]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/megaraid/megaraid_sas.c
Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.04.01-rc1
14 *
15 * Authors:
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
20 *
21 * List of supported controllers
22 *
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/smp_lock.h>
37 #include <linux/uio.h>
38 #include <asm/uaccess.h>
39 #include <linux/fs.h>
40 #include <linux/compat.h>
41 #include <linux/blkdev.h>
42 #include <linux/mutex.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include "megaraid_sas.h"
49
50 /*
51 * poll_mode_io:1- schedule complete completion from q cmd
52 */
53 static unsigned int poll_mode_io;
54 module_param_named(poll_mode_io, poll_mode_io, int, 0);
55 MODULE_PARM_DESC(poll_mode_io,
56 "Complete cmds from IO path, (default=0)");
57
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(MEGASAS_VERSION);
60 MODULE_AUTHOR("megaraidlinux@lsi.com");
61 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
62
63 /*
64 * PCI ID table for all supported controllers
65 */
66 static struct pci_device_id megasas_pci_table[] = {
67
68 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
69 /* xscale IOP */
70 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
71 /* ppc IOP */
72 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
73 /* ppc IOP */
74 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
75 /* gen2*/
76 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
77 /* gen2*/
78 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
79 /* xscale IOP, vega */
80 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
81 /* xscale IOP */
82 {}
83 };
84
85 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
86
87 static int megasas_mgmt_majorno;
88 static struct megasas_mgmt_info megasas_mgmt_info;
89 static struct fasync_struct *megasas_async_queue;
90 static DEFINE_MUTEX(megasas_async_queue_mutex);
91
92 static u32 megasas_dbg_lvl;
93
94 static void
95 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
96 u8 alt_status);
97
98 /**
99 * megasas_get_cmd - Get a command from the free pool
100 * @instance: Adapter soft state
101 *
102 * Returns a free command from the pool
103 */
104 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
105 *instance)
106 {
107 unsigned long flags;
108 struct megasas_cmd *cmd = NULL;
109
110 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
111
112 if (!list_empty(&instance->cmd_pool)) {
113 cmd = list_entry((&instance->cmd_pool)->next,
114 struct megasas_cmd, list);
115 list_del_init(&cmd->list);
116 } else {
117 printk(KERN_ERR "megasas: Command pool empty!\n");
118 }
119
120 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
121 return cmd;
122 }
123
124 /**
125 * megasas_return_cmd - Return a cmd to free command pool
126 * @instance: Adapter soft state
127 * @cmd: Command packet to be returned to free command pool
128 */
129 static inline void
130 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
131 {
132 unsigned long flags;
133
134 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
135
136 cmd->scmd = NULL;
137 list_add_tail(&cmd->list, &instance->cmd_pool);
138
139 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
140 }
141
142
143 /**
144 * The following functions are defined for xscale
145 * (deviceid : 1064R, PERC5) controllers
146 */
147
148 /**
149 * megasas_enable_intr_xscale - Enables interrupts
150 * @regs: MFI register set
151 */
152 static inline void
153 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
154 {
155 writel(1, &(regs)->outbound_intr_mask);
156
157 /* Dummy readl to force pci flush */
158 readl(&regs->outbound_intr_mask);
159 }
160
161 /**
162 * megasas_disable_intr_xscale -Disables interrupt
163 * @regs: MFI register set
164 */
165 static inline void
166 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
167 {
168 u32 mask = 0x1f;
169 writel(mask, &regs->outbound_intr_mask);
170 /* Dummy readl to force pci flush */
171 readl(&regs->outbound_intr_mask);
172 }
173
174 /**
175 * megasas_read_fw_status_reg_xscale - returns the current FW status value
176 * @regs: MFI register set
177 */
178 static u32
179 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
180 {
181 return readl(&(regs)->outbound_msg_0);
182 }
183 /**
184 * megasas_clear_interrupt_xscale - Check & clear interrupt
185 * @regs: MFI register set
186 */
187 static int
188 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
189 {
190 u32 status;
191 /*
192 * Check if it is our interrupt
193 */
194 status = readl(&regs->outbound_intr_status);
195
196 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
197 return 1;
198 }
199
200 /*
201 * Clear the interrupt by writing back the same value
202 */
203 writel(status, &regs->outbound_intr_status);
204
205 /* Dummy readl to force pci flush */
206 readl(&regs->outbound_intr_status);
207
208 return 0;
209 }
210
211 /**
212 * megasas_fire_cmd_xscale - Sends command to the FW
213 * @frame_phys_addr : Physical address of cmd
214 * @frame_count : Number of frames for the command
215 * @regs : MFI register set
216 */
217 static inline void
218 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
219 {
220 writel((frame_phys_addr >> 3)|(frame_count),
221 &(regs)->inbound_queue_port);
222 }
223
224 static struct megasas_instance_template megasas_instance_template_xscale = {
225
226 .fire_cmd = megasas_fire_cmd_xscale,
227 .enable_intr = megasas_enable_intr_xscale,
228 .disable_intr = megasas_disable_intr_xscale,
229 .clear_intr = megasas_clear_intr_xscale,
230 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
231 };
232
233 /**
234 * This is the end of set of functions & definitions specific
235 * to xscale (deviceid : 1064R, PERC5) controllers
236 */
237
238 /**
239 * The following functions are defined for ppc (deviceid : 0x60)
240 * controllers
241 */
242
243 /**
244 * megasas_enable_intr_ppc - Enables interrupts
245 * @regs: MFI register set
246 */
247 static inline void
248 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
249 {
250 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
251
252 writel(~0x80000004, &(regs)->outbound_intr_mask);
253
254 /* Dummy readl to force pci flush */
255 readl(&regs->outbound_intr_mask);
256 }
257
258 /**
259 * megasas_disable_intr_ppc - Disable interrupt
260 * @regs: MFI register set
261 */
262 static inline void
263 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
264 {
265 u32 mask = 0xFFFFFFFF;
266 writel(mask, &regs->outbound_intr_mask);
267 /* Dummy readl to force pci flush */
268 readl(&regs->outbound_intr_mask);
269 }
270
271 /**
272 * megasas_read_fw_status_reg_ppc - returns the current FW status value
273 * @regs: MFI register set
274 */
275 static u32
276 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
277 {
278 return readl(&(regs)->outbound_scratch_pad);
279 }
280
281 /**
282 * megasas_clear_interrupt_ppc - Check & clear interrupt
283 * @regs: MFI register set
284 */
285 static int
286 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
287 {
288 u32 status;
289 /*
290 * Check if it is our interrupt
291 */
292 status = readl(&regs->outbound_intr_status);
293
294 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
295 return 1;
296 }
297
298 /*
299 * Clear the interrupt by writing back the same value
300 */
301 writel(status, &regs->outbound_doorbell_clear);
302
303 /* Dummy readl to force pci flush */
304 readl(&regs->outbound_doorbell_clear);
305
306 return 0;
307 }
308 /**
309 * megasas_fire_cmd_ppc - Sends command to the FW
310 * @frame_phys_addr : Physical address of cmd
311 * @frame_count : Number of frames for the command
312 * @regs : MFI register set
313 */
314 static inline void
315 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
316 {
317 writel((frame_phys_addr | (frame_count<<1))|1,
318 &(regs)->inbound_queue_port);
319 }
320
321 static struct megasas_instance_template megasas_instance_template_ppc = {
322
323 .fire_cmd = megasas_fire_cmd_ppc,
324 .enable_intr = megasas_enable_intr_ppc,
325 .disable_intr = megasas_disable_intr_ppc,
326 .clear_intr = megasas_clear_intr_ppc,
327 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
328 };
329
330 /**
331 * The following functions are defined for gen2 (deviceid : 0x78 0x79)
332 * controllers
333 */
334
335 /**
336 * megasas_enable_intr_gen2 - Enables interrupts
337 * @regs: MFI register set
338 */
339 static inline void
340 megasas_enable_intr_gen2(struct megasas_register_set __iomem *regs)
341 {
342 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
343
344 /* write ~0x00000005 (4 & 1) to the intr mask*/
345 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
346
347 /* Dummy readl to force pci flush */
348 readl(&regs->outbound_intr_mask);
349 }
350
351 /**
352 * megasas_disable_intr_gen2 - Disables interrupt
353 * @regs: MFI register set
354 */
355 static inline void
356 megasas_disable_intr_gen2(struct megasas_register_set __iomem *regs)
357 {
358 u32 mask = 0xFFFFFFFF;
359 writel(mask, &regs->outbound_intr_mask);
360 /* Dummy readl to force pci flush */
361 readl(&regs->outbound_intr_mask);
362 }
363
364 /**
365 * megasas_read_fw_status_reg_gen2 - returns the current FW status value
366 * @regs: MFI register set
367 */
368 static u32
369 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
370 {
371 return readl(&(regs)->outbound_scratch_pad);
372 }
373
374 /**
375 * megasas_clear_interrupt_gen2 - Check & clear interrupt
376 * @regs: MFI register set
377 */
378 static int
379 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
380 {
381 u32 status;
382 /*
383 * Check if it is our interrupt
384 */
385 status = readl(&regs->outbound_intr_status);
386
387 if (!(status & MFI_GEN2_ENABLE_INTERRUPT_MASK))
388 return 1;
389
390 /*
391 * Clear the interrupt by writing back the same value
392 */
393 writel(status, &regs->outbound_doorbell_clear);
394
395 /* Dummy readl to force pci flush */
396 readl(&regs->outbound_intr_status);
397
398 return 0;
399 }
400 /**
401 * megasas_fire_cmd_gen2 - Sends command to the FW
402 * @frame_phys_addr : Physical address of cmd
403 * @frame_count : Number of frames for the command
404 * @regs : MFI register set
405 */
406 static inline void
407 megasas_fire_cmd_gen2(dma_addr_t frame_phys_addr, u32 frame_count,
408 struct megasas_register_set __iomem *regs)
409 {
410 writel((frame_phys_addr | (frame_count<<1))|1,
411 &(regs)->inbound_queue_port);
412 }
413
414 static struct megasas_instance_template megasas_instance_template_gen2 = {
415
416 .fire_cmd = megasas_fire_cmd_gen2,
417 .enable_intr = megasas_enable_intr_gen2,
418 .disable_intr = megasas_disable_intr_gen2,
419 .clear_intr = megasas_clear_intr_gen2,
420 .read_fw_status_reg = megasas_read_fw_status_reg_gen2,
421 };
422
423 /**
424 * This is the end of set of functions & definitions
425 * specific to ppc (deviceid : 0x60) controllers
426 */
427
428 /**
429 * megasas_issue_polled - Issues a polling command
430 * @instance: Adapter soft state
431 * @cmd: Command packet to be issued
432 *
433 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
434 */
435 static int
436 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
437 {
438 int i;
439 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
440
441 struct megasas_header *frame_hdr = &cmd->frame->hdr;
442
443 frame_hdr->cmd_status = 0xFF;
444 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
445
446 /*
447 * Issue the frame using inbound queue port
448 */
449 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
450
451 /*
452 * Wait for cmd_status to change
453 */
454 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
455 rmb();
456 msleep(1);
457 }
458
459 if (frame_hdr->cmd_status == 0xff)
460 return -ETIME;
461
462 return 0;
463 }
464
465 /**
466 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
467 * @instance: Adapter soft state
468 * @cmd: Command to be issued
469 *
470 * This function waits on an event for the command to be returned from ISR.
471 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
472 * Used to issue ioctl commands.
473 */
474 static int
475 megasas_issue_blocked_cmd(struct megasas_instance *instance,
476 struct megasas_cmd *cmd)
477 {
478 cmd->cmd_status = ENODATA;
479
480 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
481
482 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
483 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
484
485 return 0;
486 }
487
488 /**
489 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
490 * @instance: Adapter soft state
491 * @cmd_to_abort: Previously issued cmd to be aborted
492 *
493 * MFI firmware can abort previously issued AEN comamnd (automatic event
494 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
495 * cmd and waits for return status.
