]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/lpfc/lpfc_sli.c
tree-wide: fix comment/printk typos
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / lpfc / lpfc_sli.c
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2009 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21
22 #include <linux/blkdev.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/fc/fc_fs.h>
34 #include <linux/aer.h>
35
36 #include "lpfc_hw4.h"
37 #include "lpfc_hw.h"
38 #include "lpfc_sli.h"
39 #include "lpfc_sli4.h"
40 #include "lpfc_nl.h"
41 #include "lpfc_disc.h"
42 #include "lpfc_scsi.h"
43 #include "lpfc.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_logmsg.h"
46 #include "lpfc_compat.h"
47 #include "lpfc_debugfs.h"
48 #include "lpfc_vport.h"
49
50 /* There are only four IOCB completion types. */
51 typedef enum _lpfc_iocb_type {
52 LPFC_UNKNOWN_IOCB,
53 LPFC_UNSOL_IOCB,
54 LPFC_SOL_IOCB,
55 LPFC_ABORT_IOCB
56 } lpfc_iocb_type;
57
58
59 /* Provide function prototypes local to this module. */
60 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
61 uint32_t);
62 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
63 uint8_t *, uint32_t *);
64 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
65 struct lpfc_iocbq *);
66 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
67 struct hbq_dmabuf *);
68 static IOCB_t *
69 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
70 {
71 return &iocbq->iocb;
72 }
73
74 /**
75 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
76 * @q: The Work Queue to operate on.
77 * @wqe: The work Queue Entry to put on the Work queue.
78 *
79 * This routine will copy the contents of @wqe to the next available entry on
80 * the @q. This function will then ring the Work Queue Doorbell to signal the
81 * HBA to start processing the Work Queue Entry. This function returns 0 if
82 * successful. If no entries are available on @q then this function will return
83 * -ENOMEM.
84 * The caller is expected to hold the hbalock when calling this routine.
85 **/
86 static uint32_t
87 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
88 {
89 union lpfc_wqe *temp_wqe = q->qe[q->host_index].wqe;
90 struct lpfc_register doorbell;
91 uint32_t host_index;
92
93 /* If the host has not yet processed the next entry then we are done */
94 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
95 return -ENOMEM;
96 /* set consumption flag every once in a while */
97 if (!((q->host_index + 1) % LPFC_RELEASE_NOTIFICATION_INTERVAL))
98 bf_set(lpfc_wqe_gen_wqec, &wqe->generic, 1);
99
100 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
101
102 /* Update the host index before invoking device */
103 host_index = q->host_index;
104 q->host_index = ((q->host_index + 1) % q->entry_count);
105
106 /* Ring Doorbell */
107 doorbell.word0 = 0;
108 bf_set(lpfc_wq_doorbell_num_posted, &doorbell, 1);
109 bf_set(lpfc_wq_doorbell_index, &doorbell, host_index);
110 bf_set(lpfc_wq_doorbell_id, &doorbell, q->queue_id);
111 writel(doorbell.word0, q->phba->sli4_hba.WQDBregaddr);
112 readl(q->phba->sli4_hba.WQDBregaddr); /* Flush */
113
114 return 0;
115 }
116
117 /**
118 * lpfc_sli4_wq_release - Updates internal hba index for WQ
119 * @q: The Work Queue to operate on.
120 * @index: The index to advance the hba index to.
121 *
122 * This routine will update the HBA index of a queue to reflect consumption of
123 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
124 * an entry the host calls this function to update the queue's internal
125 * pointers. This routine returns the number of entries that were consumed by
126 * the HBA.
127 **/
128 static uint32_t
129 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
130 {
131 uint32_t released = 0;
132
133 if (q->hba_index == index)
134 return 0;
135 do {
136 q->hba_index = ((q->hba_index + 1) % q->entry_count);
137 released++;
138 } while (q->hba_index != index);
139 return released;
140 }
141
142 /**
143 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
144 * @q: The Mailbox Queue to operate on.
145 * @wqe: The Mailbox Queue Entry to put on the Work queue.
146 *
147 * This routine will copy the contents of @mqe to the next available entry on
148 * the @q. This function will then ring the Work Queue Doorbell to signal the
149 * HBA to start processing the Work Queue Entry. This function returns 0 if
150 * successful. If no entries are available on @q then this function will return
151 * -ENOMEM.
152 * The caller is expected to hold the hbalock when calling this routine.
153 **/
154 static uint32_t
155 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
156 {
157 struct lpfc_mqe *temp_mqe = q->qe[q->host_index].mqe;
158 struct lpfc_register doorbell;
159 uint32_t host_index;
160
161 /* If the host has not yet processed the next entry then we are done */
162 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
163 return -ENOMEM;
164 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
165 /* Save off the mailbox pointer for completion */
166 q->phba->mbox = (MAILBOX_t *)temp_mqe;
167
168 /* Update the host index before invoking device */
169 host_index = q->host_index;
170 q->host_index = ((q->host_index + 1) % q->entry_count);
171
172 /* Ring Doorbell */
173 doorbell.word0 = 0;
174 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
175 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
176 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
177 readl(q->phba->sli4_hba.MQDBregaddr); /* Flush */
178 return 0;
179 }
180
181 /**
182 * lpfc_sli4_mq_release - Updates internal hba index for MQ
183 * @q: The Mailbox Queue to operate on.
184 *
185 * This routine will update the HBA index of a queue to reflect consumption of
186 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
187 * an entry the host calls this function to update the queue's internal
188 * pointers. This routine returns the number of entries that were consumed by
189 * the HBA.
190 **/
191 static uint32_t
192 lpfc_sli4_mq_release(struct lpfc_queue *q)
193 {
194 /* Clear the mailbox pointer for completion */
195 q->phba->mbox = NULL;
196 q->hba_index = ((q->hba_index + 1) % q->entry_count);
197 return 1;
198 }
199
200 /**
201 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
202 * @q: The Event Queue to get the first valid EQE from
203 *
204 * This routine will get the first valid Event Queue Entry from @q, update
205 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
206 * the Queue (no more work to do), or the Queue is full of EQEs that have been
207 * processed, but not popped back to the HBA then this routine will return NULL.
208 **/
209 static struct lpfc_eqe *
210 lpfc_sli4_eq_get(struct lpfc_queue *q)
211 {
212 struct lpfc_eqe *eqe = q->qe[q->hba_index].eqe;
213
214 /* If the next EQE is not valid then we are done */
215 if (!bf_get_le32(lpfc_eqe_valid, eqe))
216 return NULL;
217 /* If the host has not yet processed the next entry then we are done */
218 if (((q->hba_index + 1) % q->entry_count) == q->host_index)
219 return NULL;
220
221 q->hba_index = ((q->hba_index + 1) % q->entry_count);
222 return eqe;
223 }
224
225 /**
226 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
227 * @q: The Event Queue that the host has completed processing for.
228 * @arm: Indicates whether the host wants to arms this CQ.
229 *
230 * This routine will mark all Event Queue Entries on @q, from the last
231 * known completed entry to the last entry that was processed, as completed
232 * by clearing the valid bit for each completion queue entry. Then it will
233 * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
234 * The internal host index in the @q will be updated by this routine to indicate
235 * that the host has finished processing the entries. The @arm parameter
236 * indicates that the queue should be rearmed when ringing the doorbell.
237 *
238 * This function will return the number of EQEs that were popped.
239 **/
240 uint32_t
241 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
242 {
243 uint32_t released = 0;
244 struct lpfc_eqe *temp_eqe;
245 struct lpfc_register doorbell;
246
247 /* while there are valid entries */
248 while (q->hba_index != q->host_index) {
249 temp_eqe = q->qe[q->host_index].eqe;
250 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
251 released++;
252 q->host_index = ((q->host_index + 1) % q->entry_count);
253 }
254 if (unlikely(released == 0 && !arm))
255 return 0;
256
257 /* ring doorbell for number popped */
258 doorbell.word0 = 0;
259 if (arm) {
260 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
261 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
262 }
263 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
264 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
265 bf_set(lpfc_eqcq_doorbell_eqid, &doorbell, q->queue_id);
266 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
267 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
268 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
269 readl(q->phba->sli4_hba.EQCQDBregaddr);
270 return released;
271 }
272
273 /**
274 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
275 * @q: The Completion Queue to get the first valid CQE from
276 *
277 * This routine will get the first valid Completion Queue Entry from @q, update
278 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
279 * the Queue (no more work to do), or the Queue is full of CQEs that have been
280 * processed, but not popped back to the HBA then this routine will return NULL.
281 **/
282 static struct lpfc_cqe *
283 lpfc_sli4_cq_get(struct lpfc_queue *q)
284 {
285 struct lpfc_cqe *cqe;
286
287 /* If the next CQE is not valid then we are done */
288 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
289 return NULL;
290 /* If the host has not yet processed the next entry then we are done */
291 if (((q->hba_index + 1) % q->entry_count) == q->host_index)
292 return NULL;
293
294 cqe = q->qe[q->hba_index].cqe;
295 q->hba_index = ((q->hba_index + 1) % q->entry_count);
296 return cqe;
297 }
298
299 /**
300 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
301 * @q: The Completion Queue that the host has completed processing for.
302 * @arm: Indicates whether the host wants to arms this CQ.
303 *
304 * This routine will mark all Completion queue entries on @q, from the last
305 * known completed entry to the last entry that was processed, as completed
306 * by clearing the valid bit for each completion queue entry. Then it will
307 * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
308 * The internal host index in the @q will be updated by this routine to indicate
309 * that the host has finished processing the entries. The @arm parameter
310 * indicates that the queue should be rearmed when ringing the doorbell.
311 *
312 * This function will return the number of CQEs that were released.
313 **/
314 uint32_t
315 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
316 {
317 uint32_t released = 0;
318 struct lpfc_cqe *temp_qe;
319 struct lpfc_register doorbell;
320
321 /* while there are valid entries */
322 while (q->hba_index != q->host_index) {
323 temp_qe = q->qe[q->host_index].cqe;
324 bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
325 released++;
326 q->host_index = ((q->host_index + 1) % q->entry_count);
327 }
328 if (unlikely(released == 0 && !arm))
329 return 0;
330
331 /* ring doorbell for number popped */
332 doorbell.word0 = 0;
333 if (arm)
334 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
335 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
336 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
337 bf_set(lpfc_eqcq_doorbell_cqid, &doorbell, q->queue_id);
338 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
339 return released;
340 }
341
342 /**
343 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
344 * @q: The Header Receive Queue to operate on.
345 * @wqe: The Receive Queue Entry to put on the Receive queue.
346 *
347 * This routine will copy the contents of @wqe to the next available entry on
348 * the @q. This function will then ring the Receive Queue Doorbell to signal the
349 * HBA to start processing the Receive Queue Entry. This function returns the
350 * index that the rqe was copied to if successful. If no entries are available
351 * on @q then this function will return -ENOMEM.
352 * The caller is expected to hold the hbalock when calling this routine.
353 **/
354 static int
355 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
356 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
357 {
358 struct lpfc_rqe *temp_hrqe = hq->qe[hq->host_index].rqe;
359 struct lpfc_rqe *temp_drqe = dq->qe[dq->host_index].rqe;
360 struct lpfc_register doorbell;
361 int put_index = hq->host_index;
362
363 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
364 return -EINVAL;
365 if (hq->host_index != dq->host_index)
366 return -EINVAL;
367 /* If the host has not yet processed the next entry then we are done */
368 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index)
369 return -EBUSY;
370 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
371 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
372
373 /* Update the host index to point to the next slot */
374 hq->host_index = ((hq->host_index + 1) % hq->entry_count);
375 dq->host_index = ((dq->host_index + 1) % dq->entry_count);
376
377 /* Ring The Header Receive Queue Doorbell */
378 if (!(hq->host_index % LPFC_RQ_POST_BATCH)) {
379 doorbell.word0 = 0;
380 bf_set(lpfc_rq_doorbell_num_posted, &doorbell,
381 LPFC_RQ_POST_BATCH);
382 bf_set(lpfc_rq_doorbell_id, &doorbell, hq->queue_id);
383 writel(doorbell.word0, hq->phba->sli4_hba.RQDBregaddr);
384 }
385 return put_index;
386 }
387
388 /**
389 * lpfc_sli4_rq_release - Updates internal hba index for RQ
390 * @q: The Header Receive Queue to operate on.
391 *
392 * This routine will update the HBA index of a queue to reflect consumption of
393 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
394 * consumed an entry the host calls this function to update the queue's
395 * internal pointers. This routine returns the number of entries that were
396 * consumed by the HBA.
397 **/
398 static uint32_t
399 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
400 {
401 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
402 return 0;
403 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
404 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
405 return 1;
406 }
407
408 /**
409 * lpfc_cmd_iocb - Get next command iocb entry in the ring
410 * @phba: Pointer to HBA context object.
411 * @pring: Pointer to driver SLI ring object.
412 *
413 * This function returns pointer to next command iocb entry
414 * in the command ring. The caller must hold hbalock to prevent
415 * other threads consume the next command iocb.
416 * SLI-2/SLI-3 provide different sized iocbs.
417 **/
418 static inline IOCB_t *
419 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
420 {
421 return (IOCB_t *) (((char *) pring->cmdringaddr) +
422 pring->cmdidx * phba->iocb_cmd_size);
423 }
424
425 /**
426 * lpfc_resp_iocb - Get next response iocb entry in the ring
427 * @phba: Pointer to HBA context object.
428 * @pring: Pointer to driver SLI ring object.
429 *
430 * This function returns pointer to next response iocb entry
431 * in the response ring. The caller must hold hbalock to make sure
432 * that no other thread consume the next response iocb.
433 * SLI-2/SLI-3 provide different sized iocbs.
434 **/
435 static inline IOCB_t *
436 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
437 {
438 return (IOCB_t *) (((char *) pring->rspringaddr) +
439 pring->rspidx * phba->iocb_rsp_size);
440 }
441
442 /**
443 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
444 * @phba: Pointer to HBA context object.
445 *
446 * This function is called with hbalock held. This function
447 * allocates a new driver iocb object from the iocb pool. If the
448 * allocation is successful, it returns pointer to the newly
449 * allocated iocb object else it returns NULL.
450 **/
451 static struct lpfc_iocbq *
452 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
453 {
454 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
455 struct lpfc_iocbq * iocbq = NULL;
456
457 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
458
459 if (iocbq)
460 phba->iocb_cnt++;
461 if (phba->iocb_cnt > phba->iocb_max)
462 phba->iocb_max = phba->iocb_cnt;
463 return iocbq;
464 }
465
466 /**
467 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
468 * @phba: Pointer to HBA context object.
469 * @xritag: XRI value.
470 *
471 * This function clears the sglq pointer from the array of acive
472 * sglq's. The xritag that is passed in is used to index into the
473 * array. Before the xritag can be used it needs to be adjusted
474 * by subtracting the xribase.
475 *
476 * Returns sglq ponter = success, NULL = Failure.
477 **/
478 static struct lpfc_sglq *
479 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
480 {
481 uint16_t adj_xri;
482 struct lpfc_sglq *sglq;
483 adj_xri = xritag - phba->sli4_hba.max_cfg_param.xri_base;
484 if (adj_xri > phba->sli4_hba.max_cfg_param.max_xri)
485 return NULL;
486 sglq = phba->sli4_hba.lpfc_sglq_active_list[adj_xri];
487 phba->sli4_hba.lpfc_sglq_active_list[adj_xri] = NULL;
488 return sglq;
489 }
490
491 /**
492 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
493 * @phba: Pointer to HBA context object.
494 * @xritag: XRI value.
495 *
496 * This function returns the sglq pointer from the array of acive
497 * sglq's. The xritag that is passed in is used to index into the
498 * array. Before the xritag can be used it needs to be adjusted
499 * by subtracting the xribase.
500 *
501 * Returns sglq ponter = success, NULL = Failure.
502 **/
503 struct lpfc_sglq *
504 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
505 {
506 uint16_t adj_xri;
507 struct lpfc_sglq *sglq;
508 adj_xri = xritag - phba->sli4_hba.max_cfg_param.xri_base;
509 if (adj_xri > phba->sli4_hba.max_cfg_param.max_xri)
510 return NULL;
511 sglq = phba->sli4_hba.lpfc_sglq_active_list[adj_xri];
512 return sglq;
513 }
514
515 /**
516 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool
517 * @phba: Pointer to HBA context object.
518 *
519 * This function is called with hbalock held. This function
520 * Gets a new driver sglq object from the sglq list. If the
521 * list is not empty then it is successful, it returns pointer to the newly
522 * allocated sglq object else it returns NULL.
523 **/
524 static struct lpfc_sglq *
525 __lpfc_sli_get_sglq(struct lpfc_hba *phba)
526 {
527 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list;
528 struct lpfc_sglq *sglq = NULL;
529 uint16_t adj_xri;
530 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list);
531 if (!sglq)
532 return NULL;
533 adj_xri = sglq->sli4_xritag - phba->sli4_hba.max_cfg_param.xri_base;
534 phba->sli4_hba.lpfc_sglq_active_list[adj_xri] = sglq;
535 sglq->state = SGL_ALLOCATED;
536 return sglq;
537 }
538
539 /**
540 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
541 * @phba: Pointer to HBA context object.
542 *
543 * This function is called with no lock held. This function
544 * allocates a new driver iocb object from the iocb pool. If the
545 * allocation is successful, it returns pointer to the newly
546 * allocated iocb object else it returns NULL.
547 **/
548 struct lpfc_iocbq *
549 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
550 {
551 struct lpfc_iocbq * iocbq = NULL;
552 unsigned long iflags;
553
554 spin_lock_irqsave(&phba->hbalock, iflags);
555 iocbq = __lpfc_sli_get_iocbq(phba);
556 spin_unlock_irqrestore(&phba->hbalock, iflags);
557 return iocbq;
558 }
559
560 /**
561 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
562 * @phba: Pointer to HBA context object.
563 * @iocbq: Pointer to driver iocb object.
564 *
565 * This function is called with hbalock held to release driver
566 * iocb object to the iocb pool. The iotag in the iocb object
567 * does not change for each use of the iocb object. This function
568 * clears all other fields of the iocb object when it is freed.
569 * The sqlq structure that holds the xritag and phys and virtual
570 * mappings for the scatter gather list is retrieved from the
571 * active array of sglq. The get of the sglq pointer also clears
572 * the entry in the array. If the status of the IO indiactes that
573 * this IO was aborted then the sglq entry it put on the
574 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
575 * IO has good status or fails for any other reason then the sglq
576 * entry is added to the free list (lpfc_sgl_list).
577 **/
578 static void
579 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
580 {
581 struct lpfc_sglq *sglq;
582 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
583 unsigned long iflag = 0;
584 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
585
586 if (iocbq->sli4_xritag == NO_XRI)
587 sglq = NULL;
588 else
589 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_xritag);
590 if (sglq) {
591 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
592 (sglq->state != SGL_XRI_ABORTED)) {
593 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock,
594 iflag);
595 list_add(&sglq->list,
596 &phba->sli4_hba.lpfc_abts_els_sgl_list);
597 spin_unlock_irqrestore(
598 &phba->sli4_hba.abts_sgl_list_lock, iflag);
599 } else {
600 sglq->state = SGL_FREED;
601 list_add(&sglq->list, &phba->sli4_hba.lpfc_sgl_list);
602
603 /* Check if TXQ queue needs to be serviced */
604 if (pring->txq_cnt)
605 lpfc_worker_wake_up(phba);
606 }
607 }
608
609
610 /*
611 * Clean all volatile data fields, preserve iotag and node struct.
612 */
613 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
614 iocbq->sli4_xritag = NO_XRI;
615 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
616 }
617
618
619 /**
620 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
621 * @phba: Pointer to HBA context object.
622 * @iocbq: Pointer to driver iocb object.
623 *
624 * This function is called with hbalock held to release driver
625 * iocb object to the iocb pool. The iotag in the iocb object
626 * does not change for each use of the iocb object. This function
627 * clears all other fields of the iocb object when it is freed.
628 **/
629 static void
630 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
631 {
632 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
633
634 /*
635 * Clean all volatile data fields, preserve iotag and node struct.
636 */
637 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
638 iocbq->sli4_xritag = NO_XRI;
639 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
640 }
641
642 /**
643 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
644 * @phba: Pointer to HBA context object.
645 * @iocbq: Pointer to driver iocb object.
646 *
647 * This function is called with hbalock held to release driver
648 * iocb object to the iocb pool. The iotag in the iocb object
649 * does not change for each use of the iocb object. This function
650 * clears all other fields of the iocb object when it is freed.
651 **/
652 static void
653 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
654 {
655 phba->__lpfc_sli_release_iocbq(phba, iocbq);
656 phba->iocb_cnt--;
657 }
658
659 /**
660 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
661 * @phba: Pointer to HBA context object.
662 * @iocbq: Pointer to driver iocb object.
663 *
664 * This function is called with no lock held to release the iocb to
665 * iocb pool.
666 **/
667 void
668 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
669 {
670 unsigned long iflags;
671
672 /*
673 * Clean all volatile data fields, preserve iotag and node struct.
674 */
675 spin_lock_irqsave(&phba->hbalock, iflags);
676 __lpfc_sli_release_iocbq(phba, iocbq);
677 spin_unlock_irqrestore(&phba->hbalock, iflags);
678 }
679
680 /**
681 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
682 * @phba: Pointer to HBA context object.
683 * @iocblist: List of IOCBs.
684 * @ulpstatus: ULP status in IOCB command field.
685 * @ulpWord4: ULP word-4 in IOCB command field.
686 *
687 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
688 * on the list by invoking the complete callback function associated with the
689 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
690 * fields.
691 **/
692 void
693 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
694 uint32_t ulpstatus, uint32_t ulpWord4)
695 {
696 struct lpfc_iocbq *piocb;
697
698 while (!list_empty(iocblist)) {
699 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
700
701 if (!piocb->iocb_cmpl)
702 lpfc_sli_release_iocbq(phba, piocb);
703 else {
704 piocb->iocb.ulpStatus = ulpstatus;
705 piocb->iocb.un.ulpWord[4] = ulpWord4;
706 (piocb->iocb_cmpl) (phba, piocb, piocb);
707 }
708 }
709 return;
710 }
711
712 /**
713 * lpfc_sli_iocb_cmd_type - Get the iocb type
714 * @iocb_cmnd: iocb command code.
715 *
716 * This function is called by ring event handler function to get the iocb type.
717 * This function translates the iocb command to an iocb command type used to
718 * decide the final disposition of each completed IOCB.
719 * The function returns
720 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
721 * LPFC_SOL_IOCB if it is a solicited iocb completion
722 * LPFC_ABORT_IOCB if it is an abort iocb
723 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
724 *
725 * The caller is not required to hold any lock.
726 **/
727 static lpfc_iocb_type
728 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
729 {
730 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
731
732 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
733 return 0;
734
735 switch (iocb_cmnd) {
736 case CMD_XMIT_SEQUENCE_CR:
737 case CMD_XMIT_SEQUENCE_CX:
738 case CMD_XMIT_BCAST_CN:
739 case CMD_XMIT_BCAST_CX:
740 case CMD_ELS_REQUEST_CR:
741 case CMD_ELS_REQUEST_CX:
742 case CMD_CREATE_XRI_CR:
743 case CMD_CREATE_XRI_CX:
744 case CMD_GET_RPI_CN:
745 case CMD_XMIT_ELS_RSP_CX:
746 case CMD_GET_RPI_CR:
747 case CMD_FCP_IWRITE_CR:
748 case CMD_FCP_IWRITE_CX:
749 case CMD_FCP_IREAD_CR:
750 case CMD_FCP_IREAD_CX:
751 case CMD_FCP_ICMND_CR:
752 case CMD_FCP_ICMND_CX:
753 case CMD_FCP_TSEND_CX:
754 case CMD_FCP_TRSP_CX:
755 case CMD_FCP_TRECEIVE_CX:
756 case CMD_FCP_AUTO_TRSP_CX:
757 case CMD_ADAPTER_MSG:
758 case CMD_ADAPTER_DUMP:
759 case CMD_XMIT_SEQUENCE64_CR:
760 case CMD_XMIT_SEQUENCE64_CX:
761 case CMD_XMIT_BCAST64_CN:
762 case CMD_XMIT_BCAST64_CX:
763 case CMD_ELS_REQUEST64_CR:
764 case CMD_ELS_REQUEST64_CX:
765 case CMD_FCP_IWRITE64_CR:
766 case CMD_FCP_IWRITE64_CX:
767 case CMD_FCP_IREAD64_CR:
768 case CMD_FCP_IREAD64_CX:
769 case CMD_FCP_ICMND64_CR:
770 case CMD_FCP_ICMND64_CX:
771 case CMD_FCP_TSEND64_CX:
772 case CMD_FCP_TRSP64_CX:
773 case CMD_FCP_TRECEIVE64_CX:
774 case CMD_GEN_REQUEST64_CR:
775 case CMD_GEN_REQUEST64_CX:
776 case CMD_XMIT_ELS_RSP64_CX:
777 case DSSCMD_IWRITE64_CR:
778 case DSSCMD_IWRITE64_CX:
779 case DSSCMD_IREAD64_CR:
780 case DSSCMD_IREAD64_CX:
781 type = LPFC_SOL_IOCB;
782 break;
783 case CMD_ABORT_XRI_CN:
784 case CMD_ABORT_XRI_CX:
785 case CMD_CLOSE_XRI_CN:
786 case CMD_CLOSE_XRI_CX:
787 case CMD_XRI_ABORTED_CX:
788 case CMD_ABORT_MXRI64_CN:
789 case CMD_XMIT_BLS_RSP64_CX:
790 type = LPFC_ABORT_IOCB;
791 break;
792 case CMD_RCV_SEQUENCE_CX:
793 case CMD_RCV_ELS_REQ_CX:
794 case CMD_RCV_SEQUENCE64_CX:
795 case CMD_RCV_ELS_REQ64_CX:
796 case CMD_ASYNC_STATUS:
797 case CMD_IOCB_RCV_SEQ64_CX:
798 case CMD_IOCB_RCV_ELS64_CX:
799 case CMD_IOCB_RCV_CONT64_CX:
800 case CMD_IOCB_RET_XRI64_CX:
801 type = LPFC_UNSOL_IOCB;
802 break;
803 case CMD_IOCB_XMIT_MSEQ64_CR:
804 case CMD_IOCB_XMIT_MSEQ64_CX:
805 case CMD_IOCB_RCV_SEQ_LIST64_CX:
806 case CMD_IOCB_RCV_ELS_LIST64_CX:
807 case CMD_IOCB_CLOSE_EXTENDED_CN:
808 case CMD_IOCB_ABORT_EXTENDED_CN:
809 case CMD_IOCB_RET_HBQE64_CN:
810 case CMD_IOCB_FCP_IBIDIR64_CR:
811 case CMD_IOCB_FCP_IBIDIR64_CX:
812 case CMD_IOCB_FCP_ITASKMGT64_CX:
813 case CMD_IOCB_LOGENTRY_CN:
814 case CMD_IOCB_LOGENTRY_ASYNC_CN:
815 printk("%s - Unhandled SLI-3 Command x%x\n",
816 __func__, iocb_cmnd);
817 type = LPFC_UNKNOWN_IOCB;
818 break;
819 default:
820 type = LPFC_UNKNOWN_IOCB;
821 break;
822 }
823
824 return type;
825 }
826
827 /**
828 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
829 * @phba: Pointer to HBA context object.
830 *
831 * This function is called from SLI initialization code
832 * to configure every ring of the HBA's SLI interface. The
833 * caller is not required to hold any lock. This function issues
834 * a config_ring mailbox command for each ring.
835 * This function returns zero if successful else returns a negative
836 * error code.
837 **/
838 static int
839 lpfc_sli_ring_map(struct lpfc_hba *phba)
840 {
841 struct lpfc_sli *psli = &phba->sli;
842 LPFC_MBOXQ_t *pmb;
843 MAILBOX_t *pmbox;
844 int i, rc, ret = 0;
845
846 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
847 if (!pmb)
848 return -ENOMEM;
849 pmbox = &pmb->u.mb;
850 phba->link_state = LPFC_INIT_MBX_CMDS;
851 for (i = 0; i < psli->num_rings; i++) {
852 lpfc_config_ring(phba, i, pmb);
853 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
854 if (rc != MBX_SUCCESS) {
855 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
856 "0446 Adapter failed to init (%d), "
857 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
858 "ring %d\n",
859 rc, pmbox->mbxCommand,
860 pmbox->mbxStatus, i);
861 phba->link_state = LPFC_HBA_ERROR;
862 ret = -ENXIO;
863 break;
864 }
865 }
866 mempool_free(pmb, phba->mbox_mem_pool);
867 return ret;
868 }
869
870 /**
871 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
872 * @phba: Pointer to HBA context object.
873 * @pring: Pointer to driver SLI ring object.
874 * @piocb: Pointer to the driver iocb object.
875 *
876 * This function is called with hbalock held. The function adds the
877 * new iocb to txcmplq of the given ring. This function always returns
878 * 0. If this function is called for ELS ring, this function checks if
879 * there is a vport associated with the ELS command. This function also
880 * starts els_tmofunc timer if this is an ELS command.
881 **/
882 static int
883 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
884 struct lpfc_iocbq *piocb)
885 {
886 list_add_tail(&piocb->list, &pring->txcmplq);
887 piocb->iocb_flag |= LPFC_IO_ON_Q;
888 pring->txcmplq_cnt++;
889 if (pring->txcmplq_cnt > pring->txcmplq_max)
890 pring->txcmplq_max = pring->txcmplq_cnt;
891
892 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
893 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
894 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
895 if (!piocb->vport)
896 BUG();
897 else
898 mod_timer(&piocb->vport->els_tmofunc,
899 jiffies + HZ * (phba->fc_ratov << 1));
900 }
901
902
903 return 0;
904 }
905
906 /**
907 * lpfc_sli_ringtx_get - Get first element of the txq
908 * @phba: Pointer to HBA context object.
909 * @pring: Pointer to driver SLI ring object.
910 *
911 * This function is called with hbalock held to get next
912 * iocb in txq of the given ring. If there is any iocb in
913 * the txq, the function returns first iocb in the list after
914 * removing the iocb from the list, else it returns NULL.
915 **/
916 struct lpfc_iocbq *
917 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
918 {
919 struct lpfc_iocbq *cmd_iocb;
920
921 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
922 if (cmd_iocb != NULL)
923 pring->txq_cnt--;
924 return cmd_iocb;
925 }
926
927 /**
928 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
929 * @phba: Pointer to HBA context object.
930 * @pring: Pointer to driver SLI ring object.
931 *
932 * This function is called with hbalock held and the caller must post the
933 * iocb without releasing the lock. If the caller releases the lock,
934 * iocb slot returned by the function is not guaranteed to be available.
935 * The function returns pointer to the next available iocb slot if there
936 * is available slot in the ring, else it returns NULL.
937 * If the get index of the ring is ahead of the put index, the function
938 * will post an error attention event to the worker thread to take the
939 * HBA to offline state.
940 **/
941 static IOCB_t *
942 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
943 {
944 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
945 uint32_t max_cmd_idx = pring->numCiocb;
946 if ((pring->next_cmdidx == pring->cmdidx) &&
947 (++pring->next_cmdidx >= max_cmd_idx))
948 pring->next_cmdidx = 0;
949
950 if (unlikely(pring->local_getidx == pring->next_cmdidx)) {
951
952 pring->local_getidx = le32_to_cpu(pgp->cmdGetInx);
953
954 if (unlikely(pring->local_getidx >= max_cmd_idx)) {
955 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
956 "0315 Ring %d issue: portCmdGet %d "
957 "is bigger than cmd ring %d\n",
958 pring->ringno,
959 pring->local_getidx, max_cmd_idx);
960
961 phba->link_state = LPFC_HBA_ERROR;
962 /*
963 * All error attention handlers are posted to
964 * worker thread
965 */
966 phba->work_ha |= HA_ERATT;
967 phba->work_hs = HS_FFER3;
968
969 lpfc_worker_wake_up(phba);
970
971 return NULL;
972 }
973
974 if (pring->local_getidx == pring->next_cmdidx)
975 return NULL;
976 }
977
978 return lpfc_cmd_iocb(phba, pring);
979 }
980
981 /**
982 * lpfc_sli_next_iotag - Get an iotag for the iocb
983 * @phba: Pointer to HBA context object.
984 * @iocbq: Pointer to driver iocb object.
985 *
986 * This function gets an iotag for the iocb. If there is no unused iotag and
987 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
988 * array and assigns a new iotag.
989 * The function returns the allocated iotag if successful, else returns zero.
990 * Zero is not a valid iotag.
991 * The caller is not required to hold any lock.
992 **/
993 uint16_t
994 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
995 {
996 struct lpfc_iocbq **new_arr;
997 struct lpfc_iocbq **old_arr;
998 size_t new_len;
999 struct lpfc_sli *psli = &phba->sli;
1000 uint16_t iotag;
1001
1002 spin_lock_irq(&phba->hbalock);
1003 iotag = psli->last_iotag;
1004 if(++iotag < psli->iocbq_lookup_len) {
1005 psli->last_iotag = iotag;
1006 psli->iocbq_lookup[iotag] = iocbq;
1007 spin_unlock_irq(&phba->hbalock);
1008 iocbq->iotag = iotag;
1009 return iotag;
1010 } else if (psli->iocbq_lookup_len < (0xffff
1011 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1012 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1013 spin_unlock_irq(&phba->hbalock);
1014 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1015 GFP_KERNEL);
1016 if (new_arr) {
1017 spin_lock_irq(&phba->hbalock);
1018 old_arr = psli->iocbq_lookup;
1019 if (new_len <= psli->iocbq_lookup_len) {
1020 /* highly unprobable case */
1021 kfree(new_arr);
1022 iotag = psli->last_iotag;
1023 if(++iotag < psli->iocbq_lookup_len) {
1024 psli->last_iotag = iotag;
1025 psli->iocbq_lookup[iotag] = iocbq;
1026 spin_unlock_irq(&phba->hbalock);
1027 iocbq->iotag = iotag;
1028 return iotag;
1029 }
1030 spin_unlock_irq(&phba->hbalock);
1031 return 0;
1032 }
1033 if (psli->iocbq_lookup)
1034 memcpy(new_arr, old_arr,
1035 ((psli->last_iotag + 1) *
1036 sizeof (struct lpfc_iocbq *)));
1037 psli->iocbq_lookup = new_arr;
1038 psli->iocbq_lookup_len = new_len;
1039 psli->last_iotag = iotag;
1040 psli->iocbq_lookup[iotag] = iocbq;
1041 spin_unlock_irq(&phba->hbalock);
1042 iocbq->iotag = iotag;
1043 kfree(old_arr);
1044 return iotag;
1045 }
1046 } else
1047 spin_unlock_irq(&phba->hbalock);
1048
1049 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1050 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1051 psli->last_iotag);
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1058 * @phba: Pointer to HBA context object.
1059 * @pring: Pointer to driver SLI ring object.
1060 * @iocb: Pointer to iocb slot in the ring.
1061 * @nextiocb: Pointer to driver iocb object which need to be
1062 * posted to firmware.
1063 *
1064 * This function is called with hbalock held to post a new iocb to
1065 * the firmware. This function copies the new iocb to ring iocb slot and
1066 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1067 * a completion call back for this iocb else the function will free the
1068 * iocb object.
1069 **/
1070 static void
1071 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1072 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1073 {
1074 /*
1075 * Set up an iotag
1076 */
1077 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1078
1079
1080 if (pring->ringno == LPFC_ELS_RING) {
1081 lpfc_debugfs_slow_ring_trc(phba,
1082 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1083 *(((uint32_t *) &nextiocb->iocb) + 4),
1084 *(((uint32_t *) &nextiocb->iocb) + 6),
1085 *(((uint32_t *) &nextiocb->iocb) + 7));
1086 }
1087
1088 /*
1089 * Issue iocb command to adapter
1090 */
1091 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1092 wmb();
1093 pring->stats.iocb_cmd++;
1094
1095 /*
1096 * If there is no completion routine to call, we can release the
1097 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1098 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1099 */
1100 if (nextiocb->iocb_cmpl)
1101 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1102 else
1103 __lpfc_sli_release_iocbq(phba, nextiocb);
1104
1105 /*
1106 * Let the HBA know what IOCB slot will be the next one the
1107 * driver will put a command into.
1108 */
1109 pring->cmdidx = pring->next_cmdidx;
1110 writel(pring->cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1111 }
1112
1113 /**
1114 * lpfc_sli_update_full_ring - Update the chip attention register
1115 * @phba: Pointer to HBA context object.
1116 * @pring: Pointer to driver SLI ring object.
1117 *
1118 * The caller is not required to hold any lock for calling this function.
1119 * This function updates the chip attention bits for the ring to inform firmware
1120 * that there are pending work to be done for this ring and requests an
1121 * interrupt when there is space available in the ring. This function is
1122 * called when the driver is unable to post more iocbs to the ring due
1123 * to unavailability of space in the ring.
1124 **/
1125 static void
1126 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1127 {
1128 int ringno = pring->ringno;
1129
1130 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1131
1132 wmb();
1133
1134 /*
1135 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1136 * The HBA will tell us when an IOCB entry is available.
1137 */
1138 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1139 readl(phba->CAregaddr); /* flush */
1140
1141 pring->stats.iocb_cmd_full++;
1142 }
1143
1144 /**
1145 * lpfc_sli_update_ring - Update chip attention register
1146 * @phba: Pointer to HBA context object.
1147 * @pring: Pointer to driver SLI ring object.
1148 *
1149 * This function updates the chip attention register bit for the
1150 * given ring to inform HBA that there is more work to be done
1151 * in this ring. The caller is not required to hold any lock.
1152 **/
1153 static void
1154 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1155 {
1156 int ringno = pring->ringno;
1157
1158 /*
1159 * Tell the HBA that there is work to do in this ring.
1160 */
1161 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1162 wmb();
1163 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1164 readl(phba->CAregaddr); /* flush */
1165 }
1166 }
1167
1168 /**
1169 * lpfc_sli_resume_iocb - Process iocbs in the txq
1170 * @phba: Pointer to HBA context object.
1171 * @pring: Pointer to driver SLI ring object.
1172 *
1173 * This function is called with hbalock held to post pending iocbs
1174 * in the txq to the firmware. This function is called when driver
1175 * detects space available in the ring.
1176 **/
1177 static void
1178 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1179 {
1180 IOCB_t *iocb;
1181 struct lpfc_iocbq *nextiocb;
1182
1183 /*
1184 * Check to see if:
1185 * (a) there is anything on the txq to send
1186 * (b) link is up
1187 * (c) link attention events can be processed (fcp ring only)
1188 * (d) IOCB processing is not blocked by the outstanding mbox command.
1189 */
1190 if (pring->txq_cnt &&
1191 lpfc_is_link_up(phba) &&
1192 (pring->ringno != phba->sli.fcp_ring ||
1193 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1194
1195 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1196 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1197 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1198
1199 if (iocb)
1200 lpfc_sli_update_ring(phba, pring);
1201 else
1202 lpfc_sli_update_full_ring(phba, pring);
1203 }
1204
1205 return;
1206 }
1207
1208 /**
1209 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1210 * @phba: Pointer to HBA context object.
1211 * @hbqno: HBQ number.
1212 *
1213 * This function is called with hbalock held to get the next
1214 * available slot for the given HBQ. If there is free slot
1215 * available for the HBQ it will return pointer to the next available
1216 * HBQ entry else it will return NULL.
1217 **/
1218 static struct lpfc_hbq_entry *
1219 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1220 {
1221 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1222
1223 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1224 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1225 hbqp->next_hbqPutIdx = 0;
1226
1227 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1228 uint32_t raw_index = phba->hbq_get[hbqno];
1229 uint32_t getidx = le32_to_cpu(raw_index);
1230
1231 hbqp->local_hbqGetIdx = getidx;
1232
1233 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1234 lpfc_printf_log(phba, KERN_ERR,
1235 LOG_SLI | LOG_VPORT,
1236 "1802 HBQ %d: local_hbqGetIdx "
1237 "%u is > than hbqp->entry_count %u\n",
1238 hbqno, hbqp->local_hbqGetIdx,
1239 hbqp->entry_count);
1240
1241 phba->link_state = LPFC_HBA_ERROR;
1242 return NULL;
1243 }
1244
1245 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1246 return NULL;
1247 }
1248
1249 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1250 hbqp->hbqPutIdx;
1251 }
1252
1253 /**
1254 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1255 * @phba: Pointer to HBA context object.
1256 *
1257 * This function is called with no lock held to free all the
1258 * hbq buffers while uninitializing the SLI interface. It also
1259 * frees the HBQ buffers returned by the firmware but not yet
1260 * processed by the upper layers.
1261 **/
1262 void
1263 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1264 {
1265 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1266 struct hbq_dmabuf *hbq_buf;
1267 unsigned long flags;
1268 int i, hbq_count;
1269 uint32_t hbqno;
1270
1271 hbq_count = lpfc_sli_hbq_count();
1272 /* Return all memory used by all HBQs */
1273 spin_lock_irqsave(&phba->hbalock, flags);
1274 for (i = 0; i < hbq_count; ++i) {
1275 list_for_each_entry_safe(dmabuf, next_dmabuf,
1276 &phba->hbqs[i].hbq_buffer_list, list) {
1277 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1278 list_del(&hbq_buf->dbuf.list);
1279 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1280 }
1281 phba->hbqs[i].buffer_count = 0;
1282 }
1283 /* Return all HBQ buffer that are in-fly */
1284 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list,
1285 list) {
1286 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1287 list_del(&hbq_buf->dbuf.list);
1288 if (hbq_buf->tag == -1) {
1289 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1290 (phba, hbq_buf);
1291 } else {
1292 hbqno = hbq_buf->tag >> 16;
1293 if (hbqno >= LPFC_MAX_HBQS)
1294 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1295 (phba, hbq_buf);
1296 else
1297 (phba->hbqs[hbqno].hbq_free_buffer)(phba,
1298 hbq_buf);
1299 }
1300 }
1301
1302 /* Mark the HBQs not in use */
1303 phba->hbq_in_use = 0;
1304 spin_unlock_irqrestore(&phba->hbalock, flags);
1305 }
1306
1307 /**
1308 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1309 * @phba: Pointer to HBA context object.
1310 * @hbqno: HBQ number.
1311 * @hbq_buf: Pointer to HBQ buffer.
1312 *
1313 * This function is called with the hbalock held to post a
1314 * hbq buffer to the firmware. If the function finds an empty
1315 * slot in the HBQ, it will post the buffer. The function will return
1316 * pointer to the hbq entry if it successfully post the buffer
1317 * else it will return NULL.
1318 **/
1319 static int
1320 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1321 struct hbq_dmabuf *hbq_buf)
1322 {
1323 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1324 }
1325
1326 /**
1327 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1328 * @phba: Pointer to HBA context object.
1329 * @hbqno: HBQ number.
1330 * @hbq_buf: Pointer to HBQ buffer.
1331 *
1332 * This function is called with the hbalock held to post a hbq buffer to the
1333 * firmware. If the function finds an empty slot in the HBQ, it will post the
1334 * buffer and place it on the hbq_buffer_list. The function will return zero if
1335 * it successfully post the buffer else it will return an error.
1336 **/
1337 static int
1338 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1339 struct hbq_dmabuf *hbq_buf)
1340 {
1341 struct lpfc_hbq_entry *hbqe;
1342 dma_addr_t physaddr = hbq_buf->dbuf.phys;
1343
1344 /* Get next HBQ entry slot to use */
1345 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1346 if (hbqe) {
1347 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1348
1349 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1350 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
1351 hbqe->bde.tus.f.bdeSize = hbq_buf->size;
1352 hbqe->bde.tus.f.bdeFlags = 0;
1353 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1354 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1355 /* Sync SLIM */
1356 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1357 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1358 /* flush */
1359 readl(phba->hbq_put + hbqno);
1360 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1361 return 0;
1362 } else
1363 return -ENOMEM;
1364 }
1365
1366 /**
1367 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1368 * @phba: Pointer to HBA context object.
1369 * @hbqno: HBQ number.
1370 * @hbq_buf: Pointer to HBQ buffer.
1371 *
1372 * This function is called with the hbalock held to post an RQE to the SLI4
1373 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1374 * the hbq_buffer_list and return zero, otherwise it will return an error.
1375 **/
1376 static int
1377 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1378 struct hbq_dmabuf *hbq_buf)
1379 {
1380 int rc;
1381 struct lpfc_rqe hrqe;
1382 struct lpfc_rqe drqe;
1383
1384 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1385 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1386 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1387 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1388 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
1389 &hrqe, &drqe);
1390 if (rc < 0)
1391 return rc;
1392 hbq_buf->tag = rc;
1393 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1394 return 0;
1395 }
1396
1397 /* HBQ for ELS and CT traffic. */
1398 static struct lpfc_hbq_init lpfc_els_hbq = {
1399 .rn = 1,
1400 .entry_count = 256,
1401 .mask_count = 0,
1402 .profile = 0,
1403 .ring_mask = (1 << LPFC_ELS_RING),
1404 .buffer_count = 0,
1405 .init_count = 40,
1406 .add_count = 40,
1407 };
1408
1409 /* HBQ for the extra ring if needed */
1410 static struct lpfc_hbq_init lpfc_extra_hbq = {
1411 .rn = 1,
1412 .entry_count = 200,
1413 .mask_count = 0,
1414 .profile = 0,
1415 .ring_mask = (1 << LPFC_EXTRA_RING),
1416 .buffer_count = 0,
1417 .init_count = 0,
1418 .add_count = 5,
1419 };
1420
1421 /* Array of HBQs */
1422 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1423 &lpfc_els_hbq,
1424 &lpfc_extra_hbq,
1425 };
1426
1427 /**
1428 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1429 * @phba: Pointer to HBA context object.
1430 * @hbqno: HBQ number.
1431 * @count: Number of HBQ buffers to be posted.
1432 *
1433 * This function is called with no lock held to post more hbq buffers to the
1434 * given HBQ. The function returns the number of HBQ buffers successfully
1435 * posted.
1436 **/
1437 static int
1438 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1439 {
1440 uint32_t i, posted = 0;
1441 unsigned long flags;
1442 struct hbq_dmabuf *hbq_buffer;
1443 LIST_HEAD(hbq_buf_list);
1444 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1445 return 0;
1446
1447 if ((phba->hbqs[hbqno].buffer_count + count) >
1448 lpfc_hbq_defs[hbqno]->entry_count)
1449 count = lpfc_hbq_defs[hbqno]->entry_count -
1450 phba->hbqs[hbqno].buffer_count;
1451 if (!count)
1452 return 0;
1453 /* Allocate HBQ entries */
1454 for (i = 0; i < count; i++) {
1455 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1456 if (!hbq_buffer)
1457 break;
1458 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1459 }
1460 /* Check whether HBQ is still in use */
1461 spin_lock_irqsave(&phba->hbalock, flags);
1462 if (!phba->hbq_in_use)
1463 goto err;
1464 while (!list_empty(&hbq_buf_list)) {
1465 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1466 dbuf.list);
1467 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1468 (hbqno << 16));
1469 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1470 phba->hbqs[hbqno].buffer_count++;
1471 posted++;
1472 } else
1473 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1474 }
1475 spin_unlock_irqrestore(&phba->hbalock, flags);
1476 return posted;
1477 err:
1478 spin_unlock_irqrestore(&phba->hbalock, flags);
1479 while (!list_empty(&hbq_buf_list)) {
1480 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1481 dbuf.list);
1482 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1483 }
1484 return 0;
1485 }
1486
1487 /**
1488 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1489 * @phba: Pointer to HBA context object.
1490 * @qno: HBQ number.
1491 *
1492 * This function posts more buffers to the HBQ. This function
1493 * is called with no lock held. The function returns the number of HBQ entries
1494 * successfully allocated.
1495 **/
1496 int
1497 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1498 {
1499 if (phba->sli_rev == LPFC_SLI_REV4)
1500 return 0;
1501 else
1502 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1503 lpfc_hbq_defs[qno]->add_count);
1504 }
1505
1506 /**
1507 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
1508 * @phba: Pointer to HBA context object.
1509 * @qno: HBQ queue number.
1510 *
1511 * This function is called from SLI initialization code path with
1512 * no lock held to post initial HBQ buffers to firmware. The
1513 * function returns the number of HBQ entries successfully allocated.
1514 **/
1515 static int
1516 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
1517 {
1518 if (phba->sli_rev == LPFC_SLI_REV4)
1519 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1520 lpfc_hbq_defs[qno]->entry_count);
1521 else
1522 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1523 lpfc_hbq_defs[qno]->init_count);
1524 }
1525
1526 /**
1527 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
1528 * @phba: Pointer to HBA context object.
1529 * @hbqno: HBQ number.
1530 *
1531 * This function removes the first hbq buffer on an hbq list and returns a
1532 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
1533 **/
1534 static struct hbq_dmabuf *
1535 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
1536 {
1537 struct lpfc_dmabuf *d_buf;
1538
1539 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
1540 if (!d_buf)
1541 return NULL;
1542 return container_of(d_buf, struct hbq_dmabuf, dbuf);
1543 }
1544
1545 /**
1546 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
1547 * @phba: Pointer to HBA context object.
1548 * @tag: Tag of the hbq buffer.
1549 *
1550 * This function is called with hbalock held. This function searches
1551 * for the hbq buffer associated with the given tag in the hbq buffer
1552 * list. If it finds the hbq buffer, it returns the hbq_buffer other wise
1553 * it returns NULL.
1554 **/
1555 static struct hbq_dmabuf *
1556 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
1557 {
1558 struct lpfc_dmabuf *d_buf;
1559 struct hbq_dmabuf *hbq_buf;
1560 uint32_t hbqno;
1561
1562 hbqno = tag >> 16;
1563 if (hbqno >= LPFC_MAX_HBQS)
1564 return NULL;
1565
1566 spin_lock_irq(&phba->hbalock);
1567 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
1568 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
1569 if (hbq_buf->tag == tag) {
1570 spin_unlock_irq(&phba->hbalock);
1571 return hbq_buf;
1572 }
1573 }
1574 spin_unlock_irq(&phba->hbalock);
1575 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
1576 "1803 Bad hbq tag. Data: x%x x%x\n",
1577 tag, phba->hbqs[tag >> 16].buffer_count);
1578 return NULL;
1579 }
1580
1581 /**
1582 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
1583 * @phba: Pointer to HBA context object.
1584 * @hbq_buffer: Pointer to HBQ buffer.
1585 *
1586 * This function is called with hbalock. This function gives back
1587 * the hbq buffer to firmware. If the HBQ does not have space to
1588 * post the buffer, it will free the buffer.
1589 **/
1590 void
1591 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
1592 {
1593 uint32_t hbqno;
1594
1595 if (hbq_buffer) {
1596 hbqno = hbq_buffer->tag >> 16;
1597 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
1598 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1599 }
1600 }
1601
1602 /**
1603 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
1604 * @mbxCommand: mailbox command code.
1605 *
1606 * This function is called by the mailbox event handler function to verify
1607 * that the completed mailbox command is a legitimate mailbox command. If the
1608 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
1609 * and the mailbox event handler will take the HBA offline.
1610 **/
1611 static int
1612 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
1613 {
1614 uint8_t ret;
1615
1616 switch (mbxCommand) {
1617 case MBX_LOAD_SM:
1618 case MBX_READ_NV:
1619 case MBX_WRITE_NV:
1620 case MBX_WRITE_VPARMS:
1621 case MBX_RUN_BIU_DIAG:
1622 case MBX_INIT_LINK:
1623 case MBX_DOWN_LINK:
1624 case MBX_CONFIG_LINK:
1625 case MBX_CONFIG_RING:
1626 case MBX_RESET_RING:
1627 case MBX_READ_CONFIG:
1628 case MBX_READ_RCONFIG:
1629 case MBX_READ_SPARM:
1630 case MBX_READ_STATUS:
1631 case MBX_READ_RPI:
1632 case MBX_READ_XRI:
1633 case MBX_READ_REV:
1634 case MBX_READ_LNK_STAT:
1635 case MBX_REG_LOGIN:
1636 case MBX_UNREG_LOGIN:
1637 case MBX_READ_LA:
1638 case MBX_CLEAR_LA:
1639 case MBX_DUMP_MEMORY:
1640 case MBX_DUMP_CONTEXT:
1641 case MBX_RUN_DIAGS:
1642 case MBX_RESTART:
1643 case MBX_UPDATE_CFG:
1644 case MBX_DOWN_LOAD:
1645 case MBX_DEL_LD_ENTRY:
1646 case MBX_RUN_PROGRAM:
1647 case MBX_SET_MASK:
1648 case MBX_SET_VARIABLE:
1649 case MBX_UNREG_D_ID:
1650 case MBX_KILL_BOARD:
1651 case MBX_CONFIG_FARP:
1652 case MBX_BEACON:
1653 case MBX_LOAD_AREA:
1654 case MBX_RUN_BIU_DIAG64:
1655 case MBX_CONFIG_PORT:
1656 case MBX_READ_SPARM64:
1657 case MBX_READ_RPI64:
1658 case MBX_REG_LOGIN64:
1659 case MBX_READ_LA64:
1660 case MBX_WRITE_WWN:
1661 case MBX_SET_DEBUG:
1662 case MBX_LOAD_EXP_ROM:
1663 case MBX_ASYNCEVT_ENABLE:
1664 case MBX_REG_VPI:
1665 case MBX_UNREG_VPI:
1666 case MBX_HEARTBEAT:
1667 case MBX_PORT_CAPABILITIES:
1668 case MBX_PORT_IOV_CONTROL:
1669 case MBX_SLI4_CONFIG:
1670 case MBX_SLI4_REQ_FTRS:
1671 case MBX_REG_FCFI:
1672 case MBX_UNREG_FCFI:
1673 case MBX_REG_VFI:
1674 case MBX_UNREG_VFI:
1675 case MBX_INIT_VPI:
1676 case MBX_INIT_VFI:
1677 case MBX_RESUME_RPI:
1678 case MBX_READ_EVENT_LOG_STATUS:
1679 case MBX_READ_EVENT_LOG:
1680 case MBX_SECURITY_MGMT:
1681 case MBX_AUTH_PORT:
1682 ret = mbxCommand;
1683 break;
1684 default:
1685 ret = MBX_SHUTDOWN;
1686 break;
1687 }
1688 return ret;
1689 }
1690
1691 /**
1692 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
1693 * @phba: Pointer to HBA context object.
1694 * @pmboxq: Pointer to mailbox command.
1695 *
1696 * This is completion handler function for mailbox commands issued from
1697 * lpfc_sli_issue_mbox_wait function. This function is called by the
1698 * mailbox event handler function with no lock held. This function
1699 * will wake up thread waiting on the wait queue pointed by context1
1700 * of the mailbox.
1701 **/
1702 void
1703 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
1704 {
1705 wait_queue_head_t *pdone_q;
1706 unsigned long drvr_flag;
1707
1708 /*
1709 * If pdone_q is empty, the driver thread gave up waiting and
1710 * continued running.
1711 */
1712 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
1713 spin_lock_irqsave(&phba->hbalock, drvr_flag);
1714 pdone_q = (wait_queue_head_t *) pmboxq->context1;
1715 if (pdone_q)
1716 wake_up_interruptible(pdone_q);
1717 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1718 return;
1719 }
1720
1721
1722 /**
1723 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
1724 * @phba: Pointer to HBA context object.
