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2610 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2611 saveq->iocb.unsli3.rcvsli3.ox_id) {
2612 list_add_tail(&saveq->list, &iocbq->list);
2613 found = 1;
2614 break;
2615 }
2616 }
2617 if (!found)
2618 list_add_tail(&saveq->clist,
2619 &pring->iocb_continue_saveq);
2620 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2621 list_del_init(&iocbq->clist);
2622 saveq = iocbq;
2623 irsp = &(saveq->iocb);
2624 } else
2625 return 0;
2626 }
2627 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2628 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2629 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2630 Rctl = FC_RCTL_ELS_REQ;
2631 Type = FC_TYPE_ELS;
2632 } else {
2633 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2634 Rctl = w5p->hcsw.Rctl;
2635 Type = w5p->hcsw.Type;
2636
2637 /* Firmware Workaround */
2638 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2639 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2640 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2641 Rctl = FC_RCTL_ELS_REQ;
2642 Type = FC_TYPE_ELS;
2643 w5p->hcsw.Rctl = Rctl;
2644 w5p->hcsw.Type = Type;
2645 }
2646 }
2647
2648 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2649 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2650 "0313 Ring %d handler: unexpected Rctl x%x "
2651 "Type x%x received\n",
2652 pring->ringno, Rctl, Type);
2653
2654 return 1;
2655 }
2656
2657 /**
2658 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2659 * @phba: Pointer to HBA context object.
2660 * @pring: Pointer to driver SLI ring object.
2661 * @prspiocb: Pointer to response iocb object.
2662 *
2663 * This function looks up the iocb_lookup table to get the command iocb
2664 * corresponding to the given response iocb using the iotag of the
2665 * response iocb. This function is called with the hbalock held.
2666 * This function returns the command iocb object if it finds the command
2667 * iocb else returns NULL.
2668 **/
2669 static struct lpfc_iocbq *
2670 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2671 struct lpfc_sli_ring *pring,
2672 struct lpfc_iocbq *prspiocb)
2673 {
2674 struct lpfc_iocbq *cmd_iocb = NULL;
2675 uint16_t iotag;
2676 lockdep_assert_held(&phba->hbalock);
2677
2678 iotag = prspiocb->iocb.ulpIoTag;
2679
2680 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2681 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2682 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2683 /* remove from txcmpl queue list */
2684 list_del_init(&cmd_iocb->list);
2685 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2686 return cmd_iocb;
2687 }
2688 }
2689
2690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2691 "0317 iotag x%x is out of "
2692 "range: max iotag x%x wd0 x%x\n",
2693 iotag, phba->sli.last_iotag,
2694 *(((uint32_t *) &prspiocb->iocb) + 7));
2695 return NULL;
2696 }
2697
2698 /**
2699 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2700 * @phba: Pointer to HBA context object.
2701 * @pring: Pointer to driver SLI ring object.
2702 * @iotag: IOCB tag.
2703 *
2704 * This function looks up the iocb_lookup table to get the command iocb
2705 * corresponding to the given iotag. This function is called with the
2706 * hbalock held.
2707 * This function returns the command iocb object if it finds the command
2708 * iocb else returns NULL.
2709 **/
2710 static struct lpfc_iocbq *
2711 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2712 struct lpfc_sli_ring *pring, uint16_t iotag)
2713 {
2714 struct lpfc_iocbq *cmd_iocb;
2715
2716 lockdep_assert_held(&phba->hbalock);
2717 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2718 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2719 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2720 /* remove from txcmpl queue list */
2721 list_del_init(&cmd_iocb->list);
2722 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2723 return cmd_iocb;
2724 }
2725 }
2726
2727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2728 "0372 iotag x%x is out of range: max iotag (x%x)\n",
2729 iotag, phba->sli.last_iotag);
2730 return NULL;
2731 }
2732
2733 /**
2734 * lpfc_sli_process_sol_iocb - process solicited iocb completion
2735 * @phba: Pointer to HBA context object.
2736 * @pring: Pointer to driver SLI ring object.
2737 * @saveq: Pointer to the response iocb to be processed.
2738 *
2739 * This function is called by the ring event handler for non-fcp
2740 * rings when there is a new response iocb in the response ring.
2741 * The caller is not required to hold any locks. This function
2742 * gets the command iocb associated with the response iocb and
2743 * calls the completion handler for the command iocb. If there
2744 * is no completion handler, the function will free the resources
2745 * associated with command iocb. If the response iocb is for
2746 * an already aborted command iocb, the status of the completion
2747 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2748 * This function always returns 1.
2749 **/
2750 static int
2751 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2752 struct lpfc_iocbq *saveq)
2753 {
2754 struct lpfc_iocbq *cmdiocbp;
2755 int rc = 1;
2756 unsigned long iflag;
2757
2758 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
2759 spin_lock_irqsave(&phba->hbalock, iflag);
2760 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2761 spin_unlock_irqrestore(&phba->hbalock, iflag);
2762
2763 if (cmdiocbp) {
2764 if (cmdiocbp->iocb_cmpl) {
2765 /*
2766 * If an ELS command failed send an event to mgmt
2767 * application.
2768 */
2769 if (saveq->iocb.ulpStatus &&
2770 (pring->ringno == LPFC_ELS_RING) &&
2771 (cmdiocbp->iocb.ulpCommand ==
2772 CMD_ELS_REQUEST64_CR))
2773 lpfc_send_els_failure_event(phba,
2774 cmdiocbp, saveq);
2775
2776 /*
2777 * Post all ELS completions to the worker thread.
2778 * All other are passed to the completion callback.
2779 */
2780 if (pring->ringno == LPFC_ELS_RING) {
2781 if ((phba->sli_rev < LPFC_SLI_REV4) &&
2782 (cmdiocbp->iocb_flag &
2783 LPFC_DRIVER_ABORTED)) {
2784 spin_lock_irqsave(&phba->hbalock,
2785 iflag);
2786 cmdiocbp->iocb_flag &=
2787 ~LPFC_DRIVER_ABORTED;
2788 spin_unlock_irqrestore(&phba->hbalock,
2789 iflag);
2790 saveq->iocb.ulpStatus =
2791 IOSTAT_LOCAL_REJECT;
2792 saveq->iocb.un.ulpWord[4] =
2793 IOERR_SLI_ABORTED;
2794
2795 /* Firmware could still be in progress
2796 * of DMAing payload, so don't free data
2797 * buffer till after a hbeat.
2798 */
2799 spin_lock_irqsave(&phba->hbalock,
2800 iflag);
2801 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2802 spin_unlock_irqrestore(&phba->hbalock,
2803 iflag);
2804 }
2805 if (phba->sli_rev == LPFC_SLI_REV4) {
2806 if (saveq->iocb_flag &
2807 LPFC_EXCHANGE_BUSY) {
2808 /* Set cmdiocb flag for the
2809 * exchange busy so sgl (xri)
2810 * will not be released until
2811 * the abort xri is received
2812 * from hba.
2813 */
2814 spin_lock_irqsave(
2815 &phba->hbalock, iflag);
2816 cmdiocbp->iocb_flag |=
2817 LPFC_EXCHANGE_BUSY;
2818 spin_unlock_irqrestore(
2819 &phba->hbalock, iflag);
2820 }
2821 if (cmdiocbp->iocb_flag &
2822 LPFC_DRIVER_ABORTED) {
2823 /*
2824 * Clear LPFC_DRIVER_ABORTED
2825 * bit in case it was driver
2826 * initiated abort.
2827 */
2828 spin_lock_irqsave(
2829 &phba->hbalock, iflag);
2830 cmdiocbp->iocb_flag &=
2831 ~LPFC_DRIVER_ABORTED;
2832 spin_unlock_irqrestore(
2833 &phba->hbalock, iflag);
2834 cmdiocbp->iocb.ulpStatus =
2835 IOSTAT_LOCAL_REJECT;
2836 cmdiocbp->iocb.un.ulpWord[4] =
2837 IOERR_ABORT_REQUESTED;
2838 /*
2839 * For SLI4, irsiocb contains
2840 * NO_XRI in sli_xritag, it
2841 * shall not affect releasing
2842 * sgl (xri) process.
2843 */
2844 saveq->iocb.ulpStatus =
2845 IOSTAT_LOCAL_REJECT;
2846 saveq->iocb.un.ulpWord[4] =
2847 IOERR_SLI_ABORTED;
2848 spin_lock_irqsave(
2849 &phba->hbalock, iflag);
2850 saveq->iocb_flag |=
2851 LPFC_DELAY_MEM_FREE;
2852 spin_unlock_irqrestore(
2853 &phba->hbalock, iflag);
2854 }
2855 }
2856 }
2857 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2858 } else
2859 lpfc_sli_release_iocbq(phba, cmdiocbp);
2860 } else {
2861 /*
2862 * Unknown initiating command based on the response iotag.
2863 * This could be the case on the ELS ring because of
2864 * lpfc_els_abort().
2865 */
2866 if (pring->ringno != LPFC_ELS_RING) {
2867 /*
2868 * Ring <ringno> handler: unexpected completion IoTag
2869 * <IoTag>
2870 */
2871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2872 "0322 Ring %d handler: "
2873 "unexpected completion IoTag x%x "
2874 "Data: x%x x%x x%x x%x\n",
2875 pring->ringno,
2876 saveq->iocb.ulpIoTag,
2877 saveq->iocb.ulpStatus,
2878 saveq->iocb.un.ulpWord[4],
2879 saveq->iocb.ulpCommand,
2880 saveq->iocb.ulpContext);
2881 }
2882 }
2883
2884 return rc;
2885 }
2886
2887 /**
2888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2889 * @phba: Pointer to HBA context object.
2890 * @pring: Pointer to driver SLI ring object.
2891 *
2892 * This function is called from the iocb ring event handlers when
2893 * put pointer is ahead of the get pointer for a ring. This function signal
2894 * an error attention condition to the worker thread and the worker
2895 * thread will transition the HBA to offline state.
2896 **/
2897 static void
2898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2899 {
2900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2901 /*
2902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2903 * rsp ring <portRspMax>
2904 */
2905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2906 "0312 Ring %d handler: portRspPut %d "
2907 "is bigger than rsp ring %d\n",
2908 pring->ringno, le32_to_cpu(pgp->rspPutInx),
2909 pring->sli.sli3.numRiocb);
2910
2911 phba->link_state = LPFC_HBA_ERROR;
2912
2913 /*
2914 * All error attention handlers are posted to
2915 * worker thread
2916 */
2917 phba->work_ha |= HA_ERATT;
2918 phba->work_hs = HS_FFER3;
2919
2920 lpfc_worker_wake_up(phba);
2921
2922 return;
2923 }
2924
2925 /**
2926 * lpfc_poll_eratt - Error attention polling timer timeout handler
2927 * @ptr: Pointer to address of HBA context object.
2928 *
2929 * This function is invoked by the Error Attention polling timer when the
2930 * timer times out. It will check the SLI Error Attention register for
2931 * possible attention events. If so, it will post an Error Attention event
2932 * and wake up worker thread to process it. Otherwise, it will set up the
2933 * Error Attention polling timer for the next poll.
2934 **/
2935 void lpfc_poll_eratt(unsigned long ptr)
2936 {
2937 struct lpfc_hba *phba;
2938 uint32_t eratt = 0;
2939 uint64_t sli_intr, cnt;
2940
2941 phba = (struct lpfc_hba *)ptr;
2942
2943 /* Here we will also keep track of interrupts per sec of the hba */
2944 sli_intr = phba->sli.slistat.sli_intr;
2945
2946 if (phba->sli.slistat.sli_prev_intr > sli_intr)
2947 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
2948 sli_intr);
2949 else
2950 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
2951
2952 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
2953 do_div(cnt, phba->eratt_poll_interval);
2954 phba->sli.slistat.sli_ips = cnt;
2955
2956 phba->sli.slistat.sli_prev_intr = sli_intr;
2957
2958 /* Check chip HA register for error event */
2959 eratt = lpfc_sli_check_eratt(phba);
2960
2961 if (eratt)
2962 /* Tell the worker thread there is work to do */
2963 lpfc_worker_wake_up(phba);
2964 else
2965 /* Restart the timer for next eratt poll */
2966 mod_timer(&phba->eratt_poll,
2967 jiffies +
2968 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
2969 return;
2970 }
2971
2972
2973 /**
2974 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
2975 * @phba: Pointer to HBA context object.
2976 * @pring: Pointer to driver SLI ring object.
2977 * @mask: Host attention register mask for this ring.
2978 *
2979 * This function is called from the interrupt context when there is a ring
2980 * event for the fcp ring. The caller does not hold any lock.
2981 * The function processes each response iocb in the response ring until it
2982 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
2983 * LE bit set. The function will call the completion handler of the command iocb
2984 * if the response iocb indicates a completion for a command iocb or it is
2985 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
2986 * function if this is an unsolicited iocb.
2987 * This routine presumes LPFC_FCP_RING handling and doesn't bother
2988 * to check it explicitly.
2989 */
2990 int
2991 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
2992 struct lpfc_sli_ring *pring, uint32_t mask)
2993 {
2994 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2995 IOCB_t *irsp = NULL;
2996 IOCB_t *entry = NULL;
2997 struct lpfc_iocbq *cmdiocbq = NULL;
2998 struct lpfc_iocbq rspiocbq;
2999 uint32_t status;
3000 uint32_t portRspPut, portRspMax;
3001 int rc = 1;
3002 lpfc_iocb_type type;
3003 unsigned long iflag;
3004 uint32_t rsp_cmpl = 0;
3005
3006 spin_lock_irqsave(&phba->hbalock, iflag);
3007 pring->stats.iocb_event++;
3008
3009 /*
3010 * The next available response entry should never exceed the maximum
3011 * entries. If it does, treat it as an adapter hardware error.
3012 */
3013 portRspMax = pring->sli.sli3.numRiocb;
3014 portRspPut = le32_to_cpu(pgp->rspPutInx);
3015 if (unlikely(portRspPut >= portRspMax)) {
3016 lpfc_sli_rsp_pointers_error(phba, pring);
3017 spin_unlock_irqrestore(&phba->hbalock, iflag);
3018 return 1;
3019 }
3020 if (phba->fcp_ring_in_use) {
3021 spin_unlock_irqrestore(&phba->hbalock, iflag);
3022 return 1;
3023 } else
3024 phba->fcp_ring_in_use = 1;
3025
3026 rmb();
3027 while (pring->sli.sli3.rspidx != portRspPut) {
3028 /*
3029 * Fetch an entry off the ring and copy it into a local data
3030 * structure. The copy involves a byte-swap since the
3031 * network byte order and pci byte orders are different.
3032 */
3033 entry = lpfc_resp_iocb(phba, pring);
3034 phba->last_completion_time = jiffies;
3035
3036 if (++pring->sli.sli3.rspidx >= portRspMax)
3037 pring->sli.sli3.rspidx = 0;
3038
3039 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3040 (uint32_t *) &rspiocbq.iocb,
3041 phba->iocb_rsp_size);
3042 INIT_LIST_HEAD(&(rspiocbq.list));
3043 irsp = &rspiocbq.iocb;
3044
3045 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3046 pring->stats.iocb_rsp++;
3047 rsp_cmpl++;
3048
3049 if (unlikely(irsp->ulpStatus)) {
3050 /*
3051 * If resource errors reported from HBA, reduce
3052 * queuedepths of the SCSI device.
3053 */
3054 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3055 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3056 IOERR_NO_RESOURCES)) {
3057 spin_unlock_irqrestore(&phba->hbalock, iflag);
3058 phba->lpfc_rampdown_queue_depth(phba);
3059 spin_lock_irqsave(&phba->hbalock, iflag);
3060 }
3061
3062 /* Rsp ring <ringno> error: IOCB */
3063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3064 "0336 Rsp Ring %d error: IOCB Data: "
3065 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3066 pring->ringno,
3067 irsp->un.ulpWord[0],
3068 irsp->un.ulpWord[1],
3069 irsp->un.ulpWord[2],
3070 irsp->un.ulpWord[3],
3071 irsp->un.ulpWord[4],
3072 irsp->un.ulpWord[5],
3073 *(uint32_t *)&irsp->un1,
3074 *((uint32_t *)&irsp->un1 + 1));
3075 }
3076
3077 switch (type) {
3078 case LPFC_ABORT_IOCB:
3079 case LPFC_SOL_IOCB:
3080 /*
3081 * Idle exchange closed via ABTS from port. No iocb
3082 * resources need to be recovered.
3083 */
3084 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3085 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3086 "0333 IOCB cmd 0x%x"
3087 " processed. Skipping"
3088 " completion\n",
3089 irsp->ulpCommand);
3090 break;
3091 }
3092
3093 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3094 &rspiocbq);
3095 if (unlikely(!cmdiocbq))
3096 break;
3097 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3098 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3099 if (cmdiocbq->iocb_cmpl) {
3100 spin_unlock_irqrestore(&phba->hbalock, iflag);
3101 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3102 &rspiocbq);
3103 spin_lock_irqsave(&phba->hbalock, iflag);
3104 }
3105 break;
3106 case LPFC_UNSOL_IOCB:
3107 spin_unlock_irqrestore(&phba->hbalock, iflag);
3108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3109 spin_lock_irqsave(&phba->hbalock, iflag);
3110 break;
3111 default:
3112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3113 char adaptermsg[LPFC_MAX_ADPTMSG];
3114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3115 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3116 MAX_MSG_DATA);
3117 dev_warn(&((phba->pcidev)->dev),
3118 "lpfc%d: %s\n",
3119 phba->brd_no, adaptermsg);
3120 } else {
3121 /* Unknown IOCB command */
3122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3123 "0334 Unknown IOCB command "
3124 "Data: x%x, x%x x%x x%x x%x\n",
3125 type, irsp->ulpCommand,
3126 irsp->ulpStatus,
3127 irsp->ulpIoTag,
3128 irsp->ulpContext);
3129 }
3130 break;
3131 }
3132
3133 /*
3134 * The response IOCB has been processed. Update the ring
3135 * pointer in SLIM. If the port response put pointer has not
3136 * been updated, sync the pgp->rspPutInx and fetch the new port
3137 * response put pointer.
3138 */
3139 writel(pring->sli.sli3.rspidx,
3140 &phba->host_gp[pring->ringno].rspGetInx);
3141
3142 if (pring->sli.sli3.rspidx == portRspPut)
3143 portRspPut = le32_to_cpu(pgp->rspPutInx);
3144 }
3145
3146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3147 pring->stats.iocb_rsp_full++;
3148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3149 writel(status, phba->CAregaddr);
3150 readl(phba->CAregaddr);
3151 }
3152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3154 pring->stats.iocb_cmd_empty++;
3155
3156 /* Force update of the local copy of cmdGetInx */
3157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3158 lpfc_sli_resume_iocb(phba, pring);
3159
3160 if ((pring->lpfc_sli_cmd_available))
3161 (pring->lpfc_sli_cmd_available) (phba, pring);
3162
3163 }
3164
3165 phba->fcp_ring_in_use = 0;
3166 spin_unlock_irqrestore(&phba->hbalock, iflag);
3167 return rc;
3168 }
3169
3170 /**
3171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3172 * @phba: Pointer to HBA context object.
3173 * @pring: Pointer to driver SLI ring object.
3174 * @rspiocbp: Pointer to driver response IOCB object.
3175 *
3176 * This function is called from the worker thread when there is a slow-path
3177 * response IOCB to process. This function chains all the response iocbs until
3178 * seeing the iocb with the LE bit set. The function will call
3179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3180 * completion of a command iocb. The function will call the
3181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3182 * The function frees the resources or calls the completion handler if this
3183 * iocb is an abort completion. The function returns NULL when the response
3184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3185 * this function shall chain the iocb on to the iocb_continueq and return the
3186 * response iocb passed in.
3187 **/
3188 static struct lpfc_iocbq *
3189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3190 struct lpfc_iocbq *rspiocbp)
3191 {
3192 struct lpfc_iocbq *saveq;
3193 struct lpfc_iocbq *cmdiocbp;
3194 struct lpfc_iocbq *next_iocb;
3195 IOCB_t *irsp = NULL;
3196 uint32_t free_saveq;
3197 uint8_t iocb_cmd_type;
3198 lpfc_iocb_type type;
3199 unsigned long iflag;
3200 int rc;
3201
3202 spin_lock_irqsave(&phba->hbalock, iflag);
3203 /* First add the response iocb to the countinueq list */
3204 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3205 pring->iocb_continueq_cnt++;
3206
3207 /* Now, determine whether the list is completed for processing */
3208 irsp = &rspiocbp->iocb;
3209 if (irsp->ulpLe) {
3210 /*
3211 * By default, the driver expects to free all resources
3212 * associated with this iocb completion.
3213 */
3214 free_saveq = 1;
3215 saveq = list_get_first(&pring->iocb_continueq,
3216 struct lpfc_iocbq, list);
3217 irsp = &(saveq->iocb);
3218 list_del_init(&pring->iocb_continueq);
3219 pring->iocb_continueq_cnt = 0;
3220
3221 pring->stats.iocb_rsp++;
3222
3223 /*
3224 * If resource errors reported from HBA, reduce
3225 * queuedepths of the SCSI device.
3226 */
3227 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3228 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3229 IOERR_NO_RESOURCES)) {
3230 spin_unlock_irqrestore(&phba->hbalock, iflag);
3231 phba->lpfc_rampdown_queue_depth(phba);
3232 spin_lock_irqsave(&phba->hbalock, iflag);
3233 }
3234
3235 if (irsp->ulpStatus) {
3236 /* Rsp ring <ringno> error: IOCB */
3237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3238 "0328 Rsp Ring %d error: "
3239 "IOCB Data: "
3240 "x%x x%x x%x x%x "
3241 "x%x x%x x%x x%x "
3242 "x%x x%x x%x x%x "
3243 "x%x x%x x%x x%x\n",
3244 pring->ringno,
3245 irsp->un.ulpWord[0],
3246 irsp->un.ulpWord[1],
3247 irsp->un.ulpWord[2],
3248 irsp->un.ulpWord[3],
3249 irsp->un.ulpWord[4],
3250 irsp->un.ulpWord[5],
3251 *(((uint32_t *) irsp) + 6),
3252 *(((uint32_t *) irsp) + 7),
3253 *(((uint32_t *) irsp) + 8),
3254 *(((uint32_t *) irsp) + 9),
3255 *(((uint32_t *) irsp) + 10),
3256 *(((uint32_t *) irsp) + 11),
3257 *(((uint32_t *) irsp) + 12),
3258 *(((uint32_t *) irsp) + 13),
3259 *(((uint32_t *) irsp) + 14),
3260 *(((uint32_t *) irsp) + 15));
3261 }
3262
3263 /*
3264 * Fetch the IOCB command type and call the correct completion
3265 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3266 * get freed back to the lpfc_iocb_list by the discovery
3267 * kernel thread.
3268 */
3269 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3270 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3271 switch (type) {
3272 case LPFC_SOL_IOCB:
3273 spin_unlock_irqrestore(&phba->hbalock, iflag);
3274 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3275 spin_lock_irqsave(&phba->hbalock, iflag);
3276 break;
3277
3278 case LPFC_UNSOL_IOCB:
3279 spin_unlock_irqrestore(&phba->hbalock, iflag);
3280 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3281 spin_lock_irqsave(&phba->hbalock, iflag);
3282 if (!rc)
3283 free_saveq = 0;
3284 break;
3285
3286 case LPFC_ABORT_IOCB:
3287 cmdiocbp = NULL;
3288 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3289 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3290 saveq);
3291 if (cmdiocbp) {
3292 /* Call the specified completion routine */
3293 if (cmdiocbp->iocb_cmpl) {
3294 spin_unlock_irqrestore(&phba->hbalock,
3295 iflag);
3296 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3297 saveq);
3298 spin_lock_irqsave(&phba->hbalock,
3299 iflag);
3300 } else
3301 __lpfc_sli_release_iocbq(phba,
3302 cmdiocbp);
3303 }
3304 break;
3305
3306 case LPFC_UNKNOWN_IOCB:
3307 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3308 char adaptermsg[LPFC_MAX_ADPTMSG];
3309 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3310 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3311 MAX_MSG_DATA);
3312 dev_warn(&((phba->pcidev)->dev),
3313 "lpfc%d: %s\n",
3314 phba->brd_no, adaptermsg);
3315 } else {
3316 /* Unknown IOCB command */
3317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3318 "0335 Unknown IOCB "
3319 "command Data: x%x "
3320 "x%x x%x x%x\n",
3321 irsp->ulpCommand,
3322 irsp->ulpStatus,
3323 irsp->ulpIoTag,
3324 irsp->ulpContext);
3325 }
3326 break;
3327 }
3328
3329 if (free_saveq) {
3330 list_for_each_entry_safe(rspiocbp, next_iocb,
3331 &saveq->list, list) {
3332 list_del_init(&rspiocbp->list);
3333 __lpfc_sli_release_iocbq(phba, rspiocbp);
3334 }
3335 __lpfc_sli_release_iocbq(phba, saveq);
3336 }
3337 rspiocbp = NULL;
3338 }
3339 spin_unlock_irqrestore(&phba->hbalock, iflag);
3340 return rspiocbp;
3341 }
3342
3343 /**
3344 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3345 * @phba: Pointer to HBA context object.
3346 * @pring: Pointer to driver SLI ring object.
3347 * @mask: Host attention register mask for this ring.
3348 *
3349 * This routine wraps the actual slow_ring event process routine from the
3350 * API jump table function pointer from the lpfc_hba struct.
3351 **/
3352 void
3353 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3354 struct lpfc_sli_ring *pring, uint32_t mask)
3355 {
3356 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3357 }
3358
3359 /**
3360 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3361 * @phba: Pointer to HBA context object.
3362 * @pring: Pointer to driver SLI ring object.
3363 * @mask: Host attention register mask for this ring.
3364 *
3365 * This function is called from the worker thread when there is a ring event
3366 * for non-fcp rings. The caller does not hold any lock. The function will
3367 * remove each response iocb in the response ring and calls the handle
3368 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3369 **/
3370 static void
3371 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3372 struct lpfc_sli_ring *pring, uint32_t mask)
3373 {
3374 struct lpfc_pgp *pgp;
3375 IOCB_t *entry;
3376 IOCB_t *irsp = NULL;
3377 struct lpfc_iocbq *rspiocbp = NULL;
3378 uint32_t portRspPut, portRspMax;
3379 unsigned long iflag;
3380 uint32_t status;
3381
3382 pgp = &phba->port_gp[pring->ringno];
3383 spin_lock_irqsave(&phba->hbalock, iflag);
3384 pring->stats.iocb_event++;
3385
3386 /*
3387 * The next available response entry should never exceed the maximum
3388 * entries. If it does, treat it as an adapter hardware error.
3389 */
3390 portRspMax = pring->sli.sli3.numRiocb;
3391 portRspPut = le32_to_cpu(pgp->rspPutInx);
3392 if (portRspPut >= portRspMax) {
3393 /*
3394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3395 * rsp ring <portRspMax>
3396 */
3397 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3398 "0303 Ring %d handler: portRspPut %d "
3399 "is bigger than rsp ring %d\n",
3400 pring->ringno, portRspPut, portRspMax);
3401
3402 phba->link_state = LPFC_HBA_ERROR;
3403 spin_unlock_irqrestore(&phba->hbalock, iflag);
3404
3405 phba->work_hs = HS_FFER3;
3406 lpfc_handle_eratt(phba);
3407
3408 return;
3409 }
3410
3411 rmb();
3412 while (pring->sli.sli3.rspidx != portRspPut) {
3413 /*
3414 * Build a completion list and call the appropriate handler.
3415 * The process is to get the next available response iocb, get
3416 * a free iocb from the list, copy the response data into the
3417 * free iocb, insert to the continuation list, and update the
3418 * next response index to slim. This process makes response
3419 * iocb's in the ring available to DMA as fast as possible but
3420 * pays a penalty for a copy operation. Since the iocb is
3421 * only 32 bytes, this penalty is considered small relative to
3422 * the PCI reads for register values and a slim write. When
3423 * the ulpLe field is set, the entire Command has been
3424 * received.
3425 */
3426 entry = lpfc_resp_iocb(phba, pring);
3427
3428 phba->last_completion_time = jiffies;
3429 rspiocbp = __lpfc_sli_get_iocbq(phba);
3430 if (rspiocbp == NULL) {
3431 printk(KERN_ERR "%s: out of buffers! Failing "
3432 "completion.\n", __func__);
3433 break;
3434 }
3435
3436 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3437 phba->iocb_rsp_size);
3438 irsp = &rspiocbp->iocb;
3439
3440 if (++pring->sli.sli3.rspidx >= portRspMax)
3441 pring->sli.sli3.rspidx = 0;
3442
3443 if (pring->ringno == LPFC_ELS_RING) {
3444 lpfc_debugfs_slow_ring_trc(phba,
3445 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3446 *(((uint32_t *) irsp) + 4),
3447 *(((uint32_t *) irsp) + 6),
3448 *(((uint32_t *) irsp) + 7));
3449 }
3450
3451 writel(pring->sli.sli3.rspidx,
3452 &phba->host_gp[pring->ringno].rspGetInx);
3453
3454 spin_unlock_irqrestore(&phba->hbalock, iflag);
3455 /* Handle the response IOCB */
3456 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3457 spin_lock_irqsave(&phba->hbalock, iflag);
3458
3459 /*
3460 * If the port response put pointer has not been updated, sync
3461 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3462 * response put pointer.
3463 */
3464 if (pring->sli.sli3.rspidx == portRspPut) {
3465 portRspPut = le32_to_cpu(pgp->rspPutInx);
3466 }
3467 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3468
3469 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3470 /* At least one response entry has been freed */
3471 pring->stats.iocb_rsp_full++;
3472 /* SET RxRE_RSP in Chip Att register */
3473 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3474 writel(status, phba->CAregaddr);
3475 readl(phba->CAregaddr); /* flush */
3476 }
3477 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3478 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3479 pring->stats.iocb_cmd_empty++;
3480
3481 /* Force update of the local copy of cmdGetInx */
3482 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3483 lpfc_sli_resume_iocb(phba, pring);
3484
3485 if ((pring->lpfc_sli_cmd_available))
3486 (pring->lpfc_sli_cmd_available) (phba, pring);
3487
3488 }
3489
3490 spin_unlock_irqrestore(&phba->hbalock, iflag);
3491 return;
3492 }
3493
3494 /**
3495 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3496 * @phba: Pointer to HBA context object.
3497 * @pring: Pointer to driver SLI ring object.
3498 * @mask: Host attention register mask for this ring.
3499 *
3500 * This function is called from the worker thread when there is a pending
3501 * ELS response iocb on the driver internal slow-path response iocb worker
3502 * queue. The caller does not hold any lock. The function will remove each
3503 * response iocb from the response worker queue and calls the handle
3504 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3505 **/
3506 static void
3507 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3508 struct lpfc_sli_ring *pring, uint32_t mask)
3509 {
3510 struct lpfc_iocbq *irspiocbq;
3511 struct hbq_dmabuf *dmabuf;
3512 struct lpfc_cq_event *cq_event;
3513 unsigned long iflag;
3514
3515 spin_lock_irqsave(&phba->hbalock, iflag);
3516 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3517 spin_unlock_irqrestore(&phba->hbalock, iflag);
3518 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3519 /* Get the response iocb from the head of work queue */
3520 spin_lock_irqsave(&phba->hbalock, iflag);
3521 list_remove_head(&phba->sli4_hba.sp_queue_event,
3522 cq_event, struct lpfc_cq_event, list);
3523 spin_unlock_irqrestore(&phba->hbalock, iflag);
3524
3525 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3526 case CQE_CODE_COMPL_WQE:
3527 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3528 cq_event);
3529 /* Translate ELS WCQE to response IOCBQ */
3530 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3531 irspiocbq);
3532 if (irspiocbq)
3533 lpfc_sli_sp_handle_rspiocb(phba, pring,
3534 irspiocbq);
3535 break;
3536 case CQE_CODE_RECEIVE:
3537 case CQE_CODE_RECEIVE_V1:
3538 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3539 cq_event);
3540 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3541 break;
3542 default:
3543 break;
3544 }
3545 }
3546 }
3547
3548 /**
3549 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3550 * @phba: Pointer to HBA context object.
3551 * @pring: Pointer to driver SLI ring object.
3552 *
3553 * This function aborts all iocbs in the given ring and frees all the iocb
3554 * objects in txq. This function issues an abort iocb for all the iocb commands
3555 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3556 * the return of this function. The caller is not required to hold any locks.
3557 **/
3558 void
3559 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3560 {
3561 LIST_HEAD(completions);
3562 struct lpfc_iocbq *iocb, *next_iocb;
3563
3564 if (pring->ringno == LPFC_ELS_RING) {
3565 lpfc_fabric_abort_hba(phba);
3566 }
3567
3568 /* Error everything on txq and txcmplq
3569 * First do the txq.
3570 */
3571 if (phba->sli_rev >= LPFC_SLI_REV4) {
3572 spin_lock_irq(&pring->ring_lock);
3573 list_splice_init(&pring->txq, &completions);
3574 pring->txq_cnt = 0;
3575 spin_unlock_irq(&pring->ring_lock);
3576
3577 spin_lock_irq(&phba->hbalock);
3578 /* Next issue ABTS for everything on the txcmplq */
3579 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3580 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3581 spin_unlock_irq(&phba->hbalock);
3582 } else {
3583 spin_lock_irq(&phba->hbalock);
3584 list_splice_init(&pring->txq, &completions);
3585 pring->txq_cnt = 0;
3586
3587 /* Next issue ABTS for everything on the txcmplq */
3588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3589 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3590 spin_unlock_irq(&phba->hbalock);
3591 }
3592
3593 /* Cancel all the IOCBs from the completions list */
3594 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3595 IOERR_SLI_ABORTED);
3596 }
3597
3598 /**
3599 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3600 * @phba: Pointer to HBA context object.
3601 * @pring: Pointer to driver SLI ring object.
3602 *
3603 * This function aborts all iocbs in FCP rings and frees all the iocb
3604 * objects in txq. This function issues an abort iocb for all the iocb commands
3605 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3606 * the return of this function. The caller is not required to hold any locks.
3607 **/
3608 void
3609 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3610 {
3611 struct lpfc_sli *psli = &phba->sli;
3612 struct lpfc_sli_ring *pring;
3613 uint32_t i;
3614
3615 /* Look on all the FCP Rings for the iotag */
3616 if (phba->sli_rev >= LPFC_SLI_REV4) {
3617 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3618 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS];
3619 lpfc_sli_abort_iocb_ring(phba, pring);
3620 }
3621 } else {
3622 pring = &psli->ring[psli->fcp_ring];
3623 lpfc_sli_abort_iocb_ring(phba, pring);
3624 }
3625 }
3626
3627
3628 /**
3629 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3630 * @phba: Pointer to HBA context object.
3631 *
3632 * This function flushes all iocbs in the fcp ring and frees all the iocb
3633 * objects in txq and txcmplq. This function will not issue abort iocbs
3634 * for all the iocb commands in txcmplq, they will just be returned with
3635 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3636 * slot has been permanently disabled.
3637 **/
3638 void
3639 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3640 {
3641 LIST_HEAD(txq);
3642 LIST_HEAD(txcmplq);
3643 struct lpfc_sli *psli = &phba->sli;
3644 struct lpfc_sli_ring *pring;
3645 uint32_t i;
3646
3647 spin_lock_irq(&phba->hbalock);
3648 /* Indicate the I/O queues are flushed */
3649 phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3650 spin_unlock_irq(&phba->hbalock);
3651
3652 /* Look on all the FCP Rings for the iotag */
3653 if (phba->sli_rev >= LPFC_SLI_REV4) {
3654 for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3655 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS];
3656
3657 spin_lock_irq(&pring->ring_lock);
3658 /* Retrieve everything on txq */
3659 list_splice_init(&pring->txq, &txq);
3660 /* Retrieve everything on the txcmplq */
3661 list_splice_init(&pring->txcmplq, &txcmplq);
3662 pring->txq_cnt = 0;
3663 pring->txcmplq_cnt = 0;
3664 spin_unlock_irq(&pring->ring_lock);
3665
3666 /* Flush the txq */
3667 lpfc_sli_cancel_iocbs(phba, &txq,
3668 IOSTAT_LOCAL_REJECT,
3669 IOERR_SLI_DOWN);
3670 /* Flush the txcmpq */
3671 lpfc_sli_cancel_iocbs(phba, &txcmplq,
3672 IOSTAT_LOCAL_REJECT,
3673 IOERR_SLI_DOWN);
3674 }
3675 } else {
3676 pring = &psli->ring[psli->fcp_ring];
3677
3678 spin_lock_irq(&phba->hbalock);
3679 /* Retrieve everything on txq */
3680 list_splice_init(&pring->txq, &txq);
3681 /* Retrieve everything on the txcmplq */
3682 list_splice_init(&pring->txcmplq, &txcmplq);
3683 pring->txq_cnt = 0;
3684 pring->txcmplq_cnt = 0;
3685 spin_unlock_irq(&phba->hbalock);
3686
3687 /* Flush the txq */
3688 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3689 IOERR_SLI_DOWN);
3690 /* Flush the txcmpq */
3691 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3692 IOERR_SLI_DOWN);
3693 }
3694 }
3695
3696 /**
3697 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3698 * @phba: Pointer to HBA context object.
3699 * @mask: Bit mask to be checked.
3700 *
3701 * This function reads the host status register and compares
3702 * with the provided bit mask to check if HBA completed
3703 * the restart. This function will wait in a loop for the
3704 * HBA to complete restart. If the HBA does not restart within
3705 * 15 iterations, the function will reset the HBA again. The
3706 * function returns 1 when HBA fail to restart otherwise returns
3707 * zero.
3708 **/
3709 static int
3710 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3711 {
3712 uint32_t status;
3713 int i = 0;
3714 int retval = 0;
3715
3716 /* Read the HBA Host Status Register */
3717 if (lpfc_readl(phba->HSregaddr, &status))
3718 return 1;
3719
3720 /*
3721 * Check status register every 100ms for 5 retries, then every
3722 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3723 * every 2.5 sec for 4.
3724 * Break our of the loop if errors occurred during init.
3725 */
3726 while (((status & mask) != mask) &&
3727 !(status & HS_FFERM) &&
3728 i++ < 20) {
3729
3730 if (i <= 5)
3731 msleep(10);
3732 else if (i <= 10)
3733 msleep(500);
3734 else
3735 msleep(2500);
3736
3737 if (i == 15) {
3738 /* Do post */
3739 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3740 lpfc_sli_brdrestart(phba);
3741 }
3742 /* Read the HBA Host Status Register */
3743 if (lpfc_readl(phba->HSregaddr, &status)) {
3744 retval = 1;
3745 break;
3746 }
3747 }
3748
3749 /* Check to see if any errors occurred during init */
3750 if ((status & HS_FFERM) || (i >= 20)) {
3751 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3752 "2751 Adapter failed to restart, "
3753 "status reg x%x, FW Data: A8 x%x AC x%x\n",
3754 status,
3755 readl(phba->MBslimaddr + 0xa8),
3756 readl(phba->MBslimaddr + 0xac));
3757 phba->link_state = LPFC_HBA_ERROR;
3758 retval = 1;
3759 }
3760
3761 return retval;
3762 }
3763
3764 /**
3765 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3766 * @phba: Pointer to HBA context object.
3767 * @mask: Bit mask to be checked.
3768 *
3769 * This function checks the host status register to check if HBA is
3770 * ready. This function will wait in a loop for the HBA to be ready
3771 * If the HBA is not ready , the function will will reset the HBA PCI
3772 * function again. The function returns 1 when HBA fail to be ready
3773 * otherwise returns zero.
3774 **/
3775 static int
3776 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3777 {
3778 uint32_t status;
3779 int retval = 0;
3780
3781 /* Read the HBA Host Status Register */
3782 status = lpfc_sli4_post_status_check(phba);
3783
3784 if (status) {
3785 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3786 lpfc_sli_brdrestart(phba);
3787 status = lpfc_sli4_post_status_check(phba);
3788 }
3789
3790 /* Check to see if any errors occurred during init */
3791 if (status) {
3792 phba->link_state = LPFC_HBA_ERROR;
3793 retval = 1;
3794 } else
3795 phba->sli4_hba.intr_enable = 0;
3796
3797 return retval;
3798 }
3799
3800 /**
3801 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3802 * @phba: Pointer to HBA context object.
3803 * @mask: Bit mask to be checked.
3804 *
3805 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3806 * from the API jump table function pointer from the lpfc_hba struct.
3807 **/
3808 int
3809 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3810 {
3811 return phba->lpfc_sli_brdready(phba, mask);
3812 }
3813
3814 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3815
3816 /**
3817 * lpfc_reset_barrier - Make HBA ready for HBA reset
3818 * @phba: Pointer to HBA context object.
3819 *
3820 * This function is called before resetting an HBA. This function is called
3821 * with hbalock held and requests HBA to quiesce DMAs before a reset.
3822 **/
3823 void lpfc_reset_barrier(struct lpfc_hba *phba)
3824 {
3825 uint32_t __iomem *resp_buf;
3826 uint32_t __iomem *mbox_buf;
3827 volatile uint32_t mbox;
3828 uint32_t hc_copy, ha_copy, resp_data;
3829 int i;
3830 uint8_t hdrtype;
3831
3832 lockdep_assert_held(&phba->hbalock);
3833
3834 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
3835 if (hdrtype != 0x80 ||
3836 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
3837 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
3838 return;
3839
3840 /*
3841 * Tell the other part of the chip to suspend temporarily all
3842 * its DMA activity.
3843 */
3844 resp_buf = phba->MBslimaddr;
3845
3846 /* Disable the error attention */
3847 if (lpfc_readl(phba->HCregaddr, &hc_copy))
3848 return;
3849 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
3850 readl(phba->HCregaddr); /* flush */
3851 phba->link_flag |= LS_IGNORE_ERATT;
3852
3853 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3854 return;
3855 if (ha_copy & HA_ERATT) {
3856 /* Clear Chip error bit */
3857 writel(HA_ERATT, phba->HAregaddr);
3858 phba->pport->stopped = 1;
3859 }
3860
3861 mbox = 0;
3862 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
3863 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
3864
3865 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
3866 mbox_buf = phba->MBslimaddr;
3867 writel(mbox, mbox_buf);
3868
3869 for (i = 0; i < 50; i++) {
3870 if (lpfc_readl((resp_buf + 1), &resp_data))
3871 return;
3872 if (resp_data != ~(BARRIER_TEST_PATTERN))
3873 mdelay(1);
3874 else
3875 break;
3876 }
3877 resp_data = 0;
3878 if (lpfc_readl((resp_buf + 1), &resp_data))
3879 return;
3880 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
3881 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
3882 phba->pport->stopped)
3883 goto restore_hc;
3884 else
3885 goto clear_errat;
3886 }
3887
3888 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
3889 resp_data = 0;
3890 for (i = 0; i < 500; i++) {
3891 if (lpfc_readl(resp_buf, &resp_data))
3892 return;
3893 if (resp_data != mbox)
3894 mdelay(1);
3895 else
3896 break;
3897 }
3898
3899 clear_errat:
3900
3901 while (++i < 500) {
3902 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3903 return;
3904 if (!(ha_copy & HA_ERATT))
3905 mdelay(1);
3906 else
3907 break;
3908 }
3909
3910 if (readl(phba->HAregaddr) & HA_ERATT) {
3911 writel(HA_ERATT, phba->HAregaddr);
3912 phba->pport->stopped = 1;
3913 }
3914
3915 restore_hc:
3916 phba->link_flag &= ~LS_IGNORE_ERATT;
3917 writel(hc_copy, phba->HCregaddr);
3918 readl(phba->HCregaddr); /* flush */
3919 }
3920
3921 /**
3922 * lpfc_sli_brdkill - Issue a kill_board mailbox command
3923 * @phba: Pointer to HBA context object.
3924 *
3925 * This function issues a kill_board mailbox command and waits for
3926 * the error attention interrupt. This function is called for stopping
3927 * the firmware processing. The caller is not required to hold any
3928 * locks. This function calls lpfc_hba_down_post function to free
3929 * any pending commands after the kill. The function will return 1 when it
3930 * fails to kill the board else will return 0.
3931 **/
3932 int
3933 lpfc_sli_brdkill(struct lpfc_hba *phba)
3934 {
3935 struct lpfc_sli *psli;
3936 LPFC_MBOXQ_t *pmb;
3937 uint32_t status;
3938 uint32_t ha_copy;
3939 int retval;
3940 int i = 0;
3941
3942 psli = &phba->sli;
3943
3944 /* Kill HBA */
3945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3946 "0329 Kill HBA Data: x%x x%x\n",
3947 phba->pport->port_state, psli->sli_flag);
3948
3949 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
3950 if (!pmb)
3951 return 1;
3952
3953 /* Disable the error attention */
3954 spin_lock_irq(&phba->hbalock);
3955 if (lpfc_readl(phba->HCregaddr, &status)) {
3956 spin_unlock_irq(&phba->hbalock);
3957 mempool_free(pmb, phba->mbox_mem_pool);
3958 return 1;
3959 }
3960 status &= ~HC_ERINT_ENA;
3961 writel(status, phba->HCregaddr);
3962 readl(phba->HCregaddr); /* flush */
3963 phba->link_flag |= LS_IGNORE_ERATT;
3964 spin_unlock_irq(&phba->hbalock);
3965
3966 lpfc_kill_board(phba, pmb);
3967 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
3968 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3969
3970 if (retval != MBX_SUCCESS) {
3971 if (retval != MBX_BUSY)
3972 mempool_free(pmb, phba->mbox_mem_pool);
3973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3974 "2752 KILL_BOARD command failed retval %d\n",
3975 retval);
3976 spin_lock_irq(&phba->hbalock);
3977 phba->link_flag &= ~LS_IGNORE_ERATT;
3978 spin_unlock_irq(&phba->hbalock);
3979 return 1;
3980 }
3981
3982 spin_lock_irq(&phba->hbalock);
3983 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
3984 spin_unlock_irq(&phba->hbalock);
3985
3986 mempool_free(pmb, phba->mbox_mem_pool);
3987
3988 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
3989 * attention every 100ms for 3 seconds. If we don't get ERATT after
3990 * 3 seconds we still set HBA_ERROR state because the status of the
3991 * board is now undefined.
3992 */
3993 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3994 return 1;
3995 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
3996 mdelay(100);
3997 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3998 return 1;
3999 }
4000
4001 del_timer_sync(&psli->mbox_tmo);
4002 if (ha_copy & HA_ERATT) {
4003 writel(HA_ERATT, phba->HAregaddr);
4004 phba->pport->stopped = 1;
4005 }
4006 spin_lock_irq(&phba->hbalock);
4007 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4008 psli->mbox_active = NULL;
4009 phba->link_flag &= ~LS_IGNORE_ERATT;
4010 spin_unlock_irq(&phba->hbalock);
4011
4012 lpfc_hba_down_post(phba);
4013 phba->link_state = LPFC_HBA_ERROR;
4014
4015 return ha_copy & HA_ERATT ? 0 : 1;
4016 }
4017
4018 /**
4019 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4020 * @phba: Pointer to HBA context object.
4021 *
4022 * This function resets the HBA by writing HC_INITFF to the control
4023 * register. After the HBA resets, this function resets all the iocb ring
4024 * indices. This function disables PCI layer parity checking during
4025 * the reset.
4026 * This function returns 0 always.
4027 * The caller is not required to hold any locks.
4028 **/
4029 int
4030 lpfc_sli_brdreset(struct lpfc_hba *phba)
4031 {
4032 struct lpfc_sli *psli;
4033 struct lpfc_sli_ring *pring;
4034 uint16_t cfg_value;
4035 int i;
4036
4037 psli = &phba->sli;
4038
4039 /* Reset HBA */
4040 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4041 "0325 Reset HBA Data: x%x x%x\n",
4042 phba->pport->port_state, psli->sli_flag);
4043
4044 /* perform board reset */
4045 phba->fc_eventTag = 0;
4046 phba->link_events = 0;
4047 phba->pport->fc_myDID = 0;
4048 phba->pport->fc_prevDID = 0;
4049
4050 /* Turn off parity checking and serr during the physical reset */
4051 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4052 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4053 (cfg_value &
4054 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4055
4056 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4057
4058 /* Now toggle INITFF bit in the Host Control Register */
4059 writel(HC_INITFF, phba->HCregaddr);
4060 mdelay(1);
4061 readl(phba->HCregaddr); /* flush */
4062 writel(0, phba->HCregaddr);
4063 readl(phba->HCregaddr); /* flush */
4064
4065 /* Restore PCI cmd register */
4066 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4067
4068 /* Initialize relevant SLI info */
4069 for (i = 0; i < psli->num_rings; i++) {
4070 pring = &psli->ring[i];
4071 pring->flag = 0;
4072 pring->sli.sli3.rspidx = 0;
4073 pring->sli.sli3.next_cmdidx = 0;
4074 pring->sli.sli3.local_getidx = 0;
4075 pring->sli.sli3.cmdidx = 0;
4076 pring->missbufcnt = 0;
4077 }
4078
4079 phba->link_state = LPFC_WARM_START;
4080 return 0;
4081 }
4082
4083 /**
4084 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4085 * @phba: Pointer to HBA context object.
4086 *
4087 * This function resets a SLI4 HBA. This function disables PCI layer parity
4088 * checking during resets the device. The caller is not required to hold
4089 * any locks.
4090 *
4091 * This function returns 0 always.
4092 **/
4093 int
4094 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4095 {
4096 struct lpfc_sli *psli = &phba->sli;
4097 uint16_t cfg_value;
4098 int rc = 0;
4099
4100 /* Reset HBA */
4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4102 "0295 Reset HBA Data: x%x x%x x%x\n",
4103 phba->pport->port_state, psli->sli_flag,
4104 phba->hba_flag);
4105
4106 /* perform board reset */
4107 phba->fc_eventTag = 0;
4108 phba->link_events = 0;
4109 phba->pport->fc_myDID = 0;
4110 phba->pport->fc_prevDID = 0;
4111
4112 spin_lock_irq(&phba->hbalock);
4113 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4114 phba->fcf.fcf_flag = 0;
4115 spin_unlock_irq(&phba->hbalock);
4116
4117 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4118 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4119 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4120 return rc;
4121 }
4122
4123 /* Now physically reset the device */
4124 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4125 "0389 Performing PCI function reset!\n");
4126
4127 /* Turn off parity checking and serr during the physical reset */
4128 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4129 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4130 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4131
4132 /* Perform FCoE PCI function reset before freeing queue memory */
4133 rc = lpfc_pci_function_reset(phba);
4134 lpfc_sli4_queue_destroy(phba);
4135
4136 /* Restore PCI cmd register */
4137 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4138
4139 return rc;
4140 }
4141
4142 /**
4143 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4144 * @phba: Pointer to HBA context object.
4145 *
4146 * This function is called in the SLI initialization code path to
4147 * restart the HBA. The caller is not required to hold any lock.
4148 * This function writes MBX_RESTART mailbox command to the SLIM and
4149 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4150 * function to free any pending commands. The function enables
4151 * POST only during the first initialization. The function returns zero.
4152 * The function does not guarantee completion of MBX_RESTART mailbox
4153 * command before the return of this function.
4154 **/
4155 static int
4156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4157 {
4158 MAILBOX_t *mb;
4159 struct lpfc_sli *psli;
4160 volatile uint32_t word0;
4161 void __iomem *to_slim;
4162 uint32_t hba_aer_enabled;
4163
4164 spin_lock_irq(&phba->hbalock);
4165
4166 /* Take PCIe device Advanced Error Reporting (AER) state */
4167 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4168
4169 psli = &phba->sli;
4170
4171 /* Restart HBA */
4172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4173 "0337 Restart HBA Data: x%x x%x\n",
4174 phba->pport->port_state, psli->sli_flag);
4175
4176 word0 = 0;
4177 mb = (MAILBOX_t *) &word0;
4178 mb->mbxCommand = MBX_RESTART;
4179 mb->mbxHc = 1;
4180
4181 lpfc_reset_barrier(phba);
4182
4183 to_slim = phba->MBslimaddr;
4184 writel(*(uint32_t *) mb, to_slim);
4185 readl(to_slim); /* flush */
4186
4187 /* Only skip post after fc_ffinit is completed */
4188 if (phba->pport->port_state)
4189 word0 = 1; /* This is really setting up word1 */
4190 else
4191 word0 = 0; /* This is really setting up word1 */
4192 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4193 writel(*(uint32_t *) mb, to_slim);
4194 readl(to_slim); /* flush */
4195
4196 lpfc_sli_brdreset(phba);
4197 phba->pport->stopped = 0;
4198 phba->link_state = LPFC_INIT_START;
4199 phba->hba_flag = 0;
4200 spin_unlock_irq(&phba->hbalock);
4201
4202 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4203 psli->stats_start = get_seconds();
4204
4205 /* Give the INITFF and Post time to settle. */
4206 mdelay(100);
4207
4208 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4209 if (hba_aer_enabled)
4210 pci_disable_pcie_error_reporting(phba->pcidev);
4211
4212 lpfc_hba_down_post(phba);
4213
4214 return 0;
4215 }
4216
4217 /**
4218 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4219 * @phba: Pointer to HBA context object.
4220 *
4221 * This function is called in the SLI initialization code path to restart
4222 * a SLI4 HBA. The caller is not required to hold any lock.
4223 * At the end of the function, it calls lpfc_hba_down_post function to
4224 * free any pending commands.
4225 **/
4226 static int
4227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4228 {
4229 struct lpfc_sli *psli = &phba->sli;
4230 uint32_t hba_aer_enabled;
4231 int rc;
4232
4233 /* Restart HBA */
4234 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4235 "0296 Restart HBA Data: x%x x%x\n",
4236 phba->pport->port_state, psli->sli_flag);
4237
4238 /* Take PCIe device Advanced Error Reporting (AER) state */
4239 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4240
4241 rc = lpfc_sli4_brdreset(phba);
4242
4243 spin_lock_irq(&phba->hbalock);
4244 phba->pport->stopped = 0;
4245 phba->link_state = LPFC_INIT_START;
4246 phba->hba_flag = 0;
4247 spin_unlock_irq(&phba->hbalock);
4248
4249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4250 psli->stats_start = get_seconds();
4251
4252 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4253 if (hba_aer_enabled)
4254 pci_disable_pcie_error_reporting(phba->pcidev);
4255
4256 lpfc_hba_down_post(phba);
4257
4258 return rc;
4259 }
4260
4261 /**
4262 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4263 * @phba: Pointer to HBA context object.
4264 *
4265 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4266 * API jump table function pointer from the lpfc_hba struct.
4267 **/
4268 int
4269 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4270 {
4271 return phba->lpfc_sli_brdrestart(phba);
4272 }
4273
4274 /**
4275 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4276 * @phba: Pointer to HBA context object.
4277 *
4278 * This function is called after a HBA restart to wait for successful
4279 * restart of the HBA. Successful restart of the HBA is indicated by
4280 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4281 * iteration, the function will restart the HBA again. The function returns
4282 * zero if HBA successfully restarted else returns negative error code.
4283 **/
4284 static int
4285 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4286 {
4287 uint32_t status, i = 0;
4288
4289 /* Read the HBA Host Status Register */
4290 if (lpfc_readl(phba->HSregaddr, &status))
4291 return -EIO;
4292
4293 /* Check status register to see what current state is */
4294 i = 0;
4295 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4296
4297 /* Check every 10ms for 10 retries, then every 100ms for 90
4298 * retries, then every 1 sec for 50 retires for a total of
4299 * ~60 seconds before reset the board again and check every
4300 * 1 sec for 50 retries. The up to 60 seconds before the
4301 * board ready is required by the Falcon FIPS zeroization
4302 * complete, and any reset the board in between shall cause
4303 * restart of zeroization, further delay the board ready.
4304 */
4305 if (i++ >= 200) {
4306 /* Adapter failed to init, timeout, status reg
4307 <status> */
4308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4309 "0436 Adapter failed to init, "
4310 "timeout, status reg x%x, "
4311 "FW Data: A8 x%x AC x%x\n", status,
4312 readl(phba->MBslimaddr + 0xa8),
4313 readl(phba->MBslimaddr + 0xac));
4314 phba->link_state = LPFC_HBA_ERROR;
4315 return -ETIMEDOUT;
4316 }
4317
4318 /* Check to see if any errors occurred during init */
4319 if (status & HS_FFERM) {
4320 /* ERROR: During chipset initialization */
4321 /* Adapter failed to init, chipset, status reg
4322 <status> */
4323 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4324 "0437 Adapter failed to init, "
4325 "chipset, status reg x%x, "
4326 "FW Data: A8 x%x AC x%x\n", status,
4327 readl(phba->MBslimaddr + 0xa8),
4328 readl(phba->MBslimaddr + 0xac));
4329 phba->link_state = LPFC_HBA_ERROR;
4330 return -EIO;
4331 }
4332
4333 if (i <= 10)
4334 msleep(10);
4335 else if (i <= 100)
4336 msleep(100);
4337 else
4338 msleep(1000);
4339
4340 if (i == 150) {
4341 /* Do post */
4342 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4343 lpfc_sli_brdrestart(phba);
4344 }
4345 /* Read the HBA Host Status Register */
4346 if (lpfc_readl(phba->HSregaddr, &status))
4347 return -EIO;
4348 }
4349
4350 /* Check to see if any errors occurred during init */
4351 if (status & HS_FFERM) {
4352 /* ERROR: During chipset initialization */
4353 /* Adapter failed to init, chipset, status reg <status> */
4354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4355 "0438 Adapter failed to init, chipset, "
4356 "status reg x%x, "
4357 "FW Data: A8 x%x AC x%x\n", status,
4358 readl(phba->MBslimaddr + 0xa8),
4359 readl(phba->MBslimaddr + 0xac));
4360 phba->link_state = LPFC_HBA_ERROR;
4361 return -EIO;
4362 }
4363
4364 /* Clear all interrupt enable conditions */
4365 writel(0, phba->HCregaddr);
4366 readl(phba->HCregaddr); /* flush */
4367
4368 /* setup host attn register */
4369 writel(0xffffffff, phba->HAregaddr);
4370 readl(phba->HAregaddr); /* flush */
4371 return 0;
4372 }
4373
4374 /**
4375 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4376 *
4377 * This function calculates and returns the number of HBQs required to be
4378 * configured.
4379 **/
4380 int
4381 lpfc_sli_hbq_count(void)
4382 {
4383 return ARRAY_SIZE(lpfc_hbq_defs);
4384 }
4385
4386 /**
4387 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4388 *
4389 * This function adds the number of hbq entries in every HBQ to get
4390 * the total number of hbq entries required for the HBA and returns
4391 * the total count.
4392 **/
4393 static int
4394 lpfc_sli_hbq_entry_count(void)
4395 {
4396 int hbq_count = lpfc_sli_hbq_count();
4397 int count = 0;
4398 int i;
4399
4400 for (i = 0; i < hbq_count; ++i)
4401 count += lpfc_hbq_defs[i]->entry_count;
4402 return count;
4403 }
4404
4405 /**
4406 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4407 *
4408 * This function calculates amount of memory required for all hbq entries
4409 * to be configured and returns the total memory required.
4410 **/
4411 int
4412 lpfc_sli_hbq_size(void)
4413 {
4414 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4415 }
4416
4417 /**
4418 * lpfc_sli_hbq_setup - configure and initialize HBQs
4419 * @phba: Pointer to HBA context object.
4420 *
4421 * This function is called during the SLI initialization to configure
4422 * all the HBQs and post buffers to the HBQ. The caller is not
4423 * required to hold any locks. This function will return zero if successful
4424 * else it will return negative error code.