496 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
497 */
498 static int
499 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
500 struct megasas_cmd *cmd_to_abort)
501 {
502 struct megasas_cmd *cmd;
503 struct megasas_abort_frame *abort_fr;
504
505 cmd = megasas_get_cmd(instance);
506
507 if (!cmd)
508 return -1;
509
510 abort_fr = &cmd->frame->abort;
511
512 /*
513 * Prepare and issue the abort frame
514 */
515 abort_fr->cmd = MFI_CMD_ABORT;
516 abort_fr->cmd_status = 0xFF;
517 abort_fr->flags = 0;
518 abort_fr->abort_context = cmd_to_abort->index;
519 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
520 abort_fr->abort_mfi_phys_addr_hi = 0;
521
522 cmd->sync_cmd = 1;
523 cmd->cmd_status = 0xFF;
524
525 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
526
527 /*
528 * Wait for this cmd to complete
529 */
530 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
531 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
532
533 megasas_return_cmd(instance, cmd);
534 return 0;
535 }
536
537 /**
538 * megasas_make_sgl32 - Prepares 32-bit SGL
539 * @instance: Adapter soft state
540 * @scp: SCSI command from the mid-layer
541 * @mfi_sgl: SGL to be filled in
542 *
543 * If successful, this function returns the number of SG elements. Otherwise,
544 * it returnes -1.
545 */
546 static int
547 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
548 union megasas_sgl *mfi_sgl)
549 {
550 int i;
551 int sge_count;
552 struct scatterlist *os_sgl;
553
554 sge_count = scsi_dma_map(scp);
555 BUG_ON(sge_count < 0);
556
557 if (sge_count) {
558 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
559 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
560 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
561 }
562 }
563 return sge_count;
564 }
565
566 /**
567 * megasas_make_sgl64 - Prepares 64-bit SGL
568 * @instance: Adapter soft state
569 * @scp: SCSI command from the mid-layer
570 * @mfi_sgl: SGL to be filled in
571 *
572 * If successful, this function returns the number of SG elements. Otherwise,
573 * it returnes -1.
574 */
575 static int
576 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
577 union megasas_sgl *mfi_sgl)
578 {
579 int i;
580 int sge_count;
581 struct scatterlist *os_sgl;
582
583 sge_count = scsi_dma_map(scp);
584 BUG_ON(sge_count < 0);
585
586 if (sge_count) {
587 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
588 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
589 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
590 }
591 }
592 return sge_count;
593 }
594
595 /**
596 * megasas_get_frame_count - Computes the number of frames
597 * @frame_type : type of frame- io or pthru frame
598 * @sge_count : number of sg elements
599 *
600 * Returns the number of frames required for numnber of sge's (sge_count)
601 */
602
603 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
604 {
605 int num_cnt;
606 int sge_bytes;
607 u32 sge_sz;
608 u32 frame_count=0;
609
610 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
611 sizeof(struct megasas_sge32);
612
613 /*
614 * Main frame can contain 2 SGEs for 64-bit SGLs and
615 * 3 SGEs for 32-bit SGLs for ldio &
616 * 1 SGEs for 64-bit SGLs and
617 * 2 SGEs for 32-bit SGLs for pthru frame
618 */
619 if (unlikely(frame_type == PTHRU_FRAME)) {
620 if (IS_DMA64)
621 num_cnt = sge_count - 1;
622 else
623 num_cnt = sge_count - 2;
624 } else {
625 if (IS_DMA64)
626 num_cnt = sge_count - 2;
627 else
628 num_cnt = sge_count - 3;
629 }
630
631 if(num_cnt>0){
632 sge_bytes = sge_sz * num_cnt;
633
634 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
635 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
636 }
637 /* Main frame */
638 frame_count +=1;
639
640 if (frame_count > 7)
641 frame_count = 8;
642 return frame_count;
643 }
644
645 /**
646 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
647 * @instance: Adapter soft state
648 * @scp: SCSI command
649 * @cmd: Command to be prepared in
650 *
651 * This function prepares CDB commands. These are typcially pass-through
652 * commands to the devices.
653 */
654 static int
655 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
656 struct megasas_cmd *cmd)
657 {
658 u32 is_logical;
659 u32 device_id;
660 u16 flags = 0;
661 struct megasas_pthru_frame *pthru;
662
663 is_logical = MEGASAS_IS_LOGICAL(scp);
664 device_id = MEGASAS_DEV_INDEX(instance, scp);
665 pthru = (struct megasas_pthru_frame *)cmd->frame;
666
667 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
668 flags = MFI_FRAME_DIR_WRITE;
669 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
670 flags = MFI_FRAME_DIR_READ;
671 else if (scp->sc_data_direction == PCI_DMA_NONE)
672 flags = MFI_FRAME_DIR_NONE;
673
674 /*
675 * Prepare the DCDB frame
676 */
677 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
678 pthru->cmd_status = 0x0;
679 pthru->scsi_status = 0x0;
680 pthru->target_id = device_id;
681 pthru->lun = scp->device->lun;
682 pthru->cdb_len = scp->cmd_len;
683 pthru->timeout = 0;
684 pthru->flags = flags;
685 pthru->data_xfer_len = scsi_bufflen(scp);
686
687 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
688
689 /*
690 * Construct SGL
691 */
692 if (IS_DMA64) {
693 pthru->flags |= MFI_FRAME_SGL64;
694 pthru->sge_count = megasas_make_sgl64(instance, scp,
695 &pthru->sgl);
696 } else
697 pthru->sge_count = megasas_make_sgl32(instance, scp,
698 &pthru->sgl);
699
700 /*
701 * Sense info specific
702 */
703 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
704 pthru->sense_buf_phys_addr_hi = 0;
705 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
706
707 /*
708 * Compute the total number of frames this command consumes. FW uses
709 * this number to pull sufficient number of frames from host memory.
710 */
711 cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
712 PTHRU_FRAME);
713
714 return cmd->frame_count;
715 }
716
717 /**
718 * megasas_build_ldio - Prepares IOs to logical devices
719 * @instance: Adapter soft state
720 * @scp: SCSI command
721 * @cmd: Command to to be prepared
722 *
723 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
724 */
725 static int
726 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
727 struct megasas_cmd *cmd)
728 {
729 u32 device_id;
730 u8 sc = scp->cmnd[0];
731 u16 flags = 0;
732 struct megasas_io_frame *ldio;
733
734 device_id = MEGASAS_DEV_INDEX(instance, scp);
735 ldio = (struct megasas_io_frame *)cmd->frame;
736
737 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
738 flags = MFI_FRAME_DIR_WRITE;
739 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
740 flags = MFI_FRAME_DIR_READ;
741
742 /*
743 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
744 */
745 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
746 ldio->cmd_status = 0x0;
747 ldio->scsi_status = 0x0;
748 ldio->target_id = device_id;
749 ldio->timeout = 0;
750 ldio->reserved_0 = 0;
751 ldio->pad_0 = 0;
752 ldio->flags = flags;
753 ldio->start_lba_hi = 0;
754 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
755
756 /*
757 * 6-byte READ(0x08) or WRITE(0x0A) cdb
758 */
759 if (scp->cmd_len == 6) {
760 ldio->lba_count = (u32) scp->cmnd[4];
761 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
762 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
763
764 ldio->start_lba_lo &= 0x1FFFFF;
765 }
766
767 /*
768 * 10-byte READ(0x28) or WRITE(0x2A) cdb
769 */
770 else if (scp->cmd_len == 10) {
771 ldio->lba_count = (u32) scp->cmnd[8] |
772 ((u32) scp->cmnd[7] << 8);
773 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
774 ((u32) scp->cmnd[3] << 16) |
775 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
776 }
777
778 /*
779 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
780 */
781 else if (scp->cmd_len == 12) {
782 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
783 ((u32) scp->cmnd[7] << 16) |
784 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
785
786 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
787 ((u32) scp->cmnd[3] << 16) |
788 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
789 }
790
791 /*
792 * 16-byte READ(0x88) or WRITE(0x8A) cdb
793 */
794 else if (scp->cmd_len == 16) {
795 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
796 ((u32) scp->cmnd[11] << 16) |
797 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
798
799 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
800 ((u32) scp->cmnd[7] << 16) |
801 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
802
803 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
804 ((u32) scp->cmnd[3] << 16) |
805 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
806
807 }
808
809 /*
810 * Construct SGL
811 */
812 if (IS_DMA64) {
813 ldio->flags |= MFI_FRAME_SGL64;
814 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
815 } else
816 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
817
818 /*
819 * Sense info specific
820 */
821 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
822 ldio->sense_buf_phys_addr_hi = 0;
823 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
824
825 /*
826 * Compute the total number of frames this command consumes. FW uses
827 * this number to pull sufficient number of frames from host memory.
828 */
829 cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
830
831 return cmd->frame_count;
832 }
833
834 /**
835 * megasas_is_ldio - Checks if the cmd is for logical drive
836 * @scmd: SCSI command
837 *
838 * Called by megasas_queue_command to find out if the command to be queued
839 * is a logical drive command
840 */
841 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
842 {
843 if (!MEGASAS_IS_LOGICAL(cmd))
844 return 0;
845 switch (cmd->cmnd[0]) {
846 case READ_10:
847 case WRITE_10:
848 case READ_12:
849 case WRITE_12:
850 case READ_6:
851 case WRITE_6:
852 case READ_16:
853 case WRITE_16:
854 return 1;
855 default:
856 return 0;
857 }
858 }
859
860 /**
861 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
862 * in FW
863 * @instance: Adapter soft state
864 */
865 static inline void
866 megasas_dump_pending_frames(struct megasas_instance *instance)
867 {
868 struct megasas_cmd *cmd;
869 int i,n;
870 union megasas_sgl *mfi_sgl;
871 struct megasas_io_frame *ldio;
872 struct megasas_pthru_frame *pthru;
873 u32 sgcount;
874 u32 max_cmd = instance->max_fw_cmds;
875
876 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
877 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
878 if (IS_DMA64)
879 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
880 else
881 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
882
883 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
884 for (i = 0; i < max_cmd; i++) {
885 cmd = instance->cmd_list[i];
886 if(!cmd->scmd)
887 continue;
888 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
889 if (megasas_is_ldio(cmd->scmd)){
890 ldio = (struct megasas_io_frame *)cmd->frame;
891 mfi_sgl = &ldio->sgl;
892 sgcount = ldio->sge_count;
893 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
894 }
895 else {
896 pthru = (struct megasas_pthru_frame *) cmd->frame;
897 mfi_sgl = &pthru->sgl;
898 sgcount = pthru->sge_count;
899 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
900 }
901 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
902 for (n = 0; n < sgcount; n++){
903 if (IS_DMA64)
904 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
905 else
906 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
907 }
908 }
909 printk(KERN_ERR "\n");
910 } /*for max_cmd*/
911 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
912 for (i = 0; i < max_cmd; i++) {
913
914 cmd = instance->cmd_list[i];
915
916 if(cmd->sync_cmd == 1){
917 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
918 }
919 }
920 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
921 }
922
923 /**
924 * megasas_queue_command - Queue entry point
925 * @scmd: SCSI command to be queued
926 * @done: Callback entry point
927 */
928 static int
929 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
930 {
931 u32 frame_count;
932 struct megasas_cmd *cmd;
933 struct megasas_instance *instance;
934
935 instance = (struct megasas_instance *)
936 scmd->device->host->hostdata;
937
938 /* Don't process if we have already declared adapter dead */
939 if (instance->hw_crit_error)
940 return SCSI_MLQUEUE_HOST_BUSY;
941
942 scmd->scsi_done = done;
943 scmd->result = 0;
944
945 if (MEGASAS_IS_LOGICAL(scmd) &&
946 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
947 scmd->result = DID_BAD_TARGET << 16;
948 goto out_done;
949 }
950
951 switch (scmd->cmnd[0]) {
952 case SYNCHRONIZE_CACHE:
953 /*
954 * FW takes care of flush cache on its own
955 * No need to send it down
956 */
957 scmd->result = DID_OK << 16;
958 goto out_done;
959 default:
960 break;
961 }
962
963 cmd = megasas_get_cmd(instance);
964 if (!cmd)
965 return SCSI_MLQUEUE_HOST_BUSY;
966
967 /*
968 * Logical drive command
969 */
970 if (megasas_is_ldio(scmd))
971 frame_count = megasas_build_ldio(instance, scmd, cmd);
972 else
973 frame_count = megasas_build_dcdb(instance, scmd, cmd);
974
975 if (!frame_count)
976 goto out_return_cmd;
977
978 cmd->scmd = scmd;
979 scmd->SCp.ptr = (char *)cmd;
980
981 /*
982 * Issue the command to the FW
983 */
984 atomic_inc(&instance->fw_outstanding);
985
986 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
987 /*
988 * Check if we have pend cmds to be completed
989 */
990 if (poll_mode_io && atomic_read(&instance->fw_outstanding))
991 tasklet_schedule(&instance->isr_tasklet);
992
993
994 return 0;
995
996 out_return_cmd:
997 megasas_return_cmd(instance, cmd);
998 out_done:
999 done(scmd);
1000 return 0;
1001 }
1002
1003 static int megasas_slave_configure(struct scsi_device *sdev)
1004 {
1005 /*
1006 * Don't export physical disk devices to the disk driver.
