]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/megaraid/megaraid_sas.c
Merge branch 'for-linus' of git://neil.brown.name/md
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.03.20-rc1
14 *
15 * Authors:
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
20 *
21 * List of supported controllers
22 *
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/smp_lock.h>
37 #include <linux/uio.h>
38 #include <asm/uaccess.h>
39 #include <linux/fs.h>
40 #include <linux/compat.h>
41 #include <linux/blkdev.h>
42 #include <linux/mutex.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include "megaraid_sas.h"
49
50 /*
51 * poll_mode_io:1- schedule complete completion from q cmd
52 */
53 static unsigned int poll_mode_io;
54 module_param_named(poll_mode_io, poll_mode_io, int, 0);
55 MODULE_PARM_DESC(poll_mode_io,
56 "Complete cmds from IO path, (default=0)");
57
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(MEGASAS_VERSION);
60 MODULE_AUTHOR("megaraidlinux@lsi.com");
61 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
62
63 /*
64 * PCI ID table for all supported controllers
65 */
66 static struct pci_device_id megasas_pci_table[] = {
67
68 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
69 /* xscale IOP */
70 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
71 /* ppc IOP */
72 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
73 /* ppc IOP */
74 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
75 /* xscale IOP, vega */
76 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
77 /* xscale IOP */
78 {}
79 };
80
81 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
82
83 static int megasas_mgmt_majorno;
84 static struct megasas_mgmt_info megasas_mgmt_info;
85 static struct fasync_struct *megasas_async_queue;
86 static DEFINE_MUTEX(megasas_async_queue_mutex);
87
88 static u32 megasas_dbg_lvl;
89
90 static void
91 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
92 u8 alt_status);
93
94 /**
95 * megasas_get_cmd - Get a command from the free pool
96 * @instance: Adapter soft state
97 *
98 * Returns a free command from the pool
99 */
100 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
101 *instance)
102 {
103 unsigned long flags;
104 struct megasas_cmd *cmd = NULL;
105
106 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
107
108 if (!list_empty(&instance->cmd_pool)) {
109 cmd = list_entry((&instance->cmd_pool)->next,
110 struct megasas_cmd, list);
111 list_del_init(&cmd->list);
112 } else {
113 printk(KERN_ERR "megasas: Command pool empty!\n");
114 }
115
116 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
117 return cmd;
118 }
119
120 /**
121 * megasas_return_cmd - Return a cmd to free command pool
122 * @instance: Adapter soft state
123 * @cmd: Command packet to be returned to free command pool
124 */
125 static inline void
126 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
127 {
128 unsigned long flags;
129
130 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
131
132 cmd->scmd = NULL;
133 list_add_tail(&cmd->list, &instance->cmd_pool);
134
135 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
136 }
137
138
139 /**
140 * The following functions are defined for xscale
141 * (deviceid : 1064R, PERC5) controllers
142 */
143
144 /**
145 * megasas_enable_intr_xscale - Enables interrupts
146 * @regs: MFI register set
147 */
148 static inline void
149 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
150 {
151 writel(1, &(regs)->outbound_intr_mask);
152
153 /* Dummy readl to force pci flush */
154 readl(&regs->outbound_intr_mask);
155 }
156
157 /**
158 * megasas_disable_intr_xscale -Disables interrupt
159 * @regs: MFI register set
160 */
161 static inline void
162 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
163 {
164 u32 mask = 0x1f;
165 writel(mask, &regs->outbound_intr_mask);
166 /* Dummy readl to force pci flush */
167 readl(&regs->outbound_intr_mask);
168 }
169
170 /**
171 * megasas_read_fw_status_reg_xscale - returns the current FW status value
172 * @regs: MFI register set
173 */
174 static u32
175 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
176 {
177 return readl(&(regs)->outbound_msg_0);
178 }
179 /**
180 * megasas_clear_interrupt_xscale - Check & clear interrupt
181 * @regs: MFI register set
182 */
183 static int
184 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
185 {
186 u32 status;
187 /*
188 * Check if it is our interrupt
189 */
190 status = readl(&regs->outbound_intr_status);
191
192 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
193 return 1;
194 }
195
196 /*
197 * Clear the interrupt by writing back the same value
198 */
199 writel(status, &regs->outbound_intr_status);
200
201 return 0;
202 }
203
204 /**
205 * megasas_fire_cmd_xscale - Sends command to the FW
206 * @frame_phys_addr : Physical address of cmd
207 * @frame_count : Number of frames for the command
208 * @regs : MFI register set
209 */
210 static inline void
211 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
212 {
213 writel((frame_phys_addr >> 3)|(frame_count),
214 &(regs)->inbound_queue_port);
215 }
216
217 static struct megasas_instance_template megasas_instance_template_xscale = {
218
219 .fire_cmd = megasas_fire_cmd_xscale,
220 .enable_intr = megasas_enable_intr_xscale,
221 .disable_intr = megasas_disable_intr_xscale,
222 .clear_intr = megasas_clear_intr_xscale,
223 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
224 };
225
226 /**
227 * This is the end of set of functions & definitions specific
228 * to xscale (deviceid : 1064R, PERC5) controllers
229 */
230
231 /**
232 * The following functions are defined for ppc (deviceid : 0x60)
233 * controllers
234 */
235
236 /**
237 * megasas_enable_intr_ppc - Enables interrupts
238 * @regs: MFI register set
239 */
240 static inline void
241 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
242 {
243 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
244
245 writel(~0x80000004, &(regs)->outbound_intr_mask);
246
247 /* Dummy readl to force pci flush */
248 readl(&regs->outbound_intr_mask);
249 }
250
251 /**
252 * megasas_disable_intr_ppc - Disable interrupt
253 * @regs: MFI register set
254 */
255 static inline void
256 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
257 {
258 u32 mask = 0xFFFFFFFF;
259 writel(mask, &regs->outbound_intr_mask);
260 /* Dummy readl to force pci flush */
261 readl(&regs->outbound_intr_mask);
262 }
263
264 /**
265 * megasas_read_fw_status_reg_ppc - returns the current FW status value
266 * @regs: MFI register set
267 */
268 static u32
269 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
270 {
271 return readl(&(regs)->outbound_scratch_pad);
272 }
273
274 /**
275 * megasas_clear_interrupt_ppc - Check & clear interrupt
276 * @regs: MFI register set
277 */
278 static int
279 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
280 {
281 u32 status;
282 /*
283 * Check if it is our interrupt
284 */
285 status = readl(&regs->outbound_intr_status);
286
287 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
288 return 1;
289 }
290
291 /*
292 * Clear the interrupt by writing back the same value
293 */
294 writel(status, &regs->outbound_doorbell_clear);
295
296 return 0;
297 }
298 /**
299 * megasas_fire_cmd_ppc - Sends command to the FW
300 * @frame_phys_addr : Physical address of cmd
301 * @frame_count : Number of frames for the command
302 * @regs : MFI register set
303 */
304 static inline void
305 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
306 {
307 writel((frame_phys_addr | (frame_count<<1))|1,
308 &(regs)->inbound_queue_port);
309 }
310
311 static struct megasas_instance_template megasas_instance_template_ppc = {
312
313 .fire_cmd = megasas_fire_cmd_ppc,
314 .enable_intr = megasas_enable_intr_ppc,
315 .disable_intr = megasas_disable_intr_ppc,
316 .clear_intr = megasas_clear_intr_ppc,
317 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
318 };
319
320 /**
321 * This is the end of set of functions & definitions
322 * specific to ppc (deviceid : 0x60) controllers
323 */
324
325 /**
326 * megasas_issue_polled - Issues a polling command
327 * @instance: Adapter soft state
328 * @cmd: Command packet to be issued
329 *
330 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
331 */
332 static int
333 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
334 {
335 int i;
336 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
337
338 struct megasas_header *frame_hdr = &cmd->frame->hdr;
339
340 frame_hdr->cmd_status = 0xFF;
341 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
342
343 /*
344 * Issue the frame using inbound queue port
345 */
346 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
347
348 /*
349 * Wait for cmd_status to change
350 */
351 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
352 rmb();
353 msleep(1);
354 }
355
356 if (frame_hdr->cmd_status == 0xff)
357 return -ETIME;
358
359 return 0;
360 }
361
362 /**
363 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
364 * @instance: Adapter soft state
365 * @cmd: Command to be issued
366 *
367 * This function waits on an event for the command to be returned from ISR.
368 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
369 * Used to issue ioctl commands.
370 */
371 static int
372 megasas_issue_blocked_cmd(struct megasas_instance *instance,
373 struct megasas_cmd *cmd)
374 {
375 cmd->cmd_status = ENODATA;
376
377 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
378
379 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
380 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
381
382 return 0;
383 }
384
385 /**
386 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
387 * @instance: Adapter soft state
388 * @cmd_to_abort: Previously issued cmd to be aborted
389 *
390 * MFI firmware can abort previously issued AEN comamnd (automatic event
391 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
392 * cmd and waits for return status.
393 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
394 */
395 static int
396 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
397 struct megasas_cmd *cmd_to_abort)
398 {
399 struct megasas_cmd *cmd;
400 struct megasas_abort_frame *abort_fr;
401
402 cmd = megasas_get_cmd(instance);
403
404 if (!cmd)
405 return -1;
406
407 abort_fr = &cmd->frame->abort;
408
409 /*
410 * Prepare and issue the abort frame
411 */
412 abort_fr->cmd = MFI_CMD_ABORT;
413 abort_fr->cmd_status = 0xFF;
414 abort_fr->flags = 0;
415 abort_fr->abort_context = cmd_to_abort->index;
416 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
417 abort_fr->abort_mfi_phys_addr_hi = 0;
418
419 cmd->sync_cmd = 1;
420 cmd->cmd_status = 0xFF;
421
422 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
423
424 /*
425 * Wait for this cmd to complete
426 */
427 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
428 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
429
430 megasas_return_cmd(instance, cmd);
431 return 0;
432 }
433
434 /**
435 * megasas_make_sgl32 - Prepares 32-bit SGL
436 * @instance: Adapter soft state
437 * @scp: SCSI command from the mid-layer
438 * @mfi_sgl: SGL to be filled in
439 *
440 * If successful, this function returns the number of SG elements. Otherwise,
441 * it returnes -1.
442 */
443 static int
444 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
445 union megasas_sgl *mfi_sgl)
446 {
447 int i;
448 int sge_count;
449 struct scatterlist *os_sgl;
450
451 sge_count = scsi_dma_map(scp);
452 BUG_ON(sge_count < 0);
453
454 if (sge_count) {
455 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
456 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
457 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
458 }
459 }
460 return sge_count;
461 }
462
463 /**
464 * megasas_make_sgl64 - Prepares 64-bit SGL
465 * @instance: Adapter soft state
466 * @scp: SCSI command from the mid-layer
467 * @mfi_sgl: SGL to be filled in
468 *
469 * If successful, this function returns the number of SG elements. Otherwise,
470 * it returnes -1.