1725 * @pmb: Pointer to mailbox object.
1726 *
1727 * This function is the default mailbox completion handler. It
1728 * frees the memory resources associated with the completed mailbox
1729 * command. If the completed command is a REG_LOGIN mailbox command,
1730 * this function will issue a UREG_LOGIN to re-claim the RPI.
1731 **/
1732 void
1733 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
1734 {
1735 struct lpfc_vport *vport = pmb->vport;
1736 struct lpfc_dmabuf *mp;
1737 struct lpfc_nodelist *ndlp;
1738 uint16_t rpi, vpi;
1739 int rc;
1740
1741 mp = (struct lpfc_dmabuf *) (pmb->context1);
1742
1743 if (mp) {
1744 lpfc_mbuf_free(phba, mp->virt, mp->phys);
1745 kfree(mp);
1746 }
1747
1748 if ((pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) &&
1749 (phba->sli_rev == LPFC_SLI_REV4))
1750 lpfc_sli4_free_rpi(phba, pmb->u.mb.un.varUnregLogin.rpi);
1751
1752 /*
1753 * If a REG_LOGIN succeeded after node is destroyed or node
1754 * is in re-discovery driver need to cleanup the RPI.
1755 */
1756 if (!(phba->pport->load_flag & FC_UNLOADING) &&
1757 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
1758 !pmb->u.mb.mbxStatus) {
1759 rpi = pmb->u.mb.un.varWords[0];
1760 vpi = pmb->u.mb.un.varRegLogin.vpi - phba->vpi_base;
1761 lpfc_unreg_login(phba, vpi, rpi, pmb);
1762 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
1763 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
1764 if (rc != MBX_NOT_FINISHED)
1765 return;
1766 }
1767
1768 /* Unreg VPI, if the REG_VPI succeed after VLink failure */
1769 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
1770 !(phba->pport->load_flag & FC_UNLOADING) &&
1771 !pmb->u.mb.mbxStatus) {
1772 lpfc_unreg_vpi(phba, pmb->u.mb.un.varRegVpi.vpi, pmb);
1773 pmb->vport = vport;
1774 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
1775 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
1776 if (rc != MBX_NOT_FINISHED)
1777 return;
1778 }
1779
1780 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
1781 ndlp = (struct lpfc_nodelist *)pmb->context2;
1782 lpfc_nlp_put(ndlp);
1783 pmb->context2 = NULL;
1784 }
1785
1786 /* Check security permission status on INIT_LINK mailbox command */
1787 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
1788 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
1789 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
1790 "2860 SLI authentication is required "
1791 "for INIT_LINK but has not done yet\n");
1792
1793 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
1794 lpfc_sli4_mbox_cmd_free(phba, pmb);
1795 else
1796 mempool_free(pmb, phba->mbox_mem_pool);
1797 }
1798
1799 /**
1800 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
1801 * @phba: Pointer to HBA context object.
1802 *
1803 * This function is called with no lock held. This function processes all
1804 * the completed mailbox commands and gives it to upper layers. The interrupt
1805 * service routine processes mailbox completion interrupt and adds completed
1806 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
1807 * Worker thread call lpfc_sli_handle_mb_event, which will return the
1808 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
1809 * function returns the mailbox commands to the upper layer by calling the
1810 * completion handler function of each mailbox.
1811 **/
1812 int
1813 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
1814 {
1815 MAILBOX_t *pmbox;
1816 LPFC_MBOXQ_t *pmb;
1817 int rc;
1818 LIST_HEAD(cmplq);
1819
1820 phba->sli.slistat.mbox_event++;
1821
1822 /* Get all completed mailboxe buffers into the cmplq */
1823 spin_lock_irq(&phba->hbalock);
1824 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
1825 spin_unlock_irq(&phba->hbalock);
1826
1827 /* Get a Mailbox buffer to setup mailbox commands for callback */
1828 do {
1829 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
1830 if (pmb == NULL)
1831 break;
1832
1833 pmbox = &pmb->u.mb;
1834
1835 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
1836 if (pmb->vport) {
1837 lpfc_debugfs_disc_trc(pmb->vport,
1838 LPFC_DISC_TRC_MBOX_VPORT,
1839 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
1840 (uint32_t)pmbox->mbxCommand,
1841 pmbox->un.varWords[0],
1842 pmbox->un.varWords[1]);
1843 }
1844 else {
1845 lpfc_debugfs_disc_trc(phba->pport,
1846 LPFC_DISC_TRC_MBOX,
1847 "MBOX cmpl: cmd:x%x mb:x%x x%x",
1848 (uint32_t)pmbox->mbxCommand,
1849 pmbox->un.varWords[0],
1850 pmbox->un.varWords[1]);
1851 }
1852 }
1853
1854 /*
1855 * It is a fatal error if unknown mbox command completion.
1856 */
1857 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
1858 MBX_SHUTDOWN) {
1859 /* Unknown mailbox command compl */
1860 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
1861 "(%d):0323 Unknown Mailbox command "
1862 "x%x (x%x) Cmpl\n",
1863 pmb->vport ? pmb->vport->vpi : 0,
1864 pmbox->mbxCommand,
1865 lpfc_sli4_mbox_opcode_get(phba, pmb));
1866 phba->link_state = LPFC_HBA_ERROR;
1867 phba->work_hs = HS_FFER3;
1868 lpfc_handle_eratt(phba);
1869 continue;
1870 }
1871
1872 if (pmbox->mbxStatus) {
1873 phba->sli.slistat.mbox_stat_err++;
1874 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
1875 /* Mbox cmd cmpl error - RETRYing */
1876 lpfc_printf_log(phba, KERN_INFO,
1877 LOG_MBOX | LOG_SLI,
1878 "(%d):0305 Mbox cmd cmpl "
1879 "error - RETRYing Data: x%x "
1880 "(x%x) x%x x%x x%x\n",
1881 pmb->vport ? pmb->vport->vpi :0,
1882 pmbox->mbxCommand,
1883 lpfc_sli4_mbox_opcode_get(phba,
1884 pmb),
1885 pmbox->mbxStatus,
1886 pmbox->un.varWords[0],
1887 pmb->vport->port_state);
1888 pmbox->mbxStatus = 0;
1889 pmbox->mbxOwner = OWN_HOST;
1890 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
1891 if (rc != MBX_NOT_FINISHED)
1892 continue;
1893 }
1894 }
1895
1896 /* Mailbox cmd <cmd> Cmpl <cmpl> */
1897 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
1898 "(%d):0307 Mailbox cmd x%x (x%x) Cmpl x%p "
1899 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x\n",
1900 pmb->vport ? pmb->vport->vpi : 0,
1901 pmbox->mbxCommand,
1902 lpfc_sli4_mbox_opcode_get(phba, pmb),
1903 pmb->mbox_cmpl,
1904 *((uint32_t *) pmbox),
1905 pmbox->un.varWords[0],
1906 pmbox->un.varWords[1],
1907 pmbox->un.varWords[2],
1908 pmbox->un.varWords[3],
1909 pmbox->un.varWords[4],
1910 pmbox->un.varWords[5],
1911 pmbox->un.varWords[6],
1912 pmbox->un.varWords[7]);
1913
1914 if (pmb->mbox_cmpl)
1915 pmb->mbox_cmpl(phba,pmb);
1916 } while (1);
1917 return 0;
1918 }
1919
1920 /**
1921 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
1922 * @phba: Pointer to HBA context object.
1923 * @pring: Pointer to driver SLI ring object.
1924 * @tag: buffer tag.
1925 *
1926 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
1927 * is set in the tag the buffer is posted for a particular exchange,
1928 * the function will return the buffer without replacing the buffer.
1929 * If the buffer is for unsolicited ELS or CT traffic, this function
1930 * returns the buffer and also posts another buffer to the firmware.
1931 **/
1932 static struct lpfc_dmabuf *
1933 lpfc_sli_get_buff(struct lpfc_hba *phba,
1934 struct lpfc_sli_ring *pring,
1935 uint32_t tag)
1936 {
1937 struct hbq_dmabuf *hbq_entry;
1938
1939 if (tag & QUE_BUFTAG_BIT)
1940 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
1941 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
1942 if (!hbq_entry)
1943 return NULL;
1944 return &hbq_entry->dbuf;
1945 }
1946
1947 /**
1948 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
1949 * @phba: Pointer to HBA context object.
1950 * @pring: Pointer to driver SLI ring object.
1951 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
1952 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
1953 * @fch_type: the type for the first frame of the sequence.
1954 *
1955 * This function is called with no lock held. This function uses the r_ctl and
1956 * type of the received sequence to find the correct callback function to call
1957 * to process the sequence.
1958 **/
1959 static int
1960 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1961 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
1962 uint32_t fch_type)
1963 {
1964 int i;
1965
1966 /* unSolicited Responses */
1967 if (pring->prt[0].profile) {
1968 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
1969 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
1970 saveq);
1971 return 1;
1972 }
1973 /* We must search, based on rctl / type
1974 for the right routine */
1975 for (i = 0; i < pring->num_mask; i++) {
1976 if ((pring->prt[i].rctl == fch_r_ctl) &&
1977 (pring->prt[i].type == fch_type)) {
1978 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
1979 (pring->prt[i].lpfc_sli_rcv_unsol_event)
1980 (phba, pring, saveq);
1981 return 1;
1982 }
1983 }
1984 return 0;
1985 }
1986
1987 /**
1988 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
1989 * @phba: Pointer to HBA context object.
1990 * @pring: Pointer to driver SLI ring object.
1991 * @saveq: Pointer to the unsolicited iocb.
1992 *
1993 * This function is called with no lock held by the ring event handler
1994 * when there is an unsolicited iocb posted to the response ring by the
1995 * firmware. This function gets the buffer associated with the iocbs
1996 * and calls the event handler for the ring. This function handles both
1997 * qring buffers and hbq buffers.
1998 * When the function returns 1 the caller can free the iocb object otherwise
1999 * upper layer functions will free the iocb objects.
2000 **/
2001 static int
2002 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2003 struct lpfc_iocbq *saveq)
2004 {
2005 IOCB_t * irsp;
2006 WORD5 * w5p;
2007 uint32_t Rctl, Type;
2008 uint32_t match;
2009 struct lpfc_iocbq *iocbq;
2010 struct lpfc_dmabuf *dmzbuf;
2011
2012 match = 0;
2013 irsp = &(saveq->iocb);
2014
2015 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2016 if (pring->lpfc_sli_rcv_async_status)
2017 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2018 else
2019 lpfc_printf_log(phba,
2020 KERN_WARNING,
2021 LOG_SLI,
2022 "0316 Ring %d handler: unexpected "
2023 "ASYNC_STATUS iocb received evt_code "
2024 "0x%x\n",
2025 pring->ringno,
2026 irsp->un.asyncstat.evt_code);
2027 return 1;
2028 }
2029
2030 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2031 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2032 if (irsp->ulpBdeCount > 0) {
2033 dmzbuf = lpfc_sli_get_buff(phba, pring,
2034 irsp->un.ulpWord[3]);
2035 lpfc_in_buf_free(phba, dmzbuf);
2036 }
2037
2038 if (irsp->ulpBdeCount > 1) {
2039 dmzbuf = lpfc_sli_get_buff(phba, pring,
2040 irsp->unsli3.sli3Words[3]);
2041 lpfc_in_buf_free(phba, dmzbuf);
2042 }
2043
2044 if (irsp->ulpBdeCount > 2) {
2045 dmzbuf = lpfc_sli_get_buff(phba, pring,
2046 irsp->unsli3.sli3Words[7]);
2047 lpfc_in_buf_free(phba, dmzbuf);
2048 }
2049
2050 return 1;
2051 }
2052
2053 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2054 if (irsp->ulpBdeCount != 0) {
2055 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2056 irsp->un.ulpWord[3]);
2057 if (!saveq->context2)
2058 lpfc_printf_log(phba,
2059 KERN_ERR,
2060 LOG_SLI,
2061 "0341 Ring %d Cannot find buffer for "
2062 "an unsolicited iocb. tag 0x%x\n",
2063 pring->ringno,
2064 irsp->un.ulpWord[3]);
2065 }
2066 if (irsp->ulpBdeCount == 2) {
2067 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2068 irsp->unsli3.sli3Words[7]);
2069 if (!saveq->context3)
2070 lpfc_printf_log(phba,
2071 KERN_ERR,
2072 LOG_SLI,
2073 "0342 Ring %d Cannot find buffer for an"
2074 " unsolicited iocb. tag 0x%x\n",
2075 pring->ringno,
2076 irsp->unsli3.sli3Words[7]);
2077 }
2078 list_for_each_entry(iocbq, &saveq->list, list) {
2079 irsp = &(iocbq->iocb);
2080 if (irsp->ulpBdeCount != 0) {
2081 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2082 irsp->un.ulpWord[3]);
2083 if (!iocbq->context2)
2084 lpfc_printf_log(phba,
2085 KERN_ERR,
2086 LOG_SLI,
2087 "0343 Ring %d Cannot find "
2088 "buffer for an unsolicited iocb"
2089 ". tag 0x%x\n", pring->ringno,
2090 irsp->un.ulpWord[3]);
2091 }
2092 if (irsp->ulpBdeCount == 2) {
2093 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2094 irsp->unsli3.sli3Words[7]);
2095 if (!iocbq->context3)
2096 lpfc_printf_log(phba,
2097 KERN_ERR,
2098 LOG_SLI,
2099 "0344 Ring %d Cannot find "
2100 "buffer for an unsolicited "
2101 "iocb. tag 0x%x\n",
2102 pring->ringno,
2103 irsp->unsli3.sli3Words[7]);
2104 }
2105 }
2106 }
2107 if (irsp->ulpBdeCount != 0 &&
2108 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2109 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2110 int found = 0;
2111
2112 /* search continue save q for same XRI */
2113 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2114 if (iocbq->iocb.ulpContext == saveq->iocb.ulpContext) {
2115 list_add_tail(&saveq->list, &iocbq->list);
2116 found = 1;
2117 break;
2118 }
2119 }
2120 if (!found)
2121 list_add_tail(&saveq->clist,
2122 &pring->iocb_continue_saveq);
2123 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2124 list_del_init(&iocbq->clist);
2125 saveq = iocbq;
2126 irsp = &(saveq->iocb);
2127 } else
2128 return 0;
2129 }
2130 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2131 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2132 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2133 Rctl = FC_RCTL_ELS_REQ;
2134 Type = FC_TYPE_ELS;
2135 } else {
2136 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2137 Rctl = w5p->hcsw.Rctl;
2138 Type = w5p->hcsw.Type;
2139
2140 /* Firmware Workaround */
2141 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2142 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2143 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2144 Rctl = FC_RCTL_ELS_REQ;
2145 Type = FC_TYPE_ELS;
2146 w5p->hcsw.Rctl = Rctl;
2147 w5p->hcsw.Type = Type;
2148 }
2149 }
2150
2151 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2152 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2153 "0313 Ring %d handler: unexpected Rctl x%x "
2154 "Type x%x received\n",
2155 pring->ringno, Rctl, Type);
2156
2157 return 1;
2158 }
2159
2160 /**
2161 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2162 * @phba: Pointer to HBA context object.
2163 * @pring: Pointer to driver SLI ring object.
2164 * @prspiocb: Pointer to response iocb object.
2165 *
2166 * This function looks up the iocb_lookup table to get the command iocb
2167 * corresponding to the given response iocb using the iotag of the
2168 * response iocb. This function is called with the hbalock held.
2169 * This function returns the command iocb object if it finds the command
2170 * iocb else returns NULL.
2171 **/
2172 static struct lpfc_iocbq *
2173 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2174 struct lpfc_sli_ring *pring,
2175 struct lpfc_iocbq *prspiocb)
2176 {
2177 struct lpfc_iocbq *cmd_iocb = NULL;
2178 uint16_t iotag;
2179
2180 iotag = prspiocb->iocb.ulpIoTag;
2181
2182 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2183 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2184 list_del_init(&cmd_iocb->list);
2185 if (cmd_iocb->iocb_flag & LPFC_IO_ON_Q) {
2186 pring->txcmplq_cnt--;
2187 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_Q;
2188 }
2189 return cmd_iocb;
2190 }
2191
2192 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2193 "0317 iotag x%x is out off "
2194 "range: max iotag x%x wd0 x%x\n",
2195 iotag, phba->sli.last_iotag,
2196 *(((uint32_t *) &prspiocb->iocb) + 7));
2197 return NULL;
2198 }
2199
2200 /**
2201 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2202 * @phba: Pointer to HBA context object.
2203 * @pring: Pointer to driver SLI ring object.
2204 * @iotag: IOCB tag.
2205 *
2206 * This function looks up the iocb_lookup table to get the command iocb
2207 * corresponding to the given iotag. This function is called with the
2208 * hbalock held.
2209 * This function returns the command iocb object if it finds the command
2210 * iocb else returns NULL.
2211 **/
2212 static struct lpfc_iocbq *
2213 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2214 struct lpfc_sli_ring *pring, uint16_t iotag)
2215 {
2216 struct lpfc_iocbq *cmd_iocb;
2217
2218 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2219 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2220 list_del_init(&cmd_iocb->list);
2221 if (cmd_iocb->iocb_flag & LPFC_IO_ON_Q) {
2222 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_Q;
2223 pring->txcmplq_cnt--;
2224 }
2225 return cmd_iocb;
2226 }
2227
2228 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2229 "0372 iotag x%x is out off range: max iotag (x%x)\n",
2230 iotag, phba->sli.last_iotag);
2231 return NULL;
2232 }
2233
2234 /**
2235 * lpfc_sli_process_sol_iocb - process solicited iocb completion
2236 * @phba: Pointer to HBA context object.
2237 * @pring: Pointer to driver SLI ring object.
2238 * @saveq: Pointer to the response iocb to be processed.
2239 *
2240 * This function is called by the ring event handler for non-fcp
2241 * rings when there is a new response iocb in the response ring.
2242 * The caller is not required to hold any locks. This function
2243 * gets the command iocb associated with the response iocb and
2244 * calls the completion handler for the command iocb. If there
2245 * is no completion handler, the function will free the resources
2246 * associated with command iocb. If the response iocb is for
2247 * an already aborted command iocb, the status of the completion
2248 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2249 * This function always returns 1.
2250 **/
2251 static int
2252 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2253 struct lpfc_iocbq *saveq)
2254 {
2255 struct lpfc_iocbq *cmdiocbp;
2256 int rc = 1;
2257 unsigned long iflag;
2258
2259 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
2260 spin_lock_irqsave(&phba->hbalock, iflag);
2261 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2262 spin_unlock_irqrestore(&phba->hbalock, iflag);
2263
2264 if (cmdiocbp) {
2265 if (cmdiocbp->iocb_cmpl) {
2266 /*
2267 * If an ELS command failed send an event to mgmt
2268 * application.
2269 */
2270 if (saveq->iocb.ulpStatus &&
2271 (pring->ringno == LPFC_ELS_RING) &&
2272 (cmdiocbp->iocb.ulpCommand ==
2273 CMD_ELS_REQUEST64_CR))
2274 lpfc_send_els_failure_event(phba,
2275 cmdiocbp, saveq);
2276
2277 /*
2278 * Post all ELS completions to the worker thread.
2279 * All other are passed to the completion callback.
2280 */
2281 if (pring->ringno == LPFC_ELS_RING) {
2282 if ((phba->sli_rev < LPFC_SLI_REV4) &&
2283 (cmdiocbp->iocb_flag &
2284 LPFC_DRIVER_ABORTED)) {
2285 spin_lock_irqsave(&phba->hbalock,
2286 iflag);
2287 cmdiocbp->iocb_flag &=
2288 ~LPFC_DRIVER_ABORTED;
2289 spin_unlock_irqrestore(&phba->hbalock,
2290 iflag);
2291 saveq->iocb.ulpStatus =
2292 IOSTAT_LOCAL_REJECT;
2293 saveq->iocb.un.ulpWord[4] =
2294 IOERR_SLI_ABORTED;
2295
2296 /* Firmware could still be in progress
2297 * of DMAing payload, so don't free data
2298 * buffer till after a hbeat.
2299 */
2300 spin_lock_irqsave(&phba->hbalock,
2301 iflag);
2302 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2303 spin_unlock_irqrestore(&phba->hbalock,
2304 iflag);
2305 }
2306 if (phba->sli_rev == LPFC_SLI_REV4) {
2307 if (saveq->iocb_flag &
2308 LPFC_EXCHANGE_BUSY) {
2309 /* Set cmdiocb flag for the
2310 * exchange busy so sgl (xri)
2311 * will not be released until
2312 * the abort xri is received
2313 * from hba.
2314 */
2315 spin_lock_irqsave(
2316 &phba->hbalock, iflag);
2317 cmdiocbp->iocb_flag |=
2318 LPFC_EXCHANGE_BUSY;
2319 spin_unlock_irqrestore(
2320 &phba->hbalock, iflag);
2321 }
2322 if (cmdiocbp->iocb_flag &
2323 LPFC_DRIVER_ABORTED) {
2324 /*
2325 * Clear LPFC_DRIVER_ABORTED
2326 * bit in case it was driver
2327 * initiated abort.
2328 */
2329 spin_lock_irqsave(
2330 &phba->hbalock, iflag);
2331 cmdiocbp->iocb_flag &=
2332 ~LPFC_DRIVER_ABORTED;
2333 spin_unlock_irqrestore(
2334 &phba->hbalock, iflag);
2335 cmdiocbp->iocb.ulpStatus =
2336 IOSTAT_LOCAL_REJECT;
2337 cmdiocbp->iocb.un.ulpWord[4] =
2338 IOERR_ABORT_REQUESTED;
2339 /*
2340 * For SLI4, irsiocb contains
2341 * NO_XRI in sli_xritag, it
2342 * shall not affect releasing
2343 * sgl (xri) process.
2344 */
2345 saveq->iocb.ulpStatus =
2346 IOSTAT_LOCAL_REJECT;
2347 saveq->iocb.un.ulpWord[4] =
2348 IOERR_SLI_ABORTED;
2349 spin_lock_irqsave(
2350 &phba->hbalock, iflag);
2351 saveq->iocb_flag |=
2352 LPFC_DELAY_MEM_FREE;
2353 spin_unlock_irqrestore(
2354 &phba->hbalock, iflag);
2355 }
2356 }
2357 }
2358 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2359 } else
2360 lpfc_sli_release_iocbq(phba, cmdiocbp);
2361 } else {
2362 /*
2363 * Unknown initiating command based on the response iotag.
2364 * This could be the case on the ELS ring because of
2365 * lpfc_els_abort().
2366 */
2367 if (pring->ringno != LPFC_ELS_RING) {
2368 /*
2369 * Ring <ringno> handler: unexpected completion IoTag
2370 * <IoTag>
2371 */
2372 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2373 "0322 Ring %d handler: "
2374 "unexpected completion IoTag x%x "
2375 "Data: x%x x%x x%x x%x\n",
2376 pring->ringno,
2377 saveq->iocb.ulpIoTag,
2378 saveq->iocb.ulpStatus,
2379 saveq->iocb.un.ulpWord[4],
2380 saveq->iocb.ulpCommand,
2381 saveq->iocb.ulpContext);
2382 }
2383 }
2384
2385 return rc;
2386 }
2387
2388 /**
2389 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2390 * @phba: Pointer to HBA context object.
2391 * @pring: Pointer to driver SLI ring object.
2392 *
2393 * This function is called from the iocb ring event handlers when
2394 * put pointer is ahead of the get pointer for a ring. This function signal
2395 * an error attention condition to the worker thread and the worker
2396 * thread will transition the HBA to offline state.
2397 **/
2398 static void
2399 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2400 {
2401 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2402 /*
2403 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2404 * rsp ring <portRspMax>
2405 */
2406 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2407 "0312 Ring %d handler: portRspPut %d "
2408 "is bigger than rsp ring %d\n",
2409 pring->ringno, le32_to_cpu(pgp->rspPutInx),
2410 pring->numRiocb);
2411
2412 phba->link_state = LPFC_HBA_ERROR;
2413
2414 /*
2415 * All error attention handlers are posted to
2416 * worker thread
2417 */
2418 phba->work_ha |= HA_ERATT;
2419 phba->work_hs = HS_FFER3;
2420
2421 lpfc_worker_wake_up(phba);
2422
2423 return;
2424 }
2425
2426 /**
2427 * lpfc_poll_eratt - Error attention polling timer timeout handler
2428 * @ptr: Pointer to address of HBA context object.
2429 *
2430 * This function is invoked by the Error Attention polling timer when the
2431 * timer times out. It will check the SLI Error Attention register for
2432 * possible attention events. If so, it will post an Error Attention event
2433 * and wake up worker thread to process it. Otherwise, it will set up the
2434 * Error Attention polling timer for the next poll.
2435 **/
2436 void lpfc_poll_eratt(unsigned long ptr)
2437 {
2438 struct lpfc_hba *phba;
2439 uint32_t eratt = 0;
2440
2441 phba = (struct lpfc_hba *)ptr;
2442
2443 /* Check chip HA register for error event */
2444 eratt = lpfc_sli_check_eratt(phba);
2445
2446 if (eratt)
2447 /* Tell the worker thread there is work to do */
2448 lpfc_worker_wake_up(phba);
2449 else
2450 /* Restart the timer for next eratt poll */
2451 mod_timer(&phba->eratt_poll, jiffies +
2452 HZ * LPFC_ERATT_POLL_INTERVAL);
2453 return;
2454 }
2455
2456
2457 /**
2458 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
2459 * @phba: Pointer to HBA context object.
2460 * @pring: Pointer to driver SLI ring object.
2461 * @mask: Host attention register mask for this ring.
2462 *
2463 * This function is called from the interrupt context when there is a ring
2464 * event for the fcp ring. The caller does not hold any lock.
2465 * The function processes each response iocb in the response ring until it
2466 * finds an iocb with LE bit set and chains all the iocbs upto the iocb with
2467 * LE bit set. The function will call the completion handler of the command iocb
2468 * if the response iocb indicates a completion for a command iocb or it is
2469 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
2470 * function if this is an unsolicited iocb.
2471 * This routine presumes LPFC_FCP_RING handling and doesn't bother
2472 * to check it explicitly.
2473 */
2474 int
2475 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
2476 struct lpfc_sli_ring *pring, uint32_t mask)
2477 {
2478 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2479 IOCB_t *irsp = NULL;
2480 IOCB_t *entry = NULL;
2481 struct lpfc_iocbq *cmdiocbq = NULL;
2482 struct lpfc_iocbq rspiocbq;
2483 uint32_t status;
2484 uint32_t portRspPut, portRspMax;
2485 int rc = 1;
2486 lpfc_iocb_type type;
2487 unsigned long iflag;
2488 uint32_t rsp_cmpl = 0;
2489
2490 spin_lock_irqsave(&phba->hbalock, iflag);
2491 pring->stats.iocb_event++;
2492
2493 /*
2494 * The next available response entry should never exceed the maximum
2495 * entries. If it does, treat it as an adapter hardware error.
2496 */
2497 portRspMax = pring->numRiocb;
2498 portRspPut = le32_to_cpu(pgp->rspPutInx);
2499 if (unlikely(portRspPut >= portRspMax)) {
2500 lpfc_sli_rsp_pointers_error(phba, pring);
2501 spin_unlock_irqrestore(&phba->hbalock, iflag);
2502 return 1;
2503 }
2504 if (phba->fcp_ring_in_use) {
2505 spin_unlock_irqrestore(&phba->hbalock, iflag);
2506 return 1;
2507 } else
2508 phba->fcp_ring_in_use = 1;
2509
2510 rmb();
2511 while (pring->rspidx != portRspPut) {
2512 /*
2513 * Fetch an entry off the ring and copy it into a local data
2514 * structure. The copy involves a byte-swap since the
2515 * network byte order and pci byte orders are different.
2516 */
2517 entry = lpfc_resp_iocb(phba, pring);
2518 phba->last_completion_time = jiffies;
2519
2520 if (++pring->rspidx >= portRspMax)
2521 pring->rspidx = 0;
2522
2523 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
2524 (uint32_t *) &rspiocbq.iocb,
2525 phba->iocb_rsp_size);
2526 INIT_LIST_HEAD(&(rspiocbq.list));
2527 irsp = &rspiocbq.iocb;
2528
2529 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
2530 pring->stats.iocb_rsp++;
2531 rsp_cmpl++;
2532
2533 if (unlikely(irsp->ulpStatus)) {
2534 /*
2535 * If resource errors reported from HBA, reduce
2536 * queuedepths of the SCSI device.
2537 */
2538 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
2539 (irsp->un.ulpWord[4] == IOERR_NO_RESOURCES)) {
2540 spin_unlock_irqrestore(&phba->hbalock, iflag);
2541 phba->lpfc_rampdown_queue_depth(phba);
2542 spin_lock_irqsave(&phba->hbalock, iflag);
2543 }
2544
2545 /* Rsp ring <ringno> error: IOCB */
2546 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2547 "0336 Rsp Ring %d error: IOCB Data: "
2548 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
2549 pring->ringno,
2550 irsp->un.ulpWord[0],
2551 irsp->un.ulpWord[1],
2552 irsp->un.ulpWord[2],
2553 irsp->un.ulpWord[3],
2554 irsp->un.ulpWord[4],
2555 irsp->un.ulpWord[5],
2556 *(uint32_t *)&irsp->un1,
2557 *((uint32_t *)&irsp->un1 + 1));
2558 }
2559
2560 switch (type) {
2561 case LPFC_ABORT_IOCB:
2562 case LPFC_SOL_IOCB:
2563 /*
2564 * Idle exchange closed via ABTS from port. No iocb
2565 * resources need to be recovered.
2566 */
2567 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
2568 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
2569 "0333 IOCB cmd 0x%x"
2570 " processed. Skipping"
2571 " completion\n",
2572 irsp->ulpCommand);
2573 break;
2574 }
2575
2576 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
2577 &rspiocbq);
2578 if (unlikely(!cmdiocbq))
2579 break;
2580 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
2581 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
2582 if (cmdiocbq->iocb_cmpl) {
2583 spin_unlock_irqrestore(&phba->hbalock, iflag);
2584 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
2585 &rspiocbq);
2586 spin_lock_irqsave(&phba->hbalock, iflag);
2587 }
2588 break;
2589 case LPFC_UNSOL_IOCB:
2590 spin_unlock_irqrestore(&phba->hbalock, iflag);
2591 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
2592 spin_lock_irqsave(&phba->hbalock, iflag);
2593 break;
2594 default:
2595 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
2596 char adaptermsg[LPFC_MAX_ADPTMSG];
2597 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
2598 memcpy(&adaptermsg[0], (uint8_t *) irsp,
2599 MAX_MSG_DATA);
2600 dev_warn(&((phba->pcidev)->dev),
2601 "lpfc%d: %s\n",
2602 phba->brd_no, adaptermsg);
2603 } else {
2604 /* Unknown IOCB command */
2605 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2606 "0334 Unknown IOCB command "
2607 "Data: x%x, x%x x%x x%x x%x\n",
2608 type, irsp->ulpCommand,
2609 irsp->ulpStatus,
2610 irsp->ulpIoTag,
2611 irsp->ulpContext);
2612 }
2613 break;
2614 }
2615
2616 /*
2617 * The response IOCB has been processed. Update the ring
2618 * pointer in SLIM. If the port response put pointer has not
2619 * been updated, sync the pgp->rspPutInx and fetch the new port
2620 * response put pointer.
2621 */
2622 writel(pring->rspidx, &phba->host_gp[pring->ringno].rspGetInx);
2623
2624 if (pring->rspidx == portRspPut)
2625 portRspPut = le32_to_cpu(pgp->rspPutInx);
2626 }
2627
2628 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
2629 pring->stats.iocb_rsp_full++;
2630 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
2631 writel(status, phba->CAregaddr);
2632 readl(phba->CAregaddr);
2633 }
2634 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
2635 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
2636 pring->stats.iocb_cmd_empty++;
2637
2638 /* Force update of the local copy of cmdGetInx */
2639 pring->local_getidx = le32_to_cpu(pgp->cmdGetInx);
2640 lpfc_sli_resume_iocb(phba, pring);
2641
2642 if ((pring->lpfc_sli_cmd_available))
2643 (pring->lpfc_sli_cmd_available) (phba, pring);
2644
2645 }
2646
2647 phba->fcp_ring_in_use = 0;
2648 spin_unlock_irqrestore(&phba->hbalock, iflag);
2649 return rc;
2650 }
2651
2652 /**
2653 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
2654 * @phba: Pointer to HBA context object.
2655 * @pring: Pointer to driver SLI ring object.
2656 * @rspiocbp: Pointer to driver response IOCB object.
2657 *
2658 * This function is called from the worker thread when there is a slow-path
2659 * response IOCB to process. This function chains all the response iocbs until
2660 * seeing the iocb with the LE bit set. The function will call
2661 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
2662 * completion of a command iocb. The function will call the
2663 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
2664 * The function frees the resources or calls the completion handler if this
2665 * iocb is an abort completion. The function returns NULL when the response
2666 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
2667 * this function shall chain the iocb on to the iocb_continueq and return the
2668 * response iocb passed in.
2669 **/
2670 static struct lpfc_iocbq *
2671 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2672 struct lpfc_iocbq *rspiocbp)
2673 {
2674 struct lpfc_iocbq *saveq;
2675 struct lpfc_iocbq *cmdiocbp;
2676 struct lpfc_iocbq *next_iocb;
2677 IOCB_t *irsp = NULL;
2678 uint32_t free_saveq;
2679 uint8_t iocb_cmd_type;
2680 lpfc_iocb_type type;
2681 unsigned long iflag;
2682 int rc;
2683
2684 spin_lock_irqsave(&phba->hbalock, iflag);
2685 /* First add the response iocb to the countinueq list */
2686 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
2687 pring->iocb_continueq_cnt++;
2688
2689 /* Now, determine whetehr the list is completed for processing */
2690 irsp = &rspiocbp->iocb;
2691 if (irsp->ulpLe) {
2692 /*
2693 * By default, the driver expects to free all resources
2694 * associated with this iocb completion.
2695 */
2696 free_saveq = 1;
2697 saveq = list_get_first(&pring->iocb_continueq,
2698 struct lpfc_iocbq, list);
2699 irsp = &(saveq->iocb);
2700 list_del_init(&pring->iocb_continueq);
2701 pring->iocb_continueq_cnt = 0;
2702
2703 pring->stats.iocb_rsp++;
2704
2705 /*
2706 * If resource errors reported from HBA, reduce
2707 * queuedepths of the SCSI device.
2708 */
2709 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
2710 (irsp->un.ulpWord[4] == IOERR_NO_RESOURCES)) {
2711 spin_unlock_irqrestore(&phba->hbalock, iflag);
2712 phba->lpfc_rampdown_queue_depth(phba);
2713 spin_lock_irqsave(&phba->hbalock, iflag);
2714 }
2715
2716 if (irsp->ulpStatus) {
2717 /* Rsp ring <ringno> error: IOCB */
2718 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2719 "0328 Rsp Ring %d error: "
2720 "IOCB Data: "
2721 "x%x x%x x%x x%x "
2722 "x%x x%x x%x x%x "
2723 "x%x x%x x%x x%x "
2724 "x%x x%x x%x x%x\n",
2725 pring->ringno,
2726 irsp->un.ulpWord[0],
2727 irsp->un.ulpWord[1],
2728 irsp->un.ulpWord[2],
2729 irsp->un.ulpWord[3],
2730 irsp->un.ulpWord[4],
2731 irsp->un.ulpWord[5],
2732 *(((uint32_t *) irsp) + 6),
2733 *(((uint32_t *) irsp) + 7),
2734 *(((uint32_t *) irsp) + 8),
2735 *(((uint32_t *) irsp) + 9),
2736 *(((uint32_t *) irsp) + 10),
2737 *(((uint32_t *) irsp) + 11),
2738 *(((uint32_t *) irsp) + 12),
2739 *(((uint32_t *) irsp) + 13),
2740 *(((uint32_t *) irsp) + 14),
2741 *(((uint32_t *) irsp) + 15));
2742 }
2743
2744 /*
2745 * Fetch the IOCB command type and call the correct completion
2746 * routine. Solicited and Unsolicited IOCBs on the ELS ring
2747 * get freed back to the lpfc_iocb_list by the discovery
2748 * kernel thread.
2749 */
2750 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
2751 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
2752 switch (type) {
2753 case LPFC_SOL_IOCB:
2754 spin_unlock_irqrestore(&phba->hbalock, iflag);
2755 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
2756 spin_lock_irqsave(&phba->hbalock, iflag);
2757 break;
2758
2759 case LPFC_UNSOL_IOCB:
2760 spin_unlock_irqrestore(&phba->hbalock, iflag);
2761 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
2762 spin_lock_irqsave(&phba->hbalock, iflag);
2763 if (!rc)
2764 free_saveq = 0;
2765 break;
2766
2767 case LPFC_ABORT_IOCB:
2768 cmdiocbp = NULL;
2769 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
2770 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
2771 saveq);
2772 if (cmdiocbp) {
2773 /* Call the specified completion routine */
2774 if (cmdiocbp->iocb_cmpl) {
2775 spin_unlock_irqrestore(&phba->hbalock,
2776 iflag);
2777 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
2778 saveq);
2779 spin_lock_irqsave(&phba->hbalock,
2780 iflag);
2781 } else
2782 __lpfc_sli_release_iocbq(phba,
2783 cmdiocbp);
2784 }
2785 break;
2786
2787 case LPFC_UNKNOWN_IOCB:
2788 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
2789 char adaptermsg[LPFC_MAX_ADPTMSG];
2790 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
2791 memcpy(&adaptermsg[0], (uint8_t *)irsp,
2792 MAX_MSG_DATA);
2793 dev_warn(&((phba->pcidev)->dev),
2794 "lpfc%d: %s\n",
2795 phba->brd_no, adaptermsg);
2796 } else {
2797 /* Unknown IOCB command */
2798 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2799 "0335 Unknown IOCB "
2800 "command Data: x%x "
2801 "x%x x%x x%x\n",
2802 irsp->ulpCommand,
2803 irsp->ulpStatus,
2804 irsp->ulpIoTag,
2805 irsp->ulpContext);
2806 }
2807 break;
2808 }
2809
2810 if (free_saveq) {
2811 list_for_each_entry_safe(rspiocbp, next_iocb,
2812 &saveq->list, list) {
2813 list_del(&rspiocbp->list);
2814 __lpfc_sli_release_iocbq(phba, rspiocbp);
2815 }
2816 __lpfc_sli_release_iocbq(phba, saveq);
2817 }
2818 rspiocbp = NULL;
2819 }
2820 spin_unlock_irqrestore(&phba->hbalock, iflag);
2821 return rspiocbp;
2822 }
2823
2824 /**
2825 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
2826 * @phba: Pointer to HBA context object.
2827 * @pring: Pointer to driver SLI ring object.
2828 * @mask: Host attention register mask for this ring.
2829 *
2830 * This routine wraps the actual slow_ring event process routine from the
2831 * API jump table function pointer from the lpfc_hba struct.
2832 **/
2833 void
2834 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
2835 struct lpfc_sli_ring *pring, uint32_t mask)
2836 {
2837 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
2838 }
2839
2840 /**
2841 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
2842 * @phba: Pointer to HBA context object.
2843 * @pring: Pointer to driver SLI ring object.
2844 * @mask: Host attention register mask for this ring.
2845 *
2846 * This function is called from the worker thread when there is a ring event
2847 * for non-fcp rings. The caller does not hold any lock. The function will
2848 * remove each response iocb in the response ring and calls the handle
2849 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
2850 **/
2851 static void
2852 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
2853 struct lpfc_sli_ring *pring, uint32_t mask)
2854 {
2855 struct lpfc_pgp *pgp;
2856 IOCB_t *entry;
2857 IOCB_t *irsp = NULL;
2858 struct lpfc_iocbq *rspiocbp = NULL;
2859 uint32_t portRspPut, portRspMax;
2860 unsigned long iflag;
2861 uint32_t status;
2862
2863 pgp = &phba->port_gp[pring->ringno];
2864 spin_lock_irqsave(&phba->hbalock, iflag);
2865 pring->stats.iocb_event++;
2866
2867 /*
2868 * The next available response entry should never exceed the maximum
2869 * entries. If it does, treat it as an adapter hardware error.
2870 */
2871 portRspMax = pring->numRiocb;
2872 portRspPut = le32_to_cpu(pgp->rspPutInx);
2873 if (portRspPut >= portRspMax) {
2874 /*
2875 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2876 * rsp ring <portRspMax>
2877 */
2878 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2879 "0303 Ring %d handler: portRspPut %d "
2880 "is bigger than rsp ring %d\n",
2881 pring->ringno, portRspPut, portRspMax);
2882
2883 phba->link_state = LPFC_HBA_ERROR;
2884 spin_unlock_irqrestore(&phba->hbalock, iflag);
2885
2886 phba->work_hs = HS_FFER3;
2887 lpfc_handle_eratt(phba);
2888
2889 return;
2890 }
2891
2892 rmb();
2893 while (pring->rspidx != portRspPut) {
2894 /*
2895 * Build a completion list and call the appropriate handler.
2896 * The process is to get the next available response iocb, get
2897 * a free iocb from the list, copy the response data into the
2898 * free iocb, insert to the continuation list, and update the
2899 * next response index to slim. This process makes response
2900 * iocb's in the ring available to DMA as fast as possible but
2901 * pays a penalty for a copy operation. Since the iocb is
2902 * only 32 bytes, this penalty is considered small relative to
2903 * the PCI reads for register values and a slim write. When
2904 * the ulpLe field is set, the entire Command has been
2905 * received.
2906 */
2907 entry = lpfc_resp_iocb(phba, pring);
2908
2909 phba->last_completion_time = jiffies;
2910 rspiocbp = __lpfc_sli_get_iocbq(phba);
2911 if (rspiocbp == NULL) {
2912 printk(KERN_ERR "%s: out of buffers! Failing "
2913 "completion.\n", __func__);
2914 break;
2915 }
2916
2917 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
2918 phba->iocb_rsp_size);
2919 irsp = &rspiocbp->iocb;
2920
2921 if (++pring->rspidx >= portRspMax)
2922 pring->rspidx = 0;
2923
2924 if (pring->ringno == LPFC_ELS_RING) {
2925 lpfc_debugfs_slow_ring_trc(phba,
2926 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
2927 *(((uint32_t *) irsp) + 4),
2928 *(((uint32_t *) irsp) + 6),
2929 *(((uint32_t *) irsp) + 7));
2930 }
2931
2932 writel(pring->rspidx, &phba->host_gp[pring->ringno].rspGetInx);
2933
2934 spin_unlock_irqrestore(&phba->hbalock, iflag);
2935 /* Handle the response IOCB */
2936 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
2937 spin_lock_irqsave(&phba->hbalock, iflag);
2938
2939 /*
2940 * If the port response put pointer has not been updated, sync
2941 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
2942 * response put pointer.
2943 */
2944 if (pring->rspidx == portRspPut) {
2945 portRspPut = le32_to_cpu(pgp->rspPutInx);
2946 }
2947 } /* while (pring->rspidx != portRspPut) */
2948
2949 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
2950 /* At least one response entry has been freed */
2951 pring->stats.iocb_rsp_full++;
2952 /* SET RxRE_RSP in Chip Att register */
2953 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
2954 writel(status, phba->CAregaddr);
2955 readl(phba->CAregaddr); /* flush */
2956 }
2957 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
2958 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
2959 pring->stats.iocb_cmd_empty++;
2960
2961 /* Force update of the local copy of cmdGetInx */
2962 pring->local_getidx = le32_to_cpu(pgp->cmdGetInx);
2963 lpfc_sli_resume_iocb(phba, pring);
2964
2965 if ((pring->lpfc_sli_cmd_available))
2966 (pring->lpfc_sli_cmd_available) (phba, pring);
2967
2968 }
2969
2970 spin_unlock_irqrestore(&phba->hbalock, iflag);
2971 return;
2972 }
2973
2974 /**
2975 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
2976 * @phba: Pointer to HBA context object.
2977 * @pring: Pointer to driver SLI ring object.
2978 * @mask: Host attention register mask for this ring.
2979 *
2980 * This function is called from the worker thread when there is a pending
2981 * ELS response iocb on the driver internal slow-path response iocb worker
2982 * queue. The caller does not hold any lock. The function will remove each
2983 * response iocb from the response worker queue and calls the handle
2984 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
2985 **/
2986 static void
2987 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
2988 struct lpfc_sli_ring *pring, uint32_t mask)
2989 {
2990 struct lpfc_iocbq *irspiocbq;
2991 struct hbq_dmabuf *dmabuf;
2992 struct lpfc_cq_event *cq_event;
2993 unsigned long iflag;
2994
2995 spin_lock_irqsave(&phba->hbalock, iflag);
2996 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
2997 spin_unlock_irqrestore(&phba->hbalock, iflag);
2998 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
2999 /* Get the response iocb from the head of work queue */
3000 spin_lock_irqsave(&phba->hbalock, iflag);
3001 list_remove_head(&phba->sli4_hba.sp_queue_event,
3002 cq_event, struct lpfc_cq_event, list);
3003 spin_unlock_irqrestore(&phba->hbalock, iflag);
3004
3005 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3006 case CQE_CODE_COMPL_WQE:
3007 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3008 cq_event);
3009 /* Translate ELS WCQE to response IOCBQ */
3010 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3011 irspiocbq);
3012 if (irspiocbq)
3013 lpfc_sli_sp_handle_rspiocb(phba, pring,
3014 irspiocbq);
3015 break;
3016 case CQE_CODE_RECEIVE:
3017 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3018 cq_event);
3019 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3020 break;
3021 default:
3022 break;
3023 }
3024 }
3025 }
3026
3027 /**
3028 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3029 * @phba: Pointer to HBA context object.
3030 * @pring: Pointer to driver SLI ring object.
3031 *
3032 * This function aborts all iocbs in the given ring and frees all the iocb
3033 * objects in txq. This function issues an abort iocb for all the iocb commands
3034 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3035 * the return of this function. The caller is not required to hold any locks.
3036 **/
3037 void
3038 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3039 {
3040 LIST_HEAD(completions);
3041 struct lpfc_iocbq *iocb, *next_iocb;
3042
3043 if (pring->ringno == LPFC_ELS_RING) {
3044 lpfc_fabric_abort_hba(phba);
3045 }
3046
3047 /* Error everything on txq and txcmplq
3048 * First do the txq.
3049 */
3050 spin_lock_irq(&phba->hbalock);
3051 list_splice_init(&pring->txq, &completions);
3052 pring->txq_cnt = 0;
3053
3054 /* Next issue ABTS for everything on the txcmplq */
3055 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3056 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3057
3058 spin_unlock_irq(&phba->hbalock);
3059
3060 /* Cancel all the IOCBs from the completions list */
3061 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3062 IOERR_SLI_ABORTED);
3063 }
3064
3065 /**
3066 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3067 * @phba: Pointer to HBA context object.
3068 *
3069 * This function flushes all iocbs in the fcp ring and frees all the iocb
3070 * objects in txq and txcmplq. This function will not issue abort iocbs
3071 * for all the iocb commands in txcmplq, they will just be returned with
3072 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3073 * slot has been permanently disabled.
3074 **/
3075 void
3076 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3077 {
3078 LIST_HEAD(txq);
3079 LIST_HEAD(txcmplq);
3080 struct lpfc_sli *psli = &phba->sli;
3081 struct lpfc_sli_ring *pring;
3082
3083 /* Currently, only one fcp ring */
3084 pring = &psli->ring[psli->fcp_ring];
3085
3086 spin_lock_irq(&phba->hbalock);
3087 /* Retrieve everything on txq */
3088 list_splice_init(&pring->txq, &txq);
3089 pring->txq_cnt = 0;
3090
3091 /* Retrieve everything on the txcmplq */
3092 list_splice_init(&pring->txcmplq, &txcmplq);
3093 pring->txcmplq_cnt = 0;
3094 spin_unlock_irq(&phba->hbalock);
3095
3096 /* Flush the txq */
3097 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3098 IOERR_SLI_DOWN);
3099
3100 /* Flush the txcmpq */
3101 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3102 IOERR_SLI_DOWN);
3103 }
3104
3105 /**
3106 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3107 * @phba: Pointer to HBA context object.
3108 * @mask: Bit mask to be checked.
3109 *
3110 * This function reads the host status register and compares
3111 * with the provided bit mask to check if HBA completed
3112 * the restart. This function will wait in a loop for the
3113 * HBA to complete restart. If the HBA does not restart within
3114 * 15 iterations, the function will reset the HBA again. The
3115 * function returns 1 when HBA fail to restart otherwise returns
3116 * zero.
3117 **/
3118 static int
3119 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3120 {
3121 uint32_t status;
3122 int i = 0;
3123 int retval = 0;
3124
3125 /* Read the HBA Host Status Register */
3126 status = readl(phba->HSregaddr);
3127
3128 /*
3129 * Check status register every 100ms for 5 retries, then every
3130 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3131 * every 2.5 sec for 4.
3132 * Break our of the loop if errors occurred during init.
3133 */
3134 while (((status & mask) != mask) &&
3135 !(status & HS_FFERM) &&
3136 i++ < 20) {
3137
3138 if (i <= 5)
3139 msleep(10);
3140 else if (i <= 10)
3141 msleep(500);
3142 else
3143 msleep(2500);
3144
3145 if (i == 15) {
3146 /* Do post */
3147 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3148 lpfc_sli_brdrestart(phba);
3149 }
3150 /* Read the HBA Host Status Register */
3151 status = readl(phba->HSregaddr);
3152 }
3153
3154 /* Check to see if any errors occurred during init */
3155 if ((status & HS_FFERM) || (i >= 20)) {
3156 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3157 "2751 Adapter failed to restart, "
3158 "status reg x%x, FW Data: A8 x%x AC x%x\n",
3159 status,
3160 readl(phba->MBslimaddr + 0xa8),
3161 readl(phba->MBslimaddr + 0xac));
3162 phba->link_state = LPFC_HBA_ERROR;
3163 retval = 1;
3164 }
3165
3166 return retval;
3167 }
3168
3169 /**
3170 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3171 * @phba: Pointer to HBA context object.
3172 * @mask: Bit mask to be checked.
3173 *
3174 * This function checks the host status register to check if HBA is
3175 * ready. This function will wait in a loop for the HBA to be ready
3176 * If the HBA is not ready , the function will will reset the HBA PCI
3177 * function again. The function returns 1 when HBA fail to be ready
3178 * otherwise returns zero.
3179 **/
3180 static int
3181 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3182 {
3183 uint32_t status;
3184 int retval = 0;
3185
3186 /* Read the HBA Host Status Register */
3187 status = lpfc_sli4_post_status_check(phba);
3188
3189 if (status) {
3190 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3191 lpfc_sli_brdrestart(phba);
3192 status = lpfc_sli4_post_status_check(phba);
3193 }
3194
3195 /* Check to see if any errors occurred during init */
3196 if (status) {
3197 phba->link_state = LPFC_HBA_ERROR;
3198 retval = 1;
3199 } else
3200 phba->sli4_hba.intr_enable = 0;
3201
3202 return retval;
3203 }
3204
3205 /**
3206 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3207 * @phba: Pointer to HBA context object.
3208 * @mask: Bit mask to be checked.
3209 *
3210 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3211 * from the API jump table function pointer from the lpfc_hba struct.
3212 **/
3213 int
3214 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3215 {
3216 return phba->lpfc_sli_brdready(phba, mask);
3217 }
3218
3219 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3220
3221 /**
3222 * lpfc_reset_barrier - Make HBA ready for HBA reset
3223 * @phba: Pointer to HBA context object.
3224 *
3225 * This function is called before resetting an HBA. This
3226 * function requests HBA to quiesce DMAs before a reset.
3227 **/
3228 void lpfc_reset_barrier(struct lpfc_hba *phba)
3229 {
3230 uint32_t __iomem *resp_buf;
3231 uint32_t __iomem *mbox_buf;
3232 volatile uint32_t mbox;
3233 uint32_t hc_copy;
3234 int i;
3235 uint8_t hdrtype;
3236
3237 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
3238 if (hdrtype != 0x80 ||
3239 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
3240 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
3241 return;
3242
3243 /*
3244 * Tell the other part of the chip to suspend temporarily all
3245 * its DMA activity.
3246 */
3247 resp_buf = phba->MBslimaddr;
3248
3249 /* Disable the error attention */
3250 hc_copy = readl(phba->HCregaddr);
3251 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
3252 readl(phba->HCregaddr); /* flush */
3253 phba->link_flag |= LS_IGNORE_ERATT;
3254
3255 if (readl(phba->HAregaddr) & HA_ERATT) {
3256 /* Clear Chip error bit */
3257 writel(HA_ERATT, phba->HAregaddr);
3258 phba->pport->stopped = 1;
3259 }
3260
3261 mbox = 0;
3262 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
3263 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
3264
3265 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
3266 mbox_buf = phba->MBslimaddr;
3267 writel(mbox, mbox_buf);
3268
3269 for (i = 0;
3270 readl(resp_buf + 1) != ~(BARRIER_TEST_PATTERN) && i < 50; i++)
3271 mdelay(1);
3272
3273 if (readl(resp_buf + 1) != ~(BARRIER_TEST_PATTERN)) {
3274 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
3275 phba->pport->stopped)
3276 goto restore_hc;
3277 else
3278 goto clear_errat;
3279 }
3280
3281 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
3282 for (i = 0; readl(resp_buf) != mbox && i < 500; i++)
3283 mdelay(1);
3284
3285 clear_errat:
3286
3287 while (!(readl(phba->HAregaddr) & HA_ERATT) && ++i < 500)
3288 mdelay(1);
3289
3290 if (readl(phba->HAregaddr) & HA_ERATT) {
3291 writel(HA_ERATT, phba->HAregaddr);
3292 phba->pport->stopped = 1;
3293 }
3294
3295 restore_hc:
3296 phba->link_flag &= ~LS_IGNORE_ERATT;
3297 writel(hc_copy, phba->HCregaddr);
3298 readl(phba->HCregaddr); /* flush */
3299 }
3300
3301 /**
3302 * lpfc_sli_brdkill - Issue a kill_board mailbox command
3303 * @phba: Pointer to HBA context object.
3304 *
3305 * This function issues a kill_board mailbox command and waits for
3306 * the error attention interrupt. This function is called for stopping
3307 * the firmware processing. The caller is not required to hold any
3308 * locks. This function calls lpfc_hba_down_post function to free
3309 * any pending commands after the kill. The function will return 1 when it
3310 * fails to kill the board else will return 0.