4425 **/
4426 static int
4427 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4428 {
4429 int hbq_count = lpfc_sli_hbq_count();
4430 LPFC_MBOXQ_t *pmb;
4431 MAILBOX_t *pmbox;
4432 uint32_t hbqno;
4433 uint32_t hbq_entry_index;
4434
4435 /* Get a Mailbox buffer to setup mailbox
4436 * commands for HBA initialization
4437 */
4438 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4439
4440 if (!pmb)
4441 return -ENOMEM;
4442
4443 pmbox = &pmb->u.mb;
4444
4445 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4446 phba->link_state = LPFC_INIT_MBX_CMDS;
4447 phba->hbq_in_use = 1;
4448
4449 hbq_entry_index = 0;
4450 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4451 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4452 phba->hbqs[hbqno].hbqPutIdx = 0;
4453 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4454 phba->hbqs[hbqno].entry_count =
4455 lpfc_hbq_defs[hbqno]->entry_count;
4456 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4457 hbq_entry_index, pmb);
4458 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4459
4460 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4461 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4462 mbxStatus <status>, ring <num> */
4463
4464 lpfc_printf_log(phba, KERN_ERR,
4465 LOG_SLI | LOG_VPORT,
4466 "1805 Adapter failed to init. "
4467 "Data: x%x x%x x%x\n",
4468 pmbox->mbxCommand,
4469 pmbox->mbxStatus, hbqno);
4470
4471 phba->link_state = LPFC_HBA_ERROR;
4472 mempool_free(pmb, phba->mbox_mem_pool);
4473 return -ENXIO;
4474 }
4475 }
4476 phba->hbq_count = hbq_count;
4477
4478 mempool_free(pmb, phba->mbox_mem_pool);
4479
4480 /* Initially populate or replenish the HBQs */
4481 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4482 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4483 return 0;
4484 }
4485
4486 /**
4487 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4488 * @phba: Pointer to HBA context object.
4489 *
4490 * This function is called during the SLI initialization to configure
4491 * all the HBQs and post buffers to the HBQ. The caller is not
4492 * required to hold any locks. This function will return zero if successful
4493 * else it will return negative error code.
4494 **/
4495 static int
4496 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4497 {
4498 phba->hbq_in_use = 1;
4499 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count;
4500 phba->hbq_count = 1;
4501 /* Initially populate or replenish the HBQs */
4502 lpfc_sli_hbqbuf_init_hbqs(phba, 0);
4503 return 0;
4504 }
4505
4506 /**
4507 * lpfc_sli_config_port - Issue config port mailbox command
4508 * @phba: Pointer to HBA context object.
4509 * @sli_mode: sli mode - 2/3
4510 *
4511 * This function is called by the sli intialization code path
4512 * to issue config_port mailbox command. This function restarts the
4513 * HBA firmware and issues a config_port mailbox command to configure
4514 * the SLI interface in the sli mode specified by sli_mode
4515 * variable. The caller is not required to hold any locks.
4516 * The function returns 0 if successful, else returns negative error
4517 * code.
4518 **/
4519 int
4520 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4521 {
4522 LPFC_MBOXQ_t *pmb;
4523 uint32_t resetcount = 0, rc = 0, done = 0;
4524
4525 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4526 if (!pmb) {
4527 phba->link_state = LPFC_HBA_ERROR;
4528 return -ENOMEM;
4529 }
4530
4531 phba->sli_rev = sli_mode;
4532 while (resetcount < 2 && !done) {
4533 spin_lock_irq(&phba->hbalock);
4534 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4535 spin_unlock_irq(&phba->hbalock);
4536 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4537 lpfc_sli_brdrestart(phba);
4538 rc = lpfc_sli_chipset_init(phba);
4539 if (rc)
4540 break;
4541
4542 spin_lock_irq(&phba->hbalock);
4543 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4544 spin_unlock_irq(&phba->hbalock);
4545 resetcount++;
4546
4547 /* Call pre CONFIG_PORT mailbox command initialization. A
4548 * value of 0 means the call was successful. Any other
4549 * nonzero value is a failure, but if ERESTART is returned,
4550 * the driver may reset the HBA and try again.
4551 */
4552 rc = lpfc_config_port_prep(phba);
4553 if (rc == -ERESTART) {
4554 phba->link_state = LPFC_LINK_UNKNOWN;
4555 continue;
4556 } else if (rc)
4557 break;
4558
4559 phba->link_state = LPFC_INIT_MBX_CMDS;
4560 lpfc_config_port(phba, pmb);
4561 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4562 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4563 LPFC_SLI3_HBQ_ENABLED |
4564 LPFC_SLI3_CRP_ENABLED |
4565 LPFC_SLI3_BG_ENABLED |
4566 LPFC_SLI3_DSS_ENABLED);
4567 if (rc != MBX_SUCCESS) {
4568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4569 "0442 Adapter failed to init, mbxCmd x%x "
4570 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4571 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4572 spin_lock_irq(&phba->hbalock);
4573 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4574 spin_unlock_irq(&phba->hbalock);
4575 rc = -ENXIO;
4576 } else {
4577 /* Allow asynchronous mailbox command to go through */
4578 spin_lock_irq(&phba->hbalock);
4579 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4580 spin_unlock_irq(&phba->hbalock);
4581 done = 1;
4582
4583 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4584 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4585 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4586 "3110 Port did not grant ASABT\n");
4587 }
4588 }
4589 if (!done) {
4590 rc = -EINVAL;
4591 goto do_prep_failed;
4592 }
4593 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4594 if (!pmb->u.mb.un.varCfgPort.cMA) {
4595 rc = -ENXIO;
4596 goto do_prep_failed;
4597 }
4598 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4599 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4600 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4601 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4602 phba->max_vpi : phba->max_vports;
4603
4604 } else
4605 phba->max_vpi = 0;
4606 phba->fips_level = 0;
4607 phba->fips_spec_rev = 0;
4608 if (pmb->u.mb.un.varCfgPort.gdss) {
4609 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4610 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4611 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4612 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4613 "2850 Security Crypto Active. FIPS x%d "
4614 "(Spec Rev: x%d)",
4615 phba->fips_level, phba->fips_spec_rev);
4616 }
4617 if (pmb->u.mb.un.varCfgPort.sec_err) {
4618 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4619 "2856 Config Port Security Crypto "
4620 "Error: x%x ",
4621 pmb->u.mb.un.varCfgPort.sec_err);
4622 }
4623 if (pmb->u.mb.un.varCfgPort.gerbm)
4624 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
4625 if (pmb->u.mb.un.varCfgPort.gcrp)
4626 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
4627
4628 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
4629 phba->port_gp = phba->mbox->us.s3_pgp.port;
4630
4631 if (phba->cfg_enable_bg) {
4632 if (pmb->u.mb.un.varCfgPort.gbg)
4633 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4634 else
4635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4636 "0443 Adapter did not grant "
4637 "BlockGuard\n");
4638 }
4639 } else {
4640 phba->hbq_get = NULL;
4641 phba->port_gp = phba->mbox->us.s2.port;
4642 phba->max_vpi = 0;
4643 }
4644 do_prep_failed:
4645 mempool_free(pmb, phba->mbox_mem_pool);
4646 return rc;
4647 }
4648
4649
4650 /**
4651 * lpfc_sli_hba_setup - SLI intialization function
4652 * @phba: Pointer to HBA context object.
4653 *
4654 * This function is the main SLI intialization function. This function
4655 * is called by the HBA intialization code, HBA reset code and HBA
4656 * error attention handler code. Caller is not required to hold any
4657 * locks. This function issues config_port mailbox command to configure
4658 * the SLI, setup iocb rings and HBQ rings. In the end the function
4659 * calls the config_port_post function to issue init_link mailbox
4660 * command and to start the discovery. The function will return zero
4661 * if successful, else it will return negative error code.
4662 **/
4663 int
4664 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4665 {
4666 uint32_t rc;
4667 int mode = 3, i;
4668 int longs;
4669
4670 switch (phba->cfg_sli_mode) {
4671 case 2:
4672 if (phba->cfg_enable_npiv) {
4673 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4674 "1824 NPIV enabled: Override sli_mode "
4675 "parameter (%d) to auto (0).\n",
4676 phba->cfg_sli_mode);
4677 break;
4678 }
4679 mode = 2;
4680 break;
4681 case 0:
4682 case 3:
4683 break;
4684 default:
4685 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4686 "1819 Unrecognized sli_mode parameter: %d.\n",
4687 phba->cfg_sli_mode);
4688
4689 break;
4690 }
4691 phba->fcp_embed_io = 0; /* SLI4 FC support only */
4692
4693 rc = lpfc_sli_config_port(phba, mode);
4694
4695 if (rc && phba->cfg_sli_mode == 3)
4696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4697 "1820 Unable to select SLI-3. "
4698 "Not supported by adapter.\n");
4699 if (rc && mode != 2)
4700 rc = lpfc_sli_config_port(phba, 2);
4701 else if (rc && mode == 2)
4702 rc = lpfc_sli_config_port(phba, 3);
4703 if (rc)
4704 goto lpfc_sli_hba_setup_error;
4705
4706 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4707 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4708 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4709 if (!rc) {
4710 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4711 "2709 This device supports "
4712 "Advanced Error Reporting (AER)\n");
4713 spin_lock_irq(&phba->hbalock);
4714 phba->hba_flag |= HBA_AER_ENABLED;
4715 spin_unlock_irq(&phba->hbalock);
4716 } else {
4717 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4718 "2708 This device does not support "
4719 "Advanced Error Reporting (AER): %d\n",
4720 rc);
4721 phba->cfg_aer_support = 0;
4722 }
4723 }
4724
4725 if (phba->sli_rev == 3) {
4726 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4727 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4728 } else {
4729 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4730 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4731 phba->sli3_options = 0;
4732 }
4733
4734 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4735 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
4736 phba->sli_rev, phba->max_vpi);
4737 rc = lpfc_sli_ring_map(phba);
4738
4739 if (rc)
4740 goto lpfc_sli_hba_setup_error;
4741
4742 /* Initialize VPIs. */
4743 if (phba->sli_rev == LPFC_SLI_REV3) {
4744 /*
4745 * The VPI bitmask and physical ID array are allocated
4746 * and initialized once only - at driver load. A port
4747 * reset doesn't need to reinitialize this memory.
4748 */
4749 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
4750 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
4751 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long),
4752 GFP_KERNEL);
4753 if (!phba->vpi_bmask) {
4754 rc = -ENOMEM;
4755 goto lpfc_sli_hba_setup_error;
4756 }
4757
4758 phba->vpi_ids = kzalloc(
4759 (phba->max_vpi+1) * sizeof(uint16_t),
4760 GFP_KERNEL);
4761 if (!phba->vpi_ids) {
4762 kfree(phba->vpi_bmask);
4763 rc = -ENOMEM;
4764 goto lpfc_sli_hba_setup_error;
4765 }
4766 for (i = 0; i < phba->max_vpi; i++)
4767 phba->vpi_ids[i] = i;
4768 }
4769 }
4770
4771 /* Init HBQs */
4772 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4773 rc = lpfc_sli_hbq_setup(phba);
4774 if (rc)
4775 goto lpfc_sli_hba_setup_error;
4776 }
4777 spin_lock_irq(&phba->hbalock);
4778 phba->sli.sli_flag |= LPFC_PROCESS_LA;
4779 spin_unlock_irq(&phba->hbalock);
4780
4781 rc = lpfc_config_port_post(phba);
4782 if (rc)
4783 goto lpfc_sli_hba_setup_error;
4784
4785 return rc;
4786
4787 lpfc_sli_hba_setup_error:
4788 phba->link_state = LPFC_HBA_ERROR;
4789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4790 "0445 Firmware initialization failed\n");
4791 return rc;
4792 }
4793
4794 /**
4795 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4796 * @phba: Pointer to HBA context object.
4797 * @mboxq: mailbox pointer.
4798 * This function issue a dump mailbox command to read config region
4799 * 23 and parse the records in the region and populate driver
4800 * data structure.
4801 **/
4802 static int
4803 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
4804 {
4805 LPFC_MBOXQ_t *mboxq;
4806 struct lpfc_dmabuf *mp;
4807 struct lpfc_mqe *mqe;
4808 uint32_t data_length;
4809 int rc;
4810
4811 /* Program the default value of vlan_id and fc_map */
4812 phba->valid_vlan = 0;
4813 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
4814 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
4815 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
4816
4817 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4818 if (!mboxq)
4819 return -ENOMEM;
4820
4821 mqe = &mboxq->u.mqe;
4822 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
4823 rc = -ENOMEM;
4824 goto out_free_mboxq;
4825 }
4826
4827 mp = (struct lpfc_dmabuf *) mboxq->context1;
4828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4829
4830 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4831 "(%d):2571 Mailbox cmd x%x Status x%x "
4832 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4833 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4834 "CQ: x%x x%x x%x x%x\n",
4835 mboxq->vport ? mboxq->vport->vpi : 0,
4836 bf_get(lpfc_mqe_command, mqe),
4837 bf_get(lpfc_mqe_status, mqe),
4838 mqe->un.mb_words[0], mqe->un.mb_words[1],
4839 mqe->un.mb_words[2], mqe->un.mb_words[3],
4840 mqe->un.mb_words[4], mqe->un.mb_words[5],
4841 mqe->un.mb_words[6], mqe->un.mb_words[7],
4842 mqe->un.mb_words[8], mqe->un.mb_words[9],
4843 mqe->un.mb_words[10], mqe->un.mb_words[11],
4844 mqe->un.mb_words[12], mqe->un.mb_words[13],
4845 mqe->un.mb_words[14], mqe->un.mb_words[15],
4846 mqe->un.mb_words[16], mqe->un.mb_words[50],
4847 mboxq->mcqe.word0,
4848 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
4849 mboxq->mcqe.trailer);
4850
4851 if (rc) {
4852 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4853 kfree(mp);
4854 rc = -EIO;
4855 goto out_free_mboxq;
4856 }
4857 data_length = mqe->un.mb_words[5];
4858 if (data_length > DMP_RGN23_SIZE) {
4859 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4860 kfree(mp);
4861 rc = -EIO;
4862 goto out_free_mboxq;
4863 }
4864
4865 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
4866 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4867 kfree(mp);
4868 rc = 0;
4869
4870 out_free_mboxq:
4871 mempool_free(mboxq, phba->mbox_mem_pool);
4872 return rc;
4873 }
4874
4875 /**
4876 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
4877 * @phba: pointer to lpfc hba data structure.
4878 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
4879 * @vpd: pointer to the memory to hold resulting port vpd data.
4880 * @vpd_size: On input, the number of bytes allocated to @vpd.
4881 * On output, the number of data bytes in @vpd.
4882 *
4883 * This routine executes a READ_REV SLI4 mailbox command. In
4884 * addition, this routine gets the port vpd data.
4885 *
4886 * Return codes
4887 * 0 - successful
4888 * -ENOMEM - could not allocated memory.
4889 **/
4890 static int
4891 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
4892 uint8_t *vpd, uint32_t *vpd_size)
4893 {
4894 int rc = 0;
4895 uint32_t dma_size;
4896 struct lpfc_dmabuf *dmabuf;
4897 struct lpfc_mqe *mqe;
4898
4899 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
4900 if (!dmabuf)
4901 return -ENOMEM;
4902
4903 /*
4904 * Get a DMA buffer for the vpd data resulting from the READ_REV
4905 * mailbox command.
4906 */
4907 dma_size = *vpd_size;
4908 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
4909 &dmabuf->phys, GFP_KERNEL);
4910 if (!dmabuf->virt) {
4911 kfree(dmabuf);
4912 return -ENOMEM;
4913 }
4914
4915 /*
4916 * The SLI4 implementation of READ_REV conflicts at word1,
4917 * bits 31:16 and SLI4 adds vpd functionality not present
4918 * in SLI3. This code corrects the conflicts.
4919 */
4920 lpfc_read_rev(phba, mboxq);
4921 mqe = &mboxq->u.mqe;
4922 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
4923 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
4924 mqe->un.read_rev.word1 &= 0x0000FFFF;
4925 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
4926 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
4927
4928 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4929 if (rc) {
4930 dma_free_coherent(&phba->pcidev->dev, dma_size,
4931 dmabuf->virt, dmabuf->phys);
4932 kfree(dmabuf);
4933 return -EIO;
4934 }
4935
4936 /*
4937 * The available vpd length cannot be bigger than the
4938 * DMA buffer passed to the port. Catch the less than
4939 * case and update the caller's size.
4940 */
4941 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
4942 *vpd_size = mqe->un.read_rev.avail_vpd_len;
4943
4944 memcpy(vpd, dmabuf->virt, *vpd_size);
4945
4946 dma_free_coherent(&phba->pcidev->dev, dma_size,
4947 dmabuf->virt, dmabuf->phys);
4948 kfree(dmabuf);
4949 return 0;
4950 }
4951
4952 /**
4953 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
4954 * @phba: pointer to lpfc hba data structure.
4955 *
4956 * This routine retrieves SLI4 device physical port name this PCI function
4957 * is attached to.
4958 *
4959 * Return codes
4960 * 0 - successful
4961 * otherwise - failed to retrieve physical port name
4962 **/
4963 static int
4964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
4965 {
4966 LPFC_MBOXQ_t *mboxq;
4967 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
4968 struct lpfc_controller_attribute *cntl_attr;
4969 struct lpfc_mbx_get_port_name *get_port_name;
4970 void *virtaddr = NULL;
4971 uint32_t alloclen, reqlen;
4972 uint32_t shdr_status, shdr_add_status;
4973 union lpfc_sli4_cfg_shdr *shdr;
4974 char cport_name = 0;
4975 int rc;
4976
4977 /* We assume nothing at this point */
4978 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
4979 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
4980
4981 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4982 if (!mboxq)
4983 return -ENOMEM;
4984 /* obtain link type and link number via READ_CONFIG */
4985 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
4986 lpfc_sli4_read_config(phba);
4987 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
4988 goto retrieve_ppname;
4989
4990 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
4991 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
4992 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
4993 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
4994 LPFC_SLI4_MBX_NEMBED);
4995 if (alloclen < reqlen) {
4996 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4997 "3084 Allocated DMA memory size (%d) is "
4998 "less than the requested DMA memory size "
4999 "(%d)\n", alloclen, reqlen);
5000 rc = -ENOMEM;
5001 goto out_free_mboxq;
5002 }
5003 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5004 virtaddr = mboxq->sge_array->addr[0];
5005 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5006 shdr = &mbx_cntl_attr->cfg_shdr;
5007 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5008 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5009 if (shdr_status || shdr_add_status || rc) {
5010 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5011 "3085 Mailbox x%x (x%x/x%x) failed, "
5012 "rc:x%x, status:x%x, add_status:x%x\n",
5013 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5014 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5015 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5016 rc, shdr_status, shdr_add_status);
5017 rc = -ENXIO;
5018 goto out_free_mboxq;
5019 }
5020 cntl_attr = &mbx_cntl_attr->cntl_attr;
5021 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5022 phba->sli4_hba.lnk_info.lnk_tp =
5023 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5024 phba->sli4_hba.lnk_info.lnk_no =
5025 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5026 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5027 "3086 lnk_type:%d, lnk_numb:%d\n",
5028 phba->sli4_hba.lnk_info.lnk_tp,
5029 phba->sli4_hba.lnk_info.lnk_no);
5030
5031 retrieve_ppname:
5032 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5033 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5034 sizeof(struct lpfc_mbx_get_port_name) -
5035 sizeof(struct lpfc_sli4_cfg_mhdr),
5036 LPFC_SLI4_MBX_EMBED);
5037 get_port_name = &mboxq->u.mqe.un.get_port_name;
5038 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5039 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5040 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5041 phba->sli4_hba.lnk_info.lnk_tp);
5042 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5043 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5045 if (shdr_status || shdr_add_status || rc) {
5046 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5047 "3087 Mailbox x%x (x%x/x%x) failed: "
5048 "rc:x%x, status:x%x, add_status:x%x\n",
5049 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5050 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5051 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5052 rc, shdr_status, shdr_add_status);
5053 rc = -ENXIO;
5054 goto out_free_mboxq;
5055 }
5056 switch (phba->sli4_hba.lnk_info.lnk_no) {
5057 case LPFC_LINK_NUMBER_0:
5058 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5059 &get_port_name->u.response);
5060 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5061 break;
5062 case LPFC_LINK_NUMBER_1:
5063 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5064 &get_port_name->u.response);
5065 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5066 break;
5067 case LPFC_LINK_NUMBER_2:
5068 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5069 &get_port_name->u.response);
5070 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5071 break;
5072 case LPFC_LINK_NUMBER_3:
5073 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5074 &get_port_name->u.response);
5075 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5076 break;
5077 default:
5078 break;
5079 }
5080
5081 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5082 phba->Port[0] = cport_name;
5083 phba->Port[1] = '\0';
5084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5085 "3091 SLI get port name: %s\n", phba->Port);
5086 }
5087
5088 out_free_mboxq:
5089 if (rc != MBX_TIMEOUT) {
5090 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5091 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5092 else
5093 mempool_free(mboxq, phba->mbox_mem_pool);
5094 }
5095 return rc;
5096 }
5097
5098 /**
5099 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5100 * @phba: pointer to lpfc hba data structure.
5101 *
5102 * This routine is called to explicitly arm the SLI4 device's completion and
5103 * event queues
5104 **/
5105 static void
5106 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5107 {
5108 int fcp_eqidx;
5109
5110 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
5111 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
5112 fcp_eqidx = 0;
5113 if (phba->sli4_hba.fcp_cq) {
5114 do {
5115 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx],
5116 LPFC_QUEUE_REARM);
5117 } while (++fcp_eqidx < phba->cfg_fcp_io_channel);
5118 }
5119
5120 if (phba->cfg_fof)
5121 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM);
5122
5123 if (phba->sli4_hba.hba_eq) {
5124 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel;
5125 fcp_eqidx++)
5126 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx],
5127 LPFC_QUEUE_REARM);
5128 }
5129
5130 if (phba->cfg_fof)
5131 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM);
5132 }
5133
5134 /**
5135 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5136 * @phba: Pointer to HBA context object.
5137 * @type: The resource extent type.
5138 * @extnt_count: buffer to hold port available extent count.
5139 * @extnt_size: buffer to hold element count per extent.
5140 *
5141 * This function calls the port and retrievs the number of available
5142 * extents and their size for a particular extent type.
5143 *
5144 * Returns: 0 if successful. Nonzero otherwise.
5145 **/
5146 int
5147 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5148 uint16_t *extnt_count, uint16_t *extnt_size)
5149 {
5150 int rc = 0;
5151 uint32_t length;
5152 uint32_t mbox_tmo;
5153 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5154 LPFC_MBOXQ_t *mbox;
5155
5156 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5157 if (!mbox)
5158 return -ENOMEM;
5159
5160 /* Find out how many extents are available for this resource type */
5161 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5162 sizeof(struct lpfc_sli4_cfg_mhdr));
5163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5164 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5165 length, LPFC_SLI4_MBX_EMBED);
5166
5167 /* Send an extents count of 0 - the GET doesn't use it. */
5168 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5169 LPFC_SLI4_MBX_EMBED);
5170 if (unlikely(rc)) {
5171 rc = -EIO;
5172 goto err_exit;
5173 }
5174
5175 if (!phba->sli4_hba.intr_enable)
5176 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5177 else {
5178 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5179 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5180 }
5181 if (unlikely(rc)) {
5182 rc = -EIO;
5183 goto err_exit;
5184 }
5185
5186 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5187 if (bf_get(lpfc_mbox_hdr_status,
5188 &rsrc_info->header.cfg_shdr.response)) {
5189 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5190 "2930 Failed to get resource extents "
5191 "Status 0x%x Add'l Status 0x%x\n",
5192 bf_get(lpfc_mbox_hdr_status,
5193 &rsrc_info->header.cfg_shdr.response),
5194 bf_get(lpfc_mbox_hdr_add_status,
5195 &rsrc_info->header.cfg_shdr.response));
5196 rc = -EIO;
5197 goto err_exit;
5198 }
5199
5200 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5201 &rsrc_info->u.rsp);
5202 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5203 &rsrc_info->u.rsp);
5204
5205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5206 "3162 Retrieved extents type-%d from port: count:%d, "
5207 "size:%d\n", type, *extnt_count, *extnt_size);
5208
5209 err_exit:
5210 mempool_free(mbox, phba->mbox_mem_pool);
5211 return rc;
5212 }
5213
5214 /**
5215 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5216 * @phba: Pointer to HBA context object.
5217 * @type: The extent type to check.
5218 *
5219 * This function reads the current available extents from the port and checks
5220 * if the extent count or extent size has changed since the last access.
5221 * Callers use this routine post port reset to understand if there is a
5222 * extent reprovisioning requirement.
5223 *
5224 * Returns:
5225 * -Error: error indicates problem.
5226 * 1: Extent count or size has changed.
5227 * 0: No changes.
5228 **/
5229 static int
5230 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5231 {
5232 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5233 uint16_t size_diff, rsrc_ext_size;
5234 int rc = 0;
5235 struct lpfc_rsrc_blks *rsrc_entry;
5236 struct list_head *rsrc_blk_list = NULL;
5237
5238 size_diff = 0;
5239 curr_ext_cnt = 0;
5240 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5241 &rsrc_ext_cnt,
5242 &rsrc_ext_size);
5243 if (unlikely(rc))
5244 return -EIO;
5245
5246 switch (type) {
5247 case LPFC_RSC_TYPE_FCOE_RPI:
5248 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5249 break;
5250 case LPFC_RSC_TYPE_FCOE_VPI:
5251 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5252 break;
5253 case LPFC_RSC_TYPE_FCOE_XRI:
5254 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5255 break;
5256 case LPFC_RSC_TYPE_FCOE_VFI:
5257 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5258 break;
5259 default:
5260 break;
5261 }
5262
5263 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5264 curr_ext_cnt++;
5265 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5266 size_diff++;
5267 }
5268
5269 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5270 rc = 1;
5271
5272 return rc;
5273 }
5274
5275 /**
5276 * lpfc_sli4_cfg_post_extnts -
5277 * @phba: Pointer to HBA context object.
5278 * @extnt_cnt - number of available extents.
5279 * @type - the extent type (rpi, xri, vfi, vpi).
5280 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5281 * @mbox - pointer to the caller's allocated mailbox structure.
5282 *
5283 * This function executes the extents allocation request. It also
5284 * takes care of the amount of memory needed to allocate or get the
5285 * allocated extents. It is the caller's responsibility to evaluate
5286 * the response.
5287 *
5288 * Returns:
5289 * -Error: Error value describes the condition found.
5290 * 0: if successful
5291 **/
5292 static int
5293 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5294 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5295 {
5296 int rc = 0;
5297 uint32_t req_len;
5298 uint32_t emb_len;
5299 uint32_t alloc_len, mbox_tmo;
5300
5301 /* Calculate the total requested length of the dma memory */
5302 req_len = extnt_cnt * sizeof(uint16_t);
5303
5304 /*
5305 * Calculate the size of an embedded mailbox. The uint32_t
5306 * accounts for extents-specific word.
5307 */
5308 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5309 sizeof(uint32_t);
5310
5311 /*
5312 * Presume the allocation and response will fit into an embedded
5313 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5314 */
5315 *emb = LPFC_SLI4_MBX_EMBED;
5316 if (req_len > emb_len) {
5317 req_len = extnt_cnt * sizeof(uint16_t) +
5318 sizeof(union lpfc_sli4_cfg_shdr) +
5319 sizeof(uint32_t);
5320 *emb = LPFC_SLI4_MBX_NEMBED;
5321 }
5322
5323 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5324 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5325 req_len, *emb);
5326 if (alloc_len < req_len) {
5327 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5328 "2982 Allocated DMA memory size (x%x) is "
5329 "less than the requested DMA memory "
5330 "size (x%x)\n", alloc_len, req_len);
5331 return -ENOMEM;
5332 }
5333 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5334 if (unlikely(rc))
5335 return -EIO;
5336
5337 if (!phba->sli4_hba.intr_enable)
5338 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5339 else {
5340 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5341 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5342 }
5343
5344 if (unlikely(rc))
5345 rc = -EIO;
5346 return rc;
5347 }
5348
5349 /**
5350 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5351 * @phba: Pointer to HBA context object.
5352 * @type: The resource extent type to allocate.
5353 *
5354 * This function allocates the number of elements for the specified
5355 * resource type.
5356 **/
5357 static int
5358 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5359 {
5360 bool emb = false;
5361 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5362 uint16_t rsrc_id, rsrc_start, j, k;
5363 uint16_t *ids;
5364 int i, rc;
5365 unsigned long longs;
5366 unsigned long *bmask;
5367 struct lpfc_rsrc_blks *rsrc_blks;
5368 LPFC_MBOXQ_t *mbox;
5369 uint32_t length;
5370 struct lpfc_id_range *id_array = NULL;
5371 void *virtaddr = NULL;
5372 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5373 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5374 struct list_head *ext_blk_list;
5375
5376 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5377 &rsrc_cnt,
5378 &rsrc_size);
5379 if (unlikely(rc))
5380 return -EIO;
5381
5382 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5383 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5384 "3009 No available Resource Extents "
5385 "for resource type 0x%x: Count: 0x%x, "
5386 "Size 0x%x\n", type, rsrc_cnt,
5387 rsrc_size);
5388 return -ENOMEM;
5389 }
5390
5391 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5392 "2903 Post resource extents type-0x%x: "
5393 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5394
5395 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5396 if (!mbox)
5397 return -ENOMEM;
5398
5399 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5400 if (unlikely(rc)) {
5401 rc = -EIO;
5402 goto err_exit;
5403 }
5404
5405 /*
5406 * Figure out where the response is located. Then get local pointers
5407 * to the response data. The port does not guarantee to respond to
5408 * all extents counts request so update the local variable with the
5409 * allocated count from the port.
5410 */
5411 if (emb == LPFC_SLI4_MBX_EMBED) {
5412 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5413 id_array = &rsrc_ext->u.rsp.id[0];
5414 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5415 } else {
5416 virtaddr = mbox->sge_array->addr[0];
5417 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5418 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5419 id_array = &n_rsrc->id;
5420 }
5421
5422 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5423 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5424
5425 /*
5426 * Based on the resource size and count, correct the base and max
5427 * resource values.
5428 */
5429 length = sizeof(struct lpfc_rsrc_blks);
5430 switch (type) {
5431 case LPFC_RSC_TYPE_FCOE_RPI:
5432 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5433 sizeof(unsigned long),
5434 GFP_KERNEL);
5435 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5436 rc = -ENOMEM;
5437 goto err_exit;
5438 }
5439 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt *
5440 sizeof(uint16_t),
5441 GFP_KERNEL);
5442 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5443 kfree(phba->sli4_hba.rpi_bmask);
5444 rc = -ENOMEM;
5445 goto err_exit;
5446 }
5447
5448 /*
5449 * The next_rpi was initialized with the maximum available
5450 * count but the port may allocate a smaller number. Catch
5451 * that case and update the next_rpi.
5452 */
5453 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5454
5455 /* Initialize local ptrs for common extent processing later. */
5456 bmask = phba->sli4_hba.rpi_bmask;
5457 ids = phba->sli4_hba.rpi_ids;
5458 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5459 break;
5460 case LPFC_RSC_TYPE_FCOE_VPI:
5461 phba->vpi_bmask = kzalloc(longs *
5462 sizeof(unsigned long),
5463 GFP_KERNEL);
5464 if (unlikely(!phba->vpi_bmask)) {
5465 rc = -ENOMEM;
5466 goto err_exit;
5467 }
5468 phba->vpi_ids = kzalloc(rsrc_id_cnt *
5469 sizeof(uint16_t),
5470 GFP_KERNEL);
5471 if (unlikely(!phba->vpi_ids)) {
5472 kfree(phba->vpi_bmask);
5473 rc = -ENOMEM;
5474 goto err_exit;
5475 }
5476
5477 /* Initialize local ptrs for common extent processing later. */
5478 bmask = phba->vpi_bmask;
5479 ids = phba->vpi_ids;
5480 ext_blk_list = &phba->lpfc_vpi_blk_list;
5481 break;
5482 case LPFC_RSC_TYPE_FCOE_XRI:
5483 phba->sli4_hba.xri_bmask = kzalloc(longs *
5484 sizeof(unsigned long),
5485 GFP_KERNEL);
5486 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5487 rc = -ENOMEM;
5488 goto err_exit;
5489 }
5490 phba->sli4_hba.max_cfg_param.xri_used = 0;
5491 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt *
5492 sizeof(uint16_t),
5493 GFP_KERNEL);
5494 if (unlikely(!phba->sli4_hba.xri_ids)) {
5495 kfree(phba->sli4_hba.xri_bmask);
5496 rc = -ENOMEM;
5497 goto err_exit;
5498 }
5499
5500 /* Initialize local ptrs for common extent processing later. */
5501 bmask = phba->sli4_hba.xri_bmask;
5502 ids = phba->sli4_hba.xri_ids;
5503 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5504 break;
5505 case LPFC_RSC_TYPE_FCOE_VFI:
5506 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5507 sizeof(unsigned long),
5508 GFP_KERNEL);
5509 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5510 rc = -ENOMEM;
5511 goto err_exit;
5512 }
5513 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt *
5514 sizeof(uint16_t),
5515 GFP_KERNEL);
5516 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5517 kfree(phba->sli4_hba.vfi_bmask);
5518 rc = -ENOMEM;
5519 goto err_exit;
5520 }
5521
5522 /* Initialize local ptrs for common extent processing later. */
5523 bmask = phba->sli4_hba.vfi_bmask;
5524 ids = phba->sli4_hba.vfi_ids;
5525 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5526 break;
5527 default:
5528 /* Unsupported Opcode. Fail call. */
5529 id_array = NULL;
5530 bmask = NULL;
5531 ids = NULL;
5532 ext_blk_list = NULL;
5533 goto err_exit;
5534 }
5535
5536 /*
5537 * Complete initializing the extent configuration with the
5538 * allocated ids assigned to this function. The bitmask serves
5539 * as an index into the array and manages the available ids. The
5540 * array just stores the ids communicated to the port via the wqes.
5541 */
5542 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5543 if ((i % 2) == 0)
5544 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5545 &id_array[k]);
5546 else
5547 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5548 &id_array[k]);
5549
5550 rsrc_blks = kzalloc(length, GFP_KERNEL);
5551 if (unlikely(!rsrc_blks)) {
5552 rc = -ENOMEM;
5553 kfree(bmask);
5554 kfree(ids);
5555 goto err_exit;
5556 }
5557 rsrc_blks->rsrc_start = rsrc_id;
5558 rsrc_blks->rsrc_size = rsrc_size;
5559 list_add_tail(&rsrc_blks->list, ext_blk_list);
5560 rsrc_start = rsrc_id;
5561 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0))
5562 phba->sli4_hba.scsi_xri_start = rsrc_start +
5563 lpfc_sli4_get_els_iocb_cnt(phba);
5564
5565 while (rsrc_id < (rsrc_start + rsrc_size)) {
5566 ids[j] = rsrc_id;
5567 rsrc_id++;
5568 j++;
5569 }
5570 /* Entire word processed. Get next word.*/
5571 if ((i % 2) == 1)
5572 k++;
5573 }
5574 err_exit:
5575 lpfc_sli4_mbox_cmd_free(phba, mbox);
5576 return rc;
5577 }
5578
5579 /**
5580 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
5581 * @phba: Pointer to HBA context object.
5582 * @type: the extent's type.
5583 *
5584 * This function deallocates all extents of a particular resource type.
5585 * SLI4 does not allow for deallocating a particular extent range. It
5586 * is the caller's responsibility to release all kernel memory resources.
5587 **/
5588 static int
5589 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
5590 {
5591 int rc;
5592 uint32_t length, mbox_tmo = 0;
5593 LPFC_MBOXQ_t *mbox;
5594 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
5595 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
5596
5597 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5598 if (!mbox)
5599 return -ENOMEM;
5600
5601 /*
5602 * This function sends an embedded mailbox because it only sends the
5603 * the resource type. All extents of this type are released by the
5604 * port.
5605 */
5606 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
5607 sizeof(struct lpfc_sli4_cfg_mhdr));
5608 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5609 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
5610 length, LPFC_SLI4_MBX_EMBED);
5611
5612 /* Send an extents count of 0 - the dealloc doesn't use it. */
5613 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5614 LPFC_SLI4_MBX_EMBED);
5615 if (unlikely(rc)) {
5616 rc = -EIO;
5617 goto out_free_mbox;
5618 }
5619 if (!phba->sli4_hba.intr_enable)
5620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5621 else {
5622 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5623 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5624 }
5625 if (unlikely(rc)) {
5626 rc = -EIO;
5627 goto out_free_mbox;
5628 }
5629
5630 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
5631 if (bf_get(lpfc_mbox_hdr_status,
5632 &dealloc_rsrc->header.cfg_shdr.response)) {
5633 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5634 "2919 Failed to release resource extents "
5635 "for type %d - Status 0x%x Add'l Status 0x%x. "
5636 "Resource memory not released.\n",
5637 type,
5638 bf_get(lpfc_mbox_hdr_status,
5639 &dealloc_rsrc->header.cfg_shdr.response),
5640 bf_get(lpfc_mbox_hdr_add_status,
5641 &dealloc_rsrc->header.cfg_shdr.response));
5642 rc = -EIO;
5643 goto out_free_mbox;
5644 }
5645
5646 /* Release kernel memory resources for the specific type. */
5647 switch (type) {
5648 case LPFC_RSC_TYPE_FCOE_VPI:
5649 kfree(phba->vpi_bmask);
5650 kfree(phba->vpi_ids);
5651 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5652 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5653 &phba->lpfc_vpi_blk_list, list) {
5654 list_del_init(&rsrc_blk->list);
5655 kfree(rsrc_blk);
5656 }
5657 phba->sli4_hba.max_cfg_param.vpi_used = 0;
5658 break;
5659 case LPFC_RSC_TYPE_FCOE_XRI:
5660 kfree(phba->sli4_hba.xri_bmask);
5661 kfree(phba->sli4_hba.xri_ids);
5662 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5663 &phba->sli4_hba.lpfc_xri_blk_list, list) {
5664 list_del_init(&rsrc_blk->list);
5665 kfree(rsrc_blk);
5666 }
5667 break;
5668 case LPFC_RSC_TYPE_FCOE_VFI:
5669 kfree(phba->sli4_hba.vfi_bmask);
5670 kfree(phba->sli4_hba.vfi_ids);
5671 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5672 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5673 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
5674 list_del_init(&rsrc_blk->list);
5675 kfree(rsrc_blk);
5676 }
5677 break;
5678 case LPFC_RSC_TYPE_FCOE_RPI:
5679 /* RPI bitmask and physical id array are cleaned up earlier. */
5680 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5681 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
5682 list_del_init(&rsrc_blk->list);
5683 kfree(rsrc_blk);
5684 }
5685 break;
5686 default:
5687 break;
5688 }
5689
5690 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5691
5692 out_free_mbox:
5693 mempool_free(mbox, phba->mbox_mem_pool);
5694 return rc;
5695 }
5696
5697 static void
5698 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
5699 uint32_t feature)
5700 {
5701 uint32_t len;
5702
5703 len = sizeof(struct lpfc_mbx_set_feature) -
5704 sizeof(struct lpfc_sli4_cfg_mhdr);
5705 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5706 LPFC_MBOX_OPCODE_SET_FEATURES, len,
5707 LPFC_SLI4_MBX_EMBED);
5708
5709 switch (feature) {
5710 case LPFC_SET_UE_RECOVERY:
5711 bf_set(lpfc_mbx_set_feature_UER,
5712 &mbox->u.mqe.un.set_feature, 1);
5713 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
5714 mbox->u.mqe.un.set_feature.param_len = 8;
5715 break;
5716 case LPFC_SET_MDS_DIAGS:
5717 bf_set(lpfc_mbx_set_feature_mds,
5718 &mbox->u.mqe.un.set_feature, 1);
5719 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
5720 &mbox->u.mqe.un.set_feature, 0);
5721 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
5722 mbox->u.mqe.un.set_feature.param_len = 8;
5723 break;
5724 }
5725
5726 return;
5727 }
5728
5729 /**
5730 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
5731 * @phba: Pointer to HBA context object.
5732 *
5733 * This function allocates all SLI4 resource identifiers.
5734 **/
5735 int
5736 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
5737 {
5738 int i, rc, error = 0;
5739 uint16_t count, base;
5740 unsigned long longs;
5741
5742 if (!phba->sli4_hba.rpi_hdrs_in_use)
5743 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
5744 if (phba->sli4_hba.extents_in_use) {
5745 /*
5746 * The port supports resource extents. The XRI, VPI, VFI, RPI
5747 * resource extent count must be read and allocated before
5748 * provisioning the resource id arrays.
5749 */
5750 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5751 LPFC_IDX_RSRC_RDY) {
5752 /*
5753 * Extent-based resources are set - the driver could
5754 * be in a port reset. Figure out if any corrective
5755 * actions need to be taken.
5756 */
5757 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5758 LPFC_RSC_TYPE_FCOE_VFI);
5759 if (rc != 0)
5760 error++;
5761 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5762 LPFC_RSC_TYPE_FCOE_VPI);
5763 if (rc != 0)
5764 error++;
5765 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5766 LPFC_RSC_TYPE_FCOE_XRI);
5767 if (rc != 0)
5768 error++;
5769 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5770 LPFC_RSC_TYPE_FCOE_RPI);
5771 if (rc != 0)
5772 error++;
5773
5774 /*
5775 * It's possible that the number of resources
5776 * provided to this port instance changed between
5777 * resets. Detect this condition and reallocate
5778 * resources. Otherwise, there is no action.
5779 */
5780 if (error) {
5781 lpfc_printf_log(phba, KERN_INFO,
5782 LOG_MBOX | LOG_INIT,
5783 "2931 Detected extent resource "
5784 "change. Reallocating all "
5785 "extents.\n");
5786 rc = lpfc_sli4_dealloc_extent(phba,
5787 LPFC_RSC_TYPE_FCOE_VFI);
5788 rc = lpfc_sli4_dealloc_extent(phba,
5789 LPFC_RSC_TYPE_FCOE_VPI);
5790 rc = lpfc_sli4_dealloc_extent(phba,
5791 LPFC_RSC_TYPE_FCOE_XRI);
5792 rc = lpfc_sli4_dealloc_extent(phba,
5793 LPFC_RSC_TYPE_FCOE_RPI);
5794 } else
5795 return 0;
5796 }
5797
5798 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5799 if (unlikely(rc))
5800 goto err_exit;
5801
5802 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5803 if (unlikely(rc))
5804 goto err_exit;
5805
5806 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5807 if (unlikely(rc))
5808 goto err_exit;
5809
5810 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5811 if (unlikely(rc))
5812 goto err_exit;
5813 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5814 LPFC_IDX_RSRC_RDY);
5815 return rc;
5816 } else {
5817 /*
5818 * The port does not support resource extents. The XRI, VPI,
5819 * VFI, RPI resource ids were determined from READ_CONFIG.
5820 * Just allocate the bitmasks and provision the resource id
5821 * arrays. If a port reset is active, the resources don't
5822 * need any action - just exit.
5823 */
5824 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5825 LPFC_IDX_RSRC_RDY) {
5826 lpfc_sli4_dealloc_resource_identifiers(phba);
5827 lpfc_sli4_remove_rpis(phba);
5828 }
5829 /* RPIs. */
5830 count = phba->sli4_hba.max_cfg_param.max_rpi;
5831 if (count <= 0) {
5832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5833 "3279 Invalid provisioning of "
5834 "rpi:%d\n", count);
5835 rc = -EINVAL;
5836 goto err_exit;
5837 }
5838 base = phba->sli4_hba.max_cfg_param.rpi_base;
5839 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5840 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5841 sizeof(unsigned long),
5842 GFP_KERNEL);
5843 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5844 rc = -ENOMEM;
5845 goto err_exit;
5846 }
5847 phba->sli4_hba.rpi_ids = kzalloc(count *
5848 sizeof(uint16_t),
5849 GFP_KERNEL);
5850 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5851 rc = -ENOMEM;
5852 goto free_rpi_bmask;
5853 }
5854
5855 for (i = 0; i < count; i++)
5856 phba->sli4_hba.rpi_ids[i] = base + i;
5857
5858 /* VPIs. */
5859 count = phba->sli4_hba.max_cfg_param.max_vpi;
5860 if (count <= 0) {
5861 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5862 "3280 Invalid provisioning of "
5863 "vpi:%d\n", count);
5864 rc = -EINVAL;
5865 goto free_rpi_ids;
5866 }
5867 base = phba->sli4_hba.max_cfg_param.vpi_base;
5868 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5869 phba->vpi_bmask = kzalloc(longs *
5870 sizeof(unsigned long),
5871 GFP_KERNEL);
5872 if (unlikely(!phba->vpi_bmask)) {
5873 rc = -ENOMEM;
5874 goto free_rpi_ids;
5875 }
5876 phba->vpi_ids = kzalloc(count *
5877 sizeof(uint16_t),
5878 GFP_KERNEL);
5879 if (unlikely(!phba->vpi_ids)) {
5880 rc = -ENOMEM;
5881 goto free_vpi_bmask;
5882 }
5883
5884 for (i = 0; i < count; i++)
5885 phba->vpi_ids[i] = base + i;
5886
5887 /* XRIs. */
5888 count = phba->sli4_hba.max_cfg_param.max_xri;
5889 if (count <= 0) {
5890 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5891 "3281 Invalid provisioning of "
5892 "xri:%d\n", count);
5893 rc = -EINVAL;
5894 goto free_vpi_ids;
5895 }
5896 base = phba->sli4_hba.max_cfg_param.xri_base;
5897 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5898 phba->sli4_hba.xri_bmask = kzalloc(longs *
5899 sizeof(unsigned long),
5900 GFP_KERNEL);
5901 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5902 rc = -ENOMEM;
5903 goto free_vpi_ids;
5904 }
5905 phba->sli4_hba.max_cfg_param.xri_used = 0;
5906 phba->sli4_hba.xri_ids = kzalloc(count *
5907 sizeof(uint16_t),
5908 GFP_KERNEL);
5909 if (unlikely(!phba->sli4_hba.xri_ids)) {
5910 rc = -ENOMEM;
5911 goto free_xri_bmask;
5912 }
5913
5914 for (i = 0; i < count; i++)
5915 phba->sli4_hba.xri_ids[i] = base + i;
5916
5917 /* VFIs. */
5918 count = phba->sli4_hba.max_cfg_param.max_vfi;
5919 if (count <= 0) {
5920 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5921 "3282 Invalid provisioning of "
5922 "vfi:%d\n", count);
5923 rc = -EINVAL;
5924 goto free_xri_ids;
5925 }
5926 base = phba->sli4_hba.max_cfg_param.vfi_base;
5927 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5928 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5929 sizeof(unsigned long),
5930 GFP_KERNEL);
5931 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5932 rc = -ENOMEM;
5933 goto free_xri_ids;
5934 }
5935 phba->sli4_hba.vfi_ids = kzalloc(count *
5936 sizeof(uint16_t),
5937 GFP_KERNEL);
5938 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5939 rc = -ENOMEM;
5940 goto free_vfi_bmask;
5941 }
5942
5943 for (i = 0; i < count; i++)
5944 phba->sli4_hba.vfi_ids[i] = base + i;
5945
5946 /*
5947 * Mark all resources ready. An HBA reset doesn't need
5948 * to reset the initialization.
5949 */
5950 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5951 LPFC_IDX_RSRC_RDY);
5952 return 0;
5953 }
5954
5955 free_vfi_bmask:
5956 kfree(phba->sli4_hba.vfi_bmask);
5957 phba->sli4_hba.vfi_bmask = NULL;
5958 free_xri_ids:
5959 kfree(phba->sli4_hba.xri_ids);
5960 phba->sli4_hba.xri_ids = NULL;
5961 free_xri_bmask:
5962 kfree(phba->sli4_hba.xri_bmask);
5963 phba->sli4_hba.xri_bmask = NULL;
5964 free_vpi_ids:
5965 kfree(phba->vpi_ids);
5966 phba->vpi_ids = NULL;
5967 free_vpi_bmask:
5968 kfree(phba->vpi_bmask);
5969 phba->vpi_bmask = NULL;
5970 free_rpi_ids:
5971 kfree(phba->sli4_hba.rpi_ids);
5972 phba->sli4_hba.rpi_ids = NULL;
5973 free_rpi_bmask:
5974 kfree(phba->sli4_hba.rpi_bmask);
5975 phba->sli4_hba.rpi_bmask = NULL;
5976 err_exit:
5977 return rc;
5978 }
5979
5980 /**
5981 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
5982 * @phba: Pointer to HBA context object.
5983 *
5984 * This function allocates the number of elements for the specified
5985 * resource type.
5986 **/
5987 int
5988 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
5989 {
5990 if (phba->sli4_hba.extents_in_use) {
5991 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5992 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5993 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5994 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5995 } else {
5996 kfree(phba->vpi_bmask);
5997 phba->sli4_hba.max_cfg_param.vpi_used = 0;
5998 kfree(phba->vpi_ids);
5999 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6000 kfree(phba->sli4_hba.xri_bmask);
6001 kfree(phba->sli4_hba.xri_ids);
6002 kfree(phba->sli4_hba.vfi_bmask);
6003 kfree(phba->sli4_hba.vfi_ids);
6004 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6005 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6006 }
6007
6008 return 0;
6009 }
6010
6011 /**
6012 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6013 * @phba: Pointer to HBA context object.
6014 * @type: The resource extent type.
6015 * @extnt_count: buffer to hold port extent count response
6016 * @extnt_size: buffer to hold port extent size response.
6017 *
6018 * This function calls the port to read the host allocated extents
6019 * for a particular type.
6020 **/
6021 int
6022 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6023 uint16_t *extnt_cnt, uint16_t *extnt_size)
6024 {
6025 bool emb;
6026 int rc = 0;
6027 uint16_t curr_blks = 0;
6028 uint32_t req_len, emb_len;
6029 uint32_t alloc_len, mbox_tmo;
6030 struct list_head *blk_list_head;
6031 struct lpfc_rsrc_blks *rsrc_blk;
6032 LPFC_MBOXQ_t *mbox;
6033 void *virtaddr = NULL;
6034 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6035 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6036 union lpfc_sli4_cfg_shdr *shdr;
6037
6038 switch (type) {
6039 case LPFC_RSC_TYPE_FCOE_VPI:
6040 blk_list_head = &phba->lpfc_vpi_blk_list;
6041 break;
6042 case LPFC_RSC_TYPE_FCOE_XRI:
6043 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6044 break;
6045 case LPFC_RSC_TYPE_FCOE_VFI:
6046 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6047 break;
6048 case LPFC_RSC_TYPE_FCOE_RPI:
6049 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6050 break;
6051 default:
6052 return -EIO;
6053 }
6054
6055 /* Count the number of extents currently allocatd for this type. */
6056 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6057 if (curr_blks == 0) {
6058 /*
6059 * The GET_ALLOCATED mailbox does not return the size,
6060 * just the count. The size should be just the size
6061 * stored in the current allocated block and all sizes
6062 * for an extent type are the same so set the return
6063 * value now.
6064 */
6065 *extnt_size = rsrc_blk->rsrc_size;
6066 }
6067 curr_blks++;
6068 }
6069
6070 /*
6071 * Calculate the size of an embedded mailbox. The uint32_t
6072 * accounts for extents-specific word.
6073 */
6074 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6075 sizeof(uint32_t);
6076
6077 /*
6078 * Presume the allocation and response will fit into an embedded
6079 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6080 */
6081 emb = LPFC_SLI4_MBX_EMBED;
6082 req_len = emb_len;
6083 if (req_len > emb_len) {
6084 req_len = curr_blks * sizeof(uint16_t) +
6085 sizeof(union lpfc_sli4_cfg_shdr) +
6086 sizeof(uint32_t);
6087 emb = LPFC_SLI4_MBX_NEMBED;
6088 }
6089
6090 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6091 if (!mbox)
6092 return -ENOMEM;
6093 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6094
6095 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6096 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6097 req_len, emb);
6098 if (alloc_len < req_len) {
6099 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6100 "2983 Allocated DMA memory size (x%x) is "
6101 "less than the requested DMA memory "
6102 "size (x%x)\n", alloc_len, req_len);
6103 rc = -ENOMEM;
6104 goto err_exit;
6105 }
6106 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6107 if (unlikely(rc)) {
6108 rc = -EIO;
6109 goto err_exit;
6110 }
6111
6112 if (!phba->sli4_hba.intr_enable)
6113 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6114 else {
6115 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6116 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6117 }
6118
6119 if (unlikely(rc)) {
6120 rc = -EIO;
6121 goto err_exit;
6122 }
6123
6124 /*
6125 * Figure out where the response is located. Then get local pointers
6126 * to the response data. The port does not guarantee to respond to
6127 * all extents counts request so update the local variable with the
6128 * allocated count from the port.
6129 */
6130 if (emb == LPFC_SLI4_MBX_EMBED) {
6131 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6132 shdr = &rsrc_ext->header.cfg_shdr;
6133 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6134 } else {
6135 virtaddr = mbox->sge_array->addr[0];
6136 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6137 shdr = &n_rsrc->cfg_shdr;
6138 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6139 }
6140
6141 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6142 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6143 "2984 Failed to read allocated resources "
6144 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6145 type,
6146 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6147 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6148 rc = -EIO;
6149 goto err_exit;
6150 }
6151 err_exit:
6152 lpfc_sli4_mbox_cmd_free(phba, mbox);
6153 return rc;
6154 }
6155
6156 /**
6157 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block
6158 * @phba: pointer to lpfc hba data structure.
6159 *
6160 * This routine walks the list of els buffers that have been allocated and
6161 * repost them to the port by using SGL block post. This is needed after a
6162 * pci_function_reset/warm_start or start. It attempts to construct blocks
6163 * of els buffer sgls which contains contiguous xris and uses the non-embedded
6164 * SGL block post mailbox commands to post them to the port. For single els
6165 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6166 * mailbox command for posting.
6167 *
6168 * Returns: 0 = success, non-zero failure.
6169 **/
6170 static int
6171 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba)
6172 {
6173 struct lpfc_sglq *sglq_entry = NULL;
6174 struct lpfc_sglq *sglq_entry_next = NULL;
6175 struct lpfc_sglq *sglq_entry_first = NULL;
6176 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0;
6177 int last_xritag = NO_XRI;
6178 struct lpfc_sli_ring *pring;
6179 LIST_HEAD(prep_sgl_list);
6180 LIST_HEAD(blck_sgl_list);
6181 LIST_HEAD(allc_sgl_list);
6182 LIST_HEAD(post_sgl_list);
6183 LIST_HEAD(free_sgl_list);
6184
6185 pring = &phba->sli.ring[LPFC_ELS_RING];
6186 spin_lock_irq(&phba->hbalock);
6187 spin_lock(&pring->ring_lock);
6188 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list);
6189 spin_unlock(&pring->ring_lock);
6190 spin_unlock_irq(&phba->hbalock);
6191
6192 total_cnt = phba->sli4_hba.els_xri_cnt;
6193 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6194 &allc_sgl_list, list) {
6195 list_del_init(&sglq_entry->list);
6196 block_cnt++;
6197 if ((last_xritag != NO_XRI) &&
6198 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6199 /* a hole in xri block, form a sgl posting block */
6200 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6201 post_cnt = block_cnt - 1;
6202 /* prepare list for next posting block */
6203 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6204 block_cnt = 1;
6205 } else {
6206 /* prepare list for next posting block */
6207 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6208 /* enough sgls for non-embed sgl mbox command */
6209 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6210 list_splice_init(&prep_sgl_list,
6211 &blck_sgl_list);
6212 post_cnt = block_cnt;
6213 block_cnt = 0;
6214 }
6215 }
6216 num_posted++;
6217
6218 /* keep track of last sgl's xritag */
6219 last_xritag = sglq_entry->sli4_xritag;
6220
6221 /* end of repost sgl list condition for els buffers */
6222 if (num_posted == phba->sli4_hba.els_xri_cnt) {
6223 if (post_cnt == 0) {
6224 list_splice_init(&prep_sgl_list,
6225 &blck_sgl_list);
6226 post_cnt = block_cnt;
6227 } else if (block_cnt == 1) {
6228 status = lpfc_sli4_post_sgl(phba,
6229 sglq_entry->phys, 0,
6230 sglq_entry->sli4_xritag);
6231 if (!status) {
6232 /* successful, put sgl to posted list */
6233 list_add_tail(&sglq_entry->list,
6234 &post_sgl_list);
6235 } else {
6236 /* Failure, put sgl to free list */
6237 lpfc_printf_log(phba, KERN_WARNING,
6238 LOG_SLI,
6239 "3159 Failed to post els "
6240 "sgl, xritag:x%x\n",
6241 sglq_entry->sli4_xritag);
6242 list_add_tail(&sglq_entry->list,
6243 &free_sgl_list);
6244 total_cnt--;
6245 }
6246 }
6247 }
6248
6249 /* continue until a nembed page worth of sgls */
6250 if (post_cnt == 0)
6251 continue;
6252
6253 /* post the els buffer list sgls as a block */
6254 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list,
6255 post_cnt);
6256
6257 if (!status) {
6258 /* success, put sgl list to posted sgl list */
6259 list_splice_init(&blck_sgl_list, &post_sgl_list);
6260 } else {
6261 /* Failure, put sgl list to free sgl list */
6262 sglq_entry_first = list_first_entry(&blck_sgl_list,
6263 struct lpfc_sglq,
6264 list);
6265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6266 "3160 Failed to post els sgl-list, "
6267 "xritag:x%x-x%x\n",
6268 sglq_entry_first->sli4_xritag,
6269 (sglq_entry_first->sli4_xritag +
6270 post_cnt - 1));
6271 list_splice_init(&blck_sgl_list, &free_sgl_list);
6272 total_cnt -= post_cnt;
6273 }
6274
6275 /* don't reset xirtag due to hole in xri block */
6276 if (block_cnt == 0)
6277 last_xritag = NO_XRI;
6278
6279 /* reset els sgl post count for next round of posting */
6280 post_cnt = 0;
6281 }
6282 /* update the number of XRIs posted for ELS */
6283 phba->sli4_hba.els_xri_cnt = total_cnt;
6284
6285 /* free the els sgls failed to post */
6286 lpfc_free_sgl_list(phba, &free_sgl_list);
6287
6288 /* push els sgls posted to the availble list */
6289 if (!list_empty(&post_sgl_list)) {
6290 spin_lock_irq(&phba->hbalock);
6291 spin_lock(&pring->ring_lock);
6292 list_splice_init(&post_sgl_list,
6293 &phba->sli4_hba.lpfc_sgl_list);
6294 spin_unlock(&pring->ring_lock);
6295 spin_unlock_irq(&phba->hbalock);
6296 } else {
6297 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6298 "3161 Failure to post els sgl to port.\n");
6299 return -EIO;
6300 }
6301 return 0;
6302 }
6303
6304 void
6305 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6306 {
6307 uint32_t len;
6308
6309 len = sizeof(struct lpfc_mbx_set_host_data) -
6310 sizeof(struct lpfc_sli4_cfg_mhdr);
6311 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6312 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6313 LPFC_SLI4_MBX_EMBED);
6314
6315 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
6316 mbox->u.mqe.un.set_host_data.param_len = 8;
6317 snprintf(mbox->u.mqe.un.set_host_data.data,
6318 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
6319 "Linux %s v"LPFC_DRIVER_VERSION,
6320 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
6321 }
6322
6323 /**
6324 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function
6325 * @phba: Pointer to HBA context object.
6326 *
6327 * This function is the main SLI4 device intialization PCI function. This
6328 * function is called by the HBA intialization code, HBA reset code and
6329 * HBA error attention handler code. Caller is not required to hold any
6330 * locks.