471 */
472 static int
473 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
474 union megasas_sgl *mfi_sgl)
475 {
476 int i;
477 int sge_count;
478 struct scatterlist *os_sgl;
479
480 sge_count = scsi_dma_map(scp);
481 BUG_ON(sge_count < 0);
482
483 if (sge_count) {
484 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
485 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
486 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
487 }
488 }
489 return sge_count;
490 }
491
492 /**
493 * megasas_get_frame_count - Computes the number of frames
494 * @frame_type : type of frame- io or pthru frame
495 * @sge_count : number of sg elements
496 *
497 * Returns the number of frames required for numnber of sge's (sge_count)
498 */
499
500 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
501 {
502 int num_cnt;
503 int sge_bytes;
504 u32 sge_sz;
505 u32 frame_count=0;
506
507 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
508 sizeof(struct megasas_sge32);
509
510 /*
511 * Main frame can contain 2 SGEs for 64-bit SGLs and
512 * 3 SGEs for 32-bit SGLs for ldio &
513 * 1 SGEs for 64-bit SGLs and
514 * 2 SGEs for 32-bit SGLs for pthru frame
515 */
516 if (unlikely(frame_type == PTHRU_FRAME)) {
517 if (IS_DMA64)
518 num_cnt = sge_count - 1;
519 else
520 num_cnt = sge_count - 2;
521 } else {
522 if (IS_DMA64)
523 num_cnt = sge_count - 2;
524 else
525 num_cnt = sge_count - 3;
526 }
527
528 if(num_cnt>0){
529 sge_bytes = sge_sz * num_cnt;
530
531 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
532 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
533 }
534 /* Main frame */
535 frame_count +=1;
536
537 if (frame_count > 7)
538 frame_count = 8;
539 return frame_count;
540 }
541
542 /**
543 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
544 * @instance: Adapter soft state
545 * @scp: SCSI command
546 * @cmd: Command to be prepared in
547 *
548 * This function prepares CDB commands. These are typcially pass-through
549 * commands to the devices.
550 */
551 static int
552 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
553 struct megasas_cmd *cmd)
554 {
555 u32 is_logical;
556 u32 device_id;
557 u16 flags = 0;
558 struct megasas_pthru_frame *pthru;
559
560 is_logical = MEGASAS_IS_LOGICAL(scp);
561 device_id = MEGASAS_DEV_INDEX(instance, scp);
562 pthru = (struct megasas_pthru_frame *)cmd->frame;
563
564 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
565 flags = MFI_FRAME_DIR_WRITE;
566 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
567 flags = MFI_FRAME_DIR_READ;
568 else if (scp->sc_data_direction == PCI_DMA_NONE)
569 flags = MFI_FRAME_DIR_NONE;
570
571 /*
572 * Prepare the DCDB frame
573 */
574 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
575 pthru->cmd_status = 0x0;
576 pthru->scsi_status = 0x0;
577 pthru->target_id = device_id;
578 pthru->lun = scp->device->lun;
579 pthru->cdb_len = scp->cmd_len;
580 pthru->timeout = 0;
581 pthru->flags = flags;
582 pthru->data_xfer_len = scsi_bufflen(scp);
583
584 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
585
586 /*
587 * Construct SGL
588 */
589 if (IS_DMA64) {
590 pthru->flags |= MFI_FRAME_SGL64;
591 pthru->sge_count = megasas_make_sgl64(instance, scp,
592 &pthru->sgl);
593 } else
594 pthru->sge_count = megasas_make_sgl32(instance, scp,
595 &pthru->sgl);
596
597 /*
598 * Sense info specific
599 */
600 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
601 pthru->sense_buf_phys_addr_hi = 0;
602 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
603
604 /*
605 * Compute the total number of frames this command consumes. FW uses
606 * this number to pull sufficient number of frames from host memory.
607 */
608 cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
609 PTHRU_FRAME);
610
611 return cmd->frame_count;
612 }
613
614 /**
615 * megasas_build_ldio - Prepares IOs to logical devices
616 * @instance: Adapter soft state
617 * @scp: SCSI command
618 * @cmd: Command to to be prepared
619 *
620 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
621 */
622 static int
623 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
624 struct megasas_cmd *cmd)
625 {
626 u32 device_id;
627 u8 sc = scp->cmnd[0];
628 u16 flags = 0;
629 struct megasas_io_frame *ldio;
630
631 device_id = MEGASAS_DEV_INDEX(instance, scp);
632 ldio = (struct megasas_io_frame *)cmd->frame;
633
634 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
635 flags = MFI_FRAME_DIR_WRITE;
636 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
637 flags = MFI_FRAME_DIR_READ;
638
639 /*
640 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
641 */
642 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
643 ldio->cmd_status = 0x0;
644 ldio->scsi_status = 0x0;
645 ldio->target_id = device_id;
646 ldio->timeout = 0;
647 ldio->reserved_0 = 0;
648 ldio->pad_0 = 0;
649 ldio->flags = flags;
650 ldio->start_lba_hi = 0;
651 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
652
653 /*
654 * 6-byte READ(0x08) or WRITE(0x0A) cdb
655 */
656 if (scp->cmd_len == 6) {
657 ldio->lba_count = (u32) scp->cmnd[4];
658 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
659 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
660
661 ldio->start_lba_lo &= 0x1FFFFF;
662 }
663
664 /*
665 * 10-byte READ(0x28) or WRITE(0x2A) cdb
666 */
667 else if (scp->cmd_len == 10) {
668 ldio->lba_count = (u32) scp->cmnd[8] |
669 ((u32) scp->cmnd[7] << 8);
670 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
671 ((u32) scp->cmnd[3] << 16) |
672 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
673 }
674
675 /*
676 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
677 */
678 else if (scp->cmd_len == 12) {
679 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
680 ((u32) scp->cmnd[7] << 16) |
681 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
682
683 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
684 ((u32) scp->cmnd[3] << 16) |
685 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
686 }
687
688 /*
689 * 16-byte READ(0x88) or WRITE(0x8A) cdb
690 */
691 else if (scp->cmd_len == 16) {
692 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
693 ((u32) scp->cmnd[11] << 16) |
694 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
695
696 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
697 ((u32) scp->cmnd[7] << 16) |
698 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
699
700 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
701 ((u32) scp->cmnd[3] << 16) |
702 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
703
704 }
705
706 /*
707 * Construct SGL
708 */
709 if (IS_DMA64) {
710 ldio->flags |= MFI_FRAME_SGL64;
711 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
712 } else
713 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
714
715 /*
716 * Sense info specific
717 */
718 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
719 ldio->sense_buf_phys_addr_hi = 0;
720 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
721
722 /*
723 * Compute the total number of frames this command consumes. FW uses
724 * this number to pull sufficient number of frames from host memory.
725 */
726 cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
727
728 return cmd->frame_count;
729 }
730
731 /**
732 * megasas_is_ldio - Checks if the cmd is for logical drive
733 * @scmd: SCSI command
734 *
735 * Called by megasas_queue_command to find out if the command to be queued
736 * is a logical drive command
737 */
738 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
739 {
740 if (!MEGASAS_IS_LOGICAL(cmd))
741 return 0;
742 switch (cmd->cmnd[0]) {
743 case READ_10:
744 case WRITE_10:
745 case READ_12:
746 case WRITE_12:
747 case READ_6:
748 case WRITE_6:
749 case READ_16:
750 case WRITE_16:
751 return 1;
752 default:
753 return 0;
754 }
755 }
756
757 /**
758 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
759 * in FW
760 * @instance: Adapter soft state
761 */
762 static inline void
763 megasas_dump_pending_frames(struct megasas_instance *instance)
764 {
765 struct megasas_cmd *cmd;
766 int i,n;
767 union megasas_sgl *mfi_sgl;
768 struct megasas_io_frame *ldio;
769 struct megasas_pthru_frame *pthru;
770 u32 sgcount;
771 u32 max_cmd = instance->max_fw_cmds;
772
773 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
774 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
775 if (IS_DMA64)
776 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
777 else
778 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
779
780 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
781 for (i = 0; i < max_cmd; i++) {
782 cmd = instance->cmd_list[i];
783 if(!cmd->scmd)
784 continue;
785 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
786 if (megasas_is_ldio(cmd->scmd)){
787 ldio = (struct megasas_io_frame *)cmd->frame;
788 mfi_sgl = &ldio->sgl;
789 sgcount = ldio->sge_count;
790 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
791 }
792 else {
793 pthru = (struct megasas_pthru_frame *) cmd->frame;
794 mfi_sgl = &pthru->sgl;
795 sgcount = pthru->sge_count;
796 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
797 }
798 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
799 for (n = 0; n < sgcount; n++){
800 if (IS_DMA64)
801 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
802 else
803 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
804 }
805 }
806 printk(KERN_ERR "\n");
807 } /*for max_cmd*/
808 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
809 for (i = 0; i < max_cmd; i++) {
810
811 cmd = instance->cmd_list[i];
812
813 if(cmd->sync_cmd == 1){
814 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
815 }
816 }
817 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
818 }
819
820 /**
821 * megasas_queue_command - Queue entry point
822 * @scmd: SCSI command to be queued
823 * @done: Callback entry point
824 */
825 static int
826 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
827 {
828 u32 frame_count;
829 struct megasas_cmd *cmd;
830 struct megasas_instance *instance;
831
832 instance = (struct megasas_instance *)
833 scmd->device->host->hostdata;
834
835 /* Don't process if we have already declared adapter dead */
836 if (instance->hw_crit_error)
837 return SCSI_MLQUEUE_HOST_BUSY;
838
839 scmd->scsi_done = done;
840 scmd->result = 0;
841
842 if (MEGASAS_IS_LOGICAL(scmd) &&
843 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
844 scmd->result = DID_BAD_TARGET << 16;
845 goto out_done;
846 }
847
848 switch (scmd->cmnd[0]) {
849 case SYNCHRONIZE_CACHE:
850 /*
851 * FW takes care of flush cache on its own
852 * No need to send it down
853 */
854 scmd->result = DID_OK << 16;
855 goto out_done;
856 default:
857 break;
858 }
859
860 cmd = megasas_get_cmd(instance);
861 if (!cmd)
862 return SCSI_MLQUEUE_HOST_BUSY;
863
864 /*
865 * Logical drive command
866 */
867 if (megasas_is_ldio(scmd))
868 frame_count = megasas_build_ldio(instance, scmd, cmd);
869 else
870 frame_count = megasas_build_dcdb(instance, scmd, cmd);
871
872 if (!frame_count)
873 goto out_return_cmd;
874
875 cmd->scmd = scmd;
876 scmd->SCp.ptr = (char *)cmd;
877
878 /*
879 * Issue the command to the FW
880 */
881 atomic_inc(&instance->fw_outstanding);
882
883 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
884 /*
885 * Check if we have pend cmds to be completed
886 */
887 if (poll_mode_io && atomic_read(&instance->fw_outstanding))
888 tasklet_schedule(&instance->isr_tasklet);
889
890
891 return 0;
892
893 out_return_cmd:
894 megasas_return_cmd(instance, cmd);
895 out_done:
896 done(scmd);
897 return 0;
898 }
899
900 static int megasas_slave_configure(struct scsi_device *sdev)
901 {
902 /*
903 * Don't export physical disk devices to the disk driver.
904 *
905 * FIXME: Currently we don't export them to the midlayer at all.
906 * That will be fixed once LSI engineers have audited the
907 * firmware for possible issues.
908 */
909 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
910 return -ENXIO;
911
912 /*
913 * The RAID firmware may require extended timeouts.
914 */
915 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
916 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
917 return 0;
918 }
919
920 /**
921 * megasas_complete_cmd_dpc - Returns FW's controller structure
922 * @instance_addr: Address of adapter soft state
923 *
924 * Tasklet to complete cmds
925 */
926 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
927 {
928 u32 producer;
929 u32 consumer;
930 u32 context;
931 struct megasas_cmd *cmd;
932 struct megasas_instance *instance =
933 (struct megasas_instance *)instance_addr;
934 unsigned long flags;
935
936 /* If we have already declared adapter dead, donot complete cmds */
937 if (instance->hw_crit_error)
938 return;
939
940 spin_lock_irqsave(&instance->completion_lock, flags);
941
942 producer = *instance->producer;
943 consumer = *instance->consumer;
944
945 while (consumer != producer) {
946 context = instance->reply_queue[consumer];
947
948 cmd = instance->cmd_list[context];
949
950 megasas_complete_cmd(instance, cmd, DID_OK);
951
952 consumer++;
953 if (consumer == (instance->max_fw_cmds + 1)) {
954 consumer = 0;
955 }
956 }
957
958 *instance->consumer = producer;
959
960 spin_unlock_irqrestore(&instance->completion_lock, flags);
961
962 /*
963 * Check if we can restore can_queue
964 */
965 if (instance->flag & MEGASAS_FW_BUSY
966 && time_after(jiffies, instance->last_time + 5 * HZ)
967 && atomic_read(&instance->fw_outstanding) < 17) {
968
969 spin_lock_irqsave(instance->host->host_lock, flags);
970 instance->flag &= ~MEGASAS_FW_BUSY;
971 instance->host->can_queue =
972 instance->max_fw_cmds - MEGASAS_INT_CMDS;
973
974 spin_unlock_irqrestore(instance->host->host_lock, flags);
975 }
976 }
977
978 /**
979 * megasas_wait_for_outstanding - Wait for all outstanding cmds
980 * @instance: Adapter soft state
981 *
982 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
983 * complete all its outstanding commands. Returns error if one or more IOs
984 * are pending after this time period. It also marks the controller dead.