1007 *
1008 * FIXME: Currently we don't export them to the midlayer at all.
1009 * That will be fixed once LSI engineers have audited the
1010 * firmware for possible issues.
1011 */
1012 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
1013 return -ENXIO;
1014
1015 /*
1016 * The RAID firmware may require extended timeouts.
1017 */
1018 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
1019 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
1020 return 0;
1021 }
1022
1023 /**
1024 * megasas_complete_cmd_dpc - Returns FW's controller structure
1025 * @instance_addr: Address of adapter soft state
1026 *
1027 * Tasklet to complete cmds
1028 */
1029 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1030 {
1031 u32 producer;
1032 u32 consumer;
1033 u32 context;
1034 struct megasas_cmd *cmd;
1035 struct megasas_instance *instance =
1036 (struct megasas_instance *)instance_addr;
1037 unsigned long flags;
1038
1039 /* If we have already declared adapter dead, donot complete cmds */
1040 if (instance->hw_crit_error)
1041 return;
1042
1043 spin_lock_irqsave(&instance->completion_lock, flags);
1044
1045 producer = *instance->producer;
1046 consumer = *instance->consumer;
1047
1048 while (consumer != producer) {
1049 context = instance->reply_queue[consumer];
1050
1051 cmd = instance->cmd_list[context];
1052
1053 megasas_complete_cmd(instance, cmd, DID_OK);
1054
1055 consumer++;
1056 if (consumer == (instance->max_fw_cmds + 1)) {
1057 consumer = 0;
1058 }
1059 }
1060
1061 *instance->consumer = producer;
1062
1063 spin_unlock_irqrestore(&instance->completion_lock, flags);
1064
1065 /*
1066 * Check if we can restore can_queue
1067 */
1068 if (instance->flag & MEGASAS_FW_BUSY
1069 && time_after(jiffies, instance->last_time + 5 * HZ)
1070 && atomic_read(&instance->fw_outstanding) < 17) {
1071
1072 spin_lock_irqsave(instance->host->host_lock, flags);
1073 instance->flag &= ~MEGASAS_FW_BUSY;
1074 instance->host->can_queue =
1075 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1076
1077 spin_unlock_irqrestore(instance->host->host_lock, flags);
1078 }
1079 }
1080
1081 /**
1082 * megasas_wait_for_outstanding - Wait for all outstanding cmds
1083 * @instance: Adapter soft state
1084 *
1085 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
1086 * complete all its outstanding commands. Returns error if one or more IOs
1087 * are pending after this time period. It also marks the controller dead.
1088 */
1089 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1090 {
1091 int i;
1092 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1093
1094 for (i = 0; i < wait_time; i++) {
1095
1096 int outstanding = atomic_read(&instance->fw_outstanding);
1097
1098 if (!outstanding)
1099 break;
1100
1101 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1102 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1103 "commands to complete\n",i,outstanding);
1104 /*
1105 * Call cmd completion routine. Cmd to be
1106 * be completed directly without depending on isr.
1107 */
1108 megasas_complete_cmd_dpc((unsigned long)instance);
1109 }
1110
1111 msleep(1000);
1112 }
1113
1114 if (atomic_read(&instance->fw_outstanding)) {
1115 /*
1116 * Send signal to FW to stop processing any pending cmds.
1117 * The controller will be taken offline by the OS now.
1118 */
1119 writel(MFI_STOP_ADP,
1120 &instance->reg_set->inbound_doorbell);
1121 megasas_dump_pending_frames(instance);
1122 instance->hw_crit_error = 1;
1123 return FAILED;
1124 }
1125
1126 return SUCCESS;
1127 }
1128
1129 /**
1130 * megasas_generic_reset - Generic reset routine
1131 * @scmd: Mid-layer SCSI command
1132 *
1133 * This routine implements a generic reset handler for device, bus and host
1134 * reset requests. Device, bus and host specific reset handlers can use this
1135 * function after they do their specific tasks.
1136 */
1137 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1138 {
1139 int ret_val;
1140 struct megasas_instance *instance;
1141
1142 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1143
1144 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1145 scmd->serial_number, scmd->cmnd[0], scmd->retries);
1146
1147 if (instance->hw_crit_error) {
1148 printk(KERN_ERR "megasas: cannot recover from previous reset "
1149 "failures\n");
1150 return FAILED;
1151 }
1152
1153 ret_val = megasas_wait_for_outstanding(instance);
1154 if (ret_val == SUCCESS)
1155 printk(KERN_NOTICE "megasas: reset successful \n");
1156 else
1157 printk(KERN_ERR "megasas: failed to do reset\n");
1158
1159 return ret_val;
1160 }
1161
1162 /**
1163 * megasas_reset_timer - quiesce the adapter if required
1164 * @scmd: scsi cmnd
1165 *
1166 * Sets the FW busy flag and reduces the host->can_queue if the
1167 * cmd has not been completed within the timeout period.
1168 */
1169 static enum
1170 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1171 {
1172 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1173 struct megasas_instance *instance;
1174 unsigned long flags;
1175
1176 if (time_after(jiffies, scmd->jiffies_at_alloc +
1177 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1178 return EH_NOT_HANDLED;
1179 }
1180
1181 instance = cmd->instance;
1182 if (!(instance->flag & MEGASAS_FW_BUSY)) {
1183 /* FW is busy, throttle IO */
1184 spin_lock_irqsave(instance->host->host_lock, flags);
1185
1186 instance->host->can_queue = 16;
1187 instance->last_time = jiffies;
1188 instance->flag |= MEGASAS_FW_BUSY;
1189
1190 spin_unlock_irqrestore(instance->host->host_lock, flags);
1191 }
1192 return EH_RESET_TIMER;
1193 }
1194
1195 /**
1196 * megasas_reset_device - Device reset handler entry point
1197 */
1198 static int megasas_reset_device(struct scsi_cmnd *scmd)
1199 {
1200 int ret;
1201
1202 /*
1203 * First wait for all commands to complete
1204 */
1205 ret = megasas_generic_reset(scmd);
1206
1207 return ret;
1208 }
1209
1210 /**
1211 * megasas_reset_bus_host - Bus & host reset handler entry point
1212 */
1213 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1214 {
1215 int ret;
1216
1217 /*
1218 * First wait for all commands to complete
1219 */
1220 ret = megasas_generic_reset(scmd);
1221
1222 return ret;
1223 }
1224
1225 /**
1226 * megasas_bios_param - Returns disk geometry for a disk
1227 * @sdev: device handle
1228 * @bdev: block device
1229 * @capacity: drive capacity
1230 * @geom: geometry parameters
1231 */
1232 static int
1233 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1234 sector_t capacity, int geom[])
1235 {
1236 int heads;
1237 int sectors;
1238 sector_t cylinders;
1239 unsigned long tmp;
1240 /* Default heads (64) & sectors (32) */
1241 heads = 64;
1242 sectors = 32;
1243
1244 tmp = heads * sectors;
1245 cylinders = capacity;
1246
1247 sector_div(cylinders, tmp);
1248
1249 /*
1250 * Handle extended translation size for logical drives > 1Gb
1251 */
1252
1253 if (capacity >= 0x200000) {
1254 heads = 255;
1255 sectors = 63;
1256 tmp = heads*sectors;
1257 cylinders = capacity;
1258 sector_div(cylinders, tmp);
1259 }
1260
1261 geom[0] = heads;
1262 geom[1] = sectors;
1263 geom[2] = cylinders;
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * megasas_service_aen - Processes an event notification
1270 * @instance: Adapter soft state
1271 * @cmd: AEN command completed by the ISR
1272 *
1273 * For AEN, driver sends a command down to FW that is held by the FW till an
1274 * event occurs. When an event of interest occurs, FW completes the command
1275 * that it was previously holding.
1276 *
1277 * This routines sends SIGIO signal to processes that have registered with the
1278 * driver for AEN.
1279 */
1280 static void
1281 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1282 {
1283 /*
1284 * Don't signal app if it is just an aborted previously registered aen
1285 */
1286 if (!cmd->abort_aen)
1287 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1288 else
1289 cmd->abort_aen = 0;
1290
1291 instance->aen_cmd = NULL;
1292 megasas_return_cmd(instance, cmd);
1293 }
1294
1295 /*
1296 * Scsi host template for megaraid_sas driver
1297 */
1298 static struct scsi_host_template megasas_template = {
1299
1300 .module = THIS_MODULE,
1301 .name = "LSI SAS based MegaRAID driver",
1302 .proc_name = "megaraid_sas",
1303 .slave_configure = megasas_slave_configure,
1304 .queuecommand = megasas_queue_command,
1305 .eh_device_reset_handler = megasas_reset_device,
1306 .eh_bus_reset_handler = megasas_reset_bus_host,
1307 .eh_host_reset_handler = megasas_reset_bus_host,
1308 .eh_timed_out = megasas_reset_timer,
1309 .bios_param = megasas_bios_param,
1310 .use_clustering = ENABLE_CLUSTERING,
1311 };
1312
1313 /**
1314 * megasas_complete_int_cmd - Completes an internal command
1315 * @instance: Adapter soft state
1316 * @cmd: Command to be completed
1317 *
1318 * The megasas_issue_blocked_cmd() function waits for a command to complete
1319 * after it issues a command. This function wakes up that waiting routine by
1320 * calling wake_up() on the wait queue.
1321 */
1322 static void
1323 megasas_complete_int_cmd(struct megasas_instance *instance,
1324 struct megasas_cmd *cmd)
1325 {
1326 cmd->cmd_status = cmd->frame->io.cmd_status;
1327
1328 if (cmd->cmd_status == ENODATA) {
1329 cmd->cmd_status = 0;
1330 }
1331 wake_up(&instance->int_cmd_wait_q);
1332 }
1333
1334 /**
1335 * megasas_complete_abort - Completes aborting a command
1336 * @instance: Adapter soft state
1337 * @cmd: Cmd that was issued to abort another cmd
1338 *
1339 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1340 * after it issues an abort on a previously issued command. This function
1341 * wakes up all functions waiting on the same wait queue.