6331 **/
6332 int
6333 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
6334 {
6335 int rc;
6336 LPFC_MBOXQ_t *mboxq;
6337 struct lpfc_mqe *mqe;
6338 uint8_t *vpd;
6339 uint32_t vpd_size;
6340 uint32_t ftr_rsp = 0;
6341 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
6342 struct lpfc_vport *vport = phba->pport;
6343 struct lpfc_dmabuf *mp;
6344
6345 /* Perform a PCI function reset to start from clean */
6346 rc = lpfc_pci_function_reset(phba);
6347 if (unlikely(rc))
6348 return -ENODEV;
6349
6350 /* Check the HBA Host Status Register for readyness */
6351 rc = lpfc_sli4_post_status_check(phba);
6352 if (unlikely(rc))
6353 return -ENODEV;
6354 else {
6355 spin_lock_irq(&phba->hbalock);
6356 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
6357 spin_unlock_irq(&phba->hbalock);
6358 }
6359
6360 /*
6361 * Allocate a single mailbox container for initializing the
6362 * port.
6363 */
6364 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6365 if (!mboxq)
6366 return -ENOMEM;
6367
6368 /* Issue READ_REV to collect vpd and FW information. */
6369 vpd_size = SLI4_PAGE_SIZE;
6370 vpd = kzalloc(vpd_size, GFP_KERNEL);
6371 if (!vpd) {
6372 rc = -ENOMEM;
6373 goto out_free_mbox;
6374 }
6375
6376 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
6377 if (unlikely(rc)) {
6378 kfree(vpd);
6379 goto out_free_mbox;
6380 }
6381
6382 mqe = &mboxq->u.mqe;
6383 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
6384 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
6385 phba->hba_flag |= HBA_FCOE_MODE;
6386 phba->fcp_embed_io = 0; /* SLI4 FC support only */
6387 } else {
6388 phba->hba_flag &= ~HBA_FCOE_MODE;
6389 }
6390
6391 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
6392 LPFC_DCBX_CEE_MODE)
6393 phba->hba_flag |= HBA_FIP_SUPPORT;
6394 else
6395 phba->hba_flag &= ~HBA_FIP_SUPPORT;
6396
6397 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
6398
6399 if (phba->sli_rev != LPFC_SLI_REV4) {
6400 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6401 "0376 READ_REV Error. SLI Level %d "
6402 "FCoE enabled %d\n",
6403 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
6404 rc = -EIO;
6405 kfree(vpd);
6406 goto out_free_mbox;
6407 }
6408
6409 /*
6410 * Continue initialization with default values even if driver failed
6411 * to read FCoE param config regions, only read parameters if the
6412 * board is FCoE
6413 */
6414 if (phba->hba_flag & HBA_FCOE_MODE &&
6415 lpfc_sli4_read_fcoe_params(phba))
6416 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
6417 "2570 Failed to read FCoE parameters\n");
6418
6419 /*
6420 * Retrieve sli4 device physical port name, failure of doing it
6421 * is considered as non-fatal.
6422 */
6423 rc = lpfc_sli4_retrieve_pport_name(phba);
6424 if (!rc)
6425 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6426 "3080 Successful retrieving SLI4 device "
6427 "physical port name: %s.\n", phba->Port);
6428
6429 /*
6430 * Evaluate the read rev and vpd data. Populate the driver
6431 * state with the results. If this routine fails, the failure
6432 * is not fatal as the driver will use generic values.
6433 */
6434 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
6435 if (unlikely(!rc)) {
6436 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6437 "0377 Error %d parsing vpd. "
6438 "Using defaults.\n", rc);
6439 rc = 0;
6440 }
6441 kfree(vpd);
6442
6443 /* Save information as VPD data */
6444 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
6445 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
6446 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
6447 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
6448 &mqe->un.read_rev);
6449 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
6450 &mqe->un.read_rev);
6451 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
6452 &mqe->un.read_rev);
6453 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
6454 &mqe->un.read_rev);
6455 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
6456 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
6457 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
6458 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
6459 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
6460 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
6461 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6462 "(%d):0380 READ_REV Status x%x "
6463 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
6464 mboxq->vport ? mboxq->vport->vpi : 0,
6465 bf_get(lpfc_mqe_status, mqe),
6466 phba->vpd.rev.opFwName,
6467 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
6468 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
6469
6470 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
6471 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
6472 if (phba->pport->cfg_lun_queue_depth > rc) {
6473 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6474 "3362 LUN queue depth changed from %d to %d\n",
6475 phba->pport->cfg_lun_queue_depth, rc);
6476 phba->pport->cfg_lun_queue_depth = rc;
6477 }
6478
6479 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
6480 LPFC_SLI_INTF_IF_TYPE_0) {
6481 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
6482 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6483 if (rc == MBX_SUCCESS) {
6484 phba->hba_flag |= HBA_RECOVERABLE_UE;
6485 /* Set 1Sec interval to detect UE */
6486 phba->eratt_poll_interval = 1;
6487 phba->sli4_hba.ue_to_sr = bf_get(
6488 lpfc_mbx_set_feature_UESR,
6489 &mboxq->u.mqe.un.set_feature);
6490 phba->sli4_hba.ue_to_rp = bf_get(
6491 lpfc_mbx_set_feature_UERP,
6492 &mboxq->u.mqe.un.set_feature);
6493 }
6494 }
6495
6496 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
6497 /* Enable MDS Diagnostics only if the SLI Port supports it */
6498 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
6499 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6500 if (rc != MBX_SUCCESS)
6501 phba->mds_diags_support = 0;
6502 }
6503
6504 /*
6505 * Discover the port's supported feature set and match it against the
6506 * hosts requests.
6507 */
6508 lpfc_request_features(phba, mboxq);
6509 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6510 if (unlikely(rc)) {
6511 rc = -EIO;
6512 goto out_free_mbox;
6513 }
6514
6515 /*
6516 * The port must support FCP initiator mode as this is the
6517 * only mode running in the host.
6518 */
6519 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
6520 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6521 "0378 No support for fcpi mode.\n");
6522 ftr_rsp++;
6523 }
6524 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
6525 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
6526 else
6527 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
6528 /*
6529 * If the port cannot support the host's requested features
6530 * then turn off the global config parameters to disable the
6531 * feature in the driver. This is not a fatal error.
6532 */
6533 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
6534 if (phba->cfg_enable_bg) {
6535 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))
6536 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
6537 else
6538 ftr_rsp++;
6539 }
6540
6541 if (phba->max_vpi && phba->cfg_enable_npiv &&
6542 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6543 ftr_rsp++;
6544
6545 if (ftr_rsp) {
6546 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6547 "0379 Feature Mismatch Data: x%08x %08x "
6548 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
6549 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
6550 phba->cfg_enable_npiv, phba->max_vpi);
6551 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
6552 phba->cfg_enable_bg = 0;
6553 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6554 phba->cfg_enable_npiv = 0;
6555 }
6556
6557 /* These SLI3 features are assumed in SLI4 */
6558 spin_lock_irq(&phba->hbalock);
6559 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
6560 spin_unlock_irq(&phba->hbalock);
6561
6562 /*
6563 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
6564 * calls depends on these resources to complete port setup.
6565 */
6566 rc = lpfc_sli4_alloc_resource_identifiers(phba);
6567 if (rc) {
6568 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6569 "2920 Failed to alloc Resource IDs "
6570 "rc = x%x\n", rc);
6571 goto out_free_mbox;
6572 }
6573
6574 lpfc_set_host_data(phba, mboxq);
6575
6576 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6577 if (rc) {
6578 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6579 "2134 Failed to set host os driver version %x",
6580 rc);
6581 }
6582
6583 /* Read the port's service parameters. */
6584 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
6585 if (rc) {
6586 phba->link_state = LPFC_HBA_ERROR;
6587 rc = -ENOMEM;
6588 goto out_free_mbox;
6589 }
6590
6591 mboxq->vport = vport;
6592 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6593 mp = (struct lpfc_dmabuf *) mboxq->context1;
6594 if (rc == MBX_SUCCESS) {
6595 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
6596 rc = 0;
6597 }
6598
6599 /*
6600 * This memory was allocated by the lpfc_read_sparam routine. Release
6601 * it to the mbuf pool.
6602 */
6603 lpfc_mbuf_free(phba, mp->virt, mp->phys);
6604 kfree(mp);
6605 mboxq->context1 = NULL;
6606 if (unlikely(rc)) {
6607 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6608 "0382 READ_SPARAM command failed "
6609 "status %d, mbxStatus x%x\n",
6610 rc, bf_get(lpfc_mqe_status, mqe));
6611 phba->link_state = LPFC_HBA_ERROR;
6612 rc = -EIO;
6613 goto out_free_mbox;
6614 }
6615
6616 lpfc_update_vport_wwn(vport);
6617
6618 /* Update the fc_host data structures with new wwn. */
6619 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
6620 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
6621
6622 /* update host els and scsi xri-sgl sizes and mappings */
6623 rc = lpfc_sli4_xri_sgl_update(phba);
6624 if (unlikely(rc)) {
6625 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6626 "1400 Failed to update xri-sgl size and "
6627 "mapping: %d\n", rc);
6628 goto out_free_mbox;
6629 }
6630
6631 /* register the els sgl pool to the port */
6632 rc = lpfc_sli4_repost_els_sgl_list(phba);
6633 if (unlikely(rc)) {
6634 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6635 "0582 Error %d during els sgl post "
6636 "operation\n", rc);
6637 rc = -ENODEV;
6638 goto out_free_mbox;
6639 }
6640
6641 /* register the allocated scsi sgl pool to the port */
6642 rc = lpfc_sli4_repost_scsi_sgl_list(phba);
6643 if (unlikely(rc)) {
6644 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6645 "0383 Error %d during scsi sgl post "
6646 "operation\n", rc);
6647 /* Some Scsi buffers were moved to the abort scsi list */
6648 /* A pci function reset will repost them */
6649 rc = -ENODEV;
6650 goto out_free_mbox;
6651 }
6652
6653 /* Post the rpi header region to the device. */
6654 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
6655 if (unlikely(rc)) {
6656 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6657 "0393 Error %d during rpi post operation\n",
6658 rc);
6659 rc = -ENODEV;
6660 goto out_free_mbox;
6661 }
6662 lpfc_sli4_node_prep(phba);
6663
6664 /* Create all the SLI4 queues */
6665 rc = lpfc_sli4_queue_create(phba);
6666 if (rc) {
6667 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6668 "3089 Failed to allocate queues\n");
6669 rc = -ENODEV;
6670 goto out_stop_timers;
6671 }
6672 /* Set up all the queues to the device */
6673 rc = lpfc_sli4_queue_setup(phba);
6674 if (unlikely(rc)) {
6675 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6676 "0381 Error %d during queue setup.\n ", rc);
6677 goto out_destroy_queue;
6678 }
6679
6680 /* Arm the CQs and then EQs on device */
6681 lpfc_sli4_arm_cqeq_intr(phba);
6682
6683 /* Indicate device interrupt mode */
6684 phba->sli4_hba.intr_enable = 1;
6685
6686 /* Allow asynchronous mailbox command to go through */
6687 spin_lock_irq(&phba->hbalock);
6688 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
6689 spin_unlock_irq(&phba->hbalock);
6690
6691 /* Post receive buffers to the device */
6692 lpfc_sli4_rb_setup(phba);
6693
6694 /* Reset HBA FCF states after HBA reset */
6695 phba->fcf.fcf_flag = 0;
6696 phba->fcf.current_rec.flag = 0;
6697
6698 /* Start the ELS watchdog timer */
6699 mod_timer(&vport->els_tmofunc,
6700 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
6701
6702 /* Start heart beat timer */
6703 mod_timer(&phba->hb_tmofunc,
6704 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
6705 phba->hb_outstanding = 0;
6706 phba->last_completion_time = jiffies;
6707
6708 /* Start error attention (ERATT) polling timer */
6709 mod_timer(&phba->eratt_poll,
6710 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
6711
6712 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
6713 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
6714 rc = pci_enable_pcie_error_reporting(phba->pcidev);
6715 if (!rc) {
6716 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6717 "2829 This device supports "
6718 "Advanced Error Reporting (AER)\n");
6719 spin_lock_irq(&phba->hbalock);
6720 phba->hba_flag |= HBA_AER_ENABLED;
6721 spin_unlock_irq(&phba->hbalock);
6722 } else {
6723 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6724 "2830 This device does not support "
6725 "Advanced Error Reporting (AER)\n");
6726 phba->cfg_aer_support = 0;
6727 }
6728 rc = 0;
6729 }
6730
6731 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
6732 /*
6733 * The FC Port needs to register FCFI (index 0)
6734 */
6735 lpfc_reg_fcfi(phba, mboxq);
6736 mboxq->vport = phba->pport;
6737 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6738 if (rc != MBX_SUCCESS)
6739 goto out_unset_queue;
6740 rc = 0;
6741 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
6742 &mboxq->u.mqe.un.reg_fcfi);
6743
6744 /* Check if the port is configured to be disabled */
6745 lpfc_sli_read_link_ste(phba);
6746 }
6747
6748 /*
6749 * The port is ready, set the host's link state to LINK_DOWN
6750 * in preparation for link interrupts.
6751 */
6752 spin_lock_irq(&phba->hbalock);
6753 phba->link_state = LPFC_LINK_DOWN;
6754 spin_unlock_irq(&phba->hbalock);
6755 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
6756 (phba->hba_flag & LINK_DISABLED)) {
6757 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
6758 "3103 Adapter Link is disabled.\n");
6759 lpfc_down_link(phba, mboxq);
6760 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6761 if (rc != MBX_SUCCESS) {
6762 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
6763 "3104 Adapter failed to issue "
6764 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
6765 goto out_unset_queue;
6766 }
6767 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
6768 /* don't perform init_link on SLI4 FC port loopback test */
6769 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
6770 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
6771 if (rc)
6772 goto out_unset_queue;
6773 }
6774 }
6775 mempool_free(mboxq, phba->mbox_mem_pool);
6776 return rc;
6777 out_unset_queue:
6778 /* Unset all the queues set up in this routine when error out */
6779 lpfc_sli4_queue_unset(phba);
6780 out_destroy_queue:
6781 lpfc_sli4_queue_destroy(phba);
6782 out_stop_timers:
6783 lpfc_stop_hba_timers(phba);
6784 out_free_mbox:
6785 mempool_free(mboxq, phba->mbox_mem_pool);
6786 return rc;
6787 }
6788
6789 /**
6790 * lpfc_mbox_timeout - Timeout call back function for mbox timer
6791 * @ptr: context object - pointer to hba structure.
6792 *
6793 * This is the callback function for mailbox timer. The mailbox
6794 * timer is armed when a new mailbox command is issued and the timer
6795 * is deleted when the mailbox complete. The function is called by
6796 * the kernel timer code when a mailbox does not complete within
6797 * expected time. This function wakes up the worker thread to
6798 * process the mailbox timeout and returns. All the processing is
6799 * done by the worker thread function lpfc_mbox_timeout_handler.
6800 **/
6801 void
6802 lpfc_mbox_timeout(unsigned long ptr)
6803 {
6804 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
6805 unsigned long iflag;
6806 uint32_t tmo_posted;
6807
6808 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
6809 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
6810 if (!tmo_posted)
6811 phba->pport->work_port_events |= WORKER_MBOX_TMO;
6812 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
6813
6814 if (!tmo_posted)
6815 lpfc_worker_wake_up(phba);
6816 return;
6817 }
6818
6819 /**
6820 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
6821 * are pending
6822 * @phba: Pointer to HBA context object.
6823 *
6824 * This function checks if any mailbox completions are present on the mailbox
6825 * completion queue.
6826 **/
6827 static bool
6828 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
6829 {
6830
6831 uint32_t idx;
6832 struct lpfc_queue *mcq;
6833 struct lpfc_mcqe *mcqe;
6834 bool pending_completions = false;
6835
6836 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
6837 return false;
6838
6839 /* Check for completions on mailbox completion queue */
6840
6841 mcq = phba->sli4_hba.mbx_cq;
6842 idx = mcq->hba_index;
6843 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) {
6844 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
6845 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
6846 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
6847 pending_completions = true;
6848 break;
6849 }
6850 idx = (idx + 1) % mcq->entry_count;
6851 if (mcq->hba_index == idx)
6852 break;
6853 }
6854 return pending_completions;
6855
6856 }
6857
6858 /**
6859 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
6860 * that were missed.
6861 * @phba: Pointer to HBA context object.
6862 *
6863 * For sli4, it is possible to miss an interrupt. As such mbox completions
6864 * maybe missed causing erroneous mailbox timeouts to occur. This function
6865 * checks to see if mbox completions are on the mailbox completion queue
6866 * and will process all the completions associated with the eq for the
6867 * mailbox completion queue.
6868 **/
6869 bool
6870 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
6871 {
6872
6873 uint32_t eqidx;
6874 struct lpfc_queue *fpeq = NULL;
6875 struct lpfc_eqe *eqe;
6876 bool mbox_pending;
6877
6878 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
6879 return false;
6880
6881 /* Find the eq associated with the mcq */
6882
6883 if (phba->sli4_hba.hba_eq)
6884 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++)
6885 if (phba->sli4_hba.hba_eq[eqidx]->queue_id ==
6886 phba->sli4_hba.mbx_cq->assoc_qid) {
6887 fpeq = phba->sli4_hba.hba_eq[eqidx];
6888 break;
6889 }
6890 if (!fpeq)
6891 return false;
6892
6893 /* Turn off interrupts from this EQ */
6894
6895 lpfc_sli4_eq_clr_intr(fpeq);
6896
6897 /* Check to see if a mbox completion is pending */
6898
6899 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
6900
6901 /*
6902 * If a mbox completion is pending, process all the events on EQ
6903 * associated with the mbox completion queue (this could include
6904 * mailbox commands, async events, els commands, receive queue data
6905 * and fcp commands)
6906 */
6907
6908 if (mbox_pending)
6909 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
6910 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
6911 fpeq->EQ_processed++;
6912 }
6913
6914 /* Always clear and re-arm the EQ */
6915
6916 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
6917
6918 return mbox_pending;
6919
6920 }
6921
6922 /**
6923 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
6924 * @phba: Pointer to HBA context object.
6925 *
6926 * This function is called from worker thread when a mailbox command times out.
6927 * The caller is not required to hold any locks. This function will reset the
6928 * HBA and recover all the pending commands.
6929 **/
6930 void
6931 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
6932 {
6933 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
6934 MAILBOX_t *mb = NULL;
6935
6936 struct lpfc_sli *psli = &phba->sli;
6937
6938 /* If the mailbox completed, process the completion and return */
6939 if (lpfc_sli4_process_missed_mbox_completions(phba))
6940 return;
6941
6942 if (pmbox != NULL)
6943 mb = &pmbox->u.mb;
6944 /* Check the pmbox pointer first. There is a race condition
6945 * between the mbox timeout handler getting executed in the
6946 * worklist and the mailbox actually completing. When this
6947 * race condition occurs, the mbox_active will be NULL.
6948 */
6949 spin_lock_irq(&phba->hbalock);
6950 if (pmbox == NULL) {
6951 lpfc_printf_log(phba, KERN_WARNING,
6952 LOG_MBOX | LOG_SLI,
6953 "0353 Active Mailbox cleared - mailbox timeout "
6954 "exiting\n");
6955 spin_unlock_irq(&phba->hbalock);
6956 return;
6957 }
6958
6959 /* Mbox cmd <mbxCommand> timeout */
6960 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6961 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
6962 mb->mbxCommand,
6963 phba->pport->port_state,
6964 phba->sli.sli_flag,
6965 phba->sli.mbox_active);
6966 spin_unlock_irq(&phba->hbalock);
6967
6968 /* Setting state unknown so lpfc_sli_abort_iocb_ring
6969 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
6970 * it to fail all outstanding SCSI IO.
6971 */
6972 spin_lock_irq(&phba->pport->work_port_lock);
6973 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
6974 spin_unlock_irq(&phba->pport->work_port_lock);
6975 spin_lock_irq(&phba->hbalock);
6976 phba->link_state = LPFC_LINK_UNKNOWN;
6977 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
6978 spin_unlock_irq(&phba->hbalock);
6979
6980 lpfc_sli_abort_fcp_rings(phba);
6981
6982 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6983 "0345 Resetting board due to mailbox timeout\n");
6984
6985 /* Reset the HBA device */
6986 lpfc_reset_hba(phba);
6987 }
6988
6989 /**
6990 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
6991 * @phba: Pointer to HBA context object.
6992 * @pmbox: Pointer to mailbox object.
6993 * @flag: Flag indicating how the mailbox need to be processed.
6994 *
6995 * This function is called by discovery code and HBA management code
6996 * to submit a mailbox command to firmware with SLI-3 interface spec. This
6997 * function gets the hbalock to protect the data structures.
6998 * The mailbox command can be submitted in polling mode, in which case
6999 * this function will wait in a polling loop for the completion of the
7000 * mailbox.
7001 * If the mailbox is submitted in no_wait mode (not polling) the
7002 * function will submit the command and returns immediately without waiting
7003 * for the mailbox completion. The no_wait is supported only when HBA
7004 * is in SLI2/SLI3 mode - interrupts are enabled.
7005 * The SLI interface allows only one mailbox pending at a time. If the
7006 * mailbox is issued in polling mode and there is already a mailbox
7007 * pending, then the function will return an error. If the mailbox is issued
7008 * in NO_WAIT mode and there is a mailbox pending already, the function
7009 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7010 * The sli layer owns the mailbox object until the completion of mailbox
7011 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7012 * return codes the caller owns the mailbox command after the return of
7013 * the function.
7014 **/
7015 static int
7016 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7017 uint32_t flag)
7018 {
7019 MAILBOX_t *mbx;
7020 struct lpfc_sli *psli = &phba->sli;
7021 uint32_t status, evtctr;
7022 uint32_t ha_copy, hc_copy;
7023 int i;
7024 unsigned long timeout;
7025 unsigned long drvr_flag = 0;
7026 uint32_t word0, ldata;
7027 void __iomem *to_slim;
7028 int processing_queue = 0;
7029
7030 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7031 if (!pmbox) {
7032 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7033 /* processing mbox queue from intr_handler */
7034 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7035 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7036 return MBX_SUCCESS;
7037 }
7038 processing_queue = 1;
7039 pmbox = lpfc_mbox_get(phba);
7040 if (!pmbox) {
7041 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7042 return MBX_SUCCESS;
7043 }
7044 }
7045
7046 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7047 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7048 if(!pmbox->vport) {
7049 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7050 lpfc_printf_log(phba, KERN_ERR,
7051 LOG_MBOX | LOG_VPORT,
7052 "1806 Mbox x%x failed. No vport\n",
7053 pmbox->u.mb.mbxCommand);
7054 dump_stack();
7055 goto out_not_finished;
7056 }
7057 }
7058
7059 /* If the PCI channel is in offline state, do not post mbox. */
7060 if (unlikely(pci_channel_offline(phba->pcidev))) {
7061 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7062 goto out_not_finished;
7063 }
7064
7065 /* If HBA has a deferred error attention, fail the iocb. */
7066 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7067 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7068 goto out_not_finished;
7069 }
7070
7071 psli = &phba->sli;
7072
7073 mbx = &pmbox->u.mb;
7074 status = MBX_SUCCESS;
7075
7076 if (phba->link_state == LPFC_HBA_ERROR) {
7077 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7078
7079 /* Mbox command <mbxCommand> cannot issue */
7080 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7081 "(%d):0311 Mailbox command x%x cannot "
7082 "issue Data: x%x x%x\n",
7083 pmbox->vport ? pmbox->vport->vpi : 0,
7084 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7085 goto out_not_finished;
7086 }
7087
7088 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7089 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7090 !(hc_copy & HC_MBINT_ENA)) {
7091 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7092 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7093 "(%d):2528 Mailbox command x%x cannot "
7094 "issue Data: x%x x%x\n",
7095 pmbox->vport ? pmbox->vport->vpi : 0,
7096 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7097 goto out_not_finished;
7098 }
7099 }
7100
7101 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7102 /* Polling for a mbox command when another one is already active
7103 * is not allowed in SLI. Also, the driver must have established
7104 * SLI2 mode to queue and process multiple mbox commands.
7105 */
7106
7107 if (flag & MBX_POLL) {
7108 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7109
7110 /* Mbox command <mbxCommand> cannot issue */
7111 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7112 "(%d):2529 Mailbox command x%x "
7113 "cannot issue Data: x%x x%x\n",
7114 pmbox->vport ? pmbox->vport->vpi : 0,
7115 pmbox->u.mb.mbxCommand,
7116 psli->sli_flag, flag);
7117 goto out_not_finished;
7118 }
7119
7120 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
7121 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7122 /* Mbox command <mbxCommand> cannot issue */
7123 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7124 "(%d):2530 Mailbox command x%x "
7125 "cannot issue Data: x%x x%x\n",
7126 pmbox->vport ? pmbox->vport->vpi : 0,
7127 pmbox->u.mb.mbxCommand,
7128 psli->sli_flag, flag);
7129 goto out_not_finished;
7130 }
7131
7132 /* Another mailbox command is still being processed, queue this
7133 * command to be processed later.
7134 */
7135 lpfc_mbox_put(phba, pmbox);
7136
7137 /* Mbox cmd issue - BUSY */
7138 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7139 "(%d):0308 Mbox cmd issue - BUSY Data: "
7140 "x%x x%x x%x x%x\n",
7141 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
7142 mbx->mbxCommand, phba->pport->port_state,
7143 psli->sli_flag, flag);
7144
7145 psli->slistat.mbox_busy++;
7146 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7147
7148 if (pmbox->vport) {
7149 lpfc_debugfs_disc_trc(pmbox->vport,
7150 LPFC_DISC_TRC_MBOX_VPORT,
7151 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
7152 (uint32_t)mbx->mbxCommand,
7153 mbx->un.varWords[0], mbx->un.varWords[1]);
7154 }
7155 else {
7156 lpfc_debugfs_disc_trc(phba->pport,
7157 LPFC_DISC_TRC_MBOX,
7158 "MBOX Bsy: cmd:x%x mb:x%x x%x",
7159 (uint32_t)mbx->mbxCommand,
7160 mbx->un.varWords[0], mbx->un.varWords[1]);
7161 }
7162
7163 return MBX_BUSY;
7164 }
7165
7166 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7167
7168 /* If we are not polling, we MUST be in SLI2 mode */
7169 if (flag != MBX_POLL) {
7170 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
7171 (mbx->mbxCommand != MBX_KILL_BOARD)) {
7172 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7173 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7174 /* Mbox command <mbxCommand> cannot issue */
7175 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7176 "(%d):2531 Mailbox command x%x "
7177 "cannot issue Data: x%x x%x\n",
7178 pmbox->vport ? pmbox->vport->vpi : 0,
7179 pmbox->u.mb.mbxCommand,
7180 psli->sli_flag, flag);
7181 goto out_not_finished;
7182 }
7183 /* timeout active mbox command */
7184 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7185 1000);
7186 mod_timer(&psli->mbox_tmo, jiffies + timeout);
7187 }
7188
7189 /* Mailbox cmd <cmd> issue */
7190 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7191 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
7192 "x%x\n",
7193 pmbox->vport ? pmbox->vport->vpi : 0,
7194 mbx->mbxCommand, phba->pport->port_state,
7195 psli->sli_flag, flag);
7196
7197 if (mbx->mbxCommand != MBX_HEARTBEAT) {
7198 if (pmbox->vport) {
7199 lpfc_debugfs_disc_trc(pmbox->vport,
7200 LPFC_DISC_TRC_MBOX_VPORT,
7201 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7202 (uint32_t)mbx->mbxCommand,
7203 mbx->un.varWords[0], mbx->un.varWords[1]);
7204 }
7205 else {
7206 lpfc_debugfs_disc_trc(phba->pport,
7207 LPFC_DISC_TRC_MBOX,
7208 "MBOX Send: cmd:x%x mb:x%x x%x",
7209 (uint32_t)mbx->mbxCommand,
7210 mbx->un.varWords[0], mbx->un.varWords[1]);
7211 }
7212 }
7213
7214 psli->slistat.mbox_cmd++;
7215 evtctr = psli->slistat.mbox_event;
7216
7217 /* next set own bit for the adapter and copy over command word */
7218 mbx->mbxOwner = OWN_CHIP;
7219
7220 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7221 /* Populate mbox extension offset word. */
7222 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
7223 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7224 = (uint8_t *)phba->mbox_ext
7225 - (uint8_t *)phba->mbox;
7226 }
7227
7228 /* Copy the mailbox extension data */
7229 if (pmbox->in_ext_byte_len && pmbox->context2) {
7230 lpfc_sli_pcimem_bcopy(pmbox->context2,
7231 (uint8_t *)phba->mbox_ext,
7232 pmbox->in_ext_byte_len);
7233 }
7234 /* Copy command data to host SLIM area */
7235 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7236 } else {
7237 /* Populate mbox extension offset word. */
7238 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
7239 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
7240 = MAILBOX_HBA_EXT_OFFSET;
7241
7242 /* Copy the mailbox extension data */
7243 if (pmbox->in_ext_byte_len && pmbox->context2) {
7244 lpfc_memcpy_to_slim(phba->MBslimaddr +
7245 MAILBOX_HBA_EXT_OFFSET,
7246 pmbox->context2, pmbox->in_ext_byte_len);
7247
7248 }
7249 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7250 /* copy command data into host mbox for cmpl */
7251 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
7252 }
7253
7254 /* First copy mbox command data to HBA SLIM, skip past first
7255 word */
7256 to_slim = phba->MBslimaddr + sizeof (uint32_t);
7257 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
7258 MAILBOX_CMD_SIZE - sizeof (uint32_t));
7259
7260 /* Next copy over first word, with mbxOwner set */
7261 ldata = *((uint32_t *)mbx);
7262 to_slim = phba->MBslimaddr;
7263 writel(ldata, to_slim);
7264 readl(to_slim); /* flush */
7265
7266 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7267 /* switch over to host mailbox */
7268 psli->sli_flag |= LPFC_SLI_ACTIVE;
7269 }
7270 }
7271
7272 wmb();
7273
7274 switch (flag) {
7275 case MBX_NOWAIT:
7276 /* Set up reference to mailbox command */
7277 psli->mbox_active = pmbox;
7278 /* Interrupt board to do it */
7279 writel(CA_MBATT, phba->CAregaddr);
7280 readl(phba->CAregaddr); /* flush */
7281 /* Don't wait for it to finish, just return */
7282 break;
7283
7284 case MBX_POLL:
7285 /* Set up null reference to mailbox command */
7286 psli->mbox_active = NULL;
7287 /* Interrupt board to do it */
7288 writel(CA_MBATT, phba->CAregaddr);
7289 readl(phba->CAregaddr); /* flush */
7290
7291 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7292 /* First read mbox status word */
7293 word0 = *((uint32_t *)phba->mbox);
7294 word0 = le32_to_cpu(word0);
7295 } else {
7296 /* First read mbox status word */
7297 if (lpfc_readl(phba->MBslimaddr, &word0)) {
7298 spin_unlock_irqrestore(&phba->hbalock,
7299 drvr_flag);
7300 goto out_not_finished;
7301 }
7302 }
7303
7304 /* Read the HBA Host Attention Register */
7305 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7306 spin_unlock_irqrestore(&phba->hbalock,
7307 drvr_flag);
7308 goto out_not_finished;
7309 }
7310 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
7311 1000) + jiffies;
7312 i = 0;
7313 /* Wait for command to complete */
7314 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
7315 (!(ha_copy & HA_MBATT) &&
7316 (phba->link_state > LPFC_WARM_START))) {
7317 if (time_after(jiffies, timeout)) {
7318 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7319 spin_unlock_irqrestore(&phba->hbalock,
7320 drvr_flag);
7321 goto out_not_finished;
7322 }
7323
7324 /* Check if we took a mbox interrupt while we were
7325 polling */
7326 if (((word0 & OWN_CHIP) != OWN_CHIP)
7327 && (evtctr != psli->slistat.mbox_event))
7328 break;
7329
7330 if (i++ > 10) {
7331 spin_unlock_irqrestore(&phba->hbalock,
7332 drvr_flag);
7333 msleep(1);
7334 spin_lock_irqsave(&phba->hbalock, drvr_flag);
7335 }
7336
7337 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7338 /* First copy command data */
7339 word0 = *((uint32_t *)phba->mbox);
7340 word0 = le32_to_cpu(word0);
7341 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
7342 MAILBOX_t *slimmb;
7343 uint32_t slimword0;
7344 /* Check real SLIM for any errors */
7345 slimword0 = readl(phba->MBslimaddr);
7346 slimmb = (MAILBOX_t *) & slimword0;
7347 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
7348 && slimmb->mbxStatus) {
7349 psli->sli_flag &=
7350 ~LPFC_SLI_ACTIVE;
7351 word0 = slimword0;
7352 }
7353 }
7354 } else {
7355 /* First copy command data */
7356 word0 = readl(phba->MBslimaddr);
7357 }
7358 /* Read the HBA Host Attention Register */
7359 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
7360 spin_unlock_irqrestore(&phba->hbalock,
7361 drvr_flag);
7362 goto out_not_finished;
7363 }
7364 }
7365
7366 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7367 /* copy results back to user */
7368 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE);
7369 /* Copy the mailbox extension data */
7370 if (pmbox->out_ext_byte_len && pmbox->context2) {
7371 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
7372 pmbox->context2,
7373 pmbox->out_ext_byte_len);
7374 }
7375 } else {
7376 /* First copy command data */
7377 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
7378 MAILBOX_CMD_SIZE);
7379 /* Copy the mailbox extension data */
7380 if (pmbox->out_ext_byte_len && pmbox->context2) {
7381 lpfc_memcpy_from_slim(pmbox->context2,
7382 phba->MBslimaddr +
7383 MAILBOX_HBA_EXT_OFFSET,
7384 pmbox->out_ext_byte_len);
7385 }
7386 }
7387
7388 writel(HA_MBATT, phba->HAregaddr);
7389 readl(phba->HAregaddr); /* flush */
7390
7391 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7392 status = mbx->mbxStatus;
7393 }
7394
7395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7396 return status;
7397
7398 out_not_finished:
7399 if (processing_queue) {
7400 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
7401 lpfc_mbox_cmpl_put(phba, pmbox);
7402 }
7403 return MBX_NOT_FINISHED;
7404 }
7405
7406 /**
7407 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
7408 * @phba: Pointer to HBA context object.
7409 *
7410 * The function blocks the posting of SLI4 asynchronous mailbox commands from
7411 * the driver internal pending mailbox queue. It will then try to wait out the
7412 * possible outstanding mailbox command before return.
7413 *
7414 * Returns:
7415 * 0 - the outstanding mailbox command completed; otherwise, the wait for
7416 * the outstanding mailbox command timed out.
7417 **/
7418 static int
7419 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
7420 {
7421 struct lpfc_sli *psli = &phba->sli;
7422 int rc = 0;
7423 unsigned long timeout = 0;
7424
7425 /* Mark the asynchronous mailbox command posting as blocked */
7426 spin_lock_irq(&phba->hbalock);
7427 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
7428 /* Determine how long we might wait for the active mailbox
7429 * command to be gracefully completed by firmware.
7430 */
7431 if (phba->sli.mbox_active)
7432 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
7433 phba->sli.mbox_active) *
7434 1000) + jiffies;
7435 spin_unlock_irq(&phba->hbalock);
7436
7437 /* Make sure the mailbox is really active */
7438 if (timeout)
7439 lpfc_sli4_process_missed_mbox_completions(phba);
7440
7441 /* Wait for the outstnading mailbox command to complete */
7442 while (phba->sli.mbox_active) {
7443 /* Check active mailbox complete status every 2ms */
7444 msleep(2);
7445 if (time_after(jiffies, timeout)) {
7446 /* Timeout, marked the outstanding cmd not complete */
7447 rc = 1;
7448 break;
7449 }
7450 }
7451
7452 /* Can not cleanly block async mailbox command, fails it */
7453 if (rc) {
7454 spin_lock_irq(&phba->hbalock);
7455 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7456 spin_unlock_irq(&phba->hbalock);
7457 }
7458 return rc;
7459 }
7460
7461 /**
7462 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
7463 * @phba: Pointer to HBA context object.
7464 *
7465 * The function unblocks and resume posting of SLI4 asynchronous mailbox
7466 * commands from the driver internal pending mailbox queue. It makes sure
7467 * that there is no outstanding mailbox command before resuming posting
7468 * asynchronous mailbox commands. If, for any reason, there is outstanding
7469 * mailbox command, it will try to wait it out before resuming asynchronous
7470 * mailbox command posting.
7471 **/
7472 static void
7473 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
7474 {
7475 struct lpfc_sli *psli = &phba->sli;
7476
7477 spin_lock_irq(&phba->hbalock);
7478 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7479 /* Asynchronous mailbox posting is not blocked, do nothing */
7480 spin_unlock_irq(&phba->hbalock);
7481 return;
7482 }
7483
7484 /* Outstanding synchronous mailbox command is guaranteed to be done,
7485 * successful or timeout, after timing-out the outstanding mailbox
7486 * command shall always be removed, so just unblock posting async
7487 * mailbox command and resume
7488 */
7489 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7490 spin_unlock_irq(&phba->hbalock);
7491
7492 /* wake up worker thread to post asynchronlous mailbox command */
7493 lpfc_worker_wake_up(phba);
7494 }
7495
7496 /**
7497 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
7498 * @phba: Pointer to HBA context object.
7499 * @mboxq: Pointer to mailbox object.
7500 *
7501 * The function waits for the bootstrap mailbox register ready bit from
7502 * port for twice the regular mailbox command timeout value.
7503 *
7504 * 0 - no timeout on waiting for bootstrap mailbox register ready.
7505 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
7506 **/
7507 static int
7508 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7509 {
7510 uint32_t db_ready;
7511 unsigned long timeout;
7512 struct lpfc_register bmbx_reg;
7513
7514 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
7515 * 1000) + jiffies;
7516
7517 do {
7518 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
7519 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
7520 if (!db_ready)
7521 msleep(2);
7522
7523 if (time_after(jiffies, timeout))
7524 return MBXERR_ERROR;
7525 } while (!db_ready);
7526
7527 return 0;
7528 }
7529
7530 /**
7531 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
7532 * @phba: Pointer to HBA context object.
7533 * @mboxq: Pointer to mailbox object.
7534 *
7535 * The function posts a mailbox to the port. The mailbox is expected
7536 * to be comletely filled in and ready for the port to operate on it.
7537 * This routine executes a synchronous completion operation on the
7538 * mailbox by polling for its completion.
7539 *
7540 * The caller must not be holding any locks when calling this routine.
7541 *
7542 * Returns:
7543 * MBX_SUCCESS - mailbox posted successfully
7544 * Any of the MBX error values.
7545 **/
7546 static int
7547 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
7548 {
7549 int rc = MBX_SUCCESS;
7550 unsigned long iflag;
7551 uint32_t mcqe_status;
7552 uint32_t mbx_cmnd;
7553 struct lpfc_sli *psli = &phba->sli;
7554 struct lpfc_mqe *mb = &mboxq->u.mqe;
7555 struct lpfc_bmbx_create *mbox_rgn;
7556 struct dma_address *dma_address;
7557
7558 /*
7559 * Only one mailbox can be active to the bootstrap mailbox region
7560 * at a time and there is no queueing provided.
7561 */
7562 spin_lock_irqsave(&phba->hbalock, iflag);
7563 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7564 spin_unlock_irqrestore(&phba->hbalock, iflag);
7565 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7566 "(%d):2532 Mailbox command x%x (x%x/x%x) "
7567 "cannot issue Data: x%x x%x\n",
7568 mboxq->vport ? mboxq->vport->vpi : 0,
7569 mboxq->u.mb.mbxCommand,
7570 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7571 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7572 psli->sli_flag, MBX_POLL);
7573 return MBXERR_ERROR;
7574 }
7575 /* The server grabs the token and owns it until release */
7576 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7577 phba->sli.mbox_active = mboxq;
7578 spin_unlock_irqrestore(&phba->hbalock, iflag);
7579
7580 /* wait for bootstrap mbox register for readyness */
7581 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7582 if (rc)
7583 goto exit;
7584
7585 /*
7586 * Initialize the bootstrap memory region to avoid stale data areas
7587 * in the mailbox post. Then copy the caller's mailbox contents to
7588 * the bmbx mailbox region.
7589 */
7590 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
7591 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
7592 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
7593 sizeof(struct lpfc_mqe));
7594
7595 /* Post the high mailbox dma address to the port and wait for ready. */
7596 dma_address = &phba->sli4_hba.bmbx.dma_address;
7597 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
7598
7599 /* wait for bootstrap mbox register for hi-address write done */
7600 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7601 if (rc)
7602 goto exit;
7603
7604 /* Post the low mailbox dma address to the port. */
7605 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
7606
7607 /* wait for bootstrap mbox register for low address write done */
7608 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
7609 if (rc)
7610 goto exit;
7611
7612 /*
7613 * Read the CQ to ensure the mailbox has completed.
7614 * If so, update the mailbox status so that the upper layers
7615 * can complete the request normally.
7616 */
7617 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
7618 sizeof(struct lpfc_mqe));
7619 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
7620 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
7621 sizeof(struct lpfc_mcqe));
7622 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
7623 /*
7624 * When the CQE status indicates a failure and the mailbox status
7625 * indicates success then copy the CQE status into the mailbox status
7626 * (and prefix it with x4000).
7627 */
7628 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
7629 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
7630 bf_set(lpfc_mqe_status, mb,
7631 (LPFC_MBX_ERROR_RANGE | mcqe_status));
7632 rc = MBXERR_ERROR;
7633 } else
7634 lpfc_sli4_swap_str(phba, mboxq);
7635
7636 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7637 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
7638 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
7639 " x%x x%x CQ: x%x x%x x%x x%x\n",
7640 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7641 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7642 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7643 bf_get(lpfc_mqe_status, mb),
7644 mb->un.mb_words[0], mb->un.mb_words[1],
7645 mb->un.mb_words[2], mb->un.mb_words[3],
7646 mb->un.mb_words[4], mb->un.mb_words[5],
7647 mb->un.mb_words[6], mb->un.mb_words[7],
7648 mb->un.mb_words[8], mb->un.mb_words[9],
7649 mb->un.mb_words[10], mb->un.mb_words[11],
7650 mb->un.mb_words[12], mboxq->mcqe.word0,
7651 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
7652 mboxq->mcqe.trailer);
7653 exit:
7654 /* We are holding the token, no needed for lock when release */
7655 spin_lock_irqsave(&phba->hbalock, iflag);
7656 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7657 phba->sli.mbox_active = NULL;
7658 spin_unlock_irqrestore(&phba->hbalock, iflag);
7659 return rc;
7660 }
7661
7662 /**
7663 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
7664 * @phba: Pointer to HBA context object.
7665 * @pmbox: Pointer to mailbox object.
7666 * @flag: Flag indicating how the mailbox need to be processed.
7667 *
7668 * This function is called by discovery code and HBA management code to submit
7669 * a mailbox command to firmware with SLI-4 interface spec.
7670 *
7671 * Return codes the caller owns the mailbox command after the return of the
7672 * function.
7673 **/
7674 static int
7675 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
7676 uint32_t flag)
7677 {
7678 struct lpfc_sli *psli = &phba->sli;
7679 unsigned long iflags;
7680 int rc;
7681
7682 /* dump from issue mailbox command if setup */
7683 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
7684
7685 rc = lpfc_mbox_dev_check(phba);
7686 if (unlikely(rc)) {
7687 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7688 "(%d):2544 Mailbox command x%x (x%x/x%x) "
7689 "cannot issue Data: x%x x%x\n",
7690 mboxq->vport ? mboxq->vport->vpi : 0,
7691 mboxq->u.mb.mbxCommand,
7692 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7693 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7694 psli->sli_flag, flag);
7695 goto out_not_finished;
7696 }
7697
7698 /* Detect polling mode and jump to a handler */
7699 if (!phba->sli4_hba.intr_enable) {
7700 if (flag == MBX_POLL)
7701 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7702 else
7703 rc = -EIO;
7704 if (rc != MBX_SUCCESS)
7705 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7706 "(%d):2541 Mailbox command x%x "
7707 "(x%x/x%x) failure: "
7708 "mqe_sta: x%x mcqe_sta: x%x/x%x "
7709 "Data: x%x x%x\n,",
7710 mboxq->vport ? mboxq->vport->vpi : 0,
7711 mboxq->u.mb.mbxCommand,
7712 lpfc_sli_config_mbox_subsys_get(phba,
7713 mboxq),
7714 lpfc_sli_config_mbox_opcode_get(phba,
7715 mboxq),
7716 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
7717 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
7718 bf_get(lpfc_mcqe_ext_status,
7719 &mboxq->mcqe),
7720 psli->sli_flag, flag);
7721 return rc;
7722 } else if (flag == MBX_POLL) {
7723 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7724 "(%d):2542 Try to issue mailbox command "
7725 "x%x (x%x/x%x) synchronously ahead of async"
7726 "mailbox command queue: x%x x%x\n",
7727 mboxq->vport ? mboxq->vport->vpi : 0,
7728 mboxq->u.mb.mbxCommand,
7729 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7730 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7731 psli->sli_flag, flag);
7732 /* Try to block the asynchronous mailbox posting */
7733 rc = lpfc_sli4_async_mbox_block(phba);
7734 if (!rc) {
7735 /* Successfully blocked, now issue sync mbox cmd */
7736 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7737 if (rc != MBX_SUCCESS)
7738 lpfc_printf_log(phba, KERN_WARNING,
7739 LOG_MBOX | LOG_SLI,
7740 "(%d):2597 Sync Mailbox command "
7741 "x%x (x%x/x%x) failure: "
7742 "mqe_sta: x%x mcqe_sta: x%x/x%x "
7743 "Data: x%x x%x\n,",
7744 mboxq->vport ? mboxq->vport->vpi : 0,
7745 mboxq->u.mb.mbxCommand,
7746 lpfc_sli_config_mbox_subsys_get(phba,
7747 mboxq),
7748 lpfc_sli_config_mbox_opcode_get(phba,
7749 mboxq),
7750 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
7751 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
7752 bf_get(lpfc_mcqe_ext_status,
7753 &mboxq->mcqe),
7754 psli->sli_flag, flag);
7755 /* Unblock the async mailbox posting afterward */
7756 lpfc_sli4_async_mbox_unblock(phba);
7757 }
7758 return rc;
7759 }
7760
7761 /* Now, interrupt mode asynchrous mailbox command */
7762 rc = lpfc_mbox_cmd_check(phba, mboxq);
7763 if (rc) {
7764 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7765 "(%d):2543 Mailbox command x%x (x%x/x%x) "
7766 "cannot issue Data: x%x x%x\n",
7767 mboxq->vport ? mboxq->vport->vpi : 0,
7768 mboxq->u.mb.mbxCommand,
7769 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7770 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7771 psli->sli_flag, flag);
7772 goto out_not_finished;
7773 }
7774
7775 /* Put the mailbox command to the driver internal FIFO */
7776 psli->slistat.mbox_busy++;
7777 spin_lock_irqsave(&phba->hbalock, iflags);
7778 lpfc_mbox_put(phba, mboxq);
7779 spin_unlock_irqrestore(&phba->hbalock, iflags);
7780 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7781 "(%d):0354 Mbox cmd issue - Enqueue Data: "
7782 "x%x (x%x/x%x) x%x x%x x%x\n",
7783 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
7784 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7785 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7786 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7787 phba->pport->port_state,
7788 psli->sli_flag, MBX_NOWAIT);
7789 /* Wake up worker thread to transport mailbox command from head */
7790 lpfc_worker_wake_up(phba);
7791
7792 return MBX_BUSY;
7793
7794 out_not_finished:
7795 return MBX_NOT_FINISHED;
7796 }
7797
7798 /**
7799 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
7800 * @phba: Pointer to HBA context object.
7801 *
7802 * This function is called by worker thread to send a mailbox command to
7803 * SLI4 HBA firmware.
7804 *
7805 **/
7806 int
7807 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
7808 {
7809 struct lpfc_sli *psli = &phba->sli;
7810 LPFC_MBOXQ_t *mboxq;
7811 int rc = MBX_SUCCESS;
7812 unsigned long iflags;
7813 struct lpfc_mqe *mqe;
7814 uint32_t mbx_cmnd;
7815
7816 /* Check interrupt mode before post async mailbox command */
7817 if (unlikely(!phba->sli4_hba.intr_enable))
7818 return MBX_NOT_FINISHED;
7819
7820 /* Check for mailbox command service token */
7821 spin_lock_irqsave(&phba->hbalock, iflags);
7822 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7823 spin_unlock_irqrestore(&phba->hbalock, iflags);
7824 return MBX_NOT_FINISHED;
7825 }
7826 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7827 spin_unlock_irqrestore(&phba->hbalock, iflags);
7828 return MBX_NOT_FINISHED;
7829 }
7830 if (unlikely(phba->sli.mbox_active)) {
7831 spin_unlock_irqrestore(&phba->hbalock, iflags);
7832 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7833 "0384 There is pending active mailbox cmd\n");
7834 return MBX_NOT_FINISHED;
7835 }
7836 /* Take the mailbox command service token */
7837 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7838
7839 /* Get the next mailbox command from head of queue */
7840 mboxq = lpfc_mbox_get(phba);
7841
7842 /* If no more mailbox command waiting for post, we're done */
7843 if (!mboxq) {
7844 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7845 spin_unlock_irqrestore(&phba->hbalock, iflags);
7846 return MBX_SUCCESS;
7847 }
7848 phba->sli.mbox_active = mboxq;
7849 spin_unlock_irqrestore(&phba->hbalock, iflags);
7850
7851 /* Check device readiness for posting mailbox command */
7852 rc = lpfc_mbox_dev_check(phba);
7853 if (unlikely(rc))
7854 /* Driver clean routine will clean up pending mailbox */
7855 goto out_not_finished;
7856
7857 /* Prepare the mbox command to be posted */
7858 mqe = &mboxq->u.mqe;
7859 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
7860
7861 /* Start timer for the mbox_tmo and log some mailbox post messages */
7862 mod_timer(&psli->mbox_tmo, (jiffies +
7863 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
7864
7865 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7866 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
7867 "x%x x%x\n",
7868 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7869 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7870 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7871 phba->pport->port_state, psli->sli_flag);
7872
7873 if (mbx_cmnd != MBX_HEARTBEAT) {
7874 if (mboxq->vport) {
7875 lpfc_debugfs_disc_trc(mboxq->vport,
7876 LPFC_DISC_TRC_MBOX_VPORT,
7877 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7878 mbx_cmnd, mqe->un.mb_words[0],
7879 mqe->un.mb_words[1]);
7880 } else {
7881 lpfc_debugfs_disc_trc(phba->pport,
7882 LPFC_DISC_TRC_MBOX,
7883 "MBOX Send: cmd:x%x mb:x%x x%x",
7884 mbx_cmnd, mqe->un.mb_words[0],
7885 mqe->un.mb_words[1]);
7886 }
7887 }
7888 psli->slistat.mbox_cmd++;
7889
7890 /* Post the mailbox command to the port */
7891 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
7892 if (rc != MBX_SUCCESS) {
7893 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7894 "(%d):2533 Mailbox command x%x (x%x/x%x) "
7895 "cannot issue Data: x%x x%x\n",
7896 mboxq->vport ? mboxq->vport->vpi : 0,
7897 mboxq->u.mb.mbxCommand,
7898 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7899 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7900 psli->sli_flag, MBX_NOWAIT);
7901 goto out_not_finished;
7902 }
7903
7904 return rc;
7905
7906 out_not_finished:
7907 spin_lock_irqsave(&phba->hbalock, iflags);
7908 if (phba->sli.mbox_active) {
7909 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
7910 __lpfc_mbox_cmpl_put(phba, mboxq);
7911 /* Release the token */
7912 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7913 phba->sli.mbox_active = NULL;
7914 }
7915 spin_unlock_irqrestore(&phba->hbalock, iflags);
7916
7917 return MBX_NOT_FINISHED;
7918 }
7919
7920 /**
7921 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
7922 * @phba: Pointer to HBA context object.
7923 * @pmbox: Pointer to mailbox object.
7924 * @flag: Flag indicating how the mailbox need to be processed.
7925 *
7926 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
7927 * the API jump table function pointer from the lpfc_hba struct.
7928 *
7929 * Return codes the caller owns the mailbox command after the return of the
7930 * function.
7931 **/
7932 int
7933 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
7934 {
7935 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
7936 }
7937
7938 /**
7939 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
7940 * @phba: The hba struct for which this call is being executed.
7941 * @dev_grp: The HBA PCI-Device group number.
7942 *
7943 * This routine sets up the mbox interface API function jump table in @phba
7944 * struct.
7945 * Returns: 0 - success, -ENODEV - failure.
7946 **/
7947 int
7948 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7949 {
7950
7951 switch (dev_grp) {
7952 case LPFC_PCI_DEV_LP:
7953 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
7954 phba->lpfc_sli_handle_slow_ring_event =
7955 lpfc_sli_handle_slow_ring_event_s3;
7956 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
7957 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
7958 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
7959 break;
7960 case LPFC_PCI_DEV_OC:
7961 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
7962 phba->lpfc_sli_handle_slow_ring_event =
7963 lpfc_sli_handle_slow_ring_event_s4;
7964 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
7965 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
7966 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
7967 break;
7968 default:
7969 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7970 "1420 Invalid HBA PCI-device group: 0x%x\n",
7971 dev_grp);
7972 return -ENODEV;
7973 break;
7974 }
7975 return 0;
7976 }
7977
7978 /**
7979 * __lpfc_sli_ringtx_put - Add an iocb to the txq
7980 * @phba: Pointer to HBA context object.
7981 * @pring: Pointer to driver SLI ring object.
7982 * @piocb: Pointer to address of newly added command iocb.
7983 *
7984 * This function is called with hbalock held to add a command
7985 * iocb to the txq when SLI layer cannot submit the command iocb
7986 * to the ring.
7987 **/
7988 void
7989 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7990 struct lpfc_iocbq *piocb)
7991 {
7992 lockdep_assert_held(&phba->hbalock);
7993 /* Insert the caller's iocb in the txq tail for later processing. */
7994 list_add_tail(&piocb->list, &pring->txq);
7995 }
7996
7997 /**
7998 * lpfc_sli_next_iocb - Get the next iocb in the txq
7999 * @phba: Pointer to HBA context object.
8000 * @pring: Pointer to driver SLI ring object.
8001 * @piocb: Pointer to address of newly added command iocb.
8002 *
8003 * This function is called with hbalock held before a new
8004 * iocb is submitted to the firmware. This function checks
8005 * txq to flush the iocbs in txq to Firmware before
8006 * submitting new iocbs to the Firmware.
8007 * If there are iocbs in the txq which need to be submitted
8008 * to firmware, lpfc_sli_next_iocb returns the first element
8009 * of the txq after dequeuing it from txq.
8010 * If there is no iocb in the txq then the function will return
8011 * *piocb and *piocb is set to NULL. Caller needs to check
8012 * *piocb to find if there are more commands in the txq.
8013 **/
8014 static struct lpfc_iocbq *
8015 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8016 struct lpfc_iocbq **piocb)
8017 {
8018 struct lpfc_iocbq * nextiocb;
8019
8020 lockdep_assert_held(&phba->hbalock);
8021
8022 nextiocb = lpfc_sli_ringtx_get(phba, pring);
8023 if (!nextiocb) {
8024 nextiocb = *piocb;
8025 *piocb = NULL;
8026 }
8027
8028 return nextiocb;
8029 }
8030
8031 /**
8032 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8033 * @phba: Pointer to HBA context object.
8034 * @ring_number: SLI ring number to issue iocb on.
8035 * @piocb: Pointer to command iocb.
8036 * @flag: Flag indicating if this command can be put into txq.
8037 *
8038 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8039 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8040 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8041 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8042 * this function allows only iocbs for posting buffers. This function finds
8043 * next available slot in the command ring and posts the command to the
8044 * available slot and writes the port attention register to request HBA start
8045 * processing new iocb. If there is no slot available in the ring and
8046 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8047 * the function returns IOCB_BUSY.
8048 *
8049 * This function is called with hbalock held. The function will return success
8050 * after it successfully submit the iocb to firmware or after adding to the
8051 * txq.
8052 **/
8053 static int
8054 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8055 struct lpfc_iocbq *piocb, uint32_t flag)
8056 {
8057 struct lpfc_iocbq *nextiocb;
8058 IOCB_t *iocb;
8059 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
8060
8061 lockdep_assert_held(&phba->hbalock);
8062
8063 if (piocb->iocb_cmpl && (!piocb->vport) &&
8064 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8065 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8066 lpfc_printf_log(phba, KERN_ERR,
8067 LOG_SLI | LOG_VPORT,
8068 "1807 IOCB x%x failed. No vport\n",
8069 piocb->iocb.ulpCommand);
8070 dump_stack();
8071 return IOCB_ERROR;
8072 }
8073
8074
8075 /* If the PCI channel is in offline state, do not post iocbs. */
8076 if (unlikely(pci_channel_offline(phba->pcidev)))
8077 return IOCB_ERROR;
8078
8079 /* If HBA has a deferred error attention, fail the iocb. */
8080 if (unlikely(phba->hba_flag & DEFER_ERATT))
8081 return IOCB_ERROR;
8082
8083 /*
8084 * We should never get an IOCB if we are in a < LINK_DOWN state
8085 */
8086 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8087 return IOCB_ERROR;
8088
8089 /*
8090 * Check to see if we are blocking IOCB processing because of a
8091 * outstanding event.
8092 */
8093 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8094 goto iocb_busy;
8095
8096 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8097 /*
8098 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8099 * can be issued if the link is not up.
8100 */
8101 switch (piocb->iocb.ulpCommand) {
8102 case CMD_GEN_REQUEST64_CR:
8103 case CMD_GEN_REQUEST64_CX:
8104 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8105 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8106 FC_RCTL_DD_UNSOL_CMD) ||
8107 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
8108 MENLO_TRANSPORT_TYPE))
8109
8110 goto iocb_busy;
8111 break;
8112 case CMD_QUE_RING_BUF_CN:
8113 case CMD_QUE_RING_BUF64_CN:
8114 /*
8115 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
8116 * completion, iocb_cmpl MUST be 0.
8117 */
8118 if (piocb->iocb_cmpl)
8119 piocb->iocb_cmpl = NULL;
8120 /*FALLTHROUGH*/
8121 case CMD_CREATE_XRI_CR:
8122 case CMD_CLOSE_XRI_CN:
8123 case CMD_CLOSE_XRI_CX:
8124 break;
8125 default:
8126 goto iocb_busy;
8127 }
8128
8129 /*
8130 * For FCP commands, we must be in a state where we can process link
8131 * attention events.
8132 */
8133 } else if (unlikely(pring->ringno == phba->sli.fcp_ring &&
8134 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
8135 goto iocb_busy;
8136 }
8137
8138 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
8139 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
8140 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
8141
8142 if (iocb)
8143 lpfc_sli_update_ring(phba, pring);
8144 else
8145 lpfc_sli_update_full_ring(phba, pring);
8146
8147 if (!piocb)
8148 return IOCB_SUCCESS;
8149
8150 goto out_busy;
8151
8152 iocb_busy:
8153 pring->stats.iocb_cmd_delay++;
8154
8155 out_busy:
8156
8157 if (!(flag & SLI_IOCB_RET_IOCB)) {
8158 __lpfc_sli_ringtx_put(phba, pring, piocb);
8159 return IOCB_SUCCESS;
8160 }
8161
8162 return IOCB_BUSY;
8163 }
8164
8165 /**
8166 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
8167 * @phba: Pointer to HBA context object.
8168 * @piocb: Pointer to command iocb.
8169 * @sglq: Pointer to the scatter gather queue object.
8170 *
8171 * This routine converts the bpl or bde that is in the IOCB
8172 * to a sgl list for the sli4 hardware. The physical address
8173 * of the bpl/bde is converted back to a virtual address.