985 */
986 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
987 {
988 int i;
989 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
990
991 for (i = 0; i < wait_time; i++) {
992
993 int outstanding = atomic_read(&instance->fw_outstanding);
994
995 if (!outstanding)
996 break;
997
998 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
999 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1000 "commands to complete\n",i,outstanding);
1001 /*
1002 * Call cmd completion routine. Cmd to be
1003 * be completed directly without depending on isr.
1004 */
1005 megasas_complete_cmd_dpc((unsigned long)instance);
1006 }
1007
1008 msleep(1000);
1009 }
1010
1011 if (atomic_read(&instance->fw_outstanding)) {
1012 /*
1013 * Send signal to FW to stop processing any pending cmds.
1014 * The controller will be taken offline by the OS now.
1015 */
1016 writel(MFI_STOP_ADP,
1017 &instance->reg_set->inbound_doorbell);
1018 megasas_dump_pending_frames(instance);
1019 instance->hw_crit_error = 1;
1020 return FAILED;
1021 }
1022
1023 return SUCCESS;
1024 }
1025
1026 /**
1027 * megasas_generic_reset - Generic reset routine
1028 * @scmd: Mid-layer SCSI command
1029 *
1030 * This routine implements a generic reset handler for device, bus and host
1031 * reset requests. Device, bus and host specific reset handlers can use this
1032 * function after they do their specific tasks.
1033 */
1034 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1035 {
1036 int ret_val;
1037 struct megasas_instance *instance;
1038
1039 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1040
1041 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1042 scmd->serial_number, scmd->cmnd[0], scmd->retries);
1043
1044 if (instance->hw_crit_error) {
1045 printk(KERN_ERR "megasas: cannot recover from previous reset "
1046 "failures\n");
1047 return FAILED;
1048 }
1049
1050 ret_val = megasas_wait_for_outstanding(instance);
1051 if (ret_val == SUCCESS)
1052 printk(KERN_NOTICE "megasas: reset successful \n");
1053 else
1054 printk(KERN_ERR "megasas: failed to do reset\n");
1055
1056 return ret_val;
1057 }
1058
1059 /**
1060 * megasas_reset_timer - quiesce the adapter if required
1061 * @scmd: scsi cmnd
1062 *
1063 * Sets the FW busy flag and reduces the host->can_queue if the
1064 * cmd has not been completed within the timeout period.
1065 */
1066 static enum
1067 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1068 {
1069 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1070 struct megasas_instance *instance;
1071 unsigned long flags;
1072
1073 if (time_after(jiffies, scmd->jiffies_at_alloc +
1074 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1075 return EH_NOT_HANDLED;
1076 }
1077
1078 instance = cmd->instance;
1079 if (!(instance->flag & MEGASAS_FW_BUSY)) {
1080 /* FW is busy, throttle IO */
1081 spin_lock_irqsave(instance->host->host_lock, flags);
1082
1083 instance->host->can_queue = 16;
1084 instance->last_time = jiffies;
1085 instance->flag |= MEGASAS_FW_BUSY;
1086
1087 spin_unlock_irqrestore(instance->host->host_lock, flags);
1088 }
1089 return EH_RESET_TIMER;
1090 }
1091
1092 /**
1093 * megasas_reset_device - Device reset handler entry point
1094 */
1095 static int megasas_reset_device(struct scsi_cmnd *scmd)
1096 {
1097 int ret;
1098
1099 /*
1100 * First wait for all commands to complete
1101 */
1102 ret = megasas_generic_reset(scmd);
1103
1104 return ret;
1105 }
1106
1107 /**
1108 * megasas_reset_bus_host - Bus & host reset handler entry point
1109 */
1110 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1111 {
1112 int ret;
1113
1114 /*
1115 * First wait for all commands to complete
1116 */
1117 ret = megasas_generic_reset(scmd);
1118
1119 return ret;
1120 }
1121
1122 /**
1123 * megasas_bios_param - Returns disk geometry for a disk
1124 * @sdev: device handle
1125 * @bdev: block device
1126 * @capacity: drive capacity
1127 * @geom: geometry parameters
1128 */
1129 static int
1130 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1131 sector_t capacity, int geom[])
1132 {
1133 int heads;
1134 int sectors;
1135 sector_t cylinders;
1136 unsigned long tmp;
1137 /* Default heads (64) & sectors (32) */
1138 heads = 64;
1139 sectors = 32;
1140
1141 tmp = heads * sectors;
1142 cylinders = capacity;
1143
1144 sector_div(cylinders, tmp);
1145
1146 /*
1147 * Handle extended translation size for logical drives > 1Gb
1148 */
1149
1150 if (capacity >= 0x200000) {
1151 heads = 255;
1152 sectors = 63;
1153 tmp = heads*sectors;
1154 cylinders = capacity;
1155 sector_div(cylinders, tmp);
1156 }
1157
1158 geom[0] = heads;
1159 geom[1] = sectors;
1160 geom[2] = cylinders;
1161
1162 return 0;
1163 }
1164
1165 /**
1166 * megasas_service_aen - Processes an event notification
1167 * @instance: Adapter soft state
1168 * @cmd: AEN command completed by the ISR
1169 *
1170 * For AEN, driver sends a command down to FW that is held by the FW till an
1171 * event occurs. When an event of interest occurs, FW completes the command
1172 * that it was previously holding.
1173 *
1174 * This routines sends SIGIO signal to processes that have registered with the
1175 * driver for AEN.
1176 */
1177 static void
1178 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1179 {
1180 /*
1181 * Don't signal app if it is just an aborted previously registered aen
1182 */
1183 if (!cmd->abort_aen)
1184 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1185 else
1186 cmd->abort_aen = 0;
1187
1188 instance->aen_cmd = NULL;
1189 megasas_return_cmd(instance, cmd);
1190 }
1191
1192 /*
1193 * Scsi host template for megaraid_sas driver
1194 */
1195 static struct scsi_host_template megasas_template = {
1196
1197 .module = THIS_MODULE,
1198 .name = "LSI SAS based MegaRAID driver",
1199 .proc_name = "megaraid_sas",
1200 .slave_configure = megasas_slave_configure,
1201 .queuecommand = megasas_queue_command,
1202 .eh_device_reset_handler = megasas_reset_device,
1203 .eh_bus_reset_handler = megasas_reset_bus_host,
1204 .eh_host_reset_handler = megasas_reset_bus_host,
1205 .eh_timed_out = megasas_reset_timer,
1206 .bios_param = megasas_bios_param,
1207 .use_clustering = ENABLE_CLUSTERING,
1208 };
1209
1210 /**
1211 * megasas_complete_int_cmd - Completes an internal command
1212 * @instance: Adapter soft state
1213 * @cmd: Command to be completed
1214 *
1215 * The megasas_issue_blocked_cmd() function waits for a command to complete
1216 * after it issues a command. This function wakes up that waiting routine by
1217 * calling wake_up() on the wait queue.
1218 */
1219 static void
1220 megasas_complete_int_cmd(struct megasas_instance *instance,
1221 struct megasas_cmd *cmd)
1222 {
1223 cmd->cmd_status = cmd->frame->io.cmd_status;
1224
1225 if (cmd->cmd_status == ENODATA) {
1226 cmd->cmd_status = 0;
1227 }
1228 wake_up(&instance->int_cmd_wait_q);
1229 }
1230
1231 /**
1232 * megasas_complete_abort - Completes aborting a command
1233 * @instance: Adapter soft state
1234 * @cmd: Cmd that was issued to abort another cmd
1235 *
1236 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1237 * after it issues an abort on a previously issued command. This function
1238 * wakes up all functions waiting on the same wait queue.
1239 */
1240 static void
1241 megasas_complete_abort(struct megasas_instance *instance,
1242 struct megasas_cmd *cmd)
1243 {
1244 if (cmd->sync_cmd) {
1245 cmd->sync_cmd = 0;
1246 cmd->cmd_status = 0;
1247 wake_up(&instance->abort_cmd_wait_q);
1248 }
1249
1250 return;
1251 }
1252
1253 /**
1254 * megasas_complete_cmd - Completes a command
1255 * @instance: Adapter soft state
1256 * @cmd: Command to be completed
1257 * @alt_status: If non-zero, use this value as status to
1258 * SCSI mid-layer instead of the value returned
1259 * by the FW. This should be used if caller wants
1260 * an alternate status (as in the case of aborted
1261 * commands)
1262 */
1263 static void
1264 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1265 u8 alt_status)
1266 {
1267 int exception = 0;
1268 struct megasas_header *hdr = &cmd->frame->hdr;
1269
1270 if (cmd->scmd)
1271 cmd->scmd->SCp.ptr = NULL;
1272
1273 switch (hdr->cmd) {
1274
1275 case MFI_CMD_PD_SCSI_IO:
1276 case MFI_CMD_LD_SCSI_IO:
1277
1278 /*
1279 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1280 * issued either through an IO path or an IOCTL path. If it
1281 * was via IOCTL, we will send it to internal completion.
1282 */
1283 if (cmd->sync_cmd) {
1284 cmd->sync_cmd = 0;
1285 megasas_complete_int_cmd(instance, cmd);
1286 break;
1287 }
1288
1289 case MFI_CMD_LD_READ:
1290 case MFI_CMD_LD_WRITE:
1291
1292 if (alt_status) {
1293 cmd->scmd->result = alt_status << 16;
1294 exception = 1;
1295 }
1296
1297 if (exception) {
1298
1299 atomic_dec(&instance->fw_outstanding);
1300
1301 scsi_dma_unmap(cmd->scmd);
1302 cmd->scmd->scsi_done(cmd->scmd);
1303 megasas_return_cmd(instance, cmd);
1304
1305 break;
1306 }
1307
1308 switch (hdr->cmd_status) {
1309
1310 case MFI_STAT_OK:
1311 cmd->scmd->result = DID_OK << 16;
1312 break;
1313
1314 case MFI_STAT_SCSI_IO_FAILED:
1315 case MFI_STAT_LD_INIT_IN_PROGRESS:
1316 cmd->scmd->result =
1317 (DID_ERROR << 16) | hdr->scsi_status;
1318 break;
1319
1320 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1321
1322 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1323
1324 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1325 memset(cmd->scmd->sense_buffer, 0,
1326 SCSI_SENSE_BUFFERSIZE);
1327 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1328 hdr->sense_len);
1329
1330 cmd->scmd->result |= DRIVER_SENSE << 24;
1331 }
1332
1333 break;
1334
1335 case MFI_STAT_LD_OFFLINE:
1336 case MFI_STAT_DEVICE_NOT_FOUND:
1337 cmd->scmd->result = DID_BAD_TARGET << 16;
1338 break;
1339
1340 default:
1341 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1342 hdr->cmd_status);
1343 cmd->scmd->result = DID_ERROR << 16;
1344 break;
1345 }
1346
1347 atomic_dec(&instance->fw_outstanding);
1348
1349 scsi_dma_unmap(cmd->scmd);
1350 cmd->scmd->scsi_done(cmd->scmd);
1351 megasas_return_cmd(instance, cmd);
1352
1353 break;
1354
1355 case MFI_CMD_SMP:
1356 case MFI_CMD_STP:
1357 case MFI_CMD_DCMD:
1358
1359 /*
1360 * See if got an event notification
1361 */
1362 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1363 megasas_service_aen(instance, cmd);
1364 else
1365 megasas_complete_int_cmd(instance, cmd);
1366
1367 break;
1368
1369 case MFI_CMD_ABORT:
1370 /*
1371 * Cmd issued to abort another cmd returned
1372 */
1373 megasas_complete_abort(instance, cmd);
1374 break;
1375
1376 default:
1377 printk("megasas: Unknown command completed! [0x%X]\n",
1378 hdr->cmd);
1379 break;
1380 }
1381 }
1382
1383 /**
1384 * megasas_deplete_reply_queue - Processes all completed commands
1385 * @instance: Adapter soft state
1386 * @alt_status: Alternate status to be returned to
1387 * SCSI mid-layer instead of the status
1388 * returned by the FW
1389 */
1390 static int
1391 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1392 {
1393 /*
1394 * Check if it is our interrupt
1395 * Clear the interrupt
1396 */
1397 if(instance->instancet->clear_intr(instance->reg_set))
1398 return IRQ_NONE;
1399
1400 if (instance->hw_crit_error)
1401 goto out_done;
1402 /*
1403 * Schedule the tasklet for cmd completion
1404 */
1405 tasklet_schedule(&instance->isr_tasklet);
1406 out_done:
1407 return IRQ_HANDLED;
1408 }
1409
1410 /**
1411 * megasas_isr - isr entry point
1412 */
1413 static irqreturn_t megasas_isr(int irq, void *devp)
1414 {
1415 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1416 DID_OK);
1417 }
1418
1419 /**
1420 * megasas_transition_to_ready - Move the FW to READY state
1421 * @instance: Adapter soft state
1422 *
1423 * During the initialization, FW passes can potentially be in any one of
1424 * several possible states. If the FW in operational, waiting-for-handshake
1425 * states, driver must take steps to bring it to ready state. Otherwise, it
1426 * has to wait for the ready state.
