]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/megaraid/megaraid_sas.c
Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.04
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/list.h>
29 #include <linux/moduleparam.h>
30 #include <linux/module.h>
31 #include <linux/spinlock.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/uio.h>
35 #include <asm/uaccess.h>
36 #include <linux/fs.h>
37 #include <linux/compat.h>
38 #include <linux/mutex.h>
39
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_host.h>
44 #include "megaraid_sas.h"
45
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(MEGASAS_VERSION);
48 MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
49 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
50
51 /*
52 * PCI ID table for all supported controllers
53 */
54 static struct pci_device_id megasas_pci_table[] = {
55
56 {
57 PCI_VENDOR_ID_LSI_LOGIC,
58 PCI_DEVICE_ID_LSI_SAS1064R, // xscale IOP
59 PCI_ANY_ID,
60 PCI_ANY_ID,
61 },
62 {
63 PCI_VENDOR_ID_LSI_LOGIC,
64 PCI_DEVICE_ID_LSI_SAS1078R, // ppc IOP
65 PCI_ANY_ID,
66 PCI_ANY_ID,
67 },
68 {
69 PCI_VENDOR_ID_DELL,
70 PCI_DEVICE_ID_DELL_PERC5, // xscale IOP
71 PCI_ANY_ID,
72 PCI_ANY_ID,
73 },
74 {0} /* Terminating entry */
75 };
76
77 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
78
79 static int megasas_mgmt_majorno;
80 static struct megasas_mgmt_info megasas_mgmt_info;
81 static struct fasync_struct *megasas_async_queue;
82 static DEFINE_MUTEX(megasas_async_queue_mutex);
83
84 /**
85 * megasas_get_cmd - Get a command from the free pool
86 * @instance: Adapter soft state
87 *
88 * Returns a free command from the pool
89 */
90 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
91 *instance)
92 {
93 unsigned long flags;
94 struct megasas_cmd *cmd = NULL;
95
96 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
97
98 if (!list_empty(&instance->cmd_pool)) {
99 cmd = list_entry((&instance->cmd_pool)->next,
100 struct megasas_cmd, list);
101 list_del_init(&cmd->list);
102 } else {
103 printk(KERN_ERR "megasas: Command pool empty!\n");
104 }
105
106 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
107 return cmd;
108 }
109
110 /**
111 * megasas_return_cmd - Return a cmd to free command pool
112 * @instance: Adapter soft state
113 * @cmd: Command packet to be returned to free command pool
114 */
115 static inline void
116 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
117 {
118 unsigned long flags;
119
120 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
121
122 cmd->scmd = NULL;
123 list_add_tail(&cmd->list, &instance->cmd_pool);
124
125 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
126 }
127
128
129 /**
130 * The following functions are defined for xscale
131 * (deviceid : 1064R, PERC5) controllers
132 */
133
134 /**
135 * megasas_enable_intr_xscale - Enables interrupts
136 * @regs: MFI register set
137 */
138 static inline void
139 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
140 {
141 writel(1, &(regs)->outbound_intr_mask);
142
143 /* Dummy readl to force pci flush */
144 readl(&regs->outbound_intr_mask);
145 }
146
147 /**
148 * megasas_read_fw_status_reg_xscale - returns the current FW status value
149 * @regs: MFI register set
150 */
151 static u32
152 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
153 {
154 return readl(&(regs)->outbound_msg_0);
155 }
156 /**
157 * megasas_clear_interrupt_xscale - Check & clear interrupt
158 * @regs: MFI register set
159 */
160 static int
161 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
162 {
163 u32 status;
164 /*
165 * Check if it is our interrupt
166 */
167 status = readl(&regs->outbound_intr_status);
168
169 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
170 return 1;
171 }
172
173 /*
174 * Clear the interrupt by writing back the same value
175 */
176 writel(status, &regs->outbound_intr_status);
177
178 return 0;
179 }
180
181 /**
182 * megasas_fire_cmd_xscale - Sends command to the FW
183 * @frame_phys_addr : Physical address of cmd
184 * @frame_count : Number of frames for the command
185 * @regs : MFI register set
186 */
187 static inline void
188 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
189 {
190 writel((frame_phys_addr >> 3)|(frame_count),
191 &(regs)->inbound_queue_port);
192 }
193
194 static struct megasas_instance_template megasas_instance_template_xscale = {
195
196 .fire_cmd = megasas_fire_cmd_xscale,
197 .enable_intr = megasas_enable_intr_xscale,
198 .clear_intr = megasas_clear_intr_xscale,
199 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
200 };
201
202 /**
203 * This is the end of set of functions & definitions specific
204 * to xscale (deviceid : 1064R, PERC5) controllers
205 */
206
207 /**
208 * The following functions are defined for ppc (deviceid : 0x60)
209 * controllers
210 */
211
212 /**
213 * megasas_enable_intr_ppc - Enables interrupts
214 * @regs: MFI register set
215 */
216 static inline void
217 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
218 {
219 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
220
221 writel(~0x80000004, &(regs)->outbound_intr_mask);
222
223 /* Dummy readl to force pci flush */
224 readl(&regs->outbound_intr_mask);
225 }
226
227 /**
228 * megasas_read_fw_status_reg_ppc - returns the current FW status value
229 * @regs: MFI register set
230 */
231 static u32
232 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
233 {
234 return readl(&(regs)->outbound_scratch_pad);
235 }
236
237 /**
238 * megasas_clear_interrupt_ppc - Check & clear interrupt
239 * @regs: MFI register set
240 */
241 static int
242 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
243 {
244 u32 status;
245 /*
246 * Check if it is our interrupt
247 */
248 status = readl(&regs->outbound_intr_status);
249
250 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
251 return 1;
252 }
253
254 /*
255 * Clear the interrupt by writing back the same value
256 */
257 writel(status, &regs->outbound_doorbell_clear);
258
259 return 0;
260 }
261 /**
262 * megasas_fire_cmd_ppc - Sends command to the FW
263 * @frame_phys_addr : Physical address of cmd
264 * @frame_count : Number of frames for the command
265 * @regs : MFI register set
266 */
267 static inline void
268 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
269 {
270 writel((frame_phys_addr | (frame_count<<1))|1,
271 &(regs)->inbound_queue_port);
272 }
273
274 static struct megasas_instance_template megasas_instance_template_ppc = {
275
276 .fire_cmd = megasas_fire_cmd_ppc,
277 .enable_intr = megasas_enable_intr_ppc,
278 .clear_intr = megasas_clear_intr_ppc,
279 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
280 };
281
282 /**
283 * This is the end of set of functions & definitions
284 * specific to ppc (deviceid : 0x60) controllers
285 */
286
287 /**
288 * megasas_disable_intr - Disables interrupts
289 * @regs: MFI register set
290 */
291 static inline void
292 megasas_disable_intr(struct megasas_register_set __iomem * regs)
293 {
294 u32 mask = 0x1f;
295 writel(mask, &regs->outbound_intr_mask);
296
297 /* Dummy readl to force pci flush */
298 readl(&regs->outbound_intr_mask);
299 }
300
301 /**
302 * megasas_issue_polled - Issues a polling command
303 * @instance: Adapter soft state
304 * @cmd: Command packet to be issued
305 *
306 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
307 */
308 static int
309 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
310 {
311 int i;
312 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
313
314 struct megasas_header *frame_hdr = &cmd->frame->hdr;
315
316 frame_hdr->cmd_status = 0xFF;
317 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
318
319 /*
320 * Issue the frame using inbound queue port
321 */
322 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
323
324 /*
325 * Wait for cmd_status to change
326 */
327 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
328 rmb();
329 msleep(1);
330 }
331
332 if (frame_hdr->cmd_status == 0xff)
333 return -ETIME;
334
335 return 0;
336 }
337
338 /**
339 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
340 * @instance: Adapter soft state
341 * @cmd: Command to be issued
342 *
343 * This function waits on an event for the command to be returned from ISR.
344 * Used to issue ioctl commands.
345 */
346 static int
347 megasas_issue_blocked_cmd(struct megasas_instance *instance,
348 struct megasas_cmd *cmd)
349 {
350 cmd->cmd_status = ENODATA;
351
352 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
353
354 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
355
356 return 0;
357 }
358
359 /**
360 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
361 * @instance: Adapter soft state
362 * @cmd_to_abort: Previously issued cmd to be aborted
363 *
364 * MFI firmware can abort previously issued AEN comamnd (automatic event
365 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
366 * cmd and blocks till it is completed.
367 */
368 static int
369 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
370 struct megasas_cmd *cmd_to_abort)
371 {
372 struct megasas_cmd *cmd;
373 struct megasas_abort_frame *abort_fr;
374
375 cmd = megasas_get_cmd(instance);
376
377 if (!cmd)
378 return -1;
379
380 abort_fr = &cmd->frame->abort;
381
382 /*
383 * Prepare and issue the abort frame
384 */
385 abort_fr->cmd = MFI_CMD_ABORT;
386 abort_fr->cmd_status = 0xFF;
387 abort_fr->flags = 0;
388 abort_fr->abort_context = cmd_to_abort->index;
389 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
390 abort_fr->abort_mfi_phys_addr_hi = 0;
391
392 cmd->sync_cmd = 1;
393 cmd->cmd_status = 0xFF;
394
395 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
396
397 /*
398 * Wait for this cmd to complete
399 */
400 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
401
402 megasas_return_cmd(instance, cmd);
403 return 0;
404 }
405
406 /**
407 * megasas_make_sgl32 - Prepares 32-bit SGL
408 * @instance: Adapter soft state
409 * @scp: SCSI command from the mid-layer
410 * @mfi_sgl: SGL to be filled in
411 *
412 * If successful, this function returns the number of SG elements. Otherwise,
413 * it returnes -1.