3311 **/
3312 int
3313 lpfc_sli_brdkill(struct lpfc_hba *phba)
3314 {
3315 struct lpfc_sli *psli;
3316 LPFC_MBOXQ_t *pmb;
3317 uint32_t status;
3318 uint32_t ha_copy;
3319 int retval;
3320 int i = 0;
3321
3322 psli = &phba->sli;
3323
3324 /* Kill HBA */
3325 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3326 "0329 Kill HBA Data: x%x x%x\n",
3327 phba->pport->port_state, psli->sli_flag);
3328
3329 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
3330 if (!pmb)
3331 return 1;
3332
3333 /* Disable the error attention */
3334 spin_lock_irq(&phba->hbalock);
3335 status = readl(phba->HCregaddr);
3336 status &= ~HC_ERINT_ENA;
3337 writel(status, phba->HCregaddr);
3338 readl(phba->HCregaddr); /* flush */
3339 phba->link_flag |= LS_IGNORE_ERATT;
3340 spin_unlock_irq(&phba->hbalock);
3341
3342 lpfc_kill_board(phba, pmb);
3343 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
3344 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3345
3346 if (retval != MBX_SUCCESS) {
3347 if (retval != MBX_BUSY)
3348 mempool_free(pmb, phba->mbox_mem_pool);
3349 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3350 "2752 KILL_BOARD command failed retval %d\n",
3351 retval);
3352 spin_lock_irq(&phba->hbalock);
3353 phba->link_flag &= ~LS_IGNORE_ERATT;
3354 spin_unlock_irq(&phba->hbalock);
3355 return 1;
3356 }
3357
3358 spin_lock_irq(&phba->hbalock);
3359 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
3360 spin_unlock_irq(&phba->hbalock);
3361
3362 mempool_free(pmb, phba->mbox_mem_pool);
3363
3364 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
3365 * attention every 100ms for 3 seconds. If we don't get ERATT after
3366 * 3 seconds we still set HBA_ERROR state because the status of the
3367 * board is now undefined.
3368 */
3369 ha_copy = readl(phba->HAregaddr);
3370
3371 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
3372 mdelay(100);
3373 ha_copy = readl(phba->HAregaddr);
3374 }
3375
3376 del_timer_sync(&psli->mbox_tmo);
3377 if (ha_copy & HA_ERATT) {
3378 writel(HA_ERATT, phba->HAregaddr);
3379 phba->pport->stopped = 1;
3380 }
3381 spin_lock_irq(&phba->hbalock);
3382 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
3383 psli->mbox_active = NULL;
3384 phba->link_flag &= ~LS_IGNORE_ERATT;
3385 spin_unlock_irq(&phba->hbalock);
3386
3387 lpfc_hba_down_post(phba);
3388 phba->link_state = LPFC_HBA_ERROR;
3389
3390 return ha_copy & HA_ERATT ? 0 : 1;
3391 }
3392
3393 /**
3394 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
3395 * @phba: Pointer to HBA context object.
3396 *
3397 * This function resets the HBA by writing HC_INITFF to the control
3398 * register. After the HBA resets, this function resets all the iocb ring
3399 * indices. This function disables PCI layer parity checking during
3400 * the reset.
3401 * This function returns 0 always.
3402 * The caller is not required to hold any locks.
3403 **/
3404 int
3405 lpfc_sli_brdreset(struct lpfc_hba *phba)
3406 {
3407 struct lpfc_sli *psli;
3408 struct lpfc_sli_ring *pring;
3409 uint16_t cfg_value;
3410 int i;
3411
3412 psli = &phba->sli;
3413
3414 /* Reset HBA */
3415 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3416 "0325 Reset HBA Data: x%x x%x\n",
3417 phba->pport->port_state, psli->sli_flag);
3418
3419 /* perform board reset */
3420 phba->fc_eventTag = 0;
3421 phba->link_events = 0;
3422 phba->pport->fc_myDID = 0;
3423 phba->pport->fc_prevDID = 0;
3424
3425 /* Turn off parity checking and serr during the physical reset */
3426 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
3427 pci_write_config_word(phba->pcidev, PCI_COMMAND,
3428 (cfg_value &
3429 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
3430
3431 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
3432
3433 /* Now toggle INITFF bit in the Host Control Register */
3434 writel(HC_INITFF, phba->HCregaddr);
3435 mdelay(1);
3436 readl(phba->HCregaddr); /* flush */
3437 writel(0, phba->HCregaddr);
3438 readl(phba->HCregaddr); /* flush */
3439
3440 /* Restore PCI cmd register */
3441 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
3442
3443 /* Initialize relevant SLI info */
3444 for (i = 0; i < psli->num_rings; i++) {
3445 pring = &psli->ring[i];
3446 pring->flag = 0;
3447 pring->rspidx = 0;
3448 pring->next_cmdidx = 0;
3449 pring->local_getidx = 0;
3450 pring->cmdidx = 0;
3451 pring->missbufcnt = 0;
3452 }
3453
3454 phba->link_state = LPFC_WARM_START;
3455 return 0;
3456 }
3457
3458 /**
3459 * lpfc_sli4_brdreset - Reset a sli-4 HBA
3460 * @phba: Pointer to HBA context object.
3461 *
3462 * This function resets a SLI4 HBA. This function disables PCI layer parity
3463 * checking during resets the device. The caller is not required to hold
3464 * any locks.
3465 *
3466 * This function returns 0 always.
3467 **/
3468 int
3469 lpfc_sli4_brdreset(struct lpfc_hba *phba)
3470 {
3471 struct lpfc_sli *psli = &phba->sli;
3472 uint16_t cfg_value;
3473 uint8_t qindx;
3474
3475 /* Reset HBA */
3476 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3477 "0295 Reset HBA Data: x%x x%x\n",
3478 phba->pport->port_state, psli->sli_flag);
3479
3480 /* perform board reset */
3481 phba->fc_eventTag = 0;
3482 phba->link_events = 0;
3483 phba->pport->fc_myDID = 0;
3484 phba->pport->fc_prevDID = 0;
3485
3486 /* Turn off parity checking and serr during the physical reset */
3487 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
3488 pci_write_config_word(phba->pcidev, PCI_COMMAND,
3489 (cfg_value &
3490 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
3491
3492 spin_lock_irq(&phba->hbalock);
3493 psli->sli_flag &= ~(LPFC_PROCESS_LA);
3494 phba->fcf.fcf_flag = 0;
3495 /* Clean up the child queue list for the CQs */
3496 list_del_init(&phba->sli4_hba.mbx_wq->list);
3497 list_del_init(&phba->sli4_hba.els_wq->list);
3498 list_del_init(&phba->sli4_hba.hdr_rq->list);
3499 list_del_init(&phba->sli4_hba.dat_rq->list);
3500 list_del_init(&phba->sli4_hba.mbx_cq->list);
3501 list_del_init(&phba->sli4_hba.els_cq->list);
3502 for (qindx = 0; qindx < phba->cfg_fcp_wq_count; qindx++)
3503 list_del_init(&phba->sli4_hba.fcp_wq[qindx]->list);
3504 for (qindx = 0; qindx < phba->cfg_fcp_eq_count; qindx++)
3505 list_del_init(&phba->sli4_hba.fcp_cq[qindx]->list);
3506 spin_unlock_irq(&phba->hbalock);
3507
3508 /* Now physically reset the device */
3509 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3510 "0389 Performing PCI function reset!\n");
3511 /* Perform FCoE PCI function reset */
3512 lpfc_pci_function_reset(phba);
3513
3514 return 0;
3515 }
3516
3517 /**
3518 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
3519 * @phba: Pointer to HBA context object.
3520 *
3521 * This function is called in the SLI initialization code path to
3522 * restart the HBA. The caller is not required to hold any lock.
3523 * This function writes MBX_RESTART mailbox command to the SLIM and
3524 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
3525 * function to free any pending commands. The function enables
3526 * POST only during the first initialization. The function returns zero.
3527 * The function does not guarantee completion of MBX_RESTART mailbox
3528 * command before the return of this function.
3529 **/
3530 static int
3531 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
3532 {
3533 MAILBOX_t *mb;
3534 struct lpfc_sli *psli;
3535 volatile uint32_t word0;
3536 void __iomem *to_slim;
3537 uint32_t hba_aer_enabled;
3538
3539 spin_lock_irq(&phba->hbalock);
3540
3541 /* Take PCIe device Advanced Error Reporting (AER) state */
3542 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
3543
3544 psli = &phba->sli;
3545
3546 /* Restart HBA */
3547 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3548 "0337 Restart HBA Data: x%x x%x\n",
3549 phba->pport->port_state, psli->sli_flag);
3550
3551 word0 = 0;
3552 mb = (MAILBOX_t *) &word0;
3553 mb->mbxCommand = MBX_RESTART;
3554 mb->mbxHc = 1;
3555
3556 lpfc_reset_barrier(phba);
3557
3558 to_slim = phba->MBslimaddr;
3559 writel(*(uint32_t *) mb, to_slim);
3560 readl(to_slim); /* flush */
3561
3562 /* Only skip post after fc_ffinit is completed */
3563 if (phba->pport->port_state)
3564 word0 = 1; /* This is really setting up word1 */
3565 else
3566 word0 = 0; /* This is really setting up word1 */
3567 to_slim = phba->MBslimaddr + sizeof (uint32_t);
3568 writel(*(uint32_t *) mb, to_slim);
3569 readl(to_slim); /* flush */
3570
3571 lpfc_sli_brdreset(phba);
3572 phba->pport->stopped = 0;
3573 phba->link_state = LPFC_INIT_START;
3574 phba->hba_flag = 0;
3575 spin_unlock_irq(&phba->hbalock);
3576
3577 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
3578 psli->stats_start = get_seconds();
3579
3580 /* Give the INITFF and Post time to settle. */
3581 mdelay(100);
3582
3583 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
3584 if (hba_aer_enabled)
3585 pci_disable_pcie_error_reporting(phba->pcidev);
3586
3587 lpfc_hba_down_post(phba);
3588
3589 return 0;
3590 }
3591
3592 /**
3593 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
3594 * @phba: Pointer to HBA context object.
3595 *
3596 * This function is called in the SLI initialization code path to restart
3597 * a SLI4 HBA. The caller is not required to hold any lock.
3598 * At the end of the function, it calls lpfc_hba_down_post function to
3599 * free any pending commands.
3600 **/
3601 static int
3602 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
3603 {
3604 struct lpfc_sli *psli = &phba->sli;
3605 uint32_t hba_aer_enabled;
3606
3607 /* Restart HBA */
3608 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3609 "0296 Restart HBA Data: x%x x%x\n",
3610 phba->pport->port_state, psli->sli_flag);
3611
3612 /* Take PCIe device Advanced Error Reporting (AER) state */
3613 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
3614
3615 lpfc_sli4_brdreset(phba);
3616
3617 spin_lock_irq(&phba->hbalock);
3618 phba->pport->stopped = 0;
3619 phba->link_state = LPFC_INIT_START;
3620 phba->hba_flag = 0;
3621 spin_unlock_irq(&phba->hbalock);
3622
3623 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
3624 psli->stats_start = get_seconds();
3625
3626 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
3627 if (hba_aer_enabled)
3628 pci_disable_pcie_error_reporting(phba->pcidev);
3629
3630 lpfc_hba_down_post(phba);
3631
3632 return 0;
3633 }
3634
3635 /**
3636 * lpfc_sli_brdrestart - Wrapper func for restarting hba
3637 * @phba: Pointer to HBA context object.
3638 *
3639 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
3640 * API jump table function pointer from the lpfc_hba struct.
3641 **/
3642 int
3643 lpfc_sli_brdrestart(struct lpfc_hba *phba)
3644 {
3645 return phba->lpfc_sli_brdrestart(phba);
3646 }
3647
3648 /**
3649 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
3650 * @phba: Pointer to HBA context object.
3651 *
3652 * This function is called after a HBA restart to wait for successful
3653 * restart of the HBA. Successful restart of the HBA is indicated by
3654 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
3655 * iteration, the function will restart the HBA again. The function returns
3656 * zero if HBA successfully restarted else returns negative error code.
3657 **/
3658 static int
3659 lpfc_sli_chipset_init(struct lpfc_hba *phba)
3660 {
3661 uint32_t status, i = 0;
3662
3663 /* Read the HBA Host Status Register */
3664 status = readl(phba->HSregaddr);
3665
3666 /* Check status register to see what current state is */
3667 i = 0;
3668 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
3669
3670 /* Check every 10ms for 10 retries, then every 100ms for 90
3671 * retries, then every 1 sec for 50 retires for a total of
3672 * ~60 seconds before reset the board again and check every
3673 * 1 sec for 50 retries. The up to 60 seconds before the
3674 * board ready is required by the Falcon FIPS zeroization
3675 * complete, and any reset the board in between shall cause
3676 * restart of zeroization, further delay the board ready.
3677 */
3678 if (i++ >= 200) {
3679 /* Adapter failed to init, timeout, status reg
3680 <status> */
3681 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3682 "0436 Adapter failed to init, "
3683 "timeout, status reg x%x, "
3684 "FW Data: A8 x%x AC x%x\n", status,
3685 readl(phba->MBslimaddr + 0xa8),
3686 readl(phba->MBslimaddr + 0xac));
3687 phba->link_state = LPFC_HBA_ERROR;
3688 return -ETIMEDOUT;
3689 }
3690
3691 /* Check to see if any errors occurred during init */
3692 if (status & HS_FFERM) {
3693 /* ERROR: During chipset initialization */
3694 /* Adapter failed to init, chipset, status reg
3695 <status> */
3696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3697 "0437 Adapter failed to init, "
3698 "chipset, status reg x%x, "
3699 "FW Data: A8 x%x AC x%x\n", status,
3700 readl(phba->MBslimaddr + 0xa8),
3701 readl(phba->MBslimaddr + 0xac));
3702 phba->link_state = LPFC_HBA_ERROR;
3703 return -EIO;
3704 }
3705
3706 if (i <= 10)
3707 msleep(10);
3708 else if (i <= 100)
3709 msleep(100);
3710 else
3711 msleep(1000);
3712
3713 if (i == 150) {
3714 /* Do post */
3715 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3716 lpfc_sli_brdrestart(phba);
3717 }
3718 /* Read the HBA Host Status Register */
3719 status = readl(phba->HSregaddr);
3720 }
3721
3722 /* Check to see if any errors occurred during init */
3723 if (status & HS_FFERM) {
3724 /* ERROR: During chipset initialization */
3725 /* Adapter failed to init, chipset, status reg <status> */
3726 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3727 "0438 Adapter failed to init, chipset, "
3728 "status reg x%x, "
3729 "FW Data: A8 x%x AC x%x\n", status,
3730 readl(phba->MBslimaddr + 0xa8),
3731 readl(phba->MBslimaddr + 0xac));
3732 phba->link_state = LPFC_HBA_ERROR;
3733 return -EIO;
3734 }
3735
3736 /* Clear all interrupt enable conditions */
3737 writel(0, phba->HCregaddr);
3738 readl(phba->HCregaddr); /* flush */
3739
3740 /* setup host attn register */
3741 writel(0xffffffff, phba->HAregaddr);
3742 readl(phba->HAregaddr); /* flush */
3743 return 0;
3744 }
3745
3746 /**
3747 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
3748 *
3749 * This function calculates and returns the number of HBQs required to be
3750 * configured.
3751 **/
3752 int
3753 lpfc_sli_hbq_count(void)
3754 {
3755 return ARRAY_SIZE(lpfc_hbq_defs);
3756 }
3757
3758 /**
3759 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
3760 *
3761 * This function adds the number of hbq entries in every HBQ to get
3762 * the total number of hbq entries required for the HBA and returns
3763 * the total count.
3764 **/
3765 static int
3766 lpfc_sli_hbq_entry_count(void)
3767 {
3768 int hbq_count = lpfc_sli_hbq_count();
3769 int count = 0;
3770 int i;
3771
3772 for (i = 0; i < hbq_count; ++i)
3773 count += lpfc_hbq_defs[i]->entry_count;
3774 return count;
3775 }
3776
3777 /**
3778 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
3779 *
3780 * This function calculates amount of memory required for all hbq entries
3781 * to be configured and returns the total memory required.
3782 **/
3783 int
3784 lpfc_sli_hbq_size(void)
3785 {
3786 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
3787 }
3788
3789 /**
3790 * lpfc_sli_hbq_setup - configure and initialize HBQs
3791 * @phba: Pointer to HBA context object.
3792 *
3793 * This function is called during the SLI initialization to configure
3794 * all the HBQs and post buffers to the HBQ. The caller is not
3795 * required to hold any locks. This function will return zero if successful
3796 * else it will return negative error code.
3797 **/
3798 static int
3799 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
3800 {
3801 int hbq_count = lpfc_sli_hbq_count();
3802 LPFC_MBOXQ_t *pmb;
3803 MAILBOX_t *pmbox;
3804 uint32_t hbqno;
3805 uint32_t hbq_entry_index;
3806
3807 /* Get a Mailbox buffer to setup mailbox
3808 * commands for HBA initialization
3809 */
3810 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
3811
3812 if (!pmb)
3813 return -ENOMEM;
3814
3815 pmbox = &pmb->u.mb;
3816
3817 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
3818 phba->link_state = LPFC_INIT_MBX_CMDS;
3819 phba->hbq_in_use = 1;
3820
3821 hbq_entry_index = 0;
3822 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
3823 phba->hbqs[hbqno].next_hbqPutIdx = 0;
3824 phba->hbqs[hbqno].hbqPutIdx = 0;
3825 phba->hbqs[hbqno].local_hbqGetIdx = 0;
3826 phba->hbqs[hbqno].entry_count =
3827 lpfc_hbq_defs[hbqno]->entry_count;
3828 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
3829 hbq_entry_index, pmb);
3830 hbq_entry_index += phba->hbqs[hbqno].entry_count;
3831
3832 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
3833 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
3834 mbxStatus <status>, ring <num> */
3835
3836 lpfc_printf_log(phba, KERN_ERR,
3837 LOG_SLI | LOG_VPORT,
3838 "1805 Adapter failed to init. "
3839 "Data: x%x x%x x%x\n",
3840 pmbox->mbxCommand,
3841 pmbox->mbxStatus, hbqno);
3842
3843 phba->link_state = LPFC_HBA_ERROR;
3844 mempool_free(pmb, phba->mbox_mem_pool);
3845 return -ENXIO;
3846 }
3847 }
3848 phba->hbq_count = hbq_count;
3849
3850 mempool_free(pmb, phba->mbox_mem_pool);
3851
3852 /* Initially populate or replenish the HBQs */
3853 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
3854 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
3855 return 0;
3856 }
3857
3858 /**
3859 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
3860 * @phba: Pointer to HBA context object.
3861 *
3862 * This function is called during the SLI initialization to configure
3863 * all the HBQs and post buffers to the HBQ. The caller is not
3864 * required to hold any locks. This function will return zero if successful
3865 * else it will return negative error code.
3866 **/
3867 static int
3868 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
3869 {
3870 phba->hbq_in_use = 1;
3871 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count;
3872 phba->hbq_count = 1;
3873 /* Initially populate or replenish the HBQs */
3874 lpfc_sli_hbqbuf_init_hbqs(phba, 0);
3875 return 0;
3876 }
3877
3878 /**
3879 * lpfc_sli_config_port - Issue config port mailbox command
3880 * @phba: Pointer to HBA context object.
3881 * @sli_mode: sli mode - 2/3
3882 *
3883 * This function is called by the sli intialization code path
3884 * to issue config_port mailbox command. This function restarts the
3885 * HBA firmware and issues a config_port mailbox command to configure
3886 * the SLI interface in the sli mode specified by sli_mode
3887 * variable. The caller is not required to hold any locks.
3888 * The function returns 0 if successful, else returns negative error
3889 * code.
3890 **/
3891 int
3892 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
3893 {
3894 LPFC_MBOXQ_t *pmb;
3895 uint32_t resetcount = 0, rc = 0, done = 0;
3896
3897 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
3898 if (!pmb) {
3899 phba->link_state = LPFC_HBA_ERROR;
3900 return -ENOMEM;
3901 }
3902
3903 phba->sli_rev = sli_mode;
3904 while (resetcount < 2 && !done) {
3905 spin_lock_irq(&phba->hbalock);
3906 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
3907 spin_unlock_irq(&phba->hbalock);
3908 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3909 lpfc_sli_brdrestart(phba);
3910 rc = lpfc_sli_chipset_init(phba);
3911 if (rc)
3912 break;
3913
3914 spin_lock_irq(&phba->hbalock);
3915 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
3916 spin_unlock_irq(&phba->hbalock);
3917 resetcount++;
3918
3919 /* Call pre CONFIG_PORT mailbox command initialization. A
3920 * value of 0 means the call was successful. Any other
3921 * nonzero value is a failure, but if ERESTART is returned,
3922 * the driver may reset the HBA and try again.
3923 */
3924 rc = lpfc_config_port_prep(phba);
3925 if (rc == -ERESTART) {
3926 phba->link_state = LPFC_LINK_UNKNOWN;
3927 continue;
3928 } else if (rc)
3929 break;
3930 phba->link_state = LPFC_INIT_MBX_CMDS;
3931 lpfc_config_port(phba, pmb);
3932 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
3933 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
3934 LPFC_SLI3_HBQ_ENABLED |
3935 LPFC_SLI3_CRP_ENABLED |
3936 LPFC_SLI3_BG_ENABLED |
3937 LPFC_SLI3_DSS_ENABLED);
3938 if (rc != MBX_SUCCESS) {
3939 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3940 "0442 Adapter failed to init, mbxCmd x%x "
3941 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
3942 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
3943 spin_lock_irq(&phba->hbalock);
3944 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
3945 spin_unlock_irq(&phba->hbalock);
3946 rc = -ENXIO;
3947 } else {
3948 /* Allow asynchronous mailbox command to go through */
3949 spin_lock_irq(&phba->hbalock);
3950 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
3951 spin_unlock_irq(&phba->hbalock);
3952 done = 1;
3953 }
3954 }
3955 if (!done) {
3956 rc = -EINVAL;
3957 goto do_prep_failed;
3958 }
3959 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
3960 if (!pmb->u.mb.un.varCfgPort.cMA) {
3961 rc = -ENXIO;
3962 goto do_prep_failed;
3963 }
3964 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
3965 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
3966 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
3967 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
3968 phba->max_vpi : phba->max_vports;
3969
3970 } else
3971 phba->max_vpi = 0;
3972 phba->fips_level = 0;
3973 phba->fips_spec_rev = 0;
3974 if (pmb->u.mb.un.varCfgPort.gdss) {
3975 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
3976 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
3977 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
3978 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3979 "2850 Security Crypto Active. FIPS x%d "
3980 "(Spec Rev: x%d)",
3981 phba->fips_level, phba->fips_spec_rev);
3982 }
3983 if (pmb->u.mb.un.varCfgPort.sec_err) {
3984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3985 "2856 Config Port Security Crypto "
3986 "Error: x%x ",
3987 pmb->u.mb.un.varCfgPort.sec_err);
3988 }
3989 if (pmb->u.mb.un.varCfgPort.gerbm)
3990 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
3991 if (pmb->u.mb.un.varCfgPort.gcrp)
3992 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
3993
3994 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
3995 phba->port_gp = phba->mbox->us.s3_pgp.port;
3996
3997 if (phba->cfg_enable_bg) {
3998 if (pmb->u.mb.un.varCfgPort.gbg)
3999 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4000 else
4001 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4002 "0443 Adapter did not grant "
4003 "BlockGuard\n");
4004 }
4005 } else {
4006 phba->hbq_get = NULL;
4007 phba->port_gp = phba->mbox->us.s2.port;
4008 phba->max_vpi = 0;
4009 }
4010 do_prep_failed:
4011 mempool_free(pmb, phba->mbox_mem_pool);
4012 return rc;
4013 }
4014
4015
4016 /**
4017 * lpfc_sli_hba_setup - SLI intialization function
4018 * @phba: Pointer to HBA context object.
4019 *
4020 * This function is the main SLI intialization function. This function
4021 * is called by the HBA intialization code, HBA reset code and HBA
4022 * error attention handler code. Caller is not required to hold any
4023 * locks. This function issues config_port mailbox command to configure
4024 * the SLI, setup iocb rings and HBQ rings. In the end the function
4025 * calls the config_port_post function to issue init_link mailbox
4026 * command and to start the discovery. The function will return zero
4027 * if successful, else it will return negative error code.
4028 **/
4029 int
4030 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4031 {
4032 uint32_t rc;
4033 int mode = 3;
4034
4035 switch (lpfc_sli_mode) {
4036 case 2:
4037 if (phba->cfg_enable_npiv) {
4038 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4039 "1824 NPIV enabled: Override lpfc_sli_mode "
4040 "parameter (%d) to auto (0).\n",
4041 lpfc_sli_mode);
4042 break;
4043 }
4044 mode = 2;
4045 break;
4046 case 0:
4047 case 3:
4048 break;
4049 default:
4050 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4051 "1819 Unrecognized lpfc_sli_mode "
4052 "parameter: %d.\n", lpfc_sli_mode);
4053
4054 break;
4055 }
4056
4057 rc = lpfc_sli_config_port(phba, mode);
4058
4059 if (rc && lpfc_sli_mode == 3)
4060 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4061 "1820 Unable to select SLI-3. "
4062 "Not supported by adapter.\n");
4063 if (rc && mode != 2)
4064 rc = lpfc_sli_config_port(phba, 2);
4065 if (rc)
4066 goto lpfc_sli_hba_setup_error;
4067
4068 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4069 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4070 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4071 if (!rc) {
4072 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4073 "2709 This device supports "
4074 "Advanced Error Reporting (AER)\n");
4075 spin_lock_irq(&phba->hbalock);
4076 phba->hba_flag |= HBA_AER_ENABLED;
4077 spin_unlock_irq(&phba->hbalock);
4078 } else {
4079 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4080 "2708 This device does not support "
4081 "Advanced Error Reporting (AER)\n");
4082 phba->cfg_aer_support = 0;
4083 }
4084 }
4085
4086 if (phba->sli_rev == 3) {
4087 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4088 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4089 } else {
4090 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4091 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4092 phba->sli3_options = 0;
4093 }
4094
4095 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4096 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
4097 phba->sli_rev, phba->max_vpi);
4098 rc = lpfc_sli_ring_map(phba);
4099
4100 if (rc)
4101 goto lpfc_sli_hba_setup_error;
4102
4103 /* Init HBQs */
4104 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4105 rc = lpfc_sli_hbq_setup(phba);
4106 if (rc)
4107 goto lpfc_sli_hba_setup_error;
4108 }
4109 spin_lock_irq(&phba->hbalock);
4110 phba->sli.sli_flag |= LPFC_PROCESS_LA;
4111 spin_unlock_irq(&phba->hbalock);
4112
4113 rc = lpfc_config_port_post(phba);
4114 if (rc)
4115 goto lpfc_sli_hba_setup_error;
4116
4117 return rc;
4118
4119 lpfc_sli_hba_setup_error:
4120 phba->link_state = LPFC_HBA_ERROR;
4121 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4122 "0445 Firmware initialization failed\n");
4123 return rc;
4124 }
4125
4126 /**
4127 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4128 * @phba: Pointer to HBA context object.
4129 * @mboxq: mailbox pointer.
4130 * This function issue a dump mailbox command to read config region
4131 * 23 and parse the records in the region and populate driver
4132 * data structure.
4133 **/
4134 static int
4135 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba,
4136 LPFC_MBOXQ_t *mboxq)
4137 {
4138 struct lpfc_dmabuf *mp;
4139 struct lpfc_mqe *mqe;
4140 uint32_t data_length;
4141 int rc;
4142
4143 /* Program the default value of vlan_id and fc_map */
4144 phba->valid_vlan = 0;
4145 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
4146 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
4147 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
4148
4149 mqe = &mboxq->u.mqe;
4150 if (lpfc_dump_fcoe_param(phba, mboxq))
4151 return -ENOMEM;
4152
4153 mp = (struct lpfc_dmabuf *) mboxq->context1;
4154 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4155
4156 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4157 "(%d):2571 Mailbox cmd x%x Status x%x "
4158 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4159 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4160 "CQ: x%x x%x x%x x%x\n",
4161 mboxq->vport ? mboxq->vport->vpi : 0,
4162 bf_get(lpfc_mqe_command, mqe),
4163 bf_get(lpfc_mqe_status, mqe),
4164 mqe->un.mb_words[0], mqe->un.mb_words[1],
4165 mqe->un.mb_words[2], mqe->un.mb_words[3],
4166 mqe->un.mb_words[4], mqe->un.mb_words[5],
4167 mqe->un.mb_words[6], mqe->un.mb_words[7],
4168 mqe->un.mb_words[8], mqe->un.mb_words[9],
4169 mqe->un.mb_words[10], mqe->un.mb_words[11],
4170 mqe->un.mb_words[12], mqe->un.mb_words[13],
4171 mqe->un.mb_words[14], mqe->un.mb_words[15],
4172 mqe->un.mb_words[16], mqe->un.mb_words[50],
4173 mboxq->mcqe.word0,
4174 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
4175 mboxq->mcqe.trailer);
4176
4177 if (rc) {
4178 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4179 kfree(mp);
4180 return -EIO;
4181 }
4182 data_length = mqe->un.mb_words[5];
4183 if (data_length > DMP_RGN23_SIZE) {
4184 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4185 kfree(mp);
4186 return -EIO;
4187 }
4188
4189 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
4190 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4191 kfree(mp);
4192 return 0;
4193 }
4194
4195 /**
4196 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
4197 * @phba: pointer to lpfc hba data structure.
4198 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
4199 * @vpd: pointer to the memory to hold resulting port vpd data.
4200 * @vpd_size: On input, the number of bytes allocated to @vpd.
4201 * On output, the number of data bytes in @vpd.
4202 *
4203 * This routine executes a READ_REV SLI4 mailbox command. In
4204 * addition, this routine gets the port vpd data.
4205 *
4206 * Return codes
4207 * 0 - successful
4208 * -ENOMEM - could not allocated memory.
4209 **/
4210 static int
4211 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
4212 uint8_t *vpd, uint32_t *vpd_size)
4213 {
4214 int rc = 0;
4215 uint32_t dma_size;
4216 struct lpfc_dmabuf *dmabuf;
4217 struct lpfc_mqe *mqe;
4218
4219 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
4220 if (!dmabuf)
4221 return -ENOMEM;
4222
4223 /*
4224 * Get a DMA buffer for the vpd data resulting from the READ_REV
4225 * mailbox command.
4226 */
4227 dma_size = *vpd_size;
4228 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
4229 dma_size,
4230 &dmabuf->phys,
4231 GFP_KERNEL);
4232 if (!dmabuf->virt) {
4233 kfree(dmabuf);
4234 return -ENOMEM;
4235 }
4236 memset(dmabuf->virt, 0, dma_size);
4237
4238 /*
4239 * The SLI4 implementation of READ_REV conflicts at word1,
4240 * bits 31:16 and SLI4 adds vpd functionality not present
4241 * in SLI3. This code corrects the conflicts.
4242 */
4243 lpfc_read_rev(phba, mboxq);
4244 mqe = &mboxq->u.mqe;
4245 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
4246 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
4247 mqe->un.read_rev.word1 &= 0x0000FFFF;
4248 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
4249 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
4250
4251 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4252 if (rc) {
4253 dma_free_coherent(&phba->pcidev->dev, dma_size,
4254 dmabuf->virt, dmabuf->phys);
4255 kfree(dmabuf);
4256 return -EIO;
4257 }
4258
4259 /*
4260 * The available vpd length cannot be bigger than the
4261 * DMA buffer passed to the port. Catch the less than
4262 * case and update the caller's size.
4263 */
4264 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
4265 *vpd_size = mqe->un.read_rev.avail_vpd_len;
4266
4267 memcpy(vpd, dmabuf->virt, *vpd_size);
4268
4269 dma_free_coherent(&phba->pcidev->dev, dma_size,
4270 dmabuf->virt, dmabuf->phys);
4271 kfree(dmabuf);
4272 return 0;
4273 }
4274
4275 /**
4276 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
4277 * @phba: pointer to lpfc hba data structure.
4278 *
4279 * This routine is called to explicitly arm the SLI4 device's completion and
4280 * event queues
4281 **/
4282 static void
4283 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
4284 {
4285 uint8_t fcp_eqidx;
4286
4287 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
4288 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
4289 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_eq_count; fcp_eqidx++)
4290 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx],
4291 LPFC_QUEUE_REARM);
4292 lpfc_sli4_eq_release(phba->sli4_hba.sp_eq, LPFC_QUEUE_REARM);
4293 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_eq_count; fcp_eqidx++)
4294 lpfc_sli4_eq_release(phba->sli4_hba.fp_eq[fcp_eqidx],
4295 LPFC_QUEUE_REARM);
4296 }
4297
4298 /**
4299 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function
4300 * @phba: Pointer to HBA context object.
4301 *
4302 * This function is the main SLI4 device intialization PCI function. This
4303 * function is called by the HBA intialization code, HBA reset code and
4304 * HBA error attention handler code. Caller is not required to hold any
4305 * locks.
4306 **/
4307 int
4308 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
4309 {
4310 int rc;
4311 LPFC_MBOXQ_t *mboxq;
4312 struct lpfc_mqe *mqe;
4313 uint8_t *vpd;
4314 uint32_t vpd_size;
4315 uint32_t ftr_rsp = 0;
4316 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
4317 struct lpfc_vport *vport = phba->pport;
4318 struct lpfc_dmabuf *mp;
4319
4320 /* Perform a PCI function reset to start from clean */
4321 rc = lpfc_pci_function_reset(phba);
4322 if (unlikely(rc))
4323 return -ENODEV;
4324
4325 /* Check the HBA Host Status Register for readyness */
4326 rc = lpfc_sli4_post_status_check(phba);
4327 if (unlikely(rc))
4328 return -ENODEV;
4329 else {
4330 spin_lock_irq(&phba->hbalock);
4331 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
4332 spin_unlock_irq(&phba->hbalock);
4333 }
4334
4335 /*
4336 * Allocate a single mailbox container for initializing the
4337 * port.
4338 */
4339 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4340 if (!mboxq)
4341 return -ENOMEM;
4342
4343 /*
4344 * Continue initialization with default values even if driver failed
4345 * to read FCoE param config regions
4346 */
4347 if (lpfc_sli4_read_fcoe_params(phba, mboxq))
4348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
4349 "2570 Failed to read FCoE parameters\n");
4350
4351 /* Issue READ_REV to collect vpd and FW information. */
4352 vpd_size = SLI4_PAGE_SIZE;
4353 vpd = kzalloc(vpd_size, GFP_KERNEL);
4354 if (!vpd) {
4355 rc = -ENOMEM;
4356 goto out_free_mbox;
4357 }
4358
4359 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
4360 if (unlikely(rc))
4361 goto out_free_vpd;
4362
4363 mqe = &mboxq->u.mqe;
4364 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
4365 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev))
4366 phba->hba_flag |= HBA_FCOE_SUPPORT;
4367
4368 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
4369 LPFC_DCBX_CEE_MODE)
4370 phba->hba_flag |= HBA_FIP_SUPPORT;
4371 else
4372 phba->hba_flag &= ~HBA_FIP_SUPPORT;
4373
4374 if (phba->sli_rev != LPFC_SLI_REV4 ||
4375 !(phba->hba_flag & HBA_FCOE_SUPPORT)) {
4376 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4377 "0376 READ_REV Error. SLI Level %d "
4378 "FCoE enabled %d\n",
4379 phba->sli_rev, phba->hba_flag & HBA_FCOE_SUPPORT);
4380 rc = -EIO;
4381 goto out_free_vpd;
4382 }
4383 /*
4384 * Evaluate the read rev and vpd data. Populate the driver
4385 * state with the results. If this routine fails, the failure
4386 * is not fatal as the driver will use generic values.
4387 */
4388 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
4389 if (unlikely(!rc)) {
4390 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4391 "0377 Error %d parsing vpd. "
4392 "Using defaults.\n", rc);
4393 rc = 0;
4394 }
4395
4396 /* Save information as VPD data */
4397 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
4398 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
4399 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
4400 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
4401 &mqe->un.read_rev);
4402 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
4403 &mqe->un.read_rev);
4404 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
4405 &mqe->un.read_rev);
4406 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
4407 &mqe->un.read_rev);
4408 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
4409 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
4410 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
4411 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
4412 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
4413 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
4414 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4415 "(%d):0380 READ_REV Status x%x "
4416 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
4417 mboxq->vport ? mboxq->vport->vpi : 0,
4418 bf_get(lpfc_mqe_status, mqe),
4419 phba->vpd.rev.opFwName,
4420 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
4421 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
4422
4423 /*
4424 * Discover the port's supported feature set and match it against the
4425 * hosts requests.
4426 */
4427 lpfc_request_features(phba, mboxq);
4428 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4429 if (unlikely(rc)) {
4430 rc = -EIO;
4431 goto out_free_vpd;
4432 }
4433
4434 /*
4435 * The port must support FCP initiator mode as this is the
4436 * only mode running in the host.
4437 */
4438 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
4439 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
4440 "0378 No support for fcpi mode.\n");
4441 ftr_rsp++;
4442 }
4443
4444 /*
4445 * If the port cannot support the host's requested features
4446 * then turn off the global config parameters to disable the
4447 * feature in the driver. This is not a fatal error.
4448 */
4449 if ((phba->cfg_enable_bg) &&
4450 !(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
4451 ftr_rsp++;
4452
4453 if (phba->max_vpi && phba->cfg_enable_npiv &&
4454 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
4455 ftr_rsp++;
4456
4457 if (ftr_rsp) {
4458 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
4459 "0379 Feature Mismatch Data: x%08x %08x "
4460 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
4461 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
4462 phba->cfg_enable_npiv, phba->max_vpi);
4463 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
4464 phba->cfg_enable_bg = 0;
4465 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
4466 phba->cfg_enable_npiv = 0;
4467 }
4468
4469 /* These SLI3 features are assumed in SLI4 */
4470 spin_lock_irq(&phba->hbalock);
4471 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
4472 spin_unlock_irq(&phba->hbalock);
4473
4474 /* Read the port's service parameters. */
4475 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
4476 if (rc) {
4477 phba->link_state = LPFC_HBA_ERROR;
4478 rc = -ENOMEM;
4479 goto out_free_vpd;
4480 }
4481
4482 mboxq->vport = vport;
4483 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4484 mp = (struct lpfc_dmabuf *) mboxq->context1;
4485 if (rc == MBX_SUCCESS) {
4486 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
4487 rc = 0;
4488 }
4489
4490 /*
4491 * This memory was allocated by the lpfc_read_sparam routine. Release
4492 * it to the mbuf pool.
4493 */
4494 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4495 kfree(mp);
4496 mboxq->context1 = NULL;
4497 if (unlikely(rc)) {
4498 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4499 "0382 READ_SPARAM command failed "
4500 "status %d, mbxStatus x%x\n",
4501 rc, bf_get(lpfc_mqe_status, mqe));
4502 phba->link_state = LPFC_HBA_ERROR;
4503 rc = -EIO;
4504 goto out_free_vpd;
4505 }
4506
4507 if (phba->cfg_soft_wwnn)
4508 u64_to_wwn(phba->cfg_soft_wwnn,
4509 vport->fc_sparam.nodeName.u.wwn);
4510 if (phba->cfg_soft_wwpn)
4511 u64_to_wwn(phba->cfg_soft_wwpn,
4512 vport->fc_sparam.portName.u.wwn);
4513 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
4514 sizeof(struct lpfc_name));
4515 memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
4516 sizeof(struct lpfc_name));
4517
4518 /* Update the fc_host data structures with new wwn. */
4519 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4520 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4521
4522 /* Register SGL pool to the device using non-embedded mailbox command */
4523 rc = lpfc_sli4_post_sgl_list(phba);
4524 if (unlikely(rc)) {
4525 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4526 "0582 Error %d during sgl post operation\n",
4527 rc);
4528 rc = -ENODEV;
4529 goto out_free_vpd;
4530 }
4531
4532 /* Register SCSI SGL pool to the device */
4533 rc = lpfc_sli4_repost_scsi_sgl_list(phba);
4534 if (unlikely(rc)) {
4535 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
4536 "0383 Error %d during scsi sgl post "
4537 "operation\n", rc);
4538 /* Some Scsi buffers were moved to the abort scsi list */
4539 /* A pci function reset will repost them */
4540 rc = -ENODEV;
4541 goto out_free_vpd;
4542 }
4543
4544 /* Post the rpi header region to the device. */
4545 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
4546 if (unlikely(rc)) {
4547 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4548 "0393 Error %d during rpi post operation\n",
4549 rc);
4550 rc = -ENODEV;
4551 goto out_free_vpd;
4552 }
4553
4554 /* Set up all the queues to the device */
4555 rc = lpfc_sli4_queue_setup(phba);
4556 if (unlikely(rc)) {
4557 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4558 "0381 Error %d during queue setup.\n ", rc);
4559 goto out_stop_timers;
4560 }
4561
4562 /* Arm the CQs and then EQs on device */
4563 lpfc_sli4_arm_cqeq_intr(phba);
4564
4565 /* Indicate device interrupt mode */
4566 phba->sli4_hba.intr_enable = 1;
4567
4568 /* Allow asynchronous mailbox command to go through */
4569 spin_lock_irq(&phba->hbalock);
4570 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4571 spin_unlock_irq(&phba->hbalock);
4572
4573 /* Post receive buffers to the device */
4574 lpfc_sli4_rb_setup(phba);
4575
4576 /* Reset HBA FCF states after HBA reset */
4577 phba->fcf.fcf_flag = 0;
4578 phba->fcf.current_rec.flag = 0;
4579
4580 /* Start the ELS watchdog timer */
4581 mod_timer(&vport->els_tmofunc,
4582 jiffies + HZ * (phba->fc_ratov * 2));
4583
4584 /* Start heart beat timer */
4585 mod_timer(&phba->hb_tmofunc,
4586 jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
4587 phba->hb_outstanding = 0;
4588 phba->last_completion_time = jiffies;
4589
4590 /* Start error attention (ERATT) polling timer */
4591 mod_timer(&phba->eratt_poll, jiffies + HZ * LPFC_ERATT_POLL_INTERVAL);
4592
4593 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4594 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4595 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4596 if (!rc) {
4597 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4598 "2829 This device supports "
4599 "Advanced Error Reporting (AER)\n");
4600 spin_lock_irq(&phba->hbalock);
4601 phba->hba_flag |= HBA_AER_ENABLED;
4602 spin_unlock_irq(&phba->hbalock);
4603 } else {
4604 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4605 "2830 This device does not support "
4606 "Advanced Error Reporting (AER)\n");
4607 phba->cfg_aer_support = 0;
4608 }
4609 }
4610
4611 /*
4612 * The port is ready, set the host's link state to LINK_DOWN
4613 * in preparation for link interrupts.
4614 */
4615 lpfc_init_link(phba, mboxq, phba->cfg_topology, phba->cfg_link_speed);
4616 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4617 lpfc_set_loopback_flag(phba);
4618 /* Change driver state to LPFC_LINK_DOWN right before init link */
4619 spin_lock_irq(&phba->hbalock);
4620 phba->link_state = LPFC_LINK_DOWN;
4621 spin_unlock_irq(&phba->hbalock);
4622 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
4623 if (unlikely(rc != MBX_NOT_FINISHED)) {
4624 kfree(vpd);
4625 return 0;
4626 } else
4627 rc = -EIO;
4628
4629 /* Unset all the queues set up in this routine when error out */
4630 if (rc)
4631 lpfc_sli4_queue_unset(phba);
4632
4633 out_stop_timers:
4634 if (rc)
4635 lpfc_stop_hba_timers(phba);
4636 out_free_vpd:
4637 kfree(vpd);
4638 out_free_mbox:
4639 mempool_free(mboxq, phba->mbox_mem_pool);
4640 return rc;
4641 }
4642
4643 /**
4644 * lpfc_mbox_timeout - Timeout call back function for mbox timer
4645 * @ptr: context object - pointer to hba structure.
4646 *
4647 * This is the callback function for mailbox timer. The mailbox
4648 * timer is armed when a new mailbox command is issued and the timer
4649 * is deleted when the mailbox complete. The function is called by
4650 * the kernel timer code when a mailbox does not complete within
4651 * expected time. This function wakes up the worker thread to
4652 * process the mailbox timeout and returns. All the processing is
4653 * done by the worker thread function lpfc_mbox_timeout_handler.
4654 **/
4655 void
4656 lpfc_mbox_timeout(unsigned long ptr)
4657 {
4658 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
4659 unsigned long iflag;
4660 uint32_t tmo_posted;
4661
4662 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
4663 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
4664 if (!tmo_posted)
4665 phba->pport->work_port_events |= WORKER_MBOX_TMO;
4666 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
4667
4668 if (!tmo_posted)
4669 lpfc_worker_wake_up(phba);
4670 return;
4671 }
4672
4673
4674 /**
4675 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
4676 * @phba: Pointer to HBA context object.
4677 *
4678 * This function is called from worker thread when a mailbox command times out.
4679 * The caller is not required to hold any locks. This function will reset the
4680 * HBA and recover all the pending commands.
4681 **/
4682 void
4683 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
4684 {
4685 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
4686 MAILBOX_t *mb = &pmbox->u.mb;
4687 struct lpfc_sli *psli = &phba->sli;
4688 struct lpfc_sli_ring *pring;
4689
4690 /* Check the pmbox pointer first. There is a race condition
4691 * between the mbox timeout handler getting executed in the
4692 * worklist and the mailbox actually completing. When this
4693 * race condition occurs, the mbox_active will be NULL.
4694 */
4695 spin_lock_irq(&phba->hbalock);
4696 if (pmbox == NULL) {
4697 lpfc_printf_log(phba, KERN_WARNING,
4698 LOG_MBOX | LOG_SLI,
4699 "0353 Active Mailbox cleared - mailbox timeout "
4700 "exiting\n");
4701 spin_unlock_irq(&phba->hbalock);
4702 return;
4703 }
4704
4705 /* Mbox cmd <mbxCommand> timeout */
4706 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4707 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
4708 mb->mbxCommand,
4709 phba->pport->port_state,
4710 phba->sli.sli_flag,
4711 phba->sli.mbox_active);
4712 spin_unlock_irq(&phba->hbalock);
4713
4714 /* Setting state unknown so lpfc_sli_abort_iocb_ring
4715 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
4716 * it to fail all oustanding SCSI IO.
4717 */
4718 spin_lock_irq(&phba->pport->work_port_lock);
4719 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
4720 spin_unlock_irq(&phba->pport->work_port_lock);
4721 spin_lock_irq(&phba->hbalock);
4722 phba->link_state = LPFC_LINK_UNKNOWN;
4723 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4724 spin_unlock_irq(&phba->hbalock);
4725
4726 pring = &psli->ring[psli->fcp_ring];
4727 lpfc_sli_abort_iocb_ring(phba, pring);
4728
4729 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4730 "0345 Resetting board due to mailbox timeout\n");
4731
4732 /* Reset the HBA device */
4733 lpfc_reset_hba(phba);
4734 }
4735
4736 /**
4737 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
4738 * @phba: Pointer to HBA context object.
4739 * @pmbox: Pointer to mailbox object.
4740 * @flag: Flag indicating how the mailbox need to be processed.
4741 *
4742 * This function is called by discovery code and HBA management code
4743 * to submit a mailbox command to firmware with SLI-3 interface spec. This
4744 * function gets the hbalock to protect the data structures.
4745 * The mailbox command can be submitted in polling mode, in which case
4746 * this function will wait in a polling loop for the completion of the
4747 * mailbox.
4748 * If the mailbox is submitted in no_wait mode (not polling) the
4749 * function will submit the command and returns immediately without waiting
4750 * for the mailbox completion. The no_wait is supported only when HBA
4751 * is in SLI2/SLI3 mode - interrupts are enabled.
4752 * The SLI interface allows only one mailbox pending at a time. If the
4753 * mailbox is issued in polling mode and there is already a mailbox
4754 * pending, then the function will return an error. If the mailbox is issued
4755 * in NO_WAIT mode and there is a mailbox pending already, the function
4756 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
4757 * The sli layer owns the mailbox object until the completion of mailbox
4758 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
4759 * return codes the caller owns the mailbox command after the return of
4760 * the function.
4761 **/
4762 static int
4763 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
4764 uint32_t flag)
4765 {
4766 MAILBOX_t *mb;
4767 struct lpfc_sli *psli = &phba->sli;
4768 uint32_t status, evtctr;
4769 uint32_t ha_copy;
4770 int i;
4771 unsigned long timeout;
4772 unsigned long drvr_flag = 0;
4773 uint32_t word0, ldata;
4774 void __iomem *to_slim;
4775 int processing_queue = 0;
4776
4777 spin_lock_irqsave(&phba->hbalock, drvr_flag);
4778 if (!pmbox) {
4779 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4780 /* processing mbox queue from intr_handler */
4781 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
4782 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4783 return MBX_SUCCESS;
4784 }
4785 processing_queue = 1;
4786 pmbox = lpfc_mbox_get(phba);
4787 if (!pmbox) {
4788 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4789 return MBX_SUCCESS;
4790 }
4791 }
4792
4793 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
4794 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
4795 if(!pmbox->vport) {
4796 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4797 lpfc_printf_log(phba, KERN_ERR,
4798 LOG_MBOX | LOG_VPORT,
4799 "1806 Mbox x%x failed. No vport\n",
4800 pmbox->u.mb.mbxCommand);
4801 dump_stack();
4802 goto out_not_finished;
4803 }
4804 }
4805
4806 /* If the PCI channel is in offline state, do not post mbox. */
4807 if (unlikely(pci_channel_offline(phba->pcidev))) {
4808 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4809 goto out_not_finished;
4810 }
4811
4812 /* If HBA has a deferred error attention, fail the iocb. */
4813 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
4814 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4815 goto out_not_finished;
4816 }
4817
4818 psli = &phba->sli;
4819
4820 mb = &pmbox->u.mb;
4821 status = MBX_SUCCESS;
4822
4823 if (phba->link_state == LPFC_HBA_ERROR) {
4824 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4825
4826 /* Mbox command <mbxCommand> cannot issue */
4827 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4828 "(%d):0311 Mailbox command x%x cannot "
4829 "issue Data: x%x x%x\n",
4830 pmbox->vport ? pmbox->vport->vpi : 0,
4831 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
4832 goto out_not_finished;
4833 }
4834
4835 if (mb->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT &&
4836 !(readl(phba->HCregaddr) & HC_MBINT_ENA)) {
4837 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4838 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4839 "(%d):2528 Mailbox command x%x cannot "
4840 "issue Data: x%x x%x\n",
4841 pmbox->vport ? pmbox->vport->vpi : 0,
4842 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
4843 goto out_not_finished;
4844 }
4845
4846 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
4847 /* Polling for a mbox command when another one is already active
4848 * is not allowed in SLI. Also, the driver must have established
4849 * SLI2 mode to queue and process multiple mbox commands.
4850 */
4851
4852 if (flag & MBX_POLL) {
4853 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4854
4855 /* Mbox command <mbxCommand> cannot issue */
4856 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4857 "(%d):2529 Mailbox command x%x "
4858 "cannot issue Data: x%x x%x\n",
4859 pmbox->vport ? pmbox->vport->vpi : 0,
4860 pmbox->u.mb.mbxCommand,
4861 psli->sli_flag, flag);
4862 goto out_not_finished;
4863 }
4864
4865 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
4866 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4867 /* Mbox command <mbxCommand> cannot issue */
4868 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4869 "(%d):2530 Mailbox command x%x "
4870 "cannot issue Data: x%x x%x\n",
4871 pmbox->vport ? pmbox->vport->vpi : 0,
4872 pmbox->u.mb.mbxCommand,
4873 psli->sli_flag, flag);
4874 goto out_not_finished;
4875 }
4876
4877 /* Another mailbox command is still being processed, queue this
4878 * command to be processed later.