1427 */
1428 static int
1429 megasas_transition_to_ready(struct megasas_instance* instance)
1430 {
1431 int i;
1432 u8 max_wait;
1433 u32 fw_state;
1434 u32 cur_state;
1435
1436 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1437
1438 if (fw_state != MFI_STATE_READY)
1439 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1440 " state\n");
1441
1442 while (fw_state != MFI_STATE_READY) {
1443
1444 switch (fw_state) {
1445
1446 case MFI_STATE_FAULT:
1447
1448 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1449 return -ENODEV;
1450
1451 case MFI_STATE_WAIT_HANDSHAKE:
1452 /*
1453 * Set the CLR bit in inbound doorbell
1454 */
1455 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1456 &instance->reg_set->inbound_doorbell);
1457
1458 max_wait = 2;
1459 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1460 break;
1461
1462 case MFI_STATE_BOOT_MESSAGE_PENDING:
1463 writel(MFI_INIT_HOTPLUG,
1464 &instance->reg_set->inbound_doorbell);
1465
1466 max_wait = 10;
1467 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1468 break;
1469
1470 case MFI_STATE_OPERATIONAL:
1471 /*
1472 * Bring it to READY state; assuming max wait 10 secs
1473 */
1474 instance->instancet->disable_intr(instance->reg_set);
1475 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1476
1477 max_wait = 60;
1478 cur_state = MFI_STATE_OPERATIONAL;
1479 break;
1480
1481 case MFI_STATE_UNDEFINED:
1482 /*
1483 * This state should not last for more than 2 seconds
1484 */
1485 max_wait = 2;
1486 cur_state = MFI_STATE_UNDEFINED;
1487 break;
1488
1489 case MFI_STATE_BB_INIT:
1490 max_wait = 2;
1491 cur_state = MFI_STATE_BB_INIT;
1492 break;
1493
1494 case MFI_STATE_FW_INIT:
1495 max_wait = 20;
1496 cur_state = MFI_STATE_FW_INIT;
1497 break;
1498
1499 case MFI_STATE_FW_INIT_2:
1500 max_wait = 20;
1501 cur_state = MFI_STATE_FW_INIT_2;
1502 break;
1503
1504 case MFI_STATE_DEVICE_SCAN:
1505 max_wait = 20;
1506 cur_state = MFI_STATE_DEVICE_SCAN;
1507 break;
1508
1509 case MFI_STATE_FLUSH_CACHE:
1510 max_wait = 20;
1511 cur_state = MFI_STATE_FLUSH_CACHE;
1512 break;
1513
1514 default:
1515 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1516 fw_state);
1517 return -ENODEV;
1518 }
1519
1520 /*
1521 * The cur_state should not last for more than max_wait secs
1522 */
1523 for (i = 0; i < (max_wait * 1000); i++) {
1524 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1525 MFI_STATE_MASK ;
1526
1527 if (fw_state == cur_state) {
1528 msleep(1);
1529 } else
1530 break;
1531 }
1532
1533 /*
1534 * Return error if fw_state hasn't changed after max_wait
1535 */
1536 if (fw_state == cur_state) {
1537 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1538 "in %d secs\n", fw_state, max_wait);
1539 return -ENODEV;
1540 }
1541 };
1542 printk(KERN_INFO "megasas: FW now in Ready state\n");
1543
1544 return 0;
1545 }
1546
1547 /**
1548 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1549 * @instance: Adapter soft state
1550 */
1551 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1552 {
1553 int i;
1554 u32 max_cmd = instance->max_fw_cmds;
1555 struct megasas_cmd *cmd;
1556
1557 if (!instance->frame_dma_pool)
1558 return;
1559
1560 /*
1561 * Return all frames to pool
1562 */
1563 for (i = 0; i < max_cmd; i++) {
1564
1565 cmd = instance->cmd_list[i];
1566
1567 if (cmd->frame)
1568 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1569 cmd->frame_phys_addr);
1570
1571 if (cmd->sense)
1572 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1573 cmd->sense_phys_addr);
1574 }
1575
1576 /*
1577 * Now destroy the pool itself
1578 */
1579 pci_pool_destroy(instance->frame_dma_pool);
1580 pci_pool_destroy(instance->sense_dma_pool);
1581
1582 instance->frame_dma_pool = NULL;
1583 instance->sense_dma_pool = NULL;
1584 }
1585
1586 /**
1587 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1588 * @instance: Adapter soft state
1589 *
1590 * Each command packet has an embedded DMA memory buffer that is used for
1591 * filling MFI frame and the SG list that immediately follows the frame. This
1592 * function creates those DMA memory buffers for each command packet by using
1593 * PCI pool facility.
1594 */
1595 static int megasas_create_frame_pool(struct megasas_instance *instance)
1596 {
1597 int i;
1598 u32 max_cmd;
1599 u32 sge_sz;
1600 u32 sgl_sz;
1601 u32 total_sz;
1602 u32 frame_count;
1603 struct megasas_cmd *cmd;
1604
1605 max_cmd = instance->max_fw_cmds;
1606
1607 /*
1608 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1609 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1610 */
1611 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1612 sizeof(struct megasas_sge32);
1613
1614 /*
1615 * Calculated the number of 64byte frames required for SGL
1616 */
1617 sgl_sz = sge_sz * instance->max_num_sge;
1618 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1619
1620 /*
1621 * We need one extra frame for the MFI command
1622 */
1623 frame_count++;
1624
1625 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1626 /*
1627 * Use DMA pool facility provided by PCI layer
1628 */
1629 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1630 instance->pdev, total_sz, 64,
1631 0);
1632
1633 if (!instance->frame_dma_pool) {
1634 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1635 return -ENOMEM;
1636 }
1637
1638 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1639 instance->pdev, 128, 4, 0);
1640
1641 if (!instance->sense_dma_pool) {
1642 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1643
1644 pci_pool_destroy(instance->frame_dma_pool);
1645 instance->frame_dma_pool = NULL;
1646
1647 return -ENOMEM;
1648 }
1649
1650 /*
1651 * Allocate and attach a frame to each of the commands in cmd_list.
1652 * By making cmd->index as the context instead of the &cmd, we can
1653 * always use 32bit context regardless of the architecture
1654 */
1655 for (i = 0; i < max_cmd; i++) {
1656
1657 cmd = instance->cmd_list[i];
1658
1659 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1660 GFP_KERNEL, &cmd->frame_phys_addr);
1661
1662 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1663 GFP_KERNEL, &cmd->sense_phys_addr);
1664
1665 /*
1666 * megasas_teardown_frame_pool() takes care of freeing
1667 * whatever has been allocated
1668 */
1669 if (!cmd->frame || !cmd->sense) {
1670 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1671 megasas_teardown_frame_pool(instance);
1672 return -ENOMEM;
1673 }
1674
1675 cmd->frame->io.context = cmd->index;
1676 }
1677
1678 return 0;
1679 }
1680
1681 /**
1682 * megasas_free_cmds - Free all the cmds in the free cmd pool
1683 * @instance: Adapter soft state
1684 */
1685 static void megasas_free_cmds(struct megasas_instance *instance)
1686 {
1687 int i;
1688 /* First free the MFI frame pool */
1689 megasas_teardown_frame_pool(instance);
1690
1691 /* Free all the commands in the cmd_list */
1692 for (i = 0; i < instance->max_fw_cmds; i++)
1693 kfree(instance->cmd_list[i]);
1694
1695 /* Free the cmd_list buffer itself */
1696 kfree(instance->cmd_list);
1697 instance->cmd_list = NULL;
1698
1699 INIT_LIST_HEAD(&instance->cmd_pool);
1700 }
1701
1702 /**
1703 * megasas_alloc_cmds - Allocates the command packets
1704 * @instance: Adapter soft state
1705 *
1706 * Each command that is issued to the FW, whether IO commands from the OS or
1707 * internal commands like IOCTLs, are wrapped in local data structure called
1708 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1709 * the FW.
1710 *
1711 * Each frame has a 32-bit field called context (tag). This context is used
1712 * to get back the megasas_cmd from the frame when a frame gets completed in
1713 * the ISR. Typically the address of the megasas_cmd itself would be used as
1714 * the context. But we wanted to keep the differences between 32 and 64 bit
1715 * systems to the mininum. We always use 32 bit integers for the context. In
1716 * this driver, the 32 bit values are the indices into an array cmd_list.
1717 * This array is used only to look up the megasas_cmd given the context. The
1718 * free commands themselves are maintained in a linked list called cmd_pool.
1719 */
1720 static int megasas_alloc_cmds(struct megasas_instance *instance)
1721 {
1722 int i;
1723 int j;
1724 u32 max_cmd;
1725 struct megasas_cmd *cmd;
1726
1727 max_cmd = instance->max_fw_cmds;
1728
1729 /*
1730 * instance->cmd_list is an array of struct megasas_cmd pointers.
1731 * Allocate the dynamic array first and then allocate individual
1732 * commands.
1733 */
1734 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1735
1736 if (!instance->cmd_list) {
1737 printk(KERN_DEBUG "megasas: out of memory\n");
1738 return -ENOMEM;
1739 }
1740
1741
1742 for (i = 0; i < max_cmd; i++) {
1743 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1744 GFP_KERNEL);
1745
1746 if (!instance->cmd_list[i]) {
1747
1748 for (j = 0; j < i; j++)
1749 kfree(instance->cmd_list[j]);
1750
1751 kfree(instance->cmd_list);
1752 instance->cmd_list = NULL;
1753
1754 return -ENOMEM;
1755 }
1756 }
1757
1758 /*
1759 * Add all the commands to command pool (instance->cmd_pool)
1760 */
1761 for (i = 0; i < max_cmd; i++) {
1762 cmd = instance->cmd_list[i];
1763 memset(cmd, 0, sizeof(struct megasas_cmd));
1764 cmd->index = i;
1765 cmd->instance = instance;
1766
1767 list_add_tail(&cmd->list, &instance->cmd_pool);
1768 }
1769
1770 /*
1771 * Create a frame pool and assign one frame to each cmd
1772 */
1773 if (megasas_create_frame_pool(instance)) {
1774 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1775 megasas_free_cmds(instance);
1776 }
1777
1778 return 0;
1779 }
1780
1781 /**
1782 * megasas_get_controller_info - Returns FW's controller structure
1783 * @instance: Adapter soft state
1784 * @ctrl_info: Controller information structure
1785 *
1786 * Issues an internal command (DCMD) to get the FW's controller structure.