1342 */
1343 static void
1344 megasas_complete_abort(struct megasas_instance *instance,
1345 struct megasas_cmd *cmd)
1346 {
1347 if (cmd->sync_cmd) {
1348 cmd->sync_cmd = 0;
1349 cmd->cmd_status = 0;
1350 wake_up(&instance->abort_cmd_wait_q);
1351 }
1352
1353 return;
1354 }
1355
1356 /**
1357 * megasas_complete_cmd - Completes a command
1358 * @instance: Adapter soft state
1359 * @cmd: Command to be completed
1360 * @alt_status: If non-zero, use this value as status to
1361 * SCSI mid-layer instead of the value returned
1362 * by the FW. This should be used if caller wants
1363 * an alternate status (as in the case of aborted
1364 * commands)
1365 */
1366 static void
1367 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1368 u8 alt_status)
1369 {
1370 int exception = 0;
1371 struct megasas_header *hdr = &cmd->frame->hdr;
1372
1373 if (cmd->scmd)
1374 cmd->scmd->SCp.ptr = NULL;
1375
1376 switch (hdr->cmd) {
1377
1378 case MFI_CMD_PD_SCSI_IO:
1379 case MFI_CMD_LD_SCSI_IO:
1380
1381 /*
1382 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1383 * issued either through an IO path or an IOCTL path. If it
1384 * was via IOCTL, we will send it to internal completion.
1385 */
1386 if (cmd->sync_cmd) {
1387 cmd->sync_cmd = 0;
1388 megasas_complete_int_cmd(instance, cmd);
1389 break;
1390 }
1391
1392 case MFI_CMD_LD_READ:
1393 case MFI_CMD_LD_WRITE:
1394
1395 if (alt_status) {
1396 cmd->scmd->result = alt_status << 16;
1397 exception = 1;
1398 }
1399
1400 if (exception) {
1401
1402 atomic_dec(&instance->fw_outstanding);
1403
1404 scsi_dma_unmap(cmd->scmd);
1405 cmd->scmd->scsi_done(cmd->scmd);
1406 megasas_return_cmd(instance, cmd);
1407
1408 break;
1409 }
1410
1411 switch (hdr->cmd_status) {
1412
1413 case MFI_STAT_OK:
1414 cmd->scmd->result = DID_OK << 16;
1415 break;
1416
1417 case MFI_STAT_SCSI_IO_FAILED:
1418 case MFI_STAT_LD_INIT_IN_PROGRESS:
1419 cmd->scmd->result =
1420 (DID_ERROR << 16) | hdr->scsi_status;
1421 break;
1422
1423 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1424
1425 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1426
1427 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1428 memset(cmd->scmd->sense_buffer, 0,
1429 SCSI_SENSE_BUFFERSIZE);
1430 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1431 hdr->sense_len);
1432
1433 cmd->scmd->result |= DRIVER_SENSE << 24;
1434 }
1435
1436 break;
1437
1438 case MFI_STAT_LD_OFFLINE:
1439 case MFI_STAT_DEVICE_NOT_FOUND:
1440 cmd->scmd->result = DID_BAD_TARGET << 16;
1441 break;
1442
1443 default:
1444 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1445 hdr->cmd_status);
1446 cmd->scmd->result = DID_ERROR << 16;
1447 break;
1448 }
1449
1450 atomic_dec(&instance->fw_outstanding);
1451
1452 scsi_dma_unmap(cmd->scmd);
1453 cmd->scmd->scsi_done(cmd->scmd);
1454 megasas_return_cmd(instance, cmd);
1455
1456 break;
1457
1458 case MFI_CMD_SMP:
1459 case MFI_CMD_STP:
1460 case MFI_CMD_DCMD:
1461
1462 /*
1463 * See if got an event notification
1464 */
1465 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1466 megasas_service_aen(instance, cmd);
1467 else
1468 megasas_complete_int_cmd(instance, cmd);
1469
1470 break;
1471
1472 case MFI_CMD_ABORT:
1473 /*
1474 * Cmd issued to abort another cmd returned
1475 */
1476 megasas_complete_abort(instance, cmd);
1477 break;
1478
1479 default:
1480 printk("megasas: Unknown command completed! [0x%X]\n",
1481 hdr->cmd);
1482 break;
1483 }
1484 }
1485
1486 /**
1487 * megasas_deplete_reply_queue - Processes all completed commands
1488 * @instance: Adapter soft state
1489 * @alt_status: Alternate status to be returned to
1490 * SCSI mid-layer instead of the status
1491 * returned by the FW
1492 */
1493 static int
1494 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1495 {
1496 /*
1497 * Check if it is our interrupt
1498 * Clear the interrupt
1499 */
1500 if(instance->instancet->clear_intr(instance->reg_set))
1501 return IRQ_NONE;
1502
1503 if (instance->hw_crit_error)
1504 goto out_done;
1505 /*
1506 * Schedule the tasklet for cmd completion
1507 */
1508 tasklet_schedule(&instance->isr_tasklet);
1509 out_done:
1510 return IRQ_HANDLED;
1511 }
1512
1513 /**
1514 * megasas_isr - isr entry point
1515 */
1516 static irqreturn_t megasas_isr(int irq, void *devp)
1517 {
1518 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1519 DID_OK);
1520 }
1521
1522 /**
1523 * megasas_transition_to_ready - Move the FW to READY state
1524 * @instance: Adapter soft state
1525 *
1526 * During the initialization, FW passes can potentially be in any one of
1527 * several possible states. If the FW in operational, waiting-for-handshake
1528 * states, driver must take steps to bring it to ready state. Otherwise, it
1529 * has to wait for the ready state.
1530 */
1531 static int
1532 megasas_transition_to_ready(struct megasas_instance* instance)
1533 {
1534 int i;
1535 u8 max_wait;
1536 u32 fw_state;
1537 u32 cur_state;
1538
1539 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1540
1541 if (fw_state != MFI_STATE_READY)
1542 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1543 " state\n");
1544
1545 while (fw_state != MFI_STATE_READY) {
1546
1547 switch (fw_state) {
1548
1549 case MFI_STATE_FAULT:
1550
1551 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1552 return -ENODEV;
1553
1554 case MFI_STATE_WAIT_HANDSHAKE:
1555 /*
1556 * Set the CLR bit in inbound doorbell
1557 */
1558 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1559 &instance->reg_set->inbound_doorbell);
1560
1561 max_wait = 2;
1562 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1563 break;
1564
1565 case MFI_STATE_BOOT_MESSAGE_PENDING:
1566 writel(MFI_INIT_HOTPLUG,
1567 &instance->reg_set->inbound_doorbell);
1568
1569 max_wait = 10;
1570 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1571 break;
1572
1573 case MFI_STATE_OPERATIONAL:
1574 /*
1575 * Bring it to READY state; assuming max wait 10 secs
1576 */
1577 instance->instancet->disable_intr(instance->reg_set);
1578 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1579
1580 max_wait = 60;
1581 cur_state = MFI_STATE_OPERATIONAL;
1582 break;
1583
1584 case MFI_STATE_UNDEFINED:
1585 /*
1586 * This state should not last for more than 2 seconds
1587 */
1588 max_wait = 2;
1589 cur_state = MFI_STATE_UNDEFINED;
1590 break;
1591
1592 case MFI_STATE_BB_INIT:
1593 max_wait = 2;
1594 cur_state = MFI_STATE_BB_INIT;
1595 break;
1596
1597 case MFI_STATE_FW_INIT:
1598 max_wait = 20;
1599 cur_state = MFI_STATE_FW_INIT;
1600 break;
1601
1602 case MFI_STATE_FW_INIT_2:
1603 max_wait = 20;
1604 cur_state = MFI_STATE_FW_INIT_2;
1605 break;
1606
1607 case MFI_STATE_DEVICE_SCAN:
1608 max_wait = 20;
1609 cur_state = MFI_STATE_DEVICE_SCAN;
1610 break;
1611
1612 case MFI_STATE_FLUSH_CACHE:
1613 max_wait = 20;
1614 cur_state = MFI_STATE_FLUSH_CACHE;
1615 break;
1616
1617 default:
1618 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1619 fw_state);
1620 return -ENODEV;
1621 }
1622
1623 /*
1624 * The cur_state should not last for more than max_wait secs
1625 */
1626 for (i = 0; i < (max_wait * 1000); i++) {
1627 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1628 MFI_STATE_MASK ;
1629
1630 if (fw_state == cur_state) {
1631 msleep(1);
1632 } else
1633 break;
1634 }
1635
1636 /*
1637 * Return error if fw_state hasn't changed after max_wait
1638 */
1639 if (fw_state == cur_state) {
1640 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1641 "in %d secs\n", fw_state, max_wait);
1642 return -ENODEV;
1643 }
1644 };
1645 printk(KERN_INFO "megasas: FW now in Ready state\n");
1646
1647 return 0;
1648 }
1649
1650 /**
1651 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1652 * @instance: Adapter soft state
1653 */
1654 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1655 {
1656 int i;
1657 u32 max_cmd = instance->max_fw_cmds;
1658 struct megasas_cmd *cmd;
1659
1660 if (!instance->frame_dma_pool)
1661 return;
1662
1663 /*
1664 * Return all frames to pool
1665 */
1666 for (i = 0; i < max_cmd; i++) {
1667
1668 cmd = instance->cmd_list[i];
1669
1670 if (cmd->frame)
1671 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1672 cmd->frame_phys_addr);
1673
1674 if (cmd->sense)
1675 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1676 cmd->sense_phys_addr);
1677 }
1678
1679 /*
1680 * Now destroy the pool itself
1681 */
1682 pci_pool_destroy(instance->frame_dma_pool);
1683 pci_pool_destroy(instance->sense_dma_pool);
1684
1685 instance->frame_dma_pool = NULL;
1686 instance->sense_dma_pool = NULL;
1687 }
1688
1689 /**
1690 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1691 * @instance: Adapter soft state
1692 *
1693 * Each command packet has an embedded DMA memory buffer that is used for
1694 * filling MFI frame and the SG list that immediately follows the frame. This
1695 * function creates those DMA memory buffers for each command packet by using
1696 * PCI pool facility.
1697 */
1698 static int megasas_create_frame_pool(struct megasas_instance *instance)
1699 {
1700 int i;
1701 u32 max_cmd;
1702 u32 sge_sz;
1703 u32 sgl_sz;
1704 u32 total_sz;
1705 u32 frame_count;
1706 struct megasas_cmd *cmd;
1707
1708 max_cmd = instance->max_fw_cmds;
1709
1710 /*
1711 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1712 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1713 */
1714 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1715 sizeof(struct megasas_sge32);
1716
1717 /*
1718 * Calculated the number of 64byte frames required for SGL
1719 */
1720 sgl_sz = sge_sz * instance->max_num_sge;
1721 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1722
1723 /*
1724 * We need one extra frame for the MFI command
1725 */
1726 frame_count++;
1727
1728 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1729 /*
1730 * Use DMA pool facility provided by PCI layer
1731 */
1732 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1733 instance->pdev, total_sz, 64,
1734 0);
1735
1736 if (!instance->frame_dma_pool) {
1737 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1738 return -ENOMEM;
1739 }
1740
1741 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1742 instance->pdev, 128, 4, 0);
1743
1744 if (!instance->sense_dma_pool) {
1745 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1746
1747 pci_pool_destroy(instance->frame_dma_pool);
1748 instance->frame_dma_pool = NULL;
1749
1750 return -ENOMEM;
1751 }
1752
1753 /*
1754 * Allocate and attach a frame to each of the commands in cmd_list.
