]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/megaraid/megaraid_sas.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.03.10-rc5
14 *
15 * Authors:
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
20 *
21 * List of supported controllers
22 *
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
38 #include <linux/fs.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
48
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(MEGASAS_VERSION);
51 MODULE_AUTHOR("megaraidlinux@lsi.com");
52 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
53
54 /*
55 * PCI ID table for all supported controllers
56 */
57 static struct pci_device_id megasas_pci_table[] = {
58
59 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
60 /* xscale IOP */
61 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
62 /* ppc IOP */
63 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
64 /* xscale IOP, vega */
65 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
66 /* xscale IOP */
67 {}
68 };
69
70 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72 static int megasas_mgmt_majorno;
73 static struct megasas_mgmt_info megasas_mgmt_info;
74 static struct fasync_struct *megasas_async_queue;
75 static DEFINE_MUTEX(megasas_async_queue_mutex);
76
77 static u32 megasas_dbg_lvl;
78
79 /**
80 * megasas_get_cmd - Get a command from the free pool
81 * @instance: Adapter soft state
82 *
83 * Returns a free command from the pool
84 */
85 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
86 *instance)
87 {
88 unsigned long flags;
89 struct megasas_cmd *cmd = NULL;
90
91 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
92
93 if (!list_empty(&instance->cmd_pool)) {
94 cmd = list_entry((&instance->cmd_pool)->next,
95 struct megasas_cmd, list);
96 list_del_init(&cmd->list);
97 } else {
98 printk(KERN_ERR "megasas: Command pool empty!\n");
99 }
100
101 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
102 return cmd;
103 }
104
105 /**
106 * megasas_return_cmd - Return a cmd to free command pool
107 * @instance: Adapter soft state
108 * @cmd: Command packet to be returned to free command pool
109 */
110 static inline void
111 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
112 {
113 unsigned long flags;
114
115 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
116
117 cmd->scmd = NULL;
118 list_add_tail(&cmd->list, &instance->cmd_pool);
119
120 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
121 }
122
123
124 /**
125 * The following functions are defined for xscale
126 * (deviceid : 1064R, PERC5) controllers
127 */
128
129 /**
130 * megasas_enable_intr_xscale - Enables interrupts
131 * @regs: MFI register set
132 */
133 static inline void
134 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
135 {
136 writel(1, &(regs)->outbound_intr_mask);
137
138 /* Dummy readl to force pci flush */
139 readl(&regs->outbound_intr_mask);
140 }
141
142 /**
143 * megasas_disable_intr_xscale -Disables interrupt
144 * @regs: MFI register set
145 */
146 static inline void
147 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
148 {
149 u32 mask = 0x1f;
150 writel(mask, &regs->outbound_intr_mask);
151 /* Dummy readl to force pci flush */
152 readl(&regs->outbound_intr_mask);
153 }
154
155 /**
156 * megasas_read_fw_status_reg_xscale - returns the current FW status value
157 * @regs: MFI register set
158 */
159 static u32
160 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
161 {
162 return readl(&(regs)->outbound_msg_0);
163 }
164 /**
165 * megasas_clear_interrupt_xscale - Check & clear interrupt
166 * @regs: MFI register set
167 */
168 static int
169 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
170 {
171 u32 status;
172 /*
173 * Check if it is our interrupt
174 */
175 status = readl(&regs->outbound_intr_status);
176
177 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
178 return 1;
179 }
180
181 /*
182 * Clear the interrupt by writing back the same value
183 */
184 writel(status, &regs->outbound_intr_status);
185
186 return 0;
187 }
188
189 /**
190 * megasas_fire_cmd_xscale - Sends command to the FW
191 * @frame_phys_addr : Physical address of cmd
192 * @frame_count : Number of frames for the command
193 * @regs : MFI register set
194 */
195 static inline void
196 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
197 {
198 writel((frame_phys_addr >> 3)|(frame_count),
199 &(regs)->inbound_queue_port);
200 }
201
202 static struct megasas_instance_template megasas_instance_template_xscale = {
203
204 .fire_cmd = megasas_fire_cmd_xscale,
205 .enable_intr = megasas_enable_intr_xscale,
206 .disable_intr = megasas_disable_intr_xscale,
207 .clear_intr = megasas_clear_intr_xscale,
208 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
209 };
210
211 /**
212 * This is the end of set of functions & definitions specific
213 * to xscale (deviceid : 1064R, PERC5) controllers
214 */
215
216 /**
217 * The following functions are defined for ppc (deviceid : 0x60)
218 * controllers
219 */
220
221 /**
222 * megasas_enable_intr_ppc - Enables interrupts
223 * @regs: MFI register set
224 */
225 static inline void
226 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
227 {
228 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
229
230 writel(~0x80000004, &(regs)->outbound_intr_mask);
231
232 /* Dummy readl to force pci flush */
233 readl(&regs->outbound_intr_mask);
234 }
235
236 /**
237 * megasas_disable_intr_ppc - Disable interrupt
238 * @regs: MFI register set
239 */
240 static inline void
241 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
242 {
243 u32 mask = 0xFFFFFFFF;
244 writel(mask, &regs->outbound_intr_mask);
245 /* Dummy readl to force pci flush */
246 readl(&regs->outbound_intr_mask);
247 }
248
249 /**
250 * megasas_read_fw_status_reg_ppc - returns the current FW status value
251 * @regs: MFI register set
252 */
253 static u32
254 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
255 {
256 return readl(&(regs)->outbound_scratch_pad);
257 }
258
259 /**
260 * megasas_clear_interrupt_ppc - Check & clear interrupt
261 * @regs: MFI register set
262 */
263 static int
264 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
265 {
266 u32 status;
267 /*
268 * Check if it is our interrupt
269 */
270 status = readl(&regs->outbound_intr_status);
271
272 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
273 return 1;
274 }
275
276 /*
277 * Clear the interrupt by writing back the same value
278 */
279 writel(status, &regs->outbound_doorbell_clear);
280
281 return 0;
282 }
283 /**
284 * megasas_fire_cmd_ppc - Sends command to the FW
285 * @frame_phys_addr : Physical address of cmd
286 * @frame_count : Number of frames for the command
287 * @regs : MFI register set
288 */
289 static inline void
290 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
291 {
292 writel((frame_phys_addr | (frame_count<<1))|1,
293 &(regs)->inbound_queue_port);
294 }
295
296 static struct megasas_instance_template megasas_instance_template_ppc = {
297
298 .fire_cmd = megasas_fire_cmd_ppc,
299 .enable_intr = megasas_enable_intr_ppc,
300 .disable_intr = megasas_disable_intr_ppc,
301 .clear_intr = megasas_clear_intr_ppc,
302 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
303 };
304
305 /**
306 * This is the end of set of functions & definitions
307 * specific to ppc (deviceid : 0x60) controllers
308 */
309
310 /**
311 * megasas_issue_polled - Issues a polling command
312 * @instance: Adapter soft state
313 * @cmd: Command packet to be issued
314 *
315 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
316 */
317 static int
318 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
319 {
320 int i;
321 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
322
323 struct megasas_header *frame_hdr = &cmd->frame->hdr;
324
325 frame_hdr->cmd_status = 0xFF;
326 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
327
328 /*
329 * Issue the frame using inbound queue port
330 */
331 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
332
333 /*
334 * Wait for cmd_status to change
335 */
336 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
337 rmb();
338 msleep(1);
339 }
340
341 if (frame_hdr->cmd_status == 0xff)
342 return -ETIME;
343
344 return 0;
345 }
346
347 /**
348 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
349 * @instance: Adapter soft state
350 * @cmd: Command to be issued
351 *
352 * This function waits on an event for the command to be returned from ISR.
353 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
354 * Used to issue ioctl commands.
355 */
356 static int
357 megasas_issue_blocked_cmd(struct megasas_instance *instance,
358 struct megasas_cmd *cmd)
359 {
360 cmd->cmd_status = ENODATA;
361
362 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
363
364 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
365 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
366
367 return 0;
368 }
369
370 /**
371 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
372 * @instance: Adapter soft state
373 * @cmd_to_abort: Previously issued cmd to be aborted
374 *
375 * MFI firmware can abort previously issued AEN comamnd (automatic event
376 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
377 * cmd and waits for return status.
378 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
379 */
380 static int
381 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
382 struct megasas_cmd *cmd_to_abort)
383 {
384 struct megasas_cmd *cmd;
385 struct megasas_abort_frame *abort_fr;
386
387 cmd = megasas_get_cmd(instance);
388
389 if (!cmd)
390 return -1;
391
392 abort_fr = &cmd->frame->abort;
393
394 /*
395 * Prepare and issue the abort frame
396 */
397 abort_fr->cmd = MFI_CMD_ABORT;
398 abort_fr->cmd_status = 0xFF;
399 abort_fr->flags = 0;
400 abort_fr->abort_context = cmd_to_abort->index;
401 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
402 abort_fr->abort_mfi_phys_addr_hi = 0;
403
404 cmd->sync_cmd = 1;
405 cmd->cmd_status = 0xFF;
406
407 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
408
409 /*
410 * Wait for this cmd to complete
411 */
412 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
413 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
414
415 megasas_return_cmd(instance, cmd);
416 return 0;
417 }
418
419 /**
420 * megasas_make_sgl32 - Prepares 32-bit SGL
421 * @instance: Adapter soft state
422 * @scp: SCSI command from the mid-layer
423 * @mfi_sgl: SGL to be filled in
424 *
425 * If successful, this function returns the number of SG elements. Otherwise,
426 * it returnes -1.
427 */
428 static int
429 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
430 union megasas_sgl *mfi_sgl)
431 {
432 int i;
433 int sge_count;
434 struct scatterlist *os_sgl;
435
436 sge_count = scsi_dma_map(scp);
437 BUG_ON(sge_count < 0);
438
439 if (sge_count) {
440 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
441 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
442 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
443 }
444 }
445 return sge_count;
446 }
447
448 /**
449 * megasas_make_sgl64 - Prepares 64-bit SGL
450 * @instance: Adapter soft state
451 * @scp: SCSI command from the mid-layer
452 * @mfi_sgl: SGL to be filled in
453 *
454 * If successful, this function returns the number of SG elements. Otherwise,
455 * it returnes -1.