1787 * This information is mainly used to find out the maximum IO transfer per
1788 * command supported by the FW.
1789 */
1790 static int
1791 megasas_get_ctrl_info(struct megasas_instance *instance,
1792 struct megasas_ctrl_info *ctrl_info)
1793 {
1794 int ret = 0;
1795 struct megasas_cmd *cmd;
1796 struct megasas_dcmd_frame *dcmd;
1797 struct megasas_ctrl_info *ci;
1798 dma_addr_t ci_h = 0;
1799
1800 cmd = megasas_get_cmd(instance);
1801
1802 if (!cmd) {
1803 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1804 return -ENOMEM;
1805 }
1806
1807 dcmd = &cmd->frame->dcmd;
1808
1809 ci = pci_alloc_consistent(instance->pdev,
1810 sizeof(struct megasas_ctrl_info), &ci_h);
1811
1812 if (!ci) {
1813 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1814 megasas_return_cmd(instance, cmd);
1815 return -ENOMEM;
1816 }
1817
1818 memset(ci, 0, sizeof(*ci));
1819 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1820
1821 dcmd->cmd = MFI_CMD_DCMD;
1822 dcmd->cmd_status = 0xFF;
1823 dcmd->sge_count = 1;
1824 dcmd->flags = MFI_FRAME_DIR_READ;
1825 dcmd->timeout = 0;
1826 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1827 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1828 dcmd->sgl.sge32[0].phys_addr = ci_h;
1829 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1830
1831 if (!megasas_issue_polled(instance, cmd)) {
1832 ret = 0;
1833 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1834 } else {
1835 ret = -1;
1836 }
1837
1838 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1839 ci, ci_h);
1840
1841 megasas_return_cmd(instance, cmd);
1842 return ret;
1843 }
1844
1845 /**
1846 * megasas_issue_init_mfi - Initializes the FW
1847 * @instance: Adapter soft state
1848 *
1849 * Issues the INIT MFI cmd
1850 */
1851 static int
1852 megasas_issue_init_mfi(struct megasas_instance *instance)
1853 {
1854 u32 context;
1855
1856 struct megasas_cmd *cmd;
1857
1858 struct megasas_init_frame *init_frame;
1859 struct megasas_init_queue_info *initq_info;
1860 dma_addr_t init_frame_h;
1861 dma_addr_t initq_info_h;
1862
1863 /*
1864 * Prepare a init frame. Note the init frame points to queue info
1865 * structure. Each frame has SGL allocated after first 64 bytes. For
1866 * this frame - since we don't need any SGL - we use SGL's space as
1867 * queue info structure
1868 *
1869 * We will not get a NULL command below. We just created the pool.
1870 */
1871 cmd = megasas_get_cmd(instance);
1872
1873 init_frame = (struct megasas_init_frame *)cmd->frame;
1874 initq_info = (struct megasas_init_queue_info *)
1875 ((unsigned long)init_frame + 64);
1876
1877 init_frame_h = cmd->frame_phys_addr;
1878 initq_info_h = init_frame_h + 64;
1879
1880 context = init_frame->context;
1881 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1882 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1883 init_frame->context = context;
1884
1885 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1886 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1887
1888 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1889 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1890
1891 init_frame->cmd = MFI_CMD_INIT;
1892 init_frame->cmd_status = 0xFF;
1893 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1894
1895 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1896
1897 /*
1898 * disable the intr before firing the init frame to FW
1899 */
1900 instance->instancet->disable_intr(instance->reg_set);
1901
1902 /*
1903 * Issue the init frame in polled mode
1904 */
1905
1906 if (megasas_issue_polled(instance, cmd)) {
1907 printk(KERN_ERR "megasas: Failed to init firmware\n");
1908 megasas_return_cmd(instance, cmd);
1909 goto fail_fw_init;
1910 }
1911
1912 megasas_return_cmd(instance, cmd);
1913
1914 return 0;
1915
1916 fail_fw_init:
1917 return -EINVAL;
1918 }
1919
1920 /**
1921 * megasas_start_timer - Initializes a timer object
1922 * @instance: Adapter soft state
1923 * @timer: timer object to be initialized
1924 * @fn: timer function
1925 * @interval: time interval between timer function call
1926 */
1927 static inline void
1928 megasas_start_timer(struct megasas_instance *instance,
1929 struct timer_list *timer,
1930 void *fn, unsigned long interval)
1931 {
1932 init_timer(timer);
1933 timer->expires = jiffies + interval;
1934 timer->data = (unsigned long)instance;
1935 timer->function = fn;
1936 add_timer(timer);
1937 }
1938
1939 /**
1940 * megasas_io_completion_timer - Timer fn
1941 * @instance_addr: Address of adapter soft state
1942 *
1943 * Schedules tasklet for cmd completion
1944 * if poll_mode_io is set
1945 */
1946 static void
1947 megasas_io_completion_timer(unsigned long instance_addr)
1948 {
1949 struct megasas_instance *instance =
1950 (struct megasas_instance *)instance_addr;
1951
1952 if (atomic_read(&instance->fw_outstanding))
1953 tasklet_schedule(&instance->isr_tasklet);
1954
1955 /* Restart timer */
1956 if (poll_mode_io)
1957 mod_timer(&instance->io_completion_timer,
1958 jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
1959 }
1960
1961 /**
1962 * megasas_init_mfi - Initializes the FW
1963 * @instance: Adapter soft state
1964 *
1965 * This is the main function for initializing MFI firmware.
1966 */
1967 static int megasas_init_mfi(struct megasas_instance *instance)
1968 {
1969 u32 context_sz;
1970 u32 reply_q_sz;
1971 u32 max_sectors_1;
1972 u32 max_sectors_2;
1973 u32 tmp_sectors;
1974 struct megasas_register_set __iomem *reg_set;
1975 struct megasas_ctrl_info *ctrl_info;
1976 /*
1977 * Map the message registers
1978 */
1979 instance->base_addr = pci_resource_start(instance->pdev, 0);
1980
1981 if (pci_request_regions(instance->pdev, "megasas: LSI")) {
1982 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1983 return -EBUSY;
1984 }
1985
1986 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1987
1988 if (!instance->reg_set) {
1989 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1990 goto fail_ioremap;
1991 }
1992
1993 reg_set = instance->reg_set;
1994
1995 switch(instance->pdev->device)
1996 {
1997 case PCI_DEVICE_ID_LSI_SAS1078R:
1998 case PCI_DEVICE_ID_LSI_SAS1078DE:
1999 instance->instancet = &megasas_instance_template_ppc;
2000 break;
2001 case PCI_DEVICE_ID_LSI_SAS1064R:
2002 case PCI_DEVICE_ID_DELL_PERC5:
2003 default:
2004 instance->instancet = &megasas_instance_template_xscale;
2005 break;
2006 }
2007
2008 /*
2009 * We expect the FW state to be READY
2010 */
2011 if (megasas_transition_to_ready(instance))
2012 goto fail_ready_state;
2013
2014 /*
2015 * Get various operational parameters from status register
2016 */
2017 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2018 /*
2019 * Reduce the max supported cmds by 1. This is to ensure that the
2020 * reply_q_sz (1 more than the max cmd that driver may send)
2021 * does not exceed max cmds that the FW can support
2022 */
2023 instance->max_fw_cmds = instance->max_fw_cmds-1;
2024 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
2025 0x10;
2026 /*
2027 * Create a pool of commands
2028 */
2029 if (megasas_alloc_cmds(instance))
2030 goto fail_alloc_cmds;
2031
2032 /*
2033 * Allocate memory for reply queue. Length of reply queue should
2034 * be _one_ more than the maximum commands handled by the firmware.
2035 *
2036 * Note: When FW completes commands, it places corresponding contex
2037 * values in this circular reply queue. This circular queue is a fairly
2038 * typical producer-consumer queue. FW is the producer (of completed
2039 * commands) and the driver is the consumer.
2040 */
2041 context_sz = sizeof(u32);
2042 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2043
2044 instance->reply_queue = pci_alloc_consistent(instance->pdev,
2045 reply_q_sz,
2046 &instance->reply_queue_h);
2047
2048 if (!instance->reply_queue) {
2049 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2050 goto fail_reply_queue;
2051 }
2052
2053 if (megasas_issue_init_mfi(instance))
2054 goto fail_fw_init;
2055
2056 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2057
2058 /*
2059 * Compute the max allowed sectors per IO: The controller info has two
2060 * limits on max sectors. Driver should use the minimum of these two.
2061 *
2062 * 1 << stripe_sz_ops.min = max sectors per strip
2063 *
2064 * Note that older firmwares ( < FW ver 30) didn't report information
2065 * to calculate max_sectors_1. So the number ended up as zero always.
2066 */
2067 tmp_sectors = 0;
2068 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2069
2070 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2071 ctrl_info->max_strips_per_io;
2072 max_sectors_2 = ctrl_info->max_request_size;
2073
2074 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2075 }
2076
2077 instance->max_sectors_per_req = instance->max_num_sge *
2078 PAGE_SIZE / 512;
2079 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2080 instance->max_sectors_per_req = tmp_sectors;
2081
2082 kfree(ctrl_info);
2083
2084 /*
2085 * Setup tasklet for cmd completion
2086 */
2087
2088 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2089 (unsigned long)instance);
2090
2091 /* Initialize the cmd completion timer */
2092 if (poll_mode_io)
2093 megasas_start_timer(instance, &instance->io_completion_timer,
2094 megasas_io_completion_timer,
2095 MEGASAS_COMPLETION_TIMER_INTERVAL);
2096 return 0;
2097
2098 fail_fw_init:
2099
2100 pci_free_consistent(instance->pdev, reply_q_sz,
2101 instance->reply_queue, instance->reply_queue_h);
2102 fail_reply_queue:
2103 megasas_free_cmds(instance);
2104
2105 fail_alloc_cmds:
2106 fail_ready_state:
2107 iounmap(instance->reg_set);
2108
2109 fail_ioremap:
2110 pci_release_regions(instance->pdev);
2111
2112 return -EINVAL;
2113 }
2114
2115 /**
2116 * megasas_release_mfi - Reverses the FW initialization
2117 * @intance: Adapter soft state
2118 */
2119 static void megasas_release_mfi(struct megasas_instance *instance)
2120 {
2121 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2122
2123 pci_free_consistent(instance->pdev, reply_q_sz,
2124 instance->reply_queue, instance->reply_queue_h);
2125
2126 megasas_free_cmds(instance);
2127
2128 iounmap(instance->reg_set);
2129
2130 pci_release_regions(instance->pdev);
2131 }
2132
2133 /**
2134 * megasas_get_seq_num - Gets latest event sequence numbers
2135 * @instance: Adapter soft state
2136 * @eli: FW event log sequence numbers information
2137 *
2138 * FW maintains a log of all events in a non-volatile area. Upper layers would
2139 * usually find out the latest sequence number of the events, the seq number at
2140 * the boot etc. They would "read" all the events below the latest seq number
2141 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2142 * number), they would subsribe to AEN (asynchronous event notification) and
2143 * wait for the events to happen.