4879 */
4880 lpfc_mbox_put(phba, pmbox);
4881
4882 /* Mbox cmd issue - BUSY */
4883 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4884 "(%d):0308 Mbox cmd issue - BUSY Data: "
4885 "x%x x%x x%x x%x\n",
4886 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
4887 mb->mbxCommand, phba->pport->port_state,
4888 psli->sli_flag, flag);
4889
4890 psli->slistat.mbox_busy++;
4891 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4892
4893 if (pmbox->vport) {
4894 lpfc_debugfs_disc_trc(pmbox->vport,
4895 LPFC_DISC_TRC_MBOX_VPORT,
4896 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
4897 (uint32_t)mb->mbxCommand,
4898 mb->un.varWords[0], mb->un.varWords[1]);
4899 }
4900 else {
4901 lpfc_debugfs_disc_trc(phba->pport,
4902 LPFC_DISC_TRC_MBOX,
4903 "MBOX Bsy: cmd:x%x mb:x%x x%x",
4904 (uint32_t)mb->mbxCommand,
4905 mb->un.varWords[0], mb->un.varWords[1]);
4906 }
4907
4908 return MBX_BUSY;
4909 }
4910
4911 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4912
4913 /* If we are not polling, we MUST be in SLI2 mode */
4914 if (flag != MBX_POLL) {
4915 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
4916 (mb->mbxCommand != MBX_KILL_BOARD)) {
4917 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4918 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
4919 /* Mbox command <mbxCommand> cannot issue */
4920 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
4921 "(%d):2531 Mailbox command x%x "
4922 "cannot issue Data: x%x x%x\n",
4923 pmbox->vport ? pmbox->vport->vpi : 0,
4924 pmbox->u.mb.mbxCommand,
4925 psli->sli_flag, flag);
4926 goto out_not_finished;
4927 }
4928 /* timeout active mbox command */
4929 mod_timer(&psli->mbox_tmo, (jiffies +
4930 (HZ * lpfc_mbox_tmo_val(phba, mb->mbxCommand))));
4931 }
4932
4933 /* Mailbox cmd <cmd> issue */
4934 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4935 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
4936 "x%x\n",
4937 pmbox->vport ? pmbox->vport->vpi : 0,
4938 mb->mbxCommand, phba->pport->port_state,
4939 psli->sli_flag, flag);
4940
4941 if (mb->mbxCommand != MBX_HEARTBEAT) {
4942 if (pmbox->vport) {
4943 lpfc_debugfs_disc_trc(pmbox->vport,
4944 LPFC_DISC_TRC_MBOX_VPORT,
4945 "MBOX Send vport: cmd:x%x mb:x%x x%x",
4946 (uint32_t)mb->mbxCommand,
4947 mb->un.varWords[0], mb->un.varWords[1]);
4948 }
4949 else {
4950 lpfc_debugfs_disc_trc(phba->pport,
4951 LPFC_DISC_TRC_MBOX,
4952 "MBOX Send: cmd:x%x mb:x%x x%x",
4953 (uint32_t)mb->mbxCommand,
4954 mb->un.varWords[0], mb->un.varWords[1]);
4955 }
4956 }
4957
4958 psli->slistat.mbox_cmd++;
4959 evtctr = psli->slistat.mbox_event;
4960
4961 /* next set own bit for the adapter and copy over command word */
4962 mb->mbxOwner = OWN_CHIP;
4963
4964 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
4965 /* Populate mbox extension offset word. */
4966 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
4967 *(((uint32_t *)mb) + pmbox->mbox_offset_word)
4968 = (uint8_t *)phba->mbox_ext
4969 - (uint8_t *)phba->mbox;
4970 }
4971
4972 /* Copy the mailbox extension data */
4973 if (pmbox->in_ext_byte_len && pmbox->context2) {
4974 lpfc_sli_pcimem_bcopy(pmbox->context2,
4975 (uint8_t *)phba->mbox_ext,
4976 pmbox->in_ext_byte_len);
4977 }
4978 /* Copy command data to host SLIM area */
4979 lpfc_sli_pcimem_bcopy(mb, phba->mbox, MAILBOX_CMD_SIZE);
4980 } else {
4981 /* Populate mbox extension offset word. */
4982 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
4983 *(((uint32_t *)mb) + pmbox->mbox_offset_word)
4984 = MAILBOX_HBA_EXT_OFFSET;
4985
4986 /* Copy the mailbox extension data */
4987 if (pmbox->in_ext_byte_len && pmbox->context2) {
4988 lpfc_memcpy_to_slim(phba->MBslimaddr +
4989 MAILBOX_HBA_EXT_OFFSET,
4990 pmbox->context2, pmbox->in_ext_byte_len);
4991
4992 }
4993 if (mb->mbxCommand == MBX_CONFIG_PORT) {
4994 /* copy command data into host mbox for cmpl */
4995 lpfc_sli_pcimem_bcopy(mb, phba->mbox, MAILBOX_CMD_SIZE);
4996 }
4997
4998 /* First copy mbox command data to HBA SLIM, skip past first
4999 word */
5000 to_slim = phba->MBslimaddr + sizeof (uint32_t);
5001 lpfc_memcpy_to_slim(to_slim, &mb->un.varWords[0],
5002 MAILBOX_CMD_SIZE - sizeof (uint32_t));
5003
5004 /* Next copy over first word, with mbxOwner set */
5005 ldata = *((uint32_t *)mb);
5006 to_slim = phba->MBslimaddr;
5007 writel(ldata, to_slim);
5008 readl(to_slim); /* flush */
5009
5010 if (mb->mbxCommand == MBX_CONFIG_PORT) {
5011 /* switch over to host mailbox */
5012 psli->sli_flag |= LPFC_SLI_ACTIVE;
5013 }
5014 }
5015
5016 wmb();
5017
5018 switch (flag) {
5019 case MBX_NOWAIT:
5020 /* Set up reference to mailbox command */
5021 psli->mbox_active = pmbox;
5022 /* Interrupt board to do it */
5023 writel(CA_MBATT, phba->CAregaddr);
5024 readl(phba->CAregaddr); /* flush */
5025 /* Don't wait for it to finish, just return */
5026 break;
5027
5028 case MBX_POLL:
5029 /* Set up null reference to mailbox command */
5030 psli->mbox_active = NULL;
5031 /* Interrupt board to do it */
5032 writel(CA_MBATT, phba->CAregaddr);
5033 readl(phba->CAregaddr); /* flush */
5034
5035 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
5036 /* First read mbox status word */
5037 word0 = *((uint32_t *)phba->mbox);
5038 word0 = le32_to_cpu(word0);
5039 } else {
5040 /* First read mbox status word */
5041 word0 = readl(phba->MBslimaddr);
5042 }
5043
5044 /* Read the HBA Host Attention Register */
5045 ha_copy = readl(phba->HAregaddr);
5046 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
5047 mb->mbxCommand) *
5048 1000) + jiffies;
5049 i = 0;
5050 /* Wait for command to complete */
5051 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
5052 (!(ha_copy & HA_MBATT) &&
5053 (phba->link_state > LPFC_WARM_START))) {
5054 if (time_after(jiffies, timeout)) {
5055 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5056 spin_unlock_irqrestore(&phba->hbalock,
5057 drvr_flag);
5058 goto out_not_finished;
5059 }
5060
5061 /* Check if we took a mbox interrupt while we were
5062 polling */
5063 if (((word0 & OWN_CHIP) != OWN_CHIP)
5064 && (evtctr != psli->slistat.mbox_event))
5065 break;
5066
5067 if (i++ > 10) {
5068 spin_unlock_irqrestore(&phba->hbalock,
5069 drvr_flag);
5070 msleep(1);
5071 spin_lock_irqsave(&phba->hbalock, drvr_flag);
5072 }
5073
5074 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
5075 /* First copy command data */
5076 word0 = *((uint32_t *)phba->mbox);
5077 word0 = le32_to_cpu(word0);
5078 if (mb->mbxCommand == MBX_CONFIG_PORT) {
5079 MAILBOX_t *slimmb;
5080 uint32_t slimword0;
5081 /* Check real SLIM for any errors */
5082 slimword0 = readl(phba->MBslimaddr);
5083 slimmb = (MAILBOX_t *) & slimword0;
5084 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
5085 && slimmb->mbxStatus) {
5086 psli->sli_flag &=
5087 ~LPFC_SLI_ACTIVE;
5088 word0 = slimword0;
5089 }
5090 }
5091 } else {
5092 /* First copy command data */
5093 word0 = readl(phba->MBslimaddr);
5094 }
5095 /* Read the HBA Host Attention Register */
5096 ha_copy = readl(phba->HAregaddr);
5097 }
5098
5099 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
5100 /* copy results back to user */
5101 lpfc_sli_pcimem_bcopy(phba->mbox, mb, MAILBOX_CMD_SIZE);
5102 /* Copy the mailbox extension data */
5103 if (pmbox->out_ext_byte_len && pmbox->context2) {
5104 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
5105 pmbox->context2,
5106 pmbox->out_ext_byte_len);
5107 }
5108 } else {
5109 /* First copy command data */
5110 lpfc_memcpy_from_slim(mb, phba->MBslimaddr,
5111 MAILBOX_CMD_SIZE);
5112 /* Copy the mailbox extension data */
5113 if (pmbox->out_ext_byte_len && pmbox->context2) {
5114 lpfc_memcpy_from_slim(pmbox->context2,
5115 phba->MBslimaddr +
5116 MAILBOX_HBA_EXT_OFFSET,
5117 pmbox->out_ext_byte_len);
5118 }
5119 }
5120
5121 writel(HA_MBATT, phba->HAregaddr);
5122 readl(phba->HAregaddr); /* flush */
5123
5124 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5125 status = mb->mbxStatus;
5126 }
5127
5128 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
5129 return status;
5130
5131 out_not_finished:
5132 if (processing_queue) {
5133 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
5134 lpfc_mbox_cmpl_put(phba, pmbox);
5135 }
5136 return MBX_NOT_FINISHED;
5137 }
5138
5139 /**
5140 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
5141 * @phba: Pointer to HBA context object.
5142 *
5143 * The function blocks the posting of SLI4 asynchronous mailbox commands from
5144 * the driver internal pending mailbox queue. It will then try to wait out the
5145 * possible outstanding mailbox command before return.
5146 *
5147 * Returns:
5148 * 0 - the outstanding mailbox command completed; otherwise, the wait for
5149 * the outstanding mailbox command timed out.
5150 **/
5151 static int
5152 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
5153 {
5154 struct lpfc_sli *psli = &phba->sli;
5155 uint8_t actcmd = MBX_HEARTBEAT;
5156 int rc = 0;
5157 unsigned long timeout;
5158
5159 /* Mark the asynchronous mailbox command posting as blocked */
5160 spin_lock_irq(&phba->hbalock);
5161 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
5162 if (phba->sli.mbox_active)
5163 actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
5164 spin_unlock_irq(&phba->hbalock);
5165 /* Determine how long we might wait for the active mailbox
5166 * command to be gracefully completed by firmware.
5167 */
5168 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, actcmd) * 1000) +
5169 jiffies;
5170 /* Wait for the outstnading mailbox command to complete */
5171 while (phba->sli.mbox_active) {
5172 /* Check active mailbox complete status every 2ms */
5173 msleep(2);
5174 if (time_after(jiffies, timeout)) {
5175 /* Timeout, marked the outstanding cmd not complete */
5176 rc = 1;
5177 break;
5178 }
5179 }
5180
5181 /* Can not cleanly block async mailbox command, fails it */
5182 if (rc) {
5183 spin_lock_irq(&phba->hbalock);
5184 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5185 spin_unlock_irq(&phba->hbalock);
5186 }
5187 return rc;
5188 }
5189
5190 /**
5191 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
5192 * @phba: Pointer to HBA context object.
5193 *
5194 * The function unblocks and resume posting of SLI4 asynchronous mailbox
5195 * commands from the driver internal pending mailbox queue. It makes sure
5196 * that there is no outstanding mailbox command before resuming posting
5197 * asynchronous mailbox commands. If, for any reason, there is outstanding
5198 * mailbox command, it will try to wait it out before resuming asynchronous
5199 * mailbox command posting.
5200 **/
5201 static void
5202 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
5203 {
5204 struct lpfc_sli *psli = &phba->sli;
5205
5206 spin_lock_irq(&phba->hbalock);
5207 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
5208 /* Asynchronous mailbox posting is not blocked, do nothing */
5209 spin_unlock_irq(&phba->hbalock);
5210 return;
5211 }
5212
5213 /* Outstanding synchronous mailbox command is guaranteed to be done,
5214 * successful or timeout, after timing-out the outstanding mailbox
5215 * command shall always be removed, so just unblock posting async
5216 * mailbox command and resume
5217 */
5218 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5219 spin_unlock_irq(&phba->hbalock);
5220
5221 /* wake up worker thread to post asynchronlous mailbox command */
5222 lpfc_worker_wake_up(phba);
5223 }
5224
5225 /**
5226 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
5227 * @phba: Pointer to HBA context object.
5228 * @mboxq: Pointer to mailbox object.
5229 *
5230 * The function posts a mailbox to the port. The mailbox is expected
5231 * to be comletely filled in and ready for the port to operate on it.
5232 * This routine executes a synchronous completion operation on the
5233 * mailbox by polling for its completion.
5234 *
5235 * The caller must not be holding any locks when calling this routine.
5236 *
5237 * Returns:
5238 * MBX_SUCCESS - mailbox posted successfully
5239 * Any of the MBX error values.
5240 **/
5241 static int
5242 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
5243 {
5244 int rc = MBX_SUCCESS;
5245 unsigned long iflag;
5246 uint32_t db_ready;
5247 uint32_t mcqe_status;
5248 uint32_t mbx_cmnd;
5249 unsigned long timeout;
5250 struct lpfc_sli *psli = &phba->sli;
5251 struct lpfc_mqe *mb = &mboxq->u.mqe;
5252 struct lpfc_bmbx_create *mbox_rgn;
5253 struct dma_address *dma_address;
5254 struct lpfc_register bmbx_reg;
5255
5256 /*
5257 * Only one mailbox can be active to the bootstrap mailbox region
5258 * at a time and there is no queueing provided.
5259 */
5260 spin_lock_irqsave(&phba->hbalock, iflag);
5261 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
5262 spin_unlock_irqrestore(&phba->hbalock, iflag);
5263 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5264 "(%d):2532 Mailbox command x%x (x%x) "
5265 "cannot issue Data: x%x x%x\n",
5266 mboxq->vport ? mboxq->vport->vpi : 0,
5267 mboxq->u.mb.mbxCommand,
5268 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5269 psli->sli_flag, MBX_POLL);
5270 return MBXERR_ERROR;
5271 }
5272 /* The server grabs the token and owns it until release */
5273 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5274 phba->sli.mbox_active = mboxq;
5275 spin_unlock_irqrestore(&phba->hbalock, iflag);
5276
5277 /*
5278 * Initialize the bootstrap memory region to avoid stale data areas
5279 * in the mailbox post. Then copy the caller's mailbox contents to
5280 * the bmbx mailbox region.
5281 */
5282 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
5283 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
5284 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
5285 sizeof(struct lpfc_mqe));
5286
5287 /* Post the high mailbox dma address to the port and wait for ready. */
5288 dma_address = &phba->sli4_hba.bmbx.dma_address;
5289 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
5290
5291 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mbx_cmnd)
5292 * 1000) + jiffies;
5293 do {
5294 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
5295 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
5296 if (!db_ready)
5297 msleep(2);
5298
5299 if (time_after(jiffies, timeout)) {
5300 rc = MBXERR_ERROR;
5301 goto exit;
5302 }
5303 } while (!db_ready);
5304
5305 /* Post the low mailbox dma address to the port. */
5306 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
5307 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mbx_cmnd)
5308 * 1000) + jiffies;
5309 do {
5310 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
5311 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
5312 if (!db_ready)
5313 msleep(2);
5314
5315 if (time_after(jiffies, timeout)) {
5316 rc = MBXERR_ERROR;
5317 goto exit;
5318 }
5319 } while (!db_ready);
5320
5321 /*
5322 * Read the CQ to ensure the mailbox has completed.
5323 * If so, update the mailbox status so that the upper layers
5324 * can complete the request normally.
5325 */
5326 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
5327 sizeof(struct lpfc_mqe));
5328 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
5329 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
5330 sizeof(struct lpfc_mcqe));
5331 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
5332
5333 /* Prefix the mailbox status with range x4000 to note SLI4 status. */
5334 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
5335 bf_set(lpfc_mqe_status, mb, LPFC_MBX_ERROR_RANGE | mcqe_status);
5336 rc = MBXERR_ERROR;
5337 } else
5338 lpfc_sli4_swap_str(phba, mboxq);
5339
5340 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5341 "(%d):0356 Mailbox cmd x%x (x%x) Status x%x "
5342 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
5343 " x%x x%x CQ: x%x x%x x%x x%x\n",
5344 mboxq->vport ? mboxq->vport->vpi : 0,
5345 mbx_cmnd, lpfc_sli4_mbox_opcode_get(phba, mboxq),
5346 bf_get(lpfc_mqe_status, mb),
5347 mb->un.mb_words[0], mb->un.mb_words[1],
5348 mb->un.mb_words[2], mb->un.mb_words[3],
5349 mb->un.mb_words[4], mb->un.mb_words[5],
5350 mb->un.mb_words[6], mb->un.mb_words[7],
5351 mb->un.mb_words[8], mb->un.mb_words[9],
5352 mb->un.mb_words[10], mb->un.mb_words[11],
5353 mb->un.mb_words[12], mboxq->mcqe.word0,
5354 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5355 mboxq->mcqe.trailer);
5356 exit:
5357 /* We are holding the token, no needed for lock when release */
5358 spin_lock_irqsave(&phba->hbalock, iflag);
5359 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5360 phba->sli.mbox_active = NULL;
5361 spin_unlock_irqrestore(&phba->hbalock, iflag);
5362 return rc;
5363 }
5364
5365 /**
5366 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
5367 * @phba: Pointer to HBA context object.
5368 * @pmbox: Pointer to mailbox object.
5369 * @flag: Flag indicating how the mailbox need to be processed.
5370 *
5371 * This function is called by discovery code and HBA management code to submit
5372 * a mailbox command to firmware with SLI-4 interface spec.
5373 *
5374 * Return codes the caller owns the mailbox command after the return of the
5375 * function.
5376 **/
5377 static int
5378 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5379 uint32_t flag)
5380 {
5381 struct lpfc_sli *psli = &phba->sli;
5382 unsigned long iflags;
5383 int rc;
5384
5385 rc = lpfc_mbox_dev_check(phba);
5386 if (unlikely(rc)) {
5387 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5388 "(%d):2544 Mailbox command x%x (x%x) "
5389 "cannot issue Data: x%x x%x\n",
5390 mboxq->vport ? mboxq->vport->vpi : 0,
5391 mboxq->u.mb.mbxCommand,
5392 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5393 psli->sli_flag, flag);
5394 goto out_not_finished;
5395 }
5396
5397 /* Detect polling mode and jump to a handler */
5398 if (!phba->sli4_hba.intr_enable) {
5399 if (flag == MBX_POLL)
5400 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
5401 else
5402 rc = -EIO;
5403 if (rc != MBX_SUCCESS)
5404 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5405 "(%d):2541 Mailbox command x%x "
5406 "(x%x) cannot issue Data: x%x x%x\n",
5407 mboxq->vport ? mboxq->vport->vpi : 0,
5408 mboxq->u.mb.mbxCommand,
5409 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5410 psli->sli_flag, flag);
5411 return rc;
5412 } else if (flag == MBX_POLL) {
5413 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
5414 "(%d):2542 Try to issue mailbox command "
5415 "x%x (x%x) synchronously ahead of async"
5416 "mailbox command queue: x%x x%x\n",
5417 mboxq->vport ? mboxq->vport->vpi : 0,
5418 mboxq->u.mb.mbxCommand,
5419 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5420 psli->sli_flag, flag);
5421 /* Try to block the asynchronous mailbox posting */
5422 rc = lpfc_sli4_async_mbox_block(phba);
5423 if (!rc) {
5424 /* Successfully blocked, now issue sync mbox cmd */
5425 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
5426 if (rc != MBX_SUCCESS)
5427 lpfc_printf_log(phba, KERN_ERR,
5428 LOG_MBOX | LOG_SLI,
5429 "(%d):2597 Mailbox command "
5430 "x%x (x%x) cannot issue "
5431 "Data: x%x x%x\n",
5432 mboxq->vport ?
5433 mboxq->vport->vpi : 0,
5434 mboxq->u.mb.mbxCommand,
5435 lpfc_sli4_mbox_opcode_get(phba,
5436 mboxq),
5437 psli->sli_flag, flag);
5438 /* Unblock the async mailbox posting afterward */
5439 lpfc_sli4_async_mbox_unblock(phba);
5440 }
5441 return rc;
5442 }
5443
5444 /* Now, interrupt mode asynchrous mailbox command */
5445 rc = lpfc_mbox_cmd_check(phba, mboxq);
5446 if (rc) {
5447 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5448 "(%d):2543 Mailbox command x%x (x%x) "
5449 "cannot issue Data: x%x x%x\n",
5450 mboxq->vport ? mboxq->vport->vpi : 0,
5451 mboxq->u.mb.mbxCommand,
5452 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5453 psli->sli_flag, flag);
5454 goto out_not_finished;
5455 }
5456
5457 /* Put the mailbox command to the driver internal FIFO */
5458 psli->slistat.mbox_busy++;
5459 spin_lock_irqsave(&phba->hbalock, iflags);
5460 lpfc_mbox_put(phba, mboxq);
5461 spin_unlock_irqrestore(&phba->hbalock, iflags);
5462 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5463 "(%d):0354 Mbox cmd issue - Enqueue Data: "
5464 "x%x (x%x) x%x x%x x%x\n",
5465 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
5466 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5467 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5468 phba->pport->port_state,
5469 psli->sli_flag, MBX_NOWAIT);
5470 /* Wake up worker thread to transport mailbox command from head */
5471 lpfc_worker_wake_up(phba);
5472
5473 return MBX_BUSY;
5474
5475 out_not_finished:
5476 return MBX_NOT_FINISHED;
5477 }
5478
5479 /**
5480 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
5481 * @phba: Pointer to HBA context object.
5482 *
5483 * This function is called by worker thread to send a mailbox command to
5484 * SLI4 HBA firmware.
5485 *
5486 **/
5487 int
5488 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
5489 {
5490 struct lpfc_sli *psli = &phba->sli;
5491 LPFC_MBOXQ_t *mboxq;
5492 int rc = MBX_SUCCESS;
5493 unsigned long iflags;
5494 struct lpfc_mqe *mqe;
5495 uint32_t mbx_cmnd;
5496
5497 /* Check interrupt mode before post async mailbox command */
5498 if (unlikely(!phba->sli4_hba.intr_enable))
5499 return MBX_NOT_FINISHED;
5500
5501 /* Check for mailbox command service token */
5502 spin_lock_irqsave(&phba->hbalock, iflags);
5503 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
5504 spin_unlock_irqrestore(&phba->hbalock, iflags);
5505 return MBX_NOT_FINISHED;
5506 }
5507 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
5508 spin_unlock_irqrestore(&phba->hbalock, iflags);
5509 return MBX_NOT_FINISHED;
5510 }
5511 if (unlikely(phba->sli.mbox_active)) {
5512 spin_unlock_irqrestore(&phba->hbalock, iflags);
5513 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5514 "0384 There is pending active mailbox cmd\n");
5515 return MBX_NOT_FINISHED;
5516 }
5517 /* Take the mailbox command service token */
5518 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5519
5520 /* Get the next mailbox command from head of queue */
5521 mboxq = lpfc_mbox_get(phba);
5522
5523 /* If no more mailbox command waiting for post, we're done */
5524 if (!mboxq) {
5525 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5526 spin_unlock_irqrestore(&phba->hbalock, iflags);
5527 return MBX_SUCCESS;
5528 }
5529 phba->sli.mbox_active = mboxq;
5530 spin_unlock_irqrestore(&phba->hbalock, iflags);
5531
5532 /* Check device readiness for posting mailbox command */
5533 rc = lpfc_mbox_dev_check(phba);
5534 if (unlikely(rc))
5535 /* Driver clean routine will clean up pending mailbox */
5536 goto out_not_finished;
5537
5538 /* Prepare the mbox command to be posted */
5539 mqe = &mboxq->u.mqe;
5540 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
5541
5542 /* Start timer for the mbox_tmo and log some mailbox post messages */
5543 mod_timer(&psli->mbox_tmo, (jiffies +
5544 (HZ * lpfc_mbox_tmo_val(phba, mbx_cmnd))));
5545
5546 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5547 "(%d):0355 Mailbox cmd x%x (x%x) issue Data: "
5548 "x%x x%x\n",
5549 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
5550 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5551 phba->pport->port_state, psli->sli_flag);
5552
5553 if (mbx_cmnd != MBX_HEARTBEAT) {
5554 if (mboxq->vport) {
5555 lpfc_debugfs_disc_trc(mboxq->vport,
5556 LPFC_DISC_TRC_MBOX_VPORT,
5557 "MBOX Send vport: cmd:x%x mb:x%x x%x",
5558 mbx_cmnd, mqe->un.mb_words[0],
5559 mqe->un.mb_words[1]);
5560 } else {
5561 lpfc_debugfs_disc_trc(phba->pport,
5562 LPFC_DISC_TRC_MBOX,
5563 "MBOX Send: cmd:x%x mb:x%x x%x",
5564 mbx_cmnd, mqe->un.mb_words[0],
5565 mqe->un.mb_words[1]);
5566 }
5567 }
5568 psli->slistat.mbox_cmd++;
5569
5570 /* Post the mailbox command to the port */
5571 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
5572 if (rc != MBX_SUCCESS) {
5573 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5574 "(%d):2533 Mailbox command x%x (x%x) "
5575 "cannot issue Data: x%x x%x\n",
5576 mboxq->vport ? mboxq->vport->vpi : 0,
5577 mboxq->u.mb.mbxCommand,
5578 lpfc_sli4_mbox_opcode_get(phba, mboxq),
5579 psli->sli_flag, MBX_NOWAIT);
5580 goto out_not_finished;
5581 }
5582
5583 return rc;
5584
5585 out_not_finished:
5586 spin_lock_irqsave(&phba->hbalock, iflags);
5587 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
5588 __lpfc_mbox_cmpl_put(phba, mboxq);
5589 /* Release the token */
5590 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5591 phba->sli.mbox_active = NULL;
5592 spin_unlock_irqrestore(&phba->hbalock, iflags);
5593
5594 return MBX_NOT_FINISHED;
5595 }
5596
5597 /**
5598 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
5599 * @phba: Pointer to HBA context object.
5600 * @pmbox: Pointer to mailbox object.
5601 * @flag: Flag indicating how the mailbox need to be processed.
5602 *
5603 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
5604 * the API jump table function pointer from the lpfc_hba struct.
5605 *
5606 * Return codes the caller owns the mailbox command after the return of the
5607 * function.
5608 **/
5609 int
5610 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
5611 {
5612 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
5613 }
5614
5615 /**
5616 * lpfc_mbox_api_table_setup - Set up mbox api fucntion jump table
5617 * @phba: The hba struct for which this call is being executed.
5618 * @dev_grp: The HBA PCI-Device group number.
5619 *
5620 * This routine sets up the mbox interface API function jump table in @phba
5621 * struct.
5622 * Returns: 0 - success, -ENODEV - failure.
5623 **/
5624 int
5625 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
5626 {
5627
5628 switch (dev_grp) {
5629 case LPFC_PCI_DEV_LP:
5630 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
5631 phba->lpfc_sli_handle_slow_ring_event =
5632 lpfc_sli_handle_slow_ring_event_s3;
5633 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
5634 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
5635 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
5636 break;
5637 case LPFC_PCI_DEV_OC:
5638 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
5639 phba->lpfc_sli_handle_slow_ring_event =
5640 lpfc_sli_handle_slow_ring_event_s4;
5641 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
5642 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
5643 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
5644 break;
5645 default:
5646 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5647 "1420 Invalid HBA PCI-device group: 0x%x\n",
5648 dev_grp);
5649 return -ENODEV;
5650 break;
5651 }
5652 return 0;
5653 }
5654
5655 /**
5656 * __lpfc_sli_ringtx_put - Add an iocb to the txq
5657 * @phba: Pointer to HBA context object.
5658 * @pring: Pointer to driver SLI ring object.
5659 * @piocb: Pointer to address of newly added command iocb.
5660 *
5661 * This function is called with hbalock held to add a command
5662 * iocb to the txq when SLI layer cannot submit the command iocb
5663 * to the ring.
5664 **/
5665 void
5666 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
5667 struct lpfc_iocbq *piocb)
5668 {
5669 /* Insert the caller's iocb in the txq tail for later processing. */
5670 list_add_tail(&piocb->list, &pring->txq);
5671 pring->txq_cnt++;
5672 }
5673
5674 /**
5675 * lpfc_sli_next_iocb - Get the next iocb in the txq
5676 * @phba: Pointer to HBA context object.
5677 * @pring: Pointer to driver SLI ring object.
5678 * @piocb: Pointer to address of newly added command iocb.
5679 *
5680 * This function is called with hbalock held before a new
5681 * iocb is submitted to the firmware. This function checks
5682 * txq to flush the iocbs in txq to Firmware before
5683 * submitting new iocbs to the Firmware.
5684 * If there are iocbs in the txq which need to be submitted
5685 * to firmware, lpfc_sli_next_iocb returns the first element
5686 * of the txq after dequeuing it from txq.
5687 * If there is no iocb in the txq then the function will return
5688 * *piocb and *piocb is set to NULL. Caller needs to check
5689 * *piocb to find if there are more commands in the txq.
5690 **/
5691 static struct lpfc_iocbq *
5692 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
5693 struct lpfc_iocbq **piocb)
5694 {
5695 struct lpfc_iocbq * nextiocb;
5696
5697 nextiocb = lpfc_sli_ringtx_get(phba, pring);
5698 if (!nextiocb) {
5699 nextiocb = *piocb;
5700 *piocb = NULL;
5701 }
5702
5703 return nextiocb;
5704 }
5705
5706 /**
5707 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
5708 * @phba: Pointer to HBA context object.
5709 * @ring_number: SLI ring number to issue iocb on.
5710 * @piocb: Pointer to command iocb.
5711 * @flag: Flag indicating if this command can be put into txq.
5712 *
5713 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
5714 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
5715 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
5716 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
5717 * this function allows only iocbs for posting buffers. This function finds
5718 * next available slot in the command ring and posts the command to the
5719 * available slot and writes the port attention register to request HBA start
5720 * processing new iocb. If there is no slot available in the ring and
5721 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
5722 * the function returns IOCB_BUSY.
5723 *
5724 * This function is called with hbalock held. The function will return success
5725 * after it successfully submit the iocb to firmware or after adding to the
5726 * txq.
5727 **/
5728 static int
5729 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
5730 struct lpfc_iocbq *piocb, uint32_t flag)
5731 {
5732 struct lpfc_iocbq *nextiocb;
5733 IOCB_t *iocb;
5734 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
5735
5736 if (piocb->iocb_cmpl && (!piocb->vport) &&
5737 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
5738 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
5739 lpfc_printf_log(phba, KERN_ERR,
5740 LOG_SLI | LOG_VPORT,
5741 "1807 IOCB x%x failed. No vport\n",
5742 piocb->iocb.ulpCommand);
5743 dump_stack();
5744 return IOCB_ERROR;
5745 }
5746
5747
5748 /* If the PCI channel is in offline state, do not post iocbs. */
5749 if (unlikely(pci_channel_offline(phba->pcidev)))
5750 return IOCB_ERROR;
5751
5752 /* If HBA has a deferred error attention, fail the iocb. */
5753 if (unlikely(phba->hba_flag & DEFER_ERATT))
5754 return IOCB_ERROR;
5755
5756 /*
5757 * We should never get an IOCB if we are in a < LINK_DOWN state
5758 */
5759 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
5760 return IOCB_ERROR;
5761
5762 /*
5763 * Check to see if we are blocking IOCB processing because of a
5764 * outstanding event.
5765 */
5766 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
5767 goto iocb_busy;
5768
5769 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
5770 /*
5771 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
5772 * can be issued if the link is not up.
5773 */
5774 switch (piocb->iocb.ulpCommand) {
5775 case CMD_GEN_REQUEST64_CR:
5776 case CMD_GEN_REQUEST64_CX:
5777 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
5778 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
5779 FC_RCTL_DD_UNSOL_CMD) ||
5780 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
5781 MENLO_TRANSPORT_TYPE))
5782
5783 goto iocb_busy;
5784 break;
5785 case CMD_QUE_RING_BUF_CN:
5786 case CMD_QUE_RING_BUF64_CN:
5787 /*
5788 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
5789 * completion, iocb_cmpl MUST be 0.
5790 */
5791 if (piocb->iocb_cmpl)
5792 piocb->iocb_cmpl = NULL;
5793 /*FALLTHROUGH*/
5794 case CMD_CREATE_XRI_CR:
5795 case CMD_CLOSE_XRI_CN:
5796 case CMD_CLOSE_XRI_CX:
5797 break;
5798 default:
5799 goto iocb_busy;
5800 }
5801
5802 /*
5803 * For FCP commands, we must be in a state where we can process link
5804 * attention events.
5805 */
5806 } else if (unlikely(pring->ringno == phba->sli.fcp_ring &&
5807 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
5808 goto iocb_busy;
5809 }
5810
5811 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
5812 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
5813 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
5814
5815 if (iocb)
5816 lpfc_sli_update_ring(phba, pring);
5817 else
5818 lpfc_sli_update_full_ring(phba, pring);
5819
5820 if (!piocb)
5821 return IOCB_SUCCESS;
5822
5823 goto out_busy;
5824
5825 iocb_busy:
5826 pring->stats.iocb_cmd_delay++;
5827
5828 out_busy:
5829
5830 if (!(flag & SLI_IOCB_RET_IOCB)) {
5831 __lpfc_sli_ringtx_put(phba, pring, piocb);
5832 return IOCB_SUCCESS;
5833 }
5834
5835 return IOCB_BUSY;
5836 }
5837
5838 /**
5839 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
5840 * @phba: Pointer to HBA context object.
5841 * @piocb: Pointer to command iocb.
5842 * @sglq: Pointer to the scatter gather queue object.
5843 *
5844 * This routine converts the bpl or bde that is in the IOCB
5845 * to a sgl list for the sli4 hardware. The physical address
5846 * of the bpl/bde is converted back to a virtual address.
5847 * If the IOCB contains a BPL then the list of BDE's is
5848 * converted to sli4_sge's. If the IOCB contains a single
5849 * BDE then it is converted to a single sli_sge.
5850 * The IOCB is still in cpu endianess so the contents of
5851 * the bpl can be used without byte swapping.
5852 *
5853 * Returns valid XRI = Success, NO_XRI = Failure.
5854 **/
5855 static uint16_t
5856 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
5857 struct lpfc_sglq *sglq)
5858 {
5859 uint16_t xritag = NO_XRI;
5860 struct ulp_bde64 *bpl = NULL;
5861 struct ulp_bde64 bde;
5862 struct sli4_sge *sgl = NULL;
5863 IOCB_t *icmd;
5864 int numBdes = 0;
5865 int i = 0;
5866
5867 if (!piocbq || !sglq)
5868 return xritag;
5869
5870 sgl = (struct sli4_sge *)sglq->sgl;
5871 icmd = &piocbq->iocb;
5872 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
5873 numBdes = icmd->un.genreq64.bdl.bdeSize /
5874 sizeof(struct ulp_bde64);
5875 /* The addrHigh and addrLow fields within the IOCB
5876 * have not been byteswapped yet so there is no
5877 * need to swap them back.
5878 */
5879 bpl = (struct ulp_bde64 *)
5880 ((struct lpfc_dmabuf *)piocbq->context3)->virt;
5881
5882 if (!bpl)
5883 return xritag;
5884
5885 for (i = 0; i < numBdes; i++) {
5886 /* Should already be byte swapped. */
5887 sgl->addr_hi = bpl->addrHigh;
5888 sgl->addr_lo = bpl->addrLow;
5889
5890 if ((i+1) == numBdes)
5891 bf_set(lpfc_sli4_sge_last, sgl, 1);
5892 else
5893 bf_set(lpfc_sli4_sge_last, sgl, 0);
5894 sgl->word2 = cpu_to_le32(sgl->word2);
5895 /* swap the size field back to the cpu so we
5896 * can assign it to the sgl.
5897 */
5898 bde.tus.w = le32_to_cpu(bpl->tus.w);
5899 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
5900 bpl++;
5901 sgl++;
5902 }
5903 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
5904 /* The addrHigh and addrLow fields of the BDE have not
5905 * been byteswapped yet so they need to be swapped
5906 * before putting them in the sgl.
5907 */
5908 sgl->addr_hi =
5909 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
5910 sgl->addr_lo =
5911 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
5912 bf_set(lpfc_sli4_sge_last, sgl, 1);
5913 sgl->word2 = cpu_to_le32(sgl->word2);
5914 sgl->sge_len =
5915 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
5916 }
5917 return sglq->sli4_xritag;
5918 }
5919
5920 /**
5921 * lpfc_sli4_scmd_to_wqidx_distr - scsi command to SLI4 WQ index distribution
5922 * @phba: Pointer to HBA context object.
5923 *
5924 * This routine performs a round robin SCSI command to SLI4 FCP WQ index
5925 * distribution. This is called by __lpfc_sli_issue_iocb_s4() with the hbalock
5926 * held.
5927 *
5928 * Return: index into SLI4 fast-path FCP queue index.
5929 **/
5930 static uint32_t
5931 lpfc_sli4_scmd_to_wqidx_distr(struct lpfc_hba *phba)
5932 {
5933 ++phba->fcp_qidx;
5934 if (phba->fcp_qidx >= phba->cfg_fcp_wq_count)
5935 phba->fcp_qidx = 0;
5936
5937 return phba->fcp_qidx;
5938 }
5939
5940 /**
5941 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
5942 * @phba: Pointer to HBA context object.
5943 * @piocb: Pointer to command iocb.
5944 * @wqe: Pointer to the work queue entry.
5945 *
5946 * This routine converts the iocb command to its Work Queue Entry
5947 * equivalent. The wqe pointer should not have any fields set when
5948 * this routine is called because it will memcpy over them.
5949 * This routine does not set the CQ_ID or the WQEC bits in the
5950 * wqe.
5951 *
5952 * Returns: 0 = Success, IOCB_ERROR = Failure.
5953 **/
5954 static int
5955 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
5956 union lpfc_wqe *wqe)
5957 {
5958 uint32_t xmit_len = 0, total_len = 0;
5959 uint8_t ct = 0;
5960 uint32_t fip;
5961 uint32_t abort_tag;
5962 uint8_t command_type = ELS_COMMAND_NON_FIP;
5963 uint8_t cmnd;
5964 uint16_t xritag;
5965 uint16_t abrt_iotag;
5966 struct lpfc_iocbq *abrtiocbq;
5967 struct ulp_bde64 *bpl = NULL;
5968 uint32_t els_id = ELS_ID_DEFAULT;
5969 int numBdes, i;
5970 struct ulp_bde64 bde;
5971
5972 fip = phba->hba_flag & HBA_FIP_SUPPORT;
5973 /* The fcp commands will set command type */
5974 if (iocbq->iocb_flag & LPFC_IO_FCP)
5975 command_type = FCP_COMMAND;
5976 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
5977 command_type = ELS_COMMAND_FIP;
5978 else
5979 command_type = ELS_COMMAND_NON_FIP;
5980
5981 /* Some of the fields are in the right position already */
5982 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
5983 abort_tag = (uint32_t) iocbq->iotag;
5984 xritag = iocbq->sli4_xritag;
5985 wqe->words[7] = 0; /* The ct field has moved so reset */
5986 /* words0-2 bpl convert bde */
5987 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
5988 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
5989 sizeof(struct ulp_bde64);
5990 bpl = (struct ulp_bde64 *)
5991 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
5992 if (!bpl)
5993 return IOCB_ERROR;
5994
5995 /* Should already be byte swapped. */
5996 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
5997 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
5998 /* swap the size field back to the cpu so we
5999 * can assign it to the sgl.
6000 */
6001 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
6002 xmit_len = wqe->generic.bde.tus.f.bdeSize;
6003 total_len = 0;
6004 for (i = 0; i < numBdes; i++) {
6005 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
6006 total_len += bde.tus.f.bdeSize;
6007 }
6008 } else
6009 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
6010
6011 iocbq->iocb.ulpIoTag = iocbq->iotag;
6012 cmnd = iocbq->iocb.ulpCommand;
6013
6014 switch (iocbq->iocb.ulpCommand) {
6015 case CMD_ELS_REQUEST64_CR:
6016 if (!iocbq->iocb.ulpLe) {
6017 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6018 "2007 Only Limited Edition cmd Format"
6019 " supported 0x%x\n",
6020 iocbq->iocb.ulpCommand);
6021 return IOCB_ERROR;
6022 }
6023 wqe->els_req.payload_len = xmit_len;
6024 /* Els_reguest64 has a TMO */
6025 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
6026 iocbq->iocb.ulpTimeout);
6027 /* Need a VF for word 4 set the vf bit*/
6028 bf_set(els_req64_vf, &wqe->els_req, 0);
6029 /* And a VFID for word 12 */
6030 bf_set(els_req64_vfid, &wqe->els_req, 0);
6031 /*
6032 * Set ct field to 3, indicates that the context_tag field
6033 * contains the FCFI and remote N_Port_ID is
6034 * in word 5.
6035 */
6036
6037 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
6038 bf_set(lpfc_wqe_gen_context, &wqe->generic,
6039 iocbq->iocb.ulpContext);
6040
6041 bf_set(lpfc_wqe_gen_ct, &wqe->generic, ct);
6042 bf_set(lpfc_wqe_gen_pu, &wqe->generic, 0);
6043 /* CCP CCPE PV PRI in word10 were set in the memcpy */
6044
6045 if (command_type == ELS_COMMAND_FIP) {
6046 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
6047 >> LPFC_FIP_ELS_ID_SHIFT);
6048 }
6049 bf_set(lpfc_wqe_gen_els_id, &wqe->generic, els_id);
6050
6051 break;
6052 case CMD_XMIT_SEQUENCE64_CX:
6053 bf_set(lpfc_wqe_gen_context, &wqe->generic,
6054 iocbq->iocb.un.ulpWord[3]);
6055 wqe->generic.word3 = 0;
6056 bf_set(wqe_rcvoxid, &wqe->generic, iocbq->iocb.ulpContext);
6057 /* The entire sequence is transmitted for this IOCB */
6058 xmit_len = total_len;
6059 cmnd = CMD_XMIT_SEQUENCE64_CR;
6060 case CMD_XMIT_SEQUENCE64_CR:
6061 /* word3 iocb=io_tag32 wqe=payload_offset */
6062 /* payload offset used for multilpe outstanding
6063 * sequences on the same exchange
6064 */
6065 wqe->words[3] = 0;
6066 /* word4 relative_offset memcpy */
6067 /* word5 r_ctl/df_ctl memcpy */
6068 bf_set(lpfc_wqe_gen_pu, &wqe->generic, 0);
6069 wqe->xmit_sequence.xmit_len = xmit_len;
6070 command_type = OTHER_COMMAND;
6071 break;
6072 case CMD_XMIT_BCAST64_CN:
6073 /* word3 iocb=iotag32 wqe=payload_len */
6074 wqe->words[3] = 0; /* no definition for this in wqe */
6075 /* word4 iocb=rsvd wqe=rsvd */
6076 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
6077 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
6078 bf_set(lpfc_wqe_gen_ct, &wqe->generic,
6079 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
6080 break;
6081 case CMD_FCP_IWRITE64_CR:
6082 command_type = FCP_COMMAND_DATA_OUT;
6083 /* The struct for wqe fcp_iwrite has 3 fields that are somewhat
6084 * confusing.
6085 * word3 is payload_len: byte offset to the sgl entry for the
6086 * fcp_command.
6087 * word4 is total xfer len, same as the IOCB->ulpParameter.
6088 * word5 is initial xfer len 0 = wait for xfer-ready
6089 */
6090
6091 /* Always wait for xfer-ready before sending data */
6092 wqe->fcp_iwrite.initial_xfer_len = 0;
6093 /* word 4 (xfer length) should have been set on the memcpy */
6094
6095 /* allow write to fall through to read */
6096 case CMD_FCP_IREAD64_CR:
6097 /* FCP_CMD is always the 1st sgl entry */
6098 wqe->fcp_iread.payload_len =
6099 xmit_len + sizeof(struct fcp_rsp);
6100
6101 /* word 4 (xfer length) should have been set on the memcpy */
6102
6103 bf_set(lpfc_wqe_gen_erp, &wqe->generic,
6104 iocbq->iocb.ulpFCP2Rcvy);
6105 bf_set(lpfc_wqe_gen_lnk, &wqe->generic, iocbq->iocb.ulpXS);
6106 /* The XC bit and the XS bit are similar. The driver never
6107 * tracked whether or not the exchange was previouslly open.
6108 * XC = Exchange create, 0 is create. 1 is already open.
6109 * XS = link cmd: 1 do not close the exchange after command.
6110 * XS = 0 close exchange when command completes.
6111 * The only time we would not set the XC bit is when the XS bit
6112 * is set and we are sending our 2nd or greater command on
6113 * this exchange.
6114 */
6115 /* Always open the exchange */
6116 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0);
6117
6118 wqe->words[10] &= 0xffff0000; /* zero out ebde count */
6119 bf_set(lpfc_wqe_gen_pu, &wqe->generic, iocbq->iocb.ulpPU);
6120 break;
6121 case CMD_FCP_ICMND64_CR:
6122 /* Always open the exchange */
6123 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0);
6124
6125 wqe->words[4] = 0;
6126 wqe->words[10] &= 0xffff0000; /* zero out ebde count */
6127 bf_set(lpfc_wqe_gen_pu, &wqe->generic, 0);
6128 break;
6129 case CMD_GEN_REQUEST64_CR:
6130 /* word3 command length is described as byte offset to the
6131 * rsp_data. Would always be 16, sizeof(struct sli4_sge)
6132 * sgl[0] = cmnd
6133 * sgl[1] = rsp.
6134 *
6135 */
6136 wqe->gen_req.command_len = xmit_len;
6137 /* Word4 parameter copied in the memcpy */
6138 /* Word5 [rctl, type, df_ctl, la] copied in memcpy */
6139 /* word6 context tag copied in memcpy */
6140 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
6141 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
6142 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6143 "2015 Invalid CT %x command 0x%x\n",
6144 ct, iocbq->iocb.ulpCommand);
6145 return IOCB_ERROR;
6146 }
6147 bf_set(lpfc_wqe_gen_ct, &wqe->generic, 0);
6148 bf_set(wqe_tmo, &wqe->gen_req.wqe_com,
6149 iocbq->iocb.ulpTimeout);
6150
6151 bf_set(lpfc_wqe_gen_pu, &wqe->generic, iocbq->iocb.ulpPU);
6152 command_type = OTHER_COMMAND;
6153 break;
6154 case CMD_XMIT_ELS_RSP64_CX:
6155 /* words0-2 BDE memcpy */
6156 /* word3 iocb=iotag32 wqe=rsvd */
6157 wqe->words[3] = 0;
6158 /* word4 iocb=did wge=rsvd. */
6159 wqe->words[4] = 0;
6160 /* word5 iocb=rsvd wge=did */
6161 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
6162 iocbq->iocb.un.elsreq64.remoteID);
6163
6164 bf_set(lpfc_wqe_gen_ct, &wqe->generic,
6165 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
6166
6167 bf_set(lpfc_wqe_gen_pu, &wqe->generic, iocbq->iocb.ulpPU);
6168 bf_set(wqe_rcvoxid, &wqe->generic, iocbq->iocb.ulpContext);
6169 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
6170 bf_set(lpfc_wqe_gen_context, &wqe->generic,
6171 iocbq->vport->vpi + phba->vpi_base);
6172 command_type = OTHER_COMMAND;
6173 break;
6174 case CMD_CLOSE_XRI_CN:
6175 case CMD_ABORT_XRI_CN:
6176 case CMD_ABORT_XRI_CX:
6177 /* words 0-2 memcpy should be 0 rserved */
6178 /* port will send abts */
6179 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
6180 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
6181 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
6182 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
6183 } else
6184 fip = 0;
6185
6186 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
6187 /*
6188 * The link is down, or the command was ELS_FIP
6189 * so the fw does not need to send abts
6190 * on the wire.
6191 */
6192 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
6193 else
6194 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
6195 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
6196 wqe->words[5] = 0;
6197 bf_set(lpfc_wqe_gen_ct, &wqe->generic,
6198 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
6199 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
6200 /*
6201 * The abort handler will send us CMD_ABORT_XRI_CN or
6202 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
6203 */
6204 bf_set(lpfc_wqe_gen_command, &wqe->generic, CMD_ABORT_XRI_CX);
6205 cmnd = CMD_ABORT_XRI_CX;
6206 command_type = OTHER_COMMAND;
6207 xritag = 0;
6208 break;
6209 case CMD_XMIT_BLS_RSP64_CX:
6210 /* As BLS ABTS-ACC WQE is very different from other WQEs,
6211 * we re-construct this WQE here based on information in
6212 * iocbq from scratch.
6213 */
6214 memset(wqe, 0, sizeof(union lpfc_wqe));
6215 /* OX_ID is invariable to who sent ABTS to CT exchange */
6216 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
6217 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_acc));
6218 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_acc) ==
6219 LPFC_ABTS_UNSOL_INT) {
6220 /* ABTS sent by initiator to CT exchange, the
6221 * RX_ID field will be filled with the newly
6222 * allocated responder XRI.
6223 */
6224 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
6225 iocbq->sli4_xritag);
6226 } else {
6227 /* ABTS sent by responder to CT exchange, the
6228 * RX_ID field will be filled with the responder
6229 * RX_ID from ABTS.
6230 */
6231 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
6232 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_acc));
6233 }
6234 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
6235 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
6236 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
6237 iocbq->iocb.ulpContext);
6238 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
6239 command_type = OTHER_COMMAND;
6240 break;
6241 case CMD_XRI_ABORTED_CX:
6242 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
6243 /* words0-2 are all 0's no bde */
6244 /* word3 and word4 are rsvrd */
6245 wqe->words[3] = 0;
6246 wqe->words[4] = 0;
6247 /* word5 iocb=rsvd wge=did */
6248 /* There is no remote port id in the IOCB? */
6249 /* Let this fall through and fail */
6250 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
6251 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
6252 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
6253 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
6254 default:
6255 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6256 "2014 Invalid command 0x%x\n",
6257 iocbq->iocb.ulpCommand);
6258 return IOCB_ERROR;
6259 break;
6260
6261 }
6262 bf_set(lpfc_wqe_gen_xri, &wqe->generic, xritag);
6263 bf_set(lpfc_wqe_gen_request_tag, &wqe->generic, iocbq->iotag);
6264 wqe->generic.abort_tag = abort_tag;
6265 bf_set(lpfc_wqe_gen_cmd_type, &wqe->generic, command_type);
6266 bf_set(lpfc_wqe_gen_command, &wqe->generic, cmnd);
6267 bf_set(lpfc_wqe_gen_class, &wqe->generic, iocbq->iocb.ulpClass);
6268 bf_set(lpfc_wqe_gen_cq_id, &wqe->generic, LPFC_WQE_CQ_ID_DEFAULT);
6269
6270 return 0;
6271 }
6272
6273 /**
6274 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
6275 * @phba: Pointer to HBA context object.
6276 * @ring_number: SLI ring number to issue iocb on.
6277 * @piocb: Pointer to command iocb.
6278 * @flag: Flag indicating if this command can be put into txq.
6279 *
6280 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
6281 * an iocb command to an HBA with SLI-4 interface spec.
6282 *
6283 * This function is called with hbalock held. The function will return success
6284 * after it successfully submit the iocb to firmware or after adding to the
6285 * txq.
6286 **/
6287 static int
6288 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
6289 struct lpfc_iocbq *piocb, uint32_t flag)
6290 {
6291 struct lpfc_sglq *sglq;
6292 union lpfc_wqe wqe;
6293 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
6294
6295 if (piocb->sli4_xritag == NO_XRI) {
6296 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
6297 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
6298 sglq = NULL;
6299 else {
6300 if (pring->txq_cnt) {
6301 if (!(flag & SLI_IOCB_RET_IOCB)) {
6302 __lpfc_sli_ringtx_put(phba,
6303 pring, piocb);
6304 return IOCB_SUCCESS;
6305 } else {
6306 return IOCB_BUSY;
6307 }
6308 } else {
6309 sglq = __lpfc_sli_get_sglq(phba);
6310 if (!sglq) {
6311 if (!(flag & SLI_IOCB_RET_IOCB)) {
6312 __lpfc_sli_ringtx_put(phba,
6313 pring,
6314 piocb);
6315 return IOCB_SUCCESS;
6316 } else
6317 return IOCB_BUSY;
6318 }
6319 }
6320 }
6321 } else if (piocb->iocb_flag & LPFC_IO_FCP) {
6322 sglq = NULL; /* These IO's already have an XRI and
6323 * a mapped sgl.
6324 */
6325 } else {
6326 /* This is a continuation of a commandi,(CX) so this
6327 * sglq is on the active list
6328 */
6329 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_xritag);
6330 if (!sglq)
6331 return IOCB_ERROR;
6332 }
6333
6334 if (sglq) {
6335 piocb->sli4_xritag = sglq->sli4_xritag;
6336
6337 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
6338 return IOCB_ERROR;
6339 }
6340
6341 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
6342 return IOCB_ERROR;
6343
6344 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
6345 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
6346 /*
6347 * For FCP command IOCB, get a new WQ index to distribute
6348 * WQE across the WQsr. On the other hand, for abort IOCB,
6349 * it carries the same WQ index to the original command
6350 * IOCB.
6351 */
6352 if (piocb->iocb_flag & LPFC_IO_FCP)
6353 piocb->fcp_wqidx = lpfc_sli4_scmd_to_wqidx_distr(phba);
6354 if (lpfc_sli4_wq_put(phba->sli4_hba.fcp_wq[piocb->fcp_wqidx],
6355 &wqe))
6356 return IOCB_ERROR;
6357 } else {
6358 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe))
6359 return IOCB_ERROR;
6360 }
6361 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
6362
6363 return 0;
6364 }
6365
6366 /**
6367 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
6368 *
6369 * This routine wraps the actual lockless version for issusing IOCB function
6370 * pointer from the lpfc_hba struct.
6371 *
6372 * Return codes:
6373 * IOCB_ERROR - Error
6374 * IOCB_SUCCESS - Success
6375 * IOCB_BUSY - Busy
6376 **/
6377 int
6378 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
6379 struct lpfc_iocbq *piocb, uint32_t flag)
6380 {
6381 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
6382 }
6383
6384 /**
6385 * lpfc_sli_api_table_setup - Set up sli api fucntion jump table
6386 * @phba: The hba struct for which this call is being executed.
6387 * @dev_grp: The HBA PCI-Device group number.
6388 *
6389 * This routine sets up the SLI interface API function jump table in @phba
6390 * struct.
6391 * Returns: 0 - success, -ENODEV - failure.
6392 **/
6393 int
6394 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
6395 {
6396
6397 switch (dev_grp) {
6398 case LPFC_PCI_DEV_LP:
6399 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
6400 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
6401 break;
6402 case LPFC_PCI_DEV_OC:
6403 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
6404 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
6405 break;
6406 default:
6407 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6408 "1419 Invalid HBA PCI-device group: 0x%x\n",
6409 dev_grp);
6410 return -ENODEV;
6411 break;
6412 }
6413 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
6414 return 0;
6415 }
6416
6417 /**
6418 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
6419 * @phba: Pointer to HBA context object.
6420 * @pring: Pointer to driver SLI ring object.
6421 * @piocb: Pointer to command iocb.
6422 * @flag: Flag indicating if this command can be put into txq.
6423 *
6424 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
6425 * function. This function gets the hbalock and calls
6426 * __lpfc_sli_issue_iocb function and will return the error returned
6427 * by __lpfc_sli_issue_iocb function. This wrapper is used by
6428 * functions which do not hold hbalock.
6429 **/
6430 int
6431 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
6432 struct lpfc_iocbq *piocb, uint32_t flag)
6433 {
6434 unsigned long iflags;
6435 int rc;
6436
6437 spin_lock_irqsave(&phba->hbalock, iflags);
6438 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
6439 spin_unlock_irqrestore(&phba->hbalock, iflags);
6440
6441 return rc;
6442 }
6443
6444 /**
6445 * lpfc_extra_ring_setup - Extra ring setup function
6446 * @phba: Pointer to HBA context object.
6447 *
6448 * This function is called while driver attaches with the
6449 * HBA to setup the extra ring. The extra ring is used
6450 * only when driver needs to support target mode functionality
6451 * or IP over FC functionalities.
6452 *
6453 * This function is called with no lock held.
6454 **/
6455 static int
6456 lpfc_extra_ring_setup( struct lpfc_hba *phba)
6457 {
6458 struct lpfc_sli *psli;
6459 struct lpfc_sli_ring *pring;
6460
6461 psli = &phba->sli;
6462
6463 /* Adjust cmd/rsp ring iocb entries more evenly */
6464
6465 /* Take some away from the FCP ring */
6466 pring = &psli->ring[psli->fcp_ring];
6467 pring->numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
6468 pring->numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
6469 pring->numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
6470 pring->numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
6471
6472 /* and give them to the extra ring */
6473 pring = &psli->ring[psli->extra_ring];
6474
6475 pring->numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
6476 pring->numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
6477 pring->numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
6478 pring->numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
6479
6480 /* Setup default profile for this ring */
6481 pring->iotag_max = 4096;
6482 pring->num_mask = 1;
6483 pring->prt[0].profile = 0; /* Mask 0 */
6484 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
6485 pring->prt[0].type = phba->cfg_multi_ring_type;
6486 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
6487 return 0;
6488 }
6489
6490 /**
6491 * lpfc_sli_async_event_handler - ASYNC iocb handler function
6492 * @phba: Pointer to HBA context object.
6493 * @pring: Pointer to driver SLI ring object.
6494 * @iocbq: Pointer to iocb object.
6495 *
6496 * This function is called by the slow ring event handler
6497 * function when there is an ASYNC event iocb in the ring.
6498 * This function is called with no lock held.
6499 * Currently this function handles only temperature related
6500 * ASYNC events. The function decodes the temperature sensor
6501 * event message and posts events for the management applications.