456 */
457 static int
458 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
459 union megasas_sgl *mfi_sgl)
460 {
461 int i;
462 int sge_count;
463 struct scatterlist *os_sgl;
464
465 sge_count = scsi_dma_map(scp);
466 BUG_ON(sge_count < 0);
467
468 if (sge_count) {
469 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
470 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
471 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
472 }
473 }
474 return sge_count;
475 }
476
477 /**
478 * megasas_get_frame_count - Computes the number of frames
479 * @sge_count : number of sg elements
480 *
481 * Returns the number of frames required for numnber of sge's (sge_count)
482 */
483
484 static u32 megasas_get_frame_count(u8 sge_count)
485 {
486 int num_cnt;
487 int sge_bytes;
488 u32 sge_sz;
489 u32 frame_count=0;
490
491 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
492 sizeof(struct megasas_sge32);
493
494 /*
495 * Main frame can contain 2 SGEs for 64-bit SGLs and
496 * 3 SGEs for 32-bit SGLs
497 */
498 if (IS_DMA64)
499 num_cnt = sge_count - 2;
500 else
501 num_cnt = sge_count - 3;
502
503 if(num_cnt>0){
504 sge_bytes = sge_sz * num_cnt;
505
506 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
507 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
508 }
509 /* Main frame */
510 frame_count +=1;
511
512 if (frame_count > 7)
513 frame_count = 8;
514 return frame_count;
515 }
516
517 /**
518 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
519 * @instance: Adapter soft state
520 * @scp: SCSI command
521 * @cmd: Command to be prepared in
522 *
523 * This function prepares CDB commands. These are typcially pass-through
524 * commands to the devices.
525 */
526 static int
527 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
528 struct megasas_cmd *cmd)
529 {
530 u32 is_logical;
531 u32 device_id;
532 u16 flags = 0;
533 struct megasas_pthru_frame *pthru;
534
535 is_logical = MEGASAS_IS_LOGICAL(scp);
536 device_id = MEGASAS_DEV_INDEX(instance, scp);
537 pthru = (struct megasas_pthru_frame *)cmd->frame;
538
539 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
540 flags = MFI_FRAME_DIR_WRITE;
541 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
542 flags = MFI_FRAME_DIR_READ;
543 else if (scp->sc_data_direction == PCI_DMA_NONE)
544 flags = MFI_FRAME_DIR_NONE;
545
546 /*
547 * Prepare the DCDB frame
548 */
549 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
550 pthru->cmd_status = 0x0;
551 pthru->scsi_status = 0x0;
552 pthru->target_id = device_id;
553 pthru->lun = scp->device->lun;
554 pthru->cdb_len = scp->cmd_len;
555 pthru->timeout = 0;
556 pthru->flags = flags;
557 pthru->data_xfer_len = scsi_bufflen(scp);
558
559 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
560
561 /*
562 * Construct SGL
563 */
564 if (IS_DMA64) {
565 pthru->flags |= MFI_FRAME_SGL64;
566 pthru->sge_count = megasas_make_sgl64(instance, scp,
567 &pthru->sgl);
568 } else
569 pthru->sge_count = megasas_make_sgl32(instance, scp,
570 &pthru->sgl);
571
572 /*
573 * Sense info specific
574 */
575 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
576 pthru->sense_buf_phys_addr_hi = 0;
577 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
578
579 /*
580 * Compute the total number of frames this command consumes. FW uses
581 * this number to pull sufficient number of frames from host memory.
582 */
583 cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
584
585 return cmd->frame_count;
586 }
587
588 /**
589 * megasas_build_ldio - Prepares IOs to logical devices
590 * @instance: Adapter soft state
591 * @scp: SCSI command
592 * @cmd: Command to to be prepared
593 *
594 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
595 */
596 static int
597 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
598 struct megasas_cmd *cmd)
599 {
600 u32 device_id;
601 u8 sc = scp->cmnd[0];
602 u16 flags = 0;
603 struct megasas_io_frame *ldio;
604
605 device_id = MEGASAS_DEV_INDEX(instance, scp);
606 ldio = (struct megasas_io_frame *)cmd->frame;
607
608 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
609 flags = MFI_FRAME_DIR_WRITE;
610 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
611 flags = MFI_FRAME_DIR_READ;
612
613 /*
614 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
615 */
616 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
617 ldio->cmd_status = 0x0;
618 ldio->scsi_status = 0x0;
619 ldio->target_id = device_id;
620 ldio->timeout = 0;
621 ldio->reserved_0 = 0;
622 ldio->pad_0 = 0;
623 ldio->flags = flags;
624 ldio->start_lba_hi = 0;
625 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
626
627 /*
628 * 6-byte READ(0x08) or WRITE(0x0A) cdb
629 */
630 if (scp->cmd_len == 6) {
631 ldio->lba_count = (u32) scp->cmnd[4];
632 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
633 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
634
635 ldio->start_lba_lo &= 0x1FFFFF;
636 }
637
638 /*
639 * 10-byte READ(0x28) or WRITE(0x2A) cdb
640 */
641 else if (scp->cmd_len == 10) {
642 ldio->lba_count = (u32) scp->cmnd[8] |
643 ((u32) scp->cmnd[7] << 8);
644 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
645 ((u32) scp->cmnd[3] << 16) |
646 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
647 }
648
649 /*
650 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
651 */
652 else if (scp->cmd_len == 12) {
653 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
654 ((u32) scp->cmnd[7] << 16) |
655 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
656
657 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
658 ((u32) scp->cmnd[3] << 16) |
659 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
660 }
661
662 /*
663 * 16-byte READ(0x88) or WRITE(0x8A) cdb
664 */
665 else if (scp->cmd_len == 16) {
666 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
667 ((u32) scp->cmnd[11] << 16) |
668 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
669
670 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
671 ((u32) scp->cmnd[7] << 16) |
672 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
673
674 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
675 ((u32) scp->cmnd[3] << 16) |
676 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
677
678 }
679
680 /*
681 * Construct SGL
682 */
683 if (IS_DMA64) {
684 ldio->flags |= MFI_FRAME_SGL64;
685 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
686 } else
687 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
688
689 /*
690 * Sense info specific
691 */
692 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
693 ldio->sense_buf_phys_addr_hi = 0;
694 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
695
696 /*
697 * Compute the total number of frames this command consumes. FW uses
698 * this number to pull sufficient number of frames from host memory.
699 */
700 cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
701
702 return cmd->frame_count;
703 }
704
705 /**
706 * megasas_is_ldio - Checks if the cmd is for logical drive
707 * @scmd: SCSI command
708 *
709 * Called by megasas_queue_command to find out if the command to be queued
710 * is a logical drive command
711 */
712 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
713 {
714 if (!MEGASAS_IS_LOGICAL(cmd))
715 return 0;
716 switch (cmd->cmnd[0]) {
717 case READ_10:
718 case WRITE_10:
719 case READ_12:
720 case WRITE_12:
721 case READ_6:
722 case WRITE_6:
723 case READ_16:
724 case WRITE_16:
725 return 1;
726 default:
727 return 0;
728 }
729 }
730
731 /**
732 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
733 * in FW
734 * @instance: Adapter soft state
735 */
736 static inline void
737 megasas_dump_pending_frames(struct megasas_instance *instance)
738 {
739 struct megasas_cmd *cmd;
740 int i,n;
741 union megasas_sgl *mfi_sgl;
742 struct megasas_io_frame *ldio;
743 struct megasas_pthru_frame *pthru;
744 u32 sgcount;
745 u32 max_cmd = instance->max_fw_cmds;
746
747 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
748 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
749 if (IS_DMA64)
750 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
751 else
752 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
753
754 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
755 for (i = 0; i < max_cmd; i++) {
756 cmd = instance->cmd_list[i];
757 if(!cmd->scmd)
758 continue;
759 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
760 if (megasas_is_ldio(cmd->scmd)){
761 ldio = (struct megasas_io_frame *)cmd->frame;
762 mfi_sgl = &ldio->sgl;
763 sgcount = ldio->sge_count;
764 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
765 }
766 else {
767 pthru = (struct megasas_pthru_frame *) cmd->frame;
768 mfi_sgl = &pthru->sgl;
769 sgcount = pthru->sge_count;
770 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
771 }
772 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
773 for (n = 0; n < sgcount; n++){
774 if (IS_DMA64)
775 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
776 else
777 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
778 }
779 }
780 printk(KERN_ERR "\n");
781 } /*for max_cmd*/
782 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
783 for (i = 0; i < max_cmd; i++) {
784
785 cmd = instance->cmd_list[i];
786
787 if(cmd->sync_cmd == 1){
788 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
789 }
790 }
791 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
792 }
793
794 /**
795 * megasas_queue_command - Queue entry point
796 * @scmd: SCSI command to be queued
797 * @done: Callback entry point
798 */
799 static int
800 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
801 {
802 u32 frame_count;
803 struct megasas_cmd *cmd;
804 struct megasas_instance *instance;
805
806 instance = (struct megasas_instance *)
807 scmd->device->host->hostdata;
808
809 /* Don't process if we have already declared adapter dead */
810 if (instance->hw_crit_error)
811 return SCSI_MLQUEUE_HOST_BUSY;
812
813 scmd->scsi_done = done;
814 scmd->result = 0;
815
816 if (MEGASAS_IS_LOGICAL(scmd) &&
817 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
818 scmd->result = DID_BAD_TARGET << 16;
819 goto out_done;
820 }
821
822 switch (scmd->cmnd[0]) {
823 case SYNCHRONIZE_CACHE:
824 /*
825 * FW takes care of flush cache on its own
826 * No need to send it down
827 */
828 scmd->result = DID_OK << 16;
829 goto out_done;
830 default:
831 break;
832 }
833
834 cmd = megasas_get_cmd(instance);
835 if (!cmd)
836 return SCSI_MLQUEUE_HOST_BUSY;
837
838 /*
839 * Logical drive command
840 */
841 if (megasas_is_ldio(scmd))
842 frame_count = megasas_build_ldio(instance, scmd, cmd);
843 else
844 frame_count = megasas_build_dcdb(instance, scmd, cmd);
845
846 if (!frame_count)
847 goto out_return_cmd;
848
849 cmd->scmd = scmd;
850 scmd->SCp.ptr = (char *)cmd;
851
852 /*
853 * Issue the command to the FW
854 */
855 atomic_inc(&instance->fw_outstanding);
856
857 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
858
859 return 0;
860
861 out_return_cmd:
862 megasas_return_cmd(instance, cmd);
863 out_done:
864 done(scmd);
865 return 0;
866 }
867
868 static int megasas_slave_configure(struct scsi_device *sdev)
869 {
870 /*
871 * Don't export physical disk devices to the disk driver.
872 *
873 * FIXME: Currently we don't export them to the midlayer at all.
874 * That will be fixed once LSI engineers have audited the
875 * firmware for possible issues.
876 */
877 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
878 return -ENXIO;
879
880 /*
881 * The RAID firmware may require extended timeouts.