2144 */
2145 static int
2146 megasas_get_seq_num(struct megasas_instance *instance,
2147 struct megasas_evt_log_info *eli)
2148 {
2149 struct megasas_cmd *cmd;
2150 struct megasas_dcmd_frame *dcmd;
2151 struct megasas_evt_log_info *el_info;
2152 dma_addr_t el_info_h = 0;
2153
2154 cmd = megasas_get_cmd(instance);
2155
2156 if (!cmd) {
2157 return -ENOMEM;
2158 }
2159
2160 dcmd = &cmd->frame->dcmd;
2161 el_info = pci_alloc_consistent(instance->pdev,
2162 sizeof(struct megasas_evt_log_info),
2163 &el_info_h);
2164
2165 if (!el_info) {
2166 megasas_return_cmd(instance, cmd);
2167 return -ENOMEM;
2168 }
2169
2170 memset(el_info, 0, sizeof(*el_info));
2171 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2172
2173 dcmd->cmd = MFI_CMD_DCMD;
2174 dcmd->cmd_status = 0x0;
2175 dcmd->sge_count = 1;
2176 dcmd->flags = MFI_FRAME_DIR_READ;
2177 dcmd->timeout = 0;
2178 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2179 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2180 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2181 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2182
2183 megasas_issue_blocked_cmd(instance, cmd);
2184
2185 /*
2186 * Copy the data back into callers buffer
2187 */
2188 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2189
2190 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2191 el_info, el_info_h);
2192
2193 megasas_return_cmd(instance, cmd);
2194
2195 return 0;
2196 }
2197
2198 /**
2199 * megasas_register_aen - Registers for asynchronous event notification
2200 * @instance: Adapter soft state
2201 * @seq_num: The starting sequence number
2202 * @class_locale: Class of the event
2203 *
2204 * This function subscribes for AEN for events beyond the @seq_num. It requests
2205 * to be notified if and only if the event is of type @class_locale
2206 */
2207 static int
2208 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2209 u32 class_locale_word)
2210 {
2211 int ret_val;
2212 struct megasas_cmd *cmd;
2213 struct megasas_dcmd_frame *dcmd;
2214 union megasas_evt_class_locale curr_aen;
2215 union megasas_evt_class_locale prev_aen;
2216
2217 /*
2218 * If there an AEN pending already (aen_cmd), check if the
2219 * class_locale of that pending AEN is inclusive of the new
2220 * AEN request we currently have. If it is, then we don't have
2221 * to do anything. In other words, whichever events the current
2222 * AEN request is subscribing to, have already been subscribed
2223 * to.
2224 *
2225 * If the old_cmd is _not_ inclusive, then we have to abort
2226 * that command, form a class_locale that is superset of both
2227 * old and current and re-issue to the FW
2228 */
2229
2230 curr_aen.word = class_locale_word;
2231
2232 if (instance->aen_cmd) {
2233
2234 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2235
2236 /*
2237 * A class whose enum value is smaller is inclusive of all
2238 * higher values. If a PROGRESS (= -1) was previously
2239 * registered, then a new registration requests for higher
2240 * classes need not be sent to FW. They are automatically
2241 * included.
2242 *
2243 * Locale numbers don't have such hierarchy. They are bitmap
2244 * values
2245 */
2246 if ((prev_aen.members.class <= curr_aen.members.class) &&
2247 !((prev_aen.members.locale & curr_aen.members.locale) ^
2248 curr_aen.members.locale)) {
2249 /*
2250 * Previously issued event registration includes
2251 * current request. Nothing to do.
2252 */
2253 return 0;
2254 } else {
2255 curr_aen.members.locale |= prev_aen.members.locale;
2256
2257 if (prev_aen.members.class < curr_aen.members.class)
2258 curr_aen.members.class = prev_aen.members.class;
2259
2260 instance->aen_cmd->abort_aen = 1;
2261 ret_val = megasas_issue_blocked_abort_cmd(instance,
2262 instance->
2263 aen_cmd);
2264
2265 if (ret_val) {
2266 printk(KERN_DEBUG "megasas: Failed to abort "
2267 "previous AEN command\n");
2268 return ret_val;
2269 }
2270 }
2271 }
2272
2273 cmd = megasas_get_cmd(instance);
2274
2275 if (!cmd)
2276 return -ENOMEM;
2277
2278 dcmd = &cmd->frame->dcmd;
2279
2280 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2281
2282 /*
2283 * Prepare DCMD for aen registration
2284 */
2285 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2286
2287 dcmd->cmd = MFI_CMD_DCMD;
2288 dcmd->cmd_status = 0x0;
2289 dcmd->sge_count = 1;
2290 dcmd->flags = MFI_FRAME_DIR_READ;
2291 dcmd->timeout = 0;
2292 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2293 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2294 dcmd->mbox.w[0] = seq_num;
2295 dcmd->mbox.w[1] = curr_aen.word;
2296 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2297 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2298
2299 /*
2300 * Store reference to the cmd used to register for AEN. When an
2301 * application wants us to register for AEN, we have to abort this
2302 * cmd and re-register with a new EVENT LOCALE supplied by that app
2303 */
2304 instance->aen_cmd = cmd;
2305
2306 /*
2307 * Issue the aen registration frame
2308 */
2309 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2310
2311 return 0;
2312 }
2313
2314 /**
2315 * megasas_start_aen - Subscribes to AEN during driver load time
2316 * @instance: Adapter soft state
2317 */
2318 static int megasas_start_aen(struct megasas_instance *instance)
2319 {
2320 struct megasas_evt_log_info eli;
2321 union megasas_evt_class_locale class_locale;
2322
2323 /*
2324 * Get the latest sequence number from FW
2325 */
2326 memset(&eli, 0, sizeof(eli));
2327
2328 if (megasas_get_seq_num(instance, &eli))
2329 return -1;
2330
2331 /*
2332 * Register AEN with FW for latest sequence number plus 1
2333 */
2334 class_locale.members.reserved = 0;
2335 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2336 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2337
2338 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2339 class_locale.word);
2340 }
2341
2342 /**
2343 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2344 * @instance: Adapter soft state
2345 */
2346 static int megasas_io_attach(struct megasas_instance *instance)
2347 {
2348 struct Scsi_Host *host = instance->host;
2349
2350 /*
2351 * Export parameters required by SCSI mid-layer
2352 */
2353 host->irq = instance->pdev->irq;
2354 host->unique_id = instance->unique_id;
2355 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2356 host->this_id = instance->init_id;
2357 host->sg_tablesize = instance->max_num_sge;
2358 host->max_sectors = instance->max_sectors_per_req;
2359 host->cmd_per_lun = 128;
2360 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2361 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2362 host->max_lun = MEGASAS_MAX_LUN;
2363 host->max_cmd_len = 16;
2364
2365 /*
2366 * Notify the mid-layer about the new controller
2367 */
2368 if (scsi_add_host(host, &instance->pdev->dev)) {
2369 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2370 return -ENODEV;
2371 }
2372
2373 /*
2374 * Trigger SCSI to scan our drives
2375 */
2376 scsi_scan_host(host);
2377 return 0;
2378 }
2379
2380 static int
2381 megasas_set_dma_mask(struct pci_dev *pdev)
2382 {
2383 /*
2384 * All our contollers are capable of performing 64-bit DMA
2385 */
2386 if (IS_DMA64) {
2387 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2388
2389 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2390 goto fail_set_dma_mask;
2391 }
2392 } else {
2393 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2394 goto fail_set_dma_mask;
2395 }
2396 return 0;
2397
2398 fail_set_dma_mask:
2399 return 1;
2400 }
2401
2402 /**
2403 * megasas_probe_one - PCI hotplug entry point
2404 * @pdev: PCI device structure
2405 * @id: PCI ids of supported hotplugged adapter
2406 */
2407 static int __devinit
2408 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2409 {
2410 int rval;
2411 struct Scsi_Host *host;
2412 struct megasas_instance *instance;
2413
2414 /*
2415 * Announce PCI information
2416 */
2417 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2418 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2419 pdev->subsystem_device);
2420
2421 printk("bus %d:slot %d:func %d\n",
2422 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2423
2424 /*
2425 * PCI prepping: enable device set bus mastering and dma mask
2426 */
2427 rval = pci_enable_device(pdev);
2428
2429 if (rval) {
2430 return rval;
2431 }
2432
2433 pci_set_master(pdev);
2434
2435 if (megasas_set_dma_mask(pdev))
2436 goto fail_set_dma_mask;
2437
2438 host = scsi_host_alloc(&megasas_template,
2439 sizeof(struct megasas_instance));
2440
2441 if (!host) {
2442 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2443 goto fail_alloc_instance;
2444 }
2445
2446 instance = (struct megasas_instance *)host->hostdata;
2447 memset(instance, 0, sizeof(*instance));
2448
2449 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2450 &instance->producer_h);
2451 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2452 &instance->consumer_h);
2453
2454 if (!instance->producer || !instance->consumer) {
2455 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2456 "producer, consumer\n");
2457 goto fail_alloc_dma_buf;
2458 }
2459
2460 *instance->producer = 0;
2461 *instance->consumer = 0;
2462
2463 instance->evt_detail = pci_alloc_consistent(pdev,
2464 sizeof(struct
2465 megasas_evt_detail),
2466 &instance->evt_detail_h);
2467
2468 if (!instance->evt_detail) {
2469 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2470 "event detail structure\n");
2471 goto fail_alloc_dma_buf;
2472 }
2473
2474 /*
2475 * Initialize locks and queues
2476 */
2477 INIT_LIST_HEAD(&instance->cmd_pool);
2478
2479 atomic_set(&instance->fw_outstanding,0);
2480
2481 init_waitqueue_head(&instance->int_cmd_wait_q);
2482 init_waitqueue_head(&instance->abort_cmd_wait_q);
2483
2484 spin_lock_init(&instance->cmd_pool_lock);
2485 spin_lock_init(&instance->completion_lock);
2486
2487 mutex_init(&instance->aen_mutex);
2488 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2489
2490 /*
2491 * Initialize PCI related and misc parameters
2492 */
2493 instance->pdev = pdev;
2494 instance->host = host;
2495 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2496 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2497
2498 megasas_dbg_lvl = 0;
2499 instance->flag = 0;
2500 instance->last_time = 0;
2501
2502 /*
2503 * Initialize MFI Firmware
2504 */
2505 if (megasas_init_mfi(instance))
2506 goto fail_init_mfi;
2507
2508 /*
2509 * Register IRQ
2510 */
2511 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2512 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2513 goto fail_irq;
2514 }
2515
2516 instance->instancet->enable_intr(instance->reg_set);
2517
2518 /*
2519 * Store instance in PCI softstate
2520 */
2521 pci_set_drvdata(pdev, instance);
2522
2523 /*
2524 * Add this controller to megasas_mgmt_info structure so that it
2525 * can be exported to management applications
2526 */
2527 megasas_mgmt_info.count++;
2528 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2529 megasas_mgmt_info.max_index++;
2530
2531 /*
2532 * Initiate AEN (Asynchronous Event Notification)
2533 */
2534 if (megasas_start_aen(instance)) {
2535 printk(KERN_DEBUG "megasas: start aen failed\n");
2536 goto fail_start_aen;
2537 }
2538
2539 /*
2540 * Register with SCSI mid-layer