414 */
415 static int
416 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
417 union megasas_sgl *mfi_sgl)
418 {
419 int i;
420 int sge_count;
421 struct scatterlist *os_sgl;
422
423 /*
424 * Return 0 if there is no data transfer
425 */
426 if (!scp->request_buffer || !scp->request_bufflen)
427 return 0;
428
429 if (!scp->use_sg) {
430 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
431 scp->
432 request_buffer,
433 scp->
434 request_bufflen,
435 scp->
436 sc_data_direction);
437 mfi_sgl->sge32[0].length = scp->request_bufflen;
438
439 return 1;
440 }
441
442 os_sgl = (struct scatterlist *)scp->request_buffer;
443 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
444 scp->sc_data_direction);
445
446 for (i = 0; i < sge_count; i++, os_sgl++) {
447 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
448 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
449 }
450
451 return sge_count;
452 }
453
454 /**
455 * megasas_make_sgl64 - Prepares 64-bit SGL
456 * @instance: Adapter soft state
457 * @scp: SCSI command from the mid-layer
458 * @mfi_sgl: SGL to be filled in
459 *
460 * If successful, this function returns the number of SG elements. Otherwise,
461 * it returnes -1.
462 */
463 static int
464 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
465 union megasas_sgl *mfi_sgl)
466 {
467 int i;
468 int sge_count;
469 struct scatterlist *os_sgl;
470
471 /*
472 * Return 0 if there is no data transfer
473 */
474 if (!scp->request_buffer || !scp->request_bufflen)
475 return 0;
476
477 if (!scp->use_sg) {
478 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
479 scp->
480 request_buffer,
481 scp->
482 request_bufflen,
483 scp->
484 sc_data_direction);
485
486 mfi_sgl->sge64[0].length = scp->request_bufflen;
487
488 return 1;
489 }
490
491 os_sgl = (struct scatterlist *)scp->request_buffer;
492 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
493 scp->sc_data_direction);
494
495 for (i = 0; i < sge_count; i++, os_sgl++) {
496 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
497 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
498 }
499
500 return sge_count;
501 }
502
503 /**
504 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
505 * @instance: Adapter soft state
506 * @scp: SCSI command
507 * @cmd: Command to be prepared in
508 *
509 * This function prepares CDB commands. These are typcially pass-through
510 * commands to the devices.
511 */
512 static int
513 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
514 struct megasas_cmd *cmd)
515 {
516 u32 sge_sz;
517 int sge_bytes;
518 u32 is_logical;
519 u32 device_id;
520 u16 flags = 0;
521 struct megasas_pthru_frame *pthru;
522
523 is_logical = MEGASAS_IS_LOGICAL(scp);
524 device_id = MEGASAS_DEV_INDEX(instance, scp);
525 pthru = (struct megasas_pthru_frame *)cmd->frame;
526
527 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
528 flags = MFI_FRAME_DIR_WRITE;
529 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
530 flags = MFI_FRAME_DIR_READ;
531 else if (scp->sc_data_direction == PCI_DMA_NONE)
532 flags = MFI_FRAME_DIR_NONE;
533
534 /*
535 * Prepare the DCDB frame
536 */
537 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
538 pthru->cmd_status = 0x0;
539 pthru->scsi_status = 0x0;
540 pthru->target_id = device_id;
541 pthru->lun = scp->device->lun;
542 pthru->cdb_len = scp->cmd_len;
543 pthru->timeout = 0;
544 pthru->flags = flags;
545 pthru->data_xfer_len = scp->request_bufflen;
546
547 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
548
549 /*
550 * Construct SGL
551 */
552 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
553 sizeof(struct megasas_sge32);
554
555 if (IS_DMA64) {
556 pthru->flags |= MFI_FRAME_SGL64;
557 pthru->sge_count = megasas_make_sgl64(instance, scp,
558 &pthru->sgl);
559 } else
560 pthru->sge_count = megasas_make_sgl32(instance, scp,
561 &pthru->sgl);
562
563 /*
564 * Sense info specific
565 */
566 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
567 pthru->sense_buf_phys_addr_hi = 0;
568 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
569
570 sge_bytes = sge_sz * pthru->sge_count;
571
572 /*
573 * Compute the total number of frames this command consumes. FW uses
574 * this number to pull sufficient number of frames from host memory.
575 */
576 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
577 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
578
579 if (cmd->frame_count > 7)
580 cmd->frame_count = 8;
581
582 return cmd->frame_count;
583 }
584
585 /**
586 * megasas_build_ldio - Prepares IOs to logical devices
587 * @instance: Adapter soft state
588 * @scp: SCSI command
589 * @cmd: Command to to be prepared
590 *
591 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
592 */
593 static int
594 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
595 struct megasas_cmd *cmd)
596 {
597 u32 sge_sz;
598 int sge_bytes;
599 u32 device_id;
600 u8 sc = scp->cmnd[0];
601 u16 flags = 0;
602 struct megasas_io_frame *ldio;
603
604 device_id = MEGASAS_DEV_INDEX(instance, scp);
605 ldio = (struct megasas_io_frame *)cmd->frame;
606
607 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
608 flags = MFI_FRAME_DIR_WRITE;
609 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
610 flags = MFI_FRAME_DIR_READ;
611
612 /*
613 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
614 */
615 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
616 ldio->cmd_status = 0x0;
617 ldio->scsi_status = 0x0;
618 ldio->target_id = device_id;
619 ldio->timeout = 0;
620 ldio->reserved_0 = 0;
621 ldio->pad_0 = 0;
622 ldio->flags = flags;
623 ldio->start_lba_hi = 0;
624 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
625
626 /*
627 * 6-byte READ(0x08) or WRITE(0x0A) cdb
628 */
629 if (scp->cmd_len == 6) {
630 ldio->lba_count = (u32) scp->cmnd[4];
631 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
632 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
633
634 ldio->start_lba_lo &= 0x1FFFFF;
635 }
636
637 /*
638 * 10-byte READ(0x28) or WRITE(0x2A) cdb
639 */
640 else if (scp->cmd_len == 10) {
641 ldio->lba_count = (u32) scp->cmnd[8] |
642 ((u32) scp->cmnd[7] << 8);
643 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
644 ((u32) scp->cmnd[3] << 16) |
645 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
646 }
647
648 /*
649 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
650 */
651 else if (scp->cmd_len == 12) {
652 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
653 ((u32) scp->cmnd[7] << 16) |
654 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
655
656 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
657 ((u32) scp->cmnd[3] << 16) |
658 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
659 }
660
661 /*
662 * 16-byte READ(0x88) or WRITE(0x8A) cdb
663 */
664 else if (scp->cmd_len == 16) {
665 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
666 ((u32) scp->cmnd[11] << 16) |
667 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
668
669 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
670 ((u32) scp->cmnd[7] << 16) |
671 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
672
673 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
674 ((u32) scp->cmnd[3] << 16) |
675 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
676
677 }
678
679 /*
680 * Construct SGL
681 */
682 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
683 sizeof(struct megasas_sge32);
684
685 if (IS_DMA64) {
686 ldio->flags |= MFI_FRAME_SGL64;
687 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
688 } else
689 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
690
691 /*
692 * Sense info specific
693 */
694 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
695 ldio->sense_buf_phys_addr_hi = 0;
696 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
697
698 sge_bytes = sge_sz * ldio->sge_count;
699
700 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
701 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
702
703 if (cmd->frame_count > 7)
704 cmd->frame_count = 8;
705
706 return cmd->frame_count;
707 }
708
709 /**
710 * megasas_is_ldio - Checks if the cmd is for logical drive
711 * @scmd: SCSI command
712 *
713 * Called by megasas_queue_command to find out if the command to be queued
714 * is a logical drive command
715 */
716 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
717 {
718 if (!MEGASAS_IS_LOGICAL(cmd))
719 return 0;
720 switch (cmd->cmnd[0]) {
721 case READ_10:
722 case WRITE_10:
723 case READ_12:
724 case WRITE_12:
725 case READ_6:
726 case WRITE_6:
727 case READ_16:
728 case WRITE_16:
729 return 1;
730 default:
731 return 0;
732 }
733 }
734
735 /**
736 * megasas_queue_command - Queue entry point
737 * @scmd: SCSI command to be queued
738 * @done: Callback entry point
739 */
740 static int
741 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
742 {
743 u32 frame_count;
744 unsigned long flags;
745 struct megasas_cmd *cmd;
746 struct megasas_instance *instance;
747
748 instance = (struct megasas_instance *)
749 scmd->device->host->hostdata;
750 scmd->scsi_done = done;
751 scmd->result = 0;
752
753 if (MEGASAS_IS_LOGICAL(scmd) &&
754 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
755 scmd->result = DID_BAD_TARGET << 16;
756 goto out_done;
757 }
758
759 cmd = megasas_get_cmd(instance);
760 if (!cmd)
761 return SCSI_MLQUEUE_HOST_BUSY;
762
763 /*
764 * Logical drive command
765 */
766 if (megasas_is_ldio(scmd))
767 frame_count = megasas_build_ldio(instance, scmd, cmd);
768 else
769 frame_count = megasas_build_dcdb(instance, scmd, cmd);
770
771 if (!frame_count)
772 goto out_return_cmd;
773
774 cmd->scmd = scmd;
775 scmd->SCp.ptr = (char *)cmd;
776 scmd->SCp.sent_command = jiffies;
777
778 /*
779 * Issue the command to the FW
780 */
781 spin_lock_irqsave(&instance->instance_lock, flags);
782 instance->fw_outstanding++;
783 spin_unlock_irqrestore(&instance->instance_lock, flags);
784
785 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
786
787 return 0;
788
789 out_return_cmd:
790 megasas_return_cmd(instance, cmd);
791 out_done:
792 done(scmd);
793 return 0;
794 }
795
796 static int megasas_slave_configure(struct scsi_device *sdev)
797 {
798 /*
799 * Don't export physical disk devices to the disk driver.