882 */
883 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
884 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
885 return 0;
886 }
887
888 /**
889 * megasas_wait_for_outstanding - Wait for all outstanding cmds
890 * @instance: Adapter soft state
891 *
892 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
893 * complete all its outstanding commands. Returns error if one or more IOs
894 * are pending after this time period. It also marks the controller dead.
895 */
896 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
897 {
898 int i;
899 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
900
901 for (i = 0; i < wait_time; i++) {
902
903 int outstanding = atomic_read(&instance->fw_outstanding);
904
905 if (!outstanding)
906 break;
907
908 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
909 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
910 "commands to complete\n",i,outstanding);
911 }
912
913 msleep(1000);
914 }
915
916 if (atomic_read(&instance->fw_outstanding)) {
917 /*
918 * Send signal to FW to stop processing any pending cmds.
919 * The controller will be taken offline by the OS now.
920 */
921 writel(MFI_STOP_ADP,
922 &instance->reg_set->inbound_doorbell);
923 megasas_dump_pending_frames(instance);
924 instance->hw_crit_error = 1;
925 return FAILED;
926 }
927
928 return SUCCESS;
929 }
930
931 /**
932 * megasas_generic_reset - Generic reset routine
933 * @scmd: Mid-layer SCSI command
934 *
935 * This routine implements a generic reset handler for device, bus and host
936 * reset requests. Device, bus and host specific reset handlers can use this
937 * function after they do their specific tasks.
938 */
939 static int megasas_generic_reset(struct scsi_cmnd *scmd)
940 {
941 int ret_val;
942 struct megasas_instance *instance;
943
944 instance = (struct megasas_instance *)scmd->device->host->hostdata;
945
946 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
947 scmd->serial_number, scmd->cmnd[0], scmd->retries);
948
949 if (instance->hw_crit_error) {
950 printk(KERN_ERR "megasas: cannot recover from previous reset "
951 "failures\n");
952 return FAILED;
953 }
954
955 ret_val = megasas_wait_for_outstanding(instance);
956 if (ret_val == SUCCESS)
957 printk(KERN_NOTICE "megasas: reset successful \n");
958 else
959 printk(KERN_ERR "megasas: failed to do reset\n");
960
961 return ret_val;
962 }
963
964 /**
965 * megasas_reset_timer - quiesce the adapter if required
966 * @scmd: scsi cmnd
967 *
968 * Sets the FW busy flag and reduces the host->can_queue if the
969 * cmd has not been completed within the timeout period.
970 */
971 static enum
972 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
973 {
974 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
975 struct megasas_instance *instance;
976 unsigned long flags;
977
978 if (time_after(jiffies, scmd->jiffies_at_alloc +
979 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
980 return EH_NOT_HANDLED;
981 }
982
983 instance = cmd->instance;
984 if (!(instance->flag & MEGASAS_FW_BUSY)) {
985 /* FW is busy, throttle IO */
986 spin_lock_irqsave(instance->host->host_lock, flags);
987
988 instance->host->can_queue = 16;
989 instance->last_time = jiffies;
990 instance->flag |= MEGASAS_FW_BUSY;
991
992 spin_unlock_irqrestore(instance->host->host_lock, flags);
993 }
994 return EH_RESET_TIMER;
995 }
996
997 /**
998 * megasas_reset_device - Device reset handler entry point
999 */
1000 static int megasas_reset_device(struct scsi_cmnd *scmd)
1001 {
1002 int ret;
1003
1004 /*
1005 * First wait for all commands to complete
1006 */
1007 ret = megasas_generic_reset(scmd);
1008
1009 return ret;
1010 }
1011
1012 /**
1013 * megasas_reset_bus_host - Bus & host reset handler entry point
1014 */
1015 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1016 {
1017 int ret;
1018
1019 /*
1020 * First wait for all commands to complete
1021 */
1022 ret = megasas_generic_reset(scmd);
1023
1024 return ret;
1025 }
1026
1027 /**
1028 * megasas_bios_param - Returns disk geometry for a disk
1029 * @sdev: device handle
1030 * @bdev: block device
1031 * @capacity: drive capacity
1032 * @geom: geometry parameters
1033 */
1034 static int
1035 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1036 sector_t capacity, int geom[])
1037 {
1038 int heads;
1039 int sectors;
1040 sector_t cylinders;
1041 unsigned long tmp;
1042 /* Default heads (64) & sectors (32) */
1043 heads = 64;
1044 sectors = 32;
1045
1046 tmp = heads * sectors;
1047 cylinders = capacity;
1048
1049 sector_div(cylinders, tmp);
1050
1051 /*
1052 * Handle extended translation size for logical drives > 1Gb
1053 */
1054
1055 if (capacity >= 0x200000) {
1056 heads = 255;
1057 sectors = 63;
1058 tmp = heads*sectors;
1059 cylinders = capacity;
1060 sector_div(cylinders, tmp);
1061 }
1062
1063 geom[0] = heads;
1064 geom[1] = sectors;
1065 geom[2] = cylinders;
1066
1067 return 0;
1068 }
1069
1070 /**
1071 * megasas_service_aen - Processes an event notification
1072 * @instance: Adapter soft state
1073 * @cmd: AEN command completed by the ISR
1074 *
1075 * For AEN, driver sends a command down to FW that is held by the FW till an
1076 * event occurs. When an event of interest occurs, FW completes the command
1077 * that it was previously holding.
1078 *
1079 * This routines sends SIGIO signal to processes that have registered with the
1080 * driver for AEN.
1081 */
1082 static void
1083 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1084 {
1085 /*
1086 * Don't signal app if it is just an aborted previously registered aen
1087 */
1088 if (!cmd->abort_aen)
1089 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1090 else
1091 cmd->abort_aen = 0;
1092
1093 instance->aen_cmd = NULL;
1094 megasas_return_cmd(instance, cmd);
1095 }
1096
1097 /*
1098 * Scsi host template for megaraid_sas driver
1099 */
1100 static struct scsi_host_template megasas_template = {
1101
1102 .module = THIS_MODULE,
1103 .name = "LSI Logic SAS based MegaRAID driver",
1104 .proc_name = "megaraid_sas",
1105 .slave_configure = megasas_slave_configure,
1106 .queuecommand = megasas_queue_command,
1107 .eh_device_reset_handler = megasas_reset_device,
1108 .eh_bus_reset_handler = megasas_reset_bus_host,
1109 .eh_host_reset_handler = megasas_reset_bus_host,
1110 .eh_timed_out = megasas_reset_timer,
1111 .bios_param = megasas_bios_param,
1112 .use_clustering = ENABLE_CLUSTERING,
1113 .use_sg_chaining = ENABLE_SG_CHAINING,
1114 };
1115
1116 /**
1117 * megasas_complete_int_cmd - Completes an internal command
1118 * @instance: Adapter soft state
1119 * @cmd: Command to be completed
1120 *
1121 * The megasas_issue_blocked_cmd() function waits for a command to complete
1122 * after it issues a command. This function wakes up that waiting routine by
1123 * calling wake_up() on the wait queue.
1124 */
1125 static void
1126 megasas_complete_int_cmd(struct megasas_instance *instance,
1127 struct megasas_cmd *cmd)
1128 {
1129 cmd->cmd_status = cmd->frame->io.cmd_status;
1130
1131 if (cmd->cmd_status == ENODATA) {
1132 cmd->cmd_status = 0;
1133 }
1134 wake_up(&instance->int_cmd_wait_q);
1135 }
1136
1137 /**
1138 * megasas_complete_abort - Completes aborting a command
1139 * @instance: Adapter soft state
1140 * @cmd: Cmd that was issued to abort another cmd
1141 *
1142 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1143 * after it issues an abort on a previously issued command. This function
1144 * wakes up all functions waiting on the same wait queue.
1145 */
1146 static void
1147 megasas_complete_abort(struct megasas_instance *instance,
1148 struct megasas_cmd *cmd)
1149 {
1150 if (cmd->sync_cmd) {
1151 cmd->sync_cmd = 0;
1152 cmd->cmd_status = 0;
1153 wake_up(&instance->abort_cmd_wait_q);
1154 }
1155
1156 return;
1157 }
1158
1159 /**
1160 * megasas_complete_cmd - Completes a command
1161 * @instance: Adapter soft state
1162 * @cmd: Command to be completed
1163 * @alt_status: If non-zero, use this value as status to
1164 * SCSI mid-layer instead of the value returned
1165 * by the FW. This should be used if caller wants
1166 * an alternate status (as in the case of aborted
1167 * commands)
1168 */
1169 static void
1170 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1171 u8 alt_status)
1172 {
1173 int exception = 0;
1174 struct megasas_header *hdr = &cmd->frame->hdr;
1175
1176 if (cmd->scmd)
1177 cmd->scmd->SCp.ptr = NULL;
1178
1179 switch (hdr->cmd) {
1180
1181 case MFI_CMD_PD_SCSI_IO:
1182 case MFI_CMD_LD_SCSI_IO:
1183
1184 /*
1185 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1186 * issued either through an IO path or an IOCTL path. If it
1187 * was via IOCTL, we will send it to internal completion.