6502 **/
6503 static void
6504 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
6505 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
6506 {
6507 IOCB_t *icmd;
6508 uint16_t evt_code;
6509 uint16_t temp;
6510 struct temp_event temp_event_data;
6511 struct Scsi_Host *shost;
6512 uint32_t *iocb_w;
6513
6514 icmd = &iocbq->iocb;
6515 evt_code = icmd->un.asyncstat.evt_code;
6516 temp = icmd->ulpContext;
6517
6518 if ((evt_code != ASYNC_TEMP_WARN) &&
6519 (evt_code != ASYNC_TEMP_SAFE)) {
6520 iocb_w = (uint32_t *) icmd;
6521 lpfc_printf_log(phba,
6522 KERN_ERR,
6523 LOG_SLI,
6524 "0346 Ring %d handler: unexpected ASYNC_STATUS"
6525 " evt_code 0x%x\n"
6526 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
6527 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
6528 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
6529 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
6530 pring->ringno,
6531 icmd->un.asyncstat.evt_code,
6532 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
6533 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
6534 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
6535 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
6536
6537 return;
6538 }
6539 temp_event_data.data = (uint32_t)temp;
6540 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6541 if (evt_code == ASYNC_TEMP_WARN) {
6542 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6543 lpfc_printf_log(phba,
6544 KERN_ERR,
6545 LOG_TEMP,
6546 "0347 Adapter is very hot, please take "
6547 "corrective action. temperature : %d Celsius\n",
6548 temp);
6549 }
6550 if (evt_code == ASYNC_TEMP_SAFE) {
6551 temp_event_data.event_code = LPFC_NORMAL_TEMP;
6552 lpfc_printf_log(phba,
6553 KERN_ERR,
6554 LOG_TEMP,
6555 "0340 Adapter temperature is OK now. "
6556 "temperature : %d Celsius\n",
6557 temp);
6558 }
6559
6560 /* Send temperature change event to applications */
6561 shost = lpfc_shost_from_vport(phba->pport);
6562 fc_host_post_vendor_event(shost, fc_get_event_number(),
6563 sizeof(temp_event_data), (char *) &temp_event_data,
6564 LPFC_NL_VENDOR_ID);
6565
6566 }
6567
6568
6569 /**
6570 * lpfc_sli_setup - SLI ring setup function
6571 * @phba: Pointer to HBA context object.
6572 *
6573 * lpfc_sli_setup sets up rings of the SLI interface with
6574 * number of iocbs per ring and iotags. This function is
6575 * called while driver attach to the HBA and before the
6576 * interrupts are enabled. So there is no need for locking.
6577 *
6578 * This function always returns 0.
6579 **/
6580 int
6581 lpfc_sli_setup(struct lpfc_hba *phba)
6582 {
6583 int i, totiocbsize = 0;
6584 struct lpfc_sli *psli = &phba->sli;
6585 struct lpfc_sli_ring *pring;
6586
6587 psli->num_rings = MAX_CONFIGURED_RINGS;
6588 psli->sli_flag = 0;
6589 psli->fcp_ring = LPFC_FCP_RING;
6590 psli->next_ring = LPFC_FCP_NEXT_RING;
6591 psli->extra_ring = LPFC_EXTRA_RING;
6592
6593 psli->iocbq_lookup = NULL;
6594 psli->iocbq_lookup_len = 0;
6595 psli->last_iotag = 0;
6596
6597 for (i = 0; i < psli->num_rings; i++) {
6598 pring = &psli->ring[i];
6599 switch (i) {
6600 case LPFC_FCP_RING: /* ring 0 - FCP */
6601 /* numCiocb and numRiocb are used in config_port */
6602 pring->numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
6603 pring->numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
6604 pring->numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
6605 pring->numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
6606 pring->numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
6607 pring->numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
6608 pring->sizeCiocb = (phba->sli_rev == 3) ?
6609 SLI3_IOCB_CMD_SIZE :
6610 SLI2_IOCB_CMD_SIZE;
6611 pring->sizeRiocb = (phba->sli_rev == 3) ?
6612 SLI3_IOCB_RSP_SIZE :
6613 SLI2_IOCB_RSP_SIZE;
6614 pring->iotag_ctr = 0;
6615 pring->iotag_max =
6616 (phba->cfg_hba_queue_depth * 2);
6617 pring->fast_iotag = pring->iotag_max;
6618 pring->num_mask = 0;
6619 break;
6620 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
6621 /* numCiocb and numRiocb are used in config_port */
6622 pring->numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
6623 pring->numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
6624 pring->sizeCiocb = (phba->sli_rev == 3) ?
6625 SLI3_IOCB_CMD_SIZE :
6626 SLI2_IOCB_CMD_SIZE;
6627 pring->sizeRiocb = (phba->sli_rev == 3) ?
6628 SLI3_IOCB_RSP_SIZE :
6629 SLI2_IOCB_RSP_SIZE;
6630 pring->iotag_max = phba->cfg_hba_queue_depth;
6631 pring->num_mask = 0;
6632 break;
6633 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
6634 /* numCiocb and numRiocb are used in config_port */
6635 pring->numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
6636 pring->numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
6637 pring->sizeCiocb = (phba->sli_rev == 3) ?
6638 SLI3_IOCB_CMD_SIZE :
6639 SLI2_IOCB_CMD_SIZE;
6640 pring->sizeRiocb = (phba->sli_rev == 3) ?
6641 SLI3_IOCB_RSP_SIZE :
6642 SLI2_IOCB_RSP_SIZE;
6643 pring->fast_iotag = 0;
6644 pring->iotag_ctr = 0;
6645 pring->iotag_max = 4096;
6646 pring->lpfc_sli_rcv_async_status =
6647 lpfc_sli_async_event_handler;
6648 pring->num_mask = LPFC_MAX_RING_MASK;
6649 pring->prt[0].profile = 0; /* Mask 0 */
6650 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
6651 pring->prt[0].type = FC_TYPE_ELS;
6652 pring->prt[0].lpfc_sli_rcv_unsol_event =
6653 lpfc_els_unsol_event;
6654 pring->prt[1].profile = 0; /* Mask 1 */
6655 pring->prt[1].rctl = FC_RCTL_ELS_REP;
6656 pring->prt[1].type = FC_TYPE_ELS;
6657 pring->prt[1].lpfc_sli_rcv_unsol_event =
6658 lpfc_els_unsol_event;
6659 pring->prt[2].profile = 0; /* Mask 2 */
6660 /* NameServer Inquiry */
6661 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
6662 /* NameServer */
6663 pring->prt[2].type = FC_TYPE_CT;
6664 pring->prt[2].lpfc_sli_rcv_unsol_event =
6665 lpfc_ct_unsol_event;
6666 pring->prt[3].profile = 0; /* Mask 3 */
6667 /* NameServer response */
6668 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
6669 /* NameServer */
6670 pring->prt[3].type = FC_TYPE_CT;
6671 pring->prt[3].lpfc_sli_rcv_unsol_event =
6672 lpfc_ct_unsol_event;
6673 /* abort unsolicited sequence */
6674 pring->prt[4].profile = 0; /* Mask 4 */
6675 pring->prt[4].rctl = FC_RCTL_BA_ABTS;
6676 pring->prt[4].type = FC_TYPE_BLS;
6677 pring->prt[4].lpfc_sli_rcv_unsol_event =
6678 lpfc_sli4_ct_abort_unsol_event;
6679 break;
6680 }
6681 totiocbsize += (pring->numCiocb * pring->sizeCiocb) +
6682 (pring->numRiocb * pring->sizeRiocb);
6683 }
6684 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
6685 /* Too many cmd / rsp ring entries in SLI2 SLIM */
6686 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
6687 "SLI2 SLIM Data: x%x x%lx\n",
6688 phba->brd_no, totiocbsize,
6689 (unsigned long) MAX_SLIM_IOCB_SIZE);
6690 }
6691 if (phba->cfg_multi_ring_support == 2)
6692 lpfc_extra_ring_setup(phba);
6693
6694 return 0;
6695 }
6696
6697 /**
6698 * lpfc_sli_queue_setup - Queue initialization function
6699 * @phba: Pointer to HBA context object.
6700 *
6701 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each
6702 * ring. This function also initializes ring indices of each ring.
6703 * This function is called during the initialization of the SLI
6704 * interface of an HBA.
6705 * This function is called with no lock held and always returns
6706 * 1.
6707 **/
6708 int
6709 lpfc_sli_queue_setup(struct lpfc_hba *phba)
6710 {
6711 struct lpfc_sli *psli;
6712 struct lpfc_sli_ring *pring;
6713 int i;
6714
6715 psli = &phba->sli;
6716 spin_lock_irq(&phba->hbalock);
6717 INIT_LIST_HEAD(&psli->mboxq);
6718 INIT_LIST_HEAD(&psli->mboxq_cmpl);
6719 /* Initialize list headers for txq and txcmplq as double linked lists */
6720 for (i = 0; i < psli->num_rings; i++) {
6721 pring = &psli->ring[i];
6722 pring->ringno = i;
6723 pring->next_cmdidx = 0;
6724 pring->local_getidx = 0;
6725 pring->cmdidx = 0;
6726 INIT_LIST_HEAD(&pring->txq);
6727 INIT_LIST_HEAD(&pring->txcmplq);
6728 INIT_LIST_HEAD(&pring->iocb_continueq);
6729 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
6730 INIT_LIST_HEAD(&pring->postbufq);
6731 }
6732 spin_unlock_irq(&phba->hbalock);
6733 return 1;
6734 }
6735
6736 /**
6737 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
6738 * @phba: Pointer to HBA context object.
6739 *
6740 * This routine flushes the mailbox command subsystem. It will unconditionally
6741 * flush all the mailbox commands in the three possible stages in the mailbox
6742 * command sub-system: pending mailbox command queue; the outstanding mailbox
6743 * command; and completed mailbox command queue. It is caller's responsibility
6744 * to make sure that the driver is in the proper state to flush the mailbox
6745 * command sub-system. Namely, the posting of mailbox commands into the
6746 * pending mailbox command queue from the various clients must be stopped;
6747 * either the HBA is in a state that it will never works on the outstanding
6748 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
6749 * mailbox command has been completed.
6750 **/
6751 static void
6752 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
6753 {
6754 LIST_HEAD(completions);
6755 struct lpfc_sli *psli = &phba->sli;
6756 LPFC_MBOXQ_t *pmb;
6757 unsigned long iflag;
6758
6759 /* Flush all the mailbox commands in the mbox system */
6760 spin_lock_irqsave(&phba->hbalock, iflag);
6761 /* The pending mailbox command queue */
6762 list_splice_init(&phba->sli.mboxq, &completions);
6763 /* The outstanding active mailbox command */
6764 if (psli->mbox_active) {
6765 list_add_tail(&psli->mbox_active->list, &completions);
6766 psli->mbox_active = NULL;
6767 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
6768 }
6769 /* The completed mailbox command queue */
6770 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
6771 spin_unlock_irqrestore(&phba->hbalock, iflag);
6772
6773 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
6774 while (!list_empty(&completions)) {
6775 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
6776 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
6777 if (pmb->mbox_cmpl)
6778 pmb->mbox_cmpl(phba, pmb);
6779 }
6780 }
6781
6782 /**
6783 * lpfc_sli_host_down - Vport cleanup function
6784 * @vport: Pointer to virtual port object.
6785 *
6786 * lpfc_sli_host_down is called to clean up the resources
6787 * associated with a vport before destroying virtual
6788 * port data structures.
6789 * This function does following operations:
6790 * - Free discovery resources associated with this virtual
6791 * port.
6792 * - Free iocbs associated with this virtual port in
6793 * the txq.
6794 * - Send abort for all iocb commands associated with this
6795 * vport in txcmplq.
6796 *
6797 * This function is called with no lock held and always returns 1.
6798 **/
6799 int
6800 lpfc_sli_host_down(struct lpfc_vport *vport)
6801 {
6802 LIST_HEAD(completions);
6803 struct lpfc_hba *phba = vport->phba;
6804 struct lpfc_sli *psli = &phba->sli;
6805 struct lpfc_sli_ring *pring;
6806 struct lpfc_iocbq *iocb, *next_iocb;
6807 int i;
6808 unsigned long flags = 0;
6809 uint16_t prev_pring_flag;
6810
6811 lpfc_cleanup_discovery_resources(vport);
6812
6813 spin_lock_irqsave(&phba->hbalock, flags);
6814 for (i = 0; i < psli->num_rings; i++) {
6815 pring = &psli->ring[i];
6816 prev_pring_flag = pring->flag;
6817 /* Only slow rings */
6818 if (pring->ringno == LPFC_ELS_RING) {
6819 pring->flag |= LPFC_DEFERRED_RING_EVENT;
6820 /* Set the lpfc data pending flag */
6821 set_bit(LPFC_DATA_READY, &phba->data_flags);
6822 }
6823 /*
6824 * Error everything on the txq since these iocbs have not been
6825 * given to the FW yet.
6826 */
6827 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) {
6828 if (iocb->vport != vport)
6829 continue;
6830 list_move_tail(&iocb->list, &completions);
6831 pring->txq_cnt--;
6832 }
6833
6834 /* Next issue ABTS for everything on the txcmplq */
6835 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq,
6836 list) {
6837 if (iocb->vport != vport)
6838 continue;
6839 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
6840 }
6841
6842 pring->flag = prev_pring_flag;
6843 }
6844
6845 spin_unlock_irqrestore(&phba->hbalock, flags);
6846
6847 /* Cancel all the IOCBs from the completions list */
6848 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
6849 IOERR_SLI_DOWN);
6850 return 1;
6851 }
6852
6853 /**
6854 * lpfc_sli_hba_down - Resource cleanup function for the HBA
6855 * @phba: Pointer to HBA context object.
6856 *
6857 * This function cleans up all iocb, buffers, mailbox commands
6858 * while shutting down the HBA. This function is called with no
6859 * lock held and always returns 1.
6860 * This function does the following to cleanup driver resources:
6861 * - Free discovery resources for each virtual port
6862 * - Cleanup any pending fabric iocbs
6863 * - Iterate through the iocb txq and free each entry
6864 * in the list.
6865 * - Free up any buffer posted to the HBA
6866 * - Free mailbox commands in the mailbox queue.
6867 **/
6868 int
6869 lpfc_sli_hba_down(struct lpfc_hba *phba)
6870 {
6871 LIST_HEAD(completions);
6872 struct lpfc_sli *psli = &phba->sli;
6873 struct lpfc_sli_ring *pring;
6874 struct lpfc_dmabuf *buf_ptr;
6875 unsigned long flags = 0;
6876 int i;
6877
6878 /* Shutdown the mailbox command sub-system */
6879 lpfc_sli_mbox_sys_shutdown(phba);
6880
6881 lpfc_hba_down_prep(phba);
6882
6883 lpfc_fabric_abort_hba(phba);
6884
6885 spin_lock_irqsave(&phba->hbalock, flags);
6886 for (i = 0; i < psli->num_rings; i++) {
6887 pring = &psli->ring[i];
6888 /* Only slow rings */
6889 if (pring->ringno == LPFC_ELS_RING) {
6890 pring->flag |= LPFC_DEFERRED_RING_EVENT;
6891 /* Set the lpfc data pending flag */
6892 set_bit(LPFC_DATA_READY, &phba->data_flags);
6893 }
6894
6895 /*
6896 * Error everything on the txq since these iocbs have not been
6897 * given to the FW yet.
6898 */
6899 list_splice_init(&pring->txq, &completions);
6900 pring->txq_cnt = 0;
6901
6902 }
6903 spin_unlock_irqrestore(&phba->hbalock, flags);
6904
6905 /* Cancel all the IOCBs from the completions list */
6906 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
6907 IOERR_SLI_DOWN);
6908
6909 spin_lock_irqsave(&phba->hbalock, flags);
6910 list_splice_init(&phba->elsbuf, &completions);
6911 phba->elsbuf_cnt = 0;
6912 phba->elsbuf_prev_cnt = 0;
6913 spin_unlock_irqrestore(&phba->hbalock, flags);
6914
6915 while (!list_empty(&completions)) {
6916 list_remove_head(&completions, buf_ptr,
6917 struct lpfc_dmabuf, list);
6918 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
6919 kfree(buf_ptr);
6920 }
6921
6922 /* Return any active mbox cmds */
6923 del_timer_sync(&psli->mbox_tmo);
6924
6925 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
6926 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
6927 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
6928
6929 return 1;
6930 }
6931
6932 /**
6933 * lpfc_sli_pcimem_bcopy - SLI memory copy function
6934 * @srcp: Source memory pointer.
6935 * @destp: Destination memory pointer.
6936 * @cnt: Number of words required to be copied.
6937 *
6938 * This function is used for copying data between driver memory
6939 * and the SLI memory. This function also changes the endianness
6940 * of each word if native endianness is different from SLI
6941 * endianness. This function can be called with or without
6942 * lock.
6943 **/
6944 void
6945 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
6946 {
6947 uint32_t *src = srcp;
6948 uint32_t *dest = destp;
6949 uint32_t ldata;
6950 int i;
6951
6952 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
6953 ldata = *src;
6954 ldata = le32_to_cpu(ldata);
6955 *dest = ldata;
6956 src++;
6957 dest++;
6958 }
6959 }
6960
6961
6962 /**
6963 * lpfc_sli_bemem_bcopy - SLI memory copy function
6964 * @srcp: Source memory pointer.
6965 * @destp: Destination memory pointer.
6966 * @cnt: Number of words required to be copied.
6967 *
6968 * This function is used for copying data between a data structure
6969 * with big endian representation to local endianness.
6970 * This function can be called with or without lock.
6971 **/
6972 void
6973 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
6974 {
6975 uint32_t *src = srcp;
6976 uint32_t *dest = destp;
6977 uint32_t ldata;
6978 int i;
6979
6980 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
6981 ldata = *src;
6982 ldata = be32_to_cpu(ldata);
6983 *dest = ldata;
6984 src++;
6985 dest++;
6986 }
6987 }
6988
6989 /**
6990 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
6991 * @phba: Pointer to HBA context object.
6992 * @pring: Pointer to driver SLI ring object.
6993 * @mp: Pointer to driver buffer object.
6994 *
6995 * This function is called with no lock held.
6996 * It always return zero after adding the buffer to the postbufq
6997 * buffer list.
6998 **/
6999 int
7000 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7001 struct lpfc_dmabuf *mp)
7002 {
7003 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
7004 later */
7005 spin_lock_irq(&phba->hbalock);
7006 list_add_tail(&mp->list, &pring->postbufq);
7007 pring->postbufq_cnt++;
7008 spin_unlock_irq(&phba->hbalock);
7009 return 0;
7010 }
7011
7012 /**
7013 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
7014 * @phba: Pointer to HBA context object.
7015 *
7016 * When HBQ is enabled, buffers are searched based on tags. This function
7017 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
7018 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
7019 * does not conflict with tags of buffer posted for unsolicited events.
7020 * The function returns the allocated tag. The function is called with
7021 * no locks held.
7022 **/
7023 uint32_t
7024 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
7025 {
7026 spin_lock_irq(&phba->hbalock);
7027 phba->buffer_tag_count++;
7028 /*
7029 * Always set the QUE_BUFTAG_BIT to distiguish between
7030 * a tag assigned by HBQ.
7031 */
7032 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
7033 spin_unlock_irq(&phba->hbalock);
7034 return phba->buffer_tag_count;
7035 }
7036
7037 /**
7038 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
7039 * @phba: Pointer to HBA context object.
7040 * @pring: Pointer to driver SLI ring object.
7041 * @tag: Buffer tag.
7042 *
7043 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
7044 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
7045 * iocb is posted to the response ring with the tag of the buffer.
7046 * This function searches the pring->postbufq list using the tag
7047 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
7048 * iocb. If the buffer is found then lpfc_dmabuf object of the
7049 * buffer is returned to the caller else NULL is returned.
7050 * This function is called with no lock held.
7051 **/
7052 struct lpfc_dmabuf *
7053 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7054 uint32_t tag)
7055 {
7056 struct lpfc_dmabuf *mp, *next_mp;
7057 struct list_head *slp = &pring->postbufq;
7058
7059 /* Search postbufq, from the begining, looking for a match on tag */
7060 spin_lock_irq(&phba->hbalock);
7061 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
7062 if (mp->buffer_tag == tag) {
7063 list_del_init(&mp->list);
7064 pring->postbufq_cnt--;
7065 spin_unlock_irq(&phba->hbalock);
7066 return mp;
7067 }
7068 }
7069
7070 spin_unlock_irq(&phba->hbalock);
7071 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7072 "0402 Cannot find virtual addr for buffer tag on "
7073 "ring %d Data x%lx x%p x%p x%x\n",
7074 pring->ringno, (unsigned long) tag,
7075 slp->next, slp->prev, pring->postbufq_cnt);
7076
7077 return NULL;
7078 }
7079
7080 /**
7081 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
7082 * @phba: Pointer to HBA context object.
7083 * @pring: Pointer to driver SLI ring object.
7084 * @phys: DMA address of the buffer.
7085 *
7086 * This function searches the buffer list using the dma_address
7087 * of unsolicited event to find the driver's lpfc_dmabuf object
7088 * corresponding to the dma_address. The function returns the
7089 * lpfc_dmabuf object if a buffer is found else it returns NULL.
7090 * This function is called by the ct and els unsolicited event
7091 * handlers to get the buffer associated with the unsolicited
7092 * event.
7093 *
7094 * This function is called with no lock held.
7095 **/
7096 struct lpfc_dmabuf *
7097 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7098 dma_addr_t phys)
7099 {
7100 struct lpfc_dmabuf *mp, *next_mp;
7101 struct list_head *slp = &pring->postbufq;
7102
7103 /* Search postbufq, from the begining, looking for a match on phys */
7104 spin_lock_irq(&phba->hbalock);
7105 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
7106 if (mp->phys == phys) {
7107 list_del_init(&mp->list);
7108 pring->postbufq_cnt--;
7109 spin_unlock_irq(&phba->hbalock);
7110 return mp;
7111 }
7112 }
7113
7114 spin_unlock_irq(&phba->hbalock);
7115 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7116 "0410 Cannot find virtual addr for mapped buf on "
7117 "ring %d Data x%llx x%p x%p x%x\n",
7118 pring->ringno, (unsigned long long)phys,
7119 slp->next, slp->prev, pring->postbufq_cnt);
7120 return NULL;
7121 }
7122
7123 /**
7124 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
7125 * @phba: Pointer to HBA context object.
7126 * @cmdiocb: Pointer to driver command iocb object.
7127 * @rspiocb: Pointer to driver response iocb object.
7128 *
7129 * This function is the completion handler for the abort iocbs for
7130 * ELS commands. This function is called from the ELS ring event
7131 * handler with no lock held. This function frees memory resources
7132 * associated with the abort iocb.
7133 **/
7134 static void
7135 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
7136 struct lpfc_iocbq *rspiocb)
7137 {
7138 IOCB_t *irsp = &rspiocb->iocb;
7139 uint16_t abort_iotag, abort_context;
7140 struct lpfc_iocbq *abort_iocb;
7141 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
7142
7143 abort_iocb = NULL;
7144
7145 if (irsp->ulpStatus) {
7146 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
7147 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
7148
7149 spin_lock_irq(&phba->hbalock);
7150 if (phba->sli_rev < LPFC_SLI_REV4) {
7151 if (abort_iotag != 0 &&
7152 abort_iotag <= phba->sli.last_iotag)
7153 abort_iocb =
7154 phba->sli.iocbq_lookup[abort_iotag];
7155 } else
7156 /* For sli4 the abort_tag is the XRI,
7157 * so the abort routine puts the iotag of the iocb
7158 * being aborted in the context field of the abort
7159 * IOCB.
7160 */
7161 abort_iocb = phba->sli.iocbq_lookup[abort_context];
7162
7163 /*
7164 * If the iocb is not found in Firmware queue the iocb
7165 * might have completed already. Do not free it again.
7166 */
7167 if (irsp->ulpStatus == IOSTAT_LOCAL_REJECT) {
7168 if (irsp->un.ulpWord[4] != IOERR_NO_XRI) {
7169 spin_unlock_irq(&phba->hbalock);
7170 lpfc_sli_release_iocbq(phba, cmdiocb);
7171 return;
7172 }
7173 /* For SLI4 the ulpContext field for abort IOCB
7174 * holds the iotag of the IOCB being aborted so
7175 * the local abort_context needs to be reset to
7176 * match the aborted IOCBs ulpContext.
7177 */
7178 if (abort_iocb && phba->sli_rev == LPFC_SLI_REV4)
7179 abort_context = abort_iocb->iocb.ulpContext;
7180 }
7181
7182 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
7183 "0327 Cannot abort els iocb %p "
7184 "with tag %x context %x, abort status %x, "
7185 "abort code %x\n",
7186 abort_iocb, abort_iotag, abort_context,
7187 irsp->ulpStatus, irsp->un.ulpWord[4]);
7188 /*
7189 * make sure we have the right iocbq before taking it
7190 * off the txcmplq and try to call completion routine.
7191 */
7192 if (!abort_iocb ||
7193 abort_iocb->iocb.ulpContext != abort_context ||
7194 (abort_iocb->iocb_flag & LPFC_DRIVER_ABORTED) == 0)
7195 spin_unlock_irq(&phba->hbalock);
7196 else if (phba->sli_rev < LPFC_SLI_REV4) {
7197 /*
7198 * leave the SLI4 aborted command on the txcmplq
7199 * list and the command complete WCQE's XB bit
7200 * will tell whether the SGL (XRI) can be released
7201 * immediately or to the aborted SGL list for the
7202 * following abort XRI from the HBA.
7203 */
7204 list_del_init(&abort_iocb->list);
7205 if (abort_iocb->iocb_flag & LPFC_IO_ON_Q) {
7206 abort_iocb->iocb_flag &= ~LPFC_IO_ON_Q;
7207 pring->txcmplq_cnt--;
7208 }
7209
7210 /* Firmware could still be in progress of DMAing
7211 * payload, so don't free data buffer till after
7212 * a hbeat.
7213 */
7214 abort_iocb->iocb_flag |= LPFC_DELAY_MEM_FREE;
7215 abort_iocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
7216 spin_unlock_irq(&phba->hbalock);
7217
7218 abort_iocb->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
7219 abort_iocb->iocb.un.ulpWord[4] = IOERR_ABORT_REQUESTED;
7220 (abort_iocb->iocb_cmpl)(phba, abort_iocb, abort_iocb);
7221 } else
7222 spin_unlock_irq(&phba->hbalock);
7223 }
7224
7225 lpfc_sli_release_iocbq(phba, cmdiocb);
7226 return;
7227 }
7228
7229 /**
7230 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
7231 * @phba: Pointer to HBA context object.
7232 * @cmdiocb: Pointer to driver command iocb object.
7233 * @rspiocb: Pointer to driver response iocb object.
7234 *
7235 * The function is called from SLI ring event handler with no
7236 * lock held. This function is the completion handler for ELS commands
7237 * which are aborted. The function frees memory resources used for
7238 * the aborted ELS commands.
7239 **/
7240 static void
7241 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
7242 struct lpfc_iocbq *rspiocb)
7243 {
7244 IOCB_t *irsp = &rspiocb->iocb;
7245
7246 /* ELS cmd tag <ulpIoTag> completes */
7247 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
7248 "0139 Ignoring ELS cmd tag x%x completion Data: "
7249 "x%x x%x x%x\n",
7250 irsp->ulpIoTag, irsp->ulpStatus,
7251 irsp->un.ulpWord[4], irsp->ulpTimeout);
7252 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
7253 lpfc_ct_free_iocb(phba, cmdiocb);
7254 else
7255 lpfc_els_free_iocb(phba, cmdiocb);
7256 return;
7257 }
7258
7259 /**
7260 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
7261 * @phba: Pointer to HBA context object.
7262 * @pring: Pointer to driver SLI ring object.
7263 * @cmdiocb: Pointer to driver command iocb object.
7264 *
7265 * This function issues an abort iocb for the provided command
7266 * iocb. This function is called with hbalock held.
7267 * The function returns 0 when it fails due to memory allocation
7268 * failure or when the command iocb is an abort request.
7269 **/
7270 int
7271 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7272 struct lpfc_iocbq *cmdiocb)
7273 {
7274 struct lpfc_vport *vport = cmdiocb->vport;
7275 struct lpfc_iocbq *abtsiocbp;
7276 IOCB_t *icmd = NULL;
7277 IOCB_t *iabt = NULL;
7278 int retval = IOCB_ERROR;
7279
7280 /*
7281 * There are certain command types we don't want to abort. And we
7282 * don't want to abort commands that are already in the process of
7283 * being aborted.
7284 */
7285 icmd = &cmdiocb->iocb;
7286 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
7287 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
7288 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
7289 return 0;
7290
7291 /* If we're unloading, don't abort iocb on the ELS ring, but change the
7292 * callback so that nothing happens when it finishes.
7293 */
7294 if ((vport->load_flag & FC_UNLOADING) &&
7295 (pring->ringno == LPFC_ELS_RING)) {
7296 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
7297 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
7298 else
7299 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
7300 goto abort_iotag_exit;
7301 }
7302
7303 /* issue ABTS for this IOCB based on iotag */
7304 abtsiocbp = __lpfc_sli_get_iocbq(phba);
7305 if (abtsiocbp == NULL)
7306 return 0;
7307
7308 /* This signals the response to set the correct status
7309 * before calling the completion handler
7310 */
7311 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
7312
7313 iabt = &abtsiocbp->iocb;
7314 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
7315 iabt->un.acxri.abortContextTag = icmd->ulpContext;
7316 if (phba->sli_rev == LPFC_SLI_REV4) {
7317 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
7318 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
7319 }
7320 else
7321 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
7322 iabt->ulpLe = 1;
7323 iabt->ulpClass = icmd->ulpClass;
7324
7325 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
7326 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx;
7327 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
7328 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
7329
7330 if (phba->link_state >= LPFC_LINK_UP)
7331 iabt->ulpCommand = CMD_ABORT_XRI_CN;
7332 else
7333 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
7334
7335 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
7336
7337 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
7338 "0339 Abort xri x%x, original iotag x%x, "
7339 "abort cmd iotag x%x\n",
7340 iabt->un.acxri.abortIoTag,
7341 iabt->un.acxri.abortContextTag,
7342 abtsiocbp->iotag);
7343 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, abtsiocbp, 0);
7344
7345 if (retval)
7346 __lpfc_sli_release_iocbq(phba, abtsiocbp);
7347 abort_iotag_exit:
7348 /*
7349 * Caller to this routine should check for IOCB_ERROR
7350 * and handle it properly. This routine no longer removes
7351 * iocb off txcmplq and call compl in case of IOCB_ERROR.
7352 */
7353 return retval;
7354 }
7355
7356 /**
7357 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
7358 * @iocbq: Pointer to driver iocb object.
7359 * @vport: Pointer to driver virtual port object.
7360 * @tgt_id: SCSI ID of the target.
7361 * @lun_id: LUN ID of the scsi device.
7362 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
7363 *
7364 * This function acts as an iocb filter for functions which abort or count
7365 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
7366 * 0 if the filtering criteria is met for the given iocb and will return
7367 * 1 if the filtering criteria is not met.
7368 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
7369 * given iocb is for the SCSI device specified by vport, tgt_id and
7370 * lun_id parameter.
7371 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
7372 * given iocb is for the SCSI target specified by vport and tgt_id
7373 * parameters.
7374 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
7375 * given iocb is for the SCSI host associated with the given vport.
7376 * This function is called with no locks held.
7377 **/
7378 static int
7379 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
7380 uint16_t tgt_id, uint64_t lun_id,
7381 lpfc_ctx_cmd ctx_cmd)
7382 {
7383 struct lpfc_scsi_buf *lpfc_cmd;
7384 int rc = 1;
7385
7386 if (!(iocbq->iocb_flag & LPFC_IO_FCP))
7387 return rc;
7388
7389 if (iocbq->vport != vport)
7390 return rc;
7391
7392 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
7393
7394 if (lpfc_cmd->pCmd == NULL)
7395 return rc;
7396
7397 switch (ctx_cmd) {
7398 case LPFC_CTX_LUN:
7399 if ((lpfc_cmd->rdata->pnode) &&
7400 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
7401 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
7402 rc = 0;
7403 break;
7404 case LPFC_CTX_TGT:
7405 if ((lpfc_cmd->rdata->pnode) &&
7406 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
7407 rc = 0;
7408 break;
7409 case LPFC_CTX_HOST:
7410 rc = 0;
7411 break;
7412 default:
7413 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
7414 __func__, ctx_cmd);
7415 break;
7416 }
7417
7418 return rc;
7419 }
7420
7421 /**
7422 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
7423 * @vport: Pointer to virtual port.
7424 * @tgt_id: SCSI ID of the target.
7425 * @lun_id: LUN ID of the scsi device.
7426 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
7427 *
7428 * This function returns number of FCP commands pending for the vport.
7429 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
7430 * commands pending on the vport associated with SCSI device specified
7431 * by tgt_id and lun_id parameters.
7432 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
7433 * commands pending on the vport associated with SCSI target specified
7434 * by tgt_id parameter.
7435 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
7436 * commands pending on the vport.
7437 * This function returns the number of iocbs which satisfy the filter.
7438 * This function is called without any lock held.
7439 **/
7440 int
7441 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
7442 lpfc_ctx_cmd ctx_cmd)
7443 {
7444 struct lpfc_hba *phba = vport->phba;
7445 struct lpfc_iocbq *iocbq;
7446 int sum, i;
7447
7448 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
7449 iocbq = phba->sli.iocbq_lookup[i];
7450
7451 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
7452 ctx_cmd) == 0)
7453 sum++;
7454 }
7455
7456 return sum;
7457 }
7458
7459 /**
7460 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
7461 * @phba: Pointer to HBA context object
7462 * @cmdiocb: Pointer to command iocb object.
7463 * @rspiocb: Pointer to response iocb object.
7464 *
7465 * This function is called when an aborted FCP iocb completes. This
7466 * function is called by the ring event handler with no lock held.
7467 * This function frees the iocb.
7468 **/
7469 void
7470 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
7471 struct lpfc_iocbq *rspiocb)
7472 {
7473 lpfc_sli_release_iocbq(phba, cmdiocb);
7474 return;
7475 }
7476
7477 /**
7478 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
7479 * @vport: Pointer to virtual port.
7480 * @pring: Pointer to driver SLI ring object.
7481 * @tgt_id: SCSI ID of the target.
7482 * @lun_id: LUN ID of the scsi device.
7483 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
7484 *
7485 * This function sends an abort command for every SCSI command
7486 * associated with the given virtual port pending on the ring
7487 * filtered by lpfc_sli_validate_fcp_iocb function.
7488 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
7489 * FCP iocbs associated with lun specified by tgt_id and lun_id
7490 * parameters
7491 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
7492 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
7493 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
7494 * FCP iocbs associated with virtual port.
7495 * This function returns number of iocbs it failed to abort.
7496 * This function is called with no locks held.
7497 **/
7498 int
7499 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
7500 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
7501 {
7502 struct lpfc_hba *phba = vport->phba;
7503 struct lpfc_iocbq *iocbq;
7504 struct lpfc_iocbq *abtsiocb;
7505 IOCB_t *cmd = NULL;
7506 int errcnt = 0, ret_val = 0;
7507 int i;
7508
7509 for (i = 1; i <= phba->sli.last_iotag; i++) {
7510 iocbq = phba->sli.iocbq_lookup[i];
7511
7512 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
7513 abort_cmd) != 0)
7514 continue;
7515
7516 /* issue ABTS for this IOCB based on iotag */
7517 abtsiocb = lpfc_sli_get_iocbq(phba);
7518 if (abtsiocb == NULL) {
7519 errcnt++;
7520 continue;
7521 }
7522
7523 cmd = &iocbq->iocb;
7524 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
7525 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
7526 if (phba->sli_rev == LPFC_SLI_REV4)
7527 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
7528 else
7529 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
7530 abtsiocb->iocb.ulpLe = 1;
7531 abtsiocb->iocb.ulpClass = cmd->ulpClass;
7532 abtsiocb->vport = phba->pport;
7533
7534 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
7535 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx;
7536 if (iocbq->iocb_flag & LPFC_IO_FCP)
7537 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
7538
7539 if (lpfc_is_link_up(phba))
7540 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
7541 else
7542 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
7543
7544 /* Setup callback routine and issue the command. */
7545 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
7546 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
7547 abtsiocb, 0);
7548 if (ret_val == IOCB_ERROR) {
7549 lpfc_sli_release_iocbq(phba, abtsiocb);
7550 errcnt++;
7551 continue;
7552 }
7553 }
7554
7555 return errcnt;
7556 }
7557
7558 /**
7559 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
7560 * @phba: Pointer to HBA context object.
7561 * @cmdiocbq: Pointer to command iocb.
7562 * @rspiocbq: Pointer to response iocb.
7563 *
7564 * This function is the completion handler for iocbs issued using
7565 * lpfc_sli_issue_iocb_wait function. This function is called by the
7566 * ring event handler function without any lock held. This function
7567 * can be called from both worker thread context and interrupt
7568 * context. This function also can be called from other thread which
7569 * cleans up the SLI layer objects.
7570 * This function copy the contents of the response iocb to the
7571 * response iocb memory object provided by the caller of
7572 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
7573 * sleeps for the iocb completion.
7574 **/
7575 static void
7576 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
7577 struct lpfc_iocbq *cmdiocbq,
7578 struct lpfc_iocbq *rspiocbq)
7579 {
7580 wait_queue_head_t *pdone_q;
7581 unsigned long iflags;
7582 struct lpfc_scsi_buf *lpfc_cmd;
7583
7584 spin_lock_irqsave(&phba->hbalock, iflags);
7585 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
7586 if (cmdiocbq->context2 && rspiocbq)
7587 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
7588 &rspiocbq->iocb, sizeof(IOCB_t));
7589
7590 /* Set the exchange busy flag for task management commands */
7591 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
7592 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
7593 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
7594 cur_iocbq);
7595 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
7596 }
7597
7598 pdone_q = cmdiocbq->context_un.wait_queue;
7599 if (pdone_q)
7600 wake_up(pdone_q);
7601 spin_unlock_irqrestore(&phba->hbalock, iflags);
7602 return;
7603 }
7604
7605 /**
7606 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
7607 * @phba: Pointer to HBA context object..
7608 * @piocbq: Pointer to command iocb.
7609 * @flag: Flag to test.
7610 *
7611 * This routine grabs the hbalock and then test the iocb_flag to
7612 * see if the passed in flag is set.
7613 * Returns:
7614 * 1 if flag is set.
7615 * 0 if flag is not set.
7616 **/
7617 static int
7618 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
7619 struct lpfc_iocbq *piocbq, uint32_t flag)
7620 {
7621 unsigned long iflags;
7622 int ret;
7623
7624 spin_lock_irqsave(&phba->hbalock, iflags);
7625 ret = piocbq->iocb_flag & flag;
7626 spin_unlock_irqrestore(&phba->hbalock, iflags);
7627 return ret;
7628
7629 }
7630
7631 /**
7632 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
7633 * @phba: Pointer to HBA context object..
7634 * @pring: Pointer to sli ring.
7635 * @piocb: Pointer to command iocb.
7636 * @prspiocbq: Pointer to response iocb.
7637 * @timeout: Timeout in number of seconds.
7638 *
7639 * This function issues the iocb to firmware and waits for the
7640 * iocb to complete. If the iocb command is not
7641 * completed within timeout seconds, it returns IOCB_TIMEDOUT.
7642 * Caller should not free the iocb resources if this function
7643 * returns IOCB_TIMEDOUT.
7644 * The function waits for the iocb completion using an
7645 * non-interruptible wait.
7646 * This function will sleep while waiting for iocb completion.
7647 * So, this function should not be called from any context which
7648 * does not allow sleeping. Due to the same reason, this function
7649 * cannot be called with interrupt disabled.
7650 * This function assumes that the iocb completions occur while
7651 * this function sleep. So, this function cannot be called from
7652 * the thread which process iocb completion for this ring.
7653 * This function clears the iocb_flag of the iocb object before
7654 * issuing the iocb and the iocb completion handler sets this
7655 * flag and wakes this thread when the iocb completes.
7656 * The contents of the response iocb will be copied to prspiocbq
7657 * by the completion handler when the command completes.
7658 * This function returns IOCB_SUCCESS when success.
7659 * This function is called with no lock held.
7660 **/
7661 int
7662 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
7663 uint32_t ring_number,
7664 struct lpfc_iocbq *piocb,
7665 struct lpfc_iocbq *prspiocbq,
7666 uint32_t timeout)
7667 {
7668 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
7669 long timeleft, timeout_req = 0;
7670 int retval = IOCB_SUCCESS;
7671 uint32_t creg_val;
7672 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
7673 /*
7674 * If the caller has provided a response iocbq buffer, then context2
7675 * is NULL or its an error.
7676 */
7677 if (prspiocbq) {
7678 if (piocb->context2)
7679 return IOCB_ERROR;
7680 piocb->context2 = prspiocbq;
7681 }
7682
7683 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
7684 piocb->context_un.wait_queue = &done_q;
7685 piocb->iocb_flag &= ~LPFC_IO_WAKE;
7686
7687 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
7688 creg_val = readl(phba->HCregaddr);
7689 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
7690 writel(creg_val, phba->HCregaddr);
7691 readl(phba->HCregaddr); /* flush */
7692 }
7693
7694 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
7695 SLI_IOCB_RET_IOCB);
7696 if (retval == IOCB_SUCCESS) {
7697 timeout_req = timeout * HZ;
7698 timeleft = wait_event_timeout(done_q,
7699 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
7700 timeout_req);
7701
7702 if (piocb->iocb_flag & LPFC_IO_WAKE) {
7703 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7704 "0331 IOCB wake signaled\n");
7705 } else if (timeleft == 0) {
7706 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7707 "0338 IOCB wait timeout error - no "
7708 "wake response Data x%x\n", timeout);
7709 retval = IOCB_TIMEDOUT;
7710 } else {
7711 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7712 "0330 IOCB wake NOT set, "
7713 "Data x%x x%lx\n",
7714 timeout, (timeleft / jiffies));
7715 retval = IOCB_TIMEDOUT;
7716 }
7717 } else if (retval == IOCB_BUSY) {
7718 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7719 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
7720 phba->iocb_cnt, pring->txq_cnt, pring->txcmplq_cnt);
7721 return retval;
7722 } else {
7723 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7724 "0332 IOCB wait issue failed, Data x%x\n",
7725 retval);
7726 retval = IOCB_ERROR;
7727 }
7728
7729 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
7730 creg_val = readl(phba->HCregaddr);
7731 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
7732 writel(creg_val, phba->HCregaddr);
7733 readl(phba->HCregaddr); /* flush */
7734 }
7735
7736 if (prspiocbq)
7737 piocb->context2 = NULL;
7738
7739 piocb->context_un.wait_queue = NULL;
7740 piocb->iocb_cmpl = NULL;
7741 return retval;
7742 }
7743
7744 /**
7745 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
7746 * @phba: Pointer to HBA context object.
7747 * @pmboxq: Pointer to driver mailbox object.
7748 * @timeout: Timeout in number of seconds.
7749 *
7750 * This function issues the mailbox to firmware and waits for the
7751 * mailbox command to complete. If the mailbox command is not
7752 * completed within timeout seconds, it returns MBX_TIMEOUT.
7753 * The function waits for the mailbox completion using an
7754 * interruptible wait. If the thread is woken up due to a
7755 * signal, MBX_TIMEOUT error is returned to the caller. Caller
7756 * should not free the mailbox resources, if this function returns
7757 * MBX_TIMEOUT.
7758 * This function will sleep while waiting for mailbox completion.
7759 * So, this function should not be called from any context which
7760 * does not allow sleeping. Due to the same reason, this function
7761 * cannot be called with interrupt disabled.
7762 * This function assumes that the mailbox completion occurs while
7763 * this function sleep. So, this function cannot be called from
7764 * the worker thread which processes mailbox completion.
7765 * This function is called in the context of HBA management
7766 * applications.
7767 * This function returns MBX_SUCCESS when successful.
7768 * This function is called with no lock held.
7769 **/
7770 int
7771 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
7772 uint32_t timeout)
7773 {
7774 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
7775 int retval;
7776 unsigned long flag;
7777
7778 /* The caller must leave context1 empty. */
7779 if (pmboxq->context1)
7780 return MBX_NOT_FINISHED;
7781
7782 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
7783 /* setup wake call as IOCB callback */
7784 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
7785 /* setup context field to pass wait_queue pointer to wake function */
7786 pmboxq->context1 = &done_q;
7787
7788 /* now issue the command */
7789 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
7790
7791 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
7792 wait_event_interruptible_timeout(done_q,
7793 pmboxq->mbox_flag & LPFC_MBX_WAKE,
7794 timeout * HZ);
7795
7796 spin_lock_irqsave(&phba->hbalock, flag);
7797 pmboxq->context1 = NULL;
7798 /*
7799 * if LPFC_MBX_WAKE flag is set the mailbox is completed
7800 * else do not free the resources.
7801 */
7802 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
7803 retval = MBX_SUCCESS;
7804 lpfc_sli4_swap_str(phba, pmboxq);
7805 } else {
7806 retval = MBX_TIMEOUT;
7807 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
7808 }
7809 spin_unlock_irqrestore(&phba->hbalock, flag);
7810 }
7811
7812 return retval;
7813 }
7814
7815 /**
7816 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
7817 * @phba: Pointer to HBA context.
7818 *
7819 * This function is called to shutdown the driver's mailbox sub-system.
7820 * It first marks the mailbox sub-system is in a block state to prevent
7821 * the asynchronous mailbox command from issued off the pending mailbox
7822 * command queue. If the mailbox command sub-system shutdown is due to
7823 * HBA error conditions such as EEH or ERATT, this routine shall invoke
7824 * the mailbox sub-system flush routine to forcefully bring down the
7825 * mailbox sub-system. Otherwise, if it is due to normal condition (such
7826 * as with offline or HBA function reset), this routine will wait for the
7827 * outstanding mailbox command to complete before invoking the mailbox
7828 * sub-system flush routine to gracefully bring down mailbox sub-system.
7829 **/
7830 void
7831 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba)
7832 {
7833 struct lpfc_sli *psli = &phba->sli;
7834 uint8_t actcmd = MBX_HEARTBEAT;
7835 unsigned long timeout;
7836
7837 spin_lock_irq(&phba->hbalock);
7838 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
7839 spin_unlock_irq(&phba->hbalock);
7840
7841 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
7842 spin_lock_irq(&phba->hbalock);
7843 if (phba->sli.mbox_active)
7844 actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
7845 spin_unlock_irq(&phba->hbalock);
7846 /* Determine how long we might wait for the active mailbox
7847 * command to be gracefully completed by firmware.
7848 */
7849 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, actcmd) *
7850 1000) + jiffies;
7851 while (phba->sli.mbox_active) {
7852 /* Check active mailbox complete status every 2ms */
7853 msleep(2);
7854 if (time_after(jiffies, timeout))
7855 /* Timeout, let the mailbox flush routine to
7856 * forcefully release active mailbox command
7857 */
7858 break;
7859 }
7860 }
7861 lpfc_sli_mbox_sys_flush(phba);
7862 }
7863
7864 /**
7865 * lpfc_sli_eratt_read - read sli-3 error attention events
7866 * @phba: Pointer to HBA context.
7867 *
7868 * This function is called to read the SLI3 device error attention registers
7869 * for possible error attention events. The caller must hold the hostlock
7870 * with spin_lock_irq().
7871 *
7872 * This fucntion returns 1 when there is Error Attention in the Host Attention
7873 * Register and returns 0 otherwise.
7874 **/
7875 static int
7876 lpfc_sli_eratt_read(struct lpfc_hba *phba)
7877 {
7878 uint32_t ha_copy;
7879
7880 /* Read chip Host Attention (HA) register */
7881 ha_copy = readl(phba->HAregaddr);
7882 if (ha_copy & HA_ERATT) {
7883 /* Read host status register to retrieve error event */
7884 lpfc_sli_read_hs(phba);
7885
7886 /* Check if there is a deferred error condition is active */
7887 if ((HS_FFER1 & phba->work_hs) &&
7888 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
7889 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
7890 phba->hba_flag |= DEFER_ERATT;
7891 /* Clear all interrupt enable conditions */
7892 writel(0, phba->HCregaddr);
7893 readl(phba->HCregaddr);
7894 }
7895
7896 /* Set the driver HA work bitmap */
7897 phba->work_ha |= HA_ERATT;
7898 /* Indicate polling handles this ERATT */
7899 phba->hba_flag |= HBA_ERATT_HANDLED;
7900 return 1;
7901 }
7902 return 0;
7903 }
7904
7905 /**
7906 * lpfc_sli4_eratt_read - read sli-4 error attention events
7907 * @phba: Pointer to HBA context.
7908 *
7909 * This function is called to read the SLI4 device error attention registers
7910 * for possible error attention events. The caller must hold the hostlock
7911 * with spin_lock_irq().
7912 *
7913 * This fucntion returns 1 when there is Error Attention in the Host Attention
7914 * Register and returns 0 otherwise.
7915 **/
7916 static int
7917 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
7918 {
7919 uint32_t uerr_sta_hi, uerr_sta_lo;
7920
7921 /* For now, use the SLI4 device internal unrecoverable error
7922 * registers for error attention. This can be changed later.
7923 */
7924 uerr_sta_lo = readl(phba->sli4_hba.UERRLOregaddr);
7925 uerr_sta_hi = readl(phba->sli4_hba.UERRHIregaddr);
7926 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
7927 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
7928 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7929 "1423 HBA Unrecoverable error: "
7930 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
7931 "ue_mask_lo_reg=0x%x, ue_mask_hi_reg=0x%x\n",
7932 uerr_sta_lo, uerr_sta_hi,
7933 phba->sli4_hba.ue_mask_lo,
7934 phba->sli4_hba.ue_mask_hi);
7935 phba->work_status[0] = uerr_sta_lo;
7936 phba->work_status[1] = uerr_sta_hi;
7937 /* Set the driver HA work bitmap */
7938 phba->work_ha |= HA_ERATT;
7939 /* Indicate polling handles this ERATT */
7940 phba->hba_flag |= HBA_ERATT_HANDLED;
7941 return 1;
7942 }
7943 return 0;
7944 }
7945
7946 /**
7947 * lpfc_sli_check_eratt - check error attention events
7948 * @phba: Pointer to HBA context.
7949 *
7950 * This function is called from timer soft interrupt context to check HBA's
7951 * error attention register bit for error attention events.
7952 *
7953 * This fucntion returns 1 when there is Error Attention in the Host Attention
7954 * Register and returns 0 otherwise.
7955 **/
7956 int
7957 lpfc_sli_check_eratt(struct lpfc_hba *phba)
7958 {
7959 uint32_t ha_copy;
7960
7961 /* If somebody is waiting to handle an eratt, don't process it
7962 * here. The brdkill function will do this.
7963 */
7964 if (phba->link_flag & LS_IGNORE_ERATT)
7965 return 0;
7966
7967 /* Check if interrupt handler handles this ERATT */
7968 spin_lock_irq(&phba->hbalock);
7969 if (phba->hba_flag & HBA_ERATT_HANDLED) {
7970 /* Interrupt handler has handled ERATT */
7971 spin_unlock_irq(&phba->hbalock);
7972 return 0;
7973 }
7974
7975 /*
7976 * If there is deferred error attention, do not check for error
7977 * attention
7978 */
7979 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7980 spin_unlock_irq(&phba->hbalock);
7981 return 0;
7982 }
7983
7984 /* If PCI channel is offline, don't process it */
7985 if (unlikely(pci_channel_offline(phba->pcidev))) {
7986 spin_unlock_irq(&phba->hbalock);
7987 return 0;
7988 }
7989
7990 switch (phba->sli_rev) {
7991 case LPFC_SLI_REV2:
7992 case LPFC_SLI_REV3:
7993 /* Read chip Host Attention (HA) register */
7994 ha_copy = lpfc_sli_eratt_read(phba);
7995 break;
7996 case LPFC_SLI_REV4:
7997 /* Read devcie Uncoverable Error (UERR) registers */
7998 ha_copy = lpfc_sli4_eratt_read(phba);
7999 break;
8000 default:
8001 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8002 "0299 Invalid SLI revision (%d)\n",
8003 phba->sli_rev);
8004 ha_copy = 0;
8005 break;
8006 }
8007 spin_unlock_irq(&phba->hbalock);
8008
8009 return ha_copy;
8010 }
8011
8012 /**
8013 * lpfc_intr_state_check - Check device state for interrupt handling
8014 * @phba: Pointer to HBA context.
8015 *
8016 * This inline routine checks whether a device or its PCI slot is in a state
8017 * that the interrupt should be handled.
8018 *
8019 * This function returns 0 if the device or the PCI slot is in a state that
8020 * interrupt should be handled, otherwise -EIO.
8021 */
8022 static inline int
8023 lpfc_intr_state_check(struct lpfc_hba *phba)
8024 {
8025 /* If the pci channel is offline, ignore all the interrupts */
8026 if (unlikely(pci_channel_offline(phba->pcidev)))
8027 return -EIO;
8028
8029 /* Update device level interrupt statistics */
8030 phba->sli.slistat.sli_intr++;
8031
8032 /* Ignore all interrupts during initialization. */
8033 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8034 return -EIO;
8035
8036 return 0;
8037 }
8038
8039 /**
8040 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
8041 * @irq: Interrupt number.
8042 * @dev_id: The device context pointer.
8043 *
8044 * This function is directly called from the PCI layer as an interrupt
8045 * service routine when device with SLI-3 interface spec is enabled with
8046 * MSI-X multi-message interrupt mode and there are slow-path events in
8047 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
8048 * interrupt mode, this function is called as part of the device-level
8049 * interrupt handler. When the PCI slot is in error recovery or the HBA
8050 * is undergoing initialization, the interrupt handler will not process
8051 * the interrupt. The link attention and ELS ring attention events are
8052 * handled by the worker thread. The interrupt handler signals the worker
8053 * thread and returns for these events. This function is called without
8054 * any lock held. It gets the hbalock to access and update SLI data
8055 * structures.
8056 *
8057 * This function returns IRQ_HANDLED when interrupt is handled else it
8058 * returns IRQ_NONE.
8059 **/
8060 irqreturn_t
8061 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
8062 {
8063 struct lpfc_hba *phba;
8064 uint32_t ha_copy, hc_copy;
8065 uint32_t work_ha_copy;
8066 unsigned long status;
8067 unsigned long iflag;
8068 uint32_t control;
8069
8070 MAILBOX_t *mbox, *pmbox;
8071 struct lpfc_vport *vport;
8072 struct lpfc_nodelist *ndlp;
8073 struct lpfc_dmabuf *mp;
8074 LPFC_MBOXQ_t *pmb;
8075 int rc;
8076
8077 /*
8078 * Get the driver's phba structure from the dev_id and
8079 * assume the HBA is not interrupting.
8080 */
8081 phba = (struct lpfc_hba *)dev_id;
8082
8083 if (unlikely(!phba))
8084 return IRQ_NONE;
8085
8086 /*
8087 * Stuff needs to be attented to when this function is invoked as an
8088 * individual interrupt handler in MSI-X multi-message interrupt mode
8089 */
8090 if (phba->intr_type == MSIX) {
8091 /* Check device state for handling interrupt */
8092 if (lpfc_intr_state_check(phba))
8093 return IRQ_NONE;
8094 /* Need to read HA REG for slow-path events */
8095 spin_lock_irqsave(&phba->hbalock, iflag);
8096 ha_copy = readl(phba->HAregaddr);
8097 /* If somebody is waiting to handle an eratt don't process it
8098 * here. The brdkill function will do this.