800 *
801 * FIXME: Currently we don't export them to the midlayer at all.
802 * That will be fixed once LSI engineers have audited the
803 * firmware for possible issues.
804 */
805 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
806 return -ENXIO;
807 return 0;
808 }
809
810 /**
811 * megasas_wait_for_outstanding - Wait for all outstanding cmds
812 * @instance: Adapter soft state
813 *
814 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
815 * complete all its outstanding commands. Returns error if one or more IOs
816 * are pending after this time period. It also marks the controller dead.
817 */
818 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
819 {
820 int i;
821 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
822
823 for (i = 0; i < wait_time; i++) {
824
825 if (!instance->fw_outstanding)
826 break;
827
828 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
829 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
830 "commands to complete\n", i,
831 instance->fw_outstanding);
832 }
833
834 msleep(1000);
835 }
836
837 if (instance->fw_outstanding) {
838 instance->hw_crit_error = 1;
839 return FAILED;
840 }
841
842 return SUCCESS;
843 }
844
845 /**
846 * megasas_generic_reset - Generic reset routine
847 * @scmd: Mid-layer SCSI command
848 *
849 * This routine implements a generic reset handler for device, bus and host
850 * reset requests. Device, bus and host specific reset handlers can use this
851 * function after they do their specific tasks.
852 */
853 static int megasas_generic_reset(struct scsi_cmnd *scmd)
854 {
855 int ret_val;
856 struct megasas_instance *instance;
857
858 instance = (struct megasas_instance *)scmd->device->host->hostdata;
859
860 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
861 scmd->serial_number, scmd->cmnd[0]);
862
863 if (instance->hw_crit_error) {
864 printk(KERN_ERR "megasas: cannot recover from previous reset "
865 "failures\n");
866 return FAILED;
867 }
868
869 ret_val = megasas_wait_for_outstanding(instance);
870 if (ret_val == SUCCESS)
871 printk(KERN_NOTICE "megasas: reset successful \n");
872 else
873 printk(KERN_ERR "megasas: failed to do reset\n");
874
875 return ret_val;
876 }
877
878 static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
879 {
880 unsigned long seconds;
881
882 if (scmd->SCp.ptr) {
883 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
884
885 if (seconds < 90) {
886 return EH_RESET_TIMER;
887 } else {
888 return EH_NOT_HANDLED;
889 }
890 }
891
892 return EH_HANDLED;
893 }
894
895 /**
896 * megasas_reset_device - Device reset handler entry point
897 */
898 static int megasas_reset_device(struct scsi_cmnd *scmd)
899 {
900 int ret;
901
902 /*
903 * First wait for all commands to complete
904 */
905 ret = megasas_generic_reset(scmd);
906
907 return ret;
908 }
909
910 /**
911 * megasas_reset_bus_host - Bus & host reset handler entry point
912 */
913 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
914 {
915 int ret;
916
917 /*
918 * Frist wait for all commands to complete
919 */
920 ret = megasas_generic_reset(scmd);
921
922 return ret;
923 }
924
925 /**
926 * megasas_service_aen - Processes an event notification
927 * @instance: Adapter soft state
928 * @cmd: AEN command completed by the ISR
929 *
930 * For AEN, driver sends a command down to FW that is held by the FW till an
931 * event occurs. When an event of interest occurs, FW completes the command
932 * that it was previously holding.
933 *
934 * This routines sends SIGIO signal to processes that have registered with the
935 * driver for AEN.
936 */
937 static void
938 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
939 {
940 /*
941 * Don't signal app if it is just an aborted previously registered aen
942 */
943 if (!cmd->abort_aen)
944 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
945 else
946 cmd->abort_aen = 0;
947
948 instance->aen_cmd = NULL;
949 megasas_return_cmd(instance, cmd);
950 }
951
952 /*
953 * Scsi host template for megaraid_sas driver
954 */
955 static struct scsi_host_template megasas_template = {
956
957 .module = THIS_MODULE,
958 .name = "LSI Logic SAS based MegaRAID driver",
959 .proc_name = "megaraid_sas",
960 .slave_configure = megasas_slave_configure,
961 .queuecommand = megasas_queue_command,
962 .eh_device_reset_handler = megasas_reset_device,
963 .eh_bus_reset_handler = megasas_reset_bus_host,
964 .eh_host_reset_handler = megasas_reset_bus_host,
965 .eh_timed_out = megasas_reset_timer,
966 .use_clustering = ENABLE_CLUSTERING,
967 };
968
969 /**
970 * megasas_complete_int_cmd - Completes an internal command
971 * @instance: Adapter soft state
972 * @cmd: Command to be completed
973 *
974 * The megasas_issue_blocked_cmd() function waits for a command to complete
975 * after it issues a command. This function wakes up that waiting routine by
976 * calling wake_up() on the wait queue.
977 */
978 static void
979 megasas_complete_int_cmd(struct megasas_instance *instance,
980 struct megasas_cmd *cmd)
981 {
982 cmd->cmd_status = cmd->frame->io.cmd_status;
983
984 if (cmd->cmd_status == ENODATA) {
985 cmd->cmd_status = 0;
986 }
987 wake_up(&instance->int_cmd_wait_q);
988 }
989
990 /**
991 * megasas_complete_abort - Completes aborting a command
992 * @instance: Adapter soft state
993 * @cmd: Cmd that was issued to abort another cmd
994 *
995 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
996 * after it issues an abort on a previously issued command. This function
997 * wakes up all functions waiting on the same wait queue.
998 */
999 static void
1000 megasas_complete_abort(struct megasas_instance *instance,
1001 struct megasas_cmd *cmd)
1002 {
1003 if (cmd->sync_cmd) {
1004 cmd->sync_cmd = 0;
1005 cmd->cmd_status = 0;
1006 wake_up(&instance->abort_cmd_wait_q);
1007 }
1008
1009 return;
1010 }
1011
1012 /**
1013 * megasas_unmap_sgbuf - Unmap SG buffers
1014 * @instance: Adapter soft state
1015 * @cmd: Completed command
1016 */
1017 static void
1018 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
1019 {
1020 dma_addr_t buf_h;
1021 u8 opcode;
1022
1023 if (cmd->scmd->use_sg) {
1024 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
1025 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
1026 return;
1027 }
1028
1029 if (!cmd->scmd->request_bufflen)
1030 return;
1031
1032 opcode = cmd->frame->hdr.cmd;
1033
1034 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
1035 if (IS_DMA64)
1036 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
1037 else
1038 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
1039 } else {
1040 if (IS_DMA64)
1041 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
1042 else
1043 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
1044 }
1045
1046 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
1047 cmd->scmd->sc_data_direction);
1048 return;
1049 }
1050
1051 /**
1052 * megasas_complete_cmd - Completes a command
1053 * @instance: Adapter soft state
1054 * @cmd: Command to be completed
1055 * @alt_status: If non-zero, use this value as status to
1056 * SCSI mid-layer instead of the value returned
1057 * by the FW. This should be used if caller wants
1058 * an alternate status (as in the case of aborted
1059 * commands)
1060 */
1061 static void
1062 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1063 u8 alt_status)
1064 {
1065 int exception = 0;
1066 struct megasas_header *hdr = &cmd->frame->hdr;
1067 unsigned long flags;
1068
1069 if (cmd->scmd) {
1070 cmd->scmd->SCp.ptr = (char *)0;
1071 }
1072
1073 switch (hdr->cmd) {
1074
1075 case MFI_CMD_PD_SCSI_IO:
1076 case MFI_CMD_LD_SCSI_IO:
1077
1078 /*
1079 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1080 * issued either through an IO path or an IOCTL path. If it
1081 * was via IOCTL, we will send it to internal completion.