1755 * By making cmd->index as the context instead of the &cmd, we can
1756 * always use 32bit context regardless of the architecture
1757 */
1758 for (i = 0; i < max_cmd; i++) {
1759
1760 cmd = instance->cmd_list[i];
1761
1762 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1763 GFP_KERNEL, &cmd->frame_phys_addr);
1764
1765 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1766 GFP_KERNEL, &cmd->sense_phys_addr);
1767
1768 /*
1769 * megasas_teardown_frame_pool() takes care of freeing
1770 * whatever has been allocated
1771 */
1772 if (!cmd->frame || !cmd->sense) {
1773 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1774 megasas_teardown_frame_pool(instance);
1775 return -ENOMEM;
1776 }
1777
1778 cmd->frame->io.context = cmd->index;
1779 }
1780
1781 return 0;
1782 }
1783
1784 /**
1785 * megasas_free_cmds - Free all the cmds in the free cmd pool
1786 * @instance: Adapter soft state
1787 */
1788 static void megasas_free_cmds(struct megasas_instance *instance)
1789 {
1790 int i;
1791 /* First free the MFI frame pool */
1792 megasas_teardown_frame_pool(instance);
1793
1794 /* Free all the commands in the cmd_list */
1795 for (i = 0; i < instance->max_fw_cmds; i++)
1796 kfree(instance->cmd_list[i]);
1797
1798 /* Free the cmd_list buffer itself */
1799 kfree(instance->cmd_list);
1800 instance->cmd_list = NULL;
1801
1802 INIT_LIST_HEAD(&instance->cmd_pool);
1803 }
1804
1805 /**
1806 * megasas_alloc_cmds - Allocates the command packets
1807 * @instance: Adapter soft state
1808 *
1809 * Each command that is issued to the FW, whether IO commands from the OS or
1810 * internal commands like IOCTLs, are wrapped in local data structure called
1811 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1812 * the FW.
1813 *
1814 * Each frame has a 32-bit field called context (tag). This context is used
1815 * to get back the megasas_cmd from the frame when a frame gets completed in
1816 * the ISR. Typically the address of the megasas_cmd itself would be used as
1817 * the context. But we wanted to keep the differences between 32 and 64 bit
1818 * systems to the mininum. We always use 32 bit integers for the context. In
1819 * this driver, the 32 bit values are the indices into an array cmd_list.
1820 * This array is used only to look up the megasas_cmd given the context. The
1821 * free commands themselves are maintained in a linked list called cmd_pool.
1822 */
1823 static int megasas_alloc_cmds(struct megasas_instance *instance)
1824 {
1825 int i;
1826 int j;
1827 u32 max_cmd;
1828 struct megasas_cmd *cmd;
1829
1830 max_cmd = instance->max_fw_cmds;
1831
1832 /*
1833 * instance->cmd_list is an array of struct megasas_cmd pointers.
1834 * Allocate the dynamic array first and then allocate individual
1835 * commands.
1836 */
1837 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1838
1839 if (!instance->cmd_list) {
1840 printk(KERN_DEBUG "megasas: out of memory\n");
1841 return -ENOMEM;
1842 }
1843
1844
1845 for (i = 0; i < max_cmd; i++) {
1846 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1847 GFP_KERNEL);
1848
1849 if (!instance->cmd_list[i]) {
1850
1851 for (j = 0; j < i; j++)
1852 kfree(instance->cmd_list[j]);
1853
1854 kfree(instance->cmd_list);
1855 instance->cmd_list = NULL;
1856
1857 return -ENOMEM;
1858 }
1859 }
1860
1861 /*
1862 * Add all the commands to command pool (instance->cmd_pool)
1863 */
1864 for (i = 0; i < max_cmd; i++) {
1865 cmd = instance->cmd_list[i];
1866 memset(cmd, 0, sizeof(struct megasas_cmd));
1867 cmd->index = i;
1868 cmd->instance = instance;
1869
1870 list_add_tail(&cmd->list, &instance->cmd_pool);
1871 }
1872
1873 /*
1874 * Create a frame pool and assign one frame to each cmd
1875 */
1876 if (megasas_create_frame_pool(instance)) {
1877 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1878 megasas_free_cmds(instance);
1879 }
1880
1881 return 0;
1882 }
1883
1884 /**
1885 * megasas_get_controller_info - Returns FW's controller structure
1886 * @instance: Adapter soft state
1887 * @ctrl_info: Controller information structure
1888 *
1889 * Issues an internal command (DCMD) to get the FW's controller structure.
1890 * This information is mainly used to find out the maximum IO transfer per
1891 * command supported by the FW.
1892 */
1893 static int
1894 megasas_get_ctrl_info(struct megasas_instance *instance,
1895 struct megasas_ctrl_info *ctrl_info)
1896 {
1897 int ret = 0;
1898 struct megasas_cmd *cmd;
1899 struct megasas_dcmd_frame *dcmd;
1900 struct megasas_ctrl_info *ci;
1901 dma_addr_t ci_h = 0;
1902
1903 cmd = megasas_get_cmd(instance);
1904
1905 if (!cmd) {
1906 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1907 return -ENOMEM;
1908 }
1909
1910 dcmd = &cmd->frame->dcmd;
1911
1912 ci = pci_alloc_consistent(instance->pdev,
1913 sizeof(struct megasas_ctrl_info), &ci_h);
1914
1915 if (!ci) {
1916 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1917 megasas_return_cmd(instance, cmd);
1918 return -ENOMEM;
1919 }
1920
1921 memset(ci, 0, sizeof(*ci));
1922 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1923
1924 dcmd->cmd = MFI_CMD_DCMD;
1925 dcmd->cmd_status = 0xFF;
1926 dcmd->sge_count = 1;
1927 dcmd->flags = MFI_FRAME_DIR_READ;
1928 dcmd->timeout = 0;
1929 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1930 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1931 dcmd->sgl.sge32[0].phys_addr = ci_h;
1932 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1933
1934 if (!megasas_issue_polled(instance, cmd)) {
1935 ret = 0;
1936 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1937 } else {
1938 ret = -1;
1939 }
1940
1941 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1942 ci, ci_h);
1943
1944 megasas_return_cmd(instance, cmd);
1945 return ret;
1946 }
1947
1948 /**
1949 * megasas_issue_init_mfi - Initializes the FW
1950 * @instance: Adapter soft state
1951 *
1952 * Issues the INIT MFI cmd
1953 */
1954 static int
1955 megasas_issue_init_mfi(struct megasas_instance *instance)
1956 {
1957 u32 context;
1958
1959 struct megasas_cmd *cmd;
1960
1961 struct megasas_init_frame *init_frame;
1962 struct megasas_init_queue_info *initq_info;
1963 dma_addr_t init_frame_h;
1964 dma_addr_t initq_info_h;
1965
1966 /*
1967 * Prepare a init frame. Note the init frame points to queue info
1968 * structure. Each frame has SGL allocated after first 64 bytes. For
1969 * this frame - since we don't need any SGL - we use SGL's space as
1970 * queue info structure
1971 *
1972 * We will not get a NULL command below. We just created the pool.
1973 */
1974 cmd = megasas_get_cmd(instance);
1975
1976 init_frame = (struct megasas_init_frame *)cmd->frame;
1977 initq_info = (struct megasas_init_queue_info *)
1978 ((unsigned long)init_frame + 64);
1979
1980 init_frame_h = cmd->frame_phys_addr;
1981 initq_info_h = init_frame_h + 64;
1982
1983 context = init_frame->context;
1984 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1985 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1986 init_frame->context = context;
1987
1988 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1989 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1990
1991 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1992 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1993
1994 init_frame->cmd = MFI_CMD_INIT;
1995 init_frame->cmd_status = 0xFF;
1996 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1997
1998 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1999
2000 /*
2001 * disable the intr before firing the init frame to FW
2002 */
2003 instance->instancet->disable_intr(instance->reg_set);
2004
2005 /*
2006 * Issue the init frame in polled mode
2007 */
2008
2009 if (megasas_issue_polled(instance, cmd)) {
2010 printk(KERN_ERR "megasas: Failed to init firmware\n");
2011 megasas_return_cmd(instance, cmd);
2012 goto fail_fw_init;
2013 }
2014
2015 megasas_return_cmd(instance, cmd);
2016
2017 return 0;
2018
2019 fail_fw_init:
2020 return -EINVAL;
2021 }
2022
2023 /**
2024 * megasas_start_timer - Initializes a timer object
2025 * @instance: Adapter soft state
2026 * @timer: timer object to be initialized
2027 * @fn: timer function
2028 * @interval: time interval between timer function call
2029 */
2030 static inline void
2031 megasas_start_timer(struct megasas_instance *instance,
2032 struct timer_list *timer,
2033 void *fn, unsigned long interval)
2034 {
2035 init_timer(timer);
2036 timer->expires = jiffies + interval;
2037 timer->data = (unsigned long)instance;
2038 timer->function = fn;
2039 add_timer(timer);
2040 }
2041
2042 /**
2043 * megasas_io_completion_timer - Timer fn
2044 * @instance_addr: Address of adapter soft state
2045 *
2046 * Schedules tasklet for cmd completion
2047 * if poll_mode_io is set
2048 */
2049 static void
2050 megasas_io_completion_timer(unsigned long instance_addr)
2051 {
2052 struct megasas_instance *instance =
2053 (struct megasas_instance *)instance_addr;
2054
2055 if (atomic_read(&instance->fw_outstanding))
2056 tasklet_schedule(&instance->isr_tasklet);
2057
2058 /* Restart timer */
2059 if (poll_mode_io)
2060 mod_timer(&instance->io_completion_timer,
2061 jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
2062 }
2063
2064 /**
2065 * megasas_init_mfi - Initializes the FW
2066 * @instance: Adapter soft state
2067 *
2068 * This is the main function for initializing MFI firmware.
2069 */
2070 static int megasas_init_mfi(struct megasas_instance *instance)
2071 {
2072 u32 context_sz;
2073 u32 reply_q_sz;
2074 u32 max_sectors_1;
2075 u32 max_sectors_2;
2076 u32 tmp_sectors;
2077 struct megasas_register_set __iomem *reg_set;
2078 struct megasas_ctrl_info *ctrl_info;
2079 /*
2080 * Map the message registers
2081 */
2082 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
2083 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) {
2084 instance->base_addr = pci_resource_start(instance->pdev, 1);
2085 } else {
2086 instance->base_addr = pci_resource_start(instance->pdev, 0);
2087 }
2088
2089 if (pci_request_regions(instance->pdev, "megasas: LSI")) {
2090 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
2091 return -EBUSY;
2092 }
2093
2094 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
2095
2096 if (!instance->reg_set) {
2097 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
2098 goto fail_ioremap;
2099 }
2100
2101 reg_set = instance->reg_set;
2102
2103 switch(instance->pdev->device)
2104 {
2105 case PCI_DEVICE_ID_LSI_SAS1078R:
2106 case PCI_DEVICE_ID_LSI_SAS1078DE:
2107 instance->instancet = &megasas_instance_template_ppc;
2108 break;
2109 case PCI_DEVICE_ID_LSI_SAS1078GEN2:
2110 case PCI_DEVICE_ID_LSI_SAS0079GEN2:
2111 instance->instancet = &megasas_instance_template_gen2;
2112 break;
2113 case PCI_DEVICE_ID_LSI_SAS1064R:
2114 case PCI_DEVICE_ID_DELL_PERC5:
2115 default:
2116 instance->instancet = &megasas_instance_template_xscale;
2117 break;
2118 }
2119
2120 /*
2121 * We expect the FW state to be READY
2122 */
2123 if (megasas_transition_to_ready(instance))
2124 goto fail_ready_state;
2125
2126 /*
2127 * Get various operational parameters from status register
2128 */
2129 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2130 /*
2131 * Reduce the max supported cmds by 1. This is to ensure that the
2132 * reply_q_sz (1 more than the max cmd that driver may send)
2133 * does not exceed max cmds that the FW can support
2134 */
2135 instance->max_fw_cmds = instance->max_fw_cmds-1;
2136 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
2137 0x10;
2138 /*
2139 * Create a pool of commands
2140 */
2141 if (megasas_alloc_cmds(instance))
2142 goto fail_alloc_cmds;
2143
2144 /*
2145 * Allocate memory for reply queue. Length of reply queue should
2146 * be _one_ more than the maximum commands handled by the firmware.
2147 *
2148 * Note: When FW completes commands, it places corresponding contex
2149 * values in this circular reply queue. This circular queue is a fairly
2150 * typical producer-consumer queue. FW is the producer (of completed
2151 * commands) and the driver is the consumer.