8174 * If the IOCB contains a BPL then the list of BDE's is
8175 * converted to sli4_sge's. If the IOCB contains a single
8176 * BDE then it is converted to a single sli_sge.
8177 * The IOCB is still in cpu endianess so the contents of
8178 * the bpl can be used without byte swapping.
8179 *
8180 * Returns valid XRI = Success, NO_XRI = Failure.
8181 **/
8182 static uint16_t
8183 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
8184 struct lpfc_sglq *sglq)
8185 {
8186 uint16_t xritag = NO_XRI;
8187 struct ulp_bde64 *bpl = NULL;
8188 struct ulp_bde64 bde;
8189 struct sli4_sge *sgl = NULL;
8190 struct lpfc_dmabuf *dmabuf;
8191 IOCB_t *icmd;
8192 int numBdes = 0;
8193 int i = 0;
8194 uint32_t offset = 0; /* accumulated offset in the sg request list */
8195 int inbound = 0; /* number of sg reply entries inbound from firmware */
8196
8197 if (!piocbq || !sglq)
8198 return xritag;
8199
8200 sgl = (struct sli4_sge *)sglq->sgl;
8201 icmd = &piocbq->iocb;
8202 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
8203 return sglq->sli4_xritag;
8204 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8205 numBdes = icmd->un.genreq64.bdl.bdeSize /
8206 sizeof(struct ulp_bde64);
8207 /* The addrHigh and addrLow fields within the IOCB
8208 * have not been byteswapped yet so there is no
8209 * need to swap them back.
8210 */
8211 if (piocbq->context3)
8212 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
8213 else
8214 return xritag;
8215
8216 bpl = (struct ulp_bde64 *)dmabuf->virt;
8217 if (!bpl)
8218 return xritag;
8219
8220 for (i = 0; i < numBdes; i++) {
8221 /* Should already be byte swapped. */
8222 sgl->addr_hi = bpl->addrHigh;
8223 sgl->addr_lo = bpl->addrLow;
8224
8225 sgl->word2 = le32_to_cpu(sgl->word2);
8226 if ((i+1) == numBdes)
8227 bf_set(lpfc_sli4_sge_last, sgl, 1);
8228 else
8229 bf_set(lpfc_sli4_sge_last, sgl, 0);
8230 /* swap the size field back to the cpu so we
8231 * can assign it to the sgl.
8232 */
8233 bde.tus.w = le32_to_cpu(bpl->tus.w);
8234 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
8235 /* The offsets in the sgl need to be accumulated
8236 * separately for the request and reply lists.
8237 * The request is always first, the reply follows.
8238 */
8239 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
8240 /* add up the reply sg entries */
8241 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
8242 inbound++;
8243 /* first inbound? reset the offset */
8244 if (inbound == 1)
8245 offset = 0;
8246 bf_set(lpfc_sli4_sge_offset, sgl, offset);
8247 bf_set(lpfc_sli4_sge_type, sgl,
8248 LPFC_SGE_TYPE_DATA);
8249 offset += bde.tus.f.bdeSize;
8250 }
8251 sgl->word2 = cpu_to_le32(sgl->word2);
8252 bpl++;
8253 sgl++;
8254 }
8255 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
8256 /* The addrHigh and addrLow fields of the BDE have not
8257 * been byteswapped yet so they need to be swapped
8258 * before putting them in the sgl.
8259 */
8260 sgl->addr_hi =
8261 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
8262 sgl->addr_lo =
8263 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
8264 sgl->word2 = le32_to_cpu(sgl->word2);
8265 bf_set(lpfc_sli4_sge_last, sgl, 1);
8266 sgl->word2 = cpu_to_le32(sgl->word2);
8267 sgl->sge_len =
8268 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
8269 }
8270 return sglq->sli4_xritag;
8271 }
8272
8273 /**
8274 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
8275 * @phba: Pointer to HBA context object.
8276 * @piocb: Pointer to command iocb.
8277 * @wqe: Pointer to the work queue entry.
8278 *
8279 * This routine converts the iocb command to its Work Queue Entry
8280 * equivalent. The wqe pointer should not have any fields set when
8281 * this routine is called because it will memcpy over them.
8282 * This routine does not set the CQ_ID or the WQEC bits in the
8283 * wqe.
8284 *
8285 * Returns: 0 = Success, IOCB_ERROR = Failure.
8286 **/
8287 static int
8288 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
8289 union lpfc_wqe *wqe)
8290 {
8291 uint32_t xmit_len = 0, total_len = 0;
8292 uint8_t ct = 0;
8293 uint32_t fip;
8294 uint32_t abort_tag;
8295 uint8_t command_type = ELS_COMMAND_NON_FIP;
8296 uint8_t cmnd;
8297 uint16_t xritag;
8298 uint16_t abrt_iotag;
8299 struct lpfc_iocbq *abrtiocbq;
8300 struct ulp_bde64 *bpl = NULL;
8301 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
8302 int numBdes, i;
8303 struct ulp_bde64 bde;
8304 struct lpfc_nodelist *ndlp;
8305 uint32_t *pcmd;
8306 uint32_t if_type;
8307
8308 fip = phba->hba_flag & HBA_FIP_SUPPORT;
8309 /* The fcp commands will set command type */
8310 if (iocbq->iocb_flag & LPFC_IO_FCP)
8311 command_type = FCP_COMMAND;
8312 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
8313 command_type = ELS_COMMAND_FIP;
8314 else
8315 command_type = ELS_COMMAND_NON_FIP;
8316
8317 if (phba->fcp_embed_io)
8318 memset(wqe, 0, sizeof(union lpfc_wqe128));
8319 /* Some of the fields are in the right position already */
8320 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
8321 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */
8322 wqe->generic.wqe_com.word10 = 0;
8323
8324 abort_tag = (uint32_t) iocbq->iotag;
8325 xritag = iocbq->sli4_xritag;
8326 /* words0-2 bpl convert bde */
8327 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
8328 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8329 sizeof(struct ulp_bde64);
8330 bpl = (struct ulp_bde64 *)
8331 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
8332 if (!bpl)
8333 return IOCB_ERROR;
8334
8335 /* Should already be byte swapped. */
8336 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
8337 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
8338 /* swap the size field back to the cpu so we
8339 * can assign it to the sgl.
8340 */
8341 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
8342 xmit_len = wqe->generic.bde.tus.f.bdeSize;
8343 total_len = 0;
8344 for (i = 0; i < numBdes; i++) {
8345 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8346 total_len += bde.tus.f.bdeSize;
8347 }
8348 } else
8349 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
8350
8351 iocbq->iocb.ulpIoTag = iocbq->iotag;
8352 cmnd = iocbq->iocb.ulpCommand;
8353
8354 switch (iocbq->iocb.ulpCommand) {
8355 case CMD_ELS_REQUEST64_CR:
8356 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
8357 ndlp = iocbq->context_un.ndlp;
8358 else
8359 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8360 if (!iocbq->iocb.ulpLe) {
8361 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8362 "2007 Only Limited Edition cmd Format"
8363 " supported 0x%x\n",
8364 iocbq->iocb.ulpCommand);
8365 return IOCB_ERROR;
8366 }
8367
8368 wqe->els_req.payload_len = xmit_len;
8369 /* Els_reguest64 has a TMO */
8370 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
8371 iocbq->iocb.ulpTimeout);
8372 /* Need a VF for word 4 set the vf bit*/
8373 bf_set(els_req64_vf, &wqe->els_req, 0);
8374 /* And a VFID for word 12 */
8375 bf_set(els_req64_vfid, &wqe->els_req, 0);
8376 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8377 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8378 iocbq->iocb.ulpContext);
8379 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
8380 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
8381 /* CCP CCPE PV PRI in word10 were set in the memcpy */
8382 if (command_type == ELS_COMMAND_FIP)
8383 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
8384 >> LPFC_FIP_ELS_ID_SHIFT);
8385 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8386 iocbq->context2)->virt);
8387 if_type = bf_get(lpfc_sli_intf_if_type,
8388 &phba->sli4_hba.sli_intf);
8389 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8390 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
8391 *pcmd == ELS_CMD_SCR ||
8392 *pcmd == ELS_CMD_FDISC ||
8393 *pcmd == ELS_CMD_LOGO ||
8394 *pcmd == ELS_CMD_PLOGI)) {
8395 bf_set(els_req64_sp, &wqe->els_req, 1);
8396 bf_set(els_req64_sid, &wqe->els_req,
8397 iocbq->vport->fc_myDID);
8398 if ((*pcmd == ELS_CMD_FLOGI) &&
8399 !(phba->fc_topology ==
8400 LPFC_TOPOLOGY_LOOP))
8401 bf_set(els_req64_sid, &wqe->els_req, 0);
8402 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
8403 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8404 phba->vpi_ids[iocbq->vport->vpi]);
8405 } else if (pcmd && iocbq->context1) {
8406 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
8407 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
8408 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8409 }
8410 }
8411 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
8412 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8413 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
8414 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
8415 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
8416 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
8417 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8418 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
8419 wqe->els_req.max_response_payload_len = total_len - xmit_len;
8420 break;
8421 case CMD_XMIT_SEQUENCE64_CX:
8422 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
8423 iocbq->iocb.un.ulpWord[3]);
8424 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
8425 iocbq->iocb.unsli3.rcvsli3.ox_id);
8426 /* The entire sequence is transmitted for this IOCB */
8427 xmit_len = total_len;
8428 cmnd = CMD_XMIT_SEQUENCE64_CR;
8429 if (phba->link_flag & LS_LOOPBACK_MODE)
8430 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
8431 case CMD_XMIT_SEQUENCE64_CR:
8432 /* word3 iocb=io_tag32 wqe=reserved */
8433 wqe->xmit_sequence.rsvd3 = 0;
8434 /* word4 relative_offset memcpy */
8435 /* word5 r_ctl/df_ctl memcpy */
8436 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
8437 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
8438 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
8439 LPFC_WQE_IOD_WRITE);
8440 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
8441 LPFC_WQE_LENLOC_WORD12);
8442 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
8443 wqe->xmit_sequence.xmit_len = xmit_len;
8444 command_type = OTHER_COMMAND;
8445 break;
8446 case CMD_XMIT_BCAST64_CN:
8447 /* word3 iocb=iotag32 wqe=seq_payload_len */
8448 wqe->xmit_bcast64.seq_payload_len = xmit_len;
8449 /* word4 iocb=rsvd wqe=rsvd */
8450 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
8451 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
8452 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
8453 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8454 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
8455 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
8456 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
8457 LPFC_WQE_LENLOC_WORD3);
8458 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
8459 break;
8460 case CMD_FCP_IWRITE64_CR:
8461 command_type = FCP_COMMAND_DATA_OUT;
8462 /* word3 iocb=iotag wqe=payload_offset_len */
8463 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8464 bf_set(payload_offset_len, &wqe->fcp_iwrite,
8465 xmit_len + sizeof(struct fcp_rsp));
8466 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
8467 0);
8468 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8469 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8470 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
8471 iocbq->iocb.ulpFCP2Rcvy);
8472 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
8473 /* Always open the exchange */
8474 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
8475 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
8476 LPFC_WQE_LENLOC_WORD4);
8477 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
8478 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
8479 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8480 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
8481 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
8482 if (iocbq->priority) {
8483 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8484 (iocbq->priority << 1));
8485 } else {
8486 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
8487 (phba->cfg_XLanePriority << 1));
8488 }
8489 }
8490 /* Note, word 10 is already initialized to 0 */
8491
8492 if (phba->fcp_embed_io) {
8493 struct lpfc_scsi_buf *lpfc_cmd;
8494 struct sli4_sge *sgl;
8495 union lpfc_wqe128 *wqe128;
8496 struct fcp_cmnd *fcp_cmnd;
8497 uint32_t *ptr;
8498
8499 /* 128 byte wqe support here */
8500 wqe128 = (union lpfc_wqe128 *)wqe;
8501
8502 lpfc_cmd = iocbq->context1;
8503 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8504 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8505
8506 /* Word 0-2 - FCP_CMND */
8507 wqe128->generic.bde.tus.f.bdeFlags =
8508 BUFF_TYPE_BDE_IMMED;
8509 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8510 wqe128->generic.bde.addrHigh = 0;
8511 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8512
8513 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1);
8514
8515 /* Word 22-29 FCP CMND Payload */
8516 ptr = &wqe128->words[22];
8517 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8518 }
8519 break;
8520 case CMD_FCP_IREAD64_CR:
8521 /* word3 iocb=iotag wqe=payload_offset_len */
8522 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8523 bf_set(payload_offset_len, &wqe->fcp_iread,
8524 xmit_len + sizeof(struct fcp_rsp));
8525 bf_set(cmd_buff_len, &wqe->fcp_iread,
8526 0);
8527 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
8528 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
8529 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
8530 iocbq->iocb.ulpFCP2Rcvy);
8531 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
8532 /* Always open the exchange */
8533 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
8534 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
8535 LPFC_WQE_LENLOC_WORD4);
8536 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
8537 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
8538 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8539 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
8540 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
8541 if (iocbq->priority) {
8542 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8543 (iocbq->priority << 1));
8544 } else {
8545 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
8546 (phba->cfg_XLanePriority << 1));
8547 }
8548 }
8549 /* Note, word 10 is already initialized to 0 */
8550
8551 if (phba->fcp_embed_io) {
8552 struct lpfc_scsi_buf *lpfc_cmd;
8553 struct sli4_sge *sgl;
8554 union lpfc_wqe128 *wqe128;
8555 struct fcp_cmnd *fcp_cmnd;
8556 uint32_t *ptr;
8557
8558 /* 128 byte wqe support here */
8559 wqe128 = (union lpfc_wqe128 *)wqe;
8560
8561 lpfc_cmd = iocbq->context1;
8562 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8563 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8564
8565 /* Word 0-2 - FCP_CMND */
8566 wqe128->generic.bde.tus.f.bdeFlags =
8567 BUFF_TYPE_BDE_IMMED;
8568 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8569 wqe128->generic.bde.addrHigh = 0;
8570 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8571
8572 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1);
8573
8574 /* Word 22-29 FCP CMND Payload */
8575 ptr = &wqe128->words[22];
8576 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8577 }
8578 break;
8579 case CMD_FCP_ICMND64_CR:
8580 /* word3 iocb=iotag wqe=payload_offset_len */
8581 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
8582 bf_set(payload_offset_len, &wqe->fcp_icmd,
8583 xmit_len + sizeof(struct fcp_rsp));
8584 bf_set(cmd_buff_len, &wqe->fcp_icmd,
8585 0);
8586 /* word3 iocb=IO_TAG wqe=reserved */
8587 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
8588 /* Always open the exchange */
8589 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
8590 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
8591 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
8592 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
8593 LPFC_WQE_LENLOC_NONE);
8594 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
8595 iocbq->iocb.ulpFCP2Rcvy);
8596 if (iocbq->iocb_flag & LPFC_IO_OAS) {
8597 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
8598 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
8599 if (iocbq->priority) {
8600 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8601 (iocbq->priority << 1));
8602 } else {
8603 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
8604 (phba->cfg_XLanePriority << 1));
8605 }
8606 }
8607 /* Note, word 10 is already initialized to 0 */
8608
8609 if (phba->fcp_embed_io) {
8610 struct lpfc_scsi_buf *lpfc_cmd;
8611 struct sli4_sge *sgl;
8612 union lpfc_wqe128 *wqe128;
8613 struct fcp_cmnd *fcp_cmnd;
8614 uint32_t *ptr;
8615
8616 /* 128 byte wqe support here */
8617 wqe128 = (union lpfc_wqe128 *)wqe;
8618
8619 lpfc_cmd = iocbq->context1;
8620 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
8621 fcp_cmnd = lpfc_cmd->fcp_cmnd;
8622
8623 /* Word 0-2 - FCP_CMND */
8624 wqe128->generic.bde.tus.f.bdeFlags =
8625 BUFF_TYPE_BDE_IMMED;
8626 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len;
8627 wqe128->generic.bde.addrHigh = 0;
8628 wqe128->generic.bde.addrLow = 88; /* Word 22 */
8629
8630 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1);
8631
8632 /* Word 22-29 FCP CMND Payload */
8633 ptr = &wqe128->words[22];
8634 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
8635 }
8636 break;
8637 case CMD_GEN_REQUEST64_CR:
8638 /* For this command calculate the xmit length of the
8639 * request bde.
8640 */
8641 xmit_len = 0;
8642 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
8643 sizeof(struct ulp_bde64);
8644 for (i = 0; i < numBdes; i++) {
8645 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
8646 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
8647 break;
8648 xmit_len += bde.tus.f.bdeSize;
8649 }
8650 /* word3 iocb=IO_TAG wqe=request_payload_len */
8651 wqe->gen_req.request_payload_len = xmit_len;
8652 /* word4 iocb=parameter wqe=relative_offset memcpy */
8653 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
8654 /* word6 context tag copied in memcpy */
8655 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
8656 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
8657 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8658 "2015 Invalid CT %x command 0x%x\n",
8659 ct, iocbq->iocb.ulpCommand);
8660 return IOCB_ERROR;
8661 }
8662 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
8663 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
8664 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
8665 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
8666 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
8667 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
8668 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
8669 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
8670 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
8671 command_type = OTHER_COMMAND;
8672 break;
8673 case CMD_XMIT_ELS_RSP64_CX:
8674 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8675 /* words0-2 BDE memcpy */
8676 /* word3 iocb=iotag32 wqe=response_payload_len */
8677 wqe->xmit_els_rsp.response_payload_len = xmit_len;
8678 /* word4 */
8679 wqe->xmit_els_rsp.word4 = 0;
8680 /* word5 iocb=rsvd wge=did */
8681 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
8682 iocbq->iocb.un.xseq64.xmit_els_remoteID);
8683
8684 if_type = bf_get(lpfc_sli_intf_if_type,
8685 &phba->sli4_hba.sli_intf);
8686 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
8687 if (iocbq->vport->fc_flag & FC_PT2PT) {
8688 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
8689 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
8690 iocbq->vport->fc_myDID);
8691 if (iocbq->vport->fc_myDID == Fabric_DID) {
8692 bf_set(wqe_els_did,
8693 &wqe->xmit_els_rsp.wqe_dest, 0);
8694 }
8695 }
8696 }
8697 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
8698 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8699 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
8700 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
8701 iocbq->iocb.unsli3.rcvsli3.ox_id);
8702 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
8703 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
8704 phba->vpi_ids[iocbq->vport->vpi]);
8705 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
8706 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
8707 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
8708 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
8709 LPFC_WQE_LENLOC_WORD3);
8710 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
8711 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
8712 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
8713 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
8714 iocbq->context2)->virt);
8715 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
8716 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
8717 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
8718 iocbq->vport->fc_myDID);
8719 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
8720 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
8721 phba->vpi_ids[phba->pport->vpi]);
8722 }
8723 command_type = OTHER_COMMAND;
8724 break;
8725 case CMD_CLOSE_XRI_CN:
8726 case CMD_ABORT_XRI_CN:
8727 case CMD_ABORT_XRI_CX:
8728 /* words 0-2 memcpy should be 0 rserved */
8729 /* port will send abts */
8730 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
8731 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
8732 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
8733 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
8734 } else
8735 fip = 0;
8736
8737 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
8738 /*
8739 * The link is down, or the command was ELS_FIP
8740 * so the fw does not need to send abts
8741 * on the wire.
8742 */
8743 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
8744 else
8745 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
8746 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
8747 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
8748 wqe->abort_cmd.rsrvd5 = 0;
8749 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
8750 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
8751 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
8752 /*
8753 * The abort handler will send us CMD_ABORT_XRI_CN or
8754 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
8755 */
8756 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
8757 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
8758 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
8759 LPFC_WQE_LENLOC_NONE);
8760 cmnd = CMD_ABORT_XRI_CX;
8761 command_type = OTHER_COMMAND;
8762 xritag = 0;
8763 break;
8764 case CMD_XMIT_BLS_RSP64_CX:
8765 ndlp = (struct lpfc_nodelist *)iocbq->context1;
8766 /* As BLS ABTS RSP WQE is very different from other WQEs,
8767 * we re-construct this WQE here based on information in
8768 * iocbq from scratch.
8769 */
8770 memset(wqe, 0, sizeof(union lpfc_wqe));
8771 /* OX_ID is invariable to who sent ABTS to CT exchange */
8772 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
8773 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
8774 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
8775 LPFC_ABTS_UNSOL_INT) {
8776 /* ABTS sent by initiator to CT exchange, the
8777 * RX_ID field will be filled with the newly
8778 * allocated responder XRI.
8779 */
8780 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
8781 iocbq->sli4_xritag);
8782 } else {
8783 /* ABTS sent by responder to CT exchange, the
8784 * RX_ID field will be filled with the responder
8785 * RX_ID from ABTS.
8786 */
8787 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
8788 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
8789 }
8790 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
8791 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
8792
8793 /* Use CT=VPI */
8794 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
8795 ndlp->nlp_DID);
8796 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
8797 iocbq->iocb.ulpContext);
8798 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
8799 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
8800 phba->vpi_ids[phba->pport->vpi]);
8801 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
8802 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
8803 LPFC_WQE_LENLOC_NONE);
8804 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
8805 command_type = OTHER_COMMAND;
8806 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
8807 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
8808 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
8809 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
8810 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
8811 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
8812 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
8813 }
8814
8815 break;
8816 case CMD_XRI_ABORTED_CX:
8817 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
8818 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
8819 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
8820 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
8821 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
8822 default:
8823 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8824 "2014 Invalid command 0x%x\n",
8825 iocbq->iocb.ulpCommand);
8826 return IOCB_ERROR;
8827 break;
8828 }
8829
8830 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
8831 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
8832 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
8833 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
8834 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
8835 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
8836 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
8837 LPFC_IO_DIF_INSERT);
8838 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
8839 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
8840 wqe->generic.wqe_com.abort_tag = abort_tag;
8841 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
8842 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
8843 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
8844 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
8845 return 0;
8846 }
8847
8848 /**
8849 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
8850 * @phba: Pointer to HBA context object.
8851 * @ring_number: SLI ring number to issue iocb on.
8852 * @piocb: Pointer to command iocb.
8853 * @flag: Flag indicating if this command can be put into txq.
8854 *
8855 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
8856 * an iocb command to an HBA with SLI-4 interface spec.
8857 *
8858 * This function is called with hbalock held. The function will return success
8859 * after it successfully submit the iocb to firmware or after adding to the
8860 * txq.
8861 **/
8862 static int
8863 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
8864 struct lpfc_iocbq *piocb, uint32_t flag)
8865 {
8866 struct lpfc_sglq *sglq;
8867 union lpfc_wqe *wqe;
8868 union lpfc_wqe128 wqe128;
8869 struct lpfc_queue *wq;
8870 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
8871
8872 lockdep_assert_held(&phba->hbalock);
8873
8874 /*
8875 * The WQE can be either 64 or 128 bytes,
8876 * so allocate space on the stack assuming the largest.
8877 */
8878 wqe = (union lpfc_wqe *)&wqe128;
8879
8880 if (piocb->sli4_xritag == NO_XRI) {
8881 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
8882 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
8883 sglq = NULL;
8884 else {
8885 if (!list_empty(&pring->txq)) {
8886 if (!(flag & SLI_IOCB_RET_IOCB)) {
8887 __lpfc_sli_ringtx_put(phba,
8888 pring, piocb);
8889 return IOCB_SUCCESS;
8890 } else {
8891 return IOCB_BUSY;
8892 }
8893 } else {
8894 sglq = __lpfc_sli_get_sglq(phba, piocb);
8895 if (!sglq) {
8896 if (!(flag & SLI_IOCB_RET_IOCB)) {
8897 __lpfc_sli_ringtx_put(phba,
8898 pring,
8899 piocb);
8900 return IOCB_SUCCESS;
8901 } else
8902 return IOCB_BUSY;
8903 }
8904 }
8905 }
8906 } else if (piocb->iocb_flag & LPFC_IO_FCP) {
8907 /* These IO's already have an XRI and a mapped sgl. */
8908 sglq = NULL;
8909 } else {
8910 /*
8911 * This is a continuation of a commandi,(CX) so this
8912 * sglq is on the active list
8913 */
8914 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
8915 if (!sglq)
8916 return IOCB_ERROR;
8917 }
8918
8919 if (sglq) {
8920 piocb->sli4_lxritag = sglq->sli4_lxritag;
8921 piocb->sli4_xritag = sglq->sli4_xritag;
8922 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
8923 return IOCB_ERROR;
8924 }
8925
8926 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe))
8927 return IOCB_ERROR;
8928
8929 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
8930 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
8931 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) {
8932 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx];
8933 } else {
8934 wq = phba->sli4_hba.oas_wq;
8935 }
8936 if (lpfc_sli4_wq_put(wq, wqe))
8937 return IOCB_ERROR;
8938 } else {
8939 if (unlikely(!phba->sli4_hba.els_wq))
8940 return IOCB_ERROR;
8941 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe))
8942 return IOCB_ERROR;
8943 }
8944 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
8945
8946 return 0;
8947 }
8948
8949 /**
8950 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
8951 *
8952 * This routine wraps the actual lockless version for issusing IOCB function
8953 * pointer from the lpfc_hba struct.
8954 *
8955 * Return codes:
8956 * IOCB_ERROR - Error
8957 * IOCB_SUCCESS - Success
8958 * IOCB_BUSY - Busy
8959 **/
8960 int
8961 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
8962 struct lpfc_iocbq *piocb, uint32_t flag)
8963 {
8964 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
8965 }
8966
8967 /**
8968 * lpfc_sli_api_table_setup - Set up sli api function jump table
8969 * @phba: The hba struct for which this call is being executed.
8970 * @dev_grp: The HBA PCI-Device group number.
8971 *
8972 * This routine sets up the SLI interface API function jump table in @phba
8973 * struct.
8974 * Returns: 0 - success, -ENODEV - failure.
8975 **/
8976 int
8977 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8978 {
8979
8980 switch (dev_grp) {
8981 case LPFC_PCI_DEV_LP:
8982 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
8983 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
8984 break;
8985 case LPFC_PCI_DEV_OC:
8986 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
8987 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
8988 break;
8989 default:
8990 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8991 "1419 Invalid HBA PCI-device group: 0x%x\n",
8992 dev_grp);
8993 return -ENODEV;
8994 break;
8995 }
8996 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
8997 return 0;
8998 }
8999
9000 /**
9001 * lpfc_sli_calc_ring - Calculates which ring to use
9002 * @phba: Pointer to HBA context object.
9003 * @ring_number: Initial ring
9004 * @piocb: Pointer to command iocb.
9005 *
9006 * For SLI4, FCP IO can deferred to one fo many WQs, based on
9007 * fcp_wqidx, thus we need to calculate the corresponding ring.
9008 * Since ABORTS must go on the same WQ of the command they are
9009 * aborting, we use command's fcp_wqidx.
9010 */
9011 static int
9012 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number,
9013 struct lpfc_iocbq *piocb)
9014 {
9015 if (phba->sli_rev < LPFC_SLI_REV4)
9016 return ring_number;
9017
9018 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9019 if (!(phba->cfg_fof) ||
9020 (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9021 if (unlikely(!phba->sli4_hba.fcp_wq))
9022 return LPFC_HBA_ERROR;
9023 /*
9024 * for abort iocb fcp_wqidx should already
9025 * be setup based on what work queue we used.
9026 */
9027 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX))
9028 piocb->fcp_wqidx =
9029 lpfc_sli4_scmd_to_wqidx_distr(phba,
9030 piocb->context1);
9031 ring_number = MAX_SLI3_CONFIGURED_RINGS +
9032 piocb->fcp_wqidx;
9033 } else {
9034 if (unlikely(!phba->sli4_hba.oas_wq))
9035 return LPFC_HBA_ERROR;
9036 piocb->fcp_wqidx = 0;
9037 ring_number = LPFC_FCP_OAS_RING;
9038 }
9039 }
9040 return ring_number;
9041 }
9042
9043 /**
9044 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9045 * @phba: Pointer to HBA context object.
9046 * @pring: Pointer to driver SLI ring object.
9047 * @piocb: Pointer to command iocb.
9048 * @flag: Flag indicating if this command can be put into txq.
9049 *
9050 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9051 * function. This function gets the hbalock and calls
9052 * __lpfc_sli_issue_iocb function and will return the error returned
9053 * by __lpfc_sli_issue_iocb function. This wrapper is used by
9054 * functions which do not hold hbalock.
9055 **/
9056 int
9057 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9058 struct lpfc_iocbq *piocb, uint32_t flag)
9059 {
9060 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
9061 struct lpfc_sli_ring *pring;
9062 struct lpfc_queue *fpeq;
9063 struct lpfc_eqe *eqe;
9064 unsigned long iflags;
9065 int rc, idx;
9066
9067 if (phba->sli_rev == LPFC_SLI_REV4) {
9068 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb);
9069 if (unlikely(ring_number == LPFC_HBA_ERROR))
9070 return IOCB_ERROR;
9071 idx = piocb->fcp_wqidx;
9072
9073 pring = &phba->sli.ring[ring_number];
9074 spin_lock_irqsave(&pring->ring_lock, iflags);
9075 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9076 spin_unlock_irqrestore(&pring->ring_lock, iflags);
9077
9078 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) {
9079 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx];
9080
9081 if (atomic_dec_and_test(&fcp_eq_hdl->
9082 fcp_eq_in_use)) {
9083
9084 /* Get associated EQ with this index */
9085 fpeq = phba->sli4_hba.hba_eq[idx];
9086
9087 /* Turn off interrupts from this EQ */
9088 lpfc_sli4_eq_clr_intr(fpeq);
9089
9090 /*
9091 * Process all the events on FCP EQ
9092 */
9093 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9094 lpfc_sli4_hba_handle_eqe(phba,
9095 eqe, idx);
9096 fpeq->EQ_processed++;
9097 }
9098
9099 /* Always clear and re-arm the EQ */
9100 lpfc_sli4_eq_release(fpeq,
9101 LPFC_QUEUE_REARM);
9102 }
9103 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
9104 }
9105 } else {
9106 /* For now, SLI2/3 will still use hbalock */
9107 spin_lock_irqsave(&phba->hbalock, iflags);
9108 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9109 spin_unlock_irqrestore(&phba->hbalock, iflags);
9110 }
9111 return rc;
9112 }
9113
9114 /**
9115 * lpfc_extra_ring_setup - Extra ring setup function
9116 * @phba: Pointer to HBA context object.
9117 *
9118 * This function is called while driver attaches with the
9119 * HBA to setup the extra ring. The extra ring is used
9120 * only when driver needs to support target mode functionality
9121 * or IP over FC functionalities.
9122 *
9123 * This function is called with no lock held.
9124 **/
9125 static int
9126 lpfc_extra_ring_setup( struct lpfc_hba *phba)
9127 {
9128 struct lpfc_sli *psli;
9129 struct lpfc_sli_ring *pring;
9130
9131 psli = &phba->sli;
9132
9133 /* Adjust cmd/rsp ring iocb entries more evenly */
9134
9135 /* Take some away from the FCP ring */
9136 pring = &psli->ring[psli->fcp_ring];
9137 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9138 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9139 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9140 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9141
9142 /* and give them to the extra ring */
9143 pring = &psli->ring[psli->extra_ring];
9144
9145 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9146 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9147 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9148 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9149
9150 /* Setup default profile for this ring */
9151 pring->iotag_max = 4096;
9152 pring->num_mask = 1;
9153 pring->prt[0].profile = 0; /* Mask 0 */
9154 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
9155 pring->prt[0].type = phba->cfg_multi_ring_type;
9156 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
9157 return 0;
9158 }
9159
9160 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
9161 * @phba: Pointer to HBA context object.
9162 * @iocbq: Pointer to iocb object.
9163 *
9164 * The async_event handler calls this routine when it receives
9165 * an ASYNC_STATUS_CN event from the port. The port generates
9166 * this event when an Abort Sequence request to an rport fails
9167 * twice in succession. The abort could be originated by the
9168 * driver or by the port. The ABTS could have been for an ELS
9169 * or FCP IO. The port only generates this event when an ABTS
9170 * fails to complete after one retry.
9171 */
9172 static void
9173 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
9174 struct lpfc_iocbq *iocbq)
9175 {
9176 struct lpfc_nodelist *ndlp = NULL;
9177 uint16_t rpi = 0, vpi = 0;
9178 struct lpfc_vport *vport = NULL;
9179
9180 /* The rpi in the ulpContext is vport-sensitive. */
9181 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
9182 rpi = iocbq->iocb.ulpContext;
9183
9184 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9185 "3092 Port generated ABTS async event "
9186 "on vpi %d rpi %d status 0x%x\n",
9187 vpi, rpi, iocbq->iocb.ulpStatus);
9188
9189 vport = lpfc_find_vport_by_vpid(phba, vpi);
9190 if (!vport)
9191 goto err_exit;
9192 ndlp = lpfc_findnode_rpi(vport, rpi);
9193 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
9194 goto err_exit;
9195
9196 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
9197 lpfc_sli_abts_recover_port(vport, ndlp);
9198 return;
9199
9200 err_exit:
9201 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9202 "3095 Event Context not found, no "
9203 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
9204 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
9205 vpi, rpi);
9206 }
9207
9208 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
9209 * @phba: pointer to HBA context object.
9210 * @ndlp: nodelist pointer for the impacted rport.
9211 * @axri: pointer to the wcqe containing the failed exchange.
9212 *
9213 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
9214 * port. The port generates this event when an abort exchange request to an
9215 * rport fails twice in succession with no reply. The abort could be originated
9216 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
9217 */
9218 void
9219 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
9220 struct lpfc_nodelist *ndlp,
9221 struct sli4_wcqe_xri_aborted *axri)
9222 {
9223 struct lpfc_vport *vport;
9224 uint32_t ext_status = 0;
9225
9226 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
9227 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9228 "3115 Node Context not found, driver "
9229 "ignoring abts err event\n");
9230 return;
9231 }
9232
9233 vport = ndlp->vport;
9234 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9235 "3116 Port generated FCP XRI ABORT event on "
9236 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
9237 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
9238 bf_get(lpfc_wcqe_xa_xri, axri),
9239 bf_get(lpfc_wcqe_xa_status, axri),
9240 axri->parameter);
9241
9242 /*
9243 * Catch the ABTS protocol failure case. Older OCe FW releases returned
9244 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
9245 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
9246 */
9247 ext_status = axri->parameter & IOERR_PARAM_MASK;
9248 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
9249 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
9250 lpfc_sli_abts_recover_port(vport, ndlp);
9251 }
9252
9253 /**
9254 * lpfc_sli_async_event_handler - ASYNC iocb handler function
9255 * @phba: Pointer to HBA context object.
9256 * @pring: Pointer to driver SLI ring object.
9257 * @iocbq: Pointer to iocb object.
9258 *
9259 * This function is called by the slow ring event handler
9260 * function when there is an ASYNC event iocb in the ring.
9261 * This function is called with no lock held.
9262 * Currently this function handles only temperature related
9263 * ASYNC events. The function decodes the temperature sensor
9264 * event message and posts events for the management applications.
9265 **/
9266 static void
9267 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
9268 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
9269 {
9270 IOCB_t *icmd;
9271 uint16_t evt_code;
9272 struct temp_event temp_event_data;
9273 struct Scsi_Host *shost;
9274 uint32_t *iocb_w;
9275
9276 icmd = &iocbq->iocb;
9277 evt_code = icmd->un.asyncstat.evt_code;
9278
9279 switch (evt_code) {
9280 case ASYNC_TEMP_WARN:
9281 case ASYNC_TEMP_SAFE:
9282 temp_event_data.data = (uint32_t) icmd->ulpContext;
9283 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
9284 if (evt_code == ASYNC_TEMP_WARN) {
9285 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
9286 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9287 "0347 Adapter is very hot, please take "
9288 "corrective action. temperature : %d Celsius\n",
9289 (uint32_t) icmd->ulpContext);
9290 } else {
9291 temp_event_data.event_code = LPFC_NORMAL_TEMP;
9292 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
9293 "0340 Adapter temperature is OK now. "
9294 "temperature : %d Celsius\n",
9295 (uint32_t) icmd->ulpContext);
9296 }
9297
9298 /* Send temperature change event to applications */
9299 shost = lpfc_shost_from_vport(phba->pport);
9300 fc_host_post_vendor_event(shost, fc_get_event_number(),
9301 sizeof(temp_event_data), (char *) &temp_event_data,
9302 LPFC_NL_VENDOR_ID);
9303 break;
9304 case ASYNC_STATUS_CN:
9305 lpfc_sli_abts_err_handler(phba, iocbq);
9306 break;
9307 default:
9308 iocb_w = (uint32_t *) icmd;
9309 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9310 "0346 Ring %d handler: unexpected ASYNC_STATUS"
9311 " evt_code 0x%x\n"
9312 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
9313 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
9314 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
9315 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
9316 pring->ringno, icmd->un.asyncstat.evt_code,
9317 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
9318 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
9319 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
9320 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
9321
9322 break;
9323 }
9324 }
9325
9326
9327 /**
9328 * lpfc_sli_setup - SLI ring setup function
9329 * @phba: Pointer to HBA context object.
9330 *
9331 * lpfc_sli_setup sets up rings of the SLI interface with
9332 * number of iocbs per ring and iotags. This function is
9333 * called while driver attach to the HBA and before the
9334 * interrupts are enabled. So there is no need for locking.
9335 *
9336 * This function always returns 0.
9337 **/
9338 int
9339 lpfc_sli_setup(struct lpfc_hba *phba)
9340 {
9341 int i, totiocbsize = 0;
9342 struct lpfc_sli *psli = &phba->sli;
9343 struct lpfc_sli_ring *pring;
9344
9345 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
9346 if (phba->sli_rev == LPFC_SLI_REV4)
9347 psli->num_rings += phba->cfg_fcp_io_channel;
9348 psli->sli_flag = 0;
9349 psli->fcp_ring = LPFC_FCP_RING;
9350 psli->next_ring = LPFC_FCP_NEXT_RING;
9351 psli->extra_ring = LPFC_EXTRA_RING;
9352
9353 psli->iocbq_lookup = NULL;
9354 psli->iocbq_lookup_len = 0;
9355 psli->last_iotag = 0;
9356
9357 for (i = 0; i < psli->num_rings; i++) {
9358 pring = &psli->ring[i];
9359 switch (i) {
9360 case LPFC_FCP_RING: /* ring 0 - FCP */
9361 /* numCiocb and numRiocb are used in config_port */
9362 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
9363 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
9364 pring->sli.sli3.numCiocb +=
9365 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
9366 pring->sli.sli3.numRiocb +=
9367 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
9368 pring->sli.sli3.numCiocb +=
9369 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
9370 pring->sli.sli3.numRiocb +=
9371 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
9372 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9373 SLI3_IOCB_CMD_SIZE :
9374 SLI2_IOCB_CMD_SIZE;
9375 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9376 SLI3_IOCB_RSP_SIZE :
9377 SLI2_IOCB_RSP_SIZE;
9378 pring->iotag_ctr = 0;
9379 pring->iotag_max =
9380 (phba->cfg_hba_queue_depth * 2);
9381 pring->fast_iotag = pring->iotag_max;
9382 pring->num_mask = 0;
9383 break;
9384 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
9385 /* numCiocb and numRiocb are used in config_port */
9386 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
9387 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
9388 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9389 SLI3_IOCB_CMD_SIZE :
9390 SLI2_IOCB_CMD_SIZE;
9391 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9392 SLI3_IOCB_RSP_SIZE :
9393 SLI2_IOCB_RSP_SIZE;
9394 pring->iotag_max = phba->cfg_hba_queue_depth;
9395 pring->num_mask = 0;
9396 break;
9397 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
9398 /* numCiocb and numRiocb are used in config_port */
9399 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
9400 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
9401 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
9402 SLI3_IOCB_CMD_SIZE :
9403 SLI2_IOCB_CMD_SIZE;
9404 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
9405 SLI3_IOCB_RSP_SIZE :
9406 SLI2_IOCB_RSP_SIZE;
9407 pring->fast_iotag = 0;
9408 pring->iotag_ctr = 0;
9409 pring->iotag_max = 4096;
9410 pring->lpfc_sli_rcv_async_status =
9411 lpfc_sli_async_event_handler;
9412 pring->num_mask = LPFC_MAX_RING_MASK;
9413 pring->prt[0].profile = 0; /* Mask 0 */
9414 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
9415 pring->prt[0].type = FC_TYPE_ELS;
9416 pring->prt[0].lpfc_sli_rcv_unsol_event =
9417 lpfc_els_unsol_event;
9418 pring->prt[1].profile = 0; /* Mask 1 */
9419 pring->prt[1].rctl = FC_RCTL_ELS_REP;
9420 pring->prt[1].type = FC_TYPE_ELS;
9421 pring->prt[1].lpfc_sli_rcv_unsol_event =
9422 lpfc_els_unsol_event;
9423 pring->prt[2].profile = 0; /* Mask 2 */
9424 /* NameServer Inquiry */
9425 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
9426 /* NameServer */
9427 pring->prt[2].type = FC_TYPE_CT;
9428 pring->prt[2].lpfc_sli_rcv_unsol_event =
9429 lpfc_ct_unsol_event;
9430 pring->prt[3].profile = 0; /* Mask 3 */
9431 /* NameServer response */
9432 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
9433 /* NameServer */
9434 pring->prt[3].type = FC_TYPE_CT;
9435 pring->prt[3].lpfc_sli_rcv_unsol_event =
9436 lpfc_ct_unsol_event;
9437 break;
9438 }
9439 totiocbsize += (pring->sli.sli3.numCiocb *
9440 pring->sli.sli3.sizeCiocb) +
9441 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
9442 }
9443 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
9444 /* Too many cmd / rsp ring entries in SLI2 SLIM */
9445 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
9446 "SLI2 SLIM Data: x%x x%lx\n",
9447 phba->brd_no, totiocbsize,
9448 (unsigned long) MAX_SLIM_IOCB_SIZE);
9449 }
9450 if (phba->cfg_multi_ring_support == 2)
9451 lpfc_extra_ring_setup(phba);
9452
9453 return 0;
9454 }
9455
9456 /**
9457 * lpfc_sli_queue_setup - Queue initialization function
9458 * @phba: Pointer to HBA context object.
9459 *
9460 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each
9461 * ring. This function also initializes ring indices of each ring.
9462 * This function is called during the initialization of the SLI
9463 * interface of an HBA.
9464 * This function is called with no lock held and always returns
9465 * 1.
9466 **/
9467 int
9468 lpfc_sli_queue_setup(struct lpfc_hba *phba)
9469 {
9470 struct lpfc_sli *psli;
9471 struct lpfc_sli_ring *pring;
9472 int i;
9473
9474 psli = &phba->sli;
9475 spin_lock_irq(&phba->hbalock);
9476 INIT_LIST_HEAD(&psli->mboxq);
9477 INIT_LIST_HEAD(&psli->mboxq_cmpl);
9478 /* Initialize list headers for txq and txcmplq as double linked lists */
9479 for (i = 0; i < psli->num_rings; i++) {
9480 pring = &psli->ring[i];
9481 pring->ringno = i;
9482 pring->sli.sli3.next_cmdidx = 0;
9483 pring->sli.sli3.local_getidx = 0;
9484 pring->sli.sli3.cmdidx = 0;
9485 pring->flag = 0;
9486 INIT_LIST_HEAD(&pring->txq);
9487 INIT_LIST_HEAD(&pring->txcmplq);
9488 INIT_LIST_HEAD(&pring->iocb_continueq);
9489 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
9490 INIT_LIST_HEAD(&pring->postbufq);
9491 spin_lock_init(&pring->ring_lock);
9492 }
9493 spin_unlock_irq(&phba->hbalock);
9494 return 1;
9495 }
9496
9497 /**
9498 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
9499 * @phba: Pointer to HBA context object.
9500 *
9501 * This routine flushes the mailbox command subsystem. It will unconditionally
9502 * flush all the mailbox commands in the three possible stages in the mailbox
9503 * command sub-system: pending mailbox command queue; the outstanding mailbox
9504 * command; and completed mailbox command queue. It is caller's responsibility
9505 * to make sure that the driver is in the proper state to flush the mailbox
9506 * command sub-system. Namely, the posting of mailbox commands into the
9507 * pending mailbox command queue from the various clients must be stopped;
9508 * either the HBA is in a state that it will never works on the outstanding
9509 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
9510 * mailbox command has been completed.
9511 **/
9512 static void
9513 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
9514 {
9515 LIST_HEAD(completions);
9516 struct lpfc_sli *psli = &phba->sli;
9517 LPFC_MBOXQ_t *pmb;
9518 unsigned long iflag;
9519
9520 /* Flush all the mailbox commands in the mbox system */
9521 spin_lock_irqsave(&phba->hbalock, iflag);
9522 /* The pending mailbox command queue */
9523 list_splice_init(&phba->sli.mboxq, &completions);
9524 /* The outstanding active mailbox command */
9525 if (psli->mbox_active) {
9526 list_add_tail(&psli->mbox_active->list, &completions);
9527 psli->mbox_active = NULL;
9528 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9529 }
9530 /* The completed mailbox command queue */
9531 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
9532 spin_unlock_irqrestore(&phba->hbalock, iflag);
9533
9534 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
9535 while (!list_empty(&completions)) {
9536 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
9537 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
9538 if (pmb->mbox_cmpl)
9539 pmb->mbox_cmpl(phba, pmb);
9540 }
9541 }
9542
9543 /**
9544 * lpfc_sli_host_down - Vport cleanup function
9545 * @vport: Pointer to virtual port object.
9546 *
9547 * lpfc_sli_host_down is called to clean up the resources
9548 * associated with a vport before destroying virtual
9549 * port data structures.
9550 * This function does following operations:
9551 * - Free discovery resources associated with this virtual
9552 * port.
9553 * - Free iocbs associated with this virtual port in
9554 * the txq.
9555 * - Send abort for all iocb commands associated with this
9556 * vport in txcmplq.
9557 *
9558 * This function is called with no lock held and always returns 1.
9559 **/
9560 int
9561 lpfc_sli_host_down(struct lpfc_vport *vport)
9562 {
9563 LIST_HEAD(completions);
9564 struct lpfc_hba *phba = vport->phba;
9565 struct lpfc_sli *psli = &phba->sli;
9566 struct lpfc_sli_ring *pring;
9567 struct lpfc_iocbq *iocb, *next_iocb;
9568 int i;
9569 unsigned long flags = 0;
9570 uint16_t prev_pring_flag;
9571
9572 lpfc_cleanup_discovery_resources(vport);
9573
9574 spin_lock_irqsave(&phba->hbalock, flags);
9575 for (i = 0; i < psli->num_rings; i++) {
9576 pring = &psli->ring[i];
9577 prev_pring_flag = pring->flag;
9578 /* Only slow rings */
9579 if (pring->ringno == LPFC_ELS_RING) {
9580 pring->flag |= LPFC_DEFERRED_RING_EVENT;
9581 /* Set the lpfc data pending flag */
9582 set_bit(LPFC_DATA_READY, &phba->data_flags);
9583 }
9584 /*
9585 * Error everything on the txq since these iocbs have not been
9586 * given to the FW yet.
9587 */
9588 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) {
9589 if (iocb->vport != vport)
9590 continue;
9591 list_move_tail(&iocb->list, &completions);
9592 }
9593
9594 /* Next issue ABTS for everything on the txcmplq */
9595 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq,
9596 list) {
9597 if (iocb->vport != vport)
9598 continue;
9599 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
9600 }
9601
9602 pring->flag = prev_pring_flag;
9603 }
9604
9605 spin_unlock_irqrestore(&phba->hbalock, flags);
9606
9607 /* Cancel all the IOCBs from the completions list */
9608 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
9609 IOERR_SLI_DOWN);
9610 return 1;
9611 }
9612
9613 /**
9614 * lpfc_sli_hba_down - Resource cleanup function for the HBA
9615 * @phba: Pointer to HBA context object.
9616 *
9617 * This function cleans up all iocb, buffers, mailbox commands
9618 * while shutting down the HBA. This function is called with no
9619 * lock held and always returns 1.
9620 * This function does the following to cleanup driver resources:
9621 * - Free discovery resources for each virtual port
9622 * - Cleanup any pending fabric iocbs
9623 * - Iterate through the iocb txq and free each entry
9624 * in the list.
9625 * - Free up any buffer posted to the HBA
9626 * - Free mailbox commands in the mailbox queue.
9627 **/
9628 int
9629 lpfc_sli_hba_down(struct lpfc_hba *phba)
9630 {
9631 LIST_HEAD(completions);
9632 struct lpfc_sli *psli = &phba->sli;
9633 struct lpfc_sli_ring *pring;
9634 struct lpfc_dmabuf *buf_ptr;
9635 unsigned long flags = 0;
9636 int i;
9637
9638 /* Shutdown the mailbox command sub-system */
9639 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
9640
9641 lpfc_hba_down_prep(phba);
9642
9643 lpfc_fabric_abort_hba(phba);
9644
9645 spin_lock_irqsave(&phba->hbalock, flags);
9646 for (i = 0; i < psli->num_rings; i++) {
9647 pring = &psli->ring[i];
9648 /* Only slow rings */
9649 if (pring->ringno == LPFC_ELS_RING) {
9650 pring->flag |= LPFC_DEFERRED_RING_EVENT;
9651 /* Set the lpfc data pending flag */
9652 set_bit(LPFC_DATA_READY, &phba->data_flags);
9653 }
9654
9655 /*
9656 * Error everything on the txq since these iocbs have not been
9657 * given to the FW yet.
9658 */
9659 list_splice_init(&pring->txq, &completions);
9660 }
9661 spin_unlock_irqrestore(&phba->hbalock, flags);
9662
9663 /* Cancel all the IOCBs from the completions list */
9664 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
9665 IOERR_SLI_DOWN);
9666
9667 spin_lock_irqsave(&phba->hbalock, flags);
9668 list_splice_init(&phba->elsbuf, &completions);
9669 phba->elsbuf_cnt = 0;
9670 phba->elsbuf_prev_cnt = 0;
9671 spin_unlock_irqrestore(&phba->hbalock, flags);
9672
9673 while (!list_empty(&completions)) {
9674 list_remove_head(&completions, buf_ptr,
9675 struct lpfc_dmabuf, list);
9676 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
9677 kfree(buf_ptr);
9678 }
9679
9680 /* Return any active mbox cmds */
9681 del_timer_sync(&psli->mbox_tmo);
9682
9683 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
9684 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9685 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
9686
9687 return 1;
9688 }
9689
9690 /**
9691 * lpfc_sli_pcimem_bcopy - SLI memory copy function
9692 * @srcp: Source memory pointer.
9693 * @destp: Destination memory pointer.
9694 * @cnt: Number of words required to be copied.
9695 *
9696 * This function is used for copying data between driver memory
9697 * and the SLI memory. This function also changes the endianness
9698 * of each word if native endianness is different from SLI
9699 * endianness. This function can be called with or without
9700 * lock.
9701 **/
9702 void
9703 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
9704 {
9705 uint32_t *src = srcp;
9706 uint32_t *dest = destp;
9707 uint32_t ldata;
9708 int i;
9709
9710 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
9711 ldata = *src;
9712 ldata = le32_to_cpu(ldata);
9713 *dest = ldata;
9714 src++;
9715 dest++;
9716 }
9717 }
9718
9719
9720 /**
9721 * lpfc_sli_bemem_bcopy - SLI memory copy function
9722 * @srcp: Source memory pointer.
9723 * @destp: Destination memory pointer.
9724 * @cnt: Number of words required to be copied.
9725 *
9726 * This function is used for copying data between a data structure
9727 * with big endian representation to local endianness.
9728 * This function can be called with or without lock.
9729 **/
9730 void
9731 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
9732 {
9733 uint32_t *src = srcp;
9734 uint32_t *dest = destp;
9735 uint32_t ldata;
9736 int i;
9737
9738 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
9739 ldata = *src;
9740 ldata = be32_to_cpu(ldata);
9741 *dest = ldata;
9742 src++;
9743 dest++;
9744 }
9745 }
9746
9747 /**
9748 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
9749 * @phba: Pointer to HBA context object.
9750 * @pring: Pointer to driver SLI ring object.
9751 * @mp: Pointer to driver buffer object.
9752 *
9753 * This function is called with no lock held.
9754 * It always return zero after adding the buffer to the postbufq
9755 * buffer list.
9756 **/
9757 int
9758 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9759 struct lpfc_dmabuf *mp)
9760 {
9761 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
9762 later */
9763 spin_lock_irq(&phba->hbalock);
9764 list_add_tail(&mp->list, &pring->postbufq);
9765 pring->postbufq_cnt++;
9766 spin_unlock_irq(&phba->hbalock);
9767 return 0;
9768 }
9769
9770 /**
9771 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
9772 * @phba: Pointer to HBA context object.
9773 *
9774 * When HBQ is enabled, buffers are searched based on tags. This function
9775 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
9776 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
9777 * does not conflict with tags of buffer posted for unsolicited events.
9778 * The function returns the allocated tag. The function is called with
9779 * no locks held.
9780 **/
9781 uint32_t
9782 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
9783 {
9784 spin_lock_irq(&phba->hbalock);
9785 phba->buffer_tag_count++;
9786 /*
9787 * Always set the QUE_BUFTAG_BIT to distiguish between
9788 * a tag assigned by HBQ.
9789 */
9790 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
9791 spin_unlock_irq(&phba->hbalock);
9792 return phba->buffer_tag_count;
9793 }
9794
9795 /**
9796 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
9797 * @phba: Pointer to HBA context object.
9798 * @pring: Pointer to driver SLI ring object.
9799 * @tag: Buffer tag.
9800 *
9801 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
9802 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
9803 * iocb is posted to the response ring with the tag of the buffer.
9804 * This function searches the pring->postbufq list using the tag
9805 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
9806 * iocb. If the buffer is found then lpfc_dmabuf object of the
9807 * buffer is returned to the caller else NULL is returned.
9808 * This function is called with no lock held.
9809 **/
9810 struct lpfc_dmabuf *
9811 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9812 uint32_t tag)
9813 {
9814 struct lpfc_dmabuf *mp, *next_mp;
9815 struct list_head *slp = &pring->postbufq;
9816
9817 /* Search postbufq, from the beginning, looking for a match on tag */
9818 spin_lock_irq(&phba->hbalock);
9819 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
9820 if (mp->buffer_tag == tag) {
9821 list_del_init(&mp->list);
9822 pring->postbufq_cnt--;
9823 spin_unlock_irq(&phba->hbalock);
9824 return mp;
9825 }
9826 }
9827
9828 spin_unlock_irq(&phba->hbalock);
9829 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9830 "0402 Cannot find virtual addr for buffer tag on "
9831 "ring %d Data x%lx x%p x%p x%x\n",
9832 pring->ringno, (unsigned long) tag,
9833 slp->next, slp->prev, pring->postbufq_cnt);
9834
9835 return NULL;
9836 }
9837
9838 /**
9839 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
9840 * @phba: Pointer to HBA context object.
9841 * @pring: Pointer to driver SLI ring object.
9842 * @phys: DMA address of the buffer.
9843 *
9844 * This function searches the buffer list using the dma_address
9845 * of unsolicited event to find the driver's lpfc_dmabuf object
9846 * corresponding to the dma_address. The function returns the
9847 * lpfc_dmabuf object if a buffer is found else it returns NULL.
9848 * This function is called by the ct and els unsolicited event
9849 * handlers to get the buffer associated with the unsolicited
9850 * event.
9851 *
9852 * This function is called with no lock held.
9853 **/
9854 struct lpfc_dmabuf *
9855 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9856 dma_addr_t phys)
9857 {
9858 struct lpfc_dmabuf *mp, *next_mp;
9859 struct list_head *slp = &pring->postbufq;
9860
9861 /* Search postbufq, from the beginning, looking for a match on phys */
9862 spin_lock_irq(&phba->hbalock);
9863 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
9864 if (mp->phys == phys) {
9865 list_del_init(&mp->list);
9866 pring->postbufq_cnt--;
9867 spin_unlock_irq(&phba->hbalock);
9868 return mp;
9869 }
9870 }
9871
9872 spin_unlock_irq(&phba->hbalock);
9873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9874 "0410 Cannot find virtual addr for mapped buf on "
9875 "ring %d Data x%llx x%p x%p x%x\n",
9876 pring->ringno, (unsigned long long)phys,
9877 slp->next, slp->prev, pring->postbufq_cnt);
9878 return NULL;
9879 }
9880
9881 /**
9882 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
9883 * @phba: Pointer to HBA context object.
9884 * @cmdiocb: Pointer to driver command iocb object.
9885 * @rspiocb: Pointer to driver response iocb object.
9886 *
9887 * This function is the completion handler for the abort iocbs for
9888 * ELS commands. This function is called from the ELS ring event
9889 * handler with no lock held. This function frees memory resources
9890 * associated with the abort iocb.
9891 **/
9892 static void
9893 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9894 struct lpfc_iocbq *rspiocb)
9895 {
9896 IOCB_t *irsp = &rspiocb->iocb;
9897 uint16_t abort_iotag, abort_context;
9898 struct lpfc_iocbq *abort_iocb = NULL;
9899
9900 if (irsp->ulpStatus) {
9901
9902 /*
9903 * Assume that the port already completed and returned, or
9904 * will return the iocb. Just Log the message.
9905 */
9906 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
9907 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
9908
9909 spin_lock_irq(&phba->hbalock);
9910 if (phba->sli_rev < LPFC_SLI_REV4) {
9911 if (abort_iotag != 0 &&
9912 abort_iotag <= phba->sli.last_iotag)
9913 abort_iocb =
9914 phba->sli.iocbq_lookup[abort_iotag];
9915 } else
9916 /* For sli4 the abort_tag is the XRI,
9917 * so the abort routine puts the iotag of the iocb
9918 * being aborted in the context field of the abort
9919 * IOCB.
9920 */
9921 abort_iocb = phba->sli.iocbq_lookup[abort_context];
9922
9923 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
9924 "0327 Cannot abort els iocb %p "
9925 "with tag %x context %x, abort status %x, "
9926 "abort code %x\n",
9927 abort_iocb, abort_iotag, abort_context,
9928 irsp->ulpStatus, irsp->un.ulpWord[4]);
9929
9930 spin_unlock_irq(&phba->hbalock);
9931 }
9932 lpfc_sli_release_iocbq(phba, cmdiocb);
9933 return;
9934 }
9935
9936 /**
9937 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
9938 * @phba: Pointer to HBA context object.
9939 * @cmdiocb: Pointer to driver command iocb object.
9940 * @rspiocb: Pointer to driver response iocb object.
9941 *
9942 * The function is called from SLI ring event handler with no
9943 * lock held. This function is the completion handler for ELS commands
9944 * which are aborted. The function frees memory resources used for
9945 * the aborted ELS commands.
9946 **/
9947 static void
9948 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9949 struct lpfc_iocbq *rspiocb)
9950 {
9951 IOCB_t *irsp = &rspiocb->iocb;
9952
9953 /* ELS cmd tag <ulpIoTag> completes */
9954 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
9955 "0139 Ignoring ELS cmd tag x%x completion Data: "
9956 "x%x x%x x%x\n",
9957 irsp->ulpIoTag, irsp->ulpStatus,
9958 irsp->un.ulpWord[4], irsp->ulpTimeout);
9959 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
9960 lpfc_ct_free_iocb(phba, cmdiocb);
9961 else
9962 lpfc_els_free_iocb(phba, cmdiocb);
9963 return;
9964 }
9965
9966 /**
9967 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
9968 * @phba: Pointer to HBA context object.
9969 * @pring: Pointer to driver SLI ring object.
9970 * @cmdiocb: Pointer to driver command iocb object.
9971 *
9972 * This function issues an abort iocb for the provided command iocb down to
9973 * the port. Other than the case the outstanding command iocb is an abort
9974 * request, this function issues abort out unconditionally. This function is
9975 * called with hbalock held. The function returns 0 when it fails due to
9976 * memory allocation failure or when the command iocb is an abort request.