1082 */
1083 if (cmd->sync_cmd) {
1084 cmd->sync_cmd = 0;
1085 megasas_complete_int_cmd(instance, cmd);
1086 break;
1087 }
1088
1089 case MFI_CMD_LD_READ:
1090 case MFI_CMD_LD_WRITE:
1091
1092 if (alt_status) {
1093 cmd->scmd->result = alt_status << 16;
1094 exception = 1;
1095 }
1096
1097 if (exception) {
1098
1099 spin_lock_irqsave(&instance->instance_lock, flags);
1100 instance->fw_outstanding--;
1101 spin_unlock_irqrestore(&instance->instance_lock, flags);
1102
1103 megasas_unmap_sgbuf(instance, cmd);
1104 cmd->scmd->scsi_done(cmd->scmd);
1105 megasas_return_cmd(instance, cmd);
1106
1107 break;
1108 }
1109
1110 switch (hdr->cmd_status) {
1111
1112 case MFI_STAT_OK:
1113 cmd->scmd->result = DID_OK << 16;
1114 break;
1115
1116 case MFI_STAT_SCSI_IO_FAILED:
1117 case MFI_STAT_LD_INIT_IN_PROGRESS:
1118 cmd->scmd->result =
1119 (DID_ERROR << 16) | hdr->scsi_status;
1120 break;
1121
1122 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1123
1124 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1125
1126 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1127 memset(cmd->scmd->sense_buffer, 0,
1128 SCSI_SENSE_BUFFERSIZE);
1129 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1130 hdr->sense_len);
1131
1132 cmd->scmd->result |= DRIVER_SENSE << 24;
1133 }
1134
1135 break;
1136
1137 case MFI_STAT_LD_OFFLINE:
1138 case MFI_STAT_DEVICE_NOT_FOUND:
1139 cmd->scmd->result = DID_BAD_TARGET << 16;
1140 break;
1141
1142 default:
1143 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1144 hdr->cmd_status);
1145 cmd->scmd->result = DID_ERROR << 16;
1146 break;
1147 }
1148
1149 spin_lock_irqsave(&instance->instance_lock, flags);
1150 instance->fw_outstanding--;
1151 spin_unlock_irqrestore(&instance->instance_lock, flags);
1152
1153 megasas_unmap_sgbuf(instance, cmd);
1154 cmd->scmd->scsi_done(cmd->scmd);
1155 megasas_return_cmd(instance, cmd);
1156
1157 break;
1158
1159 case MFI_CMD_SMP:
1160 case MFI_CMD_STP:
1161 case MFI_CMD_DCMD:
1162
1163 /*
1164 * See if got an event notification
1165 */
1166 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1167 megasas_service_aen(instance, cmd);
1168 else
1169 megasas_complete_int_cmd(instance, cmd);
1170
1171 break;
1172
1173 case MFI_CMD_ABORT:
1174 /*
1175 * Cmd issued to abort another cmd returned
1176 */
1177 megasas_complete_abort(instance, cmd);
1178 break;
1179
1180 default:
1181 printk("megasas: Unknown command completed! [0x%X]\n",
1182 hdr->cmd);
1183 break;
1184 }
1185 }
1186
1187 /**
1188 * megasas_deplete_reply_queue - Processes all completed commands
1189 * @instance: Adapter soft state
1190 * @alt_status: Alternate status to be returned to
1191 * SCSI mid-layer instead of the status
1192 * returned by the FW
1193 */
1194 static int
1195 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1196 {
1197 u32 producer;
1198 u32 consumer;
1199 u32 context;
1200 struct megasas_cmd *cmd;
1201
1202 /*
1203 * Check if it is our interrupt
1204 * Clear the interrupt
1205 */
1206 if(instance->instancet->clear_intr(instance->reg_set))
1207 return IRQ_NONE;
1208
1209 producer = *instance->producer;
1210 consumer = *instance->consumer;
1211
1212 while (consumer != producer) {
1213 context = instance->reply_queue[consumer];
1214
1215 cmd = instance->cmd_list[context];
1216
1217 megasas_complete_cmd(instance, cmd, alt_status);
1218
1219 consumer++;
1220 if (consumer == (instance->max_fw_cmds + 1)) {
1221 consumer = 0;
1222 }
1223 }
1224
1225 *instance->consumer = producer;
1226
1227 return IRQ_HANDLED;
1228 }
1229
1230 /**
1231 * megasas_isr - isr entry point
1232 */
1233 static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1234 {
1235 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1236 DID_OK);
1237 }
1238
1239 /**
1240 * megasas_transition_to_ready - Move the FW to READY state
1241 * @instance: Adapter soft state
1242 *
1243 * During the initialization, FW passes can potentially be in any one of
1244 * several possible states. If the FW in operational, waiting-for-handshake
1245 * states, driver must take steps to bring it to ready state. Otherwise, it
1246 * has to wait for the ready state.
1247 */
1248 static int
1249 megasas_transition_to_ready(struct megasas_instance* instance)
1250 {
1251 int i;
1252 u8 max_wait;
1253 u32 fw_state;
1254 u32 cur_state;
1255
1256 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1257
1258 while (fw_state != MFI_STATE_READY) {
1259
1260 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1261 " state\n");
1262 switch (fw_state) {
1263
1264 case MFI_STATE_FAULT:
1265
1266 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1267 return -ENODEV;
1268
1269 case MFI_STATE_WAIT_HANDSHAKE:
1270 /*
1271 * Set the CLR bit in inbound doorbell
1272 */
1273 writel(MFI_INIT_CLEAR_HANDSHAKE,
1274 &instance->reg_set->inbound_doorbell);
1275
1276 max_wait = 2;
1277 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1278 break;
1279
1280 case MFI_STATE_OPERATIONAL:
1281 /*
1282 * Bring it to READY state; assuming max wait 2 secs
1283 */
1284 megasas_disable_intr(instance->reg_set);
1285 writel(MFI_INIT_READY, &instance->reg_set->inbound_doorbell);
1286
1287 max_wait = 10;
1288 cur_state = MFI_STATE_OPERATIONAL;
1289 break;
1290
1291 case MFI_STATE_UNDEFINED:
1292 /*
1293 * This state should not last for more than 2 seconds
1294 */
1295 max_wait = 2;
1296 cur_state = MFI_STATE_UNDEFINED;
1297 break;
1298
1299 case MFI_STATE_BB_INIT:
1300 max_wait = 2;
1301 cur_state = MFI_STATE_BB_INIT;
1302 break;
1303
1304 case MFI_STATE_FW_INIT:
1305 max_wait = 20;
1306 cur_state = MFI_STATE_FW_INIT;
1307 break;
1308
1309 case MFI_STATE_FW_INIT_2:
1310 max_wait = 20;
1311 cur_state = MFI_STATE_FW_INIT_2;
1312 break;
1313
1314 case MFI_STATE_DEVICE_SCAN:
1315 max_wait = 20;
1316 cur_state = MFI_STATE_DEVICE_SCAN;
1317 break;
1318
1319 case MFI_STATE_FLUSH_CACHE:
1320 max_wait = 20;
1321 cur_state = MFI_STATE_FLUSH_CACHE;
1322 break;
1323
1324 default:
1325 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1326 fw_state);
1327 return -ENODEV;
1328 }
1329
1330 /*
1331 * The cur_state should not last for more than max_wait secs
1332 */
1333 for (i = 0; i < (max_wait * 1000); i++) {
1334 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1335 MFI_STATE_MASK ;
1336
1337 if (fw_state == cur_state) {
1338 msleep(1);
1339 } else
1340 break;
1341 }
1342
1343 /*
1344 * Return error if fw_state hasn't changed after max_wait
1345 */
1346 if (fw_state == cur_state) {
1347 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1348 "in %d secs\n", fw_state, max_wait);
1349 return -ENODEV;
1350 }
1351 };
1352
1353 return 0;
1354 }
1355
1356 /**
1357 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1358 * @instance: Adapter soft state
1359 */
1360 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1361 {
1362 int i;
1363 u32 max_cmd = instance->max_fw_cmds;
1364 struct megasas_cmd *cmd;
1365
1366 if (!instance->frame_dma_pool)
1367 return;
1368
1369 /*
1370 * Return all frames to pool
1371 */
1372 for (i = 0; i < max_cmd; i++) {
1373
1374 cmd = instance->cmd_list[i];
1375
1376 if (cmd->frame)
1377 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1378 cmd->frame_phys_addr);
1379
1380 if (cmd->sense)
1381 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1382 cmd->sense_phys_addr);
1383 }
1384
1385 /*
1386 * Now destroy the pool itself
1387 */
1388 pci_pool_destroy(instance->frame_dma_pool);
1389 pci_pool_destroy(instance->sense_dma_pool);
1390
1391 instance->frame_dma_pool = NULL;
1392 instance->sense_dma_pool = NULL;
1393 }
1394
1395 /**
1396 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1397 * @instance: Adapter soft state
1398 *
1399 * Each command packet has an embedded DMA memory buffer that is used for
1400 * filling MFI frame and the SG list that immediately follows the frame. This
1401 * function creates those DMA memory buffers for each command packet by using
1402 * PCI pool facility.
1403 */
1404 static int megasas_create_frame_pool(struct megasas_instance *instance)
1405 {
1406 int i;
1407 u32 max_cmd;
1408 u32 sge_sz;
1409 u32 sgl_sz;
1410 u32 total_sz;
1411 u32 frame_count;
1412 struct megasas_cmd *cmd;
1413
1414 max_cmd = instance->max_fw_cmds;
1415
1416 /*
1417 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1418 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1419 */
1420 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1421 sizeof(struct megasas_sge32);
1422
1423 /*
1424 * Calculated the number of 64byte frames required for SGL
1425 */
1426 sgl_sz = sge_sz * instance->max_num_sge;
1427 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1428
1429 /*
1430 * We need one extra frame for the MFI command
1431 */
1432 frame_count++;
1433
1434 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1435 /*
1436 * Use DMA pool facility provided by PCI layer
1437 */
1438 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1439 instance->pdev, total_sz, 64,
1440 0);
1441
1442 if (!instance->frame_dma_pool) {
1443 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1444 return -ENOMEM;
1445 }
1446
1447 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1448 instance->pdev, 128, 4, 0);
1449
1450 if (!instance->sense_dma_pool) {
1451 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1452
1453 pci_pool_destroy(instance->frame_dma_pool);
1454 instance->frame_dma_pool = NULL;
1455
1456 return -ENOMEM;
1457 }
1458
1459 /*
1460 * Allocate and attach a frame to each of the commands in cmd_list.
1461 * By making cmd->index as the context instead of the &cmd, we can
1462 * always use 32bit context regardless of the architecture
1463 */
1464 for (i = 0; i < max_cmd; i++) {
1465
1466 cmd = instance->cmd_list[i];
1467
1468 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1469 GFP_KERNEL, &cmd->frame_phys_addr);
1470
1471 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1472 GFP_KERNEL, &cmd->sense_phys_addr);
1473
1474 /*
1475 * megasas_teardown_frame_pool() takes care of freeing
1476 * whatever has been allocated
1477 */
1478 if (!cmd->frame || !cmd->sense) {
1479 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1480 megasas_teardown_frame_pool(instance);
1481 return -ENOMEM;
1482 }
1483
1484 cmd->frame->io.context = cmd->index;
1485 }
1486
1487 return 0;
1488 }
1489
1490 /**
1491 * megasas_free_cmds - Free all the cmds in the free cmd pool
1492 * @instance: Adapter soft state
1493 */
1494 static void megasas_free_cmds(struct megasas_instance *instance)
1495 {
1496 int i;
1497 /* First free the MFI frame pool */
1498 megasas_teardown_frame_pool(instance);
1499
1500 /* Free all the commands in the cmd_list */
1501 for (i = 0; i < instance->max_fw_cmds; i++)
1502 kfree(instance->cmd_list[i]);
1503
1504 /* Free the cmd_list buffer itself */
1505 kfree(instance->cmd_list);
1506 instance->cmd_list = NULL;
1507
1508 INIT_LIST_HEAD(&instance->cmd_pool);
1509 }
1510
1511 /**
1512 * megasas_alloc_cmds - Allocates the command packets
1513 * @instance: Adapter soft state
1514 *
1515 * Each command that is issued to the FW, whether IO commands from the OS or
1516 * internal commands like IOCTLs, are wrapped in local data structure called
1517 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1518 * the FW.