2152 */
2153 context_sz = sizeof(u32);
2154 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2155
2156 instance->reply_queue = pci_alloc_consistent(instance->pdev,
2157 reply_q_sz,
2158 &instance->reply_queue_h);
2159
2160 if (!instance->reply_queue) {
2161 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2162 goto fail_reply_queue;
2163 }
2164
2165 if (megasas_issue_init_mfi(instance))
2166 goto fail_fw_init;
2167
2168 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2169
2170 /*
2171 * Compute the max allowed sectors per IO: The controller info has two
2172 * limits on max sectors. Driver should use the minimum of these two.
2173 *
2174 * 1 << stripe_sz_ops.min = max sectors per strip
2175 *
2176 * Note that older firmwares ( < FW ver 30) didn't report information
2177 * to calculate max_sectors_1. So the number ended up as zero always.
2178 */
2179 tmp_sectors = 0;
2180 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2181
2182 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2183 ctrl_info->max_strips_per_io;
2184 max_sectors_2 = ctrl_info->max_request_size;
2185
2186 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2187 }
2188
2189 instance->max_sectors_per_req = instance->max_num_sge *
2190 PAGE_SIZE / 512;
2191 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2192 instance->max_sectors_per_req = tmp_sectors;
2193
2194 kfree(ctrl_info);
2195
2196 /*
2197 * Setup tasklet for cmd completion
2198 */
2199
2200 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2201 (unsigned long)instance);
2202
2203 /* Initialize the cmd completion timer */
2204 if (poll_mode_io)
2205 megasas_start_timer(instance, &instance->io_completion_timer,
2206 megasas_io_completion_timer,
2207 MEGASAS_COMPLETION_TIMER_INTERVAL);
2208 return 0;
2209
2210 fail_fw_init:
2211
2212 pci_free_consistent(instance->pdev, reply_q_sz,
2213 instance->reply_queue, instance->reply_queue_h);
2214 fail_reply_queue:
2215 megasas_free_cmds(instance);
2216
2217 fail_alloc_cmds:
2218 fail_ready_state:
2219 iounmap(instance->reg_set);
2220
2221 fail_ioremap:
2222 pci_release_regions(instance->pdev);
2223
2224 return -EINVAL;
2225 }
2226
2227 /**
2228 * megasas_release_mfi - Reverses the FW initialization
2229 * @intance: Adapter soft state
2230 */
2231 static void megasas_release_mfi(struct megasas_instance *instance)
2232 {
2233 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2234
2235 pci_free_consistent(instance->pdev, reply_q_sz,
2236 instance->reply_queue, instance->reply_queue_h);
2237
2238 megasas_free_cmds(instance);
2239
2240 iounmap(instance->reg_set);
2241
2242 pci_release_regions(instance->pdev);
2243 }
2244
2245 /**
2246 * megasas_get_seq_num - Gets latest event sequence numbers
2247 * @instance: Adapter soft state
2248 * @eli: FW event log sequence numbers information
2249 *
2250 * FW maintains a log of all events in a non-volatile area. Upper layers would
2251 * usually find out the latest sequence number of the events, the seq number at
2252 * the boot etc. They would "read" all the events below the latest seq number
2253 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2254 * number), they would subsribe to AEN (asynchronous event notification) and
2255 * wait for the events to happen.
2256 */
2257 static int
2258 megasas_get_seq_num(struct megasas_instance *instance,
2259 struct megasas_evt_log_info *eli)
2260 {
2261 struct megasas_cmd *cmd;
2262 struct megasas_dcmd_frame *dcmd;
2263 struct megasas_evt_log_info *el_info;
2264 dma_addr_t el_info_h = 0;
2265
2266 cmd = megasas_get_cmd(instance);
2267
2268 if (!cmd) {
2269 return -ENOMEM;
2270 }
2271
2272 dcmd = &cmd->frame->dcmd;
2273 el_info = pci_alloc_consistent(instance->pdev,
2274 sizeof(struct megasas_evt_log_info),
2275 &el_info_h);
2276
2277 if (!el_info) {
2278 megasas_return_cmd(instance, cmd);
2279 return -ENOMEM;
2280 }
2281
2282 memset(el_info, 0, sizeof(*el_info));
2283 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2284
2285 dcmd->cmd = MFI_CMD_DCMD;
2286 dcmd->cmd_status = 0x0;
2287 dcmd->sge_count = 1;
2288 dcmd->flags = MFI_FRAME_DIR_READ;
2289 dcmd->timeout = 0;
2290 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2291 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2292 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2293 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2294
2295 megasas_issue_blocked_cmd(instance, cmd);
2296
2297 /*
2298 * Copy the data back into callers buffer
2299 */
2300 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2301
2302 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2303 el_info, el_info_h);
2304
2305 megasas_return_cmd(instance, cmd);
2306
2307 return 0;
2308 }
2309
2310 /**
2311 * megasas_register_aen - Registers for asynchronous event notification
2312 * @instance: Adapter soft state
2313 * @seq_num: The starting sequence number
2314 * @class_locale: Class of the event
2315 *
2316 * This function subscribes for AEN for events beyond the @seq_num. It requests
2317 * to be notified if and only if the event is of type @class_locale
2318 */
2319 static int
2320 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2321 u32 class_locale_word)
2322 {
2323 int ret_val;
2324 struct megasas_cmd *cmd;
2325 struct megasas_dcmd_frame *dcmd;
2326 union megasas_evt_class_locale curr_aen;
2327 union megasas_evt_class_locale prev_aen;
2328
2329 /*
2330 * If there an AEN pending already (aen_cmd), check if the
2331 * class_locale of that pending AEN is inclusive of the new
2332 * AEN request we currently have. If it is, then we don't have
2333 * to do anything. In other words, whichever events the current
2334 * AEN request is subscribing to, have already been subscribed
2335 * to.
2336 *
2337 * If the old_cmd is _not_ inclusive, then we have to abort
2338 * that command, form a class_locale that is superset of both
2339 * old and current and re-issue to the FW
2340 */
2341
2342 curr_aen.word = class_locale_word;
2343
2344 if (instance->aen_cmd) {
2345
2346 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2347
2348 /*
2349 * A class whose enum value is smaller is inclusive of all
2350 * higher values. If a PROGRESS (= -1) was previously
2351 * registered, then a new registration requests for higher
2352 * classes need not be sent to FW. They are automatically
2353 * included.
2354 *
2355 * Locale numbers don't have such hierarchy. They are bitmap
2356 * values
2357 */
2358 if ((prev_aen.members.class <= curr_aen.members.class) &&
2359 !((prev_aen.members.locale & curr_aen.members.locale) ^
2360 curr_aen.members.locale)) {
2361 /*
2362 * Previously issued event registration includes
2363 * current request. Nothing to do.
2364 */
2365 return 0;
2366 } else {
2367 curr_aen.members.locale |= prev_aen.members.locale;
2368
2369 if (prev_aen.members.class < curr_aen.members.class)
2370 curr_aen.members.class = prev_aen.members.class;
2371
2372 instance->aen_cmd->abort_aen = 1;
2373 ret_val = megasas_issue_blocked_abort_cmd(instance,
2374 instance->
2375 aen_cmd);
2376
2377 if (ret_val) {
2378 printk(KERN_DEBUG "megasas: Failed to abort "
2379 "previous AEN command\n");
2380 return ret_val;
2381 }
2382 }
2383 }
2384
2385 cmd = megasas_get_cmd(instance);
2386
2387 if (!cmd)
2388 return -ENOMEM;
2389
2390 dcmd = &cmd->frame->dcmd;
2391
2392 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2393
2394 /*
2395 * Prepare DCMD for aen registration
2396 */
2397 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2398
2399 dcmd->cmd = MFI_CMD_DCMD;
2400 dcmd->cmd_status = 0x0;
2401 dcmd->sge_count = 1;
2402 dcmd->flags = MFI_FRAME_DIR_READ;
2403 dcmd->timeout = 0;
2404 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2405 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2406 dcmd->mbox.w[0] = seq_num;
2407 dcmd->mbox.w[1] = curr_aen.word;
2408 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2409 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2410
2411 /*
2412 * Store reference to the cmd used to register for AEN. When an
2413 * application wants us to register for AEN, we have to abort this
2414 * cmd and re-register with a new EVENT LOCALE supplied by that app
2415 */
2416 instance->aen_cmd = cmd;
2417
2418 /*
2419 * Issue the aen registration frame
2420 */
2421 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2422
2423 return 0;
2424 }
2425
2426 /**
2427 * megasas_start_aen - Subscribes to AEN during driver load time
2428 * @instance: Adapter soft state
2429 */
2430 static int megasas_start_aen(struct megasas_instance *instance)
2431 {
2432 struct megasas_evt_log_info eli;
2433 union megasas_evt_class_locale class_locale;
2434
2435 /*
2436 * Get the latest sequence number from FW
2437 */
2438 memset(&eli, 0, sizeof(eli));
2439
2440 if (megasas_get_seq_num(instance, &eli))
2441 return -1;
2442
2443 /*
2444 * Register AEN with FW for latest sequence number plus 1
2445 */
2446 class_locale.members.reserved = 0;
2447 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2448 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2449
2450 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2451 class_locale.word);
2452 }
2453
2454 /**
2455 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2456 * @instance: Adapter soft state
2457 */
2458 static int megasas_io_attach(struct megasas_instance *instance)
2459 {
2460 struct Scsi_Host *host = instance->host;
2461
2462 /*
2463 * Export parameters required by SCSI mid-layer
2464 */
2465 host->irq = instance->pdev->irq;
2466 host->unique_id = instance->unique_id;
2467 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2468 host->this_id = instance->init_id;
2469 host->sg_tablesize = instance->max_num_sge;
2470 host->max_sectors = instance->max_sectors_per_req;
2471 host->cmd_per_lun = 128;
2472 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2473 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2474 host->max_lun = MEGASAS_MAX_LUN;
2475 host->max_cmd_len = 16;
2476
2477 /*
2478 * Notify the mid-layer about the new controller
2479 */
2480 if (scsi_add_host(host, &instance->pdev->dev)) {
2481 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2482 return -ENODEV;
2483 }
2484
2485 /*
2486 * Trigger SCSI to scan our drives
2487 */
2488 scsi_scan_host(host);
2489 return 0;
2490 }
2491
2492 static int
2493 megasas_set_dma_mask(struct pci_dev *pdev)
2494 {
2495 /*
2496 * All our contollers are capable of performing 64-bit DMA
2497 */
2498 if (IS_DMA64) {
2499 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2500
2501 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2502 goto fail_set_dma_mask;
2503 }
2504 } else {
2505 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2506 goto fail_set_dma_mask;
2507 }
2508 return 0;
2509
2510 fail_set_dma_mask:
2511 return 1;
2512 }
2513
2514 /**
2515 * megasas_probe_one - PCI hotplug entry point
2516 * @pdev: PCI device structure
2517 * @id: PCI ids of supported hotplugged adapter
2518 */
2519 static int __devinit
2520 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2521 {
2522 int rval;
2523 struct Scsi_Host *host;
2524 struct megasas_instance *instance;
2525
2526 /*
2527 * Announce PCI information
2528 */
2529 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2530 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2531 pdev->subsystem_device);
2532
2533 printk("bus %d:slot %d:func %d\n",
2534 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2535
2536 /*
2537 * PCI prepping: enable device set bus mastering and dma mask
2538 */
2539 rval = pci_enable_device(pdev);
2540
2541 if (rval) {
2542 return rval;
2543 }
2544
2545 pci_set_master(pdev);
2546
2547 if (megasas_set_dma_mask(pdev))
2548 goto fail_set_dma_mask;
2549
2550 host = scsi_host_alloc(&megasas_template,
2551 sizeof(struct megasas_instance));
2552
2553 if (!host) {