8099 */
8100 if (phba->link_flag & LS_IGNORE_ERATT)
8101 ha_copy &= ~HA_ERATT;
8102 /* Check the need for handling ERATT in interrupt handler */
8103 if (ha_copy & HA_ERATT) {
8104 if (phba->hba_flag & HBA_ERATT_HANDLED)
8105 /* ERATT polling has handled ERATT */
8106 ha_copy &= ~HA_ERATT;
8107 else
8108 /* Indicate interrupt handler handles ERATT */
8109 phba->hba_flag |= HBA_ERATT_HANDLED;
8110 }
8111
8112 /*
8113 * If there is deferred error attention, do not check for any
8114 * interrupt.
8115 */
8116 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8117 spin_unlock_irqrestore(&phba->hbalock, iflag);
8118 return IRQ_NONE;
8119 }
8120
8121 /* Clear up only attention source related to slow-path */
8122 hc_copy = readl(phba->HCregaddr);
8123 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
8124 HC_LAINT_ENA | HC_ERINT_ENA),
8125 phba->HCregaddr);
8126 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
8127 phba->HAregaddr);
8128 writel(hc_copy, phba->HCregaddr);
8129 readl(phba->HAregaddr); /* flush */
8130 spin_unlock_irqrestore(&phba->hbalock, iflag);
8131 } else
8132 ha_copy = phba->ha_copy;
8133
8134 work_ha_copy = ha_copy & phba->work_ha_mask;
8135
8136 if (work_ha_copy) {
8137 if (work_ha_copy & HA_LATT) {
8138 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
8139 /*
8140 * Turn off Link Attention interrupts
8141 * until CLEAR_LA done
8142 */
8143 spin_lock_irqsave(&phba->hbalock, iflag);
8144 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
8145 control = readl(phba->HCregaddr);
8146 control &= ~HC_LAINT_ENA;
8147 writel(control, phba->HCregaddr);
8148 readl(phba->HCregaddr); /* flush */
8149 spin_unlock_irqrestore(&phba->hbalock, iflag);
8150 }
8151 else
8152 work_ha_copy &= ~HA_LATT;
8153 }
8154
8155 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
8156 /*
8157 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
8158 * the only slow ring.
8159 */
8160 status = (work_ha_copy &
8161 (HA_RXMASK << (4*LPFC_ELS_RING)));
8162 status >>= (4*LPFC_ELS_RING);
8163 if (status & HA_RXMASK) {
8164 spin_lock_irqsave(&phba->hbalock, iflag);
8165 control = readl(phba->HCregaddr);
8166
8167 lpfc_debugfs_slow_ring_trc(phba,
8168 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
8169 control, status,
8170 (uint32_t)phba->sli.slistat.sli_intr);
8171
8172 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
8173 lpfc_debugfs_slow_ring_trc(phba,
8174 "ISR Disable ring:"
8175 "pwork:x%x hawork:x%x wait:x%x",
8176 phba->work_ha, work_ha_copy,
8177 (uint32_t)((unsigned long)
8178 &phba->work_waitq));
8179
8180 control &=
8181 ~(HC_R0INT_ENA << LPFC_ELS_RING);
8182 writel(control, phba->HCregaddr);
8183 readl(phba->HCregaddr); /* flush */
8184 }
8185 else {
8186 lpfc_debugfs_slow_ring_trc(phba,
8187 "ISR slow ring: pwork:"
8188 "x%x hawork:x%x wait:x%x",
8189 phba->work_ha, work_ha_copy,
8190 (uint32_t)((unsigned long)
8191 &phba->work_waitq));
8192 }
8193 spin_unlock_irqrestore(&phba->hbalock, iflag);
8194 }
8195 }
8196 spin_lock_irqsave(&phba->hbalock, iflag);
8197 if (work_ha_copy & HA_ERATT) {
8198 lpfc_sli_read_hs(phba);
8199 /*
8200 * Check if there is a deferred error condition
8201 * is active
8202 */
8203 if ((HS_FFER1 & phba->work_hs) &&
8204 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
8205 HS_FFER6 | HS_FFER7 | HS_FFER8) &
8206 phba->work_hs)) {
8207 phba->hba_flag |= DEFER_ERATT;
8208 /* Clear all interrupt enable conditions */
8209 writel(0, phba->HCregaddr);
8210 readl(phba->HCregaddr);
8211 }
8212 }
8213
8214 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
8215 pmb = phba->sli.mbox_active;
8216 pmbox = &pmb->u.mb;
8217 mbox = phba->mbox;
8218 vport = pmb->vport;
8219
8220 /* First check out the status word */
8221 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
8222 if (pmbox->mbxOwner != OWN_HOST) {
8223 spin_unlock_irqrestore(&phba->hbalock, iflag);
8224 /*
8225 * Stray Mailbox Interrupt, mbxCommand <cmd>
8226 * mbxStatus <status>
8227 */
8228 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
8229 LOG_SLI,
8230 "(%d):0304 Stray Mailbox "
8231 "Interrupt mbxCommand x%x "
8232 "mbxStatus x%x\n",
8233 (vport ? vport->vpi : 0),
8234 pmbox->mbxCommand,
8235 pmbox->mbxStatus);
8236 /* clear mailbox attention bit */
8237 work_ha_copy &= ~HA_MBATT;
8238 } else {
8239 phba->sli.mbox_active = NULL;
8240 spin_unlock_irqrestore(&phba->hbalock, iflag);
8241 phba->last_completion_time = jiffies;
8242 del_timer(&phba->sli.mbox_tmo);
8243 if (pmb->mbox_cmpl) {
8244 lpfc_sli_pcimem_bcopy(mbox, pmbox,
8245 MAILBOX_CMD_SIZE);
8246 if (pmb->out_ext_byte_len &&
8247 pmb->context2)
8248 lpfc_sli_pcimem_bcopy(
8249 phba->mbox_ext,
8250 pmb->context2,
8251 pmb->out_ext_byte_len);
8252 }
8253 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
8254 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
8255
8256 lpfc_debugfs_disc_trc(vport,
8257 LPFC_DISC_TRC_MBOX_VPORT,
8258 "MBOX dflt rpi: : "
8259 "status:x%x rpi:x%x",
8260 (uint32_t)pmbox->mbxStatus,
8261 pmbox->un.varWords[0], 0);
8262
8263 if (!pmbox->mbxStatus) {
8264 mp = (struct lpfc_dmabuf *)
8265 (pmb->context1);
8266 ndlp = (struct lpfc_nodelist *)
8267 pmb->context2;
8268
8269 /* Reg_LOGIN of dflt RPI was
8270 * successful. new lets get
8271 * rid of the RPI using the
8272 * same mbox buffer.
8273 */
8274 lpfc_unreg_login(phba,
8275 vport->vpi,
8276 pmbox->un.varWords[0],
8277 pmb);
8278 pmb->mbox_cmpl =
8279 lpfc_mbx_cmpl_dflt_rpi;
8280 pmb->context1 = mp;
8281 pmb->context2 = ndlp;
8282 pmb->vport = vport;
8283 rc = lpfc_sli_issue_mbox(phba,
8284 pmb,
8285 MBX_NOWAIT);
8286 if (rc != MBX_BUSY)
8287 lpfc_printf_log(phba,
8288 KERN_ERR,
8289 LOG_MBOX | LOG_SLI,
8290 "0350 rc should have"
8291 "been MBX_BUSY\n");
8292 if (rc != MBX_NOT_FINISHED)
8293 goto send_current_mbox;
8294 }
8295 }
8296 spin_lock_irqsave(
8297 &phba->pport->work_port_lock,
8298 iflag);
8299 phba->pport->work_port_events &=
8300 ~WORKER_MBOX_TMO;
8301 spin_unlock_irqrestore(
8302 &phba->pport->work_port_lock,
8303 iflag);
8304 lpfc_mbox_cmpl_put(phba, pmb);
8305 }
8306 } else
8307 spin_unlock_irqrestore(&phba->hbalock, iflag);
8308
8309 if ((work_ha_copy & HA_MBATT) &&
8310 (phba->sli.mbox_active == NULL)) {
8311 send_current_mbox:
8312 /* Process next mailbox command if there is one */
8313 do {
8314 rc = lpfc_sli_issue_mbox(phba, NULL,
8315 MBX_NOWAIT);
8316 } while (rc == MBX_NOT_FINISHED);
8317 if (rc != MBX_SUCCESS)
8318 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
8319 LOG_SLI, "0349 rc should be "
8320 "MBX_SUCCESS\n");
8321 }
8322
8323 spin_lock_irqsave(&phba->hbalock, iflag);
8324 phba->work_ha |= work_ha_copy;
8325 spin_unlock_irqrestore(&phba->hbalock, iflag);
8326 lpfc_worker_wake_up(phba);
8327 }
8328 return IRQ_HANDLED;
8329
8330 } /* lpfc_sli_sp_intr_handler */
8331
8332 /**
8333 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
8334 * @irq: Interrupt number.
8335 * @dev_id: The device context pointer.
8336 *
8337 * This function is directly called from the PCI layer as an interrupt
8338 * service routine when device with SLI-3 interface spec is enabled with
8339 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
8340 * ring event in the HBA. However, when the device is enabled with either
8341 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
8342 * device-level interrupt handler. When the PCI slot is in error recovery
8343 * or the HBA is undergoing initialization, the interrupt handler will not
8344 * process the interrupt. The SCSI FCP fast-path ring event are handled in
8345 * the intrrupt context. This function is called without any lock held.
8346 * It gets the hbalock to access and update SLI data structures.
8347 *
8348 * This function returns IRQ_HANDLED when interrupt is handled else it
8349 * returns IRQ_NONE.
8350 **/
8351 irqreturn_t
8352 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
8353 {
8354 struct lpfc_hba *phba;
8355 uint32_t ha_copy;
8356 unsigned long status;
8357 unsigned long iflag;
8358
8359 /* Get the driver's phba structure from the dev_id and
8360 * assume the HBA is not interrupting.
8361 */
8362 phba = (struct lpfc_hba *) dev_id;
8363
8364 if (unlikely(!phba))
8365 return IRQ_NONE;
8366
8367 /*
8368 * Stuff needs to be attented to when this function is invoked as an
8369 * individual interrupt handler in MSI-X multi-message interrupt mode
8370 */
8371 if (phba->intr_type == MSIX) {
8372 /* Check device state for handling interrupt */
8373 if (lpfc_intr_state_check(phba))
8374 return IRQ_NONE;
8375 /* Need to read HA REG for FCP ring and other ring events */
8376 ha_copy = readl(phba->HAregaddr);
8377 /* Clear up only attention source related to fast-path */
8378 spin_lock_irqsave(&phba->hbalock, iflag);
8379 /*
8380 * If there is deferred error attention, do not check for
8381 * any interrupt.
8382 */
8383 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8384 spin_unlock_irqrestore(&phba->hbalock, iflag);
8385 return IRQ_NONE;
8386 }
8387 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
8388 phba->HAregaddr);
8389 readl(phba->HAregaddr); /* flush */
8390 spin_unlock_irqrestore(&phba->hbalock, iflag);
8391 } else
8392 ha_copy = phba->ha_copy;
8393
8394 /*
8395 * Process all events on FCP ring. Take the optimized path for FCP IO.
8396 */
8397 ha_copy &= ~(phba->work_ha_mask);
8398
8399 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
8400 status >>= (4*LPFC_FCP_RING);
8401 if (status & HA_RXMASK)
8402 lpfc_sli_handle_fast_ring_event(phba,
8403 &phba->sli.ring[LPFC_FCP_RING],
8404 status);
8405
8406 if (phba->cfg_multi_ring_support == 2) {
8407 /*
8408 * Process all events on extra ring. Take the optimized path
8409 * for extra ring IO.
8410 */
8411 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
8412 status >>= (4*LPFC_EXTRA_RING);
8413 if (status & HA_RXMASK) {
8414 lpfc_sli_handle_fast_ring_event(phba,
8415 &phba->sli.ring[LPFC_EXTRA_RING],
8416 status);
8417 }
8418 }
8419 return IRQ_HANDLED;
8420 } /* lpfc_sli_fp_intr_handler */
8421
8422 /**
8423 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
8424 * @irq: Interrupt number.
8425 * @dev_id: The device context pointer.
8426 *
8427 * This function is the HBA device-level interrupt handler to device with
8428 * SLI-3 interface spec, called from the PCI layer when either MSI or
8429 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
8430 * requires driver attention. This function invokes the slow-path interrupt
8431 * attention handling function and fast-path interrupt attention handling
8432 * function in turn to process the relevant HBA attention events. This
8433 * function is called without any lock held. It gets the hbalock to access
8434 * and update SLI data structures.
8435 *
8436 * This function returns IRQ_HANDLED when interrupt is handled, else it
8437 * returns IRQ_NONE.
8438 **/
8439 irqreturn_t
8440 lpfc_sli_intr_handler(int irq, void *dev_id)
8441 {
8442 struct lpfc_hba *phba;
8443 irqreturn_t sp_irq_rc, fp_irq_rc;
8444 unsigned long status1, status2;
8445 uint32_t hc_copy;
8446
8447 /*
8448 * Get the driver's phba structure from the dev_id and
8449 * assume the HBA is not interrupting.
8450 */
8451 phba = (struct lpfc_hba *) dev_id;
8452
8453 if (unlikely(!phba))
8454 return IRQ_NONE;
8455
8456 /* Check device state for handling interrupt */
8457 if (lpfc_intr_state_check(phba))
8458 return IRQ_NONE;
8459
8460 spin_lock(&phba->hbalock);
8461 phba->ha_copy = readl(phba->HAregaddr);
8462 if (unlikely(!phba->ha_copy)) {
8463 spin_unlock(&phba->hbalock);
8464 return IRQ_NONE;
8465 } else if (phba->ha_copy & HA_ERATT) {
8466 if (phba->hba_flag & HBA_ERATT_HANDLED)
8467 /* ERATT polling has handled ERATT */
8468 phba->ha_copy &= ~HA_ERATT;
8469 else
8470 /* Indicate interrupt handler handles ERATT */
8471 phba->hba_flag |= HBA_ERATT_HANDLED;
8472 }
8473
8474 /*
8475 * If there is deferred error attention, do not check for any interrupt.
8476 */
8477 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8478 spin_unlock(&phba->hbalock);
8479 return IRQ_NONE;
8480 }
8481
8482 /* Clear attention sources except link and error attentions */
8483 hc_copy = readl(phba->HCregaddr);
8484 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
8485 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
8486 phba->HCregaddr);
8487 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
8488 writel(hc_copy, phba->HCregaddr);
8489 readl(phba->HAregaddr); /* flush */
8490 spin_unlock(&phba->hbalock);
8491
8492 /*
8493 * Invokes slow-path host attention interrupt handling as appropriate.
8494 */
8495
8496 /* status of events with mailbox and link attention */
8497 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
8498
8499 /* status of events with ELS ring */
8500 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
8501 status2 >>= (4*LPFC_ELS_RING);
8502
8503 if (status1 || (status2 & HA_RXMASK))
8504 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
8505 else
8506 sp_irq_rc = IRQ_NONE;
8507
8508 /*
8509 * Invoke fast-path host attention interrupt handling as appropriate.
8510 */
8511
8512 /* status of events with FCP ring */
8513 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
8514 status1 >>= (4*LPFC_FCP_RING);
8515
8516 /* status of events with extra ring */
8517 if (phba->cfg_multi_ring_support == 2) {
8518 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
8519 status2 >>= (4*LPFC_EXTRA_RING);
8520 } else
8521 status2 = 0;
8522
8523 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
8524 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
8525 else
8526 fp_irq_rc = IRQ_NONE;
8527
8528 /* Return device-level interrupt handling status */
8529 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
8530 } /* lpfc_sli_intr_handler */
8531
8532 /**
8533 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
8534 * @phba: pointer to lpfc hba data structure.
8535 *
8536 * This routine is invoked by the worker thread to process all the pending
8537 * SLI4 FCP abort XRI events.
8538 **/
8539 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
8540 {
8541 struct lpfc_cq_event *cq_event;
8542
8543 /* First, declare the fcp xri abort event has been handled */
8544 spin_lock_irq(&phba->hbalock);
8545 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
8546 spin_unlock_irq(&phba->hbalock);
8547 /* Now, handle all the fcp xri abort events */
8548 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
8549 /* Get the first event from the head of the event queue */
8550 spin_lock_irq(&phba->hbalock);
8551 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
8552 cq_event, struct lpfc_cq_event, list);
8553 spin_unlock_irq(&phba->hbalock);
8554 /* Notify aborted XRI for FCP work queue */
8555 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
8556 /* Free the event processed back to the free pool */
8557 lpfc_sli4_cq_event_release(phba, cq_event);
8558 }
8559 }
8560
8561 /**
8562 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
8563 * @phba: pointer to lpfc hba data structure.
8564 *
8565 * This routine is invoked by the worker thread to process all the pending
8566 * SLI4 els abort xri events.
8567 **/
8568 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
8569 {
8570 struct lpfc_cq_event *cq_event;
8571
8572 /* First, declare the els xri abort event has been handled */
8573 spin_lock_irq(&phba->hbalock);
8574 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
8575 spin_unlock_irq(&phba->hbalock);
8576 /* Now, handle all the els xri abort events */
8577 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
8578 /* Get the first event from the head of the event queue */
8579 spin_lock_irq(&phba->hbalock);
8580 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
8581 cq_event, struct lpfc_cq_event, list);
8582 spin_unlock_irq(&phba->hbalock);
8583 /* Notify aborted XRI for ELS work queue */
8584 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
8585 /* Free the event processed back to the free pool */
8586 lpfc_sli4_cq_event_release(phba, cq_event);
8587 }
8588 }
8589
8590 /**
8591 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
8592 * @phba: pointer to lpfc hba data structure
8593 * @pIocbIn: pointer to the rspiocbq
8594 * @pIocbOut: pointer to the cmdiocbq
8595 * @wcqe: pointer to the complete wcqe
8596 *
8597 * This routine transfers the fields of a command iocbq to a response iocbq
8598 * by copying all the IOCB fields from command iocbq and transferring the
8599 * completion status information from the complete wcqe.
8600 **/
8601 static void
8602 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
8603 struct lpfc_iocbq *pIocbIn,
8604 struct lpfc_iocbq *pIocbOut,
8605 struct lpfc_wcqe_complete *wcqe)
8606 {
8607 unsigned long iflags;
8608 size_t offset = offsetof(struct lpfc_iocbq, iocb);
8609
8610 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
8611 sizeof(struct lpfc_iocbq) - offset);
8612 /* Map WCQE parameters into irspiocb parameters */
8613 pIocbIn->iocb.ulpStatus = bf_get(lpfc_wcqe_c_status, wcqe);
8614 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
8615 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
8616 pIocbIn->iocb.un.fcpi.fcpi_parm =
8617 pIocbOut->iocb.un.fcpi.fcpi_parm -
8618 wcqe->total_data_placed;
8619 else
8620 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
8621 else {
8622 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
8623 pIocbIn->iocb.un.genreq64.bdl.bdeSize = wcqe->total_data_placed;
8624 }
8625
8626 /* Pick up HBA exchange busy condition */
8627 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
8628 spin_lock_irqsave(&phba->hbalock, iflags);
8629 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
8630 spin_unlock_irqrestore(&phba->hbalock, iflags);
8631 }
8632 }
8633
8634 /**
8635 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
8636 * @phba: Pointer to HBA context object.
8637 * @wcqe: Pointer to work-queue completion queue entry.
8638 *
8639 * This routine handles an ELS work-queue completion event and construct
8640 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
8641 * discovery engine to handle.
8642 *
8643 * Return: Pointer to the receive IOCBQ, NULL otherwise.
8644 **/
8645 static struct lpfc_iocbq *
8646 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
8647 struct lpfc_iocbq *irspiocbq)
8648 {
8649 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
8650 struct lpfc_iocbq *cmdiocbq;
8651 struct lpfc_wcqe_complete *wcqe;
8652 unsigned long iflags;
8653
8654 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
8655 spin_lock_irqsave(&phba->hbalock, iflags);
8656 pring->stats.iocb_event++;
8657 /* Look up the ELS command IOCB and create pseudo response IOCB */
8658 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
8659 bf_get(lpfc_wcqe_c_request_tag, wcqe));
8660 spin_unlock_irqrestore(&phba->hbalock, iflags);
8661
8662 if (unlikely(!cmdiocbq)) {
8663 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
8664 "0386 ELS complete with no corresponding "
8665 "cmdiocb: iotag (%d)\n",
8666 bf_get(lpfc_wcqe_c_request_tag, wcqe));
8667 lpfc_sli_release_iocbq(phba, irspiocbq);
8668 return NULL;
8669 }
8670
8671 /* Fake the irspiocbq and copy necessary response information */
8672 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
8673
8674 return irspiocbq;
8675 }
8676
8677 /**
8678 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
8679 * @phba: Pointer to HBA context object.
8680 * @cqe: Pointer to mailbox completion queue entry.
8681 *
8682 * This routine process a mailbox completion queue entry with asynchrous
8683 * event.
8684 *
8685 * Return: true if work posted to worker thread, otherwise false.
8686 **/
8687 static bool
8688 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
8689 {
8690 struct lpfc_cq_event *cq_event;
8691 unsigned long iflags;
8692
8693 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
8694 "0392 Async Event: word0:x%x, word1:x%x, "
8695 "word2:x%x, word3:x%x\n", mcqe->word0,
8696 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
8697
8698 /* Allocate a new internal CQ_EVENT entry */
8699 cq_event = lpfc_sli4_cq_event_alloc(phba);
8700 if (!cq_event) {
8701 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8702 "0394 Failed to allocate CQ_EVENT entry\n");
8703 return false;
8704 }
8705
8706 /* Move the CQE into an asynchronous event entry */
8707 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
8708 spin_lock_irqsave(&phba->hbalock, iflags);
8709 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
8710 /* Set the async event flag */
8711 phba->hba_flag |= ASYNC_EVENT;
8712 spin_unlock_irqrestore(&phba->hbalock, iflags);
8713
8714 return true;
8715 }
8716
8717 /**
8718 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
8719 * @phba: Pointer to HBA context object.
8720 * @cqe: Pointer to mailbox completion queue entry.
8721 *
8722 * This routine process a mailbox completion queue entry with mailbox
8723 * completion event.
8724 *
8725 * Return: true if work posted to worker thread, otherwise false.
8726 **/
8727 static bool
8728 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
8729 {
8730 uint32_t mcqe_status;
8731 MAILBOX_t *mbox, *pmbox;
8732 struct lpfc_mqe *mqe;
8733 struct lpfc_vport *vport;
8734 struct lpfc_nodelist *ndlp;
8735 struct lpfc_dmabuf *mp;
8736 unsigned long iflags;
8737 LPFC_MBOXQ_t *pmb;
8738 bool workposted = false;
8739 int rc;
8740
8741 /* If not a mailbox complete MCQE, out by checking mailbox consume */
8742 if (!bf_get(lpfc_trailer_completed, mcqe))
8743 goto out_no_mqe_complete;
8744
8745 /* Get the reference to the active mbox command */
8746 spin_lock_irqsave(&phba->hbalock, iflags);
8747 pmb = phba->sli.mbox_active;
8748 if (unlikely(!pmb)) {
8749 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
8750 "1832 No pending MBOX command to handle\n");
8751 spin_unlock_irqrestore(&phba->hbalock, iflags);
8752 goto out_no_mqe_complete;
8753 }
8754 spin_unlock_irqrestore(&phba->hbalock, iflags);
8755 mqe = &pmb->u.mqe;
8756 pmbox = (MAILBOX_t *)&pmb->u.mqe;
8757 mbox = phba->mbox;
8758 vport = pmb->vport;
8759
8760 /* Reset heartbeat timer */
8761 phba->last_completion_time = jiffies;
8762 del_timer(&phba->sli.mbox_tmo);
8763
8764 /* Move mbox data to caller's mailbox region, do endian swapping */
8765 if (pmb->mbox_cmpl && mbox)
8766 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
8767 /* Set the mailbox status with SLI4 range 0x4000 */
8768 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
8769 if (mcqe_status != MB_CQE_STATUS_SUCCESS)
8770 bf_set(lpfc_mqe_status, mqe,
8771 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8772
8773 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
8774 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
8775 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
8776 "MBOX dflt rpi: status:x%x rpi:x%x",
8777 mcqe_status,
8778 pmbox->un.varWords[0], 0);
8779 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
8780 mp = (struct lpfc_dmabuf *)(pmb->context1);
8781 ndlp = (struct lpfc_nodelist *)pmb->context2;
8782 /* Reg_LOGIN of dflt RPI was successful. Now lets get
8783 * RID of the PPI using the same mbox buffer.
8784 */
8785 lpfc_unreg_login(phba, vport->vpi,
8786 pmbox->un.varWords[0], pmb);
8787 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
8788 pmb->context1 = mp;
8789 pmb->context2 = ndlp;
8790 pmb->vport = vport;
8791 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
8792 if (rc != MBX_BUSY)
8793 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
8794 LOG_SLI, "0385 rc should "
8795 "have been MBX_BUSY\n");
8796 if (rc != MBX_NOT_FINISHED)
8797 goto send_current_mbox;
8798 }
8799 }
8800 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
8801 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8802 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
8803
8804 /* There is mailbox completion work to do */
8805 spin_lock_irqsave(&phba->hbalock, iflags);
8806 __lpfc_mbox_cmpl_put(phba, pmb);
8807 phba->work_ha |= HA_MBATT;
8808 spin_unlock_irqrestore(&phba->hbalock, iflags);
8809 workposted = true;
8810
8811 send_current_mbox:
8812 spin_lock_irqsave(&phba->hbalock, iflags);
8813 /* Release the mailbox command posting token */
8814 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8815 /* Setting active mailbox pointer need to be in sync to flag clear */
8816 phba->sli.mbox_active = NULL;
8817 spin_unlock_irqrestore(&phba->hbalock, iflags);
8818 /* Wake up worker thread to post the next pending mailbox command */
8819 lpfc_worker_wake_up(phba);
8820 out_no_mqe_complete:
8821 if (bf_get(lpfc_trailer_consumed, mcqe))
8822 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
8823 return workposted;
8824 }
8825
8826 /**
8827 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
8828 * @phba: Pointer to HBA context object.
8829 * @cqe: Pointer to mailbox completion queue entry.
8830 *
8831 * This routine process a mailbox completion queue entry, it invokes the
8832 * proper mailbox complete handling or asynchrous event handling routine
8833 * according to the MCQE's async bit.
8834 *
8835 * Return: true if work posted to worker thread, otherwise false.
8836 **/
8837 static bool
8838 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
8839 {
8840 struct lpfc_mcqe mcqe;
8841 bool workposted;
8842
8843 /* Copy the mailbox MCQE and convert endian order as needed */
8844 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
8845
8846 /* Invoke the proper event handling routine */
8847 if (!bf_get(lpfc_trailer_async, &mcqe))
8848 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
8849 else
8850 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
8851 return workposted;
8852 }
8853
8854 /**
8855 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
8856 * @phba: Pointer to HBA context object.
8857 * @wcqe: Pointer to work-queue completion queue entry.
8858 *
8859 * This routine handles an ELS work-queue completion event.
8860 *
8861 * Return: true if work posted to worker thread, otherwise false.
8862 **/
8863 static bool
8864 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba,
8865 struct lpfc_wcqe_complete *wcqe)
8866 {
8867 struct lpfc_iocbq *irspiocbq;
8868 unsigned long iflags;
8869 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_FCP_RING];
8870
8871 /* Get an irspiocbq for later ELS response processing use */
8872 irspiocbq = lpfc_sli_get_iocbq(phba);
8873 if (!irspiocbq) {
8874 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8875 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
8876 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
8877 pring->txq_cnt, phba->iocb_cnt,
8878 phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt,
8879 phba->sli.ring[LPFC_ELS_RING].txcmplq_cnt);
8880 return false;
8881 }
8882
8883 /* Save off the slow-path queue event for work thread to process */
8884 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
8885 spin_lock_irqsave(&phba->hbalock, iflags);
8886 list_add_tail(&irspiocbq->cq_event.list,
8887 &phba->sli4_hba.sp_queue_event);
8888 phba->hba_flag |= HBA_SP_QUEUE_EVT;
8889 spin_unlock_irqrestore(&phba->hbalock, iflags);
8890
8891 return true;
8892 }
8893
8894 /**
8895 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
8896 * @phba: Pointer to HBA context object.
8897 * @wcqe: Pointer to work-queue completion queue entry.
8898 *
8899 * This routine handles slow-path WQ entry comsumed event by invoking the
8900 * proper WQ release routine to the slow-path WQ.
8901 **/
8902 static void
8903 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
8904 struct lpfc_wcqe_release *wcqe)
8905 {
8906 /* Check for the slow-path ELS work queue */
8907 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
8908 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
8909 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
8910 else
8911 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
8912 "2579 Slow-path wqe consume event carries "
8913 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
8914 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
8915 phba->sli4_hba.els_wq->queue_id);
8916 }
8917
8918 /**
8919 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
8920 * @phba: Pointer to HBA context object.
8921 * @cq: Pointer to a WQ completion queue.
8922 * @wcqe: Pointer to work-queue completion queue entry.
8923 *
8924 * This routine handles an XRI abort event.
8925 *
8926 * Return: true if work posted to worker thread, otherwise false.
8927 **/
8928 static bool
8929 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
8930 struct lpfc_queue *cq,
8931 struct sli4_wcqe_xri_aborted *wcqe)
8932 {
8933 bool workposted = false;
8934 struct lpfc_cq_event *cq_event;
8935 unsigned long iflags;
8936
8937 /* Allocate a new internal CQ_EVENT entry */
8938 cq_event = lpfc_sli4_cq_event_alloc(phba);
8939 if (!cq_event) {
8940 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8941 "0602 Failed to allocate CQ_EVENT entry\n");
8942 return false;
8943 }
8944
8945 /* Move the CQE into the proper xri abort event list */
8946 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
8947 switch (cq->subtype) {
8948 case LPFC_FCP:
8949 spin_lock_irqsave(&phba->hbalock, iflags);
8950 list_add_tail(&cq_event->list,
8951 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
8952 /* Set the fcp xri abort event flag */
8953 phba->hba_flag |= FCP_XRI_ABORT_EVENT;
8954 spin_unlock_irqrestore(&phba->hbalock, iflags);
8955 workposted = true;
8956 break;
8957 case LPFC_ELS:
8958 spin_lock_irqsave(&phba->hbalock, iflags);
8959 list_add_tail(&cq_event->list,
8960 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
8961 /* Set the els xri abort event flag */
8962 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
8963 spin_unlock_irqrestore(&phba->hbalock, iflags);
8964 workposted = true;
8965 break;
8966 default:
8967 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8968 "0603 Invalid work queue CQE subtype (x%x)\n",
8969 cq->subtype);
8970 workposted = false;
8971 break;
8972 }
8973 return workposted;
8974 }
8975
8976 /**
8977 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
8978 * @phba: Pointer to HBA context object.
8979 * @rcqe: Pointer to receive-queue completion queue entry.
8980 *
8981 * This routine process a receive-queue completion queue entry.
8982 *
8983 * Return: true if work posted to worker thread, otherwise false.
8984 **/
8985 static bool
8986 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
8987 {
8988 bool workposted = false;
8989 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
8990 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
8991 struct hbq_dmabuf *dma_buf;
8992 uint32_t status;
8993 unsigned long iflags;
8994
8995 if (bf_get(lpfc_rcqe_rq_id, rcqe) != hrq->queue_id)
8996 goto out;
8997
8998 status = bf_get(lpfc_rcqe_status, rcqe);
8999 switch (status) {
9000 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
9001 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9002 "2537 Receive Frame Truncated!!\n");
9003 case FC_STATUS_RQ_SUCCESS:
9004 lpfc_sli4_rq_release(hrq, drq);
9005 spin_lock_irqsave(&phba->hbalock, iflags);
9006 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
9007 if (!dma_buf) {
9008 spin_unlock_irqrestore(&phba->hbalock, iflags);
9009 goto out;
9010 }
9011 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
9012 /* save off the frame for the word thread to process */
9013 list_add_tail(&dma_buf->cq_event.list,
9014 &phba->sli4_hba.sp_queue_event);
9015 /* Frame received */
9016 phba->hba_flag |= HBA_SP_QUEUE_EVT;
9017 spin_unlock_irqrestore(&phba->hbalock, iflags);
9018 workposted = true;
9019 break;
9020 case FC_STATUS_INSUFF_BUF_NEED_BUF:
9021 case FC_STATUS_INSUFF_BUF_FRM_DISC:
9022 /* Post more buffers if possible */
9023 spin_lock_irqsave(&phba->hbalock, iflags);
9024 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
9025 spin_unlock_irqrestore(&phba->hbalock, iflags);
9026 workposted = true;
9027 break;
9028 }
9029 out:
9030 return workposted;
9031 }
9032
9033 /**
9034 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
9035 * @phba: Pointer to HBA context object.
9036 * @cq: Pointer to the completion queue.
9037 * @wcqe: Pointer to a completion queue entry.
9038 *
9039 * This routine process a slow-path work-queue or recieve queue completion queue
9040 * entry.
9041 *
9042 * Return: true if work posted to worker thread, otherwise false.
9043 **/
9044 static bool
9045 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
9046 struct lpfc_cqe *cqe)
9047 {
9048 struct lpfc_cqe cqevt;
9049 bool workposted = false;
9050
9051 /* Copy the work queue CQE and convert endian order if needed */
9052 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
9053
9054 /* Check and process for different type of WCQE and dispatch */
9055 switch (bf_get(lpfc_cqe_code, &cqevt)) {
9056 case CQE_CODE_COMPL_WQE:
9057 /* Process the WQ/RQ complete event */
9058 phba->last_completion_time = jiffies;
9059 workposted = lpfc_sli4_sp_handle_els_wcqe(phba,
9060 (struct lpfc_wcqe_complete *)&cqevt);
9061 break;
9062 case CQE_CODE_RELEASE_WQE:
9063 /* Process the WQ release event */
9064 lpfc_sli4_sp_handle_rel_wcqe(phba,
9065 (struct lpfc_wcqe_release *)&cqevt);
9066 break;
9067 case CQE_CODE_XRI_ABORTED:
9068 /* Process the WQ XRI abort event */
9069 phba->last_completion_time = jiffies;
9070 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
9071 (struct sli4_wcqe_xri_aborted *)&cqevt);
9072 break;
9073 case CQE_CODE_RECEIVE:
9074 /* Process the RQ event */
9075 phba->last_completion_time = jiffies;
9076 workposted = lpfc_sli4_sp_handle_rcqe(phba,
9077 (struct lpfc_rcqe *)&cqevt);
9078 break;
9079 default:
9080 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9081 "0388 Not a valid WCQE code: x%x\n",
9082 bf_get(lpfc_cqe_code, &cqevt));
9083 break;
9084 }
9085 return workposted;
9086 }
9087
9088 /**
9089 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
9090 * @phba: Pointer to HBA context object.
9091 * @eqe: Pointer to fast-path event queue entry.
9092 *
9093 * This routine process a event queue entry from the slow-path event queue.
9094 * It will check the MajorCode and MinorCode to determine this is for a
9095 * completion event on a completion queue, if not, an error shall be logged
9096 * and just return. Otherwise, it will get to the corresponding completion
9097 * queue and process all the entries on that completion queue, rearm the
9098 * completion queue, and then return.
9099 *
9100 **/
9101 static void
9102 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
9103 {
9104 struct lpfc_queue *cq = NULL, *childq, *speq;
9105 struct lpfc_cqe *cqe;
9106 bool workposted = false;
9107 int ecount = 0;
9108 uint16_t cqid;
9109
9110 if (bf_get_le32(lpfc_eqe_major_code, eqe) != 0) {
9111 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9112 "0359 Not a valid slow-path completion "
9113 "event: majorcode=x%x, minorcode=x%x\n",
9114 bf_get_le32(lpfc_eqe_major_code, eqe),
9115 bf_get_le32(lpfc_eqe_minor_code, eqe));
9116 return;
9117 }
9118
9119 /* Get the reference to the corresponding CQ */
9120 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
9121
9122 /* Search for completion queue pointer matching this cqid */
9123 speq = phba->sli4_hba.sp_eq;
9124 list_for_each_entry(childq, &speq->child_list, list) {
9125 if (childq->queue_id == cqid) {
9126 cq = childq;
9127 break;
9128 }
9129 }
9130 if (unlikely(!cq)) {
9131 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
9132 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9133 "0365 Slow-path CQ identifier "
9134 "(%d) does not exist\n", cqid);
9135 return;
9136 }
9137
9138 /* Process all the entries to the CQ */
9139 switch (cq->type) {
9140 case LPFC_MCQ:
9141 while ((cqe = lpfc_sli4_cq_get(cq))) {
9142 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
9143 if (!(++ecount % LPFC_GET_QE_REL_INT))
9144 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
9145 }
9146 break;
9147 case LPFC_WCQ:
9148 while ((cqe = lpfc_sli4_cq_get(cq))) {
9149 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, cqe);
9150 if (!(++ecount % LPFC_GET_QE_REL_INT))
9151 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
9152 }
9153 break;
9154 default:
9155 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9156 "0370 Invalid completion queue type (%d)\n",
9157 cq->type);
9158 return;
9159 }
9160
9161 /* Catch the no cq entry condition, log an error */
9162 if (unlikely(ecount == 0))
9163 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9164 "0371 No entry from the CQ: identifier "
9165 "(x%x), type (%d)\n", cq->queue_id, cq->type);
9166
9167 /* In any case, flash and re-arm the RCQ */
9168 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
9169
9170 /* wake up worker thread if there are works to be done */
9171 if (workposted)
9172 lpfc_worker_wake_up(phba);
9173 }
9174
9175 /**
9176 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
9177 * @eqe: Pointer to fast-path completion queue entry.
9178 *
9179 * This routine process a fast-path work queue completion entry from fast-path
9180 * event queue for FCP command response completion.
9181 **/
9182 static void
9183 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba,
9184 struct lpfc_wcqe_complete *wcqe)
9185 {
9186 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_FCP_RING];
9187 struct lpfc_iocbq *cmdiocbq;
9188 struct lpfc_iocbq irspiocbq;
9189 unsigned long iflags;
9190
9191 spin_lock_irqsave(&phba->hbalock, iflags);
9192 pring->stats.iocb_event++;
9193 spin_unlock_irqrestore(&phba->hbalock, iflags);
9194
9195 /* Check for response status */
9196 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
9197 /* If resource errors reported from HBA, reduce queue
9198 * depth of the SCSI device.
9199 */
9200 if ((bf_get(lpfc_wcqe_c_status, wcqe) ==
9201 IOSTAT_LOCAL_REJECT) &&
9202 (wcqe->parameter == IOERR_NO_RESOURCES)) {
9203 phba->lpfc_rampdown_queue_depth(phba);
9204 }
9205 /* Log the error status */
9206 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9207 "0373 FCP complete error: status=x%x, "
9208 "hw_status=x%x, total_data_specified=%d, "
9209 "parameter=x%x, word3=x%x\n",
9210 bf_get(lpfc_wcqe_c_status, wcqe),
9211 bf_get(lpfc_wcqe_c_hw_status, wcqe),
9212 wcqe->total_data_placed, wcqe->parameter,
9213 wcqe->word3);
9214 }
9215
9216 /* Look up the FCP command IOCB and create pseudo response IOCB */
9217 spin_lock_irqsave(&phba->hbalock, iflags);
9218 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
9219 bf_get(lpfc_wcqe_c_request_tag, wcqe));
9220 spin_unlock_irqrestore(&phba->hbalock, iflags);
9221 if (unlikely(!cmdiocbq)) {
9222 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9223 "0374 FCP complete with no corresponding "
9224 "cmdiocb: iotag (%d)\n",
9225 bf_get(lpfc_wcqe_c_request_tag, wcqe));
9226 return;
9227 }
9228 if (unlikely(!cmdiocbq->iocb_cmpl)) {
9229 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9230 "0375 FCP cmdiocb not callback function "
9231 "iotag: (%d)\n",
9232 bf_get(lpfc_wcqe_c_request_tag, wcqe));
9233 return;
9234 }
9235
9236 /* Fake the irspiocb and copy necessary response information */
9237 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
9238
9239 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
9240 spin_lock_irqsave(&phba->hbalock, iflags);
9241 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
9242 spin_unlock_irqrestore(&phba->hbalock, iflags);
9243 }
9244
9245 /* Pass the cmd_iocb and the rsp state to the upper layer */
9246 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
9247 }
9248
9249 /**
9250 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
9251 * @phba: Pointer to HBA context object.
9252 * @cq: Pointer to completion queue.
9253 * @wcqe: Pointer to work-queue completion queue entry.
9254 *
9255 * This routine handles an fast-path WQ entry comsumed event by invoking the
9256 * proper WQ release routine to the slow-path WQ.
9257 **/
9258 static void
9259 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
9260 struct lpfc_wcqe_release *wcqe)
9261 {
9262 struct lpfc_queue *childwq;
9263 bool wqid_matched = false;
9264 uint16_t fcp_wqid;
9265
9266 /* Check for fast-path FCP work queue release */
9267 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
9268 list_for_each_entry(childwq, &cq->child_list, list) {
9269 if (childwq->queue_id == fcp_wqid) {
9270 lpfc_sli4_wq_release(childwq,
9271 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
9272 wqid_matched = true;
9273 break;
9274 }
9275 }
9276 /* Report warning log message if no match found */
9277 if (wqid_matched != true)
9278 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9279 "2580 Fast-path wqe consume event carries "
9280 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid);
9281 }
9282
9283 /**
9284 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry
9285 * @cq: Pointer to the completion queue.
9286 * @eqe: Pointer to fast-path completion queue entry.
9287 *
9288 * This routine process a fast-path work queue completion entry from fast-path
9289 * event queue for FCP command response completion.
9290 **/
9291 static int
9292 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
9293 struct lpfc_cqe *cqe)
9294 {
9295 struct lpfc_wcqe_release wcqe;
9296 bool workposted = false;
9297
9298 /* Copy the work queue CQE and convert endian order if needed */
9299 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
9300
9301 /* Check and process for different type of WCQE and dispatch */
9302 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
9303 case CQE_CODE_COMPL_WQE:
9304 /* Process the WQ complete event */
9305 phba->last_completion_time = jiffies;
9306 lpfc_sli4_fp_handle_fcp_wcqe(phba,
9307 (struct lpfc_wcqe_complete *)&wcqe);
9308 break;
9309 case CQE_CODE_RELEASE_WQE:
9310 /* Process the WQ release event */
9311 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
9312 (struct lpfc_wcqe_release *)&wcqe);
9313 break;
9314 case CQE_CODE_XRI_ABORTED:
9315 /* Process the WQ XRI abort event */
9316 phba->last_completion_time = jiffies;
9317 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
9318 (struct sli4_wcqe_xri_aborted *)&wcqe);
9319 break;
9320 default:
9321 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9322 "0144 Not a valid WCQE code: x%x\n",
9323 bf_get(lpfc_wcqe_c_code, &wcqe));
9324 break;
9325 }
9326 return workposted;
9327 }
9328
9329 /**
9330 * lpfc_sli4_fp_handle_eqe - Process a fast-path event queue entry
9331 * @phba: Pointer to HBA context object.
9332 * @eqe: Pointer to fast-path event queue entry.
9333 *
9334 * This routine process a event queue entry from the fast-path event queue.
9335 * It will check the MajorCode and MinorCode to determine this is for a
9336 * completion event on a completion queue, if not, an error shall be logged
9337 * and just return. Otherwise, it will get to the corresponding completion
9338 * queue and process all the entries on the completion queue, rearm the
9339 * completion queue, and then return.
9340 **/
9341 static void
9342 lpfc_sli4_fp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
9343 uint32_t fcp_cqidx)
9344 {
9345 struct lpfc_queue *cq;
9346 struct lpfc_cqe *cqe;
9347 bool workposted = false;
9348 uint16_t cqid;
9349 int ecount = 0;
9350
9351 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
9352 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9353 "0366 Not a valid fast-path completion "
9354 "event: majorcode=x%x, minorcode=x%x\n",
9355 bf_get_le32(lpfc_eqe_major_code, eqe),
9356 bf_get_le32(lpfc_eqe_minor_code, eqe));
9357 return;
9358 }
9359
9360 cq = phba->sli4_hba.fcp_cq[fcp_cqidx];
9361 if (unlikely(!cq)) {
9362 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
9363 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9364 "0367 Fast-path completion queue "
9365 "does not exist\n");
9366 return;
9367 }
9368
9369 /* Get the reference to the corresponding CQ */
9370 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
9371 if (unlikely(cqid != cq->queue_id)) {
9372 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9373 "0368 Miss-matched fast-path completion "
9374 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
9375 cqid, cq->queue_id);
9376 return;
9377 }
9378
9379 /* Process all the entries to the CQ */
9380 while ((cqe = lpfc_sli4_cq_get(cq))) {
9381 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe);
9382 if (!(++ecount % LPFC_GET_QE_REL_INT))
9383 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
9384 }
9385
9386 /* Catch the no cq entry condition */
9387 if (unlikely(ecount == 0))
9388 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9389 "0369 No entry from fast-path completion "
9390 "queue fcpcqid=%d\n", cq->queue_id);
9391
9392 /* In any case, flash and re-arm the CQ */
9393 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
9394
9395 /* wake up worker thread if there are works to be done */
9396 if (workposted)
9397 lpfc_worker_wake_up(phba);
9398 }
9399
9400 static void
9401 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
9402 {
9403 struct lpfc_eqe *eqe;
9404
9405 /* walk all the EQ entries and drop on the floor */
9406 while ((eqe = lpfc_sli4_eq_get(eq)))
9407 ;
9408
9409 /* Clear and re-arm the EQ */
9410 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
9411 }
9412
9413 /**
9414 * lpfc_sli4_sp_intr_handler - Slow-path interrupt handler to SLI-4 device
9415 * @irq: Interrupt number.
9416 * @dev_id: The device context pointer.
9417 *
9418 * This function is directly called from the PCI layer as an interrupt
9419 * service routine when device with SLI-4 interface spec is enabled with
9420 * MSI-X multi-message interrupt mode and there are slow-path events in
9421 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
9422 * interrupt mode, this function is called as part of the device-level
9423 * interrupt handler. When the PCI slot is in error recovery or the HBA is
9424 * undergoing initialization, the interrupt handler will not process the
9425 * interrupt. The link attention and ELS ring attention events are handled
9426 * by the worker thread. The interrupt handler signals the worker thread
9427 * and returns for these events. This function is called without any lock
9428 * held. It gets the hbalock to access and update SLI data structures.
9429 *
9430 * This function returns IRQ_HANDLED when interrupt is handled else it
9431 * returns IRQ_NONE.
9432 **/
9433 irqreturn_t
9434 lpfc_sli4_sp_intr_handler(int irq, void *dev_id)
9435 {
9436 struct lpfc_hba *phba;
9437 struct lpfc_queue *speq;
9438 struct lpfc_eqe *eqe;
9439 unsigned long iflag;
9440 int ecount = 0;
9441
9442 /*
9443 * Get the driver's phba structure from the dev_id
9444 */
9445 phba = (struct lpfc_hba *)dev_id;
9446
9447 if (unlikely(!phba))
9448 return IRQ_NONE;
9449
9450 /* Get to the EQ struct associated with this vector */
9451 speq = phba->sli4_hba.sp_eq;
9452
9453 /* Check device state for handling interrupt */
9454 if (unlikely(lpfc_intr_state_check(phba))) {
9455 /* Check again for link_state with lock held */
9456 spin_lock_irqsave(&phba->hbalock, iflag);
9457 if (phba->link_state < LPFC_LINK_DOWN)
9458 /* Flush, clear interrupt, and rearm the EQ */
9459 lpfc_sli4_eq_flush(phba, speq);
9460 spin_unlock_irqrestore(&phba->hbalock, iflag);
9461 return IRQ_NONE;
9462 }
9463
9464 /*
9465 * Process all the event on FCP slow-path EQ
9466 */
9467 while ((eqe = lpfc_sli4_eq_get(speq))) {
9468 lpfc_sli4_sp_handle_eqe(phba, eqe);
9469 if (!(++ecount % LPFC_GET_QE_REL_INT))
9470 lpfc_sli4_eq_release(speq, LPFC_QUEUE_NOARM);
9471 }
9472
9473 /* Always clear and re-arm the slow-path EQ */
9474 lpfc_sli4_eq_release(speq, LPFC_QUEUE_REARM);
9475
9476 /* Catch the no cq entry condition */
9477 if (unlikely(ecount == 0)) {
9478 if (phba->intr_type == MSIX)
9479 /* MSI-X treated interrupt served as no EQ share INT */
9480 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9481 "0357 MSI-X interrupt with no EQE\n");
9482 else
9483 /* Non MSI-X treated on interrupt as EQ share INT */
9484 return IRQ_NONE;
9485 }
9486
9487 return IRQ_HANDLED;
9488 } /* lpfc_sli4_sp_intr_handler */
9489
9490 /**
9491 * lpfc_sli4_fp_intr_handler - Fast-path interrupt handler to SLI-4 device
9492 * @irq: Interrupt number.
9493 * @dev_id: The device context pointer.
9494 *
9495 * This function is directly called from the PCI layer as an interrupt
9496 * service routine when device with SLI-4 interface spec is enabled with
9497 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
9498 * ring event in the HBA. However, when the device is enabled with either
9499 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
9500 * device-level interrupt handler. When the PCI slot is in error recovery
9501 * or the HBA is undergoing initialization, the interrupt handler will not
9502 * process the interrupt. The SCSI FCP fast-path ring event are handled in
9503 * the intrrupt context. This function is called without any lock held.
9504 * It gets the hbalock to access and update SLI data structures. Note that,
9505 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
9506 * equal to that of FCP CQ index.
9507 *
9508 * This function returns IRQ_HANDLED when interrupt is handled else it
9509 * returns IRQ_NONE.
9510 **/
9511 irqreturn_t
9512 lpfc_sli4_fp_intr_handler(int irq, void *dev_id)
9513 {
9514 struct lpfc_hba *phba;
9515 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
9516 struct lpfc_queue *fpeq;
9517 struct lpfc_eqe *eqe;
9518 unsigned long iflag;
9519 int ecount = 0;
9520 uint32_t fcp_eqidx;
9521
9522 /* Get the driver's phba structure from the dev_id */
9523 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id;
9524 phba = fcp_eq_hdl->phba;
9525 fcp_eqidx = fcp_eq_hdl->idx;
9526
9527 if (unlikely(!phba))
9528 return IRQ_NONE;
9529
9530 /* Get to the EQ struct associated with this vector */
9531 fpeq = phba->sli4_hba.fp_eq[fcp_eqidx];
9532
9533 /* Check device state for handling interrupt */
9534 if (unlikely(lpfc_intr_state_check(phba))) {
9535 /* Check again for link_state with lock held */
9536 spin_lock_irqsave(&phba->hbalock, iflag);
9537 if (phba->link_state < LPFC_LINK_DOWN)
9538 /* Flush, clear interrupt, and rearm the EQ */
9539 lpfc_sli4_eq_flush(phba, fpeq);
9540 spin_unlock_irqrestore(&phba->hbalock, iflag);
9541 return IRQ_NONE;
9542 }
9543
9544 /*
9545 * Process all the event on FCP fast-path EQ
9546 */
9547 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9548 lpfc_sli4_fp_handle_eqe(phba, eqe, fcp_eqidx);
9549 if (!(++ecount % LPFC_GET_QE_REL_INT))
9550 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM);
9551 }
9552
9553 /* Always clear and re-arm the fast-path EQ */
9554 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
9555
9556 if (unlikely(ecount == 0)) {
9557 if (phba->intr_type == MSIX)
9558 /* MSI-X treated interrupt served as no EQ share INT */
9559 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9560 "0358 MSI-X interrupt with no EQE\n");
9561 else
9562 /* Non MSI-X treated on interrupt as EQ share INT */
9563 return IRQ_NONE;
9564 }
9565
9566 return IRQ_HANDLED;
9567 } /* lpfc_sli4_fp_intr_handler */
9568
9569 /**
9570 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
9571 * @irq: Interrupt number.
9572 * @dev_id: The device context pointer.
9573 *
9574 * This function is the device-level interrupt handler to device with SLI-4
9575 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
9576 * interrupt mode is enabled and there is an event in the HBA which requires
9577 * driver attention. This function invokes the slow-path interrupt attention
9578 * handling function and fast-path interrupt attention handling function in
9579 * turn to process the relevant HBA attention events. This function is called
9580 * without any lock held. It gets the hbalock to access and update SLI data
9581 * structures.
9582 *
9583 * This function returns IRQ_HANDLED when interrupt is handled, else it
9584 * returns IRQ_NONE.
9585 **/
9586 irqreturn_t
9587 lpfc_sli4_intr_handler(int irq, void *dev_id)
9588 {
9589 struct lpfc_hba *phba;
9590 irqreturn_t sp_irq_rc, fp_irq_rc;
9591 bool fp_handled = false;
9592 uint32_t fcp_eqidx;
9593
9594 /* Get the driver's phba structure from the dev_id */
9595 phba = (struct lpfc_hba *)dev_id;
9596
9597 if (unlikely(!phba))
9598 return IRQ_NONE;
9599
9600 /*
9601 * Invokes slow-path host attention interrupt handling as appropriate.
9602 */
9603 sp_irq_rc = lpfc_sli4_sp_intr_handler(irq, dev_id);
9604
9605 /*
9606 * Invoke fast-path host attention interrupt handling as appropriate.
9607 */
9608 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_eq_count; fcp_eqidx++) {
9609 fp_irq_rc = lpfc_sli4_fp_intr_handler(irq,
9610 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]);
9611 if (fp_irq_rc == IRQ_HANDLED)
9612 fp_handled |= true;
9613 }
9614
9615 return (fp_handled == true) ? IRQ_HANDLED : sp_irq_rc;
9616 } /* lpfc_sli4_intr_handler */
9617
9618 /**
9619 * lpfc_sli4_queue_free - free a queue structure and associated memory
9620 * @queue: The queue structure to free.
9621 *
9622 * This function frees a queue structure and the DMAable memory used for
9623 * the host resident queue. This function must be called after destroying the
9624 * queue on the HBA.
9625 **/
9626 void
9627 lpfc_sli4_queue_free(struct lpfc_queue *queue)
9628 {
9629 struct lpfc_dmabuf *dmabuf;
9630
9631 if (!queue)
9632 return;
9633
9634 while (!list_empty(&queue->page_list)) {
9635 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
9636 list);
9637 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
9638 dmabuf->virt, dmabuf->phys);
9639 kfree(dmabuf);
9640 }
9641 kfree(queue);
9642 return;
9643 }
9644
9645 /**
9646 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
9647 * @phba: The HBA that this queue is being created on.
9648 * @entry_size: The size of each queue entry for this queue.
9649 * @entry count: The number of entries that this queue will handle.
9650 *
9651 * This function allocates a queue structure and the DMAable memory used for
9652 * the host resident queue. This function must be called before creating the
9653 * queue on the HBA.