1519 *
1520 * Each frame has a 32-bit field called context (tag). This context is used
1521 * to get back the megasas_cmd from the frame when a frame gets completed in
1522 * the ISR. Typically the address of the megasas_cmd itself would be used as
1523 * the context. But we wanted to keep the differences between 32 and 64 bit
1524 * systems to the mininum. We always use 32 bit integers for the context. In
1525 * this driver, the 32 bit values are the indices into an array cmd_list.
1526 * This array is used only to look up the megasas_cmd given the context. The
1527 * free commands themselves are maintained in a linked list called cmd_pool.
1528 */
1529 static int megasas_alloc_cmds(struct megasas_instance *instance)
1530 {
1531 int i;
1532 int j;
1533 u32 max_cmd;
1534 struct megasas_cmd *cmd;
1535
1536 max_cmd = instance->max_fw_cmds;
1537
1538 /*
1539 * instance->cmd_list is an array of struct megasas_cmd pointers.
1540 * Allocate the dynamic array first and then allocate individual
1541 * commands.
1542 */
1543 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1544 GFP_KERNEL);
1545
1546 if (!instance->cmd_list) {
1547 printk(KERN_DEBUG "megasas: out of memory\n");
1548 return -ENOMEM;
1549 }
1550
1551 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1552
1553 for (i = 0; i < max_cmd; i++) {
1554 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1555 GFP_KERNEL);
1556
1557 if (!instance->cmd_list[i]) {
1558
1559 for (j = 0; j < i; j++)
1560 kfree(instance->cmd_list[j]);
1561
1562 kfree(instance->cmd_list);
1563 instance->cmd_list = NULL;
1564
1565 return -ENOMEM;
1566 }
1567 }
1568
1569 /*
1570 * Add all the commands to command pool (instance->cmd_pool)
1571 */
1572 for (i = 0; i < max_cmd; i++) {
1573 cmd = instance->cmd_list[i];
1574 memset(cmd, 0, sizeof(struct megasas_cmd));
1575 cmd->index = i;
1576 cmd->instance = instance;
1577
1578 list_add_tail(&cmd->list, &instance->cmd_pool);
1579 }
1580
1581 /*
1582 * Create a frame pool and assign one frame to each cmd
1583 */
1584 if (megasas_create_frame_pool(instance)) {
1585 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1586 megasas_free_cmds(instance);
1587 }
1588
1589 return 0;
1590 }
1591
1592 /**
1593 * megasas_get_controller_info - Returns FW's controller structure
1594 * @instance: Adapter soft state
1595 * @ctrl_info: Controller information structure
1596 *
1597 * Issues an internal command (DCMD) to get the FW's controller structure.
1598 * This information is mainly used to find out the maximum IO transfer per
1599 * command supported by the FW.
1600 */
1601 static int
1602 megasas_get_ctrl_info(struct megasas_instance *instance,
1603 struct megasas_ctrl_info *ctrl_info)
1604 {
1605 int ret = 0;
1606 struct megasas_cmd *cmd;
1607 struct megasas_dcmd_frame *dcmd;
1608 struct megasas_ctrl_info *ci;
1609 dma_addr_t ci_h = 0;
1610
1611 cmd = megasas_get_cmd(instance);
1612
1613 if (!cmd) {
1614 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1615 return -ENOMEM;
1616 }
1617
1618 dcmd = &cmd->frame->dcmd;
1619
1620 ci = pci_alloc_consistent(instance->pdev,
1621 sizeof(struct megasas_ctrl_info), &ci_h);
1622
1623 if (!ci) {
1624 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1625 megasas_return_cmd(instance, cmd);
1626 return -ENOMEM;
1627 }
1628
1629 memset(ci, 0, sizeof(*ci));
1630 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1631
1632 dcmd->cmd = MFI_CMD_DCMD;
1633 dcmd->cmd_status = 0xFF;
1634 dcmd->sge_count = 1;
1635 dcmd->flags = MFI_FRAME_DIR_READ;
1636 dcmd->timeout = 0;
1637 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1638 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1639 dcmd->sgl.sge32[0].phys_addr = ci_h;
1640 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1641
1642 if (!megasas_issue_polled(instance, cmd)) {
1643 ret = 0;
1644 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1645 } else {
1646 ret = -1;
1647 }
1648
1649 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1650 ci, ci_h);
1651
1652 megasas_return_cmd(instance, cmd);
1653 return ret;
1654 }
1655
1656 /**
1657 * megasas_init_mfi - Initializes the FW
1658 * @instance: Adapter soft state
1659 *
1660 * This is the main function for initializing MFI firmware.
1661 */
1662 static int megasas_init_mfi(struct megasas_instance *instance)
1663 {
1664 u32 context_sz;
1665 u32 reply_q_sz;
1666 u32 max_sectors_1;
1667 u32 max_sectors_2;
1668 struct megasas_register_set __iomem *reg_set;
1669
1670 struct megasas_cmd *cmd;
1671 struct megasas_ctrl_info *ctrl_info;
1672
1673 struct megasas_init_frame *init_frame;
1674 struct megasas_init_queue_info *initq_info;
1675 dma_addr_t init_frame_h;
1676 dma_addr_t initq_info_h;
1677
1678 /*
1679 * Map the message registers
1680 */
1681 instance->base_addr = pci_resource_start(instance->pdev, 0);
1682
1683 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1684 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1685 return -EBUSY;
1686 }
1687
1688 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1689
1690 if (!instance->reg_set) {
1691 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1692 goto fail_ioremap;
1693 }
1694
1695 reg_set = instance->reg_set;
1696
1697 switch(instance->pdev->device)
1698 {
1699 case PCI_DEVICE_ID_LSI_SAS1078R:
1700 instance->instancet = &megasas_instance_template_ppc;
1701 break;
1702 case PCI_DEVICE_ID_LSI_SAS1064R:
1703 case PCI_DEVICE_ID_DELL_PERC5:
1704 default:
1705 instance->instancet = &megasas_instance_template_xscale;
1706 break;
1707 }
1708
1709 /*
1710 * We expect the FW state to be READY
1711 */
1712 if (megasas_transition_to_ready(instance))
1713 goto fail_ready_state;
1714
1715 /*
1716 * Get various operational parameters from status register
1717 */
1718 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1719 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1720 0x10;
1721 /*
1722 * Create a pool of commands
1723 */
1724 if (megasas_alloc_cmds(instance))
1725 goto fail_alloc_cmds;
1726
1727 /*
1728 * Allocate memory for reply queue. Length of reply queue should
1729 * be _one_ more than the maximum commands handled by the firmware.
1730 *
1731 * Note: When FW completes commands, it places corresponding contex
1732 * values in this circular reply queue. This circular queue is a fairly
1733 * typical producer-consumer queue. FW is the producer (of completed
1734 * commands) and the driver is the consumer.
1735 */
1736 context_sz = sizeof(u32);
1737 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1738
1739 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1740 reply_q_sz,
1741 &instance->reply_queue_h);
1742
1743 if (!instance->reply_queue) {
1744 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1745 goto fail_reply_queue;
1746 }
1747
1748 /*
1749 * Prepare a init frame. Note the init frame points to queue info
1750 * structure. Each frame has SGL allocated after first 64 bytes. For
1751 * this frame - since we don't need any SGL - we use SGL's space as
1752 * queue info structure
1753 *
1754 * We will not get a NULL command below. We just created the pool.
1755 */
1756 cmd = megasas_get_cmd(instance);
1757
1758 init_frame = (struct megasas_init_frame *)cmd->frame;
1759 initq_info = (struct megasas_init_queue_info *)
1760 ((unsigned long)init_frame + 64);
1761
1762 init_frame_h = cmd->frame_phys_addr;
1763 initq_info_h = init_frame_h + 64;
1764
1765 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1766 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1767
1768 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1769 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1770
1771 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1772 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1773
1774 init_frame->cmd = MFI_CMD_INIT;
1775 init_frame->cmd_status = 0xFF;
1776 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1777
1778 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1779
1780 /*
1781 * Issue the init frame in polled mode
1782 */
1783 if (megasas_issue_polled(instance, cmd)) {
1784 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1785 goto fail_fw_init;
1786 }
1787
1788 megasas_return_cmd(instance, cmd);
1789
1790 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1791
1792 /*
1793 * Compute the max allowed sectors per IO: The controller info has two
1794 * limits on max sectors. Driver should use the minimum of these two.
1795 *
1796 * 1 << stripe_sz_ops.min = max sectors per strip
1797 *
1798 * Note that older firmwares ( < FW ver 30) didn't report information
1799 * to calculate max_sectors_1. So the number ended up as zero always.