1188 */
1189 if (cmd->sync_cmd) {
1190 cmd->sync_cmd = 0;
1191 megasas_complete_int_cmd(instance, cmd);
1192 break;
1193 }
1194
1195 case MFI_CMD_LD_READ:
1196 case MFI_CMD_LD_WRITE:
1197
1198 if (alt_status) {
1199 cmd->scmd->result = alt_status << 16;
1200 exception = 1;
1201 }
1202
1203 if (exception) {
1204
1205 atomic_dec(&instance->fw_outstanding);
1206
1207 scsi_dma_unmap(cmd->scmd);
1208 cmd->scmd->scsi_done(cmd->scmd);
1209 megasas_return_cmd(instance, cmd);
1210
1211 break;
1212 }
1213
1214 switch (hdr->cmd_status) {
1215
1216 case MFI_STAT_OK:
1217 cmd->scmd->result = DID_OK << 16;
1218 break;
1219
1220 case MFI_STAT_SCSI_IO_FAILED:
1221 case MFI_STAT_LD_INIT_IN_PROGRESS:
1222 cmd->scmd->result =
1223 (DID_ERROR << 16) | hdr->scsi_status;
1224 break;
1225
1226 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1227
1228 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1229
1230 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1231 memset(cmd->scmd->sense_buffer, 0,
1232 SCSI_SENSE_BUFFERSIZE);
1233 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1234 hdr->sense_len);
1235
1236 cmd->scmd->result |= DRIVER_SENSE << 24;
1237 }
1238
1239 break;
1240
1241 case MFI_STAT_LD_OFFLINE:
1242 case MFI_STAT_DEVICE_NOT_FOUND:
1243 cmd->scmd->result = DID_BAD_TARGET << 16;
1244 break;
1245
1246 default:
1247 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1248 hdr->cmd_status);
1249 cmd->scmd->result = DID_ERROR << 16;
1250 break;
1251 }
1252
1253 atomic_dec(&instance->fw_outstanding);
1254
1255 scsi_dma_unmap(cmd->scmd);
1256 cmd->scmd->scsi_done(cmd->scmd);
1257 megasas_return_cmd(instance, cmd);
1258
1259 break;
1260
1261 case MFI_CMD_SMP:
1262 case MFI_CMD_STP:
1263 case MFI_CMD_DCMD:
1264
1265 /*
1266 * See if got an event notification
1267 */
1268 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1269 megasas_service_aen(instance, cmd);
1270 else
1271 megasas_complete_int_cmd(instance, cmd);
1272
1273 break;
1274
1275 case MFI_CMD_ABORT:
1276 /*
1277 * Cmd issued to abort another cmd returned
1278 */
1279 megasas_complete_abort(instance, cmd);
1280 break;
1281
1282 default:
1283 printk("megasas: Unknown command completed! [0x%X]\n",
1284 hdr->cmd);
1285 break;
1286 }
1287 }
1288
1289 /**
1290 * megasas_deplete_reply_queue - Processes all completed commands
1291 * @instance: Adapter soft state
1292 * @alt_status: Alternate status to be returned to
1293 * SCSI mid-layer instead of the status
1294 * returned by the FW
1295 */
1296 static int
1297 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1298 {
1299 /*
1300 * Check if it is our interrupt
1301 * Clear the interrupt
1302 */
1303 if(instance->instancet->clear_intr(instance->reg_set))
1304 return IRQ_NONE;
1305
1306 if (instance->hw_crit_error)
1307 goto out_done;
1308 /*
1309 * Schedule the tasklet for cmd completion
1310 */
1311 tasklet_schedule(&instance->isr_tasklet);
1312 out_done:
1313 return IRQ_HANDLED;
1314 }
1315
1316 /**
1317 * megasas_isr - isr entry point
1318 */
1319 static irqreturn_t megasas_isr(int irq, void *devp)
1320 {
1321 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1322 DID_OK);
1323 }
1324
1325 /**
1326 * megasas_transition_to_ready - Move the FW to READY state
1327 * @instance: Adapter soft state
1328 *
1329 * During the initialization, FW passes can potentially be in any one of
1330 * several possible states. If the FW in operational, waiting-for-handshake
1331 * states, driver must take steps to bring it to ready state. Otherwise, it
1332 * has to wait for the ready state.
1333 */
1334 static int
1335 megasas_transition_to_ready(struct megasas_instance* instance)
1336 {
1337 int i;
1338 u8 max_wait;
1339 u32 fw_state;
1340 u32 cur_state;
1341
1342 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1343
1344 if (fw_state != MFI_STATE_READY)
1345 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1346 " state\n");
1347
1348 while (fw_state != MFI_STATE_READY) {
1349
1350 switch (fw_state) {
1351
1352 case MFI_STATE_FAULT:
1353
1354 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1355 return -ENODEV;
1356
1357 case MFI_STATE_WAIT_HANDSHAKE:
1358 /*
1359 * Set the CLR bit in inbound doorbell
1360 */
1361 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1362 &instance->reg_set->inbound_doorbell);
1363
1364 max_wait = 2;
1365 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1366 break;
1367
1368 case MFI_STATE_BOOT_MESSAGE_PENDING:
1369 writel(MFI_INIT_HOTPLUG,
1370 &instance->reg_set->inbound_doorbell);
1371
1372 max_wait = 10;
1373 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1374 break;
1375
1376 case MFI_STATE_OPERATIONAL:
1377 /*
1378 * Bring it to READY state; assuming max wait 10 secs
1379 */
1380 instance->instancet->disable_intr(instance->reg_set);
1381 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1382
1383 max_wait = 10;
1384 cur_state = MFI_STATE_OPERATIONAL;
1385 break;
1386
1387 case MFI_STATE_UNDEFINED:
1388 /*
1389 * This state should not last for more than 2 seconds
1390 */
1391 max_wait = 2;
1392 cur_state = MFI_STATE_UNDEFINED;
1393 break;
1394
1395 case MFI_STATE_BB_INIT:
1396 max_wait = 2;
1397 cur_state = MFI_STATE_BB_INIT;
1398 break;
1399
1400 case MFI_STATE_FW_INIT:
1401 max_wait = 20;
1402 cur_state = MFI_STATE_FW_INIT;
1403 break;
1404
1405 case MFI_STATE_FW_INIT_2:
1406 max_wait = 20;
1407 cur_state = MFI_STATE_FW_INIT_2;
1408 break;
1409
1410 case MFI_STATE_DEVICE_SCAN:
1411 max_wait = 20;
1412 cur_state = MFI_STATE_DEVICE_SCAN;
1413 break;
1414
1415 case MFI_STATE_FLUSH_CACHE:
1416 max_wait = 20;
1417 cur_state = MFI_STATE_FLUSH_CACHE;
1418 break;
1419
1420 default:
1421 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1422 fw_state);
1423 return -ENODEV;
1424 }
1425
1426 /*
1427 * The cur_state should not last for more than max_wait secs
1428 */
1429 for (i = 0; i < (max_wait * 1000); i++) {
1430 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1431 MFI_STATE_MASK ;
1432
1433 if (fw_state == cur_state) {
1434 msleep(1);
1435 } else
1436 break;
1437 }
1438
1439 /*
1440 * Return error if fw_state hasn't changed after max_wait
1441 */
1442 if (fw_state == cur_state) {
1443 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1444 "in %d secs\n", fw_state, max_wait);
1445 return -ENODEV;
1446 }
1447 };
1448 printk(KERN_INFO "megasas: FW now in Ready state\n");
1449
1450 return 0;
1451 }
1452
1453 /**
1454 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1455 * @instance: Adapter soft state
1456 */
1457 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1458 {
1459 int i;
1460 u32 max_cmd = instance->max_fw_cmds;
1461 struct megasas_cmd *cmd;
1462
1463 if (!instance->frame_dma_pool)
1464 return;
1465
1466 /*
1467 * Return all frames to pool
1468 */
1469 for (i = 0; i < max_cmd; i++) {
1470
1471 cmd = instance->cmd_list[i];
1472
1473 if (cmd->frame)
1474 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1475 cmd->frame_phys_addr);
1476
1477 if (cmd->sense)
1478 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1479 cmd->sense_phys_addr);
1480 }
1481
1482 /*
1483 * Now destroy the pool itself
1484 */
1485 pci_pool_destroy(instance->frame_dma_pool);
1486 pci_pool_destroy(instance->sense_dma_pool);
1487
1488 instance->frame_dma_pool = NULL;
1489 instance->sense_dma_pool = NULL;
1490 }
1491
1492 /**
1493 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1494 * @instance: Adapter soft state
1495 *
1496 * Each command packet has an embedded DMA memory buffer that is used for
1497 * filling MFI frame and the SG list that immediately follows the frame. This
1498 * function creates those DMA memory buffers for each command packet by using
1499 * PCI pool facility.
1500 */
1501 static int megasas_create_frame_pool(struct megasas_instance *instance)
1502 {
1503 int i;
1504 u32 max_cmd;
1505 u32 sge_sz;
1506 u32 sgl_sz;
1507 u32 total_sz;
1508 u32 frame_count;
1509 struct megasas_cmd *cmd;
1510
1511 max_cmd = instance->max_fw_cmds;
1512
1513 /*
1514 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1515 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1516 */
1517 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1518 sizeof(struct megasas_sge32);
1519
1520 /*
1521 * Calculated the number of 64byte frames required for SGL
1522 */
1523 sgl_sz = sge_sz * instance->max_num_sge;
1524 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1525
1526 /*
1527 * We need one extra frame for the MFI command
1528 */
1529 frame_count++;
1530
1531 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1532 /*
1533 * Use DMA pool facility provided by PCI layer
1534 */
1535 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1536 instance->pdev, total_sz, 64,
1537 0);
1538
1539 if (!instance->frame_dma_pool) {
1540 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1541 return -ENOMEM;
1542 }
1543
1544 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1545 instance->pdev, 128, 4, 0);
1546
1547 if (!instance->sense_dma_pool) {
1548 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1549
1550 pci_pool_destroy(instance->frame_dma_pool);
1551 instance->frame_dma_pool = NULL;
1552
1553 return -ENOMEM;
1554 }
1555
1556 /*
1557 * Allocate and attach a frame to each of the commands in cmd_list.
1558 * By making cmd->index as the context instead of the &cmd, we can
1559 * always use 32bit context regardless of the architecture
1560 */
1561 for (i = 0; i < max_cmd; i++) {
1562
1563 cmd = instance->cmd_list[i];
1564
1565 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1566 GFP_KERNEL, &cmd->frame_phys_addr);
1567
1568 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1569 GFP_KERNEL, &cmd->sense_phys_addr);
1570
1571 /*
1572 * megasas_teardown_frame_pool() takes care of freeing
1573 * whatever has been allocated
1574 */
1575 if (!cmd->frame || !cmd->sense) {
1576 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1577 megasas_teardown_frame_pool(instance);
1578 return -ENOMEM;
1579 }
1580
1581 cmd->frame->io.context = cmd->index;
1582 }
1583
1584 return 0;
1585 }
1586
1587 /**
1588 * megasas_free_cmds - Free all the cmds in the free cmd pool
1589 * @instance: Adapter soft state
1590 */
1591 static void megasas_free_cmds(struct megasas_instance *instance)
1592 {
1593 int i;
1594 /* First free the MFI frame pool */
1595 megasas_teardown_frame_pool(instance);
1596
1597 /* Free all the commands in the cmd_list */
1598 for (i = 0; i < instance->max_fw_cmds; i++)
1599 kfree(instance->cmd_list[i]);
1600
1601 /* Free the cmd_list buffer itself */
1602 kfree(instance->cmd_list);
1603 instance->cmd_list = NULL;
1604
1605 INIT_LIST_HEAD(&instance->cmd_pool);
1606 }
1607
1608 /**
1609 * megasas_alloc_cmds - Allocates the command packets
1610 * @instance: Adapter soft state
1611 *
1612 * Each command that is issued to the FW, whether IO commands from the OS or
1613 * internal commands like IOCTLs, are wrapped in local data structure called
1614 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1615 * the FW.