9977 **/
9978 static int
9979 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9980 struct lpfc_iocbq *cmdiocb)
9981 {
9982 struct lpfc_vport *vport = cmdiocb->vport;
9983 struct lpfc_iocbq *abtsiocbp;
9984 IOCB_t *icmd = NULL;
9985 IOCB_t *iabt = NULL;
9986 int ring_number;
9987 int retval;
9988 unsigned long iflags;
9989
9990 lockdep_assert_held(&phba->hbalock);
9991
9992 /*
9993 * There are certain command types we don't want to abort. And we
9994 * don't want to abort commands that are already in the process of
9995 * being aborted.
9996 */
9997 icmd = &cmdiocb->iocb;
9998 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
9999 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10000 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10001 return 0;
10002
10003 /* issue ABTS for this IOCB based on iotag */
10004 abtsiocbp = __lpfc_sli_get_iocbq(phba);
10005 if (abtsiocbp == NULL)
10006 return 0;
10007
10008 /* This signals the response to set the correct status
10009 * before calling the completion handler
10010 */
10011 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
10012
10013 iabt = &abtsiocbp->iocb;
10014 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
10015 iabt->un.acxri.abortContextTag = icmd->ulpContext;
10016 if (phba->sli_rev == LPFC_SLI_REV4) {
10017 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
10018 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
10019 }
10020 else
10021 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
10022 iabt->ulpLe = 1;
10023 iabt->ulpClass = icmd->ulpClass;
10024
10025 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10026 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx;
10027 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
10028 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
10029 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
10030 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
10031
10032 if (phba->link_state >= LPFC_LINK_UP)
10033 iabt->ulpCommand = CMD_ABORT_XRI_CN;
10034 else
10035 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
10036
10037 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
10038
10039 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
10040 "0339 Abort xri x%x, original iotag x%x, "
10041 "abort cmd iotag x%x\n",
10042 iabt->un.acxri.abortIoTag,
10043 iabt->un.acxri.abortContextTag,
10044 abtsiocbp->iotag);
10045
10046 if (phba->sli_rev == LPFC_SLI_REV4) {
10047 ring_number =
10048 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp);
10049 if (unlikely(ring_number == LPFC_HBA_ERROR))
10050 return 0;
10051 pring = &phba->sli.ring[ring_number];
10052 /* Note: both hbalock and ring_lock need to be set here */
10053 spin_lock_irqsave(&pring->ring_lock, iflags);
10054 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10055 abtsiocbp, 0);
10056 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10057 } else {
10058 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
10059 abtsiocbp, 0);
10060 }
10061
10062 if (retval)
10063 __lpfc_sli_release_iocbq(phba, abtsiocbp);
10064
10065 /*
10066 * Caller to this routine should check for IOCB_ERROR
10067 * and handle it properly. This routine no longer removes
10068 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10069 */
10070 return retval;
10071 }
10072
10073 /**
10074 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
10075 * @phba: Pointer to HBA context object.
10076 * @pring: Pointer to driver SLI ring object.
10077 * @cmdiocb: Pointer to driver command iocb object.
10078 *
10079 * This function issues an abort iocb for the provided command iocb. In case
10080 * of unloading, the abort iocb will not be issued to commands on the ELS
10081 * ring. Instead, the callback function shall be changed to those commands
10082 * so that nothing happens when them finishes. This function is called with
10083 * hbalock held. The function returns 0 when the command iocb is an abort
10084 * request.
10085 **/
10086 int
10087 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10088 struct lpfc_iocbq *cmdiocb)
10089 {
10090 struct lpfc_vport *vport = cmdiocb->vport;
10091 int retval = IOCB_ERROR;
10092 IOCB_t *icmd = NULL;
10093
10094 lockdep_assert_held(&phba->hbalock);
10095
10096 /*
10097 * There are certain command types we don't want to abort. And we
10098 * don't want to abort commands that are already in the process of
10099 * being aborted.
10100 */
10101 icmd = &cmdiocb->iocb;
10102 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
10103 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
10104 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
10105 return 0;
10106
10107 /*
10108 * If we're unloading, don't abort iocb on the ELS ring, but change
10109 * the callback so that nothing happens when it finishes.
10110 */
10111 if ((vport->load_flag & FC_UNLOADING) &&
10112 (pring->ringno == LPFC_ELS_RING)) {
10113 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
10114 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
10115 else
10116 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
10117 goto abort_iotag_exit;
10118 }
10119
10120 /* Now, we try to issue the abort to the cmdiocb out */
10121 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
10122
10123 abort_iotag_exit:
10124 /*
10125 * Caller to this routine should check for IOCB_ERROR
10126 * and handle it properly. This routine no longer removes
10127 * iocb off txcmplq and call compl in case of IOCB_ERROR.
10128 */
10129 return retval;
10130 }
10131
10132 /**
10133 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
10134 * @phba: pointer to lpfc HBA data structure.
10135 *
10136 * This routine will abort all pending and outstanding iocbs to an HBA.
10137 **/
10138 void
10139 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
10140 {
10141 struct lpfc_sli *psli = &phba->sli;
10142 struct lpfc_sli_ring *pring;
10143 int i;
10144
10145 for (i = 0; i < psli->num_rings; i++) {
10146 pring = &psli->ring[i];
10147 lpfc_sli_abort_iocb_ring(phba, pring);
10148 }
10149 }
10150
10151 /**
10152 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
10153 * @iocbq: Pointer to driver iocb object.
10154 * @vport: Pointer to driver virtual port object.
10155 * @tgt_id: SCSI ID of the target.
10156 * @lun_id: LUN ID of the scsi device.
10157 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
10158 *
10159 * This function acts as an iocb filter for functions which abort or count
10160 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
10161 * 0 if the filtering criteria is met for the given iocb and will return
10162 * 1 if the filtering criteria is not met.
10163 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
10164 * given iocb is for the SCSI device specified by vport, tgt_id and
10165 * lun_id parameter.
10166 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
10167 * given iocb is for the SCSI target specified by vport and tgt_id
10168 * parameters.
10169 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
10170 * given iocb is for the SCSI host associated with the given vport.
10171 * This function is called with no locks held.
10172 **/
10173 static int
10174 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
10175 uint16_t tgt_id, uint64_t lun_id,
10176 lpfc_ctx_cmd ctx_cmd)
10177 {
10178 struct lpfc_scsi_buf *lpfc_cmd;
10179 int rc = 1;
10180
10181 if (!(iocbq->iocb_flag & LPFC_IO_FCP))
10182 return rc;
10183
10184 if (iocbq->vport != vport)
10185 return rc;
10186
10187 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10188
10189 if (lpfc_cmd->pCmd == NULL)
10190 return rc;
10191
10192 switch (ctx_cmd) {
10193 case LPFC_CTX_LUN:
10194 if ((lpfc_cmd->rdata->pnode) &&
10195 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
10196 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
10197 rc = 0;
10198 break;
10199 case LPFC_CTX_TGT:
10200 if ((lpfc_cmd->rdata->pnode) &&
10201 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
10202 rc = 0;
10203 break;
10204 case LPFC_CTX_HOST:
10205 rc = 0;
10206 break;
10207 default:
10208 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
10209 __func__, ctx_cmd);
10210 break;
10211 }
10212
10213 return rc;
10214 }
10215
10216 /**
10217 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
10218 * @vport: Pointer to virtual port.
10219 * @tgt_id: SCSI ID of the target.
10220 * @lun_id: LUN ID of the scsi device.
10221 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10222 *
10223 * This function returns number of FCP commands pending for the vport.
10224 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
10225 * commands pending on the vport associated with SCSI device specified
10226 * by tgt_id and lun_id parameters.
10227 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
10228 * commands pending on the vport associated with SCSI target specified
10229 * by tgt_id parameter.
10230 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
10231 * commands pending on the vport.
10232 * This function returns the number of iocbs which satisfy the filter.
10233 * This function is called without any lock held.
10234 **/
10235 int
10236 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
10237 lpfc_ctx_cmd ctx_cmd)
10238 {
10239 struct lpfc_hba *phba = vport->phba;
10240 struct lpfc_iocbq *iocbq;
10241 int sum, i;
10242
10243 spin_lock_irq(&phba->hbalock);
10244 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
10245 iocbq = phba->sli.iocbq_lookup[i];
10246
10247 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
10248 ctx_cmd) == 0)
10249 sum++;
10250 }
10251 spin_unlock_irq(&phba->hbalock);
10252
10253 return sum;
10254 }
10255
10256 /**
10257 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
10258 * @phba: Pointer to HBA context object
10259 * @cmdiocb: Pointer to command iocb object.
10260 * @rspiocb: Pointer to response iocb object.
10261 *
10262 * This function is called when an aborted FCP iocb completes. This
10263 * function is called by the ring event handler with no lock held.
10264 * This function frees the iocb.
10265 **/
10266 void
10267 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10268 struct lpfc_iocbq *rspiocb)
10269 {
10270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10271 "3096 ABORT_XRI_CN completing on rpi x%x "
10272 "original iotag x%x, abort cmd iotag x%x "
10273 "status 0x%x, reason 0x%x\n",
10274 cmdiocb->iocb.un.acxri.abortContextTag,
10275 cmdiocb->iocb.un.acxri.abortIoTag,
10276 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
10277 rspiocb->iocb.un.ulpWord[4]);
10278 lpfc_sli_release_iocbq(phba, cmdiocb);
10279 return;
10280 }
10281
10282 /**
10283 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
10284 * @vport: Pointer to virtual port.
10285 * @pring: Pointer to driver SLI ring object.
10286 * @tgt_id: SCSI ID of the target.
10287 * @lun_id: LUN ID of the scsi device.
10288 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10289 *
10290 * This function sends an abort command for every SCSI command
10291 * associated with the given virtual port pending on the ring
10292 * filtered by lpfc_sli_validate_fcp_iocb function.
10293 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
10294 * FCP iocbs associated with lun specified by tgt_id and lun_id
10295 * parameters
10296 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
10297 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10298 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
10299 * FCP iocbs associated with virtual port.
10300 * This function returns number of iocbs it failed to abort.
10301 * This function is called with no locks held.
10302 **/
10303 int
10304 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10305 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
10306 {
10307 struct lpfc_hba *phba = vport->phba;
10308 struct lpfc_iocbq *iocbq;
10309 struct lpfc_iocbq *abtsiocb;
10310 IOCB_t *cmd = NULL;
10311 int errcnt = 0, ret_val = 0;
10312 int i;
10313
10314 for (i = 1; i <= phba->sli.last_iotag; i++) {
10315 iocbq = phba->sli.iocbq_lookup[i];
10316
10317 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10318 abort_cmd) != 0)
10319 continue;
10320
10321 /*
10322 * If the iocbq is already being aborted, don't take a second
10323 * action, but do count it.
10324 */
10325 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10326 continue;
10327
10328 /* issue ABTS for this IOCB based on iotag */
10329 abtsiocb = lpfc_sli_get_iocbq(phba);
10330 if (abtsiocb == NULL) {
10331 errcnt++;
10332 continue;
10333 }
10334
10335 /* indicate the IO is being aborted by the driver. */
10336 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10337
10338 cmd = &iocbq->iocb;
10339 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10340 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
10341 if (phba->sli_rev == LPFC_SLI_REV4)
10342 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
10343 else
10344 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
10345 abtsiocb->iocb.ulpLe = 1;
10346 abtsiocb->iocb.ulpClass = cmd->ulpClass;
10347 abtsiocb->vport = vport;
10348
10349 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10350 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx;
10351 if (iocbq->iocb_flag & LPFC_IO_FCP)
10352 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
10353 if (iocbq->iocb_flag & LPFC_IO_FOF)
10354 abtsiocb->iocb_flag |= LPFC_IO_FOF;
10355
10356 if (lpfc_is_link_up(phba))
10357 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
10358 else
10359 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
10360
10361 /* Setup callback routine and issue the command. */
10362 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
10363 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
10364 abtsiocb, 0);
10365 if (ret_val == IOCB_ERROR) {
10366 lpfc_sli_release_iocbq(phba, abtsiocb);
10367 errcnt++;
10368 continue;
10369 }
10370 }
10371
10372 return errcnt;
10373 }
10374
10375 /**
10376 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
10377 * @vport: Pointer to virtual port.
10378 * @pring: Pointer to driver SLI ring object.
10379 * @tgt_id: SCSI ID of the target.
10380 * @lun_id: LUN ID of the scsi device.
10381 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
10382 *
10383 * This function sends an abort command for every SCSI command
10384 * associated with the given virtual port pending on the ring
10385 * filtered by lpfc_sli_validate_fcp_iocb function.
10386 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
10387 * FCP iocbs associated with lun specified by tgt_id and lun_id
10388 * parameters
10389 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
10390 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
10391 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
10392 * FCP iocbs associated with virtual port.
10393 * This function returns number of iocbs it aborted .
10394 * This function is called with no locks held right after a taskmgmt
10395 * command is sent.
10396 **/
10397 int
10398 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
10399 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
10400 {
10401 struct lpfc_hba *phba = vport->phba;
10402 struct lpfc_scsi_buf *lpfc_cmd;
10403 struct lpfc_iocbq *abtsiocbq;
10404 struct lpfc_nodelist *ndlp;
10405 struct lpfc_iocbq *iocbq;
10406 IOCB_t *icmd;
10407 int sum, i, ret_val;
10408 unsigned long iflags;
10409 struct lpfc_sli_ring *pring_s4;
10410 uint32_t ring_number;
10411
10412 spin_lock_irq(&phba->hbalock);
10413
10414 /* all I/Os are in process of being flushed */
10415 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
10416 spin_unlock_irq(&phba->hbalock);
10417 return 0;
10418 }
10419 sum = 0;
10420
10421 for (i = 1; i <= phba->sli.last_iotag; i++) {
10422 iocbq = phba->sli.iocbq_lookup[i];
10423
10424 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
10425 cmd) != 0)
10426 continue;
10427
10428 /*
10429 * If the iocbq is already being aborted, don't take a second
10430 * action, but do count it.
10431 */
10432 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
10433 continue;
10434
10435 /* issue ABTS for this IOCB based on iotag */
10436 abtsiocbq = __lpfc_sli_get_iocbq(phba);
10437 if (abtsiocbq == NULL)
10438 continue;
10439
10440 icmd = &iocbq->iocb;
10441 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
10442 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
10443 if (phba->sli_rev == LPFC_SLI_REV4)
10444 abtsiocbq->iocb.un.acxri.abortIoTag =
10445 iocbq->sli4_xritag;
10446 else
10447 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
10448 abtsiocbq->iocb.ulpLe = 1;
10449 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
10450 abtsiocbq->vport = vport;
10451
10452 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
10453 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx;
10454 if (iocbq->iocb_flag & LPFC_IO_FCP)
10455 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
10456 if (iocbq->iocb_flag & LPFC_IO_FOF)
10457 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
10458
10459 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
10460 ndlp = lpfc_cmd->rdata->pnode;
10461
10462 if (lpfc_is_link_up(phba) &&
10463 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
10464 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
10465 else
10466 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
10467
10468 /* Setup callback routine and issue the command. */
10469 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
10470
10471 /*
10472 * Indicate the IO is being aborted by the driver and set
10473 * the caller's flag into the aborted IO.
10474 */
10475 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
10476
10477 if (phba->sli_rev == LPFC_SLI_REV4) {
10478 ring_number = MAX_SLI3_CONFIGURED_RINGS +
10479 iocbq->fcp_wqidx;
10480 pring_s4 = &phba->sli.ring[ring_number];
10481 /* Note: both hbalock and ring_lock must be set here */
10482 spin_lock_irqsave(&pring_s4->ring_lock, iflags);
10483 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
10484 abtsiocbq, 0);
10485 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags);
10486 } else {
10487 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
10488 abtsiocbq, 0);
10489 }
10490
10491
10492 if (ret_val == IOCB_ERROR)
10493 __lpfc_sli_release_iocbq(phba, abtsiocbq);
10494 else
10495 sum++;
10496 }
10497 spin_unlock_irq(&phba->hbalock);
10498 return sum;
10499 }
10500
10501 /**
10502 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
10503 * @phba: Pointer to HBA context object.
10504 * @cmdiocbq: Pointer to command iocb.
10505 * @rspiocbq: Pointer to response iocb.
10506 *
10507 * This function is the completion handler for iocbs issued using
10508 * lpfc_sli_issue_iocb_wait function. This function is called by the
10509 * ring event handler function without any lock held. This function
10510 * can be called from both worker thread context and interrupt
10511 * context. This function also can be called from other thread which
10512 * cleans up the SLI layer objects.
10513 * This function copy the contents of the response iocb to the
10514 * response iocb memory object provided by the caller of
10515 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
10516 * sleeps for the iocb completion.
10517 **/
10518 static void
10519 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
10520 struct lpfc_iocbq *cmdiocbq,
10521 struct lpfc_iocbq *rspiocbq)
10522 {
10523 wait_queue_head_t *pdone_q;
10524 unsigned long iflags;
10525 struct lpfc_scsi_buf *lpfc_cmd;
10526
10527 spin_lock_irqsave(&phba->hbalock, iflags);
10528 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
10529
10530 /*
10531 * A time out has occurred for the iocb. If a time out
10532 * completion handler has been supplied, call it. Otherwise,
10533 * just free the iocbq.
10534 */
10535
10536 spin_unlock_irqrestore(&phba->hbalock, iflags);
10537 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
10538 cmdiocbq->wait_iocb_cmpl = NULL;
10539 if (cmdiocbq->iocb_cmpl)
10540 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
10541 else
10542 lpfc_sli_release_iocbq(phba, cmdiocbq);
10543 return;
10544 }
10545
10546 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
10547 if (cmdiocbq->context2 && rspiocbq)
10548 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
10549 &rspiocbq->iocb, sizeof(IOCB_t));
10550
10551 /* Set the exchange busy flag for task management commands */
10552 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
10553 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
10554 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
10555 cur_iocbq);
10556 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
10557 }
10558
10559 pdone_q = cmdiocbq->context_un.wait_queue;
10560 if (pdone_q)
10561 wake_up(pdone_q);
10562 spin_unlock_irqrestore(&phba->hbalock, iflags);
10563 return;
10564 }
10565
10566 /**
10567 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
10568 * @phba: Pointer to HBA context object..
10569 * @piocbq: Pointer to command iocb.
10570 * @flag: Flag to test.
10571 *
10572 * This routine grabs the hbalock and then test the iocb_flag to
10573 * see if the passed in flag is set.
10574 * Returns:
10575 * 1 if flag is set.
10576 * 0 if flag is not set.
10577 **/
10578 static int
10579 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
10580 struct lpfc_iocbq *piocbq, uint32_t flag)
10581 {
10582 unsigned long iflags;
10583 int ret;
10584
10585 spin_lock_irqsave(&phba->hbalock, iflags);
10586 ret = piocbq->iocb_flag & flag;
10587 spin_unlock_irqrestore(&phba->hbalock, iflags);
10588 return ret;
10589
10590 }
10591
10592 /**
10593 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
10594 * @phba: Pointer to HBA context object..
10595 * @pring: Pointer to sli ring.
10596 * @piocb: Pointer to command iocb.
10597 * @prspiocbq: Pointer to response iocb.
10598 * @timeout: Timeout in number of seconds.
10599 *
10600 * This function issues the iocb to firmware and waits for the
10601 * iocb to complete. The iocb_cmpl field of the shall be used
10602 * to handle iocbs which time out. If the field is NULL, the
10603 * function shall free the iocbq structure. If more clean up is
10604 * needed, the caller is expected to provide a completion function
10605 * that will provide the needed clean up. If the iocb command is
10606 * not completed within timeout seconds, the function will either
10607 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
10608 * completion function set in the iocb_cmpl field and then return
10609 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
10610 * resources if this function returns IOCB_TIMEDOUT.
10611 * The function waits for the iocb completion using an
10612 * non-interruptible wait.
10613 * This function will sleep while waiting for iocb completion.
10614 * So, this function should not be called from any context which
10615 * does not allow sleeping. Due to the same reason, this function
10616 * cannot be called with interrupt disabled.
10617 * This function assumes that the iocb completions occur while
10618 * this function sleep. So, this function cannot be called from
10619 * the thread which process iocb completion for this ring.
10620 * This function clears the iocb_flag of the iocb object before
10621 * issuing the iocb and the iocb completion handler sets this
10622 * flag and wakes this thread when the iocb completes.
10623 * The contents of the response iocb will be copied to prspiocbq
10624 * by the completion handler when the command completes.
10625 * This function returns IOCB_SUCCESS when success.
10626 * This function is called with no lock held.
10627 **/
10628 int
10629 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
10630 uint32_t ring_number,
10631 struct lpfc_iocbq *piocb,
10632 struct lpfc_iocbq *prspiocbq,
10633 uint32_t timeout)
10634 {
10635 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
10636 long timeleft, timeout_req = 0;
10637 int retval = IOCB_SUCCESS;
10638 uint32_t creg_val;
10639 struct lpfc_iocbq *iocb;
10640 int txq_cnt = 0;
10641 int txcmplq_cnt = 0;
10642 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
10643 unsigned long iflags;
10644 bool iocb_completed = true;
10645
10646 /*
10647 * If the caller has provided a response iocbq buffer, then context2
10648 * is NULL or its an error.
10649 */
10650 if (prspiocbq) {
10651 if (piocb->context2)
10652 return IOCB_ERROR;
10653 piocb->context2 = prspiocbq;
10654 }
10655
10656 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
10657 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
10658 piocb->context_un.wait_queue = &done_q;
10659 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
10660
10661 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
10662 if (lpfc_readl(phba->HCregaddr, &creg_val))
10663 return IOCB_ERROR;
10664 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
10665 writel(creg_val, phba->HCregaddr);
10666 readl(phba->HCregaddr); /* flush */
10667 }
10668
10669 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
10670 SLI_IOCB_RET_IOCB);
10671 if (retval == IOCB_SUCCESS) {
10672 timeout_req = msecs_to_jiffies(timeout * 1000);
10673 timeleft = wait_event_timeout(done_q,
10674 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
10675 timeout_req);
10676 spin_lock_irqsave(&phba->hbalock, iflags);
10677 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
10678
10679 /*
10680 * IOCB timed out. Inform the wake iocb wait
10681 * completion function and set local status
10682 */
10683
10684 iocb_completed = false;
10685 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
10686 }
10687 spin_unlock_irqrestore(&phba->hbalock, iflags);
10688 if (iocb_completed) {
10689 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10690 "0331 IOCB wake signaled\n");
10691 /* Note: we are not indicating if the IOCB has a success
10692 * status or not - that's for the caller to check.
10693 * IOCB_SUCCESS means just that the command was sent and
10694 * completed. Not that it completed successfully.
10695 * */
10696 } else if (timeleft == 0) {
10697 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10698 "0338 IOCB wait timeout error - no "
10699 "wake response Data x%x\n", timeout);
10700 retval = IOCB_TIMEDOUT;
10701 } else {
10702 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10703 "0330 IOCB wake NOT set, "
10704 "Data x%x x%lx\n",
10705 timeout, (timeleft / jiffies));
10706 retval = IOCB_TIMEDOUT;
10707 }
10708 } else if (retval == IOCB_BUSY) {
10709 if (phba->cfg_log_verbose & LOG_SLI) {
10710 list_for_each_entry(iocb, &pring->txq, list) {
10711 txq_cnt++;
10712 }
10713 list_for_each_entry(iocb, &pring->txcmplq, list) {
10714 txcmplq_cnt++;
10715 }
10716 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10717 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
10718 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
10719 }
10720 return retval;
10721 } else {
10722 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10723 "0332 IOCB wait issue failed, Data x%x\n",
10724 retval);
10725 retval = IOCB_ERROR;
10726 }
10727
10728 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
10729 if (lpfc_readl(phba->HCregaddr, &creg_val))
10730 return IOCB_ERROR;
10731 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
10732 writel(creg_val, phba->HCregaddr);
10733 readl(phba->HCregaddr); /* flush */
10734 }
10735
10736 if (prspiocbq)
10737 piocb->context2 = NULL;
10738
10739 piocb->context_un.wait_queue = NULL;
10740 piocb->iocb_cmpl = NULL;
10741 return retval;
10742 }
10743
10744 /**
10745 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
10746 * @phba: Pointer to HBA context object.
10747 * @pmboxq: Pointer to driver mailbox object.
10748 * @timeout: Timeout in number of seconds.
10749 *
10750 * This function issues the mailbox to firmware and waits for the
10751 * mailbox command to complete. If the mailbox command is not
10752 * completed within timeout seconds, it returns MBX_TIMEOUT.
10753 * The function waits for the mailbox completion using an
10754 * interruptible wait. If the thread is woken up due to a
10755 * signal, MBX_TIMEOUT error is returned to the caller. Caller
10756 * should not free the mailbox resources, if this function returns
10757 * MBX_TIMEOUT.
10758 * This function will sleep while waiting for mailbox completion.
10759 * So, this function should not be called from any context which
10760 * does not allow sleeping. Due to the same reason, this function
10761 * cannot be called with interrupt disabled.
10762 * This function assumes that the mailbox completion occurs while
10763 * this function sleep. So, this function cannot be called from
10764 * the worker thread which processes mailbox completion.
10765 * This function is called in the context of HBA management
10766 * applications.
10767 * This function returns MBX_SUCCESS when successful.
10768 * This function is called with no lock held.
10769 **/
10770 int
10771 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
10772 uint32_t timeout)
10773 {
10774 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
10775 MAILBOX_t *mb = NULL;
10776 int retval;
10777 unsigned long flag;
10778
10779 /* The caller might set context1 for extended buffer */
10780 if (pmboxq->context1)
10781 mb = (MAILBOX_t *)pmboxq->context1;
10782
10783 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
10784 /* setup wake call as IOCB callback */
10785 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
10786 /* setup context field to pass wait_queue pointer to wake function */
10787 pmboxq->context1 = &done_q;
10788
10789 /* now issue the command */
10790 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
10791 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
10792 wait_event_interruptible_timeout(done_q,
10793 pmboxq->mbox_flag & LPFC_MBX_WAKE,
10794 msecs_to_jiffies(timeout * 1000));
10795
10796 spin_lock_irqsave(&phba->hbalock, flag);
10797 /* restore the possible extended buffer for free resource */
10798 pmboxq->context1 = (uint8_t *)mb;
10799 /*
10800 * if LPFC_MBX_WAKE flag is set the mailbox is completed
10801 * else do not free the resources.
10802 */
10803 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
10804 retval = MBX_SUCCESS;
10805 } else {
10806 retval = MBX_TIMEOUT;
10807 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10808 }
10809 spin_unlock_irqrestore(&phba->hbalock, flag);
10810 } else {
10811 /* restore the possible extended buffer for free resource */
10812 pmboxq->context1 = (uint8_t *)mb;
10813 }
10814
10815 return retval;
10816 }
10817
10818 /**
10819 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
10820 * @phba: Pointer to HBA context.
10821 *
10822 * This function is called to shutdown the driver's mailbox sub-system.
10823 * It first marks the mailbox sub-system is in a block state to prevent
10824 * the asynchronous mailbox command from issued off the pending mailbox
10825 * command queue. If the mailbox command sub-system shutdown is due to
10826 * HBA error conditions such as EEH or ERATT, this routine shall invoke
10827 * the mailbox sub-system flush routine to forcefully bring down the
10828 * mailbox sub-system. Otherwise, if it is due to normal condition (such
10829 * as with offline or HBA function reset), this routine will wait for the
10830 * outstanding mailbox command to complete before invoking the mailbox
10831 * sub-system flush routine to gracefully bring down mailbox sub-system.
10832 **/
10833 void
10834 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
10835 {
10836 struct lpfc_sli *psli = &phba->sli;
10837 unsigned long timeout;
10838
10839 if (mbx_action == LPFC_MBX_NO_WAIT) {
10840 /* delay 100ms for port state */
10841 msleep(100);
10842 lpfc_sli_mbox_sys_flush(phba);
10843 return;
10844 }
10845 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
10846
10847 spin_lock_irq(&phba->hbalock);
10848 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
10849
10850 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
10851 /* Determine how long we might wait for the active mailbox
10852 * command to be gracefully completed by firmware.
10853 */
10854 if (phba->sli.mbox_active)
10855 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
10856 phba->sli.mbox_active) *
10857 1000) + jiffies;
10858 spin_unlock_irq(&phba->hbalock);
10859
10860 while (phba->sli.mbox_active) {
10861 /* Check active mailbox complete status every 2ms */
10862 msleep(2);
10863 if (time_after(jiffies, timeout))
10864 /* Timeout, let the mailbox flush routine to
10865 * forcefully release active mailbox command
10866 */
10867 break;
10868 }
10869 } else
10870 spin_unlock_irq(&phba->hbalock);
10871
10872 lpfc_sli_mbox_sys_flush(phba);
10873 }
10874
10875 /**
10876 * lpfc_sli_eratt_read - read sli-3 error attention events
10877 * @phba: Pointer to HBA context.
10878 *
10879 * This function is called to read the SLI3 device error attention registers
10880 * for possible error attention events. The caller must hold the hostlock
10881 * with spin_lock_irq().
10882 *
10883 * This function returns 1 when there is Error Attention in the Host Attention
10884 * Register and returns 0 otherwise.
10885 **/
10886 static int
10887 lpfc_sli_eratt_read(struct lpfc_hba *phba)
10888 {
10889 uint32_t ha_copy;
10890
10891 /* Read chip Host Attention (HA) register */
10892 if (lpfc_readl(phba->HAregaddr, &ha_copy))
10893 goto unplug_err;
10894
10895 if (ha_copy & HA_ERATT) {
10896 /* Read host status register to retrieve error event */
10897 if (lpfc_sli_read_hs(phba))
10898 goto unplug_err;
10899
10900 /* Check if there is a deferred error condition is active */
10901 if ((HS_FFER1 & phba->work_hs) &&
10902 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
10903 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
10904 phba->hba_flag |= DEFER_ERATT;
10905 /* Clear all interrupt enable conditions */
10906 writel(0, phba->HCregaddr);
10907 readl(phba->HCregaddr);
10908 }
10909
10910 /* Set the driver HA work bitmap */
10911 phba->work_ha |= HA_ERATT;
10912 /* Indicate polling handles this ERATT */
10913 phba->hba_flag |= HBA_ERATT_HANDLED;
10914 return 1;
10915 }
10916 return 0;
10917
10918 unplug_err:
10919 /* Set the driver HS work bitmap */
10920 phba->work_hs |= UNPLUG_ERR;
10921 /* Set the driver HA work bitmap */
10922 phba->work_ha |= HA_ERATT;
10923 /* Indicate polling handles this ERATT */
10924 phba->hba_flag |= HBA_ERATT_HANDLED;
10925 return 1;
10926 }
10927
10928 /**
10929 * lpfc_sli4_eratt_read - read sli-4 error attention events
10930 * @phba: Pointer to HBA context.
10931 *
10932 * This function is called to read the SLI4 device error attention registers
10933 * for possible error attention events. The caller must hold the hostlock
10934 * with spin_lock_irq().
10935 *
10936 * This function returns 1 when there is Error Attention in the Host Attention
10937 * Register and returns 0 otherwise.
10938 **/
10939 static int
10940 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
10941 {
10942 uint32_t uerr_sta_hi, uerr_sta_lo;
10943 uint32_t if_type, portsmphr;
10944 struct lpfc_register portstat_reg;
10945
10946 /*
10947 * For now, use the SLI4 device internal unrecoverable error
10948 * registers for error attention. This can be changed later.
10949 */
10950 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10951 switch (if_type) {
10952 case LPFC_SLI_INTF_IF_TYPE_0:
10953 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
10954 &uerr_sta_lo) ||
10955 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
10956 &uerr_sta_hi)) {
10957 phba->work_hs |= UNPLUG_ERR;
10958 phba->work_ha |= HA_ERATT;
10959 phba->hba_flag |= HBA_ERATT_HANDLED;
10960 return 1;
10961 }
10962 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
10963 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
10964 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10965 "1423 HBA Unrecoverable error: "
10966 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
10967 "ue_mask_lo_reg=0x%x, "
10968 "ue_mask_hi_reg=0x%x\n",
10969 uerr_sta_lo, uerr_sta_hi,
10970 phba->sli4_hba.ue_mask_lo,
10971 phba->sli4_hba.ue_mask_hi);
10972 phba->work_status[0] = uerr_sta_lo;
10973 phba->work_status[1] = uerr_sta_hi;
10974 phba->work_ha |= HA_ERATT;
10975 phba->hba_flag |= HBA_ERATT_HANDLED;
10976 return 1;
10977 }
10978 break;
10979 case LPFC_SLI_INTF_IF_TYPE_2:
10980 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
10981 &portstat_reg.word0) ||
10982 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
10983 &portsmphr)){
10984 phba->work_hs |= UNPLUG_ERR;
10985 phba->work_ha |= HA_ERATT;
10986 phba->hba_flag |= HBA_ERATT_HANDLED;
10987 return 1;
10988 }
10989 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
10990 phba->work_status[0] =
10991 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
10992 phba->work_status[1] =
10993 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
10994 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10995 "2885 Port Status Event: "
10996 "port status reg 0x%x, "
10997 "port smphr reg 0x%x, "
10998 "error 1=0x%x, error 2=0x%x\n",
10999 portstat_reg.word0,
11000 portsmphr,
11001 phba->work_status[0],
11002 phba->work_status[1]);
11003 phba->work_ha |= HA_ERATT;
11004 phba->hba_flag |= HBA_ERATT_HANDLED;
11005 return 1;
11006 }
11007 break;
11008 case LPFC_SLI_INTF_IF_TYPE_1:
11009 default:
11010 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11011 "2886 HBA Error Attention on unsupported "
11012 "if type %d.", if_type);
11013 return 1;
11014 }
11015
11016 return 0;
11017 }
11018
11019 /**
11020 * lpfc_sli_check_eratt - check error attention events
11021 * @phba: Pointer to HBA context.
11022 *
11023 * This function is called from timer soft interrupt context to check HBA's
11024 * error attention register bit for error attention events.
11025 *
11026 * This function returns 1 when there is Error Attention in the Host Attention
11027 * Register and returns 0 otherwise.
11028 **/
11029 int
11030 lpfc_sli_check_eratt(struct lpfc_hba *phba)
11031 {
11032 uint32_t ha_copy;
11033
11034 /* If somebody is waiting to handle an eratt, don't process it
11035 * here. The brdkill function will do this.
11036 */
11037 if (phba->link_flag & LS_IGNORE_ERATT)
11038 return 0;
11039
11040 /* Check if interrupt handler handles this ERATT */
11041 spin_lock_irq(&phba->hbalock);
11042 if (phba->hba_flag & HBA_ERATT_HANDLED) {
11043 /* Interrupt handler has handled ERATT */
11044 spin_unlock_irq(&phba->hbalock);
11045 return 0;
11046 }
11047
11048 /*
11049 * If there is deferred error attention, do not check for error
11050 * attention
11051 */
11052 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11053 spin_unlock_irq(&phba->hbalock);
11054 return 0;
11055 }
11056
11057 /* If PCI channel is offline, don't process it */
11058 if (unlikely(pci_channel_offline(phba->pcidev))) {
11059 spin_unlock_irq(&phba->hbalock);
11060 return 0;
11061 }
11062
11063 switch (phba->sli_rev) {
11064 case LPFC_SLI_REV2:
11065 case LPFC_SLI_REV3:
11066 /* Read chip Host Attention (HA) register */
11067 ha_copy = lpfc_sli_eratt_read(phba);
11068 break;
11069 case LPFC_SLI_REV4:
11070 /* Read device Uncoverable Error (UERR) registers */
11071 ha_copy = lpfc_sli4_eratt_read(phba);
11072 break;
11073 default:
11074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11075 "0299 Invalid SLI revision (%d)\n",
11076 phba->sli_rev);
11077 ha_copy = 0;
11078 break;
11079 }
11080 spin_unlock_irq(&phba->hbalock);
11081
11082 return ha_copy;
11083 }
11084
11085 /**
11086 * lpfc_intr_state_check - Check device state for interrupt handling
11087 * @phba: Pointer to HBA context.
11088 *
11089 * This inline routine checks whether a device or its PCI slot is in a state
11090 * that the interrupt should be handled.
11091 *
11092 * This function returns 0 if the device or the PCI slot is in a state that
11093 * interrupt should be handled, otherwise -EIO.
11094 */
11095 static inline int
11096 lpfc_intr_state_check(struct lpfc_hba *phba)
11097 {
11098 /* If the pci channel is offline, ignore all the interrupts */
11099 if (unlikely(pci_channel_offline(phba->pcidev)))
11100 return -EIO;
11101
11102 /* Update device level interrupt statistics */
11103 phba->sli.slistat.sli_intr++;
11104
11105 /* Ignore all interrupts during initialization. */
11106 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
11107 return -EIO;
11108
11109 return 0;
11110 }
11111
11112 /**
11113 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
11114 * @irq: Interrupt number.
11115 * @dev_id: The device context pointer.
11116 *
11117 * This function is directly called from the PCI layer as an interrupt
11118 * service routine when device with SLI-3 interface spec is enabled with
11119 * MSI-X multi-message interrupt mode and there are slow-path events in
11120 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
11121 * interrupt mode, this function is called as part of the device-level
11122 * interrupt handler. When the PCI slot is in error recovery or the HBA
11123 * is undergoing initialization, the interrupt handler will not process
11124 * the interrupt. The link attention and ELS ring attention events are
11125 * handled by the worker thread. The interrupt handler signals the worker
11126 * thread and returns for these events. This function is called without
11127 * any lock held. It gets the hbalock to access and update SLI data
11128 * structures.
11129 *
11130 * This function returns IRQ_HANDLED when interrupt is handled else it
11131 * returns IRQ_NONE.
11132 **/
11133 irqreturn_t
11134 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
11135 {
11136 struct lpfc_hba *phba;
11137 uint32_t ha_copy, hc_copy;
11138 uint32_t work_ha_copy;
11139 unsigned long status;
11140 unsigned long iflag;
11141 uint32_t control;
11142
11143 MAILBOX_t *mbox, *pmbox;
11144 struct lpfc_vport *vport;
11145 struct lpfc_nodelist *ndlp;
11146 struct lpfc_dmabuf *mp;
11147 LPFC_MBOXQ_t *pmb;
11148 int rc;
11149
11150 /*
11151 * Get the driver's phba structure from the dev_id and
11152 * assume the HBA is not interrupting.
11153 */
11154 phba = (struct lpfc_hba *)dev_id;
11155
11156 if (unlikely(!phba))
11157 return IRQ_NONE;
11158
11159 /*
11160 * Stuff needs to be attented to when this function is invoked as an
11161 * individual interrupt handler in MSI-X multi-message interrupt mode
11162 */
11163 if (phba->intr_type == MSIX) {
11164 /* Check device state for handling interrupt */
11165 if (lpfc_intr_state_check(phba))
11166 return IRQ_NONE;
11167 /* Need to read HA REG for slow-path events */
11168 spin_lock_irqsave(&phba->hbalock, iflag);
11169 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11170 goto unplug_error;
11171 /* If somebody is waiting to handle an eratt don't process it
11172 * here. The brdkill function will do this.
11173 */
11174 if (phba->link_flag & LS_IGNORE_ERATT)
11175 ha_copy &= ~HA_ERATT;
11176 /* Check the need for handling ERATT in interrupt handler */
11177 if (ha_copy & HA_ERATT) {
11178 if (phba->hba_flag & HBA_ERATT_HANDLED)
11179 /* ERATT polling has handled ERATT */
11180 ha_copy &= ~HA_ERATT;
11181 else
11182 /* Indicate interrupt handler handles ERATT */
11183 phba->hba_flag |= HBA_ERATT_HANDLED;
11184 }
11185
11186 /*
11187 * If there is deferred error attention, do not check for any
11188 * interrupt.
11189 */
11190 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11191 spin_unlock_irqrestore(&phba->hbalock, iflag);
11192 return IRQ_NONE;
11193 }
11194
11195 /* Clear up only attention source related to slow-path */
11196 if (lpfc_readl(phba->HCregaddr, &hc_copy))
11197 goto unplug_error;
11198
11199 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
11200 HC_LAINT_ENA | HC_ERINT_ENA),
11201 phba->HCregaddr);
11202 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
11203 phba->HAregaddr);
11204 writel(hc_copy, phba->HCregaddr);
11205 readl(phba->HAregaddr); /* flush */
11206 spin_unlock_irqrestore(&phba->hbalock, iflag);
11207 } else
11208 ha_copy = phba->ha_copy;
11209
11210 work_ha_copy = ha_copy & phba->work_ha_mask;
11211
11212 if (work_ha_copy) {
11213 if (work_ha_copy & HA_LATT) {
11214 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
11215 /*
11216 * Turn off Link Attention interrupts
11217 * until CLEAR_LA done
11218 */
11219 spin_lock_irqsave(&phba->hbalock, iflag);
11220 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
11221 if (lpfc_readl(phba->HCregaddr, &control))
11222 goto unplug_error;
11223 control &= ~HC_LAINT_ENA;
11224 writel(control, phba->HCregaddr);
11225 readl(phba->HCregaddr); /* flush */
11226 spin_unlock_irqrestore(&phba->hbalock, iflag);
11227 }
11228 else
11229 work_ha_copy &= ~HA_LATT;
11230 }
11231
11232 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
11233 /*
11234 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
11235 * the only slow ring.
11236 */
11237 status = (work_ha_copy &
11238 (HA_RXMASK << (4*LPFC_ELS_RING)));
11239 status >>= (4*LPFC_ELS_RING);
11240 if (status & HA_RXMASK) {
11241 spin_lock_irqsave(&phba->hbalock, iflag);
11242 if (lpfc_readl(phba->HCregaddr, &control))
11243 goto unplug_error;
11244
11245 lpfc_debugfs_slow_ring_trc(phba,
11246 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
11247 control, status,
11248 (uint32_t)phba->sli.slistat.sli_intr);
11249
11250 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
11251 lpfc_debugfs_slow_ring_trc(phba,
11252 "ISR Disable ring:"
11253 "pwork:x%x hawork:x%x wait:x%x",
11254 phba->work_ha, work_ha_copy,
11255 (uint32_t)((unsigned long)
11256 &phba->work_waitq));
11257
11258 control &=
11259 ~(HC_R0INT_ENA << LPFC_ELS_RING);
11260 writel(control, phba->HCregaddr);
11261 readl(phba->HCregaddr); /* flush */
11262 }
11263 else {
11264 lpfc_debugfs_slow_ring_trc(phba,
11265 "ISR slow ring: pwork:"
11266 "x%x hawork:x%x wait:x%x",
11267 phba->work_ha, work_ha_copy,
11268 (uint32_t)((unsigned long)
11269 &phba->work_waitq));
11270 }
11271 spin_unlock_irqrestore(&phba->hbalock, iflag);
11272 }
11273 }
11274 spin_lock_irqsave(&phba->hbalock, iflag);
11275 if (work_ha_copy & HA_ERATT) {
11276 if (lpfc_sli_read_hs(phba))
11277 goto unplug_error;
11278 /*
11279 * Check if there is a deferred error condition
11280 * is active
11281 */
11282 if ((HS_FFER1 & phba->work_hs) &&
11283 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
11284 HS_FFER6 | HS_FFER7 | HS_FFER8) &
11285 phba->work_hs)) {
11286 phba->hba_flag |= DEFER_ERATT;
11287 /* Clear all interrupt enable conditions */
11288 writel(0, phba->HCregaddr);
11289 readl(phba->HCregaddr);
11290 }
11291 }
11292
11293 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
11294 pmb = phba->sli.mbox_active;
11295 pmbox = &pmb->u.mb;
11296 mbox = phba->mbox;
11297 vport = pmb->vport;
11298
11299 /* First check out the status word */
11300 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
11301 if (pmbox->mbxOwner != OWN_HOST) {
11302 spin_unlock_irqrestore(&phba->hbalock, iflag);
11303 /*
11304 * Stray Mailbox Interrupt, mbxCommand <cmd>
11305 * mbxStatus <status>
11306 */
11307 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11308 LOG_SLI,
11309 "(%d):0304 Stray Mailbox "
11310 "Interrupt mbxCommand x%x "
11311 "mbxStatus x%x\n",
11312 (vport ? vport->vpi : 0),
11313 pmbox->mbxCommand,
11314 pmbox->mbxStatus);
11315 /* clear mailbox attention bit */
11316 work_ha_copy &= ~HA_MBATT;
11317 } else {
11318 phba->sli.mbox_active = NULL;
11319 spin_unlock_irqrestore(&phba->hbalock, iflag);
11320 phba->last_completion_time = jiffies;
11321 del_timer(&phba->sli.mbox_tmo);
11322 if (pmb->mbox_cmpl) {
11323 lpfc_sli_pcimem_bcopy(mbox, pmbox,
11324 MAILBOX_CMD_SIZE);
11325 if (pmb->out_ext_byte_len &&
11326 pmb->context2)
11327 lpfc_sli_pcimem_bcopy(
11328 phba->mbox_ext,
11329 pmb->context2,
11330 pmb->out_ext_byte_len);
11331 }
11332 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11333 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11334
11335 lpfc_debugfs_disc_trc(vport,
11336 LPFC_DISC_TRC_MBOX_VPORT,
11337 "MBOX dflt rpi: : "
11338 "status:x%x rpi:x%x",
11339 (uint32_t)pmbox->mbxStatus,
11340 pmbox->un.varWords[0], 0);
11341
11342 if (!pmbox->mbxStatus) {
11343 mp = (struct lpfc_dmabuf *)
11344 (pmb->context1);
11345 ndlp = (struct lpfc_nodelist *)
11346 pmb->context2;
11347
11348 /* Reg_LOGIN of dflt RPI was
11349 * successful. new lets get
11350 * rid of the RPI using the
11351 * same mbox buffer.
11352 */
11353 lpfc_unreg_login(phba,
11354 vport->vpi,
11355 pmbox->un.varWords[0],
11356 pmb);
11357 pmb->mbox_cmpl =
11358 lpfc_mbx_cmpl_dflt_rpi;
11359 pmb->context1 = mp;
11360 pmb->context2 = ndlp;
11361 pmb->vport = vport;
11362 rc = lpfc_sli_issue_mbox(phba,
11363 pmb,
11364 MBX_NOWAIT);
11365 if (rc != MBX_BUSY)
11366 lpfc_printf_log(phba,
11367 KERN_ERR,
11368 LOG_MBOX | LOG_SLI,
11369 "0350 rc should have"
11370 "been MBX_BUSY\n");
11371 if (rc != MBX_NOT_FINISHED)
11372 goto send_current_mbox;
11373 }
11374 }
11375 spin_lock_irqsave(
11376 &phba->pport->work_port_lock,
11377 iflag);
11378 phba->pport->work_port_events &=
11379 ~WORKER_MBOX_TMO;
11380 spin_unlock_irqrestore(
11381 &phba->pport->work_port_lock,
11382 iflag);
11383 lpfc_mbox_cmpl_put(phba, pmb);
11384 }
11385 } else
11386 spin_unlock_irqrestore(&phba->hbalock, iflag);
11387
11388 if ((work_ha_copy & HA_MBATT) &&
11389 (phba->sli.mbox_active == NULL)) {
11390 send_current_mbox:
11391 /* Process next mailbox command if there is one */
11392 do {
11393 rc = lpfc_sli_issue_mbox(phba, NULL,
11394 MBX_NOWAIT);
11395 } while (rc == MBX_NOT_FINISHED);
11396 if (rc != MBX_SUCCESS)
11397 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11398 LOG_SLI, "0349 rc should be "
11399 "MBX_SUCCESS\n");
11400 }
11401
11402 spin_lock_irqsave(&phba->hbalock, iflag);
11403 phba->work_ha |= work_ha_copy;
11404 spin_unlock_irqrestore(&phba->hbalock, iflag);
11405 lpfc_worker_wake_up(phba);
11406 }
11407 return IRQ_HANDLED;
11408 unplug_error:
11409 spin_unlock_irqrestore(&phba->hbalock, iflag);
11410 return IRQ_HANDLED;
11411
11412 } /* lpfc_sli_sp_intr_handler */
11413
11414 /**
11415 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
11416 * @irq: Interrupt number.
11417 * @dev_id: The device context pointer.
11418 *
11419 * This function is directly called from the PCI layer as an interrupt
11420 * service routine when device with SLI-3 interface spec is enabled with
11421 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
11422 * ring event in the HBA. However, when the device is enabled with either
11423 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
11424 * device-level interrupt handler. When the PCI slot is in error recovery
11425 * or the HBA is undergoing initialization, the interrupt handler will not
11426 * process the interrupt. The SCSI FCP fast-path ring event are handled in
11427 * the intrrupt context. This function is called without any lock held.
11428 * It gets the hbalock to access and update SLI data structures.
11429 *
11430 * This function returns IRQ_HANDLED when interrupt is handled else it
11431 * returns IRQ_NONE.
11432 **/
11433 irqreturn_t
11434 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
11435 {
11436 struct lpfc_hba *phba;
11437 uint32_t ha_copy;
11438 unsigned long status;
11439 unsigned long iflag;
11440
11441 /* Get the driver's phba structure from the dev_id and
11442 * assume the HBA is not interrupting.
11443 */
11444 phba = (struct lpfc_hba *) dev_id;
11445
11446 if (unlikely(!phba))
11447 return IRQ_NONE;
11448
11449 /*
11450 * Stuff needs to be attented to when this function is invoked as an
11451 * individual interrupt handler in MSI-X multi-message interrupt mode
11452 */
11453 if (phba->intr_type == MSIX) {
11454 /* Check device state for handling interrupt */
11455 if (lpfc_intr_state_check(phba))
11456 return IRQ_NONE;
11457 /* Need to read HA REG for FCP ring and other ring events */
11458 if (lpfc_readl(phba->HAregaddr, &ha_copy))
11459 return IRQ_HANDLED;
11460 /* Clear up only attention source related to fast-path */
11461 spin_lock_irqsave(&phba->hbalock, iflag);
11462 /*
11463 * If there is deferred error attention, do not check for
11464 * any interrupt.
11465 */
11466 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11467 spin_unlock_irqrestore(&phba->hbalock, iflag);
11468 return IRQ_NONE;
11469 }
11470 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
11471 phba->HAregaddr);
11472 readl(phba->HAregaddr); /* flush */
11473 spin_unlock_irqrestore(&phba->hbalock, iflag);
11474 } else
11475 ha_copy = phba->ha_copy;
11476
11477 /*
11478 * Process all events on FCP ring. Take the optimized path for FCP IO.
11479 */
11480 ha_copy &= ~(phba->work_ha_mask);
11481
11482 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
11483 status >>= (4*LPFC_FCP_RING);
11484 if (status & HA_RXMASK)
11485 lpfc_sli_handle_fast_ring_event(phba,
11486 &phba->sli.ring[LPFC_FCP_RING],
11487 status);
11488
11489 if (phba->cfg_multi_ring_support == 2) {
11490 /*
11491 * Process all events on extra ring. Take the optimized path
11492 * for extra ring IO.
11493 */
11494 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
11495 status >>= (4*LPFC_EXTRA_RING);
11496 if (status & HA_RXMASK) {
11497 lpfc_sli_handle_fast_ring_event(phba,
11498 &phba->sli.ring[LPFC_EXTRA_RING],
11499 status);
11500 }
11501 }
11502 return IRQ_HANDLED;
11503 } /* lpfc_sli_fp_intr_handler */
11504
11505 /**
11506 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
11507 * @irq: Interrupt number.
11508 * @dev_id: The device context pointer.
11509 *
11510 * This function is the HBA device-level interrupt handler to device with
11511 * SLI-3 interface spec, called from the PCI layer when either MSI or
11512 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
11513 * requires driver attention. This function invokes the slow-path interrupt
11514 * attention handling function and fast-path interrupt attention handling
11515 * function in turn to process the relevant HBA attention events. This
11516 * function is called without any lock held. It gets the hbalock to access
11517 * and update SLI data structures.
11518 *
11519 * This function returns IRQ_HANDLED when interrupt is handled, else it
11520 * returns IRQ_NONE.
11521 **/
11522 irqreturn_t
11523 lpfc_sli_intr_handler(int irq, void *dev_id)
11524 {
11525 struct lpfc_hba *phba;
11526 irqreturn_t sp_irq_rc, fp_irq_rc;
11527 unsigned long status1, status2;
11528 uint32_t hc_copy;
11529
11530 /*
11531 * Get the driver's phba structure from the dev_id and
11532 * assume the HBA is not interrupting.
11533 */
11534 phba = (struct lpfc_hba *) dev_id;
11535
11536 if (unlikely(!phba))
11537 return IRQ_NONE;
11538
11539 /* Check device state for handling interrupt */
11540 if (lpfc_intr_state_check(phba))
11541 return IRQ_NONE;
11542
11543 spin_lock(&phba->hbalock);
11544 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
11545 spin_unlock(&phba->hbalock);
11546 return IRQ_HANDLED;
11547 }
11548
11549 if (unlikely(!phba->ha_copy)) {
11550 spin_unlock(&phba->hbalock);
11551 return IRQ_NONE;
11552 } else if (phba->ha_copy & HA_ERATT) {
11553 if (phba->hba_flag & HBA_ERATT_HANDLED)
11554 /* ERATT polling has handled ERATT */
11555 phba->ha_copy &= ~HA_ERATT;
11556 else
11557 /* Indicate interrupt handler handles ERATT */
11558 phba->hba_flag |= HBA_ERATT_HANDLED;
11559 }
11560
11561 /*
11562 * If there is deferred error attention, do not check for any interrupt.
11563 */
11564 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
11565 spin_unlock(&phba->hbalock);
11566 return IRQ_NONE;
11567 }
11568
11569 /* Clear attention sources except link and error attentions */
11570 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
11571 spin_unlock(&phba->hbalock);
11572 return IRQ_HANDLED;
11573 }
11574 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
11575 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
11576 phba->HCregaddr);
11577 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
11578 writel(hc_copy, phba->HCregaddr);
11579 readl(phba->HAregaddr); /* flush */
11580 spin_unlock(&phba->hbalock);
11581
11582 /*
11583 * Invokes slow-path host attention interrupt handling as appropriate.
11584 */
11585
11586 /* status of events with mailbox and link attention */
11587 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
11588
11589 /* status of events with ELS ring */
11590 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
11591 status2 >>= (4*LPFC_ELS_RING);
11592
11593 if (status1 || (status2 & HA_RXMASK))
11594 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
11595 else
11596 sp_irq_rc = IRQ_NONE;
11597
11598 /*
11599 * Invoke fast-path host attention interrupt handling as appropriate.
11600 */
11601
11602 /* status of events with FCP ring */
11603 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
11604 status1 >>= (4*LPFC_FCP_RING);
11605
11606 /* status of events with extra ring */
11607 if (phba->cfg_multi_ring_support == 2) {
11608 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
11609 status2 >>= (4*LPFC_EXTRA_RING);
11610 } else
11611 status2 = 0;
11612
11613 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
11614 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
11615 else
11616 fp_irq_rc = IRQ_NONE;
11617
11618 /* Return device-level interrupt handling status */
11619 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
11620 } /* lpfc_sli_intr_handler */
11621
11622 /**
11623 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
11624 * @phba: pointer to lpfc hba data structure.
11625 *
11626 * This routine is invoked by the worker thread to process all the pending
11627 * SLI4 FCP abort XRI events.
11628 **/
11629 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
11630 {
11631 struct lpfc_cq_event *cq_event;
11632
11633 /* First, declare the fcp xri abort event has been handled */
11634 spin_lock_irq(&phba->hbalock);
11635 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
11636 spin_unlock_irq(&phba->hbalock);
11637 /* Now, handle all the fcp xri abort events */
11638 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
11639 /* Get the first event from the head of the event queue */
11640 spin_lock_irq(&phba->hbalock);
11641 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
11642 cq_event, struct lpfc_cq_event, list);
11643 spin_unlock_irq(&phba->hbalock);
11644 /* Notify aborted XRI for FCP work queue */
11645 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
11646 /* Free the event processed back to the free pool */
11647 lpfc_sli4_cq_event_release(phba, cq_event);
11648 }
11649 }
11650
11651 /**
11652 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
11653 * @phba: pointer to lpfc hba data structure.
11654 *
11655 * This routine is invoked by the worker thread to process all the pending
11656 * SLI4 els abort xri events.
11657 **/
11658 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
11659 {
11660 struct lpfc_cq_event *cq_event;
11661
11662 /* First, declare the els xri abort event has been handled */
11663 spin_lock_irq(&phba->hbalock);
11664 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
11665 spin_unlock_irq(&phba->hbalock);
11666 /* Now, handle all the els xri abort events */
11667 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
11668 /* Get the first event from the head of the event queue */
11669 spin_lock_irq(&phba->hbalock);
11670 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11671 cq_event, struct lpfc_cq_event, list);
11672 spin_unlock_irq(&phba->hbalock);
11673 /* Notify aborted XRI for ELS work queue */
11674 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
11675 /* Free the event processed back to the free pool */
11676 lpfc_sli4_cq_event_release(phba, cq_event);
11677 }
11678 }
11679
11680 /**
11681 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
11682 * @phba: pointer to lpfc hba data structure
11683 * @pIocbIn: pointer to the rspiocbq
11684 * @pIocbOut: pointer to the cmdiocbq
11685 * @wcqe: pointer to the complete wcqe
11686 *
11687 * This routine transfers the fields of a command iocbq to a response iocbq
11688 * by copying all the IOCB fields from command iocbq and transferring the
11689 * completion status information from the complete wcqe.
11690 **/
11691 static void
11692 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
11693 struct lpfc_iocbq *pIocbIn,
11694 struct lpfc_iocbq *pIocbOut,
11695 struct lpfc_wcqe_complete *wcqe)
11696 {
11697 int numBdes, i;
11698 unsigned long iflags;
11699 uint32_t status, max_response;
11700 struct lpfc_dmabuf *dmabuf;
11701 struct ulp_bde64 *bpl, bde;
11702 size_t offset = offsetof(struct lpfc_iocbq, iocb);
11703
11704 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
11705 sizeof(struct lpfc_iocbq) - offset);
11706 /* Map WCQE parameters into irspiocb parameters */
11707 status = bf_get(lpfc_wcqe_c_status, wcqe);
11708 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
11709 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
11710 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
11711 pIocbIn->iocb.un.fcpi.fcpi_parm =
11712 pIocbOut->iocb.un.fcpi.fcpi_parm -
11713 wcqe->total_data_placed;
11714 else
11715 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
11716 else {
11717 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
11718 switch (pIocbOut->iocb.ulpCommand) {
11719 case CMD_ELS_REQUEST64_CR:
11720 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
11721 bpl = (struct ulp_bde64 *)dmabuf->virt;
11722 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
11723 max_response = bde.tus.f.bdeSize;
11724 break;
11725 case CMD_GEN_REQUEST64_CR:
11726 max_response = 0;
11727 if (!pIocbOut->context3)
11728 break;
11729 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
11730 sizeof(struct ulp_bde64);
11731 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
11732 bpl = (struct ulp_bde64 *)dmabuf->virt;
11733 for (i = 0; i < numBdes; i++) {
11734 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
11735 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
11736 max_response += bde.tus.f.bdeSize;
11737 }
11738 break;
11739 default:
11740 max_response = wcqe->total_data_placed;
11741 break;
11742 }
11743 if (max_response < wcqe->total_data_placed)
11744 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
11745 else
11746 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
11747 wcqe->total_data_placed;
11748 }
11749
11750 /* Convert BG errors for completion status */
11751 if (status == CQE_STATUS_DI_ERROR) {
11752 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
11753
11754 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
11755 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
11756 else
11757 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
11758
11759 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
11760 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
11761 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11762 BGS_GUARD_ERR_MASK;
11763 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
11764 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11765 BGS_APPTAG_ERR_MASK;
11766 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
11767 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11768 BGS_REFTAG_ERR_MASK;
11769
11770 /* Check to see if there was any good data before the error */
11771 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
11772 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11773 BGS_HI_WATER_MARK_PRESENT_MASK;
11774 pIocbIn->iocb.unsli3.sli3_bg.bghm =
11775 wcqe->total_data_placed;
11776 }
11777
11778 /*
11779 * Set ALL the error bits to indicate we don't know what
11780 * type of error it is.