2541 */
2542 if (megasas_io_attach(instance))
2543 goto fail_io_attach;
2544
2545 return 0;
2546
2547 fail_start_aen:
2548 fail_io_attach:
2549 megasas_mgmt_info.count--;
2550 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2551 megasas_mgmt_info.max_index--;
2552
2553 pci_set_drvdata(pdev, NULL);
2554 instance->instancet->disable_intr(instance->reg_set);
2555 free_irq(instance->pdev->irq, instance);
2556
2557 megasas_release_mfi(instance);
2558
2559 fail_irq:
2560 fail_init_mfi:
2561 fail_alloc_dma_buf:
2562 if (instance->evt_detail)
2563 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2564 instance->evt_detail,
2565 instance->evt_detail_h);
2566
2567 if (instance->producer)
2568 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2569 instance->producer_h);
2570 if (instance->consumer)
2571 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2572 instance->consumer_h);
2573 scsi_host_put(host);
2574
2575 fail_alloc_instance:
2576 fail_set_dma_mask:
2577 pci_disable_device(pdev);
2578
2579 return -ENODEV;
2580 }
2581
2582 /**
2583 * megasas_flush_cache - Requests FW to flush all its caches
2584 * @instance: Adapter soft state
2585 */
2586 static void megasas_flush_cache(struct megasas_instance *instance)
2587 {
2588 struct megasas_cmd *cmd;
2589 struct megasas_dcmd_frame *dcmd;
2590
2591 cmd = megasas_get_cmd(instance);
2592
2593 if (!cmd)
2594 return;
2595
2596 dcmd = &cmd->frame->dcmd;
2597
2598 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2599
2600 dcmd->cmd = MFI_CMD_DCMD;
2601 dcmd->cmd_status = 0x0;
2602 dcmd->sge_count = 0;
2603 dcmd->flags = MFI_FRAME_DIR_NONE;
2604 dcmd->timeout = 0;
2605 dcmd->data_xfer_len = 0;
2606 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2607 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2608
2609 megasas_issue_blocked_cmd(instance, cmd);
2610
2611 megasas_return_cmd(instance, cmd);
2612
2613 return;
2614 }
2615
2616 /**
2617 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2618 * @instance: Adapter soft state
2619 * @opcode: Shutdown/Hibernate
2620 */
2621 static void megasas_shutdown_controller(struct megasas_instance *instance,
2622 u32 opcode)
2623 {
2624 struct megasas_cmd *cmd;
2625 struct megasas_dcmd_frame *dcmd;
2626
2627 cmd = megasas_get_cmd(instance);
2628
2629 if (!cmd)
2630 return;
2631
2632 if (instance->aen_cmd)
2633 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2634
2635 dcmd = &cmd->frame->dcmd;
2636
2637 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2638
2639 dcmd->cmd = MFI_CMD_DCMD;
2640 dcmd->cmd_status = 0x0;
2641 dcmd->sge_count = 0;
2642 dcmd->flags = MFI_FRAME_DIR_NONE;
2643 dcmd->timeout = 0;
2644 dcmd->data_xfer_len = 0;
2645 dcmd->opcode = opcode;
2646
2647 megasas_issue_blocked_cmd(instance, cmd);
2648
2649 megasas_return_cmd(instance, cmd);
2650
2651 return;
2652 }
2653
2654 #ifdef CONFIG_PM
2655 /**
2656 * megasas_suspend - driver suspend entry point
2657 * @pdev: PCI device structure
2658 * @state: PCI power state to suspend routine
2659 */
2660 static int
2661 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2662 {
2663 struct Scsi_Host *host;
2664 struct megasas_instance *instance;
2665
2666 instance = pci_get_drvdata(pdev);
2667 host = instance->host;
2668
2669 if (poll_mode_io)
2670 del_timer_sync(&instance->io_completion_timer);
2671
2672 megasas_flush_cache(instance);
2673 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2674 tasklet_kill(&instance->isr_tasklet);
2675
2676 pci_set_drvdata(instance->pdev, instance);
2677 instance->instancet->disable_intr(instance->reg_set);
2678 free_irq(instance->pdev->irq, instance);
2679
2680 pci_save_state(pdev);
2681 pci_disable_device(pdev);
2682
2683 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2684
2685 return 0;
2686 }
2687
2688 /**
2689 * megasas_resume- driver resume entry point
2690 * @pdev: PCI device structure
2691 */
2692 static int
2693 megasas_resume(struct pci_dev *pdev)
2694 {
2695 int rval;
2696 struct Scsi_Host *host;
2697 struct megasas_instance *instance;
2698
2699 instance = pci_get_drvdata(pdev);
2700 host = instance->host;
2701 pci_set_power_state(pdev, PCI_D0);
2702 pci_enable_wake(pdev, PCI_D0, 0);
2703 pci_restore_state(pdev);
2704
2705 /*
2706 * PCI prepping: enable device set bus mastering and dma mask
2707 */
2708 rval = pci_enable_device(pdev);
2709
2710 if (rval) {
2711 printk(KERN_ERR "megasas: Enable device failed\n");
2712 return rval;
2713 }
2714
2715 pci_set_master(pdev);
2716
2717 if (megasas_set_dma_mask(pdev))
2718 goto fail_set_dma_mask;
2719
2720 /*
2721 * Initialize MFI Firmware
2722 */
2723
2724 *instance->producer = 0;
2725 *instance->consumer = 0;
2726
2727 atomic_set(&instance->fw_outstanding, 0);
2728
2729 /*
2730 * We expect the FW state to be READY
2731 */
2732 if (megasas_transition_to_ready(instance))
2733 goto fail_ready_state;
2734
2735 if (megasas_issue_init_mfi(instance))
2736 goto fail_init_mfi;
2737
2738 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2739 (unsigned long)instance);
2740
2741 /*
2742 * Register IRQ
2743 */
2744 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2745 "megasas", instance)) {
2746 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2747 goto fail_irq;
2748 }
2749
2750 instance->instancet->enable_intr(instance->reg_set);
2751
2752 /*
2753 * Initiate AEN (Asynchronous Event Notification)
2754 */
2755 if (megasas_start_aen(instance))
2756 printk(KERN_ERR "megasas: Start AEN failed\n");
2757
2758 /* Initialize the cmd completion timer */
2759 if (poll_mode_io)
2760 megasas_start_timer(instance, &instance->io_completion_timer,
2761 megasas_io_completion_timer,
2762 MEGASAS_COMPLETION_TIMER_INTERVAL);
2763 return 0;
2764
2765 fail_irq:
2766 fail_init_mfi:
2767 if (instance->evt_detail)
2768 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2769 instance->evt_detail,
2770 instance->evt_detail_h);
2771
2772 if (instance->producer)
2773 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2774 instance->producer_h);
2775 if (instance->consumer)
2776 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2777 instance->consumer_h);
2778 scsi_host_put(host);
2779
2780 fail_set_dma_mask:
2781 fail_ready_state:
2782
2783 pci_disable_device(pdev);
2784
2785 return -ENODEV;
2786 }
2787 #else
2788 #define megasas_suspend NULL
2789 #define megasas_resume NULL
2790 #endif
2791
2792 /**
2793 * megasas_detach_one - PCI hot"un"plug entry point
2794 * @pdev: PCI device structure
2795 */
2796 static void __devexit megasas_detach_one(struct pci_dev *pdev)
2797 {
2798 int i;
2799 struct Scsi_Host *host;
2800 struct megasas_instance *instance;
2801
2802 instance = pci_get_drvdata(pdev);
2803 host = instance->host;
2804
2805 if (poll_mode_io)
2806 del_timer_sync(&instance->io_completion_timer);
2807
2808 scsi_remove_host(instance->host);
2809 megasas_flush_cache(instance);
2810 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2811 tasklet_kill(&instance->isr_tasklet);
2812
2813 /*
2814 * Take the instance off the instance array. Note that we will not
2815 * decrement the max_index. We let this array be sparse array
2816 */
2817 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2818 if (megasas_mgmt_info.instance[i] == instance) {
2819 megasas_mgmt_info.count--;
2820 megasas_mgmt_info.instance[i] = NULL;
2821
2822 break;
2823 }
2824 }
2825
2826 pci_set_drvdata(instance->pdev, NULL);
2827
2828 instance->instancet->disable_intr(instance->reg_set);
2829
2830 free_irq(instance->pdev->irq, instance);
2831
2832 megasas_release_mfi(instance);
2833
2834 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2835 instance->evt_detail, instance->evt_detail_h);
2836
2837 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2838 instance->producer_h);
2839
2840 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2841 instance->consumer_h);
2842
2843 scsi_host_put(host);
2844
2845 pci_set_drvdata(pdev, NULL);
2846
2847 pci_disable_device(pdev);
2848
2849 return;
2850 }
2851
2852 /**
2853 * megasas_shutdown - Shutdown entry point
2854 * @device: Generic device structure
2855 */
2856 static void megasas_shutdown(struct pci_dev *pdev)
2857 {
2858 struct megasas_instance *instance = pci_get_drvdata(pdev);
2859 megasas_flush_cache(instance);
2860 }
2861
2862 /**
2863 * megasas_mgmt_open - char node "open" entry point
2864 */
2865 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2866 {
2867 cycle_kernel_lock();
2868 /*
2869 * Allow only those users with admin rights
2870 */
2871 if (!capable(CAP_SYS_ADMIN))
2872 return -EACCES;
2873
2874 return 0;
2875 }
2876
2877 /**
2878 * megasas_mgmt_release - char node "release" entry point
2879 */
2880 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2881 {
2882 filep->private_data = NULL;
2883 fasync_helper(-1, filep, 0, &megasas_async_queue);
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * megasas_mgmt_fasync - Async notifier registration from applications
2890 *
2891 * This function adds the calling process to a driver global queue. When an
2892 * event occurs, SIGIO will be sent to all processes in this queue.
2893 */
2894 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2895 {
2896 int rc;
2897
2898 mutex_lock(&megasas_async_queue_mutex);
2899
2900 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2901
2902 mutex_unlock(&megasas_async_queue_mutex);
2903
2904 if (rc >= 0) {
2905 /* For sanity check when we get ioctl */
2906 filep->private_data = filep;
2907 return 0;
2908 }
2909
2910 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2911
2912 return rc;
2913 }
2914
2915 /**
2916 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2917 * @instance: Adapter soft state
2918 * @argp: User's ioctl packet
2919 */
2920 static int
2921 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2922 struct megasas_iocpacket __user * user_ioc,
2923 struct megasas_iocpacket *ioc)
2924 {
2925 struct megasas_sge32 *kern_sge32;
2926 struct megasas_cmd *cmd;
2927 void *kbuff_arr[MAX_IOCTL_SGE];
2928 dma_addr_t buf_handle = 0;
2929 int error = 0, i;
2930 void *sense = NULL;
2931 dma_addr_t sense_handle;
2932 u32 *sense_ptr;
2933
2934 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2935
2936 if (ioc->sge_count > MAX_IOCTL_SGE) {
2937 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2938 ioc->sge_count, MAX_IOCTL_SGE);
2939 return -EINVAL;
2940 }
2941
2942 cmd = megasas_get_cmd(instance);
2943 if (!cmd) {
2944 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2945 return -ENOMEM;
2946 }
2947
2948 /*
2949 * User's IOCTL packet has 2 frames (maximum). Copy those two
2950 * frames into our cmd's frames. cmd->frame's context will get
2951 * overwritten when we copy from user's frames. So set that value
2952 * alone separately
2953 */
2954 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2955 cmd->frame->hdr.context = cmd->index;
2956
2957 /*
2958 * The management interface between applications and the fw uses
2959 * MFI frames. E.g, RAID configuration changes, LD property changes
2960 * etc are accomplishes through different kinds of MFI frames. The
2961 * driver needs to care only about substituting user buffers with
2962 * kernel buffers in SGLs. The location of SGL is embedded in the
2963 * struct iocpacket itself.