9654 **/
9655 struct lpfc_queue *
9656 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
9657 uint32_t entry_count)
9658 {
9659 struct lpfc_queue *queue;
9660 struct lpfc_dmabuf *dmabuf;
9661 int x, total_qe_count;
9662 void *dma_pointer;
9663 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
9664
9665 if (!phba->sli4_hba.pc_sli4_params.supported)
9666 hw_page_size = SLI4_PAGE_SIZE;
9667
9668 queue = kzalloc(sizeof(struct lpfc_queue) +
9669 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
9670 if (!queue)
9671 return NULL;
9672 queue->page_count = (ALIGN(entry_size * entry_count,
9673 hw_page_size))/hw_page_size;
9674 INIT_LIST_HEAD(&queue->list);
9675 INIT_LIST_HEAD(&queue->page_list);
9676 INIT_LIST_HEAD(&queue->child_list);
9677 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
9678 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9679 if (!dmabuf)
9680 goto out_fail;
9681 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
9682 hw_page_size, &dmabuf->phys,
9683 GFP_KERNEL);
9684 if (!dmabuf->virt) {
9685 kfree(dmabuf);
9686 goto out_fail;
9687 }
9688 memset(dmabuf->virt, 0, hw_page_size);
9689 dmabuf->buffer_tag = x;
9690 list_add_tail(&dmabuf->list, &queue->page_list);
9691 /* initialize queue's entry array */
9692 dma_pointer = dmabuf->virt;
9693 for (; total_qe_count < entry_count &&
9694 dma_pointer < (hw_page_size + dmabuf->virt);
9695 total_qe_count++, dma_pointer += entry_size) {
9696 queue->qe[total_qe_count].address = dma_pointer;
9697 }
9698 }
9699 queue->entry_size = entry_size;
9700 queue->entry_count = entry_count;
9701 queue->phba = phba;
9702
9703 return queue;
9704 out_fail:
9705 lpfc_sli4_queue_free(queue);
9706 return NULL;
9707 }
9708
9709 /**
9710 * lpfc_eq_create - Create an Event Queue on the HBA
9711 * @phba: HBA structure that indicates port to create a queue on.
9712 * @eq: The queue structure to use to create the event queue.
9713 * @imax: The maximum interrupt per second limit.
9714 *
9715 * This function creates an event queue, as detailed in @eq, on a port,
9716 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
9717 *
9718 * The @phba struct is used to send mailbox command to HBA. The @eq struct
9719 * is used to get the entry count and entry size that are necessary to
9720 * determine the number of pages to allocate and use for this queue. This
9721 * function will send the EQ_CREATE mailbox command to the HBA to setup the
9722 * event queue. This function is asynchronous and will wait for the mailbox
9723 * command to finish before continuing.
9724 *
9725 * On success this function will return a zero. If unable to allocate enough
9726 * memory this function will return -ENOMEM. If the queue create mailbox command
9727 * fails this function will return -ENXIO.
9728 **/
9729 uint32_t
9730 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint16_t imax)
9731 {
9732 struct lpfc_mbx_eq_create *eq_create;
9733 LPFC_MBOXQ_t *mbox;
9734 int rc, length, status = 0;
9735 struct lpfc_dmabuf *dmabuf;
9736 uint32_t shdr_status, shdr_add_status;
9737 union lpfc_sli4_cfg_shdr *shdr;
9738 uint16_t dmult;
9739 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
9740
9741 if (!phba->sli4_hba.pc_sli4_params.supported)
9742 hw_page_size = SLI4_PAGE_SIZE;
9743
9744 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9745 if (!mbox)
9746 return -ENOMEM;
9747 length = (sizeof(struct lpfc_mbx_eq_create) -
9748 sizeof(struct lpfc_sli4_cfg_mhdr));
9749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
9750 LPFC_MBOX_OPCODE_EQ_CREATE,
9751 length, LPFC_SLI4_MBX_EMBED);
9752 eq_create = &mbox->u.mqe.un.eq_create;
9753 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
9754 eq->page_count);
9755 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
9756 LPFC_EQE_SIZE);
9757 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
9758 /* Calculate delay multiper from maximum interrupt per second */
9759 dmult = LPFC_DMULT_CONST/imax - 1;
9760 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
9761 dmult);
9762 switch (eq->entry_count) {
9763 default:
9764 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9765 "0360 Unsupported EQ count. (%d)\n",
9766 eq->entry_count);
9767 if (eq->entry_count < 256)
9768 return -EINVAL;
9769 /* otherwise default to smallest count (drop through) */
9770 case 256:
9771 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
9772 LPFC_EQ_CNT_256);
9773 break;
9774 case 512:
9775 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
9776 LPFC_EQ_CNT_512);
9777 break;
9778 case 1024:
9779 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
9780 LPFC_EQ_CNT_1024);
9781 break;
9782 case 2048:
9783 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
9784 LPFC_EQ_CNT_2048);
9785 break;
9786 case 4096:
9787 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
9788 LPFC_EQ_CNT_4096);
9789 break;
9790 }
9791 list_for_each_entry(dmabuf, &eq->page_list, list) {
9792 memset(dmabuf->virt, 0, hw_page_size);
9793 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
9794 putPaddrLow(dmabuf->phys);
9795 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
9796 putPaddrHigh(dmabuf->phys);
9797 }
9798 mbox->vport = phba->pport;
9799 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
9800 mbox->context1 = NULL;
9801 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
9802 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
9803 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
9804 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
9805 if (shdr_status || shdr_add_status || rc) {
9806 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9807 "2500 EQ_CREATE mailbox failed with "
9808 "status x%x add_status x%x, mbx status x%x\n",
9809 shdr_status, shdr_add_status, rc);
9810 status = -ENXIO;
9811 }
9812 eq->type = LPFC_EQ;
9813 eq->subtype = LPFC_NONE;
9814 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
9815 if (eq->queue_id == 0xFFFF)
9816 status = -ENXIO;
9817 eq->host_index = 0;
9818 eq->hba_index = 0;
9819
9820 mempool_free(mbox, phba->mbox_mem_pool);
9821 return status;
9822 }
9823
9824 /**
9825 * lpfc_cq_create - Create a Completion Queue on the HBA
9826 * @phba: HBA structure that indicates port to create a queue on.
9827 * @cq: The queue structure to use to create the completion queue.
9828 * @eq: The event queue to bind this completion queue to.
9829 *
9830 * This function creates a completion queue, as detailed in @wq, on a port,
9831 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
9832 *
9833 * The @phba struct is used to send mailbox command to HBA. The @cq struct
9834 * is used to get the entry count and entry size that are necessary to
9835 * determine the number of pages to allocate and use for this queue. The @eq
9836 * is used to indicate which event queue to bind this completion queue to. This
9837 * function will send the CQ_CREATE mailbox command to the HBA to setup the
9838 * completion queue. This function is asynchronous and will wait for the mailbox
9839 * command to finish before continuing.
9840 *
9841 * On success this function will return a zero. If unable to allocate enough
9842 * memory this function will return -ENOMEM. If the queue create mailbox command
9843 * fails this function will return -ENXIO.
9844 **/
9845 uint32_t
9846 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
9847 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
9848 {
9849 struct lpfc_mbx_cq_create *cq_create;
9850 struct lpfc_dmabuf *dmabuf;
9851 LPFC_MBOXQ_t *mbox;
9852 int rc, length, status = 0;
9853 uint32_t shdr_status, shdr_add_status;
9854 union lpfc_sli4_cfg_shdr *shdr;
9855 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
9856
9857 if (!phba->sli4_hba.pc_sli4_params.supported)
9858 hw_page_size = SLI4_PAGE_SIZE;
9859
9860
9861 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9862 if (!mbox)
9863 return -ENOMEM;
9864 length = (sizeof(struct lpfc_mbx_cq_create) -
9865 sizeof(struct lpfc_sli4_cfg_mhdr));
9866 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
9867 LPFC_MBOX_OPCODE_CQ_CREATE,
9868 length, LPFC_SLI4_MBX_EMBED);
9869 cq_create = &mbox->u.mqe.un.cq_create;
9870 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
9871 cq->page_count);
9872 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
9873 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
9874 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, eq->queue_id);
9875 switch (cq->entry_count) {
9876 default:
9877 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9878 "0361 Unsupported CQ count. (%d)\n",
9879 cq->entry_count);
9880 if (cq->entry_count < 256)
9881 return -EINVAL;
9882 /* otherwise default to smallest count (drop through) */
9883 case 256:
9884 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
9885 LPFC_CQ_CNT_256);
9886 break;
9887 case 512:
9888 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
9889 LPFC_CQ_CNT_512);
9890 break;
9891 case 1024:
9892 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
9893 LPFC_CQ_CNT_1024);
9894 break;
9895 }
9896 list_for_each_entry(dmabuf, &cq->page_list, list) {
9897 memset(dmabuf->virt, 0, hw_page_size);
9898 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
9899 putPaddrLow(dmabuf->phys);
9900 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
9901 putPaddrHigh(dmabuf->phys);
9902 }
9903 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
9904
9905 /* The IOCTL status is embedded in the mailbox subheader. */
9906 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
9907 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
9908 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
9909 if (shdr_status || shdr_add_status || rc) {
9910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9911 "2501 CQ_CREATE mailbox failed with "
9912 "status x%x add_status x%x, mbx status x%x\n",
9913 shdr_status, shdr_add_status, rc);
9914 status = -ENXIO;
9915 goto out;
9916 }
9917 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
9918 if (cq->queue_id == 0xFFFF) {
9919 status = -ENXIO;
9920 goto out;
9921 }
9922 /* link the cq onto the parent eq child list */
9923 list_add_tail(&cq->list, &eq->child_list);
9924 /* Set up completion queue's type and subtype */
9925 cq->type = type;
9926 cq->subtype = subtype;
9927 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
9928 cq->host_index = 0;
9929 cq->hba_index = 0;
9930
9931 out:
9932 mempool_free(mbox, phba->mbox_mem_pool);
9933 return status;
9934 }
9935
9936 /**
9937 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
9938 * @phba: HBA structure that indicates port to create a queue on.
9939 * @mq: The queue structure to use to create the mailbox queue.
9940 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
9941 * @cq: The completion queue to associate with this cq.
9942 *
9943 * This function provides failback (fb) functionality when the
9944 * mq_create_ext fails on older FW generations. It's purpose is identical
9945 * to mq_create_ext otherwise.
9946 *
9947 * This routine cannot fail as all attributes were previously accessed and
9948 * initialized in mq_create_ext.
9949 **/
9950 static void
9951 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
9952 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
9953 {
9954 struct lpfc_mbx_mq_create *mq_create;
9955 struct lpfc_dmabuf *dmabuf;
9956 int length;
9957
9958 length = (sizeof(struct lpfc_mbx_mq_create) -
9959 sizeof(struct lpfc_sli4_cfg_mhdr));
9960 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
9961 LPFC_MBOX_OPCODE_MQ_CREATE,
9962 length, LPFC_SLI4_MBX_EMBED);
9963 mq_create = &mbox->u.mqe.un.mq_create;
9964 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
9965 mq->page_count);
9966 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
9967 cq->queue_id);
9968 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
9969 switch (mq->entry_count) {
9970 case 16:
9971 bf_set(lpfc_mq_context_count, &mq_create->u.request.context,
9972 LPFC_MQ_CNT_16);
9973 break;
9974 case 32:
9975 bf_set(lpfc_mq_context_count, &mq_create->u.request.context,
9976 LPFC_MQ_CNT_32);
9977 break;
9978 case 64:
9979 bf_set(lpfc_mq_context_count, &mq_create->u.request.context,
9980 LPFC_MQ_CNT_64);
9981 break;
9982 case 128:
9983 bf_set(lpfc_mq_context_count, &mq_create->u.request.context,
9984 LPFC_MQ_CNT_128);
9985 break;
9986 }
9987 list_for_each_entry(dmabuf, &mq->page_list, list) {
9988 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
9989 putPaddrLow(dmabuf->phys);
9990 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
9991 putPaddrHigh(dmabuf->phys);
9992 }
9993 }
9994
9995 /**
9996 * lpfc_mq_create - Create a mailbox Queue on the HBA
9997 * @phba: HBA structure that indicates port to create a queue on.
9998 * @mq: The queue structure to use to create the mailbox queue.
9999 * @cq: The completion queue to associate with this cq.
10000 * @subtype: The queue's subtype.
10001 *
10002 * This function creates a mailbox queue, as detailed in @mq, on a port,
10003 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
10004 *
10005 * The @phba struct is used to send mailbox command to HBA. The @cq struct
10006 * is used to get the entry count and entry size that are necessary to
10007 * determine the number of pages to allocate and use for this queue. This
10008 * function will send the MQ_CREATE mailbox command to the HBA to setup the
10009 * mailbox queue. This function is asynchronous and will wait for the mailbox
10010 * command to finish before continuing.
10011 *
10012 * On success this function will return a zero. If unable to allocate enough
10013 * memory this function will return -ENOMEM. If the queue create mailbox command
10014 * fails this function will return -ENXIO.
10015 **/
10016 int32_t
10017 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
10018 struct lpfc_queue *cq, uint32_t subtype)
10019 {
10020 struct lpfc_mbx_mq_create *mq_create;
10021 struct lpfc_mbx_mq_create_ext *mq_create_ext;
10022 struct lpfc_dmabuf *dmabuf;
10023 LPFC_MBOXQ_t *mbox;
10024 int rc, length, status = 0;
10025 uint32_t shdr_status, shdr_add_status;
10026 union lpfc_sli4_cfg_shdr *shdr;
10027 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
10028
10029 if (!phba->sli4_hba.pc_sli4_params.supported)
10030 hw_page_size = SLI4_PAGE_SIZE;
10031
10032 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10033 if (!mbox)
10034 return -ENOMEM;
10035 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
10036 sizeof(struct lpfc_sli4_cfg_mhdr));
10037 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
10038 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
10039 length, LPFC_SLI4_MBX_EMBED);
10040
10041 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
10042 bf_set(lpfc_mbx_mq_create_ext_num_pages, &mq_create_ext->u.request,
10043 mq->page_count);
10044 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, &mq_create_ext->u.request,
10045 1);
10046 bf_set(lpfc_mbx_mq_create_ext_async_evt_fcfste,
10047 &mq_create_ext->u.request, 1);
10048 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
10049 &mq_create_ext->u.request, 1);
10050 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
10051 cq->queue_id);
10052 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
10053 switch (mq->entry_count) {
10054 default:
10055 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10056 "0362 Unsupported MQ count. (%d)\n",
10057 mq->entry_count);
10058 if (mq->entry_count < 16)
10059 return -EINVAL;
10060 /* otherwise default to smallest count (drop through) */
10061 case 16:
10062 bf_set(lpfc_mq_context_count, &mq_create_ext->u.request.context,
10063 LPFC_MQ_CNT_16);
10064 break;
10065 case 32:
10066 bf_set(lpfc_mq_context_count, &mq_create_ext->u.request.context,
10067 LPFC_MQ_CNT_32);
10068 break;
10069 case 64:
10070 bf_set(lpfc_mq_context_count, &mq_create_ext->u.request.context,
10071 LPFC_MQ_CNT_64);
10072 break;
10073 case 128:
10074 bf_set(lpfc_mq_context_count, &mq_create_ext->u.request.context,
10075 LPFC_MQ_CNT_128);
10076 break;
10077 }
10078 list_for_each_entry(dmabuf, &mq->page_list, list) {
10079 memset(dmabuf->virt, 0, hw_page_size);
10080 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
10081 putPaddrLow(dmabuf->phys);
10082 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
10083 putPaddrHigh(dmabuf->phys);
10084 }
10085 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10086 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
10087 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
10088 &mq_create_ext->u.response);
10089 if (rc != MBX_SUCCESS) {
10090 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10091 "2795 MQ_CREATE_EXT failed with "
10092 "status x%x. Failback to MQ_CREATE.\n",
10093 rc);
10094 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
10095 mq_create = &mbox->u.mqe.un.mq_create;
10096 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10097 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
10098 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
10099 &mq_create->u.response);
10100 }
10101
10102 /* The IOCTL status is embedded in the mailbox subheader. */
10103 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10104 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10105 if (shdr_status || shdr_add_status || rc) {
10106 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10107 "2502 MQ_CREATE mailbox failed with "
10108 "status x%x add_status x%x, mbx status x%x\n",
10109 shdr_status, shdr_add_status, rc);
10110 status = -ENXIO;
10111 goto out;
10112 }
10113 if (mq->queue_id == 0xFFFF) {
10114 status = -ENXIO;
10115 goto out;
10116 }
10117 mq->type = LPFC_MQ;
10118 mq->subtype = subtype;
10119 mq->host_index = 0;
10120 mq->hba_index = 0;
10121
10122 /* link the mq onto the parent cq child list */
10123 list_add_tail(&mq->list, &cq->child_list);
10124 out:
10125 mempool_free(mbox, phba->mbox_mem_pool);
10126 return status;
10127 }
10128
10129 /**
10130 * lpfc_wq_create - Create a Work Queue on the HBA
10131 * @phba: HBA structure that indicates port to create a queue on.
10132 * @wq: The queue structure to use to create the work queue.
10133 * @cq: The completion queue to bind this work queue to.
10134 * @subtype: The subtype of the work queue indicating its functionality.
10135 *
10136 * This function creates a work queue, as detailed in @wq, on a port, described
10137 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
10138 *
10139 * The @phba struct is used to send mailbox command to HBA. The @wq struct
10140 * is used to get the entry count and entry size that are necessary to
10141 * determine the number of pages to allocate and use for this queue. The @cq
10142 * is used to indicate which completion queue to bind this work queue to. This
10143 * function will send the WQ_CREATE mailbox command to the HBA to setup the
10144 * work queue. This function is asynchronous and will wait for the mailbox
10145 * command to finish before continuing.
10146 *
10147 * On success this function will return a zero. If unable to allocate enough
10148 * memory this function will return -ENOMEM. If the queue create mailbox command
10149 * fails this function will return -ENXIO.
10150 **/
10151 uint32_t
10152 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
10153 struct lpfc_queue *cq, uint32_t subtype)
10154 {
10155 struct lpfc_mbx_wq_create *wq_create;
10156 struct lpfc_dmabuf *dmabuf;
10157 LPFC_MBOXQ_t *mbox;
10158 int rc, length, status = 0;
10159 uint32_t shdr_status, shdr_add_status;
10160 union lpfc_sli4_cfg_shdr *shdr;
10161 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
10162
10163 if (!phba->sli4_hba.pc_sli4_params.supported)
10164 hw_page_size = SLI4_PAGE_SIZE;
10165
10166 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10167 if (!mbox)
10168 return -ENOMEM;
10169 length = (sizeof(struct lpfc_mbx_wq_create) -
10170 sizeof(struct lpfc_sli4_cfg_mhdr));
10171 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10172 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
10173 length, LPFC_SLI4_MBX_EMBED);
10174 wq_create = &mbox->u.mqe.un.wq_create;
10175 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
10176 wq->page_count);
10177 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
10178 cq->queue_id);
10179 list_for_each_entry(dmabuf, &wq->page_list, list) {
10180 memset(dmabuf->virt, 0, hw_page_size);
10181 wq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
10182 putPaddrLow(dmabuf->phys);
10183 wq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
10184 putPaddrHigh(dmabuf->phys);
10185 }
10186 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10187 /* The IOCTL status is embedded in the mailbox subheader. */
10188 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
10189 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10190 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10191 if (shdr_status || shdr_add_status || rc) {
10192 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10193 "2503 WQ_CREATE mailbox failed with "
10194 "status x%x add_status x%x, mbx status x%x\n",
10195 shdr_status, shdr_add_status, rc);
10196 status = -ENXIO;
10197 goto out;
10198 }
10199 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
10200 if (wq->queue_id == 0xFFFF) {
10201 status = -ENXIO;
10202 goto out;
10203 }
10204 wq->type = LPFC_WQ;
10205 wq->subtype = subtype;
10206 wq->host_index = 0;
10207 wq->hba_index = 0;
10208
10209 /* link the wq onto the parent cq child list */
10210 list_add_tail(&wq->list, &cq->child_list);
10211 out:
10212 mempool_free(mbox, phba->mbox_mem_pool);
10213 return status;
10214 }
10215
10216 /**
10217 * lpfc_rq_create - Create a Receive Queue on the HBA
10218 * @phba: HBA structure that indicates port to create a queue on.
10219 * @hrq: The queue structure to use to create the header receive queue.
10220 * @drq: The queue structure to use to create the data receive queue.
10221 * @cq: The completion queue to bind this work queue to.
10222 *
10223 * This function creates a receive buffer queue pair , as detailed in @hrq and
10224 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
10225 * to the HBA.
10226 *
10227 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
10228 * struct is used to get the entry count that is necessary to determine the
10229 * number of pages to use for this queue. The @cq is used to indicate which
10230 * completion queue to bind received buffers that are posted to these queues to.
10231 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
10232 * receive queue pair. This function is asynchronous and will wait for the
10233 * mailbox command to finish before continuing.
10234 *
10235 * On success this function will return a zero. If unable to allocate enough
10236 * memory this function will return -ENOMEM. If the queue create mailbox command
10237 * fails this function will return -ENXIO.
10238 **/
10239 uint32_t
10240 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
10241 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
10242 {
10243 struct lpfc_mbx_rq_create *rq_create;
10244 struct lpfc_dmabuf *dmabuf;
10245 LPFC_MBOXQ_t *mbox;
10246 int rc, length, status = 0;
10247 uint32_t shdr_status, shdr_add_status;
10248 union lpfc_sli4_cfg_shdr *shdr;
10249 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
10250
10251 if (!phba->sli4_hba.pc_sli4_params.supported)
10252 hw_page_size = SLI4_PAGE_SIZE;
10253
10254 if (hrq->entry_count != drq->entry_count)
10255 return -EINVAL;
10256 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10257 if (!mbox)
10258 return -ENOMEM;
10259 length = (sizeof(struct lpfc_mbx_rq_create) -
10260 sizeof(struct lpfc_sli4_cfg_mhdr));
10261 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10262 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
10263 length, LPFC_SLI4_MBX_EMBED);
10264 rq_create = &mbox->u.mqe.un.rq_create;
10265 switch (hrq->entry_count) {
10266 default:
10267 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10268 "2535 Unsupported RQ count. (%d)\n",
10269 hrq->entry_count);
10270 if (hrq->entry_count < 512)
10271 return -EINVAL;
10272 /* otherwise default to smallest count (drop through) */
10273 case 512:
10274 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10275 LPFC_RQ_RING_SIZE_512);
10276 break;
10277 case 1024:
10278 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10279 LPFC_RQ_RING_SIZE_1024);
10280 break;
10281 case 2048:
10282 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10283 LPFC_RQ_RING_SIZE_2048);
10284 break;
10285 case 4096:
10286 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10287 LPFC_RQ_RING_SIZE_4096);
10288 break;
10289 }
10290 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
10291 cq->queue_id);
10292 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
10293 hrq->page_count);
10294 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
10295 LPFC_HDR_BUF_SIZE);
10296 list_for_each_entry(dmabuf, &hrq->page_list, list) {
10297 memset(dmabuf->virt, 0, hw_page_size);
10298 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
10299 putPaddrLow(dmabuf->phys);
10300 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
10301 putPaddrHigh(dmabuf->phys);
10302 }
10303 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10304 /* The IOCTL status is embedded in the mailbox subheader. */
10305 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
10306 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10307 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10308 if (shdr_status || shdr_add_status || rc) {
10309 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10310 "2504 RQ_CREATE mailbox failed with "
10311 "status x%x add_status x%x, mbx status x%x\n",
10312 shdr_status, shdr_add_status, rc);
10313 status = -ENXIO;
10314 goto out;
10315 }
10316 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
10317 if (hrq->queue_id == 0xFFFF) {
10318 status = -ENXIO;
10319 goto out;
10320 }
10321 hrq->type = LPFC_HRQ;
10322 hrq->subtype = subtype;
10323 hrq->host_index = 0;
10324 hrq->hba_index = 0;
10325
10326 /* now create the data queue */
10327 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10328 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
10329 length, LPFC_SLI4_MBX_EMBED);
10330 switch (drq->entry_count) {
10331 default:
10332 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10333 "2536 Unsupported RQ count. (%d)\n",
10334 drq->entry_count);
10335 if (drq->entry_count < 512)
10336 return -EINVAL;
10337 /* otherwise default to smallest count (drop through) */
10338 case 512:
10339 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10340 LPFC_RQ_RING_SIZE_512);
10341 break;
10342 case 1024:
10343 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10344 LPFC_RQ_RING_SIZE_1024);
10345 break;
10346 case 2048:
10347 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10348 LPFC_RQ_RING_SIZE_2048);
10349 break;
10350 case 4096:
10351 bf_set(lpfc_rq_context_rq_size, &rq_create->u.request.context,
10352 LPFC_RQ_RING_SIZE_4096);
10353 break;
10354 }
10355 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
10356 cq->queue_id);
10357 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
10358 drq->page_count);
10359 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
10360 LPFC_DATA_BUF_SIZE);
10361 list_for_each_entry(dmabuf, &drq->page_list, list) {
10362 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
10363 putPaddrLow(dmabuf->phys);
10364 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
10365 putPaddrHigh(dmabuf->phys);
10366 }
10367 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10368 /* The IOCTL status is embedded in the mailbox subheader. */
10369 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
10370 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10371 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10372 if (shdr_status || shdr_add_status || rc) {
10373 status = -ENXIO;
10374 goto out;
10375 }
10376 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
10377 if (drq->queue_id == 0xFFFF) {
10378 status = -ENXIO;
10379 goto out;
10380 }
10381 drq->type = LPFC_DRQ;
10382 drq->subtype = subtype;
10383 drq->host_index = 0;
10384 drq->hba_index = 0;
10385
10386 /* link the header and data RQs onto the parent cq child list */
10387 list_add_tail(&hrq->list, &cq->child_list);
10388 list_add_tail(&drq->list, &cq->child_list);
10389
10390 out:
10391 mempool_free(mbox, phba->mbox_mem_pool);
10392 return status;
10393 }
10394
10395 /**
10396 * lpfc_eq_destroy - Destroy an event Queue on the HBA
10397 * @eq: The queue structure associated with the queue to destroy.
10398 *
10399 * This function destroys a queue, as detailed in @eq by sending an mailbox
10400 * command, specific to the type of queue, to the HBA.
10401 *
10402 * The @eq struct is used to get the queue ID of the queue to destroy.
10403 *
10404 * On success this function will return a zero. If the queue destroy mailbox
10405 * command fails this function will return -ENXIO.
10406 **/
10407 uint32_t
10408 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
10409 {
10410 LPFC_MBOXQ_t *mbox;
10411 int rc, length, status = 0;
10412 uint32_t shdr_status, shdr_add_status;
10413 union lpfc_sli4_cfg_shdr *shdr;
10414
10415 if (!eq)
10416 return -ENODEV;
10417 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
10418 if (!mbox)
10419 return -ENOMEM;
10420 length = (sizeof(struct lpfc_mbx_eq_destroy) -
10421 sizeof(struct lpfc_sli4_cfg_mhdr));
10422 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
10423 LPFC_MBOX_OPCODE_EQ_DESTROY,
10424 length, LPFC_SLI4_MBX_EMBED);
10425 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
10426 eq->queue_id);
10427 mbox->vport = eq->phba->pport;
10428 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10429
10430 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
10431 /* The IOCTL status is embedded in the mailbox subheader. */
10432 shdr = (union lpfc_sli4_cfg_shdr *)
10433 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
10434 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10435 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10436 if (shdr_status || shdr_add_status || rc) {
10437 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10438 "2505 EQ_DESTROY mailbox failed with "
10439 "status x%x add_status x%x, mbx status x%x\n",
10440 shdr_status, shdr_add_status, rc);
10441 status = -ENXIO;
10442 }
10443
10444 /* Remove eq from any list */
10445 list_del_init(&eq->list);
10446 mempool_free(mbox, eq->phba->mbox_mem_pool);
10447 return status;
10448 }
10449
10450 /**
10451 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
10452 * @cq: The queue structure associated with the queue to destroy.
10453 *
10454 * This function destroys a queue, as detailed in @cq by sending an mailbox
10455 * command, specific to the type of queue, to the HBA.
10456 *
10457 * The @cq struct is used to get the queue ID of the queue to destroy.
10458 *
10459 * On success this function will return a zero. If the queue destroy mailbox
10460 * command fails this function will return -ENXIO.
10461 **/
10462 uint32_t
10463 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
10464 {
10465 LPFC_MBOXQ_t *mbox;
10466 int rc, length, status = 0;
10467 uint32_t shdr_status, shdr_add_status;
10468 union lpfc_sli4_cfg_shdr *shdr;
10469
10470 if (!cq)
10471 return -ENODEV;
10472 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
10473 if (!mbox)
10474 return -ENOMEM;
10475 length = (sizeof(struct lpfc_mbx_cq_destroy) -
10476 sizeof(struct lpfc_sli4_cfg_mhdr));
10477 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
10478 LPFC_MBOX_OPCODE_CQ_DESTROY,
10479 length, LPFC_SLI4_MBX_EMBED);
10480 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
10481 cq->queue_id);
10482 mbox->vport = cq->phba->pport;
10483 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10484 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
10485 /* The IOCTL status is embedded in the mailbox subheader. */
10486 shdr = (union lpfc_sli4_cfg_shdr *)
10487 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
10488 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10489 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10490 if (shdr_status || shdr_add_status || rc) {
10491 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10492 "2506 CQ_DESTROY mailbox failed with "
10493 "status x%x add_status x%x, mbx status x%x\n",
10494 shdr_status, shdr_add_status, rc);
10495 status = -ENXIO;
10496 }
10497 /* Remove cq from any list */
10498 list_del_init(&cq->list);
10499 mempool_free(mbox, cq->phba->mbox_mem_pool);
10500 return status;
10501 }
10502
10503 /**
10504 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
10505 * @qm: The queue structure associated with the queue to destroy.
10506 *
10507 * This function destroys a queue, as detailed in @mq by sending an mailbox
10508 * command, specific to the type of queue, to the HBA.
10509 *
10510 * The @mq struct is used to get the queue ID of the queue to destroy.
10511 *
10512 * On success this function will return a zero. If the queue destroy mailbox
10513 * command fails this function will return -ENXIO.
10514 **/
10515 uint32_t
10516 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
10517 {
10518 LPFC_MBOXQ_t *mbox;
10519 int rc, length, status = 0;
10520 uint32_t shdr_status, shdr_add_status;
10521 union lpfc_sli4_cfg_shdr *shdr;
10522
10523 if (!mq)
10524 return -ENODEV;
10525 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
10526 if (!mbox)
10527 return -ENOMEM;
10528 length = (sizeof(struct lpfc_mbx_mq_destroy) -
10529 sizeof(struct lpfc_sli4_cfg_mhdr));
10530 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
10531 LPFC_MBOX_OPCODE_MQ_DESTROY,
10532 length, LPFC_SLI4_MBX_EMBED);
10533 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
10534 mq->queue_id);
10535 mbox->vport = mq->phba->pport;
10536 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10537 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
10538 /* The IOCTL status is embedded in the mailbox subheader. */
10539 shdr = (union lpfc_sli4_cfg_shdr *)
10540 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
10541 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10542 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10543 if (shdr_status || shdr_add_status || rc) {
10544 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10545 "2507 MQ_DESTROY mailbox failed with "
10546 "status x%x add_status x%x, mbx status x%x\n",
10547 shdr_status, shdr_add_status, rc);
10548 status = -ENXIO;
10549 }
10550 /* Remove mq from any list */
10551 list_del_init(&mq->list);
10552 mempool_free(mbox, mq->phba->mbox_mem_pool);
10553 return status;
10554 }
10555
10556 /**
10557 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
10558 * @wq: The queue structure associated with the queue to destroy.
10559 *
10560 * This function destroys a queue, as detailed in @wq by sending an mailbox
10561 * command, specific to the type of queue, to the HBA.
10562 *
10563 * The @wq struct is used to get the queue ID of the queue to destroy.
10564 *
10565 * On success this function will return a zero. If the queue destroy mailbox
10566 * command fails this function will return -ENXIO.
10567 **/
10568 uint32_t
10569 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
10570 {
10571 LPFC_MBOXQ_t *mbox;
10572 int rc, length, status = 0;
10573 uint32_t shdr_status, shdr_add_status;
10574 union lpfc_sli4_cfg_shdr *shdr;
10575
10576 if (!wq)
10577 return -ENODEV;
10578 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
10579 if (!mbox)
10580 return -ENOMEM;
10581 length = (sizeof(struct lpfc_mbx_wq_destroy) -
10582 sizeof(struct lpfc_sli4_cfg_mhdr));
10583 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10584 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
10585 length, LPFC_SLI4_MBX_EMBED);
10586 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
10587 wq->queue_id);
10588 mbox->vport = wq->phba->pport;
10589 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10590 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
10591 shdr = (union lpfc_sli4_cfg_shdr *)
10592 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
10593 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10594 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10595 if (shdr_status || shdr_add_status || rc) {
10596 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10597 "2508 WQ_DESTROY mailbox failed with "
10598 "status x%x add_status x%x, mbx status x%x\n",
10599 shdr_status, shdr_add_status, rc);
10600 status = -ENXIO;
10601 }
10602 /* Remove wq from any list */
10603 list_del_init(&wq->list);
10604 mempool_free(mbox, wq->phba->mbox_mem_pool);
10605 return status;
10606 }
10607
10608 /**
10609 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
10610 * @rq: The queue structure associated with the queue to destroy.
10611 *
10612 * This function destroys a queue, as detailed in @rq by sending an mailbox
10613 * command, specific to the type of queue, to the HBA.
10614 *
10615 * The @rq struct is used to get the queue ID of the queue to destroy.
10616 *
10617 * On success this function will return a zero. If the queue destroy mailbox
10618 * command fails this function will return -ENXIO.
10619 **/
10620 uint32_t
10621 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
10622 struct lpfc_queue *drq)
10623 {
10624 LPFC_MBOXQ_t *mbox;
10625 int rc, length, status = 0;
10626 uint32_t shdr_status, shdr_add_status;
10627 union lpfc_sli4_cfg_shdr *shdr;
10628
10629 if (!hrq || !drq)
10630 return -ENODEV;
10631 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
10632 if (!mbox)
10633 return -ENOMEM;
10634 length = (sizeof(struct lpfc_mbx_rq_destroy) -
10635 sizeof(struct mbox_header));
10636 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10637 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
10638 length, LPFC_SLI4_MBX_EMBED);
10639 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
10640 hrq->queue_id);
10641 mbox->vport = hrq->phba->pport;
10642 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
10643 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
10644 /* The IOCTL status is embedded in the mailbox subheader. */
10645 shdr = (union lpfc_sli4_cfg_shdr *)
10646 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
10647 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10648 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10649 if (shdr_status || shdr_add_status || rc) {
10650 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10651 "2509 RQ_DESTROY mailbox failed with "
10652 "status x%x add_status x%x, mbx status x%x\n",
10653 shdr_status, shdr_add_status, rc);
10654 if (rc != MBX_TIMEOUT)
10655 mempool_free(mbox, hrq->phba->mbox_mem_pool);
10656 return -ENXIO;
10657 }
10658 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
10659 drq->queue_id);
10660 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
10661 shdr = (union lpfc_sli4_cfg_shdr *)
10662 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
10663 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10664 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10665 if (shdr_status || shdr_add_status || rc) {
10666 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10667 "2510 RQ_DESTROY mailbox failed with "
10668 "status x%x add_status x%x, mbx status x%x\n",
10669 shdr_status, shdr_add_status, rc);
10670 status = -ENXIO;
10671 }
10672 list_del_init(&hrq->list);
10673 list_del_init(&drq->list);
10674 mempool_free(mbox, hrq->phba->mbox_mem_pool);
10675 return status;
10676 }
10677
10678 /**
10679 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
10680 * @phba: The virtual port for which this call being executed.
10681 * @pdma_phys_addr0: Physical address of the 1st SGL page.
10682 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
10683 * @xritag: the xritag that ties this io to the SGL pages.
10684 *
10685 * This routine will post the sgl pages for the IO that has the xritag
10686 * that is in the iocbq structure. The xritag is assigned during iocbq
10687 * creation and persists for as long as the driver is loaded.
10688 * if the caller has fewer than 256 scatter gather segments to map then
10689 * pdma_phys_addr1 should be 0.
10690 * If the caller needs to map more than 256 scatter gather segment then
10691 * pdma_phys_addr1 should be a valid physical address.
10692 * physical address for SGLs must be 64 byte aligned.
10693 * If you are going to map 2 SGL's then the first one must have 256 entries
10694 * the second sgl can have between 1 and 256 entries.
10695 *
10696 * Return codes:
10697 * 0 - Success
10698 * -ENXIO, -ENOMEM - Failure
10699 **/
10700 int
10701 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
10702 dma_addr_t pdma_phys_addr0,
10703 dma_addr_t pdma_phys_addr1,
10704 uint16_t xritag)
10705 {
10706 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
10707 LPFC_MBOXQ_t *mbox;
10708 int rc;
10709 uint32_t shdr_status, shdr_add_status;
10710 union lpfc_sli4_cfg_shdr *shdr;
10711
10712 if (xritag == NO_XRI) {
10713 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10714 "0364 Invalid param:\n");
10715 return -EINVAL;
10716 }
10717
10718 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10719 if (!mbox)
10720 return -ENOMEM;
10721
10722 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10723 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
10724 sizeof(struct lpfc_mbx_post_sgl_pages) -
10725 sizeof(struct mbox_header), LPFC_SLI4_MBX_EMBED);
10726
10727 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
10728 &mbox->u.mqe.un.post_sgl_pages;
10729 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
10730 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
10731
10732 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
10733 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
10734 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
10735 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
10736
10737 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
10738 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
10739 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
10740 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
10741 if (!phba->sli4_hba.intr_enable)
10742 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10743 else
10744 rc = lpfc_sli_issue_mbox_wait(phba, mbox, LPFC_MBOX_TMO);
10745 /* The IOCTL status is embedded in the mailbox subheader. */
10746 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
10747 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10748 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10749 if (rc != MBX_TIMEOUT)
10750 mempool_free(mbox, phba->mbox_mem_pool);
10751 if (shdr_status || shdr_add_status || rc) {
10752 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10753 "2511 POST_SGL mailbox failed with "
10754 "status x%x add_status x%x, mbx status x%x\n",
10755 shdr_status, shdr_add_status, rc);
10756 rc = -ENXIO;
10757 }
10758 return 0;
10759 }
10760
10761 /**
10762 * lpfc_sli4_next_xritag - Get an xritag for the io
10763 * @phba: Pointer to HBA context object.
10764 *
10765 * This function gets an xritag for the iocb. If there is no unused xritag
10766 * it will return 0xffff.
10767 * The function returns the allocated xritag if successful, else returns zero.
10768 * Zero is not a valid xritag.
10769 * The caller is not required to hold any lock.
10770 **/
10771 uint16_t
10772 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
10773 {
10774 uint16_t xritag;
10775
10776 spin_lock_irq(&phba->hbalock);
10777 xritag = phba->sli4_hba.next_xri;
10778 if ((xritag != (uint16_t) -1) && xritag <
10779 (phba->sli4_hba.max_cfg_param.max_xri
10780 + phba->sli4_hba.max_cfg_param.xri_base)) {
10781 phba->sli4_hba.next_xri++;
10782 phba->sli4_hba.max_cfg_param.xri_used++;
10783 spin_unlock_irq(&phba->hbalock);
10784 return xritag;
10785 }
10786 spin_unlock_irq(&phba->hbalock);
10787 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10788 "2004 Failed to allocate XRI.last XRITAG is %d"
10789 " Max XRI is %d, Used XRI is %d\n",
10790 phba->sli4_hba.next_xri,
10791 phba->sli4_hba.max_cfg_param.max_xri,
10792 phba->sli4_hba.max_cfg_param.xri_used);
10793 return -1;
10794 }
10795
10796 /**
10797 * lpfc_sli4_post_sgl_list - post a block of sgl list to the firmware.
10798 * @phba: pointer to lpfc hba data structure.
10799 *
10800 * This routine is invoked to post a block of driver's sgl pages to the
10801 * HBA using non-embedded mailbox command. No Lock is held. This routine
10802 * is only called when the driver is loading and after all IO has been
10803 * stopped.
10804 **/
10805 int
10806 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba)
10807 {
10808 struct lpfc_sglq *sglq_entry;
10809 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
10810 struct sgl_page_pairs *sgl_pg_pairs;
10811 void *viraddr;
10812 LPFC_MBOXQ_t *mbox;
10813 uint32_t reqlen, alloclen, pg_pairs;
10814 uint32_t mbox_tmo;
10815 uint16_t xritag_start = 0;
10816 int els_xri_cnt, rc = 0;
10817 uint32_t shdr_status, shdr_add_status;
10818 union lpfc_sli4_cfg_shdr *shdr;
10819
10820 /* The number of sgls to be posted */
10821 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
10822
10823 reqlen = els_xri_cnt * sizeof(struct sgl_page_pairs) +
10824 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
10825 if (reqlen > SLI4_PAGE_SIZE) {
10826 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10827 "2559 Block sgl registration required DMA "
10828 "size (%d) great than a page\n", reqlen);
10829 return -ENOMEM;
10830 }
10831 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10832 if (!mbox) {
10833 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10834 "2560 Failed to allocate mbox cmd memory\n");
10835 return -ENOMEM;
10836 }
10837
10838 /* Allocate DMA memory and set up the non-embedded mailbox command */
10839 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10840 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
10841 LPFC_SLI4_MBX_NEMBED);
10842
10843 if (alloclen < reqlen) {
10844 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10845 "0285 Allocated DMA memory size (%d) is "
10846 "less than the requested DMA memory "
10847 "size (%d)\n", alloclen, reqlen);
10848 lpfc_sli4_mbox_cmd_free(phba, mbox);
10849 return -ENOMEM;
10850 }
10851 /* Get the first SGE entry from the non-embedded DMA memory */
10852 viraddr = mbox->sge_array->addr[0];
10853
10854 /* Set up the SGL pages in the non-embedded DMA pages */
10855 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
10856 sgl_pg_pairs = &sgl->sgl_pg_pairs;
10857
10858 for (pg_pairs = 0; pg_pairs < els_xri_cnt; pg_pairs++) {
10859 sglq_entry = phba->sli4_hba.lpfc_els_sgl_array[pg_pairs];
10860 /* Set up the sge entry */
10861 sgl_pg_pairs->sgl_pg0_addr_lo =
10862 cpu_to_le32(putPaddrLow(sglq_entry->phys));
10863 sgl_pg_pairs->sgl_pg0_addr_hi =
10864 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
10865 sgl_pg_pairs->sgl_pg1_addr_lo =
10866 cpu_to_le32(putPaddrLow(0));
10867 sgl_pg_pairs->sgl_pg1_addr_hi =
10868 cpu_to_le32(putPaddrHigh(0));
10869 /* Keep the first xritag on the list */
10870 if (pg_pairs == 0)
10871 xritag_start = sglq_entry->sli4_xritag;
10872 sgl_pg_pairs++;
10873 }
10874 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
10875 bf_set(lpfc_post_sgl_pages_xricnt, sgl, els_xri_cnt);
10876 /* Perform endian conversion if necessary */
10877 sgl->word0 = cpu_to_le32(sgl->word0);
10878
10879 if (!phba->sli4_hba.intr_enable)
10880 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10881 else {
10882 mbox_tmo = lpfc_mbox_tmo_val(phba, MBX_SLI4_CONFIG);
10883 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
10884 }
10885 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
10886 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10887 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10888 if (rc != MBX_TIMEOUT)
10889 lpfc_sli4_mbox_cmd_free(phba, mbox);
10890 if (shdr_status || shdr_add_status || rc) {
10891 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10892 "2513 POST_SGL_BLOCK mailbox command failed "
10893 "status x%x add_status x%x mbx status x%x\n",
10894 shdr_status, shdr_add_status, rc);
10895 rc = -ENXIO;
10896 }
10897 return rc;
10898 }
10899
10900 /**
10901 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
10902 * @phba: pointer to lpfc hba data structure.
10903 * @sblist: pointer to scsi buffer list.
10904 * @count: number of scsi buffers on the list.
10905 *
10906 * This routine is invoked to post a block of @count scsi sgl pages from a
10907 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
10908 * No Lock is held.
10909 *
10910 **/
10911 int
10912 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, struct list_head *sblist,
10913 int cnt)
10914 {
10915 struct lpfc_scsi_buf *psb;
10916 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
10917 struct sgl_page_pairs *sgl_pg_pairs;
10918 void *viraddr;
10919 LPFC_MBOXQ_t *mbox;
10920 uint32_t reqlen, alloclen, pg_pairs;
10921 uint32_t mbox_tmo;
10922 uint16_t xritag_start = 0;
10923 int rc = 0;
10924 uint32_t shdr_status, shdr_add_status;
10925 dma_addr_t pdma_phys_bpl1;
10926 union lpfc_sli4_cfg_shdr *shdr;
10927
10928 /* Calculate the requested length of the dma memory */
10929 reqlen = cnt * sizeof(struct sgl_page_pairs) +
10930 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
10931 if (reqlen > SLI4_PAGE_SIZE) {
10932 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10933 "0217 Block sgl registration required DMA "
10934 "size (%d) great than a page\n", reqlen);
10935 return -ENOMEM;
10936 }
10937 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10938 if (!mbox) {
10939 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10940 "0283 Failed to allocate mbox cmd memory\n");
10941 return -ENOMEM;
10942 }
10943
10944 /* Allocate DMA memory and set up the non-embedded mailbox command */
10945 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
10946 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
10947 LPFC_SLI4_MBX_NEMBED);
10948
10949 if (alloclen < reqlen) {
10950 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10951 "2561 Allocated DMA memory size (%d) is "
10952 "less than the requested DMA memory "
10953 "size (%d)\n", alloclen, reqlen);
10954 lpfc_sli4_mbox_cmd_free(phba, mbox);
10955 return -ENOMEM;
10956 }
10957 /* Get the first SGE entry from the non-embedded DMA memory */
10958 viraddr = mbox->sge_array->addr[0];
10959
10960 /* Set up the SGL pages in the non-embedded DMA pages */
10961 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
10962 sgl_pg_pairs = &sgl->sgl_pg_pairs;
10963
10964 pg_pairs = 0;
10965 list_for_each_entry(psb, sblist, list) {
10966 /* Set up the sge entry */
10967 sgl_pg_pairs->sgl_pg0_addr_lo =
10968 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
10969 sgl_pg_pairs->sgl_pg0_addr_hi =
10970 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
10971 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
10972 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
10973 else
10974 pdma_phys_bpl1 = 0;
10975 sgl_pg_pairs->sgl_pg1_addr_lo =
10976 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
10977 sgl_pg_pairs->sgl_pg1_addr_hi =
10978 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
10979 /* Keep the first xritag on the list */
10980 if (pg_pairs == 0)
10981 xritag_start = psb->cur_iocbq.sli4_xritag;
10982 sgl_pg_pairs++;
10983 pg_pairs++;
10984 }
10985 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
10986 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
10987 /* Perform endian conversion if necessary */
10988 sgl->word0 = cpu_to_le32(sgl->word0);
10989
10990 if (!phba->sli4_hba.intr_enable)
10991 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
10992 else {
10993 mbox_tmo = lpfc_mbox_tmo_val(phba, MBX_SLI4_CONFIG);
10994 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
10995 }
10996 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
10997 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10998 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10999 if (rc != MBX_TIMEOUT)
11000 lpfc_sli4_mbox_cmd_free(phba, mbox);
11001 if (shdr_status || shdr_add_status || rc) {
11002 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11003 "2564 POST_SGL_BLOCK mailbox command failed "
11004 "status x%x add_status x%x mbx status x%x\n",
11005 shdr_status, shdr_add_status, rc);
11006 rc = -ENXIO;
11007 }
11008 return rc;
11009 }
11010
11011 /**
11012 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
11013 * @phba: pointer to lpfc_hba struct that the frame was received on
11014 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
11015 *
11016 * This function checks the fields in the @fc_hdr to see if the FC frame is a
11017 * valid type of frame that the LPFC driver will handle. This function will
11018 * return a zero if the frame is a valid frame or a non zero value when the
11019 * frame does not pass the check.
11020 **/
11021 static int
11022 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
11023 {
11024 char *rctl_names[] = FC_RCTL_NAMES_INIT;
11025 char *type_names[] = FC_TYPE_NAMES_INIT;
11026 struct fc_vft_header *fc_vft_hdr;
11027
11028 switch (fc_hdr->fh_r_ctl) {
11029 case FC_RCTL_DD_UNCAT: /* uncategorized information */
11030 case FC_RCTL_DD_SOL_DATA: /* solicited data */
11031 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
11032 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
11033 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
11034 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
11035 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
11036 case FC_RCTL_DD_CMD_STATUS: /* command status */
11037 case FC_RCTL_ELS_REQ: /* extended link services request */
11038 case FC_RCTL_ELS_REP: /* extended link services reply */
11039 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
11040 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
11041 case FC_RCTL_BA_NOP: /* basic link service NOP */
11042 case FC_RCTL_BA_ABTS: /* basic link service abort */
11043 case FC_RCTL_BA_RMC: /* remove connection */
11044 case FC_RCTL_BA_ACC: /* basic accept */
11045 case FC_RCTL_BA_RJT: /* basic reject */
11046 case FC_RCTL_BA_PRMT:
11047 case FC_RCTL_ACK_1: /* acknowledge_1 */
11048 case FC_RCTL_ACK_0: /* acknowledge_0 */
11049 case FC_RCTL_P_RJT: /* port reject */
11050 case FC_RCTL_F_RJT: /* fabric reject */
11051 case FC_RCTL_P_BSY: /* port busy */
11052 case FC_RCTL_F_BSY: /* fabric busy to data frame */
11053 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
11054 case FC_RCTL_LCR: /* link credit reset */
11055 case FC_RCTL_END: /* end */
11056 break;
11057 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
11058 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
11059 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
11060 return lpfc_fc_frame_check(phba, fc_hdr);
11061 default:
11062 goto drop;
11063 }
11064 switch (fc_hdr->fh_type) {
11065 case FC_TYPE_BLS:
11066 case FC_TYPE_ELS:
11067 case FC_TYPE_FCP:
11068 case FC_TYPE_CT:
11069 break;
11070 case FC_TYPE_IP:
11071 case FC_TYPE_ILS:
11072 default:
11073 goto drop;
11074 }
11075 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11076 "2538 Received frame rctl:%s type:%s\n",
11077 rctl_names[fc_hdr->fh_r_ctl],
11078 type_names[fc_hdr->fh_type]);
11079 return 0;
11080 drop:
11081 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
11082 "2539 Dropped frame rctl:%s type:%s\n",
11083 rctl_names[fc_hdr->fh_r_ctl],
11084 type_names[fc_hdr->fh_type]);
11085 return 1;
11086 }
11087
11088 /**
11089 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
11090 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
11091 *
11092 * This function processes the FC header to retrieve the VFI from the VF
11093 * header, if one exists. This function will return the VFI if one exists
11094 * or 0 if no VSAN Header exists.
11095 **/
11096 static uint32_t
11097 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
11098 {
11099 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
11100
11101 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
11102 return 0;
11103 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
11104 }
11105
11106 /**
11107 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
11108 * @phba: Pointer to the HBA structure to search for the vport on
11109 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
11110 * @fcfi: The FC Fabric ID that the frame came from
11111 *
11112 * This function searches the @phba for a vport that matches the content of the
11113 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
11114 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
11115 * returns the matching vport pointer or NULL if unable to match frame to a
11116 * vport.
11117 **/
11118 static struct lpfc_vport *
11119 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
11120 uint16_t fcfi)
11121 {
11122 struct lpfc_vport **vports;
11123 struct lpfc_vport *vport = NULL;
11124 int i;
11125 uint32_t did = (fc_hdr->fh_d_id[0] << 16 |
11126 fc_hdr->fh_d_id[1] << 8 |
11127 fc_hdr->fh_d_id[2]);
11128
11129 vports = lpfc_create_vport_work_array(phba);
11130 if (vports != NULL)
11131 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
11132 if (phba->fcf.fcfi == fcfi &&
11133 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
11134 vports[i]->fc_myDID == did) {
11135 vport = vports[i];
11136 break;
11137 }
11138 }
11139 lpfc_destroy_vport_work_array(phba, vports);
11140 return vport;
11141 }
11142
11143 /**
11144 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
11145 * @vport: The vport to work on.
11146 *
11147 * This function updates the receive sequence time stamp for this vport. The
11148 * receive sequence time stamp indicates the time that the last frame of the
11149 * the sequence that has been idle for the longest amount of time was received.
11150 * the driver uses this time stamp to indicate if any received sequences have
11151 * timed out.
11152 **/
11153 void
11154 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
11155 {
11156 struct lpfc_dmabuf *h_buf;
11157 struct hbq_dmabuf *dmabuf = NULL;
11158
11159 /* get the oldest sequence on the rcv list */
11160 h_buf = list_get_first(&vport->rcv_buffer_list,
11161 struct lpfc_dmabuf, list);
11162 if (!h_buf)
11163 return;
11164 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
11165 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
11166 }
11167
11168 /**
11169 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
11170 * @vport: The vport that the received sequences were sent to.
11171 *
11172 * This function cleans up all outstanding received sequences. This is called
11173 * by the driver when a link event or user action invalidates all the received
11174 * sequences.
11175 **/
11176 void
11177 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
11178 {
11179 struct lpfc_dmabuf *h_buf, *hnext;
11180 struct lpfc_dmabuf *d_buf, *dnext;
11181 struct hbq_dmabuf *dmabuf = NULL;
11182
11183 /* start with the oldest sequence on the rcv list */
11184 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
11185 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
11186 list_del_init(&dmabuf->hbuf.list);
11187 list_for_each_entry_safe(d_buf, dnext,
11188 &dmabuf->dbuf.list, list) {
11189 list_del_init(&d_buf->list);
11190 lpfc_in_buf_free(vport->phba, d_buf);
11191 }
11192 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
11193 }
11194 }
11195
11196 /**
11197 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
11198 * @vport: The vport that the received sequences were sent to.
11199 *
11200 * This function determines whether any received sequences have timed out by
11201 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
11202 * indicates that there is at least one timed out sequence this routine will
11203 * go through the received sequences one at a time from most inactive to most
11204 * active to determine which ones need to be cleaned up. Once it has determined
11205 * that a sequence needs to be cleaned up it will simply free up the resources
11206 * without sending an abort.
11207 **/
11208 void
11209 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
11210 {
11211 struct lpfc_dmabuf *h_buf, *hnext;
11212 struct lpfc_dmabuf *d_buf, *dnext;
11213 struct hbq_dmabuf *dmabuf = NULL;
11214 unsigned long timeout;
11215 int abort_count = 0;
11216
11217 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
11218 vport->rcv_buffer_time_stamp);
11219 if (list_empty(&vport->rcv_buffer_list) ||
11220 time_before(jiffies, timeout))
11221 return;
11222 /* start with the oldest sequence on the rcv list */
11223 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
11224 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
11225 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
11226 dmabuf->time_stamp);
11227 if (time_before(jiffies, timeout))
11228 break;
11229 abort_count++;
11230 list_del_init(&dmabuf->hbuf.list);
11231 list_for_each_entry_safe(d_buf, dnext,
11232 &dmabuf->dbuf.list, list) {
11233 list_del_init(&d_buf->list);
11234 lpfc_in_buf_free(vport->phba, d_buf);
11235 }
11236 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
11237 }
11238 if (abort_count)
11239 lpfc_update_rcv_time_stamp(vport);
11240 }
11241
11242 /**
11243 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
11244 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
11245 *
11246 * This function searches through the existing incomplete sequences that have
11247 * been sent to this @vport. If the frame matches one of the incomplete
11248 * sequences then the dbuf in the @dmabuf is added to the list of frames that
11249 * make up that sequence. If no sequence is found that matches this frame then
11250 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
11251 * This function returns a pointer to the first dmabuf in the sequence list that
11252 * the frame was linked to.