2554 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2555 goto fail_alloc_instance;
2556 }
2557
2558 instance = (struct megasas_instance *)host->hostdata;
2559 memset(instance, 0, sizeof(*instance));
2560
2561 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2562 &instance->producer_h);
2563 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2564 &instance->consumer_h);
2565
2566 if (!instance->producer || !instance->consumer) {
2567 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2568 "producer, consumer\n");
2569 goto fail_alloc_dma_buf;
2570 }
2571
2572 *instance->producer = 0;
2573 *instance->consumer = 0;
2574
2575 instance->evt_detail = pci_alloc_consistent(pdev,
2576 sizeof(struct
2577 megasas_evt_detail),
2578 &instance->evt_detail_h);
2579
2580 if (!instance->evt_detail) {
2581 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2582 "event detail structure\n");
2583 goto fail_alloc_dma_buf;
2584 }
2585
2586 /*
2587 * Initialize locks and queues
2588 */
2589 INIT_LIST_HEAD(&instance->cmd_pool);
2590
2591 atomic_set(&instance->fw_outstanding,0);
2592
2593 init_waitqueue_head(&instance->int_cmd_wait_q);
2594 init_waitqueue_head(&instance->abort_cmd_wait_q);
2595
2596 spin_lock_init(&instance->cmd_pool_lock);
2597 spin_lock_init(&instance->completion_lock);
2598
2599 mutex_init(&instance->aen_mutex);
2600 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2601
2602 /*
2603 * Initialize PCI related and misc parameters
2604 */
2605 instance->pdev = pdev;
2606 instance->host = host;
2607 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2608 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2609
2610 megasas_dbg_lvl = 0;
2611 instance->flag = 0;
2612 instance->last_time = 0;
2613
2614 /*
2615 * Initialize MFI Firmware
2616 */
2617 if (megasas_init_mfi(instance))
2618 goto fail_init_mfi;
2619
2620 /*
2621 * Register IRQ
2622 */
2623 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2624 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2625 goto fail_irq;
2626 }
2627
2628 instance->instancet->enable_intr(instance->reg_set);
2629
2630 /*
2631 * Store instance in PCI softstate
2632 */
2633 pci_set_drvdata(pdev, instance);
2634
2635 /*
2636 * Add this controller to megasas_mgmt_info structure so that it
2637 * can be exported to management applications
2638 */
2639 megasas_mgmt_info.count++;
2640 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2641 megasas_mgmt_info.max_index++;
2642
2643 /*
2644 * Initiate AEN (Asynchronous Event Notification)
2645 */
2646 if (megasas_start_aen(instance)) {
2647 printk(KERN_DEBUG "megasas: start aen failed\n");
2648 goto fail_start_aen;
2649 }
2650
2651 /*
2652 * Register with SCSI mid-layer
2653 */
2654 if (megasas_io_attach(instance))
2655 goto fail_io_attach;
2656
2657 return 0;
2658
2659 fail_start_aen:
2660 fail_io_attach:
2661 megasas_mgmt_info.count--;
2662 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2663 megasas_mgmt_info.max_index--;
2664
2665 pci_set_drvdata(pdev, NULL);
2666 instance->instancet->disable_intr(instance->reg_set);
2667 free_irq(instance->pdev->irq, instance);
2668
2669 megasas_release_mfi(instance);
2670
2671 fail_irq:
2672 fail_init_mfi:
2673 fail_alloc_dma_buf:
2674 if (instance->evt_detail)
2675 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2676 instance->evt_detail,
2677 instance->evt_detail_h);
2678
2679 if (instance->producer)
2680 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2681 instance->producer_h);
2682 if (instance->consumer)
2683 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2684 instance->consumer_h);
2685 scsi_host_put(host);
2686
2687 fail_alloc_instance:
2688 fail_set_dma_mask:
2689 pci_disable_device(pdev);
2690
2691 return -ENODEV;
2692 }
2693
2694 /**
2695 * megasas_flush_cache - Requests FW to flush all its caches
2696 * @instance: Adapter soft state
2697 */
2698 static void megasas_flush_cache(struct megasas_instance *instance)
2699 {
2700 struct megasas_cmd *cmd;
2701 struct megasas_dcmd_frame *dcmd;
2702
2703 cmd = megasas_get_cmd(instance);
2704
2705 if (!cmd)
2706 return;
2707
2708 dcmd = &cmd->frame->dcmd;
2709
2710 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2711
2712 dcmd->cmd = MFI_CMD_DCMD;
2713 dcmd->cmd_status = 0x0;
2714 dcmd->sge_count = 0;
2715 dcmd->flags = MFI_FRAME_DIR_NONE;
2716 dcmd->timeout = 0;
2717 dcmd->data_xfer_len = 0;
2718 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2719 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2720
2721 megasas_issue_blocked_cmd(instance, cmd);
2722
2723 megasas_return_cmd(instance, cmd);
2724
2725 return;
2726 }
2727
2728 /**
2729 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2730 * @instance: Adapter soft state
2731 * @opcode: Shutdown/Hibernate
2732 */
2733 static void megasas_shutdown_controller(struct megasas_instance *instance,
2734 u32 opcode)
2735 {
2736 struct megasas_cmd *cmd;
2737 struct megasas_dcmd_frame *dcmd;
2738
2739 cmd = megasas_get_cmd(instance);
2740
2741 if (!cmd)
2742 return;
2743
2744 if (instance->aen_cmd)
2745 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2746
2747 dcmd = &cmd->frame->dcmd;
2748
2749 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2750
2751 dcmd->cmd = MFI_CMD_DCMD;
2752 dcmd->cmd_status = 0x0;
2753 dcmd->sge_count = 0;
2754 dcmd->flags = MFI_FRAME_DIR_NONE;
2755 dcmd->timeout = 0;
2756 dcmd->data_xfer_len = 0;
2757 dcmd->opcode = opcode;
2758
2759 megasas_issue_blocked_cmd(instance, cmd);
2760
2761 megasas_return_cmd(instance, cmd);
2762
2763 return;
2764 }
2765
2766 #ifdef CONFIG_PM
2767 /**
2768 * megasas_suspend - driver suspend entry point
2769 * @pdev: PCI device structure
2770 * @state: PCI power state to suspend routine
2771 */
2772 static int
2773 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2774 {
2775 struct Scsi_Host *host;
2776 struct megasas_instance *instance;
2777
2778 instance = pci_get_drvdata(pdev);
2779 host = instance->host;
2780
2781 if (poll_mode_io)
2782 del_timer_sync(&instance->io_completion_timer);
2783
2784 megasas_flush_cache(instance);
2785 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2786 tasklet_kill(&instance->isr_tasklet);
2787
2788 pci_set_drvdata(instance->pdev, instance);
2789 instance->instancet->disable_intr(instance->reg_set);
2790 free_irq(instance->pdev->irq, instance);
2791
2792 pci_save_state(pdev);
2793 pci_disable_device(pdev);
2794
2795 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2796
2797 return 0;
2798 }
2799
2800 /**
2801 * megasas_resume- driver resume entry point
2802 * @pdev: PCI device structure
2803 */
2804 static int
2805 megasas_resume(struct pci_dev *pdev)
2806 {
2807 int rval;
2808 struct Scsi_Host *host;
2809 struct megasas_instance *instance;
2810
2811 instance = pci_get_drvdata(pdev);
2812 host = instance->host;
2813 pci_set_power_state(pdev, PCI_D0);
2814 pci_enable_wake(pdev, PCI_D0, 0);
2815 pci_restore_state(pdev);
2816
2817 /*
2818 * PCI prepping: enable device set bus mastering and dma mask
2819 */
2820 rval = pci_enable_device(pdev);
2821
2822 if (rval) {
2823 printk(KERN_ERR "megasas: Enable device failed\n");
2824 return rval;
2825 }
2826
2827 pci_set_master(pdev);
2828
2829 if (megasas_set_dma_mask(pdev))
2830 goto fail_set_dma_mask;
2831
2832 /*
2833 * Initialize MFI Firmware
2834 */
2835
2836 *instance->producer = 0;
2837 *instance->consumer = 0;
2838
2839 atomic_set(&instance->fw_outstanding, 0);
2840
2841 /*
2842 * We expect the FW state to be READY
2843 */
2844 if (megasas_transition_to_ready(instance))
2845 goto fail_ready_state;
2846
2847 if (megasas_issue_init_mfi(instance))
2848 goto fail_init_mfi;
2849
2850 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2851 (unsigned long)instance);
2852
2853 /*
2854 * Register IRQ
2855 */
2856 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2857 "megasas", instance)) {
2858 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2859 goto fail_irq;
2860 }
2861
2862 instance->instancet->enable_intr(instance->reg_set);
2863
2864 /*
2865 * Initiate AEN (Asynchronous Event Notification)
2866 */
2867 if (megasas_start_aen(instance))
2868 printk(KERN_ERR "megasas: Start AEN failed\n");
2869
2870 /* Initialize the cmd completion timer */
2871 if (poll_mode_io)
2872 megasas_start_timer(instance, &instance->io_completion_timer,
2873 megasas_io_completion_timer,
2874 MEGASAS_COMPLETION_TIMER_INTERVAL);
2875 return 0;
2876
2877 fail_irq:
2878 fail_init_mfi:
2879 if (instance->evt_detail)
2880 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2881 instance->evt_detail,
2882 instance->evt_detail_h);
2883
2884 if (instance->producer)
2885 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2886 instance->producer_h);
2887 if (instance->consumer)
2888 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2889 instance->consumer_h);
2890 scsi_host_put(host);
2891
2892 fail_set_dma_mask:
2893 fail_ready_state:
2894
2895 pci_disable_device(pdev);
2896
2897 return -ENODEV;
2898 }
2899 #else
2900 #define megasas_suspend NULL
2901 #define megasas_resume NULL
2902 #endif
2903
2904 /**
2905 * megasas_detach_one - PCI hot"un"plug entry point
2906 * @pdev: PCI device structure
2907 */
2908 static void __devexit megasas_detach_one(struct pci_dev *pdev)
2909 {
2910 int i;
2911 struct Scsi_Host *host;
2912 struct megasas_instance *instance;
2913
2914 instance = pci_get_drvdata(pdev);
2915 host = instance->host;
2916
2917 if (poll_mode_io)
2918 del_timer_sync(&instance->io_completion_timer);
2919
2920 scsi_remove_host(instance->host);
2921 megasas_flush_cache(instance);
2922 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2923 tasklet_kill(&instance->isr_tasklet);
2924
2925 /*
2926 * Take the instance off the instance array. Note that we will not
2927 * decrement the max_index. We let this array be sparse array
2928 */
2929 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2930 if (megasas_mgmt_info.instance[i] == instance) {
2931 megasas_mgmt_info.count--;
2932 megasas_mgmt_info.instance[i] = NULL;
2933
2934 break;
2935 }
2936 }
2937
2938 pci_set_drvdata(instance->pdev, NULL);
2939
2940 instance->instancet->disable_intr(instance->reg_set);
2941
2942 free_irq(instance->pdev->irq, instance);
2943
2944 megasas_release_mfi(instance);
2945
2946 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2947 instance->evt_detail, instance->evt_detail_h);
2948
2949 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2950 instance->producer_h);
2951
2952 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2953 instance->consumer_h);
2954
2955 scsi_host_put(host);
2956
2957 pci_set_drvdata(pdev, NULL);
2958
2959 pci_disable_device(pdev);
2960
2961 return;
2962 }
2963
2964 /**
2965 * megasas_shutdown - Shutdown entry point
2966 * @device: Generic device structure
2967 */
2968 static void megasas_shutdown(struct pci_dev *pdev)
2969 {
2970 struct megasas_instance *instance = pci_get_drvdata(pdev);
2971 megasas_flush_cache(instance);
2972 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2973 }
2974
2975 /**
2976 * megasas_mgmt_open - char node "open" entry point
2977 */
2978 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2979 {
2980 cycle_kernel_lock();
2981 /*
2982 * Allow only those users with admin rights
2983 */
2984 if (!capable(CAP_SYS_ADMIN))
2985 return -EACCES;
2986
2987 return 0;
2988 }
2989
2990 /**
2991 * megasas_mgmt_release - char node "release" entry point
2992 */
2993 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2994 {
2995 filep->private_data = NULL;
2996 fasync_helper(-1, filep, 0, &megasas_async_queue);
2997
2998 return 0;
2999 }
3000
3001 /**
3002 * megasas_mgmt_fasync - Async notifier registration from applications
3003 *
3004 * This function adds the calling process to a driver global queue. When an
3005 * event occurs, SIGIO will be sent to all processes in this queue.