1616 *
1617 * Each frame has a 32-bit field called context (tag). This context is used
1618 * to get back the megasas_cmd from the frame when a frame gets completed in
1619 * the ISR. Typically the address of the megasas_cmd itself would be used as
1620 * the context. But we wanted to keep the differences between 32 and 64 bit
1621 * systems to the mininum. We always use 32 bit integers for the context. In
1622 * this driver, the 32 bit values are the indices into an array cmd_list.
1623 * This array is used only to look up the megasas_cmd given the context. The
1624 * free commands themselves are maintained in a linked list called cmd_pool.
1625 */
1626 static int megasas_alloc_cmds(struct megasas_instance *instance)
1627 {
1628 int i;
1629 int j;
1630 u32 max_cmd;
1631 struct megasas_cmd *cmd;
1632
1633 max_cmd = instance->max_fw_cmds;
1634
1635 /*
1636 * instance->cmd_list is an array of struct megasas_cmd pointers.
1637 * Allocate the dynamic array first and then allocate individual
1638 * commands.
1639 */
1640 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1641
1642 if (!instance->cmd_list) {
1643 printk(KERN_DEBUG "megasas: out of memory\n");
1644 return -ENOMEM;
1645 }
1646
1647
1648 for (i = 0; i < max_cmd; i++) {
1649 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1650 GFP_KERNEL);
1651
1652 if (!instance->cmd_list[i]) {
1653
1654 for (j = 0; j < i; j++)
1655 kfree(instance->cmd_list[j]);
1656
1657 kfree(instance->cmd_list);
1658 instance->cmd_list = NULL;
1659
1660 return -ENOMEM;
1661 }
1662 }
1663
1664 /*
1665 * Add all the commands to command pool (instance->cmd_pool)
1666 */
1667 for (i = 0; i < max_cmd; i++) {
1668 cmd = instance->cmd_list[i];
1669 memset(cmd, 0, sizeof(struct megasas_cmd));
1670 cmd->index = i;
1671 cmd->instance = instance;
1672
1673 list_add_tail(&cmd->list, &instance->cmd_pool);
1674 }
1675
1676 /*
1677 * Create a frame pool and assign one frame to each cmd
1678 */
1679 if (megasas_create_frame_pool(instance)) {
1680 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1681 megasas_free_cmds(instance);
1682 }
1683
1684 return 0;
1685 }
1686
1687 /**
1688 * megasas_get_controller_info - Returns FW's controller structure
1689 * @instance: Adapter soft state
1690 * @ctrl_info: Controller information structure
1691 *
1692 * Issues an internal command (DCMD) to get the FW's controller structure.
1693 * This information is mainly used to find out the maximum IO transfer per
1694 * command supported by the FW.
1695 */
1696 static int
1697 megasas_get_ctrl_info(struct megasas_instance *instance,
1698 struct megasas_ctrl_info *ctrl_info)
1699 {
1700 int ret = 0;
1701 struct megasas_cmd *cmd;
1702 struct megasas_dcmd_frame *dcmd;
1703 struct megasas_ctrl_info *ci;
1704 dma_addr_t ci_h = 0;
1705
1706 cmd = megasas_get_cmd(instance);
1707
1708 if (!cmd) {
1709 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1710 return -ENOMEM;
1711 }
1712
1713 dcmd = &cmd->frame->dcmd;
1714
1715 ci = pci_alloc_consistent(instance->pdev,
1716 sizeof(struct megasas_ctrl_info), &ci_h);
1717
1718 if (!ci) {
1719 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1720 megasas_return_cmd(instance, cmd);
1721 return -ENOMEM;
1722 }
1723
1724 memset(ci, 0, sizeof(*ci));
1725 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1726
1727 dcmd->cmd = MFI_CMD_DCMD;
1728 dcmd->cmd_status = 0xFF;
1729 dcmd->sge_count = 1;
1730 dcmd->flags = MFI_FRAME_DIR_READ;
1731 dcmd->timeout = 0;
1732 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1733 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1734 dcmd->sgl.sge32[0].phys_addr = ci_h;
1735 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1736
1737 if (!megasas_issue_polled(instance, cmd)) {
1738 ret = 0;
1739 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1740 } else {
1741 ret = -1;
1742 }
1743
1744 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1745 ci, ci_h);
1746
1747 megasas_return_cmd(instance, cmd);
1748 return ret;
1749 }
1750
1751 /**
1752 * megasas_complete_cmd_dpc - Returns FW's controller structure
1753 * @instance_addr: Address of adapter soft state
1754 *
1755 * Tasklet to complete cmds
1756 */
1757 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1758 {
1759 u32 producer;
1760 u32 consumer;
1761 u32 context;
1762 struct megasas_cmd *cmd;
1763 struct megasas_instance *instance = (struct megasas_instance *)instance_addr;
1764 unsigned long flags;
1765
1766 /* If we have already declared adapter dead, donot complete cmds */
1767 if (instance->hw_crit_error)
1768 return;
1769
1770 producer = *instance->producer;
1771 consumer = *instance->consumer;
1772
1773 while (consumer != producer) {
1774 context = instance->reply_queue[consumer];
1775
1776 cmd = instance->cmd_list[context];
1777
1778 megasas_complete_cmd(instance, cmd, DID_OK);
1779
1780 consumer++;
1781 if (consumer == (instance->max_fw_cmds + 1)) {
1782 consumer = 0;
1783 }
1784 }
1785
1786 *instance->consumer = producer;
1787
1788 /*
1789 * Check if we can restore can_queue
1790 */
1791 if (instance->flag & MEGASAS_FW_BUSY
1792 && time_after(jiffies, instance->last_time + 5 * HZ)
1793 && atomic_read(&instance->fw_outstanding) < 17) {
1794
1795 spin_lock_irqsave(instance->host->host_lock, flags);
1796 instance->flag &= ~MEGASAS_FW_BUSY;
1797 instance->host->can_queue =
1798 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1799
1800 spin_unlock_irqrestore(instance->host->host_lock, flags);
1801 }
1802
1803 }
1804
1805 /**
1806 * megasas_init_mfi - Initializes the FW
1807 * @instance: Adapter soft state
1808 *
1809 * This is the main function for initializing MFI firmware.
1810 */
1811 static int megasas_init_mfi(struct megasas_instance *instance)
1812 {
1813 u32 context_sz;
1814 u32 reply_q_sz;
1815 u32 max_sectors_1;
1816 u32 max_sectors_2;
1817 struct megasas_register_set __iomem *reg_set;
1818
1819 struct megasas_cmd *cmd;
1820 struct megasas_ctrl_info *ctrl_info;
1821
1822 struct megasas_init_frame *init_frame;
1823 struct megasas_init_queue_info *initq_info;
1824 dma_addr_t init_frame_h;
1825 dma_addr_t initq_info_h;
1826
1827 /*
1828 * Map the message registers
1829 */
1830 instance->base_addr = pci_resource_start(instance->pdev, 0);
1831
1832 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1833 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1834 return -EBUSY;
1835 }
1836
1837 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1838
1839 if (!instance->reg_set) {
1840 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1841 goto fail_ioremap;
1842 }
1843
1844 reg_set = instance->reg_set;
1845
1846 switch(instance->pdev->device)
1847 {
1848 case PCI_DEVICE_ID_LSI_SAS1078R:
1849 instance->instancet = &megasas_instance_template_ppc;
1850 break;
1851 case PCI_DEVICE_ID_LSI_SAS1064R:
1852 case PCI_DEVICE_ID_DELL_PERC5:
1853 default:
1854 instance->instancet = &megasas_instance_template_xscale;
1855 break;
1856 }
1857
1858 /*
1859 * We expect the FW state to be READY
1860 */
1861 if (megasas_transition_to_ready(instance))
1862 goto fail_ready_state;
1863
1864 /*
1865 * Get various operational parameters from status register
1866 */
1867 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1868 /*
1869 * Reduce the max supported cmds by 1. This is to ensure that the
1870 * reply_q_sz (1 more than the max cmd that driver may send)
1871 * does not exceed max cmds that the FW can support
1872 */
1873 instance->max_fw_cmds = instance->max_fw_cmds-1;
1874 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1875 0x10;
1876 /*
1877 * Create a pool of commands
1878 */
1879 if (megasas_alloc_cmds(instance))
1880 goto fail_alloc_cmds;
1881
1882 /*
1883 * Allocate memory for reply queue. Length of reply queue should
1884 * be _one_ more than the maximum commands handled by the firmware.
1885 *
1886 * Note: When FW completes commands, it places corresponding contex
1887 * values in this circular reply queue. This circular queue is a fairly
1888 * typical producer-consumer queue. FW is the producer (of completed
1889 * commands) and the driver is the consumer.
1890 */
1891 context_sz = sizeof(u32);
1892 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1893
1894 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1895 reply_q_sz,
1896 &instance->reply_queue_h);
1897
1898 if (!instance->reply_queue) {
1899 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1900 goto fail_reply_queue;
1901 }
1902
1903 /*
1904 * Prepare a init frame. Note the init frame points to queue info
1905 * structure. Each frame has SGL allocated after first 64 bytes. For
1906 * this frame - since we don't need any SGL - we use SGL's space as
1907 * queue info structure
1908 *
1909 * We will not get a NULL command below. We just created the pool.
1910 */
1911 cmd = megasas_get_cmd(instance);
1912
1913 init_frame = (struct megasas_init_frame *)cmd->frame;
1914 initq_info = (struct megasas_init_queue_info *)
1915 ((unsigned long)init_frame + 64);
1916
1917 init_frame_h = cmd->frame_phys_addr;
1918 initq_info_h = init_frame_h + 64;
1919
1920 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1921 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1922
1923 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1924 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1925
1926 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1927 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1928
1929 init_frame->cmd = MFI_CMD_INIT;
1930 init_frame->cmd_status = 0xFF;
1931 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1932
1933 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1934
1935 /*
1936 * disable the intr before firing the init frame to FW
1937 */
1938 instance->instancet->disable_intr(instance->reg_set);
1939
1940 /*
1941 * Issue the init frame in polled mode
1942 */
1943 if (megasas_issue_polled(instance, cmd)) {
1944 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1945 goto fail_fw_init;
1946 }
1947
1948 megasas_return_cmd(instance, cmd);
1949
1950 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1951
1952 /*
1953 * Compute the max allowed sectors per IO: The controller info has two
1954 * limits on max sectors. Driver should use the minimum of these two.
1955 *
1956 * 1 << stripe_sz_ops.min = max sectors per strip
1957 *
1958 * Note that older firmwares ( < FW ver 30) didn't report information
1959 * to calculate max_sectors_1. So the number ended up as zero always.