11781 */
11782 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
11783 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
11784 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
11785 BGS_GUARD_ERR_MASK);
11786 }
11787
11788 /* Pick up HBA exchange busy condition */
11789 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
11790 spin_lock_irqsave(&phba->hbalock, iflags);
11791 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
11792 spin_unlock_irqrestore(&phba->hbalock, iflags);
11793 }
11794 }
11795
11796 /**
11797 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
11798 * @phba: Pointer to HBA context object.
11799 * @wcqe: Pointer to work-queue completion queue entry.
11800 *
11801 * This routine handles an ELS work-queue completion event and construct
11802 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
11803 * discovery engine to handle.
11804 *
11805 * Return: Pointer to the receive IOCBQ, NULL otherwise.
11806 **/
11807 static struct lpfc_iocbq *
11808 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
11809 struct lpfc_iocbq *irspiocbq)
11810 {
11811 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
11812 struct lpfc_iocbq *cmdiocbq;
11813 struct lpfc_wcqe_complete *wcqe;
11814 unsigned long iflags;
11815
11816 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
11817 spin_lock_irqsave(&pring->ring_lock, iflags);
11818 pring->stats.iocb_event++;
11819 /* Look up the ELS command IOCB and create pseudo response IOCB */
11820 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
11821 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11822 /* Put the iocb back on the txcmplq */
11823 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
11824 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11825
11826 if (unlikely(!cmdiocbq)) {
11827 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11828 "0386 ELS complete with no corresponding "
11829 "cmdiocb: iotag (%d)\n",
11830 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11831 lpfc_sli_release_iocbq(phba, irspiocbq);
11832 return NULL;
11833 }
11834
11835 /* Fake the irspiocbq and copy necessary response information */
11836 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
11837
11838 return irspiocbq;
11839 }
11840
11841 /**
11842 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
11843 * @phba: Pointer to HBA context object.
11844 * @cqe: Pointer to mailbox completion queue entry.
11845 *
11846 * This routine process a mailbox completion queue entry with asynchrous
11847 * event.
11848 *
11849 * Return: true if work posted to worker thread, otherwise false.
11850 **/
11851 static bool
11852 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
11853 {
11854 struct lpfc_cq_event *cq_event;
11855 unsigned long iflags;
11856
11857 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11858 "0392 Async Event: word0:x%x, word1:x%x, "
11859 "word2:x%x, word3:x%x\n", mcqe->word0,
11860 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
11861
11862 /* Allocate a new internal CQ_EVENT entry */
11863 cq_event = lpfc_sli4_cq_event_alloc(phba);
11864 if (!cq_event) {
11865 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11866 "0394 Failed to allocate CQ_EVENT entry\n");
11867 return false;
11868 }
11869
11870 /* Move the CQE into an asynchronous event entry */
11871 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
11872 spin_lock_irqsave(&phba->hbalock, iflags);
11873 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
11874 /* Set the async event flag */
11875 phba->hba_flag |= ASYNC_EVENT;
11876 spin_unlock_irqrestore(&phba->hbalock, iflags);
11877
11878 return true;
11879 }
11880
11881 /**
11882 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
11883 * @phba: Pointer to HBA context object.
11884 * @cqe: Pointer to mailbox completion queue entry.
11885 *
11886 * This routine process a mailbox completion queue entry with mailbox
11887 * completion event.
11888 *
11889 * Return: true if work posted to worker thread, otherwise false.
11890 **/
11891 static bool
11892 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
11893 {
11894 uint32_t mcqe_status;
11895 MAILBOX_t *mbox, *pmbox;
11896 struct lpfc_mqe *mqe;
11897 struct lpfc_vport *vport;
11898 struct lpfc_nodelist *ndlp;
11899 struct lpfc_dmabuf *mp;
11900 unsigned long iflags;
11901 LPFC_MBOXQ_t *pmb;
11902 bool workposted = false;
11903 int rc;
11904
11905 /* If not a mailbox complete MCQE, out by checking mailbox consume */
11906 if (!bf_get(lpfc_trailer_completed, mcqe))
11907 goto out_no_mqe_complete;
11908
11909 /* Get the reference to the active mbox command */
11910 spin_lock_irqsave(&phba->hbalock, iflags);
11911 pmb = phba->sli.mbox_active;
11912 if (unlikely(!pmb)) {
11913 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
11914 "1832 No pending MBOX command to handle\n");
11915 spin_unlock_irqrestore(&phba->hbalock, iflags);
11916 goto out_no_mqe_complete;
11917 }
11918 spin_unlock_irqrestore(&phba->hbalock, iflags);
11919 mqe = &pmb->u.mqe;
11920 pmbox = (MAILBOX_t *)&pmb->u.mqe;
11921 mbox = phba->mbox;
11922 vport = pmb->vport;
11923
11924 /* Reset heartbeat timer */
11925 phba->last_completion_time = jiffies;
11926 del_timer(&phba->sli.mbox_tmo);
11927
11928 /* Move mbox data to caller's mailbox region, do endian swapping */
11929 if (pmb->mbox_cmpl && mbox)
11930 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
11931
11932 /*
11933 * For mcqe errors, conditionally move a modified error code to
11934 * the mbox so that the error will not be missed.
11935 */
11936 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
11937 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
11938 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
11939 bf_set(lpfc_mqe_status, mqe,
11940 (LPFC_MBX_ERROR_RANGE | mcqe_status));
11941 }
11942 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
11943 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
11944 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
11945 "MBOX dflt rpi: status:x%x rpi:x%x",
11946 mcqe_status,
11947 pmbox->un.varWords[0], 0);
11948 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
11949 mp = (struct lpfc_dmabuf *)(pmb->context1);
11950 ndlp = (struct lpfc_nodelist *)pmb->context2;
11951 /* Reg_LOGIN of dflt RPI was successful. Now lets get
11952 * RID of the PPI using the same mbox buffer.
11953 */
11954 lpfc_unreg_login(phba, vport->vpi,
11955 pmbox->un.varWords[0], pmb);
11956 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
11957 pmb->context1 = mp;
11958 pmb->context2 = ndlp;
11959 pmb->vport = vport;
11960 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
11961 if (rc != MBX_BUSY)
11962 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
11963 LOG_SLI, "0385 rc should "
11964 "have been MBX_BUSY\n");
11965 if (rc != MBX_NOT_FINISHED)
11966 goto send_current_mbox;
11967 }
11968 }
11969 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
11970 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11971 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
11972
11973 /* There is mailbox completion work to do */
11974 spin_lock_irqsave(&phba->hbalock, iflags);
11975 __lpfc_mbox_cmpl_put(phba, pmb);
11976 phba->work_ha |= HA_MBATT;
11977 spin_unlock_irqrestore(&phba->hbalock, iflags);
11978 workposted = true;
11979
11980 send_current_mbox:
11981 spin_lock_irqsave(&phba->hbalock, iflags);
11982 /* Release the mailbox command posting token */
11983 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11984 /* Setting active mailbox pointer need to be in sync to flag clear */
11985 phba->sli.mbox_active = NULL;
11986 spin_unlock_irqrestore(&phba->hbalock, iflags);
11987 /* Wake up worker thread to post the next pending mailbox command */
11988 lpfc_worker_wake_up(phba);
11989 out_no_mqe_complete:
11990 if (bf_get(lpfc_trailer_consumed, mcqe))
11991 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
11992 return workposted;
11993 }
11994
11995 /**
11996 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
11997 * @phba: Pointer to HBA context object.
11998 * @cqe: Pointer to mailbox completion queue entry.
11999 *
12000 * This routine process a mailbox completion queue entry, it invokes the
12001 * proper mailbox complete handling or asynchrous event handling routine
12002 * according to the MCQE's async bit.
12003 *
12004 * Return: true if work posted to worker thread, otherwise false.
12005 **/
12006 static bool
12007 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
12008 {
12009 struct lpfc_mcqe mcqe;
12010 bool workposted;
12011
12012 /* Copy the mailbox MCQE and convert endian order as needed */
12013 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
12014
12015 /* Invoke the proper event handling routine */
12016 if (!bf_get(lpfc_trailer_async, &mcqe))
12017 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
12018 else
12019 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
12020 return workposted;
12021 }
12022
12023 /**
12024 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
12025 * @phba: Pointer to HBA context object.
12026 * @cq: Pointer to associated CQ
12027 * @wcqe: Pointer to work-queue completion queue entry.
12028 *
12029 * This routine handles an ELS work-queue completion event.
12030 *
12031 * Return: true if work posted to worker thread, otherwise false.
12032 **/
12033 static bool
12034 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12035 struct lpfc_wcqe_complete *wcqe)
12036 {
12037 struct lpfc_iocbq *irspiocbq;
12038 unsigned long iflags;
12039 struct lpfc_sli_ring *pring = cq->pring;
12040 int txq_cnt = 0;
12041 int txcmplq_cnt = 0;
12042 int fcp_txcmplq_cnt = 0;
12043
12044 /* Get an irspiocbq for later ELS response processing use */
12045 irspiocbq = lpfc_sli_get_iocbq(phba);
12046 if (!irspiocbq) {
12047 if (!list_empty(&pring->txq))
12048 txq_cnt++;
12049 if (!list_empty(&pring->txcmplq))
12050 txcmplq_cnt++;
12051 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq))
12052 fcp_txcmplq_cnt++;
12053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12054 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
12055 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
12056 txq_cnt, phba->iocb_cnt,
12057 fcp_txcmplq_cnt,
12058 txcmplq_cnt);
12059 return false;
12060 }
12061
12062 /* Save off the slow-path queue event for work thread to process */
12063 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
12064 spin_lock_irqsave(&phba->hbalock, iflags);
12065 list_add_tail(&irspiocbq->cq_event.list,
12066 &phba->sli4_hba.sp_queue_event);
12067 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12068 spin_unlock_irqrestore(&phba->hbalock, iflags);
12069
12070 return true;
12071 }
12072
12073 /**
12074 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
12075 * @phba: Pointer to HBA context object.
12076 * @wcqe: Pointer to work-queue completion queue entry.
12077 *
12078 * This routine handles slow-path WQ entry comsumed event by invoking the
12079 * proper WQ release routine to the slow-path WQ.
12080 **/
12081 static void
12082 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
12083 struct lpfc_wcqe_release *wcqe)
12084 {
12085 /* sanity check on queue memory */
12086 if (unlikely(!phba->sli4_hba.els_wq))
12087 return;
12088 /* Check for the slow-path ELS work queue */
12089 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
12090 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
12091 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12092 else
12093 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12094 "2579 Slow-path wqe consume event carries "
12095 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
12096 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
12097 phba->sli4_hba.els_wq->queue_id);
12098 }
12099
12100 /**
12101 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
12102 * @phba: Pointer to HBA context object.
12103 * @cq: Pointer to a WQ completion queue.
12104 * @wcqe: Pointer to work-queue completion queue entry.
12105 *
12106 * This routine handles an XRI abort event.
12107 *
12108 * Return: true if work posted to worker thread, otherwise false.
12109 **/
12110 static bool
12111 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
12112 struct lpfc_queue *cq,
12113 struct sli4_wcqe_xri_aborted *wcqe)
12114 {
12115 bool workposted = false;
12116 struct lpfc_cq_event *cq_event;
12117 unsigned long iflags;
12118
12119 /* Allocate a new internal CQ_EVENT entry */
12120 cq_event = lpfc_sli4_cq_event_alloc(phba);
12121 if (!cq_event) {
12122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12123 "0602 Failed to allocate CQ_EVENT entry\n");
12124 return false;
12125 }
12126
12127 /* Move the CQE into the proper xri abort event list */
12128 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
12129 switch (cq->subtype) {
12130 case LPFC_FCP:
12131 spin_lock_irqsave(&phba->hbalock, iflags);
12132 list_add_tail(&cq_event->list,
12133 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
12134 /* Set the fcp xri abort event flag */
12135 phba->hba_flag |= FCP_XRI_ABORT_EVENT;
12136 spin_unlock_irqrestore(&phba->hbalock, iflags);
12137 workposted = true;
12138 break;
12139 case LPFC_ELS:
12140 spin_lock_irqsave(&phba->hbalock, iflags);
12141 list_add_tail(&cq_event->list,
12142 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
12143 /* Set the els xri abort event flag */
12144 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
12145 spin_unlock_irqrestore(&phba->hbalock, iflags);
12146 workposted = true;
12147 break;
12148 default:
12149 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12150 "0603 Invalid work queue CQE subtype (x%x)\n",
12151 cq->subtype);
12152 workposted = false;
12153 break;
12154 }
12155 return workposted;
12156 }
12157
12158 /**
12159 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
12160 * @phba: Pointer to HBA context object.
12161 * @rcqe: Pointer to receive-queue completion queue entry.
12162 *
12163 * This routine process a receive-queue completion queue entry.
12164 *
12165 * Return: true if work posted to worker thread, otherwise false.
12166 **/
12167 static bool
12168 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
12169 {
12170 bool workposted = false;
12171 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
12172 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
12173 struct hbq_dmabuf *dma_buf;
12174 uint32_t status, rq_id;
12175 unsigned long iflags;
12176
12177 /* sanity check on queue memory */
12178 if (unlikely(!hrq) || unlikely(!drq))
12179 return workposted;
12180
12181 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
12182 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
12183 else
12184 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
12185 if (rq_id != hrq->queue_id)
12186 goto out;
12187
12188 status = bf_get(lpfc_rcqe_status, rcqe);
12189 switch (status) {
12190 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
12191 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12192 "2537 Receive Frame Truncated!!\n");
12193 hrq->RQ_buf_trunc++;
12194 case FC_STATUS_RQ_SUCCESS:
12195 lpfc_sli4_rq_release(hrq, drq);
12196 spin_lock_irqsave(&phba->hbalock, iflags);
12197 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
12198 if (!dma_buf) {
12199 hrq->RQ_no_buf_found++;
12200 spin_unlock_irqrestore(&phba->hbalock, iflags);
12201 goto out;
12202 }
12203 hrq->RQ_rcv_buf++;
12204 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
12205 /* save off the frame for the word thread to process */
12206 list_add_tail(&dma_buf->cq_event.list,
12207 &phba->sli4_hba.sp_queue_event);
12208 /* Frame received */
12209 phba->hba_flag |= HBA_SP_QUEUE_EVT;
12210 spin_unlock_irqrestore(&phba->hbalock, iflags);
12211 workposted = true;
12212 break;
12213 case FC_STATUS_INSUFF_BUF_NEED_BUF:
12214 case FC_STATUS_INSUFF_BUF_FRM_DISC:
12215 hrq->RQ_no_posted_buf++;
12216 /* Post more buffers if possible */
12217 spin_lock_irqsave(&phba->hbalock, iflags);
12218 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
12219 spin_unlock_irqrestore(&phba->hbalock, iflags);
12220 workposted = true;
12221 break;
12222 }
12223 out:
12224 return workposted;
12225 }
12226
12227 /**
12228 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
12229 * @phba: Pointer to HBA context object.
12230 * @cq: Pointer to the completion queue.
12231 * @wcqe: Pointer to a completion queue entry.
12232 *
12233 * This routine process a slow-path work-queue or receive queue completion queue
12234 * entry.
12235 *
12236 * Return: true if work posted to worker thread, otherwise false.
12237 **/
12238 static bool
12239 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12240 struct lpfc_cqe *cqe)
12241 {
12242 struct lpfc_cqe cqevt;
12243 bool workposted = false;
12244
12245 /* Copy the work queue CQE and convert endian order if needed */
12246 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
12247
12248 /* Check and process for different type of WCQE and dispatch */
12249 switch (bf_get(lpfc_cqe_code, &cqevt)) {
12250 case CQE_CODE_COMPL_WQE:
12251 /* Process the WQ/RQ complete event */
12252 phba->last_completion_time = jiffies;
12253 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
12254 (struct lpfc_wcqe_complete *)&cqevt);
12255 break;
12256 case CQE_CODE_RELEASE_WQE:
12257 /* Process the WQ release event */
12258 lpfc_sli4_sp_handle_rel_wcqe(phba,
12259 (struct lpfc_wcqe_release *)&cqevt);
12260 break;
12261 case CQE_CODE_XRI_ABORTED:
12262 /* Process the WQ XRI abort event */
12263 phba->last_completion_time = jiffies;
12264 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
12265 (struct sli4_wcqe_xri_aborted *)&cqevt);
12266 break;
12267 case CQE_CODE_RECEIVE:
12268 case CQE_CODE_RECEIVE_V1:
12269 /* Process the RQ event */
12270 phba->last_completion_time = jiffies;
12271 workposted = lpfc_sli4_sp_handle_rcqe(phba,
12272 (struct lpfc_rcqe *)&cqevt);
12273 break;
12274 default:
12275 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12276 "0388 Not a valid WCQE code: x%x\n",
12277 bf_get(lpfc_cqe_code, &cqevt));
12278 break;
12279 }
12280 return workposted;
12281 }
12282
12283 /**
12284 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
12285 * @phba: Pointer to HBA context object.
12286 * @eqe: Pointer to fast-path event queue entry.
12287 *
12288 * This routine process a event queue entry from the slow-path event queue.
12289 * It will check the MajorCode and MinorCode to determine this is for a
12290 * completion event on a completion queue, if not, an error shall be logged
12291 * and just return. Otherwise, it will get to the corresponding completion
12292 * queue and process all the entries on that completion queue, rearm the
12293 * completion queue, and then return.
12294 *
12295 **/
12296 static void
12297 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
12298 struct lpfc_queue *speq)
12299 {
12300 struct lpfc_queue *cq = NULL, *childq;
12301 struct lpfc_cqe *cqe;
12302 bool workposted = false;
12303 int ecount = 0;
12304 uint16_t cqid;
12305
12306 /* Get the reference to the corresponding CQ */
12307 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12308
12309 list_for_each_entry(childq, &speq->child_list, list) {
12310 if (childq->queue_id == cqid) {
12311 cq = childq;
12312 break;
12313 }
12314 }
12315 if (unlikely(!cq)) {
12316 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12318 "0365 Slow-path CQ identifier "
12319 "(%d) does not exist\n", cqid);
12320 return;
12321 }
12322
12323 /* Process all the entries to the CQ */
12324 switch (cq->type) {
12325 case LPFC_MCQ:
12326 while ((cqe = lpfc_sli4_cq_get(cq))) {
12327 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
12328 if (!(++ecount % cq->entry_repost))
12329 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12330 cq->CQ_mbox++;
12331 }
12332 break;
12333 case LPFC_WCQ:
12334 while ((cqe = lpfc_sli4_cq_get(cq))) {
12335 if (cq->subtype == LPFC_FCP)
12336 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq,
12337 cqe);
12338 else
12339 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
12340 cqe);
12341 if (!(++ecount % cq->entry_repost))
12342 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12343 }
12344
12345 /* Track the max number of CQEs processed in 1 EQ */
12346 if (ecount > cq->CQ_max_cqe)
12347 cq->CQ_max_cqe = ecount;
12348 break;
12349 default:
12350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12351 "0370 Invalid completion queue type (%d)\n",
12352 cq->type);
12353 return;
12354 }
12355
12356 /* Catch the no cq entry condition, log an error */
12357 if (unlikely(ecount == 0))
12358 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12359 "0371 No entry from the CQ: identifier "
12360 "(x%x), type (%d)\n", cq->queue_id, cq->type);
12361
12362 /* In any case, flash and re-arm the RCQ */
12363 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12364
12365 /* wake up worker thread if there are works to be done */
12366 if (workposted)
12367 lpfc_worker_wake_up(phba);
12368 }
12369
12370 /**
12371 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
12372 * @phba: Pointer to HBA context object.
12373 * @cq: Pointer to associated CQ
12374 * @wcqe: Pointer to work-queue completion queue entry.
12375 *
12376 * This routine process a fast-path work queue completion entry from fast-path
12377 * event queue for FCP command response completion.
12378 **/
12379 static void
12380 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12381 struct lpfc_wcqe_complete *wcqe)
12382 {
12383 struct lpfc_sli_ring *pring = cq->pring;
12384 struct lpfc_iocbq *cmdiocbq;
12385 struct lpfc_iocbq irspiocbq;
12386 unsigned long iflags;
12387
12388 /* Check for response status */
12389 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
12390 /* If resource errors reported from HBA, reduce queue
12391 * depth of the SCSI device.
12392 */
12393 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
12394 IOSTAT_LOCAL_REJECT)) &&
12395 ((wcqe->parameter & IOERR_PARAM_MASK) ==
12396 IOERR_NO_RESOURCES))
12397 phba->lpfc_rampdown_queue_depth(phba);
12398
12399 /* Log the error status */
12400 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12401 "0373 FCP complete error: status=x%x, "
12402 "hw_status=x%x, total_data_specified=%d, "
12403 "parameter=x%x, word3=x%x\n",
12404 bf_get(lpfc_wcqe_c_status, wcqe),
12405 bf_get(lpfc_wcqe_c_hw_status, wcqe),
12406 wcqe->total_data_placed, wcqe->parameter,
12407 wcqe->word3);
12408 }
12409
12410 /* Look up the FCP command IOCB and create pseudo response IOCB */
12411 spin_lock_irqsave(&pring->ring_lock, iflags);
12412 pring->stats.iocb_event++;
12413 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12414 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12415 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12416 if (unlikely(!cmdiocbq)) {
12417 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12418 "0374 FCP complete with no corresponding "
12419 "cmdiocb: iotag (%d)\n",
12420 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12421 return;
12422 }
12423 if (unlikely(!cmdiocbq->iocb_cmpl)) {
12424 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12425 "0375 FCP cmdiocb not callback function "
12426 "iotag: (%d)\n",
12427 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12428 return;
12429 }
12430
12431 /* Fake the irspiocb and copy necessary response information */
12432 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
12433
12434 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
12435 spin_lock_irqsave(&phba->hbalock, iflags);
12436 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
12437 spin_unlock_irqrestore(&phba->hbalock, iflags);
12438 }
12439
12440 /* Pass the cmd_iocb and the rsp state to the upper layer */
12441 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
12442 }
12443
12444 /**
12445 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
12446 * @phba: Pointer to HBA context object.
12447 * @cq: Pointer to completion queue.
12448 * @wcqe: Pointer to work-queue completion queue entry.
12449 *
12450 * This routine handles an fast-path WQ entry comsumed event by invoking the
12451 * proper WQ release routine to the slow-path WQ.
12452 **/
12453 static void
12454 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12455 struct lpfc_wcqe_release *wcqe)
12456 {
12457 struct lpfc_queue *childwq;
12458 bool wqid_matched = false;
12459 uint16_t fcp_wqid;
12460
12461 /* Check for fast-path FCP work queue release */
12462 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
12463 list_for_each_entry(childwq, &cq->child_list, list) {
12464 if (childwq->queue_id == fcp_wqid) {
12465 lpfc_sli4_wq_release(childwq,
12466 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
12467 wqid_matched = true;
12468 break;
12469 }
12470 }
12471 /* Report warning log message if no match found */
12472 if (wqid_matched != true)
12473 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12474 "2580 Fast-path wqe consume event carries "
12475 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid);
12476 }
12477
12478 /**
12479 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry
12480 * @cq: Pointer to the completion queue.
12481 * @eqe: Pointer to fast-path completion queue entry.
12482 *
12483 * This routine process a fast-path work queue completion entry from fast-path
12484 * event queue for FCP command response completion.
12485 **/
12486 static int
12487 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
12488 struct lpfc_cqe *cqe)
12489 {
12490 struct lpfc_wcqe_release wcqe;
12491 bool workposted = false;
12492
12493 /* Copy the work queue CQE and convert endian order if needed */
12494 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
12495
12496 /* Check and process for different type of WCQE and dispatch */
12497 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
12498 case CQE_CODE_COMPL_WQE:
12499 cq->CQ_wq++;
12500 /* Process the WQ complete event */
12501 phba->last_completion_time = jiffies;
12502 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
12503 (struct lpfc_wcqe_complete *)&wcqe);
12504 break;
12505 case CQE_CODE_RELEASE_WQE:
12506 cq->CQ_release_wqe++;
12507 /* Process the WQ release event */
12508 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
12509 (struct lpfc_wcqe_release *)&wcqe);
12510 break;
12511 case CQE_CODE_XRI_ABORTED:
12512 cq->CQ_xri_aborted++;
12513 /* Process the WQ XRI abort event */
12514 phba->last_completion_time = jiffies;
12515 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
12516 (struct sli4_wcqe_xri_aborted *)&wcqe);
12517 break;
12518 default:
12519 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12520 "0144 Not a valid WCQE code: x%x\n",
12521 bf_get(lpfc_wcqe_c_code, &wcqe));
12522 break;
12523 }
12524 return workposted;
12525 }
12526
12527 /**
12528 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
12529 * @phba: Pointer to HBA context object.
12530 * @eqe: Pointer to fast-path event queue entry.
12531 *
12532 * This routine process a event queue entry from the fast-path event queue.
12533 * It will check the MajorCode and MinorCode to determine this is for a
12534 * completion event on a completion queue, if not, an error shall be logged
12535 * and just return. Otherwise, it will get to the corresponding completion
12536 * queue and process all the entries on the completion queue, rearm the
12537 * completion queue, and then return.
12538 **/
12539 static void
12540 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
12541 uint32_t qidx)
12542 {
12543 struct lpfc_queue *cq;
12544 struct lpfc_cqe *cqe;
12545 bool workposted = false;
12546 uint16_t cqid;
12547 int ecount = 0;
12548
12549 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
12550 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12551 "0366 Not a valid completion "
12552 "event: majorcode=x%x, minorcode=x%x\n",
12553 bf_get_le32(lpfc_eqe_major_code, eqe),
12554 bf_get_le32(lpfc_eqe_minor_code, eqe));
12555 return;
12556 }
12557
12558 /* Get the reference to the corresponding CQ */
12559 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12560
12561 /* Check if this is a Slow path event */
12562 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) {
12563 lpfc_sli4_sp_handle_eqe(phba, eqe,
12564 phba->sli4_hba.hba_eq[qidx]);
12565 return;
12566 }
12567
12568 if (unlikely(!phba->sli4_hba.fcp_cq)) {
12569 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12570 "3146 Fast-path completion queues "
12571 "does not exist\n");
12572 return;
12573 }
12574 cq = phba->sli4_hba.fcp_cq[qidx];
12575 if (unlikely(!cq)) {
12576 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12577 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12578 "0367 Fast-path completion queue "
12579 "(%d) does not exist\n", qidx);
12580 return;
12581 }
12582
12583 if (unlikely(cqid != cq->queue_id)) {
12584 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12585 "0368 Miss-matched fast-path completion "
12586 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
12587 cqid, cq->queue_id);
12588 return;
12589 }
12590
12591 /* Process all the entries to the CQ */
12592 while ((cqe = lpfc_sli4_cq_get(cq))) {
12593 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe);
12594 if (!(++ecount % cq->entry_repost))
12595 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12596 }
12597
12598 /* Track the max number of CQEs processed in 1 EQ */
12599 if (ecount > cq->CQ_max_cqe)
12600 cq->CQ_max_cqe = ecount;
12601
12602 /* Catch the no cq entry condition */
12603 if (unlikely(ecount == 0))
12604 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12605 "0369 No entry from fast-path completion "
12606 "queue fcpcqid=%d\n", cq->queue_id);
12607
12608 /* In any case, flash and re-arm the CQ */
12609 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12610
12611 /* wake up worker thread if there are works to be done */
12612 if (workposted)
12613 lpfc_worker_wake_up(phba);
12614 }
12615
12616 static void
12617 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
12618 {
12619 struct lpfc_eqe *eqe;
12620
12621 /* walk all the EQ entries and drop on the floor */
12622 while ((eqe = lpfc_sli4_eq_get(eq)))
12623 ;
12624
12625 /* Clear and re-arm the EQ */
12626 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
12627 }
12628
12629
12630 /**
12631 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
12632 * entry
12633 * @phba: Pointer to HBA context object.
12634 * @eqe: Pointer to fast-path event queue entry.
12635 *
12636 * This routine process a event queue entry from the Flash Optimized Fabric
12637 * event queue. It will check the MajorCode and MinorCode to determine this
12638 * is for a completion event on a completion queue, if not, an error shall be
12639 * logged and just return. Otherwise, it will get to the corresponding
12640 * completion queue and process all the entries on the completion queue, rearm
12641 * the completion queue, and then return.
12642 **/
12643 static void
12644 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
12645 {
12646 struct lpfc_queue *cq;
12647 struct lpfc_cqe *cqe;
12648 bool workposted = false;
12649 uint16_t cqid;
12650 int ecount = 0;
12651
12652 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
12653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12654 "9147 Not a valid completion "
12655 "event: majorcode=x%x, minorcode=x%x\n",
12656 bf_get_le32(lpfc_eqe_major_code, eqe),
12657 bf_get_le32(lpfc_eqe_minor_code, eqe));
12658 return;
12659 }
12660
12661 /* Get the reference to the corresponding CQ */
12662 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
12663
12664 /* Next check for OAS */
12665 cq = phba->sli4_hba.oas_cq;
12666 if (unlikely(!cq)) {
12667 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
12668 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12669 "9148 OAS completion queue "
12670 "does not exist\n");
12671 return;
12672 }
12673
12674 if (unlikely(cqid != cq->queue_id)) {
12675 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12676 "9149 Miss-matched fast-path compl "
12677 "queue id: eqcqid=%d, fcpcqid=%d\n",
12678 cqid, cq->queue_id);
12679 return;
12680 }
12681
12682 /* Process all the entries to the OAS CQ */
12683 while ((cqe = lpfc_sli4_cq_get(cq))) {
12684 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe);
12685 if (!(++ecount % cq->entry_repost))
12686 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
12687 }
12688
12689 /* Track the max number of CQEs processed in 1 EQ */
12690 if (ecount > cq->CQ_max_cqe)
12691 cq->CQ_max_cqe = ecount;
12692
12693 /* Catch the no cq entry condition */
12694 if (unlikely(ecount == 0))
12695 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12696 "9153 No entry from fast-path completion "
12697 "queue fcpcqid=%d\n", cq->queue_id);
12698
12699 /* In any case, flash and re-arm the CQ */
12700 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
12701
12702 /* wake up worker thread if there are works to be done */
12703 if (workposted)
12704 lpfc_worker_wake_up(phba);
12705 }
12706
12707 /**
12708 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
12709 * @irq: Interrupt number.
12710 * @dev_id: The device context pointer.
12711 *
12712 * This function is directly called from the PCI layer as an interrupt
12713 * service routine when device with SLI-4 interface spec is enabled with
12714 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
12715 * IOCB ring event in the HBA. However, when the device is enabled with either
12716 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12717 * device-level interrupt handler. When the PCI slot is in error recovery
12718 * or the HBA is undergoing initialization, the interrupt handler will not
12719 * process the interrupt. The Flash Optimized Fabric ring event are handled in
12720 * the intrrupt context. This function is called without any lock held.
12721 * It gets the hbalock to access and update SLI data structures. Note that,
12722 * the EQ to CQ are one-to-one map such that the EQ index is
12723 * equal to that of CQ index.
12724 *
12725 * This function returns IRQ_HANDLED when interrupt is handled else it
12726 * returns IRQ_NONE.
12727 **/
12728 irqreturn_t
12729 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
12730 {
12731 struct lpfc_hba *phba;
12732 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
12733 struct lpfc_queue *eq;
12734 struct lpfc_eqe *eqe;
12735 unsigned long iflag;
12736 int ecount = 0;
12737
12738 /* Get the driver's phba structure from the dev_id */
12739 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id;
12740 phba = fcp_eq_hdl->phba;
12741
12742 if (unlikely(!phba))
12743 return IRQ_NONE;
12744
12745 /* Get to the EQ struct associated with this vector */
12746 eq = phba->sli4_hba.fof_eq;
12747 if (unlikely(!eq))
12748 return IRQ_NONE;
12749
12750 /* Check device state for handling interrupt */
12751 if (unlikely(lpfc_intr_state_check(phba))) {
12752 eq->EQ_badstate++;
12753 /* Check again for link_state with lock held */
12754 spin_lock_irqsave(&phba->hbalock, iflag);
12755 if (phba->link_state < LPFC_LINK_DOWN)
12756 /* Flush, clear interrupt, and rearm the EQ */
12757 lpfc_sli4_eq_flush(phba, eq);
12758 spin_unlock_irqrestore(&phba->hbalock, iflag);
12759 return IRQ_NONE;
12760 }
12761
12762 /*
12763 * Process all the event on FCP fast-path EQ
12764 */
12765 while ((eqe = lpfc_sli4_eq_get(eq))) {
12766 lpfc_sli4_fof_handle_eqe(phba, eqe);
12767 if (!(++ecount % eq->entry_repost))
12768 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM);
12769 eq->EQ_processed++;
12770 }
12771
12772 /* Track the max number of EQEs processed in 1 intr */
12773 if (ecount > eq->EQ_max_eqe)
12774 eq->EQ_max_eqe = ecount;
12775
12776
12777 if (unlikely(ecount == 0)) {
12778 eq->EQ_no_entry++;
12779
12780 if (phba->intr_type == MSIX)
12781 /* MSI-X treated interrupt served as no EQ share INT */
12782 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12783 "9145 MSI-X interrupt with no EQE\n");
12784 else {
12785 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12786 "9146 ISR interrupt with no EQE\n");
12787 /* Non MSI-X treated on interrupt as EQ share INT */
12788 return IRQ_NONE;
12789 }
12790 }
12791 /* Always clear and re-arm the fast-path EQ */
12792 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
12793 return IRQ_HANDLED;
12794 }
12795
12796 /**
12797 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
12798 * @irq: Interrupt number.
12799 * @dev_id: The device context pointer.
12800 *
12801 * This function is directly called from the PCI layer as an interrupt
12802 * service routine when device with SLI-4 interface spec is enabled with
12803 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12804 * ring event in the HBA. However, when the device is enabled with either
12805 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12806 * device-level interrupt handler. When the PCI slot is in error recovery
12807 * or the HBA is undergoing initialization, the interrupt handler will not
12808 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12809 * the intrrupt context. This function is called without any lock held.
12810 * It gets the hbalock to access and update SLI data structures. Note that,
12811 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
12812 * equal to that of FCP CQ index.
12813 *
12814 * The link attention and ELS ring attention events are handled
12815 * by the worker thread. The interrupt handler signals the worker thread
12816 * and returns for these events. This function is called without any lock
12817 * held. It gets the hbalock to access and update SLI data structures.
12818 *
12819 * This function returns IRQ_HANDLED when interrupt is handled else it
12820 * returns IRQ_NONE.
12821 **/
12822 irqreturn_t
12823 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
12824 {
12825 struct lpfc_hba *phba;
12826 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
12827 struct lpfc_queue *fpeq;
12828 struct lpfc_eqe *eqe;
12829 unsigned long iflag;
12830 int ecount = 0;
12831 int fcp_eqidx;
12832
12833 /* Get the driver's phba structure from the dev_id */
12834 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id;
12835 phba = fcp_eq_hdl->phba;
12836 fcp_eqidx = fcp_eq_hdl->idx;
12837
12838 if (unlikely(!phba))
12839 return IRQ_NONE;
12840 if (unlikely(!phba->sli4_hba.hba_eq))
12841 return IRQ_NONE;
12842
12843 /* Get to the EQ struct associated with this vector */
12844 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx];
12845 if (unlikely(!fpeq))
12846 return IRQ_NONE;
12847
12848 if (lpfc_fcp_look_ahead) {
12849 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use))
12850 lpfc_sli4_eq_clr_intr(fpeq);
12851 else {
12852 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12853 return IRQ_NONE;
12854 }
12855 }
12856
12857 /* Check device state for handling interrupt */
12858 if (unlikely(lpfc_intr_state_check(phba))) {
12859 fpeq->EQ_badstate++;
12860 /* Check again for link_state with lock held */
12861 spin_lock_irqsave(&phba->hbalock, iflag);
12862 if (phba->link_state < LPFC_LINK_DOWN)
12863 /* Flush, clear interrupt, and rearm the EQ */
12864 lpfc_sli4_eq_flush(phba, fpeq);
12865 spin_unlock_irqrestore(&phba->hbalock, iflag);
12866 if (lpfc_fcp_look_ahead)
12867 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12868 return IRQ_NONE;
12869 }
12870
12871 /*
12872 * Process all the event on FCP fast-path EQ
12873 */
12874 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
12875 if (eqe == NULL)
12876 break;
12877
12878 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx);
12879 if (!(++ecount % fpeq->entry_repost))
12880 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM);
12881 fpeq->EQ_processed++;
12882 }
12883
12884 /* Track the max number of EQEs processed in 1 intr */
12885 if (ecount > fpeq->EQ_max_eqe)
12886 fpeq->EQ_max_eqe = ecount;
12887
12888 /* Always clear and re-arm the fast-path EQ */
12889 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
12890
12891 if (unlikely(ecount == 0)) {
12892 fpeq->EQ_no_entry++;
12893
12894 if (lpfc_fcp_look_ahead) {
12895 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12896 return IRQ_NONE;
12897 }
12898
12899 if (phba->intr_type == MSIX)
12900 /* MSI-X treated interrupt served as no EQ share INT */
12901 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12902 "0358 MSI-X interrupt with no EQE\n");
12903 else
12904 /* Non MSI-X treated on interrupt as EQ share INT */
12905 return IRQ_NONE;
12906 }
12907
12908 if (lpfc_fcp_look_ahead)
12909 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use);
12910 return IRQ_HANDLED;
12911 } /* lpfc_sli4_fp_intr_handler */
12912
12913 /**
12914 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
12915 * @irq: Interrupt number.
12916 * @dev_id: The device context pointer.
12917 *
12918 * This function is the device-level interrupt handler to device with SLI-4
12919 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
12920 * interrupt mode is enabled and there is an event in the HBA which requires
12921 * driver attention. This function invokes the slow-path interrupt attention
12922 * handling function and fast-path interrupt attention handling function in
12923 * turn to process the relevant HBA attention events. This function is called
12924 * without any lock held. It gets the hbalock to access and update SLI data
12925 * structures.
12926 *
12927 * This function returns IRQ_HANDLED when interrupt is handled, else it
12928 * returns IRQ_NONE.
12929 **/
12930 irqreturn_t
12931 lpfc_sli4_intr_handler(int irq, void *dev_id)
12932 {
12933 struct lpfc_hba *phba;
12934 irqreturn_t hba_irq_rc;
12935 bool hba_handled = false;
12936 int fcp_eqidx;
12937
12938 /* Get the driver's phba structure from the dev_id */
12939 phba = (struct lpfc_hba *)dev_id;
12940
12941 if (unlikely(!phba))
12942 return IRQ_NONE;
12943
12944 /*
12945 * Invoke fast-path host attention interrupt handling as appropriate.
12946 */
12947 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) {
12948 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
12949 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]);
12950 if (hba_irq_rc == IRQ_HANDLED)
12951 hba_handled |= true;
12952 }
12953
12954 if (phba->cfg_fof) {
12955 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
12956 &phba->sli4_hba.fcp_eq_hdl[0]);
12957 if (hba_irq_rc == IRQ_HANDLED)
12958 hba_handled |= true;
12959 }
12960
12961 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
12962 } /* lpfc_sli4_intr_handler */
12963
12964 /**
12965 * lpfc_sli4_queue_free - free a queue structure and associated memory
12966 * @queue: The queue structure to free.
12967 *
12968 * This function frees a queue structure and the DMAable memory used for
12969 * the host resident queue. This function must be called after destroying the
12970 * queue on the HBA.
12971 **/
12972 void
12973 lpfc_sli4_queue_free(struct lpfc_queue *queue)
12974 {
12975 struct lpfc_dmabuf *dmabuf;
12976
12977 if (!queue)
12978 return;
12979
12980 while (!list_empty(&queue->page_list)) {
12981 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
12982 list);
12983 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
12984 dmabuf->virt, dmabuf->phys);
12985 kfree(dmabuf);
12986 }
12987 kfree(queue);
12988 return;
12989 }
12990
12991 /**
12992 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
12993 * @phba: The HBA that this queue is being created on.
12994 * @entry_size: The size of each queue entry for this queue.
12995 * @entry count: The number of entries that this queue will handle.
12996 *
12997 * This function allocates a queue structure and the DMAable memory used for
12998 * the host resident queue. This function must be called before creating the
12999 * queue on the HBA.
13000 **/
13001 struct lpfc_queue *
13002 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
13003 uint32_t entry_count)
13004 {
13005 struct lpfc_queue *queue;
13006 struct lpfc_dmabuf *dmabuf;
13007 int x, total_qe_count;
13008 void *dma_pointer;
13009 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13010
13011 if (!phba->sli4_hba.pc_sli4_params.supported)
13012 hw_page_size = SLI4_PAGE_SIZE;
13013
13014 queue = kzalloc(sizeof(struct lpfc_queue) +
13015 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
13016 if (!queue)
13017 return NULL;
13018 queue->page_count = (ALIGN(entry_size * entry_count,
13019 hw_page_size))/hw_page_size;
13020 INIT_LIST_HEAD(&queue->list);
13021 INIT_LIST_HEAD(&queue->page_list);
13022 INIT_LIST_HEAD(&queue->child_list);
13023 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
13024 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
13025 if (!dmabuf)
13026 goto out_fail;
13027 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
13028 hw_page_size, &dmabuf->phys,
13029 GFP_KERNEL);
13030 if (!dmabuf->virt) {
13031 kfree(dmabuf);
13032 goto out_fail;
13033 }
13034 dmabuf->buffer_tag = x;
13035 list_add_tail(&dmabuf->list, &queue->page_list);
13036 /* initialize queue's entry array */
13037 dma_pointer = dmabuf->virt;
13038 for (; total_qe_count < entry_count &&
13039 dma_pointer < (hw_page_size + dmabuf->virt);
13040 total_qe_count++, dma_pointer += entry_size) {
13041 queue->qe[total_qe_count].address = dma_pointer;
13042 }
13043 }
13044 queue->entry_size = entry_size;
13045 queue->entry_count = entry_count;
13046
13047 /*
13048 * entry_repost is calculated based on the number of entries in the
13049 * queue. This works out except for RQs. If buffers are NOT initially
13050 * posted for every RQE, entry_repost should be adjusted accordingly.
13051 */
13052 queue->entry_repost = (entry_count >> 3);
13053 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST)
13054 queue->entry_repost = LPFC_QUEUE_MIN_REPOST;
13055 queue->phba = phba;
13056
13057 return queue;
13058 out_fail:
13059 lpfc_sli4_queue_free(queue);
13060 return NULL;
13061 }
13062
13063 /**
13064 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
13065 * @phba: HBA structure that indicates port to create a queue on.
13066 * @pci_barset: PCI BAR set flag.
13067 *
13068 * This function shall perform iomap of the specified PCI BAR address to host
13069 * memory address if not already done so and return it. The returned host
13070 * memory address can be NULL.
13071 */
13072 static void __iomem *
13073 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
13074 {
13075 if (!phba->pcidev)
13076 return NULL;
13077
13078 switch (pci_barset) {
13079 case WQ_PCI_BAR_0_AND_1:
13080 return phba->pci_bar0_memmap_p;
13081 case WQ_PCI_BAR_2_AND_3:
13082 return phba->pci_bar2_memmap_p;
13083 case WQ_PCI_BAR_4_AND_5:
13084 return phba->pci_bar4_memmap_p;
13085 default:
13086 break;
13087 }
13088 return NULL;
13089 }
13090
13091 /**
13092 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs
13093 * @phba: HBA structure that indicates port to create a queue on.
13094 * @startq: The starting FCP EQ to modify
13095 *
13096 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
13097 *
13098 * The @phba struct is used to send mailbox command to HBA. The @startq
13099 * is used to get the starting FCP EQ to change.
13100 * This function is asynchronous and will wait for the mailbox
13101 * command to finish before continuing.
13102 *
13103 * On success this function will return a zero. If unable to allocate enough
13104 * memory this function will return -ENOMEM. If the queue create mailbox command
13105 * fails this function will return -ENXIO.
13106 **/
13107 int
13108 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq)
13109 {
13110 struct lpfc_mbx_modify_eq_delay *eq_delay;
13111 LPFC_MBOXQ_t *mbox;
13112 struct lpfc_queue *eq;
13113 int cnt, rc, length, status = 0;
13114 uint32_t shdr_status, shdr_add_status;
13115 uint32_t result;
13116 int fcp_eqidx;
13117 union lpfc_sli4_cfg_shdr *shdr;
13118 uint16_t dmult;
13119
13120 if (startq >= phba->cfg_fcp_io_channel)
13121 return 0;
13122
13123 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13124 if (!mbox)
13125 return -ENOMEM;
13126 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
13127 sizeof(struct lpfc_sli4_cfg_mhdr));
13128 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13129 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
13130 length, LPFC_SLI4_MBX_EMBED);
13131 eq_delay = &mbox->u.mqe.un.eq_delay;
13132
13133 /* Calculate delay multiper from maximum interrupt per second */
13134 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel;
13135 if (result > LPFC_DMULT_CONST)
13136 dmult = 0;
13137 else
13138 dmult = LPFC_DMULT_CONST/result - 1;
13139
13140 cnt = 0;
13141 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel;
13142 fcp_eqidx++) {
13143 eq = phba->sli4_hba.hba_eq[fcp_eqidx];
13144 if (!eq)
13145 continue;
13146 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
13147 eq_delay->u.request.eq[cnt].phase = 0;
13148 eq_delay->u.request.eq[cnt].delay_multi = dmult;
13149 cnt++;
13150 if (cnt >= LPFC_MAX_EQ_DELAY)
13151 break;
13152 }
13153 eq_delay->u.request.num_eq = cnt;
13154
13155 mbox->vport = phba->pport;
13156 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13157 mbox->context1 = NULL;
13158 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13159 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
13160 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13161 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13162 if (shdr_status || shdr_add_status || rc) {
13163 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13164 "2512 MODIFY_EQ_DELAY mailbox failed with "
13165 "status x%x add_status x%x, mbx status x%x\n",
13166 shdr_status, shdr_add_status, rc);
13167 status = -ENXIO;
13168 }
13169 mempool_free(mbox, phba->mbox_mem_pool);
13170 return status;
13171 }
13172
13173 /**
13174 * lpfc_eq_create - Create an Event Queue on the HBA
13175 * @phba: HBA structure that indicates port to create a queue on.
13176 * @eq: The queue structure to use to create the event queue.
13177 * @imax: The maximum interrupt per second limit.
13178 *
13179 * This function creates an event queue, as detailed in @eq, on a port,
13180 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
13181 *
13182 * The @phba struct is used to send mailbox command to HBA. The @eq struct
13183 * is used to get the entry count and entry size that are necessary to
13184 * determine the number of pages to allocate and use for this queue. This
13185 * function will send the EQ_CREATE mailbox command to the HBA to setup the
13186 * event queue. This function is asynchronous and will wait for the mailbox
13187 * command to finish before continuing.
13188 *
13189 * On success this function will return a zero. If unable to allocate enough
13190 * memory this function will return -ENOMEM. If the queue create mailbox command
13191 * fails this function will return -ENXIO.
13192 **/
13193 int
13194 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
13195 {
13196 struct lpfc_mbx_eq_create *eq_create;
13197 LPFC_MBOXQ_t *mbox;
13198 int rc, length, status = 0;
13199 struct lpfc_dmabuf *dmabuf;
13200 uint32_t shdr_status, shdr_add_status;
13201 union lpfc_sli4_cfg_shdr *shdr;
13202 uint16_t dmult;
13203 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13204
13205 /* sanity check on queue memory */
13206 if (!eq)
13207 return -ENODEV;
13208 if (!phba->sli4_hba.pc_sli4_params.supported)
13209 hw_page_size = SLI4_PAGE_SIZE;
13210
13211 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13212 if (!mbox)
13213 return -ENOMEM;
13214 length = (sizeof(struct lpfc_mbx_eq_create) -
13215 sizeof(struct lpfc_sli4_cfg_mhdr));
13216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13217 LPFC_MBOX_OPCODE_EQ_CREATE,
13218 length, LPFC_SLI4_MBX_EMBED);
13219 eq_create = &mbox->u.mqe.un.eq_create;
13220 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
13221 eq->page_count);
13222 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
13223 LPFC_EQE_SIZE);
13224 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
13225 /* don't setup delay multiplier using EQ_CREATE */
13226 dmult = 0;
13227 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
13228 dmult);
13229 switch (eq->entry_count) {
13230 default:
13231 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13232 "0360 Unsupported EQ count. (%d)\n",
13233 eq->entry_count);
13234 if (eq->entry_count < 256)
13235 return -EINVAL;
13236 /* otherwise default to smallest count (drop through) */
13237 case 256:
13238 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13239 LPFC_EQ_CNT_256);
13240 break;
13241 case 512:
13242 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13243 LPFC_EQ_CNT_512);
13244 break;
13245 case 1024:
13246 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13247 LPFC_EQ_CNT_1024);
13248 break;
13249 case 2048:
13250 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13251 LPFC_EQ_CNT_2048);
13252 break;
13253 case 4096:
13254 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
13255 LPFC_EQ_CNT_4096);
13256 break;
13257 }
13258 list_for_each_entry(dmabuf, &eq->page_list, list) {
13259 memset(dmabuf->virt, 0, hw_page_size);
13260 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13261 putPaddrLow(dmabuf->phys);
13262 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13263 putPaddrHigh(dmabuf->phys);
13264 }
13265 mbox->vport = phba->pport;
13266 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13267 mbox->context1 = NULL;
13268 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13269 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
13270 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13271 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13272 if (shdr_status || shdr_add_status || rc) {
13273 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13274 "2500 EQ_CREATE mailbox failed with "
13275 "status x%x add_status x%x, mbx status x%x\n",
13276 shdr_status, shdr_add_status, rc);
13277 status = -ENXIO;
13278 }
13279 eq->type = LPFC_EQ;
13280 eq->subtype = LPFC_NONE;
13281 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
13282 if (eq->queue_id == 0xFFFF)
13283 status = -ENXIO;
13284 eq->host_index = 0;
13285 eq->hba_index = 0;
13286
13287 mempool_free(mbox, phba->mbox_mem_pool);
13288 return status;
13289 }
13290
13291 /**
13292 * lpfc_cq_create - Create a Completion Queue on the HBA
13293 * @phba: HBA structure that indicates port to create a queue on.
13294 * @cq: The queue structure to use to create the completion queue.
13295 * @eq: The event queue to bind this completion queue to.
13296 *
13297 * This function creates a completion queue, as detailed in @wq, on a port,
13298 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
13299 *
13300 * The @phba struct is used to send mailbox command to HBA. The @cq struct
13301 * is used to get the entry count and entry size that are necessary to
13302 * determine the number of pages to allocate and use for this queue. The @eq
13303 * is used to indicate which event queue to bind this completion queue to. This
13304 * function will send the CQ_CREATE mailbox command to the HBA to setup the
13305 * completion queue. This function is asynchronous and will wait for the mailbox
13306 * command to finish before continuing.
13307 *
13308 * On success this function will return a zero. If unable to allocate enough
13309 * memory this function will return -ENOMEM. If the queue create mailbox command
13310 * fails this function will return -ENXIO.
13311 **/
13312 int
13313 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
13314 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
13315 {
13316 struct lpfc_mbx_cq_create *cq_create;
13317 struct lpfc_dmabuf *dmabuf;
13318 LPFC_MBOXQ_t *mbox;
13319 int rc, length, status = 0;
13320 uint32_t shdr_status, shdr_add_status;
13321 union lpfc_sli4_cfg_shdr *shdr;
13322 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13323
13324 /* sanity check on queue memory */
13325 if (!cq || !eq)
13326 return -ENODEV;
13327 if (!phba->sli4_hba.pc_sli4_params.supported)
13328 hw_page_size = SLI4_PAGE_SIZE;
13329
13330 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13331 if (!mbox)
13332 return -ENOMEM;
13333 length = (sizeof(struct lpfc_mbx_cq_create) -
13334 sizeof(struct lpfc_sli4_cfg_mhdr));
13335 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13336 LPFC_MBOX_OPCODE_CQ_CREATE,
13337 length, LPFC_SLI4_MBX_EMBED);
13338 cq_create = &mbox->u.mqe.un.cq_create;
13339 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
13340 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
13341 cq->page_count);
13342 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
13343 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
13344 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13345 phba->sli4_hba.pc_sli4_params.cqv);
13346 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
13347 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */
13348 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1);
13349 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
13350 eq->queue_id);
13351 } else {
13352 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
13353 eq->queue_id);
13354 }
13355 switch (cq->entry_count) {
13356 default:
13357 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13358 "0361 Unsupported CQ count. (%d)\n",
13359 cq->entry_count);
13360 if (cq->entry_count < 256) {
13361 status = -EINVAL;
13362 goto out;
13363 }
13364 /* otherwise default to smallest count (drop through) */
13365 case 256:
13366 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
13367 LPFC_CQ_CNT_256);
13368 break;
13369 case 512:
13370 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
13371 LPFC_CQ_CNT_512);
13372 break;
13373 case 1024:
13374 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
13375 LPFC_CQ_CNT_1024);
13376 break;
13377 }
13378 list_for_each_entry(dmabuf, &cq->page_list, list) {
13379 memset(dmabuf->virt, 0, hw_page_size);
13380 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13381 putPaddrLow(dmabuf->phys);
13382 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13383 putPaddrHigh(dmabuf->phys);
13384 }
13385 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13386
13387 /* The IOCTL status is embedded in the mailbox subheader. */
13388 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13389 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13390 if (shdr_status || shdr_add_status || rc) {
13391 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13392 "2501 CQ_CREATE mailbox failed with "
13393 "status x%x add_status x%x, mbx status x%x\n",
13394 shdr_status, shdr_add_status, rc);
13395 status = -ENXIO;
13396 goto out;
13397 }
13398 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
13399 if (cq->queue_id == 0xFFFF) {
13400 status = -ENXIO;
13401 goto out;
13402 }
13403 /* link the cq onto the parent eq child list */
13404 list_add_tail(&cq->list, &eq->child_list);
13405 /* Set up completion queue's type and subtype */
13406 cq->type = type;
13407 cq->subtype = subtype;
13408 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
13409 cq->assoc_qid = eq->queue_id;
13410 cq->host_index = 0;
13411 cq->hba_index = 0;
13412
13413 out:
13414 mempool_free(mbox, phba->mbox_mem_pool);
13415 return status;
13416 }
13417
13418 /**
13419 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
13420 * @phba: HBA structure that indicates port to create a queue on.
13421 * @mq: The queue structure to use to create the mailbox queue.
13422 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
13423 * @cq: The completion queue to associate with this cq.
13424 *
13425 * This function provides failback (fb) functionality when the
13426 * mq_create_ext fails on older FW generations. It's purpose is identical
13427 * to mq_create_ext otherwise.
13428 *
13429 * This routine cannot fail as all attributes were previously accessed and
13430 * initialized in mq_create_ext.
13431 **/
13432 static void
13433 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
13434 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
13435 {
13436 struct lpfc_mbx_mq_create *mq_create;
13437 struct lpfc_dmabuf *dmabuf;
13438 int length;
13439
13440 length = (sizeof(struct lpfc_mbx_mq_create) -
13441 sizeof(struct lpfc_sli4_cfg_mhdr));
13442 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13443 LPFC_MBOX_OPCODE_MQ_CREATE,
13444 length, LPFC_SLI4_MBX_EMBED);
13445 mq_create = &mbox->u.mqe.un.mq_create;
13446 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
13447 mq->page_count);
13448 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
13449 cq->queue_id);
13450 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
13451 switch (mq->entry_count) {
13452 case 16:
13453 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13454 LPFC_MQ_RING_SIZE_16);
13455 break;
13456 case 32:
13457 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13458 LPFC_MQ_RING_SIZE_32);
13459 break;
13460 case 64:
13461 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13462 LPFC_MQ_RING_SIZE_64);
13463 break;
13464 case 128:
13465 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
13466 LPFC_MQ_RING_SIZE_128);
13467 break;
13468 }
13469 list_for_each_entry(dmabuf, &mq->page_list, list) {
13470 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13471 putPaddrLow(dmabuf->phys);
13472 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13473 putPaddrHigh(dmabuf->phys);
13474 }
13475 }
13476
13477 /**
13478 * lpfc_mq_create - Create a mailbox Queue on the HBA
13479 * @phba: HBA structure that indicates port to create a queue on.
13480 * @mq: The queue structure to use to create the mailbox queue.
13481 * @cq: The completion queue to associate with this cq.
13482 * @subtype: The queue's subtype.
13483 *
13484 * This function creates a mailbox queue, as detailed in @mq, on a port,
13485 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
13486 *
13487 * The @phba struct is used to send mailbox command to HBA. The @cq struct
13488 * is used to get the entry count and entry size that are necessary to
13489 * determine the number of pages to allocate and use for this queue. This
13490 * function will send the MQ_CREATE mailbox command to the HBA to setup the
13491 * mailbox queue. This function is asynchronous and will wait for the mailbox
13492 * command to finish before continuing.
13493 *
13494 * On success this function will return a zero. If unable to allocate enough
13495 * memory this function will return -ENOMEM. If the queue create mailbox command
13496 * fails this function will return -ENXIO.