11253 **/
11254 static struct hbq_dmabuf *
11255 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
11256 {
11257 struct fc_frame_header *new_hdr;
11258 struct fc_frame_header *temp_hdr;
11259 struct lpfc_dmabuf *d_buf;
11260 struct lpfc_dmabuf *h_buf;
11261 struct hbq_dmabuf *seq_dmabuf = NULL;
11262 struct hbq_dmabuf *temp_dmabuf = NULL;
11263
11264 INIT_LIST_HEAD(&dmabuf->dbuf.list);
11265 dmabuf->time_stamp = jiffies;
11266 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
11267 /* Use the hdr_buf to find the sequence that this frame belongs to */
11268 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
11269 temp_hdr = (struct fc_frame_header *)h_buf->virt;
11270 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
11271 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
11272 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
11273 continue;
11274 /* found a pending sequence that matches this frame */
11275 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
11276 break;
11277 }
11278 if (!seq_dmabuf) {
11279 /*
11280 * This indicates first frame received for this sequence.
11281 * Queue the buffer on the vport's rcv_buffer_list.
11282 */
11283 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
11284 lpfc_update_rcv_time_stamp(vport);
11285 return dmabuf;
11286 }
11287 temp_hdr = seq_dmabuf->hbuf.virt;
11288 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
11289 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
11290 list_del_init(&seq_dmabuf->hbuf.list);
11291 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
11292 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
11293 lpfc_update_rcv_time_stamp(vport);
11294 return dmabuf;
11295 }
11296 /* move this sequence to the tail to indicate a young sequence */
11297 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
11298 seq_dmabuf->time_stamp = jiffies;
11299 lpfc_update_rcv_time_stamp(vport);
11300 if (list_empty(&seq_dmabuf->dbuf.list)) {
11301 temp_hdr = dmabuf->hbuf.virt;
11302 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
11303 return seq_dmabuf;
11304 }
11305 /* find the correct place in the sequence to insert this frame */
11306 list_for_each_entry_reverse(d_buf, &seq_dmabuf->dbuf.list, list) {
11307 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
11308 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
11309 /*
11310 * If the frame's sequence count is greater than the frame on
11311 * the list then insert the frame right after this frame
11312 */
11313 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
11314 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
11315 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
11316 return seq_dmabuf;
11317 }
11318 }
11319 return NULL;
11320 }
11321
11322 /**
11323 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
11324 * @vport: pointer to a vitural port
11325 * @dmabuf: pointer to a dmabuf that describes the FC sequence
11326 *
11327 * This function tries to abort from the partially assembed sequence, described
11328 * by the information from basic abbort @dmabuf. It checks to see whether such
11329 * partially assembled sequence held by the driver. If so, it shall free up all
11330 * the frames from the partially assembled sequence.
11331 *
11332 * Return
11333 * true -- if there is matching partially assembled sequence present and all
11334 * the frames freed with the sequence;
11335 * false -- if there is no matching partially assembled sequence present so
11336 * nothing got aborted in the lower layer driver
11337 **/
11338 static bool
11339 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
11340 struct hbq_dmabuf *dmabuf)
11341 {
11342 struct fc_frame_header *new_hdr;
11343 struct fc_frame_header *temp_hdr;
11344 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
11345 struct hbq_dmabuf *seq_dmabuf = NULL;
11346
11347 /* Use the hdr_buf to find the sequence that matches this frame */
11348 INIT_LIST_HEAD(&dmabuf->dbuf.list);
11349 INIT_LIST_HEAD(&dmabuf->hbuf.list);
11350 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
11351 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
11352 temp_hdr = (struct fc_frame_header *)h_buf->virt;
11353 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
11354 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
11355 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
11356 continue;
11357 /* found a pending sequence that matches this frame */
11358 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
11359 break;
11360 }
11361
11362 /* Free up all the frames from the partially assembled sequence */
11363 if (seq_dmabuf) {
11364 list_for_each_entry_safe(d_buf, n_buf,
11365 &seq_dmabuf->dbuf.list, list) {
11366 list_del_init(&d_buf->list);
11367 lpfc_in_buf_free(vport->phba, d_buf);
11368 }
11369 return true;
11370 }
11371 return false;
11372 }
11373
11374 /**
11375 * lpfc_sli4_seq_abort_acc_cmpl - Accept seq abort iocb complete handler
11376 * @phba: Pointer to HBA context object.
11377 * @cmd_iocbq: pointer to the command iocbq structure.
11378 * @rsp_iocbq: pointer to the response iocbq structure.
11379 *
11380 * This function handles the sequence abort accept iocb command complete
11381 * event. It properly releases the memory allocated to the sequence abort
11382 * accept iocb.
11383 **/
11384 static void
11385 lpfc_sli4_seq_abort_acc_cmpl(struct lpfc_hba *phba,
11386 struct lpfc_iocbq *cmd_iocbq,
11387 struct lpfc_iocbq *rsp_iocbq)
11388 {
11389 if (cmd_iocbq)
11390 lpfc_sli_release_iocbq(phba, cmd_iocbq);
11391 }
11392
11393 /**
11394 * lpfc_sli4_seq_abort_acc - Accept sequence abort
11395 * @phba: Pointer to HBA context object.
11396 * @fc_hdr: pointer to a FC frame header.
11397 *
11398 * This function sends a basic accept to a previous unsol sequence abort
11399 * event after aborting the sequence handling.
11400 **/
11401 static void
11402 lpfc_sli4_seq_abort_acc(struct lpfc_hba *phba,
11403 struct fc_frame_header *fc_hdr)
11404 {
11405 struct lpfc_iocbq *ctiocb = NULL;
11406 struct lpfc_nodelist *ndlp;
11407 uint16_t oxid, rxid;
11408 uint32_t sid, fctl;
11409 IOCB_t *icmd;
11410
11411 if (!lpfc_is_link_up(phba))
11412 return;
11413
11414 sid = sli4_sid_from_fc_hdr(fc_hdr);
11415 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
11416 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
11417
11418 ndlp = lpfc_findnode_did(phba->pport, sid);
11419 if (!ndlp) {
11420 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
11421 "1268 Find ndlp returned NULL for oxid:x%x "
11422 "SID:x%x\n", oxid, sid);
11423 return;
11424 }
11425
11426 /* Allocate buffer for acc iocb */
11427 ctiocb = lpfc_sli_get_iocbq(phba);
11428 if (!ctiocb)
11429 return;
11430
11431 /* Extract the F_CTL field from FC_HDR */
11432 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
11433
11434 icmd = &ctiocb->iocb;
11435 icmd->un.xseq64.bdl.bdeSize = 0;
11436 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
11437 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
11438 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
11439 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
11440
11441 /* Fill in the rest of iocb fields */
11442 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
11443 icmd->ulpBdeCount = 0;
11444 icmd->ulpLe = 1;
11445 icmd->ulpClass = CLASS3;
11446 icmd->ulpContext = ndlp->nlp_rpi;
11447
11448 ctiocb->iocb_cmpl = NULL;
11449 ctiocb->vport = phba->pport;
11450 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_acc_cmpl;
11451
11452 if (fctl & FC_FC_EX_CTX) {
11453 /* ABTS sent by responder to CT exchange, construction
11454 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
11455 * field and RX_ID from ABTS for RX_ID field.
11456 */
11457 bf_set(lpfc_abts_orig, &icmd->un.bls_acc, LPFC_ABTS_UNSOL_RSP);
11458 bf_set(lpfc_abts_rxid, &icmd->un.bls_acc, rxid);
11459 ctiocb->sli4_xritag = oxid;
11460 } else {
11461 /* ABTS sent by initiator to CT exchange, construction
11462 * of BA_ACC will need to allocate a new XRI as for the
11463 * XRI_TAG and RX_ID fields.
11464 */
11465 bf_set(lpfc_abts_orig, &icmd->un.bls_acc, LPFC_ABTS_UNSOL_INT);
11466 bf_set(lpfc_abts_rxid, &icmd->un.bls_acc, NO_XRI);
11467 ctiocb->sli4_xritag = NO_XRI;
11468 }
11469 bf_set(lpfc_abts_oxid, &icmd->un.bls_acc, oxid);
11470
11471 /* Xmit CT abts accept on exchange <xid> */
11472 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11473 "1200 Xmit CT ABTS ACC on exchange x%x Data: x%x\n",
11474 CMD_XMIT_BLS_RSP64_CX, phba->link_state);
11475 lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
11476 }
11477
11478 /**
11479 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
11480 * @vport: Pointer to the vport on which this sequence was received
11481 * @dmabuf: pointer to a dmabuf that describes the FC sequence
11482 *
11483 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
11484 * receive sequence is only partially assembed by the driver, it shall abort
11485 * the partially assembled frames for the sequence. Otherwise, if the
11486 * unsolicited receive sequence has been completely assembled and passed to
11487 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
11488 * unsolicited sequence has been aborted. After that, it will issue a basic
11489 * accept to accept the abort.
11490 **/
11491 void
11492 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
11493 struct hbq_dmabuf *dmabuf)
11494 {
11495 struct lpfc_hba *phba = vport->phba;
11496 struct fc_frame_header fc_hdr;
11497 uint32_t fctl;
11498 bool abts_par;
11499
11500 /* Make a copy of fc_hdr before the dmabuf being released */
11501 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
11502 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
11503
11504 if (fctl & FC_FC_EX_CTX) {
11505 /*
11506 * ABTS sent by responder to exchange, just free the buffer
11507 */
11508 lpfc_in_buf_free(phba, &dmabuf->dbuf);
11509 } else {
11510 /*
11511 * ABTS sent by initiator to exchange, need to do cleanup
11512 */
11513 /* Try to abort partially assembled seq */
11514 abts_par = lpfc_sli4_abort_partial_seq(vport, dmabuf);
11515
11516 /* Send abort to ULP if partially seq abort failed */
11517 if (abts_par == false)
11518 lpfc_sli4_send_seq_to_ulp(vport, dmabuf);
11519 else
11520 lpfc_in_buf_free(phba, &dmabuf->dbuf);
11521 }
11522 /* Send basic accept (BA_ACC) to the abort requester */
11523 lpfc_sli4_seq_abort_acc(phba, &fc_hdr);
11524 }
11525
11526 /**
11527 * lpfc_seq_complete - Indicates if a sequence is complete
11528 * @dmabuf: pointer to a dmabuf that describes the FC sequence
11529 *
11530 * This function checks the sequence, starting with the frame described by
11531 * @dmabuf, to see if all the frames associated with this sequence are present.
11532 * the frames associated with this sequence are linked to the @dmabuf using the
11533 * dbuf list. This function looks for two major things. 1) That the first frame
11534 * has a sequence count of zero. 2) There is a frame with last frame of sequence
11535 * set. 3) That there are no holes in the sequence count. The function will
11536 * return 1 when the sequence is complete, otherwise it will return 0.
11537 **/
11538 static int
11539 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
11540 {
11541 struct fc_frame_header *hdr;
11542 struct lpfc_dmabuf *d_buf;
11543 struct hbq_dmabuf *seq_dmabuf;
11544 uint32_t fctl;
11545 int seq_count = 0;
11546
11547 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
11548 /* make sure first fame of sequence has a sequence count of zero */
11549 if (hdr->fh_seq_cnt != seq_count)
11550 return 0;
11551 fctl = (hdr->fh_f_ctl[0] << 16 |
11552 hdr->fh_f_ctl[1] << 8 |
11553 hdr->fh_f_ctl[2]);
11554 /* If last frame of sequence we can return success. */
11555 if (fctl & FC_FC_END_SEQ)
11556 return 1;
11557 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
11558 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
11559 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
11560 /* If there is a hole in the sequence count then fail. */
11561 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
11562 return 0;
11563 fctl = (hdr->fh_f_ctl[0] << 16 |
11564 hdr->fh_f_ctl[1] << 8 |
11565 hdr->fh_f_ctl[2]);
11566 /* If last frame of sequence we can return success. */
11567 if (fctl & FC_FC_END_SEQ)
11568 return 1;
11569 }
11570 return 0;
11571 }
11572
11573 /**
11574 * lpfc_prep_seq - Prep sequence for ULP processing
11575 * @vport: Pointer to the vport on which this sequence was received
11576 * @dmabuf: pointer to a dmabuf that describes the FC sequence
11577 *
11578 * This function takes a sequence, described by a list of frames, and creates
11579 * a list of iocbq structures to describe the sequence. This iocbq list will be
11580 * used to issue to the generic unsolicited sequence handler. This routine
11581 * returns a pointer to the first iocbq in the list. If the function is unable
11582 * to allocate an iocbq then it throw out the received frames that were not
11583 * able to be described and return a pointer to the first iocbq. If unable to
11584 * allocate any iocbqs (including the first) this function will return NULL.
11585 **/
11586 static struct lpfc_iocbq *
11587 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
11588 {
11589 struct lpfc_dmabuf *d_buf, *n_buf;
11590 struct lpfc_iocbq *first_iocbq, *iocbq;
11591 struct fc_frame_header *fc_hdr;
11592 uint32_t sid;
11593 struct ulp_bde64 *pbde;
11594
11595 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
11596 /* remove from receive buffer list */
11597 list_del_init(&seq_dmabuf->hbuf.list);
11598 lpfc_update_rcv_time_stamp(vport);
11599 /* get the Remote Port's SID */
11600 sid = sli4_sid_from_fc_hdr(fc_hdr);
11601 /* Get an iocbq struct to fill in. */
11602 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
11603 if (first_iocbq) {
11604 /* Initialize the first IOCB. */
11605 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
11606 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
11607 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
11608 first_iocbq->iocb.ulpContext = be16_to_cpu(fc_hdr->fh_ox_id);
11609 first_iocbq->iocb.unsli3.rcvsli3.vpi =
11610 vport->vpi + vport->phba->vpi_base;
11611 /* put the first buffer into the first IOCBq */
11612 first_iocbq->context2 = &seq_dmabuf->dbuf;
11613 first_iocbq->context3 = NULL;
11614 first_iocbq->iocb.ulpBdeCount = 1;
11615 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
11616 LPFC_DATA_BUF_SIZE;
11617 first_iocbq->iocb.un.rcvels.remoteID = sid;
11618 first_iocbq->iocb.unsli3.rcvsli3.acc_len +=
11619 bf_get(lpfc_rcqe_length,
11620 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
11621 }
11622 iocbq = first_iocbq;
11623 /*
11624 * Each IOCBq can have two Buffers assigned, so go through the list
11625 * of buffers for this sequence and save two buffers in each IOCBq
11626 */
11627 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
11628 if (!iocbq) {
11629 lpfc_in_buf_free(vport->phba, d_buf);
11630 continue;
11631 }
11632 if (!iocbq->context3) {
11633 iocbq->context3 = d_buf;
11634 iocbq->iocb.ulpBdeCount++;
11635 pbde = (struct ulp_bde64 *)
11636 &iocbq->iocb.unsli3.sli3Words[4];
11637 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
11638 first_iocbq->iocb.unsli3.rcvsli3.acc_len +=
11639 bf_get(lpfc_rcqe_length,
11640 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
11641 } else {
11642 iocbq = lpfc_sli_get_iocbq(vport->phba);
11643 if (!iocbq) {
11644 if (first_iocbq) {
11645 first_iocbq->iocb.ulpStatus =
11646 IOSTAT_FCP_RSP_ERROR;
11647 first_iocbq->iocb.un.ulpWord[4] =
11648 IOERR_NO_RESOURCES;
11649 }
11650 lpfc_in_buf_free(vport->phba, d_buf);
11651 continue;
11652 }
11653 iocbq->context2 = d_buf;
11654 iocbq->context3 = NULL;
11655 iocbq->iocb.ulpBdeCount = 1;
11656 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
11657 LPFC_DATA_BUF_SIZE;
11658 first_iocbq->iocb.unsli3.rcvsli3.acc_len +=
11659 bf_get(lpfc_rcqe_length,
11660 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
11661 iocbq->iocb.un.rcvels.remoteID = sid;
11662 list_add_tail(&iocbq->list, &first_iocbq->list);
11663 }
11664 }
11665 return first_iocbq;
11666 }
11667
11668 static void
11669 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
11670 struct hbq_dmabuf *seq_dmabuf)
11671 {
11672 struct fc_frame_header *fc_hdr;
11673 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
11674 struct lpfc_hba *phba = vport->phba;
11675
11676 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
11677 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
11678 if (!iocbq) {
11679 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11680 "2707 Ring %d handler: Failed to allocate "
11681 "iocb Rctl x%x Type x%x received\n",
11682 LPFC_ELS_RING,
11683 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
11684 return;
11685 }
11686 if (!lpfc_complete_unsol_iocb(phba,
11687 &phba->sli.ring[LPFC_ELS_RING],
11688 iocbq, fc_hdr->fh_r_ctl,
11689 fc_hdr->fh_type))
11690 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11691 "2540 Ring %d handler: unexpected Rctl "
11692 "x%x Type x%x received\n",
11693 LPFC_ELS_RING,
11694 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
11695
11696 /* Free iocb created in lpfc_prep_seq */
11697 list_for_each_entry_safe(curr_iocb, next_iocb,
11698 &iocbq->list, list) {
11699 list_del_init(&curr_iocb->list);
11700 lpfc_sli_release_iocbq(phba, curr_iocb);
11701 }
11702 lpfc_sli_release_iocbq(phba, iocbq);
11703 }
11704
11705 /**
11706 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
11707 * @phba: Pointer to HBA context object.
11708 *
11709 * This function is called with no lock held. This function processes all
11710 * the received buffers and gives it to upper layers when a received buffer
11711 * indicates that it is the final frame in the sequence. The interrupt
11712 * service routine processes received buffers at interrupt contexts and adds
11713 * received dma buffers to the rb_pend_list queue and signals the worker thread.
11714 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
11715 * appropriate receive function when the final frame in a sequence is received.
11716 **/
11717 void
11718 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
11719 struct hbq_dmabuf *dmabuf)
11720 {
11721 struct hbq_dmabuf *seq_dmabuf;
11722 struct fc_frame_header *fc_hdr;
11723 struct lpfc_vport *vport;
11724 uint32_t fcfi;
11725
11726 /* Process each received buffer */
11727 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
11728 /* check to see if this a valid type of frame */
11729 if (lpfc_fc_frame_check(phba, fc_hdr)) {
11730 lpfc_in_buf_free(phba, &dmabuf->dbuf);
11731 return;
11732 }
11733 fcfi = bf_get(lpfc_rcqe_fcf_id, &dmabuf->cq_event.cqe.rcqe_cmpl);
11734 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi);
11735 if (!vport || !(vport->vpi_state & LPFC_VPI_REGISTERED)) {
11736 /* throw out the frame */
11737 lpfc_in_buf_free(phba, &dmabuf->dbuf);
11738 return;
11739 }
11740 /* Handle the basic abort sequence (BA_ABTS) event */
11741 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
11742 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
11743 return;
11744 }
11745
11746 /* Link this frame */
11747 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
11748 if (!seq_dmabuf) {
11749 /* unable to add frame to vport - throw it out */
11750 lpfc_in_buf_free(phba, &dmabuf->dbuf);
11751 return;
11752 }
11753 /* If not last frame in sequence continue processing frames. */
11754 if (!lpfc_seq_complete(seq_dmabuf))
11755 return;
11756
11757 /* Send the complete sequence to the upper layer protocol */
11758 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
11759 }
11760
11761 /**
11762 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
11763 * @phba: pointer to lpfc hba data structure.
11764 *
11765 * This routine is invoked to post rpi header templates to the
11766 * HBA consistent with the SLI-4 interface spec. This routine
11767 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
11768 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
11769 *
11770 * This routine does not require any locks. It's usage is expected
11771 * to be driver load or reset recovery when the driver is
11772 * sequential.
11773 *
11774 * Return codes
11775 * 0 - successful
11776 * -EIO - The mailbox failed to complete successfully.
11777 * When this error occurs, the driver is not guaranteed
11778 * to have any rpi regions posted to the device and
11779 * must either attempt to repost the regions or take a
11780 * fatal error.
11781 **/
11782 int
11783 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
11784 {
11785 struct lpfc_rpi_hdr *rpi_page;
11786 uint32_t rc = 0;
11787
11788 /* Post all rpi memory regions to the port. */
11789 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
11790 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
11791 if (rc != MBX_SUCCESS) {
11792 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11793 "2008 Error %d posting all rpi "
11794 "headers\n", rc);
11795 rc = -EIO;
11796 break;
11797 }
11798 }
11799
11800 return rc;
11801 }
11802
11803 /**
11804 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
11805 * @phba: pointer to lpfc hba data structure.
11806 * @rpi_page: pointer to the rpi memory region.
11807 *
11808 * This routine is invoked to post a single rpi header to the
11809 * HBA consistent with the SLI-4 interface spec. This memory region
11810 * maps up to 64 rpi context regions.
11811 *
11812 * Return codes
11813 * 0 - successful
11814 * -ENOMEM - No available memory
11815 * -EIO - The mailbox failed to complete successfully.
11816 **/
11817 int
11818 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
11819 {
11820 LPFC_MBOXQ_t *mboxq;
11821 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
11822 uint32_t rc = 0;
11823 uint32_t mbox_tmo;
11824 uint32_t shdr_status, shdr_add_status;
11825 union lpfc_sli4_cfg_shdr *shdr;
11826
11827 /* The port is notified of the header region via a mailbox command. */
11828 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11829 if (!mboxq) {
11830 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11831 "2001 Unable to allocate memory for issuing "
11832 "SLI_CONFIG_SPECIAL mailbox command\n");
11833 return -ENOMEM;
11834 }
11835
11836 /* Post all rpi memory regions to the port. */
11837 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
11838 mbox_tmo = lpfc_mbox_tmo_val(phba, MBX_SLI4_CONFIG);
11839 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
11840 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
11841 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
11842 sizeof(struct mbox_header), LPFC_SLI4_MBX_EMBED);
11843 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
11844 hdr_tmpl, rpi_page->page_count);
11845 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
11846 rpi_page->start_rpi);
11847 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
11848 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
11849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11850 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
11851 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11852 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11853 if (rc != MBX_TIMEOUT)
11854 mempool_free(mboxq, phba->mbox_mem_pool);
11855 if (shdr_status || shdr_add_status || rc) {
11856 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11857 "2514 POST_RPI_HDR mailbox failed with "
11858 "status x%x add_status x%x, mbx status x%x\n",
11859 shdr_status, shdr_add_status, rc);
11860 rc = -ENXIO;
11861 }
11862 return rc;
11863 }
11864
11865 /**
11866 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
11867 * @phba: pointer to lpfc hba data structure.
11868 *
11869 * This routine is invoked to post rpi header templates to the
11870 * HBA consistent with the SLI-4 interface spec. This routine
11871 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
11872 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
11873 *
11874 * Returns
11875 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
11876 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
11877 **/
11878 int
11879 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
11880 {
11881 int rpi;
11882 uint16_t max_rpi, rpi_base, rpi_limit;
11883 uint16_t rpi_remaining;
11884 struct lpfc_rpi_hdr *rpi_hdr;
11885
11886 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
11887 rpi_base = phba->sli4_hba.max_cfg_param.rpi_base;
11888 rpi_limit = phba->sli4_hba.next_rpi;
11889
11890 /*
11891 * The valid rpi range is not guaranteed to be zero-based. Start
11892 * the search at the rpi_base as reported by the port.
11893 */
11894 spin_lock_irq(&phba->hbalock);
11895 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, rpi_base);
11896 if (rpi >= rpi_limit || rpi < rpi_base)
11897 rpi = LPFC_RPI_ALLOC_ERROR;
11898 else {
11899 set_bit(rpi, phba->sli4_hba.rpi_bmask);
11900 phba->sli4_hba.max_cfg_param.rpi_used++;
11901 phba->sli4_hba.rpi_count++;
11902 }
11903
11904 /*
11905 * Don't try to allocate more rpi header regions if the device limit
11906 * on available rpis max has been exhausted.
11907 */
11908 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
11909 (phba->sli4_hba.rpi_count >= max_rpi)) {
11910 spin_unlock_irq(&phba->hbalock);
11911 return rpi;
11912 }
11913
11914 /*
11915 * If the driver is running low on rpi resources, allocate another
11916 * page now. Note that the next_rpi value is used because
11917 * it represents how many are actually in use whereas max_rpi notes
11918 * how many are supported max by the device.
11919 */
11920 rpi_remaining = phba->sli4_hba.next_rpi - rpi_base -
11921 phba->sli4_hba.rpi_count;
11922 spin_unlock_irq(&phba->hbalock);
11923 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
11924 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
11925 if (!rpi_hdr) {
11926 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11927 "2002 Error Could not grow rpi "
11928 "count\n");
11929 } else {
11930 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
11931 }
11932 }
11933
11934 return rpi;
11935 }
11936
11937 /**
11938 * lpfc_sli4_free_rpi - Release an rpi for reuse.
11939 * @phba: pointer to lpfc hba data structure.
11940 *
11941 * This routine is invoked to release an rpi to the pool of
11942 * available rpis maintained by the driver.
11943 **/
11944 void
11945 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
11946 {
11947 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
11948 phba->sli4_hba.rpi_count--;
11949 phba->sli4_hba.max_cfg_param.rpi_used--;
11950 }
11951 }
11952
11953 /**
11954 * lpfc_sli4_free_rpi - Release an rpi for reuse.
11955 * @phba: pointer to lpfc hba data structure.
11956 *
11957 * This routine is invoked to release an rpi to the pool of
11958 * available rpis maintained by the driver.
11959 **/
11960 void
11961 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
11962 {
11963 spin_lock_irq(&phba->hbalock);
11964 __lpfc_sli4_free_rpi(phba, rpi);
11965 spin_unlock_irq(&phba->hbalock);
11966 }
11967
11968 /**
11969 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
11970 * @phba: pointer to lpfc hba data structure.
11971 *
11972 * This routine is invoked to remove the memory region that
11973 * provided rpi via a bitmask.
11974 **/
11975 void
11976 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
11977 {
11978 kfree(phba->sli4_hba.rpi_bmask);
11979 }
11980
11981 /**
11982 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
11983 * @phba: pointer to lpfc hba data structure.
11984 *
11985 * This routine is invoked to remove the memory region that
11986 * provided rpi via a bitmask.
11987 **/
11988 int
11989 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp)
11990 {
11991 LPFC_MBOXQ_t *mboxq;
11992 struct lpfc_hba *phba = ndlp->phba;
11993 int rc;
11994
11995 /* The port is notified of the header region via a mailbox command. */
11996 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11997 if (!mboxq)
11998 return -ENOMEM;
11999
12000 /* Post all rpi memory regions to the port. */
12001 lpfc_resume_rpi(mboxq, ndlp);
12002 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
12003 if (rc == MBX_NOT_FINISHED) {
12004 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12005 "2010 Resume RPI Mailbox failed "
12006 "status %d, mbxStatus x%x\n", rc,
12007 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
12008 mempool_free(mboxq, phba->mbox_mem_pool);
12009 return -EIO;
12010 }
12011 return 0;
12012 }
12013
12014 /**
12015 * lpfc_sli4_init_vpi - Initialize a vpi with the port
12016 * @phba: pointer to lpfc hba data structure.
12017 * @vpi: vpi value to activate with the port.
12018 *
12019 * This routine is invoked to activate a vpi with the
12020 * port when the host intends to use vports with a
12021 * nonzero vpi.
12022 *
12023 * Returns:
12024 * 0 success
12025 * -Evalue otherwise
12026 **/
12027 int
12028 lpfc_sli4_init_vpi(struct lpfc_hba *phba, uint16_t vpi)
12029 {
12030 LPFC_MBOXQ_t *mboxq;
12031 int rc = 0;
12032 int retval = MBX_SUCCESS;
12033 uint32_t mbox_tmo;
12034
12035 if (vpi == 0)
12036 return -EINVAL;
12037 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12038 if (!mboxq)
12039 return -ENOMEM;
12040 lpfc_init_vpi(phba, mboxq, vpi);
12041 mbox_tmo = lpfc_mbox_tmo_val(phba, MBX_INIT_VPI);
12042 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
12043 if (rc != MBX_SUCCESS) {
12044 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12045 "2022 INIT VPI Mailbox failed "
12046 "status %d, mbxStatus x%x\n", rc,
12047 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
12048 retval = -EIO;
12049 }
12050 if (rc != MBX_TIMEOUT)
12051 mempool_free(mboxq, phba->mbox_mem_pool);
12052
12053 return retval;
12054 }
12055
12056 /**
12057 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
12058 * @phba: pointer to lpfc hba data structure.
12059 * @mboxq: Pointer to mailbox object.
12060 *
12061 * This routine is invoked to manually add a single FCF record. The caller
12062 * must pass a completely initialized FCF_Record. This routine takes
12063 * care of the nonembedded mailbox operations.
12064 **/
12065 static void
12066 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
12067 {
12068 void *virt_addr;
12069 union lpfc_sli4_cfg_shdr *shdr;
12070 uint32_t shdr_status, shdr_add_status;
12071
12072 virt_addr = mboxq->sge_array->addr[0];
12073 /* The IOCTL status is embedded in the mailbox subheader. */
12074 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
12075 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12076 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12077
12078 if ((shdr_status || shdr_add_status) &&
12079 (shdr_status != STATUS_FCF_IN_USE))
12080 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12081 "2558 ADD_FCF_RECORD mailbox failed with "
12082 "status x%x add_status x%x\n",
12083 shdr_status, shdr_add_status);
12084
12085 lpfc_sli4_mbox_cmd_free(phba, mboxq);
12086 }
12087
12088 /**
12089 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
12090 * @phba: pointer to lpfc hba data structure.
12091 * @fcf_record: pointer to the initialized fcf record to add.
12092 *
12093 * This routine is invoked to manually add a single FCF record. The caller
12094 * must pass a completely initialized FCF_Record. This routine takes
12095 * care of the nonembedded mailbox operations.
12096 **/
12097 int
12098 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
12099 {
12100 int rc = 0;
12101 LPFC_MBOXQ_t *mboxq;
12102 uint8_t *bytep;
12103 void *virt_addr;
12104 dma_addr_t phys_addr;
12105 struct lpfc_mbx_sge sge;
12106 uint32_t alloc_len, req_len;
12107 uint32_t fcfindex;
12108
12109 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12110 if (!mboxq) {
12111 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12112 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
12113 return -ENOMEM;
12114 }
12115
12116 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
12117 sizeof(uint32_t);
12118
12119 /* Allocate DMA memory and set up the non-embedded mailbox command */
12120 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
12121 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
12122 req_len, LPFC_SLI4_MBX_NEMBED);
12123 if (alloc_len < req_len) {
12124 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12125 "2523 Allocated DMA memory size (x%x) is "
12126 "less than the requested DMA memory "
12127 "size (x%x)\n", alloc_len, req_len);
12128 lpfc_sli4_mbox_cmd_free(phba, mboxq);
12129 return -ENOMEM;
12130 }
12131
12132 /*
12133 * Get the first SGE entry from the non-embedded DMA memory. This
12134 * routine only uses a single SGE.
12135 */
12136 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
12137 phys_addr = getPaddr(sge.pa_hi, sge.pa_lo);
12138 virt_addr = mboxq->sge_array->addr[0];
12139 /*
12140 * Configure the FCF record for FCFI 0. This is the driver's
12141 * hardcoded default and gets used in nonFIP mode.
12142 */
12143 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
12144 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
12145 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
12146
12147 /*
12148 * Copy the fcf_index and the FCF Record Data. The data starts after
12149 * the FCoE header plus word10. The data copy needs to be endian
12150 * correct.
12151 */
12152 bytep += sizeof(uint32_t);
12153 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
12154 mboxq->vport = phba->pport;
12155 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
12156 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
12157 if (rc == MBX_NOT_FINISHED) {
12158 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12159 "2515 ADD_FCF_RECORD mailbox failed with "
12160 "status 0x%x\n", rc);
12161 lpfc_sli4_mbox_cmd_free(phba, mboxq);
12162 rc = -EIO;
12163 } else
12164 rc = 0;
12165
12166 return rc;
12167 }
12168
12169 /**
12170 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
12171 * @phba: pointer to lpfc hba data structure.
12172 * @fcf_record: pointer to the fcf record to write the default data.
12173 * @fcf_index: FCF table entry index.
12174 *
12175 * This routine is invoked to build the driver's default FCF record. The
12176 * values used are hardcoded. This routine handles memory initialization.
12177 *
12178 **/
12179 void
12180 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
12181 struct fcf_record *fcf_record,
12182 uint16_t fcf_index)
12183 {
12184 memset(fcf_record, 0, sizeof(struct fcf_record));
12185 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
12186 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
12187 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
12188 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
12189 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
12190 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
12191 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
12192 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
12193 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
12194 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
12195 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
12196 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
12197 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
12198 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
12199 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
12200 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
12201 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
12202 /* Set the VLAN bit map */
12203 if (phba->valid_vlan) {
12204 fcf_record->vlan_bitmap[phba->vlan_id / 8]
12205 = 1 << (phba->vlan_id % 8);
12206 }
12207 }
12208
12209 /**
12210 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
12211 * @phba: pointer to lpfc hba data structure.
12212 * @fcf_index: FCF table entry offset.
12213 *
12214 * This routine is invoked to scan the entire FCF table by reading FCF
12215 * record and processing it one at a time starting from the @fcf_index
12216 * for initial FCF discovery or fast FCF failover rediscovery.
12217 *
12218 * Return 0 if the mailbox command is submitted sucessfully, none 0
12219 * otherwise.
12220 **/
12221 int
12222 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
12223 {
12224 int rc = 0, error;
12225 LPFC_MBOXQ_t *mboxq;
12226
12227 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
12228 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12229 if (!mboxq) {
12230 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12231 "2000 Failed to allocate mbox for "
12232 "READ_FCF cmd\n");
12233 error = -ENOMEM;
12234 goto fail_fcf_scan;
12235 }
12236 /* Construct the read FCF record mailbox command */
12237 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
12238 if (rc) {
12239 error = -EINVAL;
12240 goto fail_fcf_scan;
12241 }
12242 /* Issue the mailbox command asynchronously */
12243 mboxq->vport = phba->pport;
12244 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
12245 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
12246 if (rc == MBX_NOT_FINISHED)
12247 error = -EIO;
12248 else {
12249 spin_lock_irq(&phba->hbalock);
12250 phba->hba_flag |= FCF_DISC_INPROGRESS;
12251 spin_unlock_irq(&phba->hbalock);
12252 /* Reset eligible FCF count for new scan */
12253 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
12254 phba->fcf.eligible_fcf_cnt = 0;
12255 error = 0;
12256 }
12257 fail_fcf_scan:
12258 if (error) {
12259 if (mboxq)
12260 lpfc_sli4_mbox_cmd_free(phba, mboxq);
12261 /* FCF scan failed, clear FCF_DISC_INPROGRESS flag */
12262 spin_lock_irq(&phba->hbalock);
12263 phba->hba_flag &= ~FCF_DISC_INPROGRESS;
12264 spin_unlock_irq(&phba->hbalock);
12265 }
12266 return error;
12267 }
12268
12269 /**
12270 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for round robin fcf.
12271 * @phba: pointer to lpfc hba data structure.
12272 * @fcf_index: FCF table entry offset.
12273 *
12274 * This routine is invoked to read an FCF record indicated by @fcf_index
12275 * and to use it for FLOGI round robin FCF failover.
12276 *
12277 * Return 0 if the mailbox command is submitted sucessfully, none 0
12278 * otherwise.
12279 **/
12280 int
12281 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
12282 {
12283 int rc = 0, error;
12284 LPFC_MBOXQ_t *mboxq;
12285
12286 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12287 if (!mboxq) {
12288 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
12289 "2763 Failed to allocate mbox for "
12290 "READ_FCF cmd\n");
12291 error = -ENOMEM;
12292 goto fail_fcf_read;
12293 }
12294 /* Construct the read FCF record mailbox command */
12295 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
12296 if (rc) {
12297 error = -EINVAL;
12298 goto fail_fcf_read;
12299 }
12300 /* Issue the mailbox command asynchronously */
12301 mboxq->vport = phba->pport;
12302 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
12303 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
12304 if (rc == MBX_NOT_FINISHED)
12305 error = -EIO;
12306 else
12307 error = 0;
12308
12309 fail_fcf_read:
12310 if (error && mboxq)
12311 lpfc_sli4_mbox_cmd_free(phba, mboxq);
12312 return error;
12313 }
12314
12315 /**
12316 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
12317 * @phba: pointer to lpfc hba data structure.
12318 * @fcf_index: FCF table entry offset.
12319 *
12320 * This routine is invoked to read an FCF record indicated by @fcf_index to
12321 * determine whether it's eligible for FLOGI round robin failover list.
12322 *
12323 * Return 0 if the mailbox command is submitted sucessfully, none 0
12324 * otherwise.
12325 **/
12326 int
12327 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
12328 {
12329 int rc = 0, error;
12330 LPFC_MBOXQ_t *mboxq;
12331
12332 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12333 if (!mboxq) {
12334 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
12335 "2758 Failed to allocate mbox for "
12336 "READ_FCF cmd\n");
12337 error = -ENOMEM;
12338 goto fail_fcf_read;
12339 }
12340 /* Construct the read FCF record mailbox command */
12341 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
12342 if (rc) {
12343 error = -EINVAL;
12344 goto fail_fcf_read;
12345 }
12346 /* Issue the mailbox command asynchronously */
12347 mboxq->vport = phba->pport;
12348 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
12349 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
12350 if (rc == MBX_NOT_FINISHED)
12351 error = -EIO;
12352 else
12353 error = 0;
12354
12355 fail_fcf_read:
12356 if (error && mboxq)
12357 lpfc_sli4_mbox_cmd_free(phba, mboxq);
12358 return error;
12359 }
12360
12361 /**
12362 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
12363 * @phba: pointer to lpfc hba data structure.
12364 *
12365 * This routine is to get the next eligible FCF record index in a round
12366 * robin fashion. If the next eligible FCF record index equals to the
12367 * initial round robin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
12368 * shall be returned, otherwise, the next eligible FCF record's index
12369 * shall be returned.
12370 **/
12371 uint16_t
12372 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
12373 {
12374 uint16_t next_fcf_index;
12375
12376 /* Search start from next bit of currently registered FCF index */
12377 next_fcf_index = (phba->fcf.current_rec.fcf_indx + 1) %
12378 LPFC_SLI4_FCF_TBL_INDX_MAX;
12379 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
12380 LPFC_SLI4_FCF_TBL_INDX_MAX,
12381 next_fcf_index);
12382
12383 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
12384 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
12385 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
12386 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
12387
12388 /* Check roundrobin failover list empty condition */
12389 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
12390 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
12391 "2844 No roundrobin failover FCF available\n");
12392 return LPFC_FCOE_FCF_NEXT_NONE;
12393 }
12394
12395 /* Check roundrobin failover index bmask stop condition */
12396 if (next_fcf_index == phba->fcf.fcf_rr_init_indx) {
12397 if (!(phba->fcf.fcf_flag & FCF_REDISC_RRU)) {
12398 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
12399 "2847 Round robin failover FCF index "
12400 "search hit stop condition:x%x\n",
12401 next_fcf_index);
12402 return LPFC_FCOE_FCF_NEXT_NONE;
12403 }
12404 /* The roundrobin failover index bmask updated, start over */
12405 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
12406 "2848 Round robin failover FCF index bmask "
12407 "updated, start over\n");
12408 spin_lock_irq(&phba->hbalock);
12409 phba->fcf.fcf_flag &= ~FCF_REDISC_RRU;
12410 spin_unlock_irq(&phba->hbalock);
12411 return phba->fcf.fcf_rr_init_indx;
12412 }
12413
12414 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
12415 "2845 Get next round robin failover "
12416 "FCF index x%x\n", next_fcf_index);
12417 return next_fcf_index;
12418 }
12419
12420 /**
12421 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
12422 * @phba: pointer to lpfc hba data structure.
12423 *
12424 * This routine sets the FCF record index in to the eligible bmask for
12425 * round robin failover search. It checks to make sure that the index
12426 * does not go beyond the range of the driver allocated bmask dimension
12427 * before setting the bit.
12428 *
12429 * Returns 0 if the index bit successfully set, otherwise, it returns
12430 * -EINVAL.
12431 **/
12432 int
12433 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
12434 {
12435 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
12436 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
12437 "2610 HBA FCF index reached driver's "
12438 "book keeping dimension: fcf_index:%d, "
12439 "driver_bmask_max:%d\n",
12440 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
12441 return -EINVAL;
12442 }
12443 /* Set the eligible FCF record index bmask */
12444 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
12445
12446 /* Set the roundrobin index bmask updated */
12447 spin_lock_irq(&phba->hbalock);
12448 phba->fcf.fcf_flag |= FCF_REDISC_RRU;
12449 spin_unlock_irq(&phba->hbalock);
12450
12451 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
12452 "2790 Set FCF index x%x to round robin failover "
12453 "bmask\n", fcf_index);
12454
12455 return 0;
12456 }
12457
12458 /**
12459 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
12460 * @phba: pointer to lpfc hba data structure.
12461 *
12462 * This routine clears the FCF record index from the eligible bmask for
12463 * round robin failover search. It checks to make sure that the index
12464 * does not go beyond the range of the driver allocated bmask dimension
12465 * before clearing the bit.
12466 **/
12467 void
12468 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
12469 {
12470 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
12471 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
12472 "2762 HBA FCF index goes beyond driver's "
12473 "book keeping dimension: fcf_index:%d, "
12474 "driver_bmask_max:%d\n",
12475 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
12476 return;
12477 }
12478 /* Clear the eligible FCF record index bmask */
12479 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
12480
12481 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
12482 "2791 Clear FCF index x%x from round robin failover "
12483 "bmask\n", fcf_index);
12484 }
12485
12486 /**
12487 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
12488 * @phba: pointer to lpfc hba data structure.
12489 *
12490 * This routine is the completion routine for the rediscover FCF table mailbox
12491 * command. If the mailbox command returned failure, it will try to stop the
12492 * FCF rediscover wait timer.
12493 **/
12494 void
12495 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
12496 {
12497 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
12498 uint32_t shdr_status, shdr_add_status;
12499
12500 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
12501
12502 shdr_status = bf_get(lpfc_mbox_hdr_status,
12503 &redisc_fcf->header.cfg_shdr.response);
12504 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
12505 &redisc_fcf->header.cfg_shdr.response);
12506 if (shdr_status || shdr_add_status) {
12507 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
12508 "2746 Requesting for FCF rediscovery failed "
12509 "status x%x add_status x%x\n",
12510 shdr_status, shdr_add_status);
12511 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
12512 spin_lock_irq(&phba->hbalock);
12513 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
12514 spin_unlock_irq(&phba->hbalock);
12515 /*
12516 * CVL event triggered FCF rediscover request failed,
12517 * last resort to re-try current registered FCF entry.
12518 */
12519 lpfc_retry_pport_discovery(phba);
12520 } else {
12521 spin_lock_irq(&phba->hbalock);
12522 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
12523 spin_unlock_irq(&phba->hbalock);
12524 /*
12525 * DEAD FCF event triggered FCF rediscover request
12526 * failed, last resort to fail over as a link down
12527 * to FCF registration.
12528 */
12529 lpfc_sli4_fcf_dead_failthrough(phba);
12530 }
12531 } else {
12532 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
12533 "2775 Start FCF rediscovery quiescent period "
12534 "wait timer before scaning FCF table\n");
12535 /*
12536 * Start FCF rediscovery wait timer for pending FCF
12537 * before rescan FCF record table.
12538 */
12539 lpfc_fcf_redisc_wait_start_timer(phba);
12540 }
12541
12542 mempool_free(mbox, phba->mbox_mem_pool);
12543 }
12544
12545 /**
12546 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
12547 * @phba: pointer to lpfc hba data structure.
12548 *
12549 * This routine is invoked to request for rediscovery of the entire FCF table
12550 * by the port.
12551 **/
12552 int
12553 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
12554 {
12555 LPFC_MBOXQ_t *mbox;
12556 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
12557 int rc, length;
12558
12559 /* Cancel retry delay timers to all vports before FCF rediscover */
12560 lpfc_cancel_all_vport_retry_delay_timer(phba);
12561
12562 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12563 if (!mbox) {
12564 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12565 "2745 Failed to allocate mbox for "
12566 "requesting FCF rediscover.\n");
12567 return -ENOMEM;
12568 }
12569
12570 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
12571 sizeof(struct lpfc_sli4_cfg_mhdr));
12572 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
12573 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
12574 length, LPFC_SLI4_MBX_EMBED);
12575
12576 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
12577 /* Set count to 0 for invalidating the entire FCF database */
12578 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
12579
12580 /* Issue the mailbox command asynchronously */
12581 mbox->vport = phba->pport;
12582 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
12583 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
12584
12585 if (rc == MBX_NOT_FINISHED) {
12586 mempool_free(mbox, phba->mbox_mem_pool);
12587 return -EIO;
12588 }
12589 return 0;
12590 }
12591
12592 /**
12593 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
12594 * @phba: pointer to lpfc hba data structure.
12595 *
12596 * This function is the failover routine as a last resort to the FCF DEAD
12597 * event when driver failed to perform fast FCF failover.
12598 **/
12599 void
12600 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
12601 {
12602 uint32_t link_state;
12603
12604 /*
12605 * Last resort as FCF DEAD event failover will treat this as
12606 * a link down, but save the link state because we don't want
12607 * it to be changed to Link Down unless it is already down.
12608 */
12609 link_state = phba->link_state;
12610 lpfc_linkdown(phba);
12611 phba->link_state = link_state;
12612
12613 /* Unregister FCF if no devices connected to it */
12614 lpfc_unregister_unused_fcf(phba);
12615 }
12616
12617 /**
12618 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
12619 * @phba: pointer to lpfc hba data structure.
12620 *
12621 * This function read region 23 and parse TLV for port status to
12622 * decide if the user disaled the port. If the TLV indicates the
12623 * port is disabled, the hba_flag is set accordingly.
12624 **/
12625 void
12626 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
12627 {
12628 LPFC_MBOXQ_t *pmb = NULL;
12629 MAILBOX_t *mb;
12630 uint8_t *rgn23_data = NULL;
12631 uint32_t offset = 0, data_size, sub_tlv_len, tlv_offset;
12632 int rc;
12633
12634 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12635 if (!pmb) {
12636 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12637 "2600 lpfc_sli_read_serdes_param failed to"
12638 " allocate mailbox memory\n");
12639 goto out;
12640 }
12641 mb = &pmb->u.mb;
12642
12643 /* Get adapter Region 23 data */
12644 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
12645 if (!rgn23_data)
12646 goto out;
12647
12648 do {
12649 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
12650 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12651
12652 if (rc != MBX_SUCCESS) {
12653 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12654 "2601 lpfc_sli_read_link_ste failed to"
12655 " read config region 23 rc 0x%x Status 0x%x\n",
12656 rc, mb->mbxStatus);
12657 mb->un.varDmp.word_cnt = 0;
12658 }
12659 /*
12660 * dump mem may return a zero when finished or we got a
12661 * mailbox error, either way we are done.
12662 */
12663 if (mb->un.varDmp.word_cnt == 0)
12664 break;
12665 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
12666 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
12667
12668 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
12669 rgn23_data + offset,
12670 mb->un.varDmp.word_cnt);
12671 offset += mb->un.varDmp.word_cnt;
12672 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
12673
12674 data_size = offset;
12675 offset = 0;
12676
12677 if (!data_size)
12678 goto out;
12679
12680 /* Check the region signature first */
12681 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
12682 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12683 "2619 Config region 23 has bad signature\n");
12684 goto out;
12685 }
12686 offset += 4;
12687
12688 /* Check the data structure version */
12689 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
12690 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12691 "2620 Config region 23 has bad version\n");
12692 goto out;
12693 }
12694 offset += 4;
12695
12696 /* Parse TLV entries in the region */
12697 while (offset < data_size) {
12698 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
12699 break;
12700 /*
12701 * If the TLV is not driver specific TLV or driver id is
12702 * not linux driver id, skip the record.
12703 */
12704 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
12705 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
12706 (rgn23_data[offset + 3] != 0)) {
12707 offset += rgn23_data[offset + 1] * 4 + 4;
12708 continue;
12709 }
12710
12711 /* Driver found a driver specific TLV in the config region */
12712 sub_tlv_len = rgn23_data[offset + 1] * 4;
12713 offset += 4;
12714 tlv_offset = 0;
12715
12716 /*
12717 * Search for configured port state sub-TLV.
12718 */
12719 while ((offset < data_size) &&
12720 (tlv_offset < sub_tlv_len)) {
12721 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
12722 offset += 4;
12723 tlv_offset += 4;
12724 break;
12725 }
12726 if (rgn23_data[offset] != PORT_STE_TYPE) {
12727 offset += rgn23_data[offset + 1] * 4 + 4;
12728 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
12729 continue;
12730 }
12731
12732 /* This HBA contains PORT_STE configured */
12733 if (!rgn23_data[offset + 2])
12734 phba->hba_flag |= LINK_DISABLED;
12735
12736 goto out;
12737 }
12738 }
12739 out:
12740 if (pmb)
12741 mempool_free(pmb, phba->mbox_mem_pool);
12742 kfree(rgn23_data);
12743 return;
12744 }
12745
12746 /**
12747 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
12748 * @vport: pointer to vport data structure.
12749 *
12750 * This function iterate through the mailboxq and clean up all REG_LOGIN
12751 * and REG_VPI mailbox commands associated with the vport. This function
12752 * is called when driver want to restart discovery of the vport due to
12753 * a Clear Virtual Link event.
12754 **/
12755 void
12756 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
12757 {
12758 struct lpfc_hba *phba = vport->phba;
12759 LPFC_MBOXQ_t *mb, *nextmb;
12760 struct lpfc_dmabuf *mp;
12761 struct lpfc_nodelist *ndlp;
12762 struct lpfc_nodelist *act_mbx_ndlp = NULL;
12763 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
12764 LIST_HEAD(mbox_cmd_list);
12765
12766 /* Clean up internally queued mailbox commands with the vport */
12767 spin_lock_irq(&phba->hbalock);
12768 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
12769 if (mb->vport != vport)
12770 continue;
12771
12772 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
12773 (mb->u.mb.mbxCommand != MBX_REG_VPI))
12774 continue;
12775
12776 list_del(&mb->list);
12777 list_add_tail(&mb->list, &mbox_cmd_list);
12778 }
12779 /* Clean up active mailbox command with the vport */
12780 mb = phba->sli.mbox_active;
12781 if (mb && (mb->vport == vport)) {
12782 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
12783 (mb->u.mb.mbxCommand == MBX_REG_VPI))
12784 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12785 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
12786 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
12787 /* Put reference count for delayed processing */
12788 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
12789 /* Unregister the RPI when mailbox complete */
12790 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
12791 }
12792 }
12793 spin_unlock_irq(&phba->hbalock);
12794
12795 /* Release the cleaned-up mailbox commands */
12796 while (!list_empty(&mbox_cmd_list)) {
12797 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
12798 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
12799 if (phba->sli_rev == LPFC_SLI_REV4)
12800 __lpfc_sli4_free_rpi(phba,
12801 mb->u.mb.un.varRegLogin.rpi);
12802 mp = (struct lpfc_dmabuf *) (mb->context1);
12803 if (mp) {
12804 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
12805 kfree(mp);
12806 }
12807 ndlp = (struct lpfc_nodelist *) mb->context2;
12808 mb->context2 = NULL;
12809 if (ndlp) {
12810 spin_lock(shost->host_lock);
12811 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
12812 spin_unlock(shost->host_lock);
12813 lpfc_nlp_put(ndlp);
12814 }
12815 }
12816 mempool_free(mb, phba->mbox_mem_pool);
12817 }
12818
12819 /* Release the ndlp with the cleaned-up active mailbox command */
12820 if (act_mbx_ndlp) {
12821 spin_lock(shost->host_lock);
12822 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
12823 spin_unlock(shost->host_lock);
12824 lpfc_nlp_put(act_mbx_ndlp);
12825 }
12826 }
12827
12828 /**
12829 * lpfc_drain_txq - Drain the txq
12830 * @phba: Pointer to HBA context object.
12831 *
12832 * This function attempt to submit IOCBs on the txq
12833 * to the adapter. For SLI4 adapters, the txq contains
12834 * ELS IOCBs that have been deferred because the there
12835 * are no SGLs. This congestion can occur with large
12836 * vport counts during node discovery.
12837 **/
12838
12839 uint32_t
12840 lpfc_drain_txq(struct lpfc_hba *phba)
12841 {
12842 LIST_HEAD(completions);
12843 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
12844 struct lpfc_iocbq *piocbq = 0;
12845 unsigned long iflags = 0;
12846 char *fail_msg = NULL;
12847 struct lpfc_sglq *sglq;
12848 union lpfc_wqe wqe;
12849
12850 spin_lock_irqsave(&phba->hbalock, iflags);
12851 if (pring->txq_cnt > pring->txq_max)
12852 pring->txq_max = pring->txq_cnt;
12853
12854 spin_unlock_irqrestore(&phba->hbalock, iflags);
12855
12856 while (pring->txq_cnt) {
12857 spin_lock_irqsave(&phba->hbalock, iflags);
12858
12859 sglq = __lpfc_sli_get_sglq(phba);
12860 if (!sglq) {
12861 spin_unlock_irqrestore(&phba->hbalock, iflags);
12862 break;
12863 } else {
12864 piocbq = lpfc_sli_ringtx_get(phba, pring);
12865 if (!piocbq) {
12866 /* The txq_cnt out of sync. This should
12867 * never happen
12868 */
12869 sglq = __lpfc_clear_active_sglq(phba,
12870 sglq->sli4_xritag);
12871 spin_unlock_irqrestore(&phba->hbalock, iflags);
12872 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12873 "2823 txq empty and txq_cnt is %d\n ",
12874 pring->txq_cnt);
12875 break;
12876 }
12877 }
12878
12879 /* The xri and iocb resources secured,
12880 * attempt to issue request
12881 */
12882 piocbq->sli4_xritag = sglq->sli4_xritag;
12883 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
12884 fail_msg = "to convert bpl to sgl";
12885 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
12886 fail_msg = "to convert iocb to wqe";
12887 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe))
12888 fail_msg = " - Wq is full";
12889 else
12890 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
12891
12892 if (fail_msg) {
12893 /* Failed means we can't issue and need to cancel */
12894 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12895 "2822 IOCB failed %s iotag 0x%x "
12896 "xri 0x%x\n",
12897 fail_msg,
12898 piocbq->iotag, piocbq->sli4_xritag);
12899 list_add_tail(&piocbq->list, &completions);
12900 }
12901 spin_unlock_irqrestore(&phba->hbalock, iflags);
12902 }
12903
12904 /* Cancel all the IOCBs that cannot be issued */
12905 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
12906 IOERR_SLI_ABORTED);
12907
12908 return pring->txq_cnt;
12909 }