1800 */
1801 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1802
1803 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1804 ctrl_info->max_strips_per_io;
1805 max_sectors_2 = ctrl_info->max_request_size;
1806
1807 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1808 ? max_sectors_1 : max_sectors_2;
1809 } else
1810 instance->max_sectors_per_req = instance->max_num_sge *
1811 PAGE_SIZE / 512;
1812
1813 kfree(ctrl_info);
1814
1815 return 0;
1816
1817 fail_fw_init:
1818 megasas_return_cmd(instance, cmd);
1819
1820 pci_free_consistent(instance->pdev, reply_q_sz,
1821 instance->reply_queue, instance->reply_queue_h);
1822 fail_reply_queue:
1823 megasas_free_cmds(instance);
1824
1825 fail_alloc_cmds:
1826 fail_ready_state:
1827 iounmap(instance->reg_set);
1828
1829 fail_ioremap:
1830 pci_release_regions(instance->pdev);
1831
1832 return -EINVAL;
1833 }
1834
1835 /**
1836 * megasas_release_mfi - Reverses the FW initialization
1837 * @intance: Adapter soft state
1838 */
1839 static void megasas_release_mfi(struct megasas_instance *instance)
1840 {
1841 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1842
1843 pci_free_consistent(instance->pdev, reply_q_sz,
1844 instance->reply_queue, instance->reply_queue_h);
1845
1846 megasas_free_cmds(instance);
1847
1848 iounmap(instance->reg_set);
1849
1850 pci_release_regions(instance->pdev);
1851 }
1852
1853 /**
1854 * megasas_get_seq_num - Gets latest event sequence numbers
1855 * @instance: Adapter soft state
1856 * @eli: FW event log sequence numbers information
1857 *
1858 * FW maintains a log of all events in a non-volatile area. Upper layers would
1859 * usually find out the latest sequence number of the events, the seq number at
1860 * the boot etc. They would "read" all the events below the latest seq number
1861 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1862 * number), they would subsribe to AEN (asynchronous event notification) and
1863 * wait for the events to happen.
1864 */
1865 static int
1866 megasas_get_seq_num(struct megasas_instance *instance,
1867 struct megasas_evt_log_info *eli)
1868 {
1869 struct megasas_cmd *cmd;
1870 struct megasas_dcmd_frame *dcmd;
1871 struct megasas_evt_log_info *el_info;
1872 dma_addr_t el_info_h = 0;
1873
1874 cmd = megasas_get_cmd(instance);
1875
1876 if (!cmd) {
1877 return -ENOMEM;
1878 }
1879
1880 dcmd = &cmd->frame->dcmd;
1881 el_info = pci_alloc_consistent(instance->pdev,
1882 sizeof(struct megasas_evt_log_info),
1883 &el_info_h);
1884
1885 if (!el_info) {
1886 megasas_return_cmd(instance, cmd);
1887 return -ENOMEM;
1888 }
1889
1890 memset(el_info, 0, sizeof(*el_info));
1891 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1892
1893 dcmd->cmd = MFI_CMD_DCMD;
1894 dcmd->cmd_status = 0x0;
1895 dcmd->sge_count = 1;
1896 dcmd->flags = MFI_FRAME_DIR_READ;
1897 dcmd->timeout = 0;
1898 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1899 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1900 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1901 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1902
1903 megasas_issue_blocked_cmd(instance, cmd);
1904
1905 /*
1906 * Copy the data back into callers buffer
1907 */
1908 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1909
1910 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1911 el_info, el_info_h);
1912
1913 megasas_return_cmd(instance, cmd);
1914
1915 return 0;
1916 }
1917
1918 /**
1919 * megasas_register_aen - Registers for asynchronous event notification
1920 * @instance: Adapter soft state
1921 * @seq_num: The starting sequence number
1922 * @class_locale: Class of the event
1923 *
1924 * This function subscribes for AEN for events beyond the @seq_num. It requests
1925 * to be notified if and only if the event is of type @class_locale
1926 */
1927 static int
1928 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1929 u32 class_locale_word)
1930 {
1931 int ret_val;
1932 struct megasas_cmd *cmd;
1933 struct megasas_dcmd_frame *dcmd;
1934 union megasas_evt_class_locale curr_aen;
1935 union megasas_evt_class_locale prev_aen;
1936
1937 /*
1938 * If there an AEN pending already (aen_cmd), check if the
1939 * class_locale of that pending AEN is inclusive of the new
1940 * AEN request we currently have. If it is, then we don't have
1941 * to do anything. In other words, whichever events the current
1942 * AEN request is subscribing to, have already been subscribed
1943 * to.
1944 *
1945 * If the old_cmd is _not_ inclusive, then we have to abort
1946 * that command, form a class_locale that is superset of both
1947 * old and current and re-issue to the FW
1948 */
1949
1950 curr_aen.word = class_locale_word;
1951
1952 if (instance->aen_cmd) {
1953
1954 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1955
1956 /*
1957 * A class whose enum value is smaller is inclusive of all
1958 * higher values. If a PROGRESS (= -1) was previously
1959 * registered, then a new registration requests for higher
1960 * classes need not be sent to FW. They are automatically
1961 * included.
1962 *
1963 * Locale numbers don't have such hierarchy. They are bitmap
1964 * values
1965 */
1966 if ((prev_aen.members.class <= curr_aen.members.class) &&
1967 !((prev_aen.members.locale & curr_aen.members.locale) ^
1968 curr_aen.members.locale)) {
1969 /*
1970 * Previously issued event registration includes
1971 * current request. Nothing to do.
1972 */
1973 return 0;
1974 } else {
1975 curr_aen.members.locale |= prev_aen.members.locale;
1976
1977 if (prev_aen.members.class < curr_aen.members.class)
1978 curr_aen.members.class = prev_aen.members.class;
1979
1980 instance->aen_cmd->abort_aen = 1;
1981 ret_val = megasas_issue_blocked_abort_cmd(instance,
1982 instance->
1983 aen_cmd);
1984
1985 if (ret_val) {
1986 printk(KERN_DEBUG "megasas: Failed to abort "
1987 "previous AEN command\n");
1988 return ret_val;
1989 }
1990 }
1991 }
1992
1993 cmd = megasas_get_cmd(instance);
1994
1995 if (!cmd)
1996 return -ENOMEM;
1997
1998 dcmd = &cmd->frame->dcmd;
1999
2000 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2001
2002 /*
2003 * Prepare DCMD for aen registration
2004 */
2005 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2006
2007 dcmd->cmd = MFI_CMD_DCMD;
2008 dcmd->cmd_status = 0x0;
2009 dcmd->sge_count = 1;
2010 dcmd->flags = MFI_FRAME_DIR_READ;
2011 dcmd->timeout = 0;
2012 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2013 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2014 dcmd->mbox.w[0] = seq_num;
2015 dcmd->mbox.w[1] = curr_aen.word;
2016 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2017 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2018
2019 /*
2020 * Store reference to the cmd used to register for AEN. When an
2021 * application wants us to register for AEN, we have to abort this
2022 * cmd and re-register with a new EVENT LOCALE supplied by that app
2023 */
2024 instance->aen_cmd = cmd;
2025
2026 /*
2027 * Issue the aen registration frame
2028 */
2029 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2030
2031 return 0;
2032 }
2033
2034 /**
2035 * megasas_start_aen - Subscribes to AEN during driver load time
2036 * @instance: Adapter soft state
2037 */
2038 static int megasas_start_aen(struct megasas_instance *instance)
2039 {
2040 struct megasas_evt_log_info eli;
2041 union megasas_evt_class_locale class_locale;
2042
2043 /*
2044 * Get the latest sequence number from FW
2045 */
2046 memset(&eli, 0, sizeof(eli));
2047
2048 if (megasas_get_seq_num(instance, &eli))
2049 return -1;
2050
2051 /*
2052 * Register AEN with FW for latest sequence number plus 1
2053 */
2054 class_locale.members.reserved = 0;
2055 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2056 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2057
2058 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2059 class_locale.word);
2060 }
2061
2062 /**
2063 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2064 * @instance: Adapter soft state
2065 */
2066 static int megasas_io_attach(struct megasas_instance *instance)
2067 {
2068 struct Scsi_Host *host = instance->host;
2069
2070 /*
2071 * Export parameters required by SCSI mid-layer
2072 */
2073 host->irq = instance->pdev->irq;
2074 host->unique_id = instance->unique_id;
2075 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2076 host->this_id = instance->init_id;
2077 host->sg_tablesize = instance->max_num_sge;
2078 host->max_sectors = instance->max_sectors_per_req;
2079 host->cmd_per_lun = 128;
2080 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2081 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2082 host->max_lun = MEGASAS_MAX_LUN;
2083 host->max_cmd_len = 16;
2084
2085 /*
2086 * Notify the mid-layer about the new controller
2087 */
2088 if (scsi_add_host(host, &instance->pdev->dev)) {
2089 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2090 return -ENODEV;
2091 }
2092
2093 /*
2094 * Trigger SCSI to scan our drives
2095 */
2096 scsi_scan_host(host);
2097 return 0;
2098 }
2099
2100 /**
2101 * megasas_probe_one - PCI hotplug entry point
2102 * @pdev: PCI device structure
2103 * @id: PCI ids of supported hotplugged adapter
2104 */
2105 static int __devinit
2106 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2107 {
2108 int rval;
2109 struct Scsi_Host *host;
2110 struct megasas_instance *instance;
2111
2112 /*
2113 * Announce PCI information
2114 */
2115 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2116 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2117 pdev->subsystem_device);
2118
2119 printk("bus %d:slot %d:func %d\n",
2120 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2121
2122 /*
2123 * PCI prepping: enable device set bus mastering and dma mask
2124 */
2125 rval = pci_enable_device(pdev);
2126
2127 if (rval) {
2128 return rval;
2129 }
2130
2131 pci_set_master(pdev);
2132
2133 /*
2134 * All our contollers are capable of performing 64-bit DMA
2135 */
2136 if (IS_DMA64) {
2137 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2138
2139 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2140 goto fail_set_dma_mask;
2141 }
2142 } else {
2143 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2144 goto fail_set_dma_mask;