13497 **/
13498 int32_t
13499 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
13500 struct lpfc_queue *cq, uint32_t subtype)
13501 {
13502 struct lpfc_mbx_mq_create *mq_create;
13503 struct lpfc_mbx_mq_create_ext *mq_create_ext;
13504 struct lpfc_dmabuf *dmabuf;
13505 LPFC_MBOXQ_t *mbox;
13506 int rc, length, status = 0;
13507 uint32_t shdr_status, shdr_add_status;
13508 union lpfc_sli4_cfg_shdr *shdr;
13509 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13510
13511 /* sanity check on queue memory */
13512 if (!mq || !cq)
13513 return -ENODEV;
13514 if (!phba->sli4_hba.pc_sli4_params.supported)
13515 hw_page_size = SLI4_PAGE_SIZE;
13516
13517 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13518 if (!mbox)
13519 return -ENOMEM;
13520 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
13521 sizeof(struct lpfc_sli4_cfg_mhdr));
13522 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
13523 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
13524 length, LPFC_SLI4_MBX_EMBED);
13525
13526 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
13527 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
13528 bf_set(lpfc_mbx_mq_create_ext_num_pages,
13529 &mq_create_ext->u.request, mq->page_count);
13530 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
13531 &mq_create_ext->u.request, 1);
13532 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
13533 &mq_create_ext->u.request, 1);
13534 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
13535 &mq_create_ext->u.request, 1);
13536 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
13537 &mq_create_ext->u.request, 1);
13538 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
13539 &mq_create_ext->u.request, 1);
13540 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
13541 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13542 phba->sli4_hba.pc_sli4_params.mqv);
13543 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
13544 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
13545 cq->queue_id);
13546 else
13547 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
13548 cq->queue_id);
13549 switch (mq->entry_count) {
13550 default:
13551 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13552 "0362 Unsupported MQ count. (%d)\n",
13553 mq->entry_count);
13554 if (mq->entry_count < 16) {
13555 status = -EINVAL;
13556 goto out;
13557 }
13558 /* otherwise default to smallest count (drop through) */
13559 case 16:
13560 bf_set(lpfc_mq_context_ring_size,
13561 &mq_create_ext->u.request.context,
13562 LPFC_MQ_RING_SIZE_16);
13563 break;
13564 case 32:
13565 bf_set(lpfc_mq_context_ring_size,
13566 &mq_create_ext->u.request.context,
13567 LPFC_MQ_RING_SIZE_32);
13568 break;
13569 case 64:
13570 bf_set(lpfc_mq_context_ring_size,
13571 &mq_create_ext->u.request.context,
13572 LPFC_MQ_RING_SIZE_64);
13573 break;
13574 case 128:
13575 bf_set(lpfc_mq_context_ring_size,
13576 &mq_create_ext->u.request.context,
13577 LPFC_MQ_RING_SIZE_128);
13578 break;
13579 }
13580 list_for_each_entry(dmabuf, &mq->page_list, list) {
13581 memset(dmabuf->virt, 0, hw_page_size);
13582 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
13583 putPaddrLow(dmabuf->phys);
13584 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
13585 putPaddrHigh(dmabuf->phys);
13586 }
13587 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13588 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
13589 &mq_create_ext->u.response);
13590 if (rc != MBX_SUCCESS) {
13591 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13592 "2795 MQ_CREATE_EXT failed with "
13593 "status x%x. Failback to MQ_CREATE.\n",
13594 rc);
13595 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
13596 mq_create = &mbox->u.mqe.un.mq_create;
13597 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13598 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
13599 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
13600 &mq_create->u.response);
13601 }
13602
13603 /* The IOCTL status is embedded in the mailbox subheader. */
13604 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13605 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13606 if (shdr_status || shdr_add_status || rc) {
13607 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13608 "2502 MQ_CREATE mailbox failed with "
13609 "status x%x add_status x%x, mbx status x%x\n",
13610 shdr_status, shdr_add_status, rc);
13611 status = -ENXIO;
13612 goto out;
13613 }
13614 if (mq->queue_id == 0xFFFF) {
13615 status = -ENXIO;
13616 goto out;
13617 }
13618 mq->type = LPFC_MQ;
13619 mq->assoc_qid = cq->queue_id;
13620 mq->subtype = subtype;
13621 mq->host_index = 0;
13622 mq->hba_index = 0;
13623
13624 /* link the mq onto the parent cq child list */
13625 list_add_tail(&mq->list, &cq->child_list);
13626 out:
13627 mempool_free(mbox, phba->mbox_mem_pool);
13628 return status;
13629 }
13630
13631 /**
13632 * lpfc_wq_create - Create a Work Queue on the HBA
13633 * @phba: HBA structure that indicates port to create a queue on.
13634 * @wq: The queue structure to use to create the work queue.
13635 * @cq: The completion queue to bind this work queue to.
13636 * @subtype: The subtype of the work queue indicating its functionality.
13637 *
13638 * This function creates a work queue, as detailed in @wq, on a port, described
13639 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
13640 *
13641 * The @phba struct is used to send mailbox command to HBA. The @wq struct
13642 * is used to get the entry count and entry size that are necessary to
13643 * determine the number of pages to allocate and use for this queue. The @cq
13644 * is used to indicate which completion queue to bind this work queue to. This
13645 * function will send the WQ_CREATE mailbox command to the HBA to setup the
13646 * work queue. This function is asynchronous and will wait for the mailbox
13647 * command to finish before continuing.
13648 *
13649 * On success this function will return a zero. If unable to allocate enough
13650 * memory this function will return -ENOMEM. If the queue create mailbox command
13651 * fails this function will return -ENXIO.
13652 **/
13653 int
13654 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
13655 struct lpfc_queue *cq, uint32_t subtype)
13656 {
13657 struct lpfc_mbx_wq_create *wq_create;
13658 struct lpfc_dmabuf *dmabuf;
13659 LPFC_MBOXQ_t *mbox;
13660 int rc, length, status = 0;
13661 uint32_t shdr_status, shdr_add_status;
13662 union lpfc_sli4_cfg_shdr *shdr;
13663 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13664 struct dma_address *page;
13665 void __iomem *bar_memmap_p;
13666 uint32_t db_offset;
13667 uint16_t pci_barset;
13668
13669 /* sanity check on queue memory */
13670 if (!wq || !cq)
13671 return -ENODEV;
13672 if (!phba->sli4_hba.pc_sli4_params.supported)
13673 hw_page_size = SLI4_PAGE_SIZE;
13674
13675 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13676 if (!mbox)
13677 return -ENOMEM;
13678 length = (sizeof(struct lpfc_mbx_wq_create) -
13679 sizeof(struct lpfc_sli4_cfg_mhdr));
13680 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13681 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
13682 length, LPFC_SLI4_MBX_EMBED);
13683 wq_create = &mbox->u.mqe.un.wq_create;
13684 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
13685 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
13686 wq->page_count);
13687 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
13688 cq->queue_id);
13689
13690 /* wqv is the earliest version supported, NOT the latest */
13691 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13692 phba->sli4_hba.pc_sli4_params.wqv);
13693
13694 switch (phba->sli4_hba.pc_sli4_params.wqv) {
13695 case LPFC_Q_CREATE_VERSION_0:
13696 switch (wq->entry_size) {
13697 default:
13698 case 64:
13699 /* Nothing to do, version 0 ONLY supports 64 byte */
13700 page = wq_create->u.request.page;
13701 break;
13702 case 128:
13703 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
13704 LPFC_WQ_SZ128_SUPPORT)) {
13705 status = -ERANGE;
13706 goto out;
13707 }
13708 /* If we get here the HBA MUST also support V1 and
13709 * we MUST use it
13710 */
13711 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13712 LPFC_Q_CREATE_VERSION_1);
13713
13714 bf_set(lpfc_mbx_wq_create_wqe_count,
13715 &wq_create->u.request_1, wq->entry_count);
13716 bf_set(lpfc_mbx_wq_create_wqe_size,
13717 &wq_create->u.request_1,
13718 LPFC_WQ_WQE_SIZE_128);
13719 bf_set(lpfc_mbx_wq_create_page_size,
13720 &wq_create->u.request_1,
13721 (PAGE_SIZE/SLI4_PAGE_SIZE));
13722 page = wq_create->u.request_1.page;
13723 break;
13724 }
13725 break;
13726 case LPFC_Q_CREATE_VERSION_1:
13727 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
13728 wq->entry_count);
13729 switch (wq->entry_size) {
13730 default:
13731 case 64:
13732 bf_set(lpfc_mbx_wq_create_wqe_size,
13733 &wq_create->u.request_1,
13734 LPFC_WQ_WQE_SIZE_64);
13735 break;
13736 case 128:
13737 if (!(phba->sli4_hba.pc_sli4_params.wqsize &
13738 LPFC_WQ_SZ128_SUPPORT)) {
13739 status = -ERANGE;
13740 goto out;
13741 }
13742 bf_set(lpfc_mbx_wq_create_wqe_size,
13743 &wq_create->u.request_1,
13744 LPFC_WQ_WQE_SIZE_128);
13745 break;
13746 }
13747 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1,
13748 (PAGE_SIZE/SLI4_PAGE_SIZE));
13749 page = wq_create->u.request_1.page;
13750 break;
13751 default:
13752 status = -ERANGE;
13753 goto out;
13754 }
13755
13756 list_for_each_entry(dmabuf, &wq->page_list, list) {
13757 memset(dmabuf->virt, 0, hw_page_size);
13758 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
13759 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
13760 }
13761
13762 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
13763 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
13764
13765 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13766 /* The IOCTL status is embedded in the mailbox subheader. */
13767 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13768 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13769 if (shdr_status || shdr_add_status || rc) {
13770 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13771 "2503 WQ_CREATE mailbox failed with "
13772 "status x%x add_status x%x, mbx status x%x\n",
13773 shdr_status, shdr_add_status, rc);
13774 status = -ENXIO;
13775 goto out;
13776 }
13777 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
13778 if (wq->queue_id == 0xFFFF) {
13779 status = -ENXIO;
13780 goto out;
13781 }
13782 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
13783 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
13784 &wq_create->u.response);
13785 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
13786 (wq->db_format != LPFC_DB_RING_FORMAT)) {
13787 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13788 "3265 WQ[%d] doorbell format not "
13789 "supported: x%x\n", wq->queue_id,
13790 wq->db_format);
13791 status = -EINVAL;
13792 goto out;
13793 }
13794 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
13795 &wq_create->u.response);
13796 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
13797 if (!bar_memmap_p) {
13798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13799 "3263 WQ[%d] failed to memmap pci "
13800 "barset:x%x\n", wq->queue_id,
13801 pci_barset);
13802 status = -ENOMEM;
13803 goto out;
13804 }
13805 db_offset = wq_create->u.response.doorbell_offset;
13806 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
13807 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
13808 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13809 "3252 WQ[%d] doorbell offset not "
13810 "supported: x%x\n", wq->queue_id,
13811 db_offset);
13812 status = -EINVAL;
13813 goto out;
13814 }
13815 wq->db_regaddr = bar_memmap_p + db_offset;
13816 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13817 "3264 WQ[%d]: barset:x%x, offset:x%x, "
13818 "format:x%x\n", wq->queue_id, pci_barset,
13819 db_offset, wq->db_format);
13820 } else {
13821 wq->db_format = LPFC_DB_LIST_FORMAT;
13822 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
13823 }
13824 wq->type = LPFC_WQ;
13825 wq->assoc_qid = cq->queue_id;
13826 wq->subtype = subtype;
13827 wq->host_index = 0;
13828 wq->hba_index = 0;
13829 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
13830
13831 /* link the wq onto the parent cq child list */
13832 list_add_tail(&wq->list, &cq->child_list);
13833 out:
13834 mempool_free(mbox, phba->mbox_mem_pool);
13835 return status;
13836 }
13837
13838 /**
13839 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ
13840 * @phba: HBA structure that indicates port to create a queue on.
13841 * @rq: The queue structure to use for the receive queue.
13842 * @qno: The associated HBQ number
13843 *
13844 *
13845 * For SLI4 we need to adjust the RQ repost value based on
13846 * the number of buffers that are initially posted to the RQ.
13847 */
13848 void
13849 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno)
13850 {
13851 uint32_t cnt;
13852
13853 /* sanity check on queue memory */
13854 if (!rq)
13855 return;
13856 cnt = lpfc_hbq_defs[qno]->entry_count;
13857
13858 /* Recalc repost for RQs based on buffers initially posted */
13859 cnt = (cnt >> 3);
13860 if (cnt < LPFC_QUEUE_MIN_REPOST)
13861 cnt = LPFC_QUEUE_MIN_REPOST;
13862
13863 rq->entry_repost = cnt;
13864 }
13865
13866 /**
13867 * lpfc_rq_create - Create a Receive Queue on the HBA
13868 * @phba: HBA structure that indicates port to create a queue on.
13869 * @hrq: The queue structure to use to create the header receive queue.
13870 * @drq: The queue structure to use to create the data receive queue.
13871 * @cq: The completion queue to bind this work queue to.
13872 *
13873 * This function creates a receive buffer queue pair , as detailed in @hrq and
13874 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
13875 * to the HBA.
13876 *
13877 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
13878 * struct is used to get the entry count that is necessary to determine the
13879 * number of pages to use for this queue. The @cq is used to indicate which
13880 * completion queue to bind received buffers that are posted to these queues to.
13881 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
13882 * receive queue pair. This function is asynchronous and will wait for the
13883 * mailbox command to finish before continuing.
13884 *
13885 * On success this function will return a zero. If unable to allocate enough
13886 * memory this function will return -ENOMEM. If the queue create mailbox command
13887 * fails this function will return -ENXIO.
13888 **/
13889 int
13890 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
13891 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
13892 {
13893 struct lpfc_mbx_rq_create *rq_create;
13894 struct lpfc_dmabuf *dmabuf;
13895 LPFC_MBOXQ_t *mbox;
13896 int rc, length, status = 0;
13897 uint32_t shdr_status, shdr_add_status;
13898 union lpfc_sli4_cfg_shdr *shdr;
13899 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
13900 void __iomem *bar_memmap_p;
13901 uint32_t db_offset;
13902 uint16_t pci_barset;
13903
13904 /* sanity check on queue memory */
13905 if (!hrq || !drq || !cq)
13906 return -ENODEV;
13907 if (!phba->sli4_hba.pc_sli4_params.supported)
13908 hw_page_size = SLI4_PAGE_SIZE;
13909
13910 if (hrq->entry_count != drq->entry_count)
13911 return -EINVAL;
13912 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13913 if (!mbox)
13914 return -ENOMEM;
13915 length = (sizeof(struct lpfc_mbx_rq_create) -
13916 sizeof(struct lpfc_sli4_cfg_mhdr));
13917 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13918 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
13919 length, LPFC_SLI4_MBX_EMBED);
13920 rq_create = &mbox->u.mqe.un.rq_create;
13921 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
13922 bf_set(lpfc_mbox_hdr_version, &shdr->request,
13923 phba->sli4_hba.pc_sli4_params.rqv);
13924 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
13925 bf_set(lpfc_rq_context_rqe_count_1,
13926 &rq_create->u.request.context,
13927 hrq->entry_count);
13928 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
13929 bf_set(lpfc_rq_context_rqe_size,
13930 &rq_create->u.request.context,
13931 LPFC_RQE_SIZE_8);
13932 bf_set(lpfc_rq_context_page_size,
13933 &rq_create->u.request.context,
13934 (PAGE_SIZE/SLI4_PAGE_SIZE));
13935 } else {
13936 switch (hrq->entry_count) {
13937 default:
13938 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13939 "2535 Unsupported RQ count. (%d)\n",
13940 hrq->entry_count);
13941 if (hrq->entry_count < 512) {
13942 status = -EINVAL;
13943 goto out;
13944 }
13945 /* otherwise default to smallest count (drop through) */
13946 case 512:
13947 bf_set(lpfc_rq_context_rqe_count,
13948 &rq_create->u.request.context,
13949 LPFC_RQ_RING_SIZE_512);
13950 break;
13951 case 1024:
13952 bf_set(lpfc_rq_context_rqe_count,
13953 &rq_create->u.request.context,
13954 LPFC_RQ_RING_SIZE_1024);
13955 break;
13956 case 2048:
13957 bf_set(lpfc_rq_context_rqe_count,
13958 &rq_create->u.request.context,
13959 LPFC_RQ_RING_SIZE_2048);
13960 break;
13961 case 4096:
13962 bf_set(lpfc_rq_context_rqe_count,
13963 &rq_create->u.request.context,
13964 LPFC_RQ_RING_SIZE_4096);
13965 break;
13966 }
13967 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
13968 LPFC_HDR_BUF_SIZE);
13969 }
13970 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
13971 cq->queue_id);
13972 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
13973 hrq->page_count);
13974 list_for_each_entry(dmabuf, &hrq->page_list, list) {
13975 memset(dmabuf->virt, 0, hw_page_size);
13976 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
13977 putPaddrLow(dmabuf->phys);
13978 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
13979 putPaddrHigh(dmabuf->phys);
13980 }
13981 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
13982 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
13983
13984 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13985 /* The IOCTL status is embedded in the mailbox subheader. */
13986 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13987 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13988 if (shdr_status || shdr_add_status || rc) {
13989 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13990 "2504 RQ_CREATE mailbox failed with "
13991 "status x%x add_status x%x, mbx status x%x\n",
13992 shdr_status, shdr_add_status, rc);
13993 status = -ENXIO;
13994 goto out;
13995 }
13996 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
13997 if (hrq->queue_id == 0xFFFF) {
13998 status = -ENXIO;
13999 goto out;
14000 }
14001
14002 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
14003 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
14004 &rq_create->u.response);
14005 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
14006 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
14007 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14008 "3262 RQ [%d] doorbell format not "
14009 "supported: x%x\n", hrq->queue_id,
14010 hrq->db_format);
14011 status = -EINVAL;
14012 goto out;
14013 }
14014
14015 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
14016 &rq_create->u.response);
14017 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
14018 if (!bar_memmap_p) {
14019 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14020 "3269 RQ[%d] failed to memmap pci "
14021 "barset:x%x\n", hrq->queue_id,
14022 pci_barset);
14023 status = -ENOMEM;
14024 goto out;
14025 }
14026
14027 db_offset = rq_create->u.response.doorbell_offset;
14028 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
14029 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
14030 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14031 "3270 RQ[%d] doorbell offset not "
14032 "supported: x%x\n", hrq->queue_id,
14033 db_offset);
14034 status = -EINVAL;
14035 goto out;
14036 }
14037 hrq->db_regaddr = bar_memmap_p + db_offset;
14038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14039 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
14040 "format:x%x\n", hrq->queue_id, pci_barset,
14041 db_offset, hrq->db_format);
14042 } else {
14043 hrq->db_format = LPFC_DB_RING_FORMAT;
14044 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
14045 }
14046 hrq->type = LPFC_HRQ;
14047 hrq->assoc_qid = cq->queue_id;
14048 hrq->subtype = subtype;
14049 hrq->host_index = 0;
14050 hrq->hba_index = 0;
14051
14052 /* now create the data queue */
14053 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14054 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
14055 length, LPFC_SLI4_MBX_EMBED);
14056 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14057 phba->sli4_hba.pc_sli4_params.rqv);
14058 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
14059 bf_set(lpfc_rq_context_rqe_count_1,
14060 &rq_create->u.request.context, hrq->entry_count);
14061 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE;
14062 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
14063 LPFC_RQE_SIZE_8);
14064 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
14065 (PAGE_SIZE/SLI4_PAGE_SIZE));
14066 } else {
14067 switch (drq->entry_count) {
14068 default:
14069 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14070 "2536 Unsupported RQ count. (%d)\n",
14071 drq->entry_count);
14072 if (drq->entry_count < 512) {
14073 status = -EINVAL;
14074 goto out;
14075 }
14076 /* otherwise default to smallest count (drop through) */
14077 case 512:
14078 bf_set(lpfc_rq_context_rqe_count,
14079 &rq_create->u.request.context,
14080 LPFC_RQ_RING_SIZE_512);
14081 break;
14082 case 1024:
14083 bf_set(lpfc_rq_context_rqe_count,
14084 &rq_create->u.request.context,
14085 LPFC_RQ_RING_SIZE_1024);
14086 break;
14087 case 2048:
14088 bf_set(lpfc_rq_context_rqe_count,
14089 &rq_create->u.request.context,
14090 LPFC_RQ_RING_SIZE_2048);
14091 break;
14092 case 4096:
14093 bf_set(lpfc_rq_context_rqe_count,
14094 &rq_create->u.request.context,
14095 LPFC_RQ_RING_SIZE_4096);
14096 break;
14097 }
14098 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
14099 LPFC_DATA_BUF_SIZE);
14100 }
14101 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
14102 cq->queue_id);
14103 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
14104 drq->page_count);
14105 list_for_each_entry(dmabuf, &drq->page_list, list) {
14106 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14107 putPaddrLow(dmabuf->phys);
14108 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14109 putPaddrHigh(dmabuf->phys);
14110 }
14111 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
14112 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
14113 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14114 /* The IOCTL status is embedded in the mailbox subheader. */
14115 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
14116 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14117 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14118 if (shdr_status || shdr_add_status || rc) {
14119 status = -ENXIO;
14120 goto out;
14121 }
14122 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
14123 if (drq->queue_id == 0xFFFF) {
14124 status = -ENXIO;
14125 goto out;
14126 }
14127 drq->type = LPFC_DRQ;
14128 drq->assoc_qid = cq->queue_id;
14129 drq->subtype = subtype;
14130 drq->host_index = 0;
14131 drq->hba_index = 0;
14132
14133 /* link the header and data RQs onto the parent cq child list */
14134 list_add_tail(&hrq->list, &cq->child_list);
14135 list_add_tail(&drq->list, &cq->child_list);
14136
14137 out:
14138 mempool_free(mbox, phba->mbox_mem_pool);
14139 return status;
14140 }
14141
14142 /**
14143 * lpfc_eq_destroy - Destroy an event Queue on the HBA
14144 * @eq: The queue structure associated with the queue to destroy.
14145 *
14146 * This function destroys a queue, as detailed in @eq by sending an mailbox
14147 * command, specific to the type of queue, to the HBA.
14148 *
14149 * The @eq struct is used to get the queue ID of the queue to destroy.
14150 *
14151 * On success this function will return a zero. If the queue destroy mailbox
14152 * command fails this function will return -ENXIO.
14153 **/
14154 int
14155 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
14156 {
14157 LPFC_MBOXQ_t *mbox;
14158 int rc, length, status = 0;
14159 uint32_t shdr_status, shdr_add_status;
14160 union lpfc_sli4_cfg_shdr *shdr;
14161
14162 /* sanity check on queue memory */
14163 if (!eq)
14164 return -ENODEV;
14165 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
14166 if (!mbox)
14167 return -ENOMEM;
14168 length = (sizeof(struct lpfc_mbx_eq_destroy) -
14169 sizeof(struct lpfc_sli4_cfg_mhdr));
14170 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14171 LPFC_MBOX_OPCODE_EQ_DESTROY,
14172 length, LPFC_SLI4_MBX_EMBED);
14173 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
14174 eq->queue_id);
14175 mbox->vport = eq->phba->pport;
14176 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14177
14178 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
14179 /* The IOCTL status is embedded in the mailbox subheader. */
14180 shdr = (union lpfc_sli4_cfg_shdr *)
14181 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
14182 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14183 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14184 if (shdr_status || shdr_add_status || rc) {
14185 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14186 "2505 EQ_DESTROY mailbox failed with "
14187 "status x%x add_status x%x, mbx status x%x\n",
14188 shdr_status, shdr_add_status, rc);
14189 status = -ENXIO;
14190 }
14191
14192 /* Remove eq from any list */
14193 list_del_init(&eq->list);
14194 mempool_free(mbox, eq->phba->mbox_mem_pool);
14195 return status;
14196 }
14197
14198 /**
14199 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
14200 * @cq: The queue structure associated with the queue to destroy.
14201 *
14202 * This function destroys a queue, as detailed in @cq by sending an mailbox
14203 * command, specific to the type of queue, to the HBA.
14204 *
14205 * The @cq struct is used to get the queue ID of the queue to destroy.
14206 *
14207 * On success this function will return a zero. If the queue destroy mailbox
14208 * command fails this function will return -ENXIO.
14209 **/
14210 int
14211 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
14212 {
14213 LPFC_MBOXQ_t *mbox;
14214 int rc, length, status = 0;
14215 uint32_t shdr_status, shdr_add_status;
14216 union lpfc_sli4_cfg_shdr *shdr;
14217
14218 /* sanity check on queue memory */
14219 if (!cq)
14220 return -ENODEV;
14221 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
14222 if (!mbox)
14223 return -ENOMEM;
14224 length = (sizeof(struct lpfc_mbx_cq_destroy) -
14225 sizeof(struct lpfc_sli4_cfg_mhdr));
14226 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14227 LPFC_MBOX_OPCODE_CQ_DESTROY,
14228 length, LPFC_SLI4_MBX_EMBED);
14229 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
14230 cq->queue_id);
14231 mbox->vport = cq->phba->pport;
14232 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14233 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
14234 /* The IOCTL status is embedded in the mailbox subheader. */
14235 shdr = (union lpfc_sli4_cfg_shdr *)
14236 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
14237 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14238 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14239 if (shdr_status || shdr_add_status || rc) {
14240 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14241 "2506 CQ_DESTROY mailbox failed with "
14242 "status x%x add_status x%x, mbx status x%x\n",
14243 shdr_status, shdr_add_status, rc);
14244 status = -ENXIO;
14245 }
14246 /* Remove cq from any list */
14247 list_del_init(&cq->list);
14248 mempool_free(mbox, cq->phba->mbox_mem_pool);
14249 return status;
14250 }
14251
14252 /**
14253 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
14254 * @qm: The queue structure associated with the queue to destroy.
14255 *
14256 * This function destroys a queue, as detailed in @mq by sending an mailbox
14257 * command, specific to the type of queue, to the HBA.
14258 *
14259 * The @mq struct is used to get the queue ID of the queue to destroy.
14260 *
14261 * On success this function will return a zero. If the queue destroy mailbox
14262 * command fails this function will return -ENXIO.
14263 **/
14264 int
14265 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
14266 {
14267 LPFC_MBOXQ_t *mbox;
14268 int rc, length, status = 0;
14269 uint32_t shdr_status, shdr_add_status;
14270 union lpfc_sli4_cfg_shdr *shdr;
14271
14272 /* sanity check on queue memory */
14273 if (!mq)
14274 return -ENODEV;
14275 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
14276 if (!mbox)
14277 return -ENOMEM;
14278 length = (sizeof(struct lpfc_mbx_mq_destroy) -
14279 sizeof(struct lpfc_sli4_cfg_mhdr));
14280 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14281 LPFC_MBOX_OPCODE_MQ_DESTROY,
14282 length, LPFC_SLI4_MBX_EMBED);
14283 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
14284 mq->queue_id);
14285 mbox->vport = mq->phba->pport;
14286 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14287 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
14288 /* The IOCTL status is embedded in the mailbox subheader. */
14289 shdr = (union lpfc_sli4_cfg_shdr *)
14290 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
14291 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14292 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14293 if (shdr_status || shdr_add_status || rc) {
14294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14295 "2507 MQ_DESTROY mailbox failed with "
14296 "status x%x add_status x%x, mbx status x%x\n",
14297 shdr_status, shdr_add_status, rc);
14298 status = -ENXIO;
14299 }
14300 /* Remove mq from any list */
14301 list_del_init(&mq->list);
14302 mempool_free(mbox, mq->phba->mbox_mem_pool);
14303 return status;
14304 }
14305
14306 /**
14307 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
14308 * @wq: The queue structure associated with the queue to destroy.
14309 *
14310 * This function destroys a queue, as detailed in @wq by sending an mailbox
14311 * command, specific to the type of queue, to the HBA.
14312 *
14313 * The @wq struct is used to get the queue ID of the queue to destroy.
14314 *
14315 * On success this function will return a zero. If the queue destroy mailbox
14316 * command fails this function will return -ENXIO.
14317 **/
14318 int
14319 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
14320 {
14321 LPFC_MBOXQ_t *mbox;
14322 int rc, length, status = 0;
14323 uint32_t shdr_status, shdr_add_status;
14324 union lpfc_sli4_cfg_shdr *shdr;
14325
14326 /* sanity check on queue memory */
14327 if (!wq)
14328 return -ENODEV;
14329 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
14330 if (!mbox)
14331 return -ENOMEM;
14332 length = (sizeof(struct lpfc_mbx_wq_destroy) -
14333 sizeof(struct lpfc_sli4_cfg_mhdr));
14334 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14335 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
14336 length, LPFC_SLI4_MBX_EMBED);
14337 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
14338 wq->queue_id);
14339 mbox->vport = wq->phba->pport;
14340 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14341 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
14342 shdr = (union lpfc_sli4_cfg_shdr *)
14343 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
14344 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14345 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14346 if (shdr_status || shdr_add_status || rc) {
14347 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14348 "2508 WQ_DESTROY mailbox failed with "
14349 "status x%x add_status x%x, mbx status x%x\n",
14350 shdr_status, shdr_add_status, rc);
14351 status = -ENXIO;
14352 }
14353 /* Remove wq from any list */
14354 list_del_init(&wq->list);
14355 mempool_free(mbox, wq->phba->mbox_mem_pool);
14356 return status;
14357 }
14358
14359 /**
14360 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
14361 * @rq: The queue structure associated with the queue to destroy.
14362 *
14363 * This function destroys a queue, as detailed in @rq by sending an mailbox
14364 * command, specific to the type of queue, to the HBA.
14365 *
14366 * The @rq struct is used to get the queue ID of the queue to destroy.
14367 *
14368 * On success this function will return a zero. If the queue destroy mailbox
14369 * command fails this function will return -ENXIO.
14370 **/
14371 int
14372 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
14373 struct lpfc_queue *drq)
14374 {
14375 LPFC_MBOXQ_t *mbox;
14376 int rc, length, status = 0;
14377 uint32_t shdr_status, shdr_add_status;
14378 union lpfc_sli4_cfg_shdr *shdr;
14379
14380 /* sanity check on queue memory */
14381 if (!hrq || !drq)
14382 return -ENODEV;
14383 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
14384 if (!mbox)
14385 return -ENOMEM;
14386 length = (sizeof(struct lpfc_mbx_rq_destroy) -
14387 sizeof(struct lpfc_sli4_cfg_mhdr));
14388 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14389 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
14390 length, LPFC_SLI4_MBX_EMBED);
14391 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
14392 hrq->queue_id);
14393 mbox->vport = hrq->phba->pport;
14394 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14395 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
14396 /* The IOCTL status is embedded in the mailbox subheader. */
14397 shdr = (union lpfc_sli4_cfg_shdr *)
14398 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
14399 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14400 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14401 if (shdr_status || shdr_add_status || rc) {
14402 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14403 "2509 RQ_DESTROY mailbox failed with "
14404 "status x%x add_status x%x, mbx status x%x\n",
14405 shdr_status, shdr_add_status, rc);
14406 if (rc != MBX_TIMEOUT)
14407 mempool_free(mbox, hrq->phba->mbox_mem_pool);
14408 return -ENXIO;
14409 }
14410 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
14411 drq->queue_id);
14412 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
14413 shdr = (union lpfc_sli4_cfg_shdr *)
14414 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
14415 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14416 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14417 if (shdr_status || shdr_add_status || rc) {
14418 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14419 "2510 RQ_DESTROY mailbox failed with "
14420 "status x%x add_status x%x, mbx status x%x\n",
14421 shdr_status, shdr_add_status, rc);
14422 status = -ENXIO;
14423 }
14424 list_del_init(&hrq->list);
14425 list_del_init(&drq->list);
14426 mempool_free(mbox, hrq->phba->mbox_mem_pool);
14427 return status;
14428 }
14429
14430 /**
14431 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
14432 * @phba: The virtual port for which this call being executed.
14433 * @pdma_phys_addr0: Physical address of the 1st SGL page.
14434 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
14435 * @xritag: the xritag that ties this io to the SGL pages.
14436 *
14437 * This routine will post the sgl pages for the IO that has the xritag
14438 * that is in the iocbq structure. The xritag is assigned during iocbq
14439 * creation and persists for as long as the driver is loaded.
14440 * if the caller has fewer than 256 scatter gather segments to map then
14441 * pdma_phys_addr1 should be 0.
14442 * If the caller needs to map more than 256 scatter gather segment then
14443 * pdma_phys_addr1 should be a valid physical address.
14444 * physical address for SGLs must be 64 byte aligned.
14445 * If you are going to map 2 SGL's then the first one must have 256 entries
14446 * the second sgl can have between 1 and 256 entries.
14447 *
14448 * Return codes:
14449 * 0 - Success
14450 * -ENXIO, -ENOMEM - Failure
14451 **/
14452 int
14453 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
14454 dma_addr_t pdma_phys_addr0,
14455 dma_addr_t pdma_phys_addr1,
14456 uint16_t xritag)
14457 {
14458 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
14459 LPFC_MBOXQ_t *mbox;
14460 int rc;
14461 uint32_t shdr_status, shdr_add_status;
14462 uint32_t mbox_tmo;
14463 union lpfc_sli4_cfg_shdr *shdr;
14464
14465 if (xritag == NO_XRI) {
14466 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14467 "0364 Invalid param:\n");
14468 return -EINVAL;
14469 }
14470
14471 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14472 if (!mbox)
14473 return -ENOMEM;
14474
14475 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14476 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
14477 sizeof(struct lpfc_mbx_post_sgl_pages) -
14478 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
14479
14480 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
14481 &mbox->u.mqe.un.post_sgl_pages;
14482 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
14483 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
14484
14485 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
14486 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
14487 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
14488 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
14489
14490 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
14491 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
14492 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
14493 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
14494 if (!phba->sli4_hba.intr_enable)
14495 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14496 else {
14497 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
14498 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
14499 }
14500 /* The IOCTL status is embedded in the mailbox subheader. */
14501 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
14502 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14503 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14504 if (rc != MBX_TIMEOUT)
14505 mempool_free(mbox, phba->mbox_mem_pool);
14506 if (shdr_status || shdr_add_status || rc) {
14507 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14508 "2511 POST_SGL mailbox failed with "
14509 "status x%x add_status x%x, mbx status x%x\n",
14510 shdr_status, shdr_add_status, rc);
14511 }
14512 return 0;
14513 }
14514
14515 /**
14516 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
14517 * @phba: pointer to lpfc hba data structure.
14518 *
14519 * This routine is invoked to post rpi header templates to the
14520 * HBA consistent with the SLI-4 interface spec. This routine
14521 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
14522 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
14523 *
14524 * Returns
14525 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
14526 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
14527 **/
14528 static uint16_t
14529 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
14530 {
14531 unsigned long xri;
14532
14533 /*
14534 * Fetch the next logical xri. Because this index is logical,
14535 * the driver starts at 0 each time.
14536 */
14537 spin_lock_irq(&phba->hbalock);
14538 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
14539 phba->sli4_hba.max_cfg_param.max_xri, 0);
14540 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
14541 spin_unlock_irq(&phba->hbalock);
14542 return NO_XRI;
14543 } else {
14544 set_bit(xri, phba->sli4_hba.xri_bmask);
14545 phba->sli4_hba.max_cfg_param.xri_used++;
14546 }
14547 spin_unlock_irq(&phba->hbalock);
14548 return xri;
14549 }
14550
14551 /**
14552 * lpfc_sli4_free_xri - Release an xri for reuse.
14553 * @phba: pointer to lpfc hba data structure.
14554 *
14555 * This routine is invoked to release an xri to the pool of
14556 * available rpis maintained by the driver.
14557 **/
14558 static void
14559 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
14560 {
14561 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
14562 phba->sli4_hba.max_cfg_param.xri_used--;
14563 }
14564 }
14565
14566 /**
14567 * lpfc_sli4_free_xri - Release an xri for reuse.
14568 * @phba: pointer to lpfc hba data structure.
14569 *
14570 * This routine is invoked to release an xri to the pool of
14571 * available rpis maintained by the driver.
14572 **/
14573 void
14574 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
14575 {
14576 spin_lock_irq(&phba->hbalock);
14577 __lpfc_sli4_free_xri(phba, xri);
14578 spin_unlock_irq(&phba->hbalock);
14579 }
14580
14581 /**
14582 * lpfc_sli4_next_xritag - Get an xritag for the io
14583 * @phba: Pointer to HBA context object.
14584 *
14585 * This function gets an xritag for the iocb. If there is no unused xritag
14586 * it will return 0xffff.
14587 * The function returns the allocated xritag if successful, else returns zero.
14588 * Zero is not a valid xritag.
14589 * The caller is not required to hold any lock.
14590 **/
14591 uint16_t
14592 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
14593 {
14594 uint16_t xri_index;
14595
14596 xri_index = lpfc_sli4_alloc_xri(phba);
14597 if (xri_index == NO_XRI)
14598 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14599 "2004 Failed to allocate XRI.last XRITAG is %d"
14600 " Max XRI is %d, Used XRI is %d\n",
14601 xri_index,
14602 phba->sli4_hba.max_cfg_param.max_xri,
14603 phba->sli4_hba.max_cfg_param.xri_used);
14604 return xri_index;
14605 }
14606
14607 /**
14608 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port.
14609 * @phba: pointer to lpfc hba data structure.
14610 * @post_sgl_list: pointer to els sgl entry list.
14611 * @count: number of els sgl entries on the list.
14612 *
14613 * This routine is invoked to post a block of driver's sgl pages to the
14614 * HBA using non-embedded mailbox command. No Lock is held. This routine
14615 * is only called when the driver is loading and after all IO has been
14616 * stopped.
14617 **/
14618 static int
14619 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba,
14620 struct list_head *post_sgl_list,
14621 int post_cnt)
14622 {
14623 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
14624 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
14625 struct sgl_page_pairs *sgl_pg_pairs;
14626 void *viraddr;
14627 LPFC_MBOXQ_t *mbox;
14628 uint32_t reqlen, alloclen, pg_pairs;
14629 uint32_t mbox_tmo;
14630 uint16_t xritag_start = 0;
14631 int rc = 0;
14632 uint32_t shdr_status, shdr_add_status;
14633 union lpfc_sli4_cfg_shdr *shdr;
14634
14635 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) +
14636 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
14637 if (reqlen > SLI4_PAGE_SIZE) {
14638 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
14639 "2559 Block sgl registration required DMA "
14640 "size (%d) great than a page\n", reqlen);
14641 return -ENOMEM;
14642 }
14643 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14644 if (!mbox)
14645 return -ENOMEM;
14646
14647 /* Allocate DMA memory and set up the non-embedded mailbox command */
14648 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14649 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
14650 LPFC_SLI4_MBX_NEMBED);
14651
14652 if (alloclen < reqlen) {
14653 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14654 "0285 Allocated DMA memory size (%d) is "
14655 "less than the requested DMA memory "
14656 "size (%d)\n", alloclen, reqlen);
14657 lpfc_sli4_mbox_cmd_free(phba, mbox);
14658 return -ENOMEM;
14659 }
14660 /* Set up the SGL pages in the non-embedded DMA pages */
14661 viraddr = mbox->sge_array->addr[0];
14662 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
14663 sgl_pg_pairs = &sgl->sgl_pg_pairs;
14664
14665 pg_pairs = 0;
14666 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
14667 /* Set up the sge entry */
14668 sgl_pg_pairs->sgl_pg0_addr_lo =
14669 cpu_to_le32(putPaddrLow(sglq_entry->phys));
14670 sgl_pg_pairs->sgl_pg0_addr_hi =
14671 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
14672 sgl_pg_pairs->sgl_pg1_addr_lo =
14673 cpu_to_le32(putPaddrLow(0));
14674 sgl_pg_pairs->sgl_pg1_addr_hi =
14675 cpu_to_le32(putPaddrHigh(0));
14676
14677 /* Keep the first xritag on the list */
14678 if (pg_pairs == 0)
14679 xritag_start = sglq_entry->sli4_xritag;
14680 sgl_pg_pairs++;
14681 pg_pairs++;
14682 }
14683
14684 /* Complete initialization and perform endian conversion. */
14685 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
14686 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt);
14687 sgl->word0 = cpu_to_le32(sgl->word0);
14688 if (!phba->sli4_hba.intr_enable)
14689 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14690 else {
14691 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
14692 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
14693 }
14694 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
14695 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14696 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14697 if (rc != MBX_TIMEOUT)
14698 lpfc_sli4_mbox_cmd_free(phba, mbox);
14699 if (shdr_status || shdr_add_status || rc) {
14700 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14701 "2513 POST_SGL_BLOCK mailbox command failed "
14702 "status x%x add_status x%x mbx status x%x\n",
14703 shdr_status, shdr_add_status, rc);
14704 rc = -ENXIO;
14705 }
14706 return rc;
14707 }
14708
14709 /**
14710 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
14711 * @phba: pointer to lpfc hba data structure.
14712 * @sblist: pointer to scsi buffer list.
14713 * @count: number of scsi buffers on the list.
14714 *
14715 * This routine is invoked to post a block of @count scsi sgl pages from a
14716 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
14717 * No Lock is held.
14718 *
14719 **/
14720 int
14721 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
14722 struct list_head *sblist,
14723 int count)
14724 {
14725 struct lpfc_scsi_buf *psb;
14726 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
14727 struct sgl_page_pairs *sgl_pg_pairs;
14728 void *viraddr;
14729 LPFC_MBOXQ_t *mbox;
14730 uint32_t reqlen, alloclen, pg_pairs;
14731 uint32_t mbox_tmo;
14732 uint16_t xritag_start = 0;
14733 int rc = 0;
14734 uint32_t shdr_status, shdr_add_status;
14735 dma_addr_t pdma_phys_bpl1;
14736 union lpfc_sli4_cfg_shdr *shdr;
14737
14738 /* Calculate the requested length of the dma memory */
14739 reqlen = count * sizeof(struct sgl_page_pairs) +
14740 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
14741 if (reqlen > SLI4_PAGE_SIZE) {
14742 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
14743 "0217 Block sgl registration required DMA "
14744 "size (%d) great than a page\n", reqlen);
14745 return -ENOMEM;
14746 }
14747 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14748 if (!mbox) {
14749 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14750 "0283 Failed to allocate mbox cmd memory\n");
14751 return -ENOMEM;
14752 }
14753
14754 /* Allocate DMA memory and set up the non-embedded mailbox command */
14755 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14756 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
14757 LPFC_SLI4_MBX_NEMBED);
14758
14759 if (alloclen < reqlen) {
14760 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14761 "2561 Allocated DMA memory size (%d) is "
14762 "less than the requested DMA memory "
14763 "size (%d)\n", alloclen, reqlen);
14764 lpfc_sli4_mbox_cmd_free(phba, mbox);
14765 return -ENOMEM;
14766 }
14767
14768 /* Get the first SGE entry from the non-embedded DMA memory */
14769 viraddr = mbox->sge_array->addr[0];
14770
14771 /* Set up the SGL pages in the non-embedded DMA pages */
14772 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
14773 sgl_pg_pairs = &sgl->sgl_pg_pairs;
14774
14775 pg_pairs = 0;
14776 list_for_each_entry(psb, sblist, list) {
14777 /* Set up the sge entry */
14778 sgl_pg_pairs->sgl_pg0_addr_lo =
14779 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
14780 sgl_pg_pairs->sgl_pg0_addr_hi =
14781 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
14782 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
14783 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
14784 else
14785 pdma_phys_bpl1 = 0;
14786 sgl_pg_pairs->sgl_pg1_addr_lo =
14787 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
14788 sgl_pg_pairs->sgl_pg1_addr_hi =
14789 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
14790 /* Keep the first xritag on the list */
14791 if (pg_pairs == 0)
14792 xritag_start = psb->cur_iocbq.sli4_xritag;
14793 sgl_pg_pairs++;
14794 pg_pairs++;
14795 }
14796 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
14797 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
14798 /* Perform endian conversion if necessary */
14799 sgl->word0 = cpu_to_le32(sgl->word0);
14800
14801 if (!phba->sli4_hba.intr_enable)
14802 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14803 else {
14804 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
14805 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
14806 }
14807 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
14808 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14809 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14810 if (rc != MBX_TIMEOUT)
14811 lpfc_sli4_mbox_cmd_free(phba, mbox);
14812 if (shdr_status || shdr_add_status || rc) {
14813 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14814 "2564 POST_SGL_BLOCK mailbox command failed "
14815 "status x%x add_status x%x mbx status x%x\n",
14816 shdr_status, shdr_add_status, rc);
14817 rc = -ENXIO;
14818 }
14819 return rc;
14820 }
14821
14822 /**
14823 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
14824 * @phba: pointer to lpfc_hba struct that the frame was received on
14825 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
14826 *
14827 * This function checks the fields in the @fc_hdr to see if the FC frame is a
14828 * valid type of frame that the LPFC driver will handle. This function will
14829 * return a zero if the frame is a valid frame or a non zero value when the
14830 * frame does not pass the check.
14831 **/
14832 static int
14833 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
14834 {
14835 /* make rctl_names static to save stack space */
14836 static char *rctl_names[] = FC_RCTL_NAMES_INIT;
14837 char *type_names[] = FC_TYPE_NAMES_INIT;
14838 struct fc_vft_header *fc_vft_hdr;
14839 uint32_t *header = (uint32_t *) fc_hdr;
14840
14841 switch (fc_hdr->fh_r_ctl) {
14842 case FC_RCTL_DD_UNCAT: /* uncategorized information */
14843 case FC_RCTL_DD_SOL_DATA: /* solicited data */
14844 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
14845 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
14846 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
14847 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
14848 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
14849 case FC_RCTL_DD_CMD_STATUS: /* command status */
14850 case FC_RCTL_ELS_REQ: /* extended link services request */
14851 case FC_RCTL_ELS_REP: /* extended link services reply */
14852 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
14853 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
14854 case FC_RCTL_BA_NOP: /* basic link service NOP */
14855 case FC_RCTL_BA_ABTS: /* basic link service abort */
14856 case FC_RCTL_BA_RMC: /* remove connection */
14857 case FC_RCTL_BA_ACC: /* basic accept */
14858 case FC_RCTL_BA_RJT: /* basic reject */
14859 case FC_RCTL_BA_PRMT:
14860 case FC_RCTL_ACK_1: /* acknowledge_1 */
14861 case FC_RCTL_ACK_0: /* acknowledge_0 */
14862 case FC_RCTL_P_RJT: /* port reject */
14863 case FC_RCTL_F_RJT: /* fabric reject */
14864 case FC_RCTL_P_BSY: /* port busy */
14865 case FC_RCTL_F_BSY: /* fabric busy to data frame */
14866 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
14867 case FC_RCTL_LCR: /* link credit reset */
14868 case FC_RCTL_END: /* end */
14869 break;
14870 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
14871 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
14872 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
14873 return lpfc_fc_frame_check(phba, fc_hdr);
14874 default:
14875 goto drop;
14876 }
14877 switch (fc_hdr->fh_type) {
14878 case FC_TYPE_BLS:
14879 case FC_TYPE_ELS:
14880 case FC_TYPE_FCP:
14881 case FC_TYPE_CT:
14882 break;
14883 case FC_TYPE_IP:
14884 case FC_TYPE_ILS:
14885 default:
14886 goto drop;
14887 }
14888
14889 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
14890 "2538 Received frame rctl:%s (x%x), type:%s (x%x), "
14891 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
14892 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl,
14893 type_names[fc_hdr->fh_type], fc_hdr->fh_type,
14894 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
14895 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
14896 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
14897 be32_to_cpu(header[6]));
14898 return 0;
14899 drop:
14900 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
14901 "2539 Dropped frame rctl:%s type:%s\n",
14902 rctl_names[fc_hdr->fh_r_ctl],
14903 type_names[fc_hdr->fh_type]);
14904 return 1;
14905 }
14906
14907 /**
14908 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
14909 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
14910 *
14911 * This function processes the FC header to retrieve the VFI from the VF
14912 * header, if one exists. This function will return the VFI if one exists
14913 * or 0 if no VSAN Header exists.
14914 **/
14915 static uint32_t
14916 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
14917 {
14918 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
14919
14920 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
14921 return 0;
14922 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
14923 }
14924
14925 /**
14926 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
14927 * @phba: Pointer to the HBA structure to search for the vport on
14928 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
14929 * @fcfi: The FC Fabric ID that the frame came from
14930 *
14931 * This function searches the @phba for a vport that matches the content of the
14932 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
14933 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
14934 * returns the matching vport pointer or NULL if unable to match frame to a
14935 * vport.
14936 **/
14937 static struct lpfc_vport *
14938 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
14939 uint16_t fcfi)
14940 {
14941 struct lpfc_vport **vports;
14942 struct lpfc_vport *vport = NULL;
14943 int i;
14944 uint32_t did = (fc_hdr->fh_d_id[0] << 16 |
14945 fc_hdr->fh_d_id[1] << 8 |
14946 fc_hdr->fh_d_id[2]);
14947
14948 if (did == Fabric_DID)
14949 return phba->pport;
14950 if ((phba->pport->fc_flag & FC_PT2PT) &&
14951 !(phba->link_state == LPFC_HBA_READY))
14952 return phba->pport;
14953
14954 vports = lpfc_create_vport_work_array(phba);
14955 if (vports != NULL)
14956 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
14957 if (phba->fcf.fcfi == fcfi &&
14958 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
14959 vports[i]->fc_myDID == did) {
14960 vport = vports[i];
14961 break;
14962 }
14963 }
14964 lpfc_destroy_vport_work_array(phba, vports);
14965 return vport;
14966 }
14967
14968 /**
14969 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
14970 * @vport: The vport to work on.
14971 *
14972 * This function updates the receive sequence time stamp for this vport. The
14973 * receive sequence time stamp indicates the time that the last frame of the
14974 * the sequence that has been idle for the longest amount of time was received.
14975 * the driver uses this time stamp to indicate if any received sequences have
14976 * timed out.
14977 **/
14978 static void
14979 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
14980 {
14981 struct lpfc_dmabuf *h_buf;
14982 struct hbq_dmabuf *dmabuf = NULL;
14983
14984 /* get the oldest sequence on the rcv list */
14985 h_buf = list_get_first(&vport->rcv_buffer_list,
14986 struct lpfc_dmabuf, list);
14987 if (!h_buf)
14988 return;
14989 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
14990 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
14991 }
14992
14993 /**
14994 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
14995 * @vport: The vport that the received sequences were sent to.
14996 *
14997 * This function cleans up all outstanding received sequences. This is called
14998 * by the driver when a link event or user action invalidates all the received
14999 * sequences.
15000 **/
15001 void
15002 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
15003 {
15004 struct lpfc_dmabuf *h_buf, *hnext;
15005 struct lpfc_dmabuf *d_buf, *dnext;
15006 struct hbq_dmabuf *dmabuf = NULL;
15007
15008 /* start with the oldest sequence on the rcv list */
15009 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
15010 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15011 list_del_init(&dmabuf->hbuf.list);
15012 list_for_each_entry_safe(d_buf, dnext,
15013 &dmabuf->dbuf.list, list) {
15014 list_del_init(&d_buf->list);
15015 lpfc_in_buf_free(vport->phba, d_buf);
15016 }
15017 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
15018 }
15019 }
15020
15021 /**
15022 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
15023 * @vport: The vport that the received sequences were sent to.
15024 *
15025 * This function determines whether any received sequences have timed out by
15026 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
15027 * indicates that there is at least one timed out sequence this routine will
15028 * go through the received sequences one at a time from most inactive to most
15029 * active to determine which ones need to be cleaned up. Once it has determined
15030 * that a sequence needs to be cleaned up it will simply free up the resources
15031 * without sending an abort.
15032 **/
15033 void
15034 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
15035 {
15036 struct lpfc_dmabuf *h_buf, *hnext;
15037 struct lpfc_dmabuf *d_buf, *dnext;
15038 struct hbq_dmabuf *dmabuf = NULL;
15039 unsigned long timeout;
15040 int abort_count = 0;
15041
15042 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
15043 vport->rcv_buffer_time_stamp);
15044 if (list_empty(&vport->rcv_buffer_list) ||
15045 time_before(jiffies, timeout))
15046 return;
15047 /* start with the oldest sequence on the rcv list */
15048 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
15049 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15050 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
15051 dmabuf->time_stamp);
15052 if (time_before(jiffies, timeout))
15053 break;
15054 abort_count++;
15055 list_del_init(&dmabuf->hbuf.list);
15056 list_for_each_entry_safe(d_buf, dnext,
15057 &dmabuf->dbuf.list, list) {
15058 list_del_init(&d_buf->list);
15059 lpfc_in_buf_free(vport->phba, d_buf);
15060 }
15061 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
15062 }
15063 if (abort_count)
15064 lpfc_update_rcv_time_stamp(vport);
15065 }
15066
15067 /**
15068 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
15069 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
15070 *
15071 * This function searches through the existing incomplete sequences that have
15072 * been sent to this @vport. If the frame matches one of the incomplete
15073 * sequences then the dbuf in the @dmabuf is added to the list of frames that
15074 * make up that sequence. If no sequence is found that matches this frame then
15075 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
15076 * This function returns a pointer to the first dmabuf in the sequence list that
15077 * the frame was linked to.
15078 **/
15079 static struct hbq_dmabuf *
15080 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
15081 {
15082 struct fc_frame_header *new_hdr;
15083 struct fc_frame_header *temp_hdr;
15084 struct lpfc_dmabuf *d_buf;
15085 struct lpfc_dmabuf *h_buf;
15086 struct hbq_dmabuf *seq_dmabuf = NULL;
15087 struct hbq_dmabuf *temp_dmabuf = NULL;
15088 uint8_t found = 0;
15089
15090 INIT_LIST_HEAD(&dmabuf->dbuf.list);
15091 dmabuf->time_stamp = jiffies;
15092 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15093
15094 /* Use the hdr_buf to find the sequence that this frame belongs to */
15095 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
15096 temp_hdr = (struct fc_frame_header *)h_buf->virt;
15097 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
15098 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
15099 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
15100 continue;
15101 /* found a pending sequence that matches this frame */
15102 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15103 break;
15104 }
15105 if (!seq_dmabuf) {
15106 /*
15107 * This indicates first frame received for this sequence.
15108 * Queue the buffer on the vport's rcv_buffer_list.
15109 */
15110 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
15111 lpfc_update_rcv_time_stamp(vport);
15112 return dmabuf;
15113 }
15114 temp_hdr = seq_dmabuf->hbuf.virt;
15115 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
15116 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
15117 list_del_init(&seq_dmabuf->hbuf.list);
15118 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
15119 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
15120 lpfc_update_rcv_time_stamp(vport);
15121 return dmabuf;
15122 }
15123 /* move this sequence to the tail to indicate a young sequence */
15124 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
15125 seq_dmabuf->time_stamp = jiffies;
15126 lpfc_update_rcv_time_stamp(vport);
15127 if (list_empty(&seq_dmabuf->dbuf.list)) {
15128 temp_hdr = dmabuf->hbuf.virt;
15129 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
15130 return seq_dmabuf;
15131 }
15132 /* find the correct place in the sequence to insert this frame */
15133 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
15134 while (!found) {
15135 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15136 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
15137 /*
15138 * If the frame's sequence count is greater than the frame on
15139 * the list then insert the frame right after this frame
15140 */
15141 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
15142 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
15143 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
15144 found = 1;
15145 break;
15146 }
15147
15148 if (&d_buf->list == &seq_dmabuf->dbuf.list)
15149 break;
15150 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
15151 }
15152
15153 if (found)
15154 return seq_dmabuf;
15155 return NULL;
15156 }
15157
15158 /**
15159 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
15160 * @vport: pointer to a vitural port
15161 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15162 *
15163 * This function tries to abort from the partially assembed sequence, described
15164 * by the information from basic abbort @dmabuf. It checks to see whether such
15165 * partially assembled sequence held by the driver. If so, it shall free up all
15166 * the frames from the partially assembled sequence.
15167 *
15168 * Return
15169 * true -- if there is matching partially assembled sequence present and all
15170 * the frames freed with the sequence;
15171 * false -- if there is no matching partially assembled sequence present so
15172 * nothing got aborted in the lower layer driver
15173 **/
15174 static bool
15175 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
15176 struct hbq_dmabuf *dmabuf)
15177 {
15178 struct fc_frame_header *new_hdr;
15179 struct fc_frame_header *temp_hdr;
15180 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
15181 struct hbq_dmabuf *seq_dmabuf = NULL;
15182
15183 /* Use the hdr_buf to find the sequence that matches this frame */
15184 INIT_LIST_HEAD(&dmabuf->dbuf.list);
15185 INIT_LIST_HEAD(&dmabuf->hbuf.list);
15186 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15187 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
15188 temp_hdr = (struct fc_frame_header *)h_buf->virt;
15189 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
15190 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
15191 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
15192 continue;
15193 /* found a pending sequence that matches this frame */
15194 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
15195 break;
15196 }
15197
15198 /* Free up all the frames from the partially assembled sequence */
15199 if (seq_dmabuf) {
15200 list_for_each_entry_safe(d_buf, n_buf,
15201 &seq_dmabuf->dbuf.list, list) {
15202 list_del_init(&d_buf->list);
15203 lpfc_in_buf_free(vport->phba, d_buf);
15204 }
15205 return true;
15206 }
15207 return false;
15208 }
15209
15210 /**
15211 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
15212 * @vport: pointer to a vitural port
15213 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15214 *
15215 * This function tries to abort from the assembed sequence from upper level
15216 * protocol, described by the information from basic abbort @dmabuf. It
15217 * checks to see whether such pending context exists at upper level protocol.
15218 * If so, it shall clean up the pending context.
15219 *
15220 * Return
15221 * true -- if there is matching pending context of the sequence cleaned
15222 * at ulp;
15223 * false -- if there is no matching pending context of the sequence present
15224 * at ulp.
15225 **/
15226 static bool
15227 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
15228 {
15229 struct lpfc_hba *phba = vport->phba;
15230 int handled;
15231
15232 /* Accepting abort at ulp with SLI4 only */
15233 if (phba->sli_rev < LPFC_SLI_REV4)
15234 return false;
15235
15236 /* Register all caring upper level protocols to attend abort */
15237 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
15238 if (handled)
15239 return true;
15240
15241 return false;
15242 }
15243
15244 /**
15245 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
15246 * @phba: Pointer to HBA context object.
15247 * @cmd_iocbq: pointer to the command iocbq structure.
15248 * @rsp_iocbq: pointer to the response iocbq structure.
15249 *
15250 * This function handles the sequence abort response iocb command complete
15251 * event. It properly releases the memory allocated to the sequence abort
15252 * accept iocb.
15253 **/
15254 static void
15255 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
15256 struct lpfc_iocbq *cmd_iocbq,
15257 struct lpfc_iocbq *rsp_iocbq)
15258 {
15259 struct lpfc_nodelist *ndlp;
15260
15261 if (cmd_iocbq) {
15262 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
15263 lpfc_nlp_put(ndlp);
15264 lpfc_nlp_not_used(ndlp);
15265 lpfc_sli_release_iocbq(phba, cmd_iocbq);
15266 }
15267
15268 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
15269 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
15270 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15271 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
15272 rsp_iocbq->iocb.ulpStatus,
15273 rsp_iocbq->iocb.un.ulpWord[4]);
15274 }
15275
15276 /**
15277 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
15278 * @phba: Pointer to HBA context object.
15279 * @xri: xri id in transaction.
15280 *
15281 * This function validates the xri maps to the known range of XRIs allocated an
15282 * used by the driver.
15283 **/
15284 uint16_t
15285 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
15286 uint16_t xri)
15287 {
15288 uint16_t i;
15289
15290 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
15291 if (xri == phba->sli4_hba.xri_ids[i])
15292 return i;
15293 }
15294 return NO_XRI;
15295 }
15296
15297 /**
15298 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
15299 * @phba: Pointer to HBA context object.
15300 * @fc_hdr: pointer to a FC frame header.
15301 *
15302 * This function sends a basic response to a previous unsol sequence abort
15303 * event after aborting the sequence handling.
15304 **/
15305 static void
15306 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
15307 struct fc_frame_header *fc_hdr, bool aborted)
15308 {
15309 struct lpfc_hba *phba = vport->phba;
15310 struct lpfc_iocbq *ctiocb = NULL;
15311 struct lpfc_nodelist *ndlp;
15312 uint16_t oxid, rxid, xri, lxri;
15313 uint32_t sid, fctl;
15314 IOCB_t *icmd;
15315 int rc;
15316
15317 if (!lpfc_is_link_up(phba))
15318 return;
15319
15320 sid = sli4_sid_from_fc_hdr(fc_hdr);
15321 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
15322 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
15323
15324 ndlp = lpfc_findnode_did(vport, sid);
15325 if (!ndlp) {
15326 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL);
15327 if (!ndlp) {
15328 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
15329 "1268 Failed to allocate ndlp for "
15330 "oxid:x%x SID:x%x\n", oxid, sid);
15331 return;
15332 }
15333 lpfc_nlp_init(vport, ndlp, sid);
15334 /* Put ndlp onto pport node list */
15335 lpfc_enqueue_node(vport, ndlp);
15336 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
15337 /* re-setup ndlp without removing from node list */
15338 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
15339 if (!ndlp) {
15340 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
15341 "3275 Failed to active ndlp found "
15342 "for oxid:x%x SID:x%x\n", oxid, sid);
15343 return;
15344 }
15345 }
15346
15347 /* Allocate buffer for rsp iocb */
15348 ctiocb = lpfc_sli_get_iocbq(phba);
15349 if (!ctiocb)
15350 return;
15351
15352 /* Extract the F_CTL field from FC_HDR */
15353 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
15354
15355 icmd = &ctiocb->iocb;
15356 icmd->un.xseq64.bdl.bdeSize = 0;
15357 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
15358 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
15359 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
15360 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
15361
15362 /* Fill in the rest of iocb fields */
15363 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
15364 icmd->ulpBdeCount = 0;
15365 icmd->ulpLe = 1;
15366 icmd->ulpClass = CLASS3;
15367 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
15368 ctiocb->context1 = lpfc_nlp_get(ndlp);
15369
15370 ctiocb->iocb_cmpl = NULL;
15371 ctiocb->vport = phba->pport;
15372 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
15373 ctiocb->sli4_lxritag = NO_XRI;
15374 ctiocb->sli4_xritag = NO_XRI;
15375
15376 if (fctl & FC_FC_EX_CTX)
15377 /* Exchange responder sent the abort so we
15378 * own the oxid.