1960 */
1961 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1962
1963 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1964 ctrl_info->max_strips_per_io;
1965 max_sectors_2 = ctrl_info->max_request_size;
1966
1967 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1968 ? max_sectors_1 : max_sectors_2;
1969 } else
1970 instance->max_sectors_per_req = instance->max_num_sge *
1971 PAGE_SIZE / 512;
1972
1973 kfree(ctrl_info);
1974
1975 /*
1976 * Setup tasklet for cmd completion
1977 */
1978
1979 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
1980 (unsigned long)instance);
1981 return 0;
1982
1983 fail_fw_init:
1984 megasas_return_cmd(instance, cmd);
1985
1986 pci_free_consistent(instance->pdev, reply_q_sz,
1987 instance->reply_queue, instance->reply_queue_h);
1988 fail_reply_queue:
1989 megasas_free_cmds(instance);
1990
1991 fail_alloc_cmds:
1992 fail_ready_state:
1993 iounmap(instance->reg_set);
1994
1995 fail_ioremap:
1996 pci_release_regions(instance->pdev);
1997
1998 return -EINVAL;
1999 }
2000
2001 /**
2002 * megasas_release_mfi - Reverses the FW initialization
2003 * @intance: Adapter soft state
2004 */
2005 static void megasas_release_mfi(struct megasas_instance *instance)
2006 {
2007 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2008
2009 pci_free_consistent(instance->pdev, reply_q_sz,
2010 instance->reply_queue, instance->reply_queue_h);
2011
2012 megasas_free_cmds(instance);
2013
2014 iounmap(instance->reg_set);
2015
2016 pci_release_regions(instance->pdev);
2017 }
2018
2019 /**
2020 * megasas_get_seq_num - Gets latest event sequence numbers
2021 * @instance: Adapter soft state
2022 * @eli: FW event log sequence numbers information
2023 *
2024 * FW maintains a log of all events in a non-volatile area. Upper layers would
2025 * usually find out the latest sequence number of the events, the seq number at
2026 * the boot etc. They would "read" all the events below the latest seq number
2027 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2028 * number), they would subsribe to AEN (asynchronous event notification) and
2029 * wait for the events to happen.
2030 */
2031 static int
2032 megasas_get_seq_num(struct megasas_instance *instance,
2033 struct megasas_evt_log_info *eli)
2034 {
2035 struct megasas_cmd *cmd;
2036 struct megasas_dcmd_frame *dcmd;
2037 struct megasas_evt_log_info *el_info;
2038 dma_addr_t el_info_h = 0;
2039
2040 cmd = megasas_get_cmd(instance);
2041
2042 if (!cmd) {
2043 return -ENOMEM;
2044 }
2045
2046 dcmd = &cmd->frame->dcmd;
2047 el_info = pci_alloc_consistent(instance->pdev,
2048 sizeof(struct megasas_evt_log_info),
2049 &el_info_h);
2050
2051 if (!el_info) {
2052 megasas_return_cmd(instance, cmd);
2053 return -ENOMEM;
2054 }
2055
2056 memset(el_info, 0, sizeof(*el_info));
2057 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2058
2059 dcmd->cmd = MFI_CMD_DCMD;
2060 dcmd->cmd_status = 0x0;
2061 dcmd->sge_count = 1;
2062 dcmd->flags = MFI_FRAME_DIR_READ;
2063 dcmd->timeout = 0;
2064 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2065 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2066 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2067 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2068
2069 megasas_issue_blocked_cmd(instance, cmd);
2070
2071 /*
2072 * Copy the data back into callers buffer
2073 */
2074 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2075
2076 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2077 el_info, el_info_h);
2078
2079 megasas_return_cmd(instance, cmd);
2080
2081 return 0;
2082 }
2083
2084 /**
2085 * megasas_register_aen - Registers for asynchronous event notification
2086 * @instance: Adapter soft state
2087 * @seq_num: The starting sequence number
2088 * @class_locale: Class of the event
2089 *
2090 * This function subscribes for AEN for events beyond the @seq_num. It requests
2091 * to be notified if and only if the event is of type @class_locale
2092 */
2093 static int
2094 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2095 u32 class_locale_word)
2096 {
2097 int ret_val;
2098 struct megasas_cmd *cmd;
2099 struct megasas_dcmd_frame *dcmd;
2100 union megasas_evt_class_locale curr_aen;
2101 union megasas_evt_class_locale prev_aen;
2102
2103 /*
2104 * If there an AEN pending already (aen_cmd), check if the
2105 * class_locale of that pending AEN is inclusive of the new
2106 * AEN request we currently have. If it is, then we don't have
2107 * to do anything. In other words, whichever events the current
2108 * AEN request is subscribing to, have already been subscribed
2109 * to.
2110 *
2111 * If the old_cmd is _not_ inclusive, then we have to abort
2112 * that command, form a class_locale that is superset of both
2113 * old and current and re-issue to the FW
2114 */
2115
2116 curr_aen.word = class_locale_word;
2117
2118 if (instance->aen_cmd) {
2119
2120 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2121
2122 /*
2123 * A class whose enum value is smaller is inclusive of all
2124 * higher values. If a PROGRESS (= -1) was previously
2125 * registered, then a new registration requests for higher
2126 * classes need not be sent to FW. They are automatically
2127 * included.
2128 *
2129 * Locale numbers don't have such hierarchy. They are bitmap
2130 * values
2131 */
2132 if ((prev_aen.members.class <= curr_aen.members.class) &&
2133 !((prev_aen.members.locale & curr_aen.members.locale) ^
2134 curr_aen.members.locale)) {
2135 /*
2136 * Previously issued event registration includes
2137 * current request. Nothing to do.
2138 */
2139 return 0;
2140 } else {
2141 curr_aen.members.locale |= prev_aen.members.locale;
2142
2143 if (prev_aen.members.class < curr_aen.members.class)
2144 curr_aen.members.class = prev_aen.members.class;
2145
2146 instance->aen_cmd->abort_aen = 1;
2147 ret_val = megasas_issue_blocked_abort_cmd(instance,
2148 instance->
2149 aen_cmd);
2150
2151 if (ret_val) {
2152 printk(KERN_DEBUG "megasas: Failed to abort "
2153 "previous AEN command\n");
2154 return ret_val;
2155 }
2156 }
2157 }
2158
2159 cmd = megasas_get_cmd(instance);
2160
2161 if (!cmd)
2162 return -ENOMEM;
2163
2164 dcmd = &cmd->frame->dcmd;
2165
2166 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2167
2168 /*
2169 * Prepare DCMD for aen registration
2170 */
2171 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2172
2173 dcmd->cmd = MFI_CMD_DCMD;
2174 dcmd->cmd_status = 0x0;
2175 dcmd->sge_count = 1;
2176 dcmd->flags = MFI_FRAME_DIR_READ;
2177 dcmd->timeout = 0;
2178 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2179 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2180 dcmd->mbox.w[0] = seq_num;
2181 dcmd->mbox.w[1] = curr_aen.word;
2182 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2183 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2184
2185 /*
2186 * Store reference to the cmd used to register for AEN. When an
2187 * application wants us to register for AEN, we have to abort this
2188 * cmd and re-register with a new EVENT LOCALE supplied by that app
2189 */
2190 instance->aen_cmd = cmd;
2191
2192 /*
2193 * Issue the aen registration frame
2194 */
2195 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2196
2197 return 0;
2198 }
2199
2200 /**
2201 * megasas_start_aen - Subscribes to AEN during driver load time
2202 * @instance: Adapter soft state
2203 */
2204 static int megasas_start_aen(struct megasas_instance *instance)
2205 {
2206 struct megasas_evt_log_info eli;
2207 union megasas_evt_class_locale class_locale;
2208
2209 /*
2210 * Get the latest sequence number from FW
2211 */
2212 memset(&eli, 0, sizeof(eli));
2213
2214 if (megasas_get_seq_num(instance, &eli))
2215 return -1;
2216
2217 /*
2218 * Register AEN with FW for latest sequence number plus 1
2219 */
2220 class_locale.members.reserved = 0;
2221 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2222 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2223
2224 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2225 class_locale.word);
2226 }
2227
2228 /**
2229 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2230 * @instance: Adapter soft state
2231 */
2232 static int megasas_io_attach(struct megasas_instance *instance)
2233 {
2234 struct Scsi_Host *host = instance->host;
2235
2236 /*
2237 * Export parameters required by SCSI mid-layer
2238 */
2239 host->irq = instance->pdev->irq;
2240 host->unique_id = instance->unique_id;
2241 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2242 host->this_id = instance->init_id;
2243 host->sg_tablesize = instance->max_num_sge;
2244 host->max_sectors = instance->max_sectors_per_req;
2245 host->cmd_per_lun = 128;
2246 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2247 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2248 host->max_lun = MEGASAS_MAX_LUN;
2249 host->max_cmd_len = 16;
2250
2251 /*
2252 * Notify the mid-layer about the new controller
2253 */
2254 if (scsi_add_host(host, &instance->pdev->dev)) {
2255 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2256 return -ENODEV;
2257 }
2258
2259 /*
2260 * Trigger SCSI to scan our drives
2261 */
2262 scsi_scan_host(host);
2263 return 0;
2264 }
2265
2266 /**
2267 * megasas_probe_one - PCI hotplug entry point
2268 * @pdev: PCI device structure
2269 * @id: PCI ids of supported hotplugged adapter
2270 */
2271 static int __devinit
2272 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2273 {
2274 int rval;
2275 struct Scsi_Host *host;
2276 struct megasas_instance *instance;
2277
2278 /*
2279 * Announce PCI information
2280 */
2281 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2282 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2283 pdev->subsystem_device);
2284
2285 printk("bus %d:slot %d:func %d\n",
2286 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2287
2288 /*
2289 * PCI prepping: enable device set bus mastering and dma mask
2290 */
2291 rval = pci_enable_device(pdev);
2292
2293 if (rval) {
2294 return rval;
2295 }
2296
2297 pci_set_master(pdev);
2298
2299 /*
2300 * All our contollers are capable of performing 64-bit DMA
2301 */
2302 if (IS_DMA64) {
2303 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2304
2305 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2306 goto fail_set_dma_mask;
2307 }
2308 } else {
2309 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2310 goto fail_set_dma_mask;