2964 */
2965 kern_sge32 = (struct megasas_sge32 *)
2966 ((unsigned long)cmd->frame + ioc->sgl_off);
2967
2968 /*
2969 * For each user buffer, create a mirror buffer and copy in
2970 */
2971 for (i = 0; i < ioc->sge_count; i++) {
2972 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2973 ioc->sgl[i].iov_len,
2974 &buf_handle, GFP_KERNEL);
2975 if (!kbuff_arr[i]) {
2976 printk(KERN_DEBUG "megasas: Failed to alloc "
2977 "kernel SGL buffer for IOCTL \n");
2978 error = -ENOMEM;
2979 goto out;
2980 }
2981
2982 /*
2983 * We don't change the dma_coherent_mask, so
2984 * pci_alloc_consistent only returns 32bit addresses
2985 */
2986 kern_sge32[i].phys_addr = (u32) buf_handle;
2987 kern_sge32[i].length = ioc->sgl[i].iov_len;
2988
2989 /*
2990 * We created a kernel buffer corresponding to the
2991 * user buffer. Now copy in from the user buffer
2992 */
2993 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2994 (u32) (ioc->sgl[i].iov_len))) {
2995 error = -EFAULT;
2996 goto out;
2997 }
2998 }
2999
3000 if (ioc->sense_len) {
3001 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
3002 &sense_handle, GFP_KERNEL);
3003 if (!sense) {
3004 error = -ENOMEM;
3005 goto out;
3006 }
3007
3008 sense_ptr =
3009 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3010 *sense_ptr = sense_handle;
3011 }
3012
3013 /*
3014 * Set the sync_cmd flag so that the ISR knows not to complete this
3015 * cmd to the SCSI mid-layer
3016 */
3017 cmd->sync_cmd = 1;
3018 megasas_issue_blocked_cmd(instance, cmd);
3019 cmd->sync_cmd = 0;
3020
3021 /*
3022 * copy out the kernel buffers to user buffers
3023 */
3024 for (i = 0; i < ioc->sge_count; i++) {
3025 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3026 ioc->sgl[i].iov_len)) {
3027 error = -EFAULT;
3028 goto out;
3029 }
3030 }
3031
3032 /*
3033 * copy out the sense
3034 */
3035 if (ioc->sense_len) {
3036 /*
3037 * sense_ptr points to the location that has the user
3038 * sense buffer address
3039 */
3040 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3041 ioc->sense_off);
3042
3043 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3044 sense, ioc->sense_len)) {
3045 printk(KERN_ERR "megasas: Failed to copy out to user "
3046 "sense data\n");
3047 error = -EFAULT;
3048 goto out;
3049 }
3050 }
3051
3052 /*
3053 * copy the status codes returned by the fw
3054 */
3055 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3056 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3057 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3058 error = -EFAULT;
3059 }
3060
3061 out:
3062 if (sense) {
3063 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3064 sense, sense_handle);
3065 }
3066
3067 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3068 dma_free_coherent(&instance->pdev->dev,
3069 kern_sge32[i].length,
3070 kbuff_arr[i], kern_sge32[i].phys_addr);
3071 }
3072
3073 megasas_return_cmd(instance, cmd);
3074 return error;
3075 }
3076
3077 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3078 {
3079 int i;
3080
3081 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3082
3083 if ((megasas_mgmt_info.instance[i]) &&
3084 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3085 return megasas_mgmt_info.instance[i];
3086 }
3087
3088 return NULL;
3089 }
3090
3091 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3092 {
3093 struct megasas_iocpacket __user *user_ioc =
3094 (struct megasas_iocpacket __user *)arg;
3095 struct megasas_iocpacket *ioc;
3096 struct megasas_instance *instance;
3097 int error;
3098
3099 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3100 if (!ioc)
3101 return -ENOMEM;
3102
3103 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3104 error = -EFAULT;
3105 goto out_kfree_ioc;
3106 }
3107
3108 instance = megasas_lookup_instance(ioc->host_no);
3109 if (!instance) {
3110 error = -ENODEV;
3111 goto out_kfree_ioc;
3112 }
3113
3114 /*
3115 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3116 */
3117 if (down_interruptible(&instance->ioctl_sem)) {
3118 error = -ERESTARTSYS;
3119 goto out_kfree_ioc;
3120 }
3121 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3122 up(&instance->ioctl_sem);
3123
3124 out_kfree_ioc:
3125 kfree(ioc);
3126 return error;
3127 }
3128
3129 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3130 {
3131 struct megasas_instance *instance;
3132 struct megasas_aen aen;
3133 int error;
3134
3135 if (file->private_data != file) {
3136 printk(KERN_DEBUG "megasas: fasync_helper was not "
3137 "called first\n");
3138 return -EINVAL;
3139 }
3140
3141 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3142 return -EFAULT;
3143
3144 instance = megasas_lookup_instance(aen.host_no);
3145
3146 if (!instance)
3147 return -ENODEV;
3148
3149 mutex_lock(&instance->aen_mutex);
3150 error = megasas_register_aen(instance, aen.seq_num,
3151 aen.class_locale_word);
3152 mutex_unlock(&instance->aen_mutex);
3153 return error;
3154 }
3155
3156 /**
3157 * megasas_mgmt_ioctl - char node ioctl entry point
3158 */
3159 static long
3160 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3161 {
3162 switch (cmd) {
3163 case MEGASAS_IOC_FIRMWARE:
3164 return megasas_mgmt_ioctl_fw(file, arg);
3165
3166 case MEGASAS_IOC_GET_AEN:
3167 return megasas_mgmt_ioctl_aen(file, arg);
3168 }
3169
3170 return -ENOTTY;
3171 }
3172
3173 #ifdef CONFIG_COMPAT
3174 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3175 {
3176 struct compat_megasas_iocpacket __user *cioc =
3177 (struct compat_megasas_iocpacket __user *)arg;
3178 struct megasas_iocpacket __user *ioc =
3179 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3180 int i;
3181 int error = 0;
3182
3183 if (clear_user(ioc, sizeof(*ioc)))
3184 return -EFAULT;
3185
3186 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3187 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3188 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3189 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3190 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3191 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3192 return -EFAULT;
3193
3194 for (i = 0; i < MAX_IOCTL_SGE; i++) {
3195 compat_uptr_t ptr;
3196
3197 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3198 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3199 copy_in_user(&ioc->sgl[i].iov_len,
3200 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3201 return -EFAULT;
3202 }
3203
3204 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3205
3206 if (copy_in_user(&cioc->frame.hdr.cmd_status,
3207 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3208 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3209 return -EFAULT;
3210 }
3211 return error;
3212 }
3213
3214 static long
3215 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3216 unsigned long arg)
3217 {
3218 switch (cmd) {
3219 case MEGASAS_IOC_FIRMWARE32:
3220 return megasas_mgmt_compat_ioctl_fw(file, arg);
3221 case MEGASAS_IOC_GET_AEN:
3222 return megasas_mgmt_ioctl_aen(file, arg);
3223 }
3224
3225 return -ENOTTY;
3226 }
3227 #endif
3228
3229 /*
3230 * File operations structure for management interface
3231 */
3232 static const struct file_operations megasas_mgmt_fops = {
3233 .owner = THIS_MODULE,
3234 .open = megasas_mgmt_open,
3235 .release = megasas_mgmt_release,
3236 .fasync = megasas_mgmt_fasync,
3237 .unlocked_ioctl = megasas_mgmt_ioctl,
3238 #ifdef CONFIG_COMPAT
3239 .compat_ioctl = megasas_mgmt_compat_ioctl,
3240 #endif
3241 };
3242
3243 /*
3244 * PCI hotplug support registration structure
3245 */
3246 static struct pci_driver megasas_pci_driver = {
3247
3248 .name = "megaraid_sas",
3249 .id_table = megasas_pci_table,
3250 .probe = megasas_probe_one,
3251 .remove = __devexit_p(megasas_detach_one),
3252 .suspend = megasas_suspend,
3253 .resume = megasas_resume,
3254 .shutdown = megasas_shutdown,
3255 };
3256
3257 /*
3258 * Sysfs driver attributes
3259 */
3260 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3261 {
3262 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3263 MEGASAS_VERSION);
3264 }
3265
3266 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3267
3268 static ssize_t
3269 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3270 {
3271 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3272 MEGASAS_RELDATE);
3273 }
3274
3275 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3276 NULL);
3277
3278 static ssize_t
3279 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3280 {
3281 return sprintf(buf, "%u\n", megasas_dbg_lvl);
3282 }
3283
3284 static ssize_t
3285 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3286 {
3287 int retval = count;
3288 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3289 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3290 retval = -EINVAL;
3291 }
3292 return retval;
3293 }
3294
3295 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3296 megasas_sysfs_set_dbg_lvl);
3297
3298 static ssize_t
3299 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3300 {
3301 return sprintf(buf, "%u\n", poll_mode_io);
3302 }
3303
3304 static ssize_t
3305 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3306 const char *buf, size_t count)
3307 {
3308 int retval = count;
3309 int tmp = poll_mode_io;
3310 int i;
3311 struct megasas_instance *instance;
3312
3313 if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3314 printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3315 retval = -EINVAL;
3316 }
3317
3318 /*
3319 * Check if poll_mode_io is already set or is same as previous value
3320 */
3321 if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3322 goto out;
3323
3324 if (poll_mode_io) {
3325 /*
3326 * Start timers for all adapters
3327 */
3328 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3329 instance = megasas_mgmt_info.instance[i];
3330 if (instance) {
3331 megasas_start_timer(instance,
3332 &instance->io_completion_timer,
3333 megasas_io_completion_timer,
3334 MEGASAS_COMPLETION_TIMER_INTERVAL);
3335 }
3336 }
3337 } else {
3338 /*
3339 * Delete timers for all adapters
3340 */
3341 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3342 instance = megasas_mgmt_info.instance[i];
3343 if (instance)
3344 del_timer_sync(&instance->io_completion_timer);
3345 }
3346 }
3347
3348 out:
3349 return retval;
3350 }
3351
3352 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3353 megasas_sysfs_show_poll_mode_io,
3354 megasas_sysfs_set_poll_mode_io);
3355
3356 /**
3357 * megasas_init - Driver load entry point
3358 */
3359 static int __init megasas_init(void)
3360 {
3361 int rval;
3362
3363 /*
3364 * Announce driver version and other information
3365 */
3366 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3367 MEGASAS_EXT_VERSION);
3368
3369 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3370
3371 /*
3372 * Register character device node
3373 */
3374 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3375
3376 if (rval < 0) {
3377 printk(KERN_DEBUG "megasas: failed to open device node\n");
3378 return rval;
3379 }
3380
3381 megasas_mgmt_majorno = rval;
3382
3383 /*
3384 * Register ourselves as PCI hotplug module
3385 */
3386 rval = pci_register_driver(&megasas_pci_driver);
3387
3388 if (rval) {
3389 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3390 goto err_pcidrv;
3391 }
3392
3393 rval = driver_create_file(&megasas_pci_driver.driver,
3394 &driver_attr_version);
3395 if (rval)
3396 goto err_dcf_attr_ver;
3397 rval = driver_create_file(&megasas_pci_driver.driver,
3398 &driver_attr_release_date);
3399 if (rval)
3400 goto err_dcf_rel_date;
3401 rval = driver_create_file(&megasas_pci_driver.driver,
3402 &driver_attr_dbg_lvl);
3403 if (rval)
3404 goto err_dcf_dbg_lvl;
3405 rval = driver_create_file(&megasas_pci_driver.driver,
3406 &driver_attr_poll_mode_io);
3407 if (rval)
3408 goto err_dcf_poll_mode_io;
3409
3410 return rval;
3411
3412 err_dcf_poll_mode_io:
3413 driver_remove_file(&megasas_pci_driver.driver,
3414 &driver_attr_dbg_lvl);
3415 err_dcf_dbg_lvl:
3416 driver_remove_file(&megasas_pci_driver.driver,
3417 &driver_attr_release_date);
3418 err_dcf_rel_date:
3419 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3420 err_dcf_attr_ver:
3421 pci_unregister_driver(&megasas_pci_driver);
3422 err_pcidrv:
3423 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3424 return rval;
3425 }
3426
3427 /**
3428 * megasas_exit - Driver unload entry point
3429 */
3430 static void __exit megasas_exit(void)
3431 {
3432 driver_remove_file(&megasas_pci_driver.driver,
3433 &driver_attr_poll_mode_io);
3434 driver_remove_file(&megasas_pci_driver.driver,
3435 &driver_attr_dbg_lvl);
3436 driver_remove_file(&megasas_pci_driver.driver,
3437 &driver_attr_release_date);
3438 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3439
3440 pci_unregister_driver(&megasas_pci_driver);
3441 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3442 }
3443
3444 module_init(megasas_init);
3445 module_exit(megasas_exit);