15379 */
15380 xri = oxid;
15381 else
15382 xri = rxid;
15383 lxri = lpfc_sli4_xri_inrange(phba, xri);
15384 if (lxri != NO_XRI)
15385 lpfc_set_rrq_active(phba, ndlp, lxri,
15386 (xri == oxid) ? rxid : oxid, 0);
15387 /* For BA_ABTS from exchange responder, if the logical xri with
15388 * the oxid maps to the FCP XRI range, the port no longer has
15389 * that exchange context, send a BLS_RJT. Override the IOCB for
15390 * a BA_RJT.
15391 */
15392 if ((fctl & FC_FC_EX_CTX) &&
15393 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) {
15394 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
15395 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
15396 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
15397 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
15398 }
15399
15400 /* If BA_ABTS failed to abort a partially assembled receive sequence,
15401 * the driver no longer has that exchange, send a BLS_RJT. Override
15402 * the IOCB for a BA_RJT.
15403 */
15404 if (aborted == false) {
15405 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
15406 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
15407 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
15408 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
15409 }
15410
15411 if (fctl & FC_FC_EX_CTX) {
15412 /* ABTS sent by responder to CT exchange, construction
15413 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
15414 * field and RX_ID from ABTS for RX_ID field.
15415 */
15416 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
15417 } else {
15418 /* ABTS sent by initiator to CT exchange, construction
15419 * of BA_ACC will need to allocate a new XRI as for the
15420 * XRI_TAG field.
15421 */
15422 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
15423 }
15424 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
15425 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
15426
15427 /* Xmit CT abts response on exchange <xid> */
15428 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
15429 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
15430 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
15431
15432 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
15433 if (rc == IOCB_ERROR) {
15434 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
15435 "2925 Failed to issue CT ABTS RSP x%x on "
15436 "xri x%x, Data x%x\n",
15437 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
15438 phba->link_state);
15439 lpfc_nlp_put(ndlp);
15440 ctiocb->context1 = NULL;
15441 lpfc_sli_release_iocbq(phba, ctiocb);
15442 }
15443 }
15444
15445 /**
15446 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
15447 * @vport: Pointer to the vport on which this sequence was received
15448 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15449 *
15450 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
15451 * receive sequence is only partially assembed by the driver, it shall abort
15452 * the partially assembled frames for the sequence. Otherwise, if the
15453 * unsolicited receive sequence has been completely assembled and passed to
15454 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
15455 * unsolicited sequence has been aborted. After that, it will issue a basic
15456 * accept to accept the abort.
15457 **/
15458 static void
15459 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
15460 struct hbq_dmabuf *dmabuf)
15461 {
15462 struct lpfc_hba *phba = vport->phba;
15463 struct fc_frame_header fc_hdr;
15464 uint32_t fctl;
15465 bool aborted;
15466
15467 /* Make a copy of fc_hdr before the dmabuf being released */
15468 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
15469 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
15470
15471 if (fctl & FC_FC_EX_CTX) {
15472 /* ABTS by responder to exchange, no cleanup needed */
15473 aborted = true;
15474 } else {
15475 /* ABTS by initiator to exchange, need to do cleanup */
15476 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
15477 if (aborted == false)
15478 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
15479 }
15480 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15481
15482 /* Respond with BA_ACC or BA_RJT accordingly */
15483 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
15484 }
15485
15486 /**
15487 * lpfc_seq_complete - Indicates if a sequence is complete
15488 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15489 *
15490 * This function checks the sequence, starting with the frame described by
15491 * @dmabuf, to see if all the frames associated with this sequence are present.
15492 * the frames associated with this sequence are linked to the @dmabuf using the
15493 * dbuf list. This function looks for two major things. 1) That the first frame
15494 * has a sequence count of zero. 2) There is a frame with last frame of sequence
15495 * set. 3) That there are no holes in the sequence count. The function will
15496 * return 1 when the sequence is complete, otherwise it will return 0.
15497 **/
15498 static int
15499 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
15500 {
15501 struct fc_frame_header *hdr;
15502 struct lpfc_dmabuf *d_buf;
15503 struct hbq_dmabuf *seq_dmabuf;
15504 uint32_t fctl;
15505 int seq_count = 0;
15506
15507 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15508 /* make sure first fame of sequence has a sequence count of zero */
15509 if (hdr->fh_seq_cnt != seq_count)
15510 return 0;
15511 fctl = (hdr->fh_f_ctl[0] << 16 |
15512 hdr->fh_f_ctl[1] << 8 |
15513 hdr->fh_f_ctl[2]);
15514 /* If last frame of sequence we can return success. */
15515 if (fctl & FC_FC_END_SEQ)
15516 return 1;
15517 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
15518 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15519 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
15520 /* If there is a hole in the sequence count then fail. */
15521 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
15522 return 0;
15523 fctl = (hdr->fh_f_ctl[0] << 16 |
15524 hdr->fh_f_ctl[1] << 8 |
15525 hdr->fh_f_ctl[2]);
15526 /* If last frame of sequence we can return success. */
15527 if (fctl & FC_FC_END_SEQ)
15528 return 1;
15529 }
15530 return 0;
15531 }
15532
15533 /**
15534 * lpfc_prep_seq - Prep sequence for ULP processing
15535 * @vport: Pointer to the vport on which this sequence was received
15536 * @dmabuf: pointer to a dmabuf that describes the FC sequence
15537 *
15538 * This function takes a sequence, described by a list of frames, and creates
15539 * a list of iocbq structures to describe the sequence. This iocbq list will be
15540 * used to issue to the generic unsolicited sequence handler. This routine
15541 * returns a pointer to the first iocbq in the list. If the function is unable
15542 * to allocate an iocbq then it throw out the received frames that were not
15543 * able to be described and return a pointer to the first iocbq. If unable to
15544 * allocate any iocbqs (including the first) this function will return NULL.
15545 **/
15546 static struct lpfc_iocbq *
15547 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
15548 {
15549 struct hbq_dmabuf *hbq_buf;
15550 struct lpfc_dmabuf *d_buf, *n_buf;
15551 struct lpfc_iocbq *first_iocbq, *iocbq;
15552 struct fc_frame_header *fc_hdr;
15553 uint32_t sid;
15554 uint32_t len, tot_len;
15555 struct ulp_bde64 *pbde;
15556
15557 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
15558 /* remove from receive buffer list */
15559 list_del_init(&seq_dmabuf->hbuf.list);
15560 lpfc_update_rcv_time_stamp(vport);
15561 /* get the Remote Port's SID */
15562 sid = sli4_sid_from_fc_hdr(fc_hdr);
15563 tot_len = 0;
15564 /* Get an iocbq struct to fill in. */
15565 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
15566 if (first_iocbq) {
15567 /* Initialize the first IOCB. */
15568 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
15569 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
15570
15571 /* Check FC Header to see what TYPE of frame we are rcv'ing */
15572 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
15573 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
15574 first_iocbq->iocb.un.rcvels.parmRo =
15575 sli4_did_from_fc_hdr(fc_hdr);
15576 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
15577 } else
15578 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
15579 first_iocbq->iocb.ulpContext = NO_XRI;
15580 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
15581 be16_to_cpu(fc_hdr->fh_ox_id);
15582 /* iocbq is prepped for internal consumption. Physical vpi. */
15583 first_iocbq->iocb.unsli3.rcvsli3.vpi =
15584 vport->phba->vpi_ids[vport->vpi];
15585 /* put the first buffer into the first IOCBq */
15586 tot_len = bf_get(lpfc_rcqe_length,
15587 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
15588
15589 first_iocbq->context2 = &seq_dmabuf->dbuf;
15590 first_iocbq->context3 = NULL;
15591 first_iocbq->iocb.ulpBdeCount = 1;
15592 if (tot_len > LPFC_DATA_BUF_SIZE)
15593 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
15594 LPFC_DATA_BUF_SIZE;
15595 else
15596 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
15597
15598 first_iocbq->iocb.un.rcvels.remoteID = sid;
15599
15600 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
15601 }
15602 iocbq = first_iocbq;
15603 /*
15604 * Each IOCBq can have two Buffers assigned, so go through the list
15605 * of buffers for this sequence and save two buffers in each IOCBq
15606 */
15607 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
15608 if (!iocbq) {
15609 lpfc_in_buf_free(vport->phba, d_buf);
15610 continue;
15611 }
15612 if (!iocbq->context3) {
15613 iocbq->context3 = d_buf;
15614 iocbq->iocb.ulpBdeCount++;
15615 /* We need to get the size out of the right CQE */
15616 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15617 len = bf_get(lpfc_rcqe_length,
15618 &hbq_buf->cq_event.cqe.rcqe_cmpl);
15619 pbde = (struct ulp_bde64 *)
15620 &iocbq->iocb.unsli3.sli3Words[4];
15621 if (len > LPFC_DATA_BUF_SIZE)
15622 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
15623 else
15624 pbde->tus.f.bdeSize = len;
15625
15626 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
15627 tot_len += len;
15628 } else {
15629 iocbq = lpfc_sli_get_iocbq(vport->phba);
15630 if (!iocbq) {
15631 if (first_iocbq) {
15632 first_iocbq->iocb.ulpStatus =
15633 IOSTAT_FCP_RSP_ERROR;
15634 first_iocbq->iocb.un.ulpWord[4] =
15635 IOERR_NO_RESOURCES;
15636 }
15637 lpfc_in_buf_free(vport->phba, d_buf);
15638 continue;
15639 }
15640 /* We need to get the size out of the right CQE */
15641 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
15642 len = bf_get(lpfc_rcqe_length,
15643 &hbq_buf->cq_event.cqe.rcqe_cmpl);
15644 iocbq->context2 = d_buf;
15645 iocbq->context3 = NULL;
15646 iocbq->iocb.ulpBdeCount = 1;
15647 if (len > LPFC_DATA_BUF_SIZE)
15648 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
15649 LPFC_DATA_BUF_SIZE;
15650 else
15651 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
15652
15653 tot_len += len;
15654 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
15655
15656 iocbq->iocb.un.rcvels.remoteID = sid;
15657 list_add_tail(&iocbq->list, &first_iocbq->list);
15658 }
15659 }
15660 return first_iocbq;
15661 }
15662
15663 static void
15664 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
15665 struct hbq_dmabuf *seq_dmabuf)
15666 {
15667 struct fc_frame_header *fc_hdr;
15668 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
15669 struct lpfc_hba *phba = vport->phba;
15670
15671 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
15672 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
15673 if (!iocbq) {
15674 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15675 "2707 Ring %d handler: Failed to allocate "
15676 "iocb Rctl x%x Type x%x received\n",
15677 LPFC_ELS_RING,
15678 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
15679 return;
15680 }
15681 if (!lpfc_complete_unsol_iocb(phba,
15682 &phba->sli.ring[LPFC_ELS_RING],
15683 iocbq, fc_hdr->fh_r_ctl,
15684 fc_hdr->fh_type))
15685 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15686 "2540 Ring %d handler: unexpected Rctl "
15687 "x%x Type x%x received\n",
15688 LPFC_ELS_RING,
15689 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
15690
15691 /* Free iocb created in lpfc_prep_seq */
15692 list_for_each_entry_safe(curr_iocb, next_iocb,
15693 &iocbq->list, list) {
15694 list_del_init(&curr_iocb->list);
15695 lpfc_sli_release_iocbq(phba, curr_iocb);
15696 }
15697 lpfc_sli_release_iocbq(phba, iocbq);
15698 }
15699
15700 /**
15701 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
15702 * @phba: Pointer to HBA context object.
15703 *
15704 * This function is called with no lock held. This function processes all
15705 * the received buffers and gives it to upper layers when a received buffer
15706 * indicates that it is the final frame in the sequence. The interrupt
15707 * service routine processes received buffers at interrupt contexts and adds
15708 * received dma buffers to the rb_pend_list queue and signals the worker thread.
15709 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
15710 * appropriate receive function when the final frame in a sequence is received.
15711 **/
15712 void
15713 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
15714 struct hbq_dmabuf *dmabuf)
15715 {
15716 struct hbq_dmabuf *seq_dmabuf;
15717 struct fc_frame_header *fc_hdr;
15718 struct lpfc_vport *vport;
15719 uint32_t fcfi;
15720 uint32_t did;
15721
15722 /* Process each received buffer */
15723 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
15724 /* check to see if this a valid type of frame */
15725 if (lpfc_fc_frame_check(phba, fc_hdr)) {
15726 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15727 return;
15728 }
15729 if ((bf_get(lpfc_cqe_code,
15730 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
15731 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
15732 &dmabuf->cq_event.cqe.rcqe_cmpl);
15733 else
15734 fcfi = bf_get(lpfc_rcqe_fcf_id,
15735 &dmabuf->cq_event.cqe.rcqe_cmpl);
15736
15737 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi);
15738 if (!vport) {
15739 /* throw out the frame */
15740 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15741 return;
15742 }
15743
15744 /* d_id this frame is directed to */
15745 did = sli4_did_from_fc_hdr(fc_hdr);
15746
15747 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
15748 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
15749 (did != Fabric_DID)) {
15750 /*
15751 * Throw out the frame if we are not pt2pt.
15752 * The pt2pt protocol allows for discovery frames
15753 * to be received without a registered VPI.
15754 */
15755 if (!(vport->fc_flag & FC_PT2PT) ||
15756 (phba->link_state == LPFC_HBA_READY)) {
15757 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15758 return;
15759 }
15760 }
15761
15762 /* Handle the basic abort sequence (BA_ABTS) event */
15763 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
15764 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
15765 return;
15766 }
15767
15768 /* Link this frame */
15769 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
15770 if (!seq_dmabuf) {
15771 /* unable to add frame to vport - throw it out */
15772 lpfc_in_buf_free(phba, &dmabuf->dbuf);
15773 return;
15774 }
15775 /* If not last frame in sequence continue processing frames. */
15776 if (!lpfc_seq_complete(seq_dmabuf))
15777 return;
15778
15779 /* Send the complete sequence to the upper layer protocol */
15780 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
15781 }
15782
15783 /**
15784 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
15785 * @phba: pointer to lpfc hba data structure.
15786 *
15787 * This routine is invoked to post rpi header templates to the
15788 * HBA consistent with the SLI-4 interface spec. This routine
15789 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15790 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15791 *
15792 * This routine does not require any locks. It's usage is expected
15793 * to be driver load or reset recovery when the driver is
15794 * sequential.
15795 *
15796 * Return codes
15797 * 0 - successful
15798 * -EIO - The mailbox failed to complete successfully.
15799 * When this error occurs, the driver is not guaranteed
15800 * to have any rpi regions posted to the device and
15801 * must either attempt to repost the regions or take a
15802 * fatal error.
15803 **/
15804 int
15805 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
15806 {
15807 struct lpfc_rpi_hdr *rpi_page;
15808 uint32_t rc = 0;
15809 uint16_t lrpi = 0;
15810
15811 /* SLI4 ports that support extents do not require RPI headers. */
15812 if (!phba->sli4_hba.rpi_hdrs_in_use)
15813 goto exit;
15814 if (phba->sli4_hba.extents_in_use)
15815 return -EIO;
15816
15817 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
15818 /*
15819 * Assign the rpi headers a physical rpi only if the driver
15820 * has not initialized those resources. A port reset only
15821 * needs the headers posted.
15822 */
15823 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
15824 LPFC_RPI_RSRC_RDY)
15825 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
15826
15827 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
15828 if (rc != MBX_SUCCESS) {
15829 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15830 "2008 Error %d posting all rpi "
15831 "headers\n", rc);
15832 rc = -EIO;
15833 break;
15834 }
15835 }
15836
15837 exit:
15838 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
15839 LPFC_RPI_RSRC_RDY);
15840 return rc;
15841 }
15842
15843 /**
15844 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
15845 * @phba: pointer to lpfc hba data structure.
15846 * @rpi_page: pointer to the rpi memory region.
15847 *
15848 * This routine is invoked to post a single rpi header to the
15849 * HBA consistent with the SLI-4 interface spec. This memory region
15850 * maps up to 64 rpi context regions.
15851 *
15852 * Return codes
15853 * 0 - successful
15854 * -ENOMEM - No available memory
15855 * -EIO - The mailbox failed to complete successfully.
15856 **/
15857 int
15858 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
15859 {
15860 LPFC_MBOXQ_t *mboxq;
15861 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
15862 uint32_t rc = 0;
15863 uint32_t shdr_status, shdr_add_status;
15864 union lpfc_sli4_cfg_shdr *shdr;
15865
15866 /* SLI4 ports that support extents do not require RPI headers. */
15867 if (!phba->sli4_hba.rpi_hdrs_in_use)
15868 return rc;
15869 if (phba->sli4_hba.extents_in_use)
15870 return -EIO;
15871
15872 /* The port is notified of the header region via a mailbox command. */
15873 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15874 if (!mboxq) {
15875 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15876 "2001 Unable to allocate memory for issuing "
15877 "SLI_CONFIG_SPECIAL mailbox command\n");
15878 return -ENOMEM;
15879 }
15880
15881 /* Post all rpi memory regions to the port. */
15882 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
15883 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
15884 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
15885 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
15886 sizeof(struct lpfc_sli4_cfg_mhdr),
15887 LPFC_SLI4_MBX_EMBED);
15888
15889
15890 /* Post the physical rpi to the port for this rpi header. */
15891 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
15892 rpi_page->start_rpi);
15893 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
15894 hdr_tmpl, rpi_page->page_count);
15895
15896 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
15897 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
15898 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
15899 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
15900 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15901 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15902 if (rc != MBX_TIMEOUT)
15903 mempool_free(mboxq, phba->mbox_mem_pool);
15904 if (shdr_status || shdr_add_status || rc) {
15905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15906 "2514 POST_RPI_HDR mailbox failed with "
15907 "status x%x add_status x%x, mbx status x%x\n",
15908 shdr_status, shdr_add_status, rc);
15909 rc = -ENXIO;
15910 }
15911 return rc;
15912 }
15913
15914 /**
15915 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
15916 * @phba: pointer to lpfc hba data structure.
15917 *
15918 * This routine is invoked to post rpi header templates to the
15919 * HBA consistent with the SLI-4 interface spec. This routine
15920 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
15921 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
15922 *
15923 * Returns
15924 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
15925 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
15926 **/
15927 int
15928 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
15929 {
15930 unsigned long rpi;
15931 uint16_t max_rpi, rpi_limit;
15932 uint16_t rpi_remaining, lrpi = 0;
15933 struct lpfc_rpi_hdr *rpi_hdr;
15934 unsigned long iflag;
15935
15936 /*
15937 * Fetch the next logical rpi. Because this index is logical,
15938 * the driver starts at 0 each time.
15939 */
15940 spin_lock_irqsave(&phba->hbalock, iflag);
15941 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
15942 rpi_limit = phba->sli4_hba.next_rpi;
15943
15944 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
15945 if (rpi >= rpi_limit)
15946 rpi = LPFC_RPI_ALLOC_ERROR;
15947 else {
15948 set_bit(rpi, phba->sli4_hba.rpi_bmask);
15949 phba->sli4_hba.max_cfg_param.rpi_used++;
15950 phba->sli4_hba.rpi_count++;
15951 }
15952 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15953 "0001 rpi:%x max:%x lim:%x\n",
15954 (int) rpi, max_rpi, rpi_limit);
15955
15956 /*
15957 * Don't try to allocate more rpi header regions if the device limit
15958 * has been exhausted.
15959 */
15960 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
15961 (phba->sli4_hba.rpi_count >= max_rpi)) {
15962 spin_unlock_irqrestore(&phba->hbalock, iflag);
15963 return rpi;
15964 }
15965
15966 /*
15967 * RPI header postings are not required for SLI4 ports capable of
15968 * extents.
15969 */
15970 if (!phba->sli4_hba.rpi_hdrs_in_use) {
15971 spin_unlock_irqrestore(&phba->hbalock, iflag);
15972 return rpi;
15973 }
15974
15975 /*
15976 * If the driver is running low on rpi resources, allocate another
15977 * page now. Note that the next_rpi value is used because
15978 * it represents how many are actually in use whereas max_rpi notes
15979 * how many are supported max by the device.
15980 */
15981 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
15982 spin_unlock_irqrestore(&phba->hbalock, iflag);
15983 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
15984 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
15985 if (!rpi_hdr) {
15986 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15987 "2002 Error Could not grow rpi "
15988 "count\n");
15989 } else {
15990 lrpi = rpi_hdr->start_rpi;
15991 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
15992 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
15993 }
15994 }
15995
15996 return rpi;
15997 }
15998
15999 /**
16000 * lpfc_sli4_free_rpi - Release an rpi for reuse.
16001 * @phba: pointer to lpfc hba data structure.
16002 *
16003 * This routine is invoked to release an rpi to the pool of
16004 * available rpis maintained by the driver.
16005 **/
16006 static void
16007 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
16008 {
16009 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
16010 phba->sli4_hba.rpi_count--;
16011 phba->sli4_hba.max_cfg_param.rpi_used--;
16012 }
16013 }
16014
16015 /**
16016 * lpfc_sli4_free_rpi - Release an rpi for reuse.
16017 * @phba: pointer to lpfc hba data structure.
16018 *
16019 * This routine is invoked to release an rpi to the pool of
16020 * available rpis maintained by the driver.
16021 **/
16022 void
16023 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
16024 {
16025 spin_lock_irq(&phba->hbalock);
16026 __lpfc_sli4_free_rpi(phba, rpi);
16027 spin_unlock_irq(&phba->hbalock);
16028 }
16029
16030 /**
16031 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
16032 * @phba: pointer to lpfc hba data structure.
16033 *
16034 * This routine is invoked to remove the memory region that
16035 * provided rpi via a bitmask.
16036 **/
16037 void
16038 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
16039 {
16040 kfree(phba->sli4_hba.rpi_bmask);
16041 kfree(phba->sli4_hba.rpi_ids);
16042 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
16043 }
16044
16045 /**
16046 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
16047 * @phba: pointer to lpfc hba data structure.
16048 *
16049 * This routine is invoked to remove the memory region that
16050 * provided rpi via a bitmask.
16051 **/
16052 int
16053 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
16054 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
16055 {
16056 LPFC_MBOXQ_t *mboxq;
16057 struct lpfc_hba *phba = ndlp->phba;
16058 int rc;
16059
16060 /* The port is notified of the header region via a mailbox command. */
16061 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16062 if (!mboxq)
16063 return -ENOMEM;
16064
16065 /* Post all rpi memory regions to the port. */
16066 lpfc_resume_rpi(mboxq, ndlp);
16067 if (cmpl) {
16068 mboxq->mbox_cmpl = cmpl;
16069 mboxq->context1 = arg;
16070 mboxq->context2 = ndlp;
16071 } else
16072 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16073 mboxq->vport = ndlp->vport;
16074 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16075 if (rc == MBX_NOT_FINISHED) {
16076 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16077 "2010 Resume RPI Mailbox failed "
16078 "status %d, mbxStatus x%x\n", rc,
16079 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
16080 mempool_free(mboxq, phba->mbox_mem_pool);
16081 return -EIO;
16082 }
16083 return 0;
16084 }
16085
16086 /**
16087 * lpfc_sli4_init_vpi - Initialize a vpi with the port
16088 * @vport: Pointer to the vport for which the vpi is being initialized
16089 *
16090 * This routine is invoked to activate a vpi with the port.
16091 *
16092 * Returns:
16093 * 0 success
16094 * -Evalue otherwise
16095 **/
16096 int
16097 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
16098 {
16099 LPFC_MBOXQ_t *mboxq;
16100 int rc = 0;
16101 int retval = MBX_SUCCESS;
16102 uint32_t mbox_tmo;
16103 struct lpfc_hba *phba = vport->phba;
16104 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16105 if (!mboxq)
16106 return -ENOMEM;
16107 lpfc_init_vpi(phba, mboxq, vport->vpi);
16108 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
16109 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
16110 if (rc != MBX_SUCCESS) {
16111 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
16112 "2022 INIT VPI Mailbox failed "
16113 "status %d, mbxStatus x%x\n", rc,
16114 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
16115 retval = -EIO;
16116 }
16117 if (rc != MBX_TIMEOUT)
16118 mempool_free(mboxq, vport->phba->mbox_mem_pool);
16119
16120 return retval;
16121 }
16122
16123 /**
16124 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
16125 * @phba: pointer to lpfc hba data structure.
16126 * @mboxq: Pointer to mailbox object.
16127 *
16128 * This routine is invoked to manually add a single FCF record. The caller
16129 * must pass a completely initialized FCF_Record. This routine takes
16130 * care of the nonembedded mailbox operations.
16131 **/
16132 static void
16133 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
16134 {
16135 void *virt_addr;
16136 union lpfc_sli4_cfg_shdr *shdr;
16137 uint32_t shdr_status, shdr_add_status;
16138
16139 virt_addr = mboxq->sge_array->addr[0];
16140 /* The IOCTL status is embedded in the mailbox subheader. */
16141 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
16142 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16143 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16144
16145 if ((shdr_status || shdr_add_status) &&
16146 (shdr_status != STATUS_FCF_IN_USE))
16147 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16148 "2558 ADD_FCF_RECORD mailbox failed with "
16149 "status x%x add_status x%x\n",
16150 shdr_status, shdr_add_status);
16151
16152 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16153 }
16154
16155 /**
16156 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
16157 * @phba: pointer to lpfc hba data structure.
16158 * @fcf_record: pointer to the initialized fcf record to add.
16159 *
16160 * This routine is invoked to manually add a single FCF record. The caller
16161 * must pass a completely initialized FCF_Record. This routine takes
16162 * care of the nonembedded mailbox operations.
16163 **/
16164 int
16165 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
16166 {
16167 int rc = 0;
16168 LPFC_MBOXQ_t *mboxq;
16169 uint8_t *bytep;
16170 void *virt_addr;
16171 struct lpfc_mbx_sge sge;
16172 uint32_t alloc_len, req_len;
16173 uint32_t fcfindex;
16174
16175 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16176 if (!mboxq) {
16177 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16178 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
16179 return -ENOMEM;
16180 }
16181
16182 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
16183 sizeof(uint32_t);
16184
16185 /* Allocate DMA memory and set up the non-embedded mailbox command */
16186 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
16187 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
16188 req_len, LPFC_SLI4_MBX_NEMBED);
16189 if (alloc_len < req_len) {
16190 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16191 "2523 Allocated DMA memory size (x%x) is "
16192 "less than the requested DMA memory "
16193 "size (x%x)\n", alloc_len, req_len);
16194 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16195 return -ENOMEM;
16196 }
16197
16198 /*
16199 * Get the first SGE entry from the non-embedded DMA memory. This
16200 * routine only uses a single SGE.
16201 */
16202 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
16203 virt_addr = mboxq->sge_array->addr[0];
16204 /*
16205 * Configure the FCF record for FCFI 0. This is the driver's
16206 * hardcoded default and gets used in nonFIP mode.
16207 */
16208 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
16209 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
16210 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
16211
16212 /*
16213 * Copy the fcf_index and the FCF Record Data. The data starts after
16214 * the FCoE header plus word10. The data copy needs to be endian
16215 * correct.
16216 */
16217 bytep += sizeof(uint32_t);
16218 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
16219 mboxq->vport = phba->pport;
16220 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
16221 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16222 if (rc == MBX_NOT_FINISHED) {
16223 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16224 "2515 ADD_FCF_RECORD mailbox failed with "
16225 "status 0x%x\n", rc);
16226 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16227 rc = -EIO;
16228 } else
16229 rc = 0;
16230
16231 return rc;
16232 }
16233
16234 /**
16235 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
16236 * @phba: pointer to lpfc hba data structure.
16237 * @fcf_record: pointer to the fcf record to write the default data.
16238 * @fcf_index: FCF table entry index.
16239 *
16240 * This routine is invoked to build the driver's default FCF record. The
16241 * values used are hardcoded. This routine handles memory initialization.
16242 *
16243 **/
16244 void
16245 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
16246 struct fcf_record *fcf_record,
16247 uint16_t fcf_index)
16248 {
16249 memset(fcf_record, 0, sizeof(struct fcf_record));
16250 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
16251 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
16252 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
16253 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
16254 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
16255 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
16256 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
16257 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
16258 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
16259 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
16260 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
16261 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
16262 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
16263 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
16264 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
16265 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
16266 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
16267 /* Set the VLAN bit map */
16268 if (phba->valid_vlan) {
16269 fcf_record->vlan_bitmap[phba->vlan_id / 8]
16270 = 1 << (phba->vlan_id % 8);
16271 }
16272 }
16273
16274 /**
16275 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
16276 * @phba: pointer to lpfc hba data structure.
16277 * @fcf_index: FCF table entry offset.
16278 *
16279 * This routine is invoked to scan the entire FCF table by reading FCF
16280 * record and processing it one at a time starting from the @fcf_index
16281 * for initial FCF discovery or fast FCF failover rediscovery.
16282 *
16283 * Return 0 if the mailbox command is submitted successfully, none 0
16284 * otherwise.
16285 **/
16286 int
16287 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
16288 {
16289 int rc = 0, error;
16290 LPFC_MBOXQ_t *mboxq;
16291
16292 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
16293 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
16294 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16295 if (!mboxq) {
16296 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16297 "2000 Failed to allocate mbox for "
16298 "READ_FCF cmd\n");
16299 error = -ENOMEM;
16300 goto fail_fcf_scan;
16301 }
16302 /* Construct the read FCF record mailbox command */
16303 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
16304 if (rc) {
16305 error = -EINVAL;
16306 goto fail_fcf_scan;
16307 }
16308 /* Issue the mailbox command asynchronously */
16309 mboxq->vport = phba->pport;
16310 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
16311
16312 spin_lock_irq(&phba->hbalock);
16313 phba->hba_flag |= FCF_TS_INPROG;
16314 spin_unlock_irq(&phba->hbalock);
16315
16316 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16317 if (rc == MBX_NOT_FINISHED)
16318 error = -EIO;
16319 else {
16320 /* Reset eligible FCF count for new scan */
16321 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
16322 phba->fcf.eligible_fcf_cnt = 0;
16323 error = 0;
16324 }
16325 fail_fcf_scan:
16326 if (error) {
16327 if (mboxq)
16328 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16329 /* FCF scan failed, clear FCF_TS_INPROG flag */
16330 spin_lock_irq(&phba->hbalock);
16331 phba->hba_flag &= ~FCF_TS_INPROG;
16332 spin_unlock_irq(&phba->hbalock);
16333 }
16334 return error;
16335 }
16336
16337 /**
16338 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
16339 * @phba: pointer to lpfc hba data structure.
16340 * @fcf_index: FCF table entry offset.
16341 *
16342 * This routine is invoked to read an FCF record indicated by @fcf_index
16343 * and to use it for FLOGI roundrobin FCF failover.
16344 *
16345 * Return 0 if the mailbox command is submitted successfully, none 0
16346 * otherwise.
16347 **/
16348 int
16349 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
16350 {
16351 int rc = 0, error;
16352 LPFC_MBOXQ_t *mboxq;
16353
16354 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16355 if (!mboxq) {
16356 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
16357 "2763 Failed to allocate mbox for "
16358 "READ_FCF cmd\n");
16359 error = -ENOMEM;
16360 goto fail_fcf_read;
16361 }
16362 /* Construct the read FCF record mailbox command */
16363 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
16364 if (rc) {
16365 error = -EINVAL;
16366 goto fail_fcf_read;
16367 }
16368 /* Issue the mailbox command asynchronously */
16369 mboxq->vport = phba->pport;
16370 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
16371 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16372 if (rc == MBX_NOT_FINISHED)
16373 error = -EIO;
16374 else
16375 error = 0;
16376
16377 fail_fcf_read:
16378 if (error && mboxq)
16379 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16380 return error;
16381 }
16382
16383 /**
16384 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
16385 * @phba: pointer to lpfc hba data structure.
16386 * @fcf_index: FCF table entry offset.
16387 *
16388 * This routine is invoked to read an FCF record indicated by @fcf_index to
16389 * determine whether it's eligible for FLOGI roundrobin failover list.
16390 *
16391 * Return 0 if the mailbox command is submitted successfully, none 0
16392 * otherwise.
16393 **/
16394 int
16395 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
16396 {
16397 int rc = 0, error;
16398 LPFC_MBOXQ_t *mboxq;
16399
16400 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16401 if (!mboxq) {
16402 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
16403 "2758 Failed to allocate mbox for "
16404 "READ_FCF cmd\n");
16405 error = -ENOMEM;
16406 goto fail_fcf_read;
16407 }
16408 /* Construct the read FCF record mailbox command */
16409 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
16410 if (rc) {
16411 error = -EINVAL;
16412 goto fail_fcf_read;
16413 }
16414 /* Issue the mailbox command asynchronously */
16415 mboxq->vport = phba->pport;
16416 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
16417 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
16418 if (rc == MBX_NOT_FINISHED)
16419 error = -EIO;
16420 else
16421 error = 0;
16422
16423 fail_fcf_read:
16424 if (error && mboxq)
16425 lpfc_sli4_mbox_cmd_free(phba, mboxq);
16426 return error;
16427 }
16428
16429 /**
16430 * lpfc_check_next_fcf_pri_level
16431 * phba pointer to the lpfc_hba struct for this port.
16432 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
16433 * routine when the rr_bmask is empty. The FCF indecies are put into the
16434 * rr_bmask based on their priority level. Starting from the highest priority
16435 * to the lowest. The most likely FCF candidate will be in the highest
16436 * priority group. When this routine is called it searches the fcf_pri list for
16437 * next lowest priority group and repopulates the rr_bmask with only those
16438 * fcf_indexes.
16439 * returns:
16440 * 1=success 0=failure
16441 **/
16442 static int
16443 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
16444 {
16445 uint16_t next_fcf_pri;
16446 uint16_t last_index;
16447 struct lpfc_fcf_pri *fcf_pri;
16448 int rc;
16449 int ret = 0;
16450
16451 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
16452 LPFC_SLI4_FCF_TBL_INDX_MAX);
16453 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16454 "3060 Last IDX %d\n", last_index);
16455
16456 /* Verify the priority list has 2 or more entries */
16457 spin_lock_irq(&phba->hbalock);
16458 if (list_empty(&phba->fcf.fcf_pri_list) ||
16459 list_is_singular(&phba->fcf.fcf_pri_list)) {
16460 spin_unlock_irq(&phba->hbalock);
16461 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16462 "3061 Last IDX %d\n", last_index);
16463 return 0; /* Empty rr list */
16464 }
16465 spin_unlock_irq(&phba->hbalock);
16466
16467 next_fcf_pri = 0;
16468 /*
16469 * Clear the rr_bmask and set all of the bits that are at this
16470 * priority.
16471 */
16472 memset(phba->fcf.fcf_rr_bmask, 0,
16473 sizeof(*phba->fcf.fcf_rr_bmask));
16474 spin_lock_irq(&phba->hbalock);
16475 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
16476 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
16477 continue;
16478 /*
16479 * the 1st priority that has not FLOGI failed
16480 * will be the highest.
16481 */
16482 if (!next_fcf_pri)
16483 next_fcf_pri = fcf_pri->fcf_rec.priority;
16484 spin_unlock_irq(&phba->hbalock);
16485 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
16486 rc = lpfc_sli4_fcf_rr_index_set(phba,
16487 fcf_pri->fcf_rec.fcf_index);
16488 if (rc)
16489 return 0;
16490 }
16491 spin_lock_irq(&phba->hbalock);
16492 }
16493 /*
16494 * if next_fcf_pri was not set above and the list is not empty then
16495 * we have failed flogis on all of them. So reset flogi failed
16496 * and start at the beginning.
16497 */
16498 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
16499 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
16500 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
16501 /*
16502 * the 1st priority that has not FLOGI failed
16503 * will be the highest.
16504 */
16505 if (!next_fcf_pri)
16506 next_fcf_pri = fcf_pri->fcf_rec.priority;
16507 spin_unlock_irq(&phba->hbalock);
16508 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
16509 rc = lpfc_sli4_fcf_rr_index_set(phba,
16510 fcf_pri->fcf_rec.fcf_index);
16511 if (rc)
16512 return 0;
16513 }
16514 spin_lock_irq(&phba->hbalock);
16515 }
16516 } else
16517 ret = 1;
16518 spin_unlock_irq(&phba->hbalock);
16519
16520 return ret;
16521 }
16522 /**
16523 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
16524 * @phba: pointer to lpfc hba data structure.
16525 *
16526 * This routine is to get the next eligible FCF record index in a round
16527 * robin fashion. If the next eligible FCF record index equals to the
16528 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
16529 * shall be returned, otherwise, the next eligible FCF record's index
16530 * shall be returned.
16531 **/
16532 uint16_t
16533 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
16534 {
16535 uint16_t next_fcf_index;
16536
16537 initial_priority:
16538 /* Search start from next bit of currently registered FCF index */
16539 next_fcf_index = phba->fcf.current_rec.fcf_indx;
16540
16541 next_priority:
16542 /* Determine the next fcf index to check */
16543 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
16544 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
16545 LPFC_SLI4_FCF_TBL_INDX_MAX,
16546 next_fcf_index);
16547
16548 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
16549 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
16550 /*
16551 * If we have wrapped then we need to clear the bits that
16552 * have been tested so that we can detect when we should
16553 * change the priority level.
16554 */
16555 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
16556 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
16557 }
16558
16559
16560 /* Check roundrobin failover list empty condition */
16561 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
16562 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
16563 /*
16564 * If next fcf index is not found check if there are lower
16565 * Priority level fcf's in the fcf_priority list.
16566 * Set up the rr_bmask with all of the avaiable fcf bits
16567 * at that level and continue the selection process.
16568 */
16569 if (lpfc_check_next_fcf_pri_level(phba))
16570 goto initial_priority;
16571 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
16572 "2844 No roundrobin failover FCF available\n");
16573 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
16574 return LPFC_FCOE_FCF_NEXT_NONE;
16575 else {
16576 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
16577 "3063 Only FCF available idx %d, flag %x\n",
16578 next_fcf_index,
16579 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
16580 return next_fcf_index;
16581 }
16582 }
16583
16584 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
16585 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
16586 LPFC_FCF_FLOGI_FAILED) {
16587 if (list_is_singular(&phba->fcf.fcf_pri_list))
16588 return LPFC_FCOE_FCF_NEXT_NONE;
16589
16590 goto next_priority;
16591 }
16592
16593 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16594 "2845 Get next roundrobin failover FCF (x%x)\n",
16595 next_fcf_index);
16596
16597 return next_fcf_index;
16598 }
16599
16600 /**
16601 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
16602 * @phba: pointer to lpfc hba data structure.
16603 *
16604 * This routine sets the FCF record index in to the eligible bmask for
16605 * roundrobin failover search. It checks to make sure that the index
16606 * does not go beyond the range of the driver allocated bmask dimension
16607 * before setting the bit.
16608 *
16609 * Returns 0 if the index bit successfully set, otherwise, it returns
16610 * -EINVAL.
16611 **/
16612 int
16613 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
16614 {
16615 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
16616 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16617 "2610 FCF (x%x) reached driver's book "
16618 "keeping dimension:x%x\n",
16619 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
16620 return -EINVAL;
16621 }
16622 /* Set the eligible FCF record index bmask */
16623 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
16624
16625 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16626 "2790 Set FCF (x%x) to roundrobin FCF failover "
16627 "bmask\n", fcf_index);
16628
16629 return 0;
16630 }
16631
16632 /**
16633 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
16634 * @phba: pointer to lpfc hba data structure.
16635 *
16636 * This routine clears the FCF record index from the eligible bmask for
16637 * roundrobin failover search. It checks to make sure that the index
16638 * does not go beyond the range of the driver allocated bmask dimension
16639 * before clearing the bit.
16640 **/
16641 void
16642 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
16643 {
16644 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
16645 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
16646 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16647 "2762 FCF (x%x) reached driver's book "
16648 "keeping dimension:x%x\n",
16649 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
16650 return;
16651 }
16652 /* Clear the eligible FCF record index bmask */
16653 spin_lock_irq(&phba->hbalock);
16654 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
16655 list) {
16656 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
16657 list_del_init(&fcf_pri->list);
16658 break;
16659 }
16660 }
16661 spin_unlock_irq(&phba->hbalock);
16662 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
16663
16664 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16665 "2791 Clear FCF (x%x) from roundrobin failover "
16666 "bmask\n", fcf_index);
16667 }
16668
16669 /**
16670 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
16671 * @phba: pointer to lpfc hba data structure.
16672 *
16673 * This routine is the completion routine for the rediscover FCF table mailbox
16674 * command. If the mailbox command returned failure, it will try to stop the
16675 * FCF rediscover wait timer.
16676 **/
16677 static void
16678 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
16679 {
16680 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
16681 uint32_t shdr_status, shdr_add_status;
16682
16683 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
16684
16685 shdr_status = bf_get(lpfc_mbox_hdr_status,
16686 &redisc_fcf->header.cfg_shdr.response);
16687 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
16688 &redisc_fcf->header.cfg_shdr.response);
16689 if (shdr_status || shdr_add_status) {
16690 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
16691 "2746 Requesting for FCF rediscovery failed "
16692 "status x%x add_status x%x\n",
16693 shdr_status, shdr_add_status);
16694 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
16695 spin_lock_irq(&phba->hbalock);
16696 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
16697 spin_unlock_irq(&phba->hbalock);
16698 /*
16699 * CVL event triggered FCF rediscover request failed,
16700 * last resort to re-try current registered FCF entry.
16701 */
16702 lpfc_retry_pport_discovery(phba);
16703 } else {
16704 spin_lock_irq(&phba->hbalock);
16705 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
16706 spin_unlock_irq(&phba->hbalock);
16707 /*
16708 * DEAD FCF event triggered FCF rediscover request
16709 * failed, last resort to fail over as a link down
16710 * to FCF registration.
16711 */
16712 lpfc_sli4_fcf_dead_failthrough(phba);
16713 }
16714 } else {
16715 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
16716 "2775 Start FCF rediscover quiescent timer\n");
16717 /*
16718 * Start FCF rediscovery wait timer for pending FCF
16719 * before rescan FCF record table.
16720 */
16721 lpfc_fcf_redisc_wait_start_timer(phba);
16722 }
16723
16724 mempool_free(mbox, phba->mbox_mem_pool);
16725 }
16726
16727 /**
16728 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
16729 * @phba: pointer to lpfc hba data structure.
16730 *
16731 * This routine is invoked to request for rediscovery of the entire FCF table
16732 * by the port.
16733 **/
16734 int
16735 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
16736 {
16737 LPFC_MBOXQ_t *mbox;
16738 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
16739 int rc, length;
16740
16741 /* Cancel retry delay timers to all vports before FCF rediscover */
16742 lpfc_cancel_all_vport_retry_delay_timer(phba);
16743
16744 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16745 if (!mbox) {
16746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16747 "2745 Failed to allocate mbox for "
16748 "requesting FCF rediscover.\n");
16749 return -ENOMEM;
16750 }
16751
16752 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
16753 sizeof(struct lpfc_sli4_cfg_mhdr));
16754 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16755 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
16756 length, LPFC_SLI4_MBX_EMBED);
16757
16758 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
16759 /* Set count to 0 for invalidating the entire FCF database */
16760 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
16761
16762 /* Issue the mailbox command asynchronously */
16763 mbox->vport = phba->pport;
16764 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
16765 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
16766
16767 if (rc == MBX_NOT_FINISHED) {
16768 mempool_free(mbox, phba->mbox_mem_pool);
16769 return -EIO;
16770 }
16771 return 0;
16772 }
16773
16774 /**
16775 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
16776 * @phba: pointer to lpfc hba data structure.
16777 *
16778 * This function is the failover routine as a last resort to the FCF DEAD
16779 * event when driver failed to perform fast FCF failover.
16780 **/
16781 void
16782 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
16783 {
16784 uint32_t link_state;
16785
16786 /*
16787 * Last resort as FCF DEAD event failover will treat this as
16788 * a link down, but save the link state because we don't want
16789 * it to be changed to Link Down unless it is already down.
16790 */
16791 link_state = phba->link_state;
16792 lpfc_linkdown(phba);
16793 phba->link_state = link_state;
16794
16795 /* Unregister FCF if no devices connected to it */
16796 lpfc_unregister_unused_fcf(phba);
16797 }
16798
16799 /**
16800 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
16801 * @phba: pointer to lpfc hba data structure.
16802 * @rgn23_data: pointer to configure region 23 data.
16803 *
16804 * This function gets SLI3 port configure region 23 data through memory dump
16805 * mailbox command. When it successfully retrieves data, the size of the data
16806 * will be returned, otherwise, 0 will be returned.
16807 **/
16808 static uint32_t
16809 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
16810 {
16811 LPFC_MBOXQ_t *pmb = NULL;
16812 MAILBOX_t *mb;
16813 uint32_t offset = 0;
16814 int rc;
16815
16816 if (!rgn23_data)
16817 return 0;
16818
16819 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16820 if (!pmb) {
16821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16822 "2600 failed to allocate mailbox memory\n");
16823 return 0;
16824 }
16825 mb = &pmb->u.mb;
16826
16827 do {
16828 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
16829 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
16830
16831 if (rc != MBX_SUCCESS) {
16832 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16833 "2601 failed to read config "
16834 "region 23, rc 0x%x Status 0x%x\n",
16835 rc, mb->mbxStatus);
16836 mb->un.varDmp.word_cnt = 0;
16837 }
16838 /*
16839 * dump mem may return a zero when finished or we got a
16840 * mailbox error, either way we are done.
16841 */
16842 if (mb->un.varDmp.word_cnt == 0)
16843 break;
16844 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
16845 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
16846
16847 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
16848 rgn23_data + offset,
16849 mb->un.varDmp.word_cnt);
16850 offset += mb->un.varDmp.word_cnt;
16851 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
16852
16853 mempool_free(pmb, phba->mbox_mem_pool);
16854 return offset;
16855 }
16856
16857 /**
16858 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
16859 * @phba: pointer to lpfc hba data structure.
16860 * @rgn23_data: pointer to configure region 23 data.
16861 *
16862 * This function gets SLI4 port configure region 23 data through memory dump
16863 * mailbox command. When it successfully retrieves data, the size of the data
16864 * will be returned, otherwise, 0 will be returned.
16865 **/
16866 static uint32_t
16867 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
16868 {
16869 LPFC_MBOXQ_t *mboxq = NULL;
16870 struct lpfc_dmabuf *mp = NULL;
16871 struct lpfc_mqe *mqe;
16872 uint32_t data_length = 0;
16873 int rc;
16874
16875 if (!rgn23_data)
16876 return 0;
16877
16878 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16879 if (!mboxq) {
16880 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16881 "3105 failed to allocate mailbox memory\n");
16882 return 0;
16883 }
16884
16885 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
16886 goto out;
16887 mqe = &mboxq->u.mqe;
16888 mp = (struct lpfc_dmabuf *) mboxq->context1;
16889 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
16890 if (rc)
16891 goto out;
16892 data_length = mqe->un.mb_words[5];
16893 if (data_length == 0)
16894 goto out;
16895 if (data_length > DMP_RGN23_SIZE) {
16896 data_length = 0;
16897 goto out;
16898 }
16899 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
16900 out:
16901 mempool_free(mboxq, phba->mbox_mem_pool);
16902 if (mp) {
16903 lpfc_mbuf_free(phba, mp->virt, mp->phys);
16904 kfree(mp);
16905 }
16906 return data_length;
16907 }
16908
16909 /**
16910 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
16911 * @phba: pointer to lpfc hba data structure.
16912 *
16913 * This function read region 23 and parse TLV for port status to
16914 * decide if the user disaled the port. If the TLV indicates the
16915 * port is disabled, the hba_flag is set accordingly.
16916 **/
16917 void
16918 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
16919 {
16920 uint8_t *rgn23_data = NULL;
16921 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
16922 uint32_t offset = 0;
16923
16924 /* Get adapter Region 23 data */
16925 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
16926 if (!rgn23_data)
16927 goto out;
16928
16929 if (phba->sli_rev < LPFC_SLI_REV4)
16930 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
16931 else {
16932 if_type = bf_get(lpfc_sli_intf_if_type,
16933 &phba->sli4_hba.sli_intf);
16934 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
16935 goto out;
16936 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
16937 }
16938
16939 if (!data_size)
16940 goto out;
16941
16942 /* Check the region signature first */
16943 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
16944 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16945 "2619 Config region 23 has bad signature\n");
16946 goto out;
16947 }
16948 offset += 4;
16949
16950 /* Check the data structure version */
16951 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
16952 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16953 "2620 Config region 23 has bad version\n");
16954 goto out;
16955 }
16956 offset += 4;
16957
16958 /* Parse TLV entries in the region */
16959 while (offset < data_size) {
16960 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
16961 break;
16962 /*
16963 * If the TLV is not driver specific TLV or driver id is
16964 * not linux driver id, skip the record.
16965 */
16966 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
16967 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
16968 (rgn23_data[offset + 3] != 0)) {
16969 offset += rgn23_data[offset + 1] * 4 + 4;
16970 continue;
16971 }
16972
16973 /* Driver found a driver specific TLV in the config region */
16974 sub_tlv_len = rgn23_data[offset + 1] * 4;
16975 offset += 4;
16976 tlv_offset = 0;
16977
16978 /*
16979 * Search for configured port state sub-TLV.
16980 */
16981 while ((offset < data_size) &&
16982 (tlv_offset < sub_tlv_len)) {
16983 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
16984 offset += 4;
16985 tlv_offset += 4;
16986 break;
16987 }
16988 if (rgn23_data[offset] != PORT_STE_TYPE) {
16989 offset += rgn23_data[offset + 1] * 4 + 4;
16990 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
16991 continue;
16992 }
16993
16994 /* This HBA contains PORT_STE configured */
16995 if (!rgn23_data[offset + 2])
16996 phba->hba_flag |= LINK_DISABLED;
16997
16998 goto out;
16999 }
17000 }
17001
17002 out:
17003 kfree(rgn23_data);
17004 return;
17005 }
17006
17007 /**
17008 * lpfc_wr_object - write an object to the firmware
17009 * @phba: HBA structure that indicates port to create a queue on.
17010 * @dmabuf_list: list of dmabufs to write to the port.
17011 * @size: the total byte value of the objects to write to the port.
17012 * @offset: the current offset to be used to start the transfer.
17013 *
17014 * This routine will create a wr_object mailbox command to send to the port.
17015 * the mailbox command will be constructed using the dma buffers described in
17016 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
17017 * BDEs that the imbedded mailbox can support. The @offset variable will be
17018 * used to indicate the starting offset of the transfer and will also return
17019 * the offset after the write object mailbox has completed. @size is used to
17020 * determine the end of the object and whether the eof bit should be set.
17021 *
17022 * Return 0 is successful and offset will contain the the new offset to use
17023 * for the next write.
17024 * Return negative value for error cases.
17025 **/
17026 int
17027 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
17028 uint32_t size, uint32_t *offset)
17029 {
17030 struct lpfc_mbx_wr_object *wr_object;
17031 LPFC_MBOXQ_t *mbox;
17032 int rc = 0, i = 0;
17033 uint32_t shdr_status, shdr_add_status;
17034 uint32_t mbox_tmo;
17035 union lpfc_sli4_cfg_shdr *shdr;
17036 struct lpfc_dmabuf *dmabuf;
17037 uint32_t written = 0;
17038
17039 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17040 if (!mbox)
17041 return -ENOMEM;
17042
17043 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17044 LPFC_MBOX_OPCODE_WRITE_OBJECT,
17045 sizeof(struct lpfc_mbx_wr_object) -
17046 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17047
17048 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
17049 wr_object->u.request.write_offset = *offset;
17050 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
17051 wr_object->u.request.object_name[0] =
17052 cpu_to_le32(wr_object->u.request.object_name[0]);
17053 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
17054 list_for_each_entry(dmabuf, dmabuf_list, list) {
17055 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
17056 break;
17057 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
17058 wr_object->u.request.bde[i].addrHigh =
17059 putPaddrHigh(dmabuf->phys);
17060 if (written + SLI4_PAGE_SIZE >= size) {
17061 wr_object->u.request.bde[i].tus.f.bdeSize =
17062 (size - written);
17063 written += (size - written);
17064 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
17065 } else {
17066 wr_object->u.request.bde[i].tus.f.bdeSize =
17067 SLI4_PAGE_SIZE;
17068 written += SLI4_PAGE_SIZE;
17069 }
17070 i++;
17071 }
17072 wr_object->u.request.bde_count = i;
17073 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
17074 if (!phba->sli4_hba.intr_enable)
17075 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17076 else {
17077 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17078 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17079 }
17080 /* The IOCTL status is embedded in the mailbox subheader. */
17081 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
17082 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17083 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17084 if (rc != MBX_TIMEOUT)
17085 mempool_free(mbox, phba->mbox_mem_pool);
17086 if (shdr_status || shdr_add_status || rc) {
17087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17088 "3025 Write Object mailbox failed with "
17089 "status x%x add_status x%x, mbx status x%x\n",
17090 shdr_status, shdr_add_status, rc);
17091 rc = -ENXIO;
17092 } else
17093 *offset += wr_object->u.response.actual_write_length;
17094 return rc;
17095 }
17096
17097 /**
17098 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
17099 * @vport: pointer to vport data structure.
17100 *
17101 * This function iterate through the mailboxq and clean up all REG_LOGIN
17102 * and REG_VPI mailbox commands associated with the vport. This function
17103 * is called when driver want to restart discovery of the vport due to
17104 * a Clear Virtual Link event.
17105 **/
17106 void
17107 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
17108 {
17109 struct lpfc_hba *phba = vport->phba;
17110 LPFC_MBOXQ_t *mb, *nextmb;
17111 struct lpfc_dmabuf *mp;
17112 struct lpfc_nodelist *ndlp;
17113 struct lpfc_nodelist *act_mbx_ndlp = NULL;
17114 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
17115 LIST_HEAD(mbox_cmd_list);
17116 uint8_t restart_loop;
17117
17118 /* Clean up internally queued mailbox commands with the vport */
17119 spin_lock_irq(&phba->hbalock);
17120 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
17121 if (mb->vport != vport)
17122 continue;
17123
17124 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
17125 (mb->u.mb.mbxCommand != MBX_REG_VPI))
17126 continue;
17127
17128 list_del(&mb->list);
17129 list_add_tail(&mb->list, &mbox_cmd_list);
17130 }
17131 /* Clean up active mailbox command with the vport */
17132 mb = phba->sli.mbox_active;
17133 if (mb && (mb->vport == vport)) {
17134 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
17135 (mb->u.mb.mbxCommand == MBX_REG_VPI))
17136 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17137 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
17138 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
17139 /* Put reference count for delayed processing */
17140 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
17141 /* Unregister the RPI when mailbox complete */
17142 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
17143 }
17144 }
17145 /* Cleanup any mailbox completions which are not yet processed */
17146 do {
17147 restart_loop = 0;
17148 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
17149 /*
17150 * If this mailox is already processed or it is
17151 * for another vport ignore it.
17152 */
17153 if ((mb->vport != vport) ||
17154 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
17155 continue;
17156
17157 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
17158 (mb->u.mb.mbxCommand != MBX_REG_VPI))
17159 continue;
17160
17161 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17162 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
17163 ndlp = (struct lpfc_nodelist *)mb->context2;
17164 /* Unregister the RPI when mailbox complete */
17165 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
17166 restart_loop = 1;
17167 spin_unlock_irq(&phba->hbalock);
17168 spin_lock(shost->host_lock);
17169 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
17170 spin_unlock(shost->host_lock);
17171 spin_lock_irq(&phba->hbalock);
17172 break;
17173 }
17174 }
17175 } while (restart_loop);
17176
17177 spin_unlock_irq(&phba->hbalock);
17178
17179 /* Release the cleaned-up mailbox commands */
17180 while (!list_empty(&mbox_cmd_list)) {
17181 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
17182 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
17183 mp = (struct lpfc_dmabuf *) (mb->context1);
17184 if (mp) {
17185 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
17186 kfree(mp);
17187 }
17188 ndlp = (struct lpfc_nodelist *) mb->context2;
17189 mb->context2 = NULL;
17190 if (ndlp) {
17191 spin_lock(shost->host_lock);
17192 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
17193 spin_unlock(shost->host_lock);
17194 lpfc_nlp_put(ndlp);
17195 }
17196 }
17197 mempool_free(mb, phba->mbox_mem_pool);
17198 }
17199
17200 /* Release the ndlp with the cleaned-up active mailbox command */
17201 if (act_mbx_ndlp) {
17202 spin_lock(shost->host_lock);
17203 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
17204 spin_unlock(shost->host_lock);
17205 lpfc_nlp_put(act_mbx_ndlp);
17206 }
17207 }
17208
17209 /**
17210 * lpfc_drain_txq - Drain the txq
17211 * @phba: Pointer to HBA context object.
17212 *
17213 * This function attempt to submit IOCBs on the txq
17214 * to the adapter. For SLI4 adapters, the txq contains
17215 * ELS IOCBs that have been deferred because the there
17216 * are no SGLs. This congestion can occur with large
17217 * vport counts during node discovery.
17218 **/
17219
17220 uint32_t
17221 lpfc_drain_txq(struct lpfc_hba *phba)
17222 {
17223 LIST_HEAD(completions);
17224 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
17225 struct lpfc_iocbq *piocbq = NULL;
17226 unsigned long iflags = 0;
17227 char *fail_msg = NULL;
17228 struct lpfc_sglq *sglq;
17229 union lpfc_wqe wqe;
17230 uint32_t txq_cnt = 0;
17231
17232 spin_lock_irqsave(&pring->ring_lock, iflags);
17233 list_for_each_entry(piocbq, &pring->txq, list) {
17234 txq_cnt++;
17235 }
17236
17237 if (txq_cnt > pring->txq_max)
17238 pring->txq_max = txq_cnt;
17239
17240 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17241
17242 while (!list_empty(&pring->txq)) {
17243 spin_lock_irqsave(&pring->ring_lock, iflags);
17244
17245 piocbq = lpfc_sli_ringtx_get(phba, pring);
17246 if (!piocbq) {
17247 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17248 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17249 "2823 txq empty and txq_cnt is %d\n ",
17250 txq_cnt);
17251 break;
17252 }
17253 sglq = __lpfc_sli_get_sglq(phba, piocbq);
17254 if (!sglq) {
17255 __lpfc_sli_ringtx_put(phba, pring, piocbq);
17256 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17257 break;
17258 }
17259 txq_cnt--;
17260
17261 /* The xri and iocb resources secured,
17262 * attempt to issue request
17263 */
17264 piocbq->sli4_lxritag = sglq->sli4_lxritag;
17265 piocbq->sli4_xritag = sglq->sli4_xritag;
17266 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
17267 fail_msg = "to convert bpl to sgl";
17268 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
17269 fail_msg = "to convert iocb to wqe";
17270 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe))
17271 fail_msg = " - Wq is full";
17272 else
17273 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
17274
17275 if (fail_msg) {
17276 /* Failed means we can't issue and need to cancel */
17277 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17278 "2822 IOCB failed %s iotag 0x%x "
17279 "xri 0x%x\n",
17280 fail_msg,
17281 piocbq->iotag, piocbq->sli4_xritag);
17282 list_add_tail(&piocbq->list, &completions);
17283 }
17284 spin_unlock_irqrestore(&pring->ring_lock, iflags);
17285 }
17286
17287 /* Cancel all the IOCBs that cannot be issued */
17288 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
17289 IOERR_SLI_ABORTED);
17290
17291 return txq_cnt;
17292 }