2145 }
2146
2147 host = scsi_host_alloc(&megasas_template,
2148 sizeof(struct megasas_instance));
2149
2150 if (!host) {
2151 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2152 goto fail_alloc_instance;
2153 }
2154
2155 instance = (struct megasas_instance *)host->hostdata;
2156 memset(instance, 0, sizeof(*instance));
2157
2158 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2159 &instance->producer_h);
2160 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2161 &instance->consumer_h);
2162
2163 if (!instance->producer || !instance->consumer) {
2164 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2165 "producer, consumer\n");
2166 goto fail_alloc_dma_buf;
2167 }
2168
2169 *instance->producer = 0;
2170 *instance->consumer = 0;
2171
2172 instance->evt_detail = pci_alloc_consistent(pdev,
2173 sizeof(struct
2174 megasas_evt_detail),
2175 &instance->evt_detail_h);
2176
2177 if (!instance->evt_detail) {
2178 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2179 "event detail structure\n");
2180 goto fail_alloc_dma_buf;
2181 }
2182
2183 /*
2184 * Initialize locks and queues
2185 */
2186 INIT_LIST_HEAD(&instance->cmd_pool);
2187
2188 init_waitqueue_head(&instance->int_cmd_wait_q);
2189 init_waitqueue_head(&instance->abort_cmd_wait_q);
2190
2191 spin_lock_init(&instance->cmd_pool_lock);
2192 spin_lock_init(&instance->instance_lock);
2193
2194 sema_init(&instance->aen_mutex, 1);
2195 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2196
2197 /*
2198 * Initialize PCI related and misc parameters
2199 */
2200 instance->pdev = pdev;
2201 instance->host = host;
2202 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2203 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2204
2205 /*
2206 * Initialize MFI Firmware
2207 */
2208 if (megasas_init_mfi(instance))
2209 goto fail_init_mfi;
2210
2211 /*
2212 * Register IRQ
2213 */
2214 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2215 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2216 goto fail_irq;
2217 }
2218
2219 instance->instancet->enable_intr(instance->reg_set);
2220
2221 /*
2222 * Store instance in PCI softstate
2223 */
2224 pci_set_drvdata(pdev, instance);
2225
2226 /*
2227 * Add this controller to megasas_mgmt_info structure so that it
2228 * can be exported to management applications
2229 */
2230 megasas_mgmt_info.count++;
2231 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2232 megasas_mgmt_info.max_index++;
2233
2234 /*
2235 * Initiate AEN (Asynchronous Event Notification)
2236 */
2237 if (megasas_start_aen(instance)) {
2238 printk(KERN_DEBUG "megasas: start aen failed\n");
2239 goto fail_start_aen;
2240 }
2241
2242 /*
2243 * Register with SCSI mid-layer
2244 */
2245 if (megasas_io_attach(instance))
2246 goto fail_io_attach;
2247
2248 return 0;
2249
2250 fail_start_aen:
2251 fail_io_attach:
2252 megasas_mgmt_info.count--;
2253 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2254 megasas_mgmt_info.max_index--;
2255
2256 pci_set_drvdata(pdev, NULL);
2257 megasas_disable_intr(instance->reg_set);
2258 free_irq(instance->pdev->irq, instance);
2259
2260 megasas_release_mfi(instance);
2261
2262 fail_irq:
2263 fail_init_mfi:
2264 fail_alloc_dma_buf:
2265 if (instance->evt_detail)
2266 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2267 instance->evt_detail,
2268 instance->evt_detail_h);
2269
2270 if (instance->producer)
2271 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2272 instance->producer_h);
2273 if (instance->consumer)
2274 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2275 instance->consumer_h);
2276 scsi_host_put(host);
2277
2278 fail_alloc_instance:
2279 fail_set_dma_mask:
2280 pci_disable_device(pdev);
2281
2282 return -ENODEV;
2283 }
2284
2285 /**
2286 * megasas_flush_cache - Requests FW to flush all its caches
2287 * @instance: Adapter soft state
2288 */
2289 static void megasas_flush_cache(struct megasas_instance *instance)
2290 {
2291 struct megasas_cmd *cmd;
2292 struct megasas_dcmd_frame *dcmd;
2293
2294 cmd = megasas_get_cmd(instance);
2295
2296 if (!cmd)
2297 return;
2298
2299 dcmd = &cmd->frame->dcmd;
2300
2301 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2302
2303 dcmd->cmd = MFI_CMD_DCMD;
2304 dcmd->cmd_status = 0x0;
2305 dcmd->sge_count = 0;
2306 dcmd->flags = MFI_FRAME_DIR_NONE;
2307 dcmd->timeout = 0;
2308 dcmd->data_xfer_len = 0;
2309 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2310 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2311
2312 megasas_issue_blocked_cmd(instance, cmd);
2313
2314 megasas_return_cmd(instance, cmd);
2315
2316 return;
2317 }
2318
2319 /**
2320 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2321 * @instance: Adapter soft state
2322 */
2323 static void megasas_shutdown_controller(struct megasas_instance *instance)
2324 {
2325 struct megasas_cmd *cmd;
2326 struct megasas_dcmd_frame *dcmd;
2327
2328 cmd = megasas_get_cmd(instance);
2329
2330 if (!cmd)
2331 return;
2332
2333 if (instance->aen_cmd)
2334 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2335
2336 dcmd = &cmd->frame->dcmd;
2337
2338 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2339
2340 dcmd->cmd = MFI_CMD_DCMD;
2341 dcmd->cmd_status = 0x0;
2342 dcmd->sge_count = 0;
2343 dcmd->flags = MFI_FRAME_DIR_NONE;
2344 dcmd->timeout = 0;
2345 dcmd->data_xfer_len = 0;
2346 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2347
2348 megasas_issue_blocked_cmd(instance, cmd);
2349
2350 megasas_return_cmd(instance, cmd);
2351
2352 return;
2353 }
2354
2355 /**
2356 * megasas_detach_one - PCI hot"un"plug entry point
2357 * @pdev: PCI device structure
2358 */
2359 static void megasas_detach_one(struct pci_dev *pdev)
2360 {
2361 int i;
2362 struct Scsi_Host *host;
2363 struct megasas_instance *instance;
2364
2365 instance = pci_get_drvdata(pdev);
2366 host = instance->host;
2367
2368 scsi_remove_host(instance->host);
2369 megasas_flush_cache(instance);
2370 megasas_shutdown_controller(instance);
2371
2372 /*
2373 * Take the instance off the instance array. Note that we will not
2374 * decrement the max_index. We let this array be sparse array
2375 */
2376 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2377 if (megasas_mgmt_info.instance[i] == instance) {
2378 megasas_mgmt_info.count--;
2379 megasas_mgmt_info.instance[i] = NULL;
2380
2381 break;
2382 }
2383 }
2384
2385 pci_set_drvdata(instance->pdev, NULL);
2386
2387 megasas_disable_intr(instance->reg_set);
2388
2389 free_irq(instance->pdev->irq, instance);
2390
2391 megasas_release_mfi(instance);
2392
2393 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2394 instance->evt_detail, instance->evt_detail_h);
2395
2396 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2397 instance->producer_h);
2398
2399 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2400 instance->consumer_h);
2401
2402 scsi_host_put(host);
2403
2404 pci_set_drvdata(pdev, NULL);
2405
2406 pci_disable_device(pdev);
2407
2408 return;
2409 }
2410
2411 /**
2412 * megasas_shutdown - Shutdown entry point
2413 * @device: Generic device structure
2414 */
2415 static void megasas_shutdown(struct pci_dev *pdev)
2416 {
2417 struct megasas_instance *instance = pci_get_drvdata(pdev);
2418 megasas_flush_cache(instance);
2419 }
2420
2421 /**
2422 * megasas_mgmt_open - char node "open" entry point
2423 */
2424 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2425 {
2426 /*
2427 * Allow only those users with admin rights
2428 */
2429 if (!capable(CAP_SYS_ADMIN))
2430 return -EACCES;
2431
2432 return 0;
2433 }
2434
2435 /**
2436 * megasas_mgmt_release - char node "release" entry point
2437 */
2438 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2439 {
2440 filep->private_data = NULL;
2441 fasync_helper(-1, filep, 0, &megasas_async_queue);
2442
2443 return 0;
2444 }
2445
2446 /**
2447 * megasas_mgmt_fasync - Async notifier registration from applications
2448 *
2449 * This function adds the calling process to a driver global queue. When an
2450 * event occurs, SIGIO will be sent to all processes in this queue.
2451 */
2452 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2453 {
2454 int rc;
2455
2456 mutex_lock(&megasas_async_queue_mutex);
2457
2458 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2459
2460 mutex_unlock(&megasas_async_queue_mutex);
2461
2462 if (rc >= 0) {
2463 /* For sanity check when we get ioctl */
2464 filep->private_data = filep;
2465 return 0;
2466 }
2467
2468 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2469
2470 return rc;
2471 }
2472
2473 /**
2474 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2475 * @instance: Adapter soft state
2476 * @argp: User's ioctl packet
2477 */
2478 static int
2479 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2480 struct megasas_iocpacket __user * user_ioc,
2481 struct megasas_iocpacket *ioc)
2482 {
2483 struct megasas_sge32 *kern_sge32;
2484 struct megasas_cmd *cmd;
2485 void *kbuff_arr[MAX_IOCTL_SGE];
2486 dma_addr_t buf_handle = 0;
2487 int error = 0, i;
2488 void *sense = NULL;
2489 dma_addr_t sense_handle;
2490 u32 *sense_ptr;
2491
2492 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2493
2494 if (ioc->sge_count > MAX_IOCTL_SGE) {
2495 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2496 ioc->sge_count, MAX_IOCTL_SGE);
2497 return -EINVAL;
2498 }
2499
2500 cmd = megasas_get_cmd(instance);
2501 if (!cmd) {
2502 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2503 return -ENOMEM;
2504 }
2505
2506 /*
2507 * User's IOCTL packet has 2 frames (maximum). Copy those two
2508 * frames into our cmd's frames. cmd->frame's context will get
2509 * overwritten when we copy from user's frames. So set that value
2510 * alone separately
2511 */
2512 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2513 cmd->frame->hdr.context = cmd->index;
2514
2515 /*
2516 * The management interface between applications and the fw uses
2517 * MFI frames. E.g, RAID configuration changes, LD property changes
2518 * etc are accomplishes through different kinds of MFI frames. The
2519 * driver needs to care only about substituting user buffers with
2520 * kernel buffers in SGLs. The location of SGL is embedded in the
2521 * struct iocpacket itself.