2311 }
2312
2313 host = scsi_host_alloc(&megasas_template,
2314 sizeof(struct megasas_instance));
2315
2316 if (!host) {
2317 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2318 goto fail_alloc_instance;
2319 }
2320
2321 instance = (struct megasas_instance *)host->hostdata;
2322 memset(instance, 0, sizeof(*instance));
2323
2324 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2325 &instance->producer_h);
2326 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2327 &instance->consumer_h);
2328
2329 if (!instance->producer || !instance->consumer) {
2330 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2331 "producer, consumer\n");
2332 goto fail_alloc_dma_buf;
2333 }
2334
2335 *instance->producer = 0;
2336 *instance->consumer = 0;
2337
2338 instance->evt_detail = pci_alloc_consistent(pdev,
2339 sizeof(struct
2340 megasas_evt_detail),
2341 &instance->evt_detail_h);
2342
2343 if (!instance->evt_detail) {
2344 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2345 "event detail structure\n");
2346 goto fail_alloc_dma_buf;
2347 }
2348
2349 /*
2350 * Initialize locks and queues
2351 */
2352 INIT_LIST_HEAD(&instance->cmd_pool);
2353
2354 atomic_set(&instance->fw_outstanding,0);
2355
2356 init_waitqueue_head(&instance->int_cmd_wait_q);
2357 init_waitqueue_head(&instance->abort_cmd_wait_q);
2358
2359 spin_lock_init(&instance->cmd_pool_lock);
2360
2361 sema_init(&instance->aen_mutex, 1);
2362 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2363
2364 /*
2365 * Initialize PCI related and misc parameters
2366 */
2367 instance->pdev = pdev;
2368 instance->host = host;
2369 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2370 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2371
2372 megasas_dbg_lvl = 0;
2373 instance->flag = 0;
2374 instance->last_time = 0;
2375
2376 /*
2377 * Initialize MFI Firmware
2378 */
2379 if (megasas_init_mfi(instance))
2380 goto fail_init_mfi;
2381
2382 /*
2383 * Register IRQ
2384 */
2385 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2386 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2387 goto fail_irq;
2388 }
2389
2390 instance->instancet->enable_intr(instance->reg_set);
2391
2392 /*
2393 * Store instance in PCI softstate
2394 */
2395 pci_set_drvdata(pdev, instance);
2396
2397 /*
2398 * Add this controller to megasas_mgmt_info structure so that it
2399 * can be exported to management applications
2400 */
2401 megasas_mgmt_info.count++;
2402 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2403 megasas_mgmt_info.max_index++;
2404
2405 /*
2406 * Initiate AEN (Asynchronous Event Notification)
2407 */
2408 if (megasas_start_aen(instance)) {
2409 printk(KERN_DEBUG "megasas: start aen failed\n");
2410 goto fail_start_aen;
2411 }
2412
2413 /*
2414 * Register with SCSI mid-layer
2415 */
2416 if (megasas_io_attach(instance))
2417 goto fail_io_attach;
2418
2419 return 0;
2420
2421 fail_start_aen:
2422 fail_io_attach:
2423 megasas_mgmt_info.count--;
2424 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2425 megasas_mgmt_info.max_index--;
2426
2427 pci_set_drvdata(pdev, NULL);
2428 instance->instancet->disable_intr(instance->reg_set);
2429 free_irq(instance->pdev->irq, instance);
2430
2431 megasas_release_mfi(instance);
2432
2433 fail_irq:
2434 fail_init_mfi:
2435 fail_alloc_dma_buf:
2436 if (instance->evt_detail)
2437 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2438 instance->evt_detail,
2439 instance->evt_detail_h);
2440
2441 if (instance->producer)
2442 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2443 instance->producer_h);
2444 if (instance->consumer)
2445 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2446 instance->consumer_h);
2447 scsi_host_put(host);
2448
2449 fail_alloc_instance:
2450 fail_set_dma_mask:
2451 pci_disable_device(pdev);
2452
2453 return -ENODEV;
2454 }
2455
2456 /**
2457 * megasas_flush_cache - Requests FW to flush all its caches
2458 * @instance: Adapter soft state
2459 */
2460 static void megasas_flush_cache(struct megasas_instance *instance)
2461 {
2462 struct megasas_cmd *cmd;
2463 struct megasas_dcmd_frame *dcmd;
2464
2465 cmd = megasas_get_cmd(instance);
2466
2467 if (!cmd)
2468 return;
2469
2470 dcmd = &cmd->frame->dcmd;
2471
2472 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2473
2474 dcmd->cmd = MFI_CMD_DCMD;
2475 dcmd->cmd_status = 0x0;
2476 dcmd->sge_count = 0;
2477 dcmd->flags = MFI_FRAME_DIR_NONE;
2478 dcmd->timeout = 0;
2479 dcmd->data_xfer_len = 0;
2480 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2481 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2482
2483 megasas_issue_blocked_cmd(instance, cmd);
2484
2485 megasas_return_cmd(instance, cmd);
2486
2487 return;
2488 }
2489
2490 /**
2491 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2492 * @instance: Adapter soft state
2493 */
2494 static void megasas_shutdown_controller(struct megasas_instance *instance)
2495 {
2496 struct megasas_cmd *cmd;
2497 struct megasas_dcmd_frame *dcmd;
2498
2499 cmd = megasas_get_cmd(instance);
2500
2501 if (!cmd)
2502 return;
2503
2504 if (instance->aen_cmd)
2505 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2506
2507 dcmd = &cmd->frame->dcmd;
2508
2509 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2510
2511 dcmd->cmd = MFI_CMD_DCMD;
2512 dcmd->cmd_status = 0x0;
2513 dcmd->sge_count = 0;
2514 dcmd->flags = MFI_FRAME_DIR_NONE;
2515 dcmd->timeout = 0;
2516 dcmd->data_xfer_len = 0;
2517 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2518
2519 megasas_issue_blocked_cmd(instance, cmd);
2520
2521 megasas_return_cmd(instance, cmd);
2522
2523 return;
2524 }
2525
2526 /**
2527 * megasas_detach_one - PCI hot"un"plug entry point
2528 * @pdev: PCI device structure
2529 */
2530 static void megasas_detach_one(struct pci_dev *pdev)
2531 {
2532 int i;
2533 struct Scsi_Host *host;
2534 struct megasas_instance *instance;
2535
2536 instance = pci_get_drvdata(pdev);
2537 host = instance->host;
2538
2539 scsi_remove_host(instance->host);
2540 megasas_flush_cache(instance);
2541 megasas_shutdown_controller(instance);
2542 tasklet_kill(&instance->isr_tasklet);
2543
2544 /*
2545 * Take the instance off the instance array. Note that we will not
2546 * decrement the max_index. We let this array be sparse array
2547 */
2548 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2549 if (megasas_mgmt_info.instance[i] == instance) {
2550 megasas_mgmt_info.count--;
2551 megasas_mgmt_info.instance[i] = NULL;
2552
2553 break;
2554 }
2555 }
2556
2557 pci_set_drvdata(instance->pdev, NULL);
2558
2559 instance->instancet->disable_intr(instance->reg_set);
2560
2561 free_irq(instance->pdev->irq, instance);
2562
2563 megasas_release_mfi(instance);
2564
2565 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2566 instance->evt_detail, instance->evt_detail_h);
2567
2568 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2569 instance->producer_h);
2570
2571 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2572 instance->consumer_h);
2573
2574 scsi_host_put(host);
2575
2576 pci_set_drvdata(pdev, NULL);
2577
2578 pci_disable_device(pdev);
2579
2580 return;
2581 }
2582
2583 /**
2584 * megasas_shutdown - Shutdown entry point
2585 * @device: Generic device structure
2586 */
2587 static void megasas_shutdown(struct pci_dev *pdev)
2588 {
2589 struct megasas_instance *instance = pci_get_drvdata(pdev);
2590 megasas_flush_cache(instance);
2591 }
2592
2593 /**
2594 * megasas_mgmt_open - char node "open" entry point
2595 */
2596 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2597 {
2598 /*
2599 * Allow only those users with admin rights
2600 */
2601 if (!capable(CAP_SYS_ADMIN))
2602 return -EACCES;
2603
2604 return 0;
2605 }
2606
2607 /**
2608 * megasas_mgmt_release - char node "release" entry point
2609 */
2610 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2611 {
2612 filep->private_data = NULL;
2613 fasync_helper(-1, filep, 0, &megasas_async_queue);
2614
2615 return 0;
2616 }
2617
2618 /**
2619 * megasas_mgmt_fasync - Async notifier registration from applications
2620 *
2621 * This function adds the calling process to a driver global queue. When an
2622 * event occurs, SIGIO will be sent to all processes in this queue.
2623 */
2624 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2625 {
2626 int rc;
2627
2628 mutex_lock(&megasas_async_queue_mutex);
2629
2630 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2631
2632 mutex_unlock(&megasas_async_queue_mutex);
2633
2634 if (rc >= 0) {
2635 /* For sanity check when we get ioctl */
2636 filep->private_data = filep;
2637 return 0;
2638 }
2639
2640 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2641
2642 return rc;
2643 }
2644
2645 /**
2646 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2647 * @instance: Adapter soft state
2648 * @argp: User's ioctl packet
2649 */
2650 static int
2651 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2652 struct megasas_iocpacket __user * user_ioc,
2653 struct megasas_iocpacket *ioc)
2654 {
2655 struct megasas_sge32 *kern_sge32;
2656 struct megasas_cmd *cmd;
2657 void *kbuff_arr[MAX_IOCTL_SGE];
2658 dma_addr_t buf_handle = 0;
2659 int error = 0, i;
2660 void *sense = NULL;
2661 dma_addr_t sense_handle;
2662 u32 *sense_ptr;
2663
2664 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2665
2666 if (ioc->sge_count > MAX_IOCTL_SGE) {
2667 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2668 ioc->sge_count, MAX_IOCTL_SGE);
2669 return -EINVAL;
2670 }
2671
2672 cmd = megasas_get_cmd(instance);
2673 if (!cmd) {
2674 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2675 return -ENOMEM;
2676 }
2677
2678 /*
2679 * User's IOCTL packet has 2 frames (maximum). Copy those two
2680 * frames into our cmd's frames. cmd->frame's context will get
2681 * overwritten when we copy from user's frames. So set that value
2682 * alone separately
2683 */
2684 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2685 cmd->frame->hdr.context = cmd->index;
2686
2687 /*
2688 * The management interface between applications and the fw uses
2689 * MFI frames. E.g, RAID configuration changes, LD property changes
2690 * etc are accomplishes through different kinds of MFI frames. The
2691 * driver needs to care only about substituting user buffers with
2692 * kernel buffers in SGLs. The location of SGL is embedded in the
2693 * struct iocpacket itself.