2522 */
2523 kern_sge32 = (struct megasas_sge32 *)
2524 ((unsigned long)cmd->frame + ioc->sgl_off);
2525
2526 /*
2527 * For each user buffer, create a mirror buffer and copy in
2528 */
2529 for (i = 0; i < ioc->sge_count; i++) {
2530 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2531 ioc->sgl[i].iov_len,
2532 &buf_handle);
2533 if (!kbuff_arr[i]) {
2534 printk(KERN_DEBUG "megasas: Failed to alloc "
2535 "kernel SGL buffer for IOCTL \n");
2536 error = -ENOMEM;
2537 goto out;
2538 }
2539
2540 /*
2541 * We don't change the dma_coherent_mask, so
2542 * pci_alloc_consistent only returns 32bit addresses
2543 */
2544 kern_sge32[i].phys_addr = (u32) buf_handle;
2545 kern_sge32[i].length = ioc->sgl[i].iov_len;
2546
2547 /*
2548 * We created a kernel buffer corresponding to the
2549 * user buffer. Now copy in from the user buffer
2550 */
2551 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2552 (u32) (ioc->sgl[i].iov_len))) {
2553 error = -EFAULT;
2554 goto out;
2555 }
2556 }
2557
2558 if (ioc->sense_len) {
2559 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2560 &sense_handle);
2561 if (!sense) {
2562 error = -ENOMEM;
2563 goto out;
2564 }
2565
2566 sense_ptr =
2567 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2568 *sense_ptr = sense_handle;
2569 }
2570
2571 /*
2572 * Set the sync_cmd flag so that the ISR knows not to complete this
2573 * cmd to the SCSI mid-layer
2574 */
2575 cmd->sync_cmd = 1;
2576 megasas_issue_blocked_cmd(instance, cmd);
2577 cmd->sync_cmd = 0;
2578
2579 /*
2580 * copy out the kernel buffers to user buffers
2581 */
2582 for (i = 0; i < ioc->sge_count; i++) {
2583 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2584 ioc->sgl[i].iov_len)) {
2585 error = -EFAULT;
2586 goto out;
2587 }
2588 }
2589
2590 /*
2591 * copy out the sense
2592 */
2593 if (ioc->sense_len) {
2594 /*
2595 * sense_ptr points to the location that has the user
2596 * sense buffer address
2597 */
2598 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2599 ioc->sense_off);
2600
2601 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2602 sense, ioc->sense_len)) {
2603 error = -EFAULT;
2604 goto out;
2605 }
2606 }
2607
2608 /*
2609 * copy the status codes returned by the fw
2610 */
2611 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2612 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2613 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2614 error = -EFAULT;
2615 }
2616
2617 out:
2618 if (sense) {
2619 pci_free_consistent(instance->pdev, ioc->sense_len,
2620 sense, sense_handle);
2621 }
2622
2623 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2624 pci_free_consistent(instance->pdev,
2625 kern_sge32[i].length,
2626 kbuff_arr[i], kern_sge32[i].phys_addr);
2627 }
2628
2629 megasas_return_cmd(instance, cmd);
2630 return error;
2631 }
2632
2633 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2634 {
2635 int i;
2636
2637 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2638
2639 if ((megasas_mgmt_info.instance[i]) &&
2640 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2641 return megasas_mgmt_info.instance[i];
2642 }
2643
2644 return NULL;
2645 }
2646
2647 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2648 {
2649 struct megasas_iocpacket __user *user_ioc =
2650 (struct megasas_iocpacket __user *)arg;
2651 struct megasas_iocpacket *ioc;
2652 struct megasas_instance *instance;
2653 int error;
2654
2655 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2656 if (!ioc)
2657 return -ENOMEM;
2658
2659 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2660 error = -EFAULT;
2661 goto out_kfree_ioc;
2662 }
2663
2664 instance = megasas_lookup_instance(ioc->host_no);
2665 if (!instance) {
2666 error = -ENODEV;
2667 goto out_kfree_ioc;
2668 }
2669
2670 /*
2671 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2672 */
2673 if (down_interruptible(&instance->ioctl_sem)) {
2674 error = -ERESTARTSYS;
2675 goto out_kfree_ioc;
2676 }
2677 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2678 up(&instance->ioctl_sem);
2679
2680 out_kfree_ioc:
2681 kfree(ioc);
2682 return error;
2683 }
2684
2685 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2686 {
2687 struct megasas_instance *instance;
2688 struct megasas_aen aen;
2689 int error;
2690
2691 if (file->private_data != file) {
2692 printk(KERN_DEBUG "megasas: fasync_helper was not "
2693 "called first\n");
2694 return -EINVAL;
2695 }
2696
2697 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2698 return -EFAULT;
2699
2700 instance = megasas_lookup_instance(aen.host_no);
2701
2702 if (!instance)
2703 return -ENODEV;
2704
2705 down(&instance->aen_mutex);
2706 error = megasas_register_aen(instance, aen.seq_num,
2707 aen.class_locale_word);
2708 up(&instance->aen_mutex);
2709 return error;
2710 }
2711
2712 /**
2713 * megasas_mgmt_ioctl - char node ioctl entry point
2714 */
2715 static long
2716 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2717 {
2718 switch (cmd) {
2719 case MEGASAS_IOC_FIRMWARE:
2720 return megasas_mgmt_ioctl_fw(file, arg);
2721
2722 case MEGASAS_IOC_GET_AEN:
2723 return megasas_mgmt_ioctl_aen(file, arg);
2724 }
2725
2726 return -ENOTTY;
2727 }
2728
2729 #ifdef CONFIG_COMPAT
2730 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2731 {
2732 struct compat_megasas_iocpacket __user *cioc =
2733 (struct compat_megasas_iocpacket __user *)arg;
2734 struct megasas_iocpacket __user *ioc =
2735 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2736 int i;
2737 int error = 0;
2738
2739 clear_user(ioc, sizeof(*ioc));
2740
2741 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2742 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2743 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2744 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2745 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2746 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2747 return -EFAULT;
2748
2749 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2750 compat_uptr_t ptr;
2751
2752 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2753 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2754 copy_in_user(&ioc->sgl[i].iov_len,
2755 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2756 return -EFAULT;
2757 }
2758
2759 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2760
2761 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2762 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2763 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2764 return -EFAULT;
2765 }
2766 return error;
2767 }
2768
2769 static long
2770 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2771 unsigned long arg)
2772 {
2773 switch (cmd) {
2774 case MEGASAS_IOC_FIRMWARE32:
2775 return megasas_mgmt_compat_ioctl_fw(file, arg);
2776 case MEGASAS_IOC_GET_AEN:
2777 return megasas_mgmt_ioctl_aen(file, arg);
2778 }
2779
2780 return -ENOTTY;
2781 }
2782 #endif
2783
2784 /*
2785 * File operations structure for management interface
2786 */
2787 static struct file_operations megasas_mgmt_fops = {
2788 .owner = THIS_MODULE,
2789 .open = megasas_mgmt_open,
2790 .release = megasas_mgmt_release,
2791 .fasync = megasas_mgmt_fasync,
2792 .unlocked_ioctl = megasas_mgmt_ioctl,
2793 #ifdef CONFIG_COMPAT
2794 .compat_ioctl = megasas_mgmt_compat_ioctl,
2795 #endif
2796 };
2797
2798 /*
2799 * PCI hotplug support registration structure
2800 */
2801 static struct pci_driver megasas_pci_driver = {
2802
2803 .name = "megaraid_sas",
2804 .id_table = megasas_pci_table,
2805 .probe = megasas_probe_one,
2806 .remove = __devexit_p(megasas_detach_one),
2807 .shutdown = megasas_shutdown,
2808 };
2809
2810 /*
2811 * Sysfs driver attributes
2812 */
2813 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2814 {
2815 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2816 MEGASAS_VERSION);
2817 }
2818
2819 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2820
2821 static ssize_t
2822 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2823 {
2824 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2825 MEGASAS_RELDATE);
2826 }
2827
2828 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2829 NULL);
2830
2831 /**
2832 * megasas_init - Driver load entry point
2833 */
2834 static int __init megasas_init(void)
2835 {
2836 int rval;
2837
2838 /*
2839 * Announce driver version and other information
2840 */
2841 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2842 MEGASAS_EXT_VERSION);
2843
2844 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2845
2846 /*
2847 * Register character device node
2848 */
2849 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2850
2851 if (rval < 0) {
2852 printk(KERN_DEBUG "megasas: failed to open device node\n");
2853 return rval;
2854 }
2855
2856 megasas_mgmt_majorno = rval;
2857
2858 /*
2859 * Register ourselves as PCI hotplug module
2860 */
2861 rval = pci_module_init(&megasas_pci_driver);
2862
2863 if (rval) {
2864 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2865 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2866 }
2867
2868 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2869 driver_create_file(&megasas_pci_driver.driver,
2870 &driver_attr_release_date);
2871
2872 return rval;
2873 }
2874
2875 /**
2876 * megasas_exit - Driver unload entry point
2877 */
2878 static void __exit megasas_exit(void)
2879 {
2880 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2881 driver_remove_file(&megasas_pci_driver.driver,
2882 &driver_attr_release_date);
2883
2884 pci_unregister_driver(&megasas_pci_driver);
2885 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2886 }
2887
2888 module_init(megasas_init);
2889 module_exit(megasas_exit);