2694 */
2695 kern_sge32 = (struct megasas_sge32 *)
2696 ((unsigned long)cmd->frame + ioc->sgl_off);
2697
2698 /*
2699 * For each user buffer, create a mirror buffer and copy in
2700 */
2701 for (i = 0; i < ioc->sge_count; i++) {
2702 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2703 ioc->sgl[i].iov_len,
2704 &buf_handle, GFP_KERNEL);
2705 if (!kbuff_arr[i]) {
2706 printk(KERN_DEBUG "megasas: Failed to alloc "
2707 "kernel SGL buffer for IOCTL \n");
2708 error = -ENOMEM;
2709 goto out;
2710 }
2711
2712 /*
2713 * We don't change the dma_coherent_mask, so
2714 * pci_alloc_consistent only returns 32bit addresses
2715 */
2716 kern_sge32[i].phys_addr = (u32) buf_handle;
2717 kern_sge32[i].length = ioc->sgl[i].iov_len;
2718
2719 /*
2720 * We created a kernel buffer corresponding to the
2721 * user buffer. Now copy in from the user buffer
2722 */
2723 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2724 (u32) (ioc->sgl[i].iov_len))) {
2725 error = -EFAULT;
2726 goto out;
2727 }
2728 }
2729
2730 if (ioc->sense_len) {
2731 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2732 &sense_handle, GFP_KERNEL);
2733 if (!sense) {
2734 error = -ENOMEM;
2735 goto out;
2736 }
2737
2738 sense_ptr =
2739 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2740 *sense_ptr = sense_handle;
2741 }
2742
2743 /*
2744 * Set the sync_cmd flag so that the ISR knows not to complete this
2745 * cmd to the SCSI mid-layer
2746 */
2747 cmd->sync_cmd = 1;
2748 megasas_issue_blocked_cmd(instance, cmd);
2749 cmd->sync_cmd = 0;
2750
2751 /*
2752 * copy out the kernel buffers to user buffers
2753 */
2754 for (i = 0; i < ioc->sge_count; i++) {
2755 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2756 ioc->sgl[i].iov_len)) {
2757 error = -EFAULT;
2758 goto out;
2759 }
2760 }
2761
2762 /*
2763 * copy out the sense
2764 */
2765 if (ioc->sense_len) {
2766 /*
2767 * sense_ptr points to the location that has the user
2768 * sense buffer address
2769 */
2770 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2771 ioc->sense_off);
2772
2773 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2774 sense, ioc->sense_len)) {
2775 error = -EFAULT;
2776 goto out;
2777 }
2778 }
2779
2780 /*
2781 * copy the status codes returned by the fw
2782 */
2783 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2784 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2785 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2786 error = -EFAULT;
2787 }
2788
2789 out:
2790 if (sense) {
2791 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
2792 sense, sense_handle);
2793 }
2794
2795 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2796 dma_free_coherent(&instance->pdev->dev,
2797 kern_sge32[i].length,
2798 kbuff_arr[i], kern_sge32[i].phys_addr);
2799 }
2800
2801 megasas_return_cmd(instance, cmd);
2802 return error;
2803 }
2804
2805 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2806 {
2807 int i;
2808
2809 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2810
2811 if ((megasas_mgmt_info.instance[i]) &&
2812 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2813 return megasas_mgmt_info.instance[i];
2814 }
2815
2816 return NULL;
2817 }
2818
2819 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2820 {
2821 struct megasas_iocpacket __user *user_ioc =
2822 (struct megasas_iocpacket __user *)arg;
2823 struct megasas_iocpacket *ioc;
2824 struct megasas_instance *instance;
2825 int error;
2826
2827 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2828 if (!ioc)
2829 return -ENOMEM;
2830
2831 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2832 error = -EFAULT;
2833 goto out_kfree_ioc;
2834 }
2835
2836 instance = megasas_lookup_instance(ioc->host_no);
2837 if (!instance) {
2838 error = -ENODEV;
2839 goto out_kfree_ioc;
2840 }
2841
2842 /*
2843 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2844 */
2845 if (down_interruptible(&instance->ioctl_sem)) {
2846 error = -ERESTARTSYS;
2847 goto out_kfree_ioc;
2848 }
2849 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2850 up(&instance->ioctl_sem);
2851
2852 out_kfree_ioc:
2853 kfree(ioc);
2854 return error;
2855 }
2856
2857 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2858 {
2859 struct megasas_instance *instance;
2860 struct megasas_aen aen;
2861 int error;
2862
2863 if (file->private_data != file) {
2864 printk(KERN_DEBUG "megasas: fasync_helper was not "
2865 "called first\n");
2866 return -EINVAL;
2867 }
2868
2869 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2870 return -EFAULT;
2871
2872 instance = megasas_lookup_instance(aen.host_no);
2873
2874 if (!instance)
2875 return -ENODEV;
2876
2877 down(&instance->aen_mutex);
2878 error = megasas_register_aen(instance, aen.seq_num,
2879 aen.class_locale_word);
2880 up(&instance->aen_mutex);
2881 return error;
2882 }
2883
2884 /**
2885 * megasas_mgmt_ioctl - char node ioctl entry point
2886 */
2887 static long
2888 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2889 {
2890 switch (cmd) {
2891 case MEGASAS_IOC_FIRMWARE:
2892 return megasas_mgmt_ioctl_fw(file, arg);
2893
2894 case MEGASAS_IOC_GET_AEN:
2895 return megasas_mgmt_ioctl_aen(file, arg);
2896 }
2897
2898 return -ENOTTY;
2899 }
2900
2901 #ifdef CONFIG_COMPAT
2902 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2903 {
2904 struct compat_megasas_iocpacket __user *cioc =
2905 (struct compat_megasas_iocpacket __user *)arg;
2906 struct megasas_iocpacket __user *ioc =
2907 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2908 int i;
2909 int error = 0;
2910
2911 if (clear_user(ioc, sizeof(*ioc)))
2912 return -EFAULT;
2913
2914 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2915 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2916 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2917 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2918 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2919 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2920 return -EFAULT;
2921
2922 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2923 compat_uptr_t ptr;
2924
2925 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2926 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2927 copy_in_user(&ioc->sgl[i].iov_len,
2928 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2929 return -EFAULT;
2930 }
2931
2932 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2933
2934 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2935 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2936 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2937 return -EFAULT;
2938 }
2939 return error;
2940 }
2941
2942 static long
2943 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2944 unsigned long arg)
2945 {
2946 switch (cmd) {
2947 case MEGASAS_IOC_FIRMWARE32:
2948 return megasas_mgmt_compat_ioctl_fw(file, arg);
2949 case MEGASAS_IOC_GET_AEN:
2950 return megasas_mgmt_ioctl_aen(file, arg);
2951 }
2952
2953 return -ENOTTY;
2954 }
2955 #endif
2956
2957 /*
2958 * File operations structure for management interface
2959 */
2960 static const struct file_operations megasas_mgmt_fops = {
2961 .owner = THIS_MODULE,
2962 .open = megasas_mgmt_open,
2963 .release = megasas_mgmt_release,
2964 .fasync = megasas_mgmt_fasync,
2965 .unlocked_ioctl = megasas_mgmt_ioctl,
2966 #ifdef CONFIG_COMPAT
2967 .compat_ioctl = megasas_mgmt_compat_ioctl,
2968 #endif
2969 };
2970
2971 /*
2972 * PCI hotplug support registration structure
2973 */
2974 static struct pci_driver megasas_pci_driver = {
2975
2976 .name = "megaraid_sas",
2977 .id_table = megasas_pci_table,
2978 .probe = megasas_probe_one,
2979 .remove = __devexit_p(megasas_detach_one),
2980 .shutdown = megasas_shutdown,
2981 };
2982
2983 /*
2984 * Sysfs driver attributes
2985 */
2986 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2987 {
2988 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2989 MEGASAS_VERSION);
2990 }
2991
2992 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2993
2994 static ssize_t
2995 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2996 {
2997 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2998 MEGASAS_RELDATE);
2999 }
3000
3001 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3002 NULL);
3003
3004 static ssize_t
3005 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3006 {
3007 return sprintf(buf,"%u",megasas_dbg_lvl);
3008 }
3009
3010 static ssize_t
3011 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3012 {
3013 int retval = count;
3014 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3015 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3016 retval = -EINVAL;
3017 }
3018 return retval;
3019 }
3020
3021 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3022 megasas_sysfs_set_dbg_lvl);
3023
3024 /**
3025 * megasas_init - Driver load entry point
3026 */
3027 static int __init megasas_init(void)
3028 {
3029 int rval;
3030
3031 /*
3032 * Announce driver version and other information
3033 */
3034 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3035 MEGASAS_EXT_VERSION);
3036
3037 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3038
3039 /*
3040 * Register character device node
3041 */
3042 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3043
3044 if (rval < 0) {
3045 printk(KERN_DEBUG "megasas: failed to open device node\n");
3046 return rval;
3047 }
3048
3049 megasas_mgmt_majorno = rval;
3050
3051 /*
3052 * Register ourselves as PCI hotplug module
3053 */
3054 rval = pci_register_driver(&megasas_pci_driver);
3055
3056 if (rval) {
3057 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3058 goto err_pcidrv;
3059 }
3060
3061 rval = driver_create_file(&megasas_pci_driver.driver,
3062 &driver_attr_version);
3063 if (rval)
3064 goto err_dcf_attr_ver;
3065 rval = driver_create_file(&megasas_pci_driver.driver,
3066 &driver_attr_release_date);
3067 if (rval)
3068 goto err_dcf_rel_date;
3069 rval = driver_create_file(&megasas_pci_driver.driver,
3070 &driver_attr_dbg_lvl);
3071 if (rval)
3072 goto err_dcf_dbg_lvl;
3073
3074 return rval;
3075 err_dcf_dbg_lvl:
3076 driver_remove_file(&megasas_pci_driver.driver,
3077 &driver_attr_release_date);
3078 err_dcf_rel_date:
3079 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3080 err_dcf_attr_ver:
3081 pci_unregister_driver(&megasas_pci_driver);
3082 err_pcidrv:
3083 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3084 return rval;
3085 }
3086
3087 /**
3088 * megasas_exit - Driver unload entry point
3089 */
3090 static void __exit megasas_exit(void)
3091 {
3092 driver_remove_file(&megasas_pci_driver.driver,
3093 &driver_attr_dbg_lvl);
3094 driver_remove_file(&megasas_pci_driver.driver,
3095 &driver_attr_release_date);
3096 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3097
3098 pci_unregister_driver(&megasas_pci_driver);
3099 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3100 }
3101
3102 module_init(megasas_init);
3103 module_exit(megasas_exit);