3006 */
3007 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
3008 {
3009 int rc;
3010
3011 mutex_lock(&megasas_async_queue_mutex);
3012
3013 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
3014
3015 mutex_unlock(&megasas_async_queue_mutex);
3016
3017 if (rc >= 0) {
3018 /* For sanity check when we get ioctl */
3019 filep->private_data = filep;
3020 return 0;
3021 }
3022
3023 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
3024
3025 return rc;
3026 }
3027
3028 /**
3029 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
3030 * @instance: Adapter soft state
3031 * @argp: User's ioctl packet
3032 */
3033 static int
3034 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
3035 struct megasas_iocpacket __user * user_ioc,
3036 struct megasas_iocpacket *ioc)
3037 {
3038 struct megasas_sge32 *kern_sge32;
3039 struct megasas_cmd *cmd;
3040 void *kbuff_arr[MAX_IOCTL_SGE];
3041 dma_addr_t buf_handle = 0;
3042 int error = 0, i;
3043 void *sense = NULL;
3044 dma_addr_t sense_handle;
3045 u32 *sense_ptr;
3046
3047 memset(kbuff_arr, 0, sizeof(kbuff_arr));
3048
3049 if (ioc->sge_count > MAX_IOCTL_SGE) {
3050 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
3051 ioc->sge_count, MAX_IOCTL_SGE);
3052 return -EINVAL;
3053 }
3054
3055 cmd = megasas_get_cmd(instance);
3056 if (!cmd) {
3057 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
3058 return -ENOMEM;
3059 }
3060
3061 /*
3062 * User's IOCTL packet has 2 frames (maximum). Copy those two
3063 * frames into our cmd's frames. cmd->frame's context will get
3064 * overwritten when we copy from user's frames. So set that value
3065 * alone separately
3066 */
3067 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
3068 cmd->frame->hdr.context = cmd->index;
3069
3070 /*
3071 * The management interface between applications and the fw uses
3072 * MFI frames. E.g, RAID configuration changes, LD property changes
3073 * etc are accomplishes through different kinds of MFI frames. The
3074 * driver needs to care only about substituting user buffers with
3075 * kernel buffers in SGLs. The location of SGL is embedded in the
3076 * struct iocpacket itself.
3077 */
3078 kern_sge32 = (struct megasas_sge32 *)
3079 ((unsigned long)cmd->frame + ioc->sgl_off);
3080
3081 /*
3082 * For each user buffer, create a mirror buffer and copy in
3083 */
3084 for (i = 0; i < ioc->sge_count; i++) {
3085 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
3086 ioc->sgl[i].iov_len,
3087 &buf_handle, GFP_KERNEL);
3088 if (!kbuff_arr[i]) {
3089 printk(KERN_DEBUG "megasas: Failed to alloc "
3090 "kernel SGL buffer for IOCTL \n");
3091 error = -ENOMEM;
3092 goto out;
3093 }
3094
3095 /*
3096 * We don't change the dma_coherent_mask, so
3097 * pci_alloc_consistent only returns 32bit addresses
3098 */
3099 kern_sge32[i].phys_addr = (u32) buf_handle;
3100 kern_sge32[i].length = ioc->sgl[i].iov_len;
3101
3102 /*
3103 * We created a kernel buffer corresponding to the
3104 * user buffer. Now copy in from the user buffer
3105 */
3106 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
3107 (u32) (ioc->sgl[i].iov_len))) {
3108 error = -EFAULT;
3109 goto out;
3110 }
3111 }
3112
3113 if (ioc->sense_len) {
3114 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
3115 &sense_handle, GFP_KERNEL);
3116 if (!sense) {
3117 error = -ENOMEM;
3118 goto out;
3119 }
3120
3121 sense_ptr =
3122 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3123 *sense_ptr = sense_handle;
3124 }
3125
3126 /*
3127 * Set the sync_cmd flag so that the ISR knows not to complete this
3128 * cmd to the SCSI mid-layer
3129 */
3130 cmd->sync_cmd = 1;
3131 megasas_issue_blocked_cmd(instance, cmd);
3132 cmd->sync_cmd = 0;
3133
3134 /*
3135 * copy out the kernel buffers to user buffers
3136 */
3137 for (i = 0; i < ioc->sge_count; i++) {
3138 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3139 ioc->sgl[i].iov_len)) {
3140 error = -EFAULT;
3141 goto out;
3142 }
3143 }
3144
3145 /*
3146 * copy out the sense
3147 */
3148 if (ioc->sense_len) {
3149 /*
3150 * sense_ptr points to the location that has the user
3151 * sense buffer address
3152 */
3153 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3154 ioc->sense_off);
3155
3156 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3157 sense, ioc->sense_len)) {
3158 printk(KERN_ERR "megasas: Failed to copy out to user "
3159 "sense data\n");
3160 error = -EFAULT;
3161 goto out;
3162 }
3163 }
3164
3165 /*
3166 * copy the status codes returned by the fw
3167 */
3168 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3169 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3170 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3171 error = -EFAULT;
3172 }
3173
3174 out:
3175 if (sense) {
3176 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3177 sense, sense_handle);
3178 }
3179
3180 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3181 dma_free_coherent(&instance->pdev->dev,
3182 kern_sge32[i].length,
3183 kbuff_arr[i], kern_sge32[i].phys_addr);
3184 }
3185
3186 megasas_return_cmd(instance, cmd);
3187 return error;
3188 }
3189
3190 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3191 {
3192 int i;
3193
3194 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3195
3196 if ((megasas_mgmt_info.instance[i]) &&
3197 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3198 return megasas_mgmt_info.instance[i];
3199 }
3200
3201 return NULL;
3202 }
3203
3204 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3205 {
3206 struct megasas_iocpacket __user *user_ioc =
3207 (struct megasas_iocpacket __user *)arg;
3208 struct megasas_iocpacket *ioc;
3209 struct megasas_instance *instance;
3210 int error;
3211
3212 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3213 if (!ioc)
3214 return -ENOMEM;
3215
3216 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3217 error = -EFAULT;
3218 goto out_kfree_ioc;
3219 }
3220
3221 instance = megasas_lookup_instance(ioc->host_no);
3222 if (!instance) {
3223 error = -ENODEV;
3224 goto out_kfree_ioc;
3225 }
3226
3227 /*
3228 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3229 */
3230 if (down_interruptible(&instance->ioctl_sem)) {
3231 error = -ERESTARTSYS;
3232 goto out_kfree_ioc;
3233 }
3234 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3235 up(&instance->ioctl_sem);
3236
3237 out_kfree_ioc:
3238 kfree(ioc);
3239 return error;
3240 }
3241
3242 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3243 {
3244 struct megasas_instance *instance;
3245 struct megasas_aen aen;
3246 int error;
3247
3248 if (file->private_data != file) {
3249 printk(KERN_DEBUG "megasas: fasync_helper was not "
3250 "called first\n");
3251 return -EINVAL;
3252 }
3253
3254 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3255 return -EFAULT;
3256
3257 instance = megasas_lookup_instance(aen.host_no);
3258
3259 if (!instance)
3260 return -ENODEV;
3261
3262 mutex_lock(&instance->aen_mutex);
3263 error = megasas_register_aen(instance, aen.seq_num,
3264 aen.class_locale_word);
3265 mutex_unlock(&instance->aen_mutex);
3266 return error;
3267 }
3268
3269 /**
3270 * megasas_mgmt_ioctl - char node ioctl entry point
3271 */
3272 static long
3273 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3274 {
3275 switch (cmd) {
3276 case MEGASAS_IOC_FIRMWARE:
3277 return megasas_mgmt_ioctl_fw(file, arg);
3278
3279 case MEGASAS_IOC_GET_AEN:
3280 return megasas_mgmt_ioctl_aen(file, arg);
3281 }
3282
3283 return -ENOTTY;
3284 }
3285
3286 #ifdef CONFIG_COMPAT
3287 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3288 {
3289 struct compat_megasas_iocpacket __user *cioc =
3290 (struct compat_megasas_iocpacket __user *)arg;
3291 struct megasas_iocpacket __user *ioc =
3292 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3293 int i;
3294 int error = 0;
3295
3296 if (clear_user(ioc, sizeof(*ioc)))
3297 return -EFAULT;
3298
3299 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3300 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3301 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3302 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3303 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3304 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3305 return -EFAULT;
3306
3307 for (i = 0; i < MAX_IOCTL_SGE; i++) {
3308 compat_uptr_t ptr;
3309
3310 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3311 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3312 copy_in_user(&ioc->sgl[i].iov_len,
3313 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3314 return -EFAULT;
3315 }
3316
3317 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3318
3319 if (copy_in_user(&cioc->frame.hdr.cmd_status,
3320 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3321 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3322 return -EFAULT;
3323 }
3324 return error;
3325 }
3326
3327 static long
3328 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3329 unsigned long arg)
3330 {
3331 switch (cmd) {
3332 case MEGASAS_IOC_FIRMWARE32:
3333 return megasas_mgmt_compat_ioctl_fw(file, arg);
3334 case MEGASAS_IOC_GET_AEN:
3335 return megasas_mgmt_ioctl_aen(file, arg);
3336 }
3337
3338 return -ENOTTY;
3339 }
3340 #endif
3341
3342 /*
3343 * File operations structure for management interface
3344 */
3345 static const struct file_operations megasas_mgmt_fops = {
3346 .owner = THIS_MODULE,
3347 .open = megasas_mgmt_open,
3348 .release = megasas_mgmt_release,
3349 .fasync = megasas_mgmt_fasync,
3350 .unlocked_ioctl = megasas_mgmt_ioctl,
3351 #ifdef CONFIG_COMPAT
3352 .compat_ioctl = megasas_mgmt_compat_ioctl,
3353 #endif
3354 };
3355
3356 /*
3357 * PCI hotplug support registration structure
3358 */
3359 static struct pci_driver megasas_pci_driver = {
3360
3361 .name = "megaraid_sas",
3362 .id_table = megasas_pci_table,
3363 .probe = megasas_probe_one,
3364 .remove = __devexit_p(megasas_detach_one),
3365 .suspend = megasas_suspend,
3366 .resume = megasas_resume,
3367 .shutdown = megasas_shutdown,
3368 };
3369
3370 /*
3371 * Sysfs driver attributes
3372 */
3373 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3374 {
3375 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3376 MEGASAS_VERSION);
3377 }
3378
3379 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3380
3381 static ssize_t
3382 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3383 {
3384 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3385 MEGASAS_RELDATE);
3386 }
3387
3388 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3389 NULL);
3390
3391 static ssize_t
3392 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3393 {
3394 return sprintf(buf, "%u\n", megasas_dbg_lvl);
3395 }
3396
3397 static ssize_t
3398 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3399 {
3400 int retval = count;
3401 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3402 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3403 retval = -EINVAL;
3404 }
3405 return retval;
3406 }
3407
3408 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
3409 megasas_sysfs_set_dbg_lvl);
3410
3411 static ssize_t
3412 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3413 {
3414 return sprintf(buf, "%u\n", poll_mode_io);
3415 }
3416
3417 static ssize_t
3418 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3419 const char *buf, size_t count)
3420 {
3421 int retval = count;
3422 int tmp = poll_mode_io;
3423 int i;
3424 struct megasas_instance *instance;
3425
3426 if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3427 printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3428 retval = -EINVAL;
3429 }
3430
3431 /*
3432 * Check if poll_mode_io is already set or is same as previous value
3433 */
3434 if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3435 goto out;
3436
3437 if (poll_mode_io) {
3438 /*
3439 * Start timers for all adapters
3440 */
3441 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3442 instance = megasas_mgmt_info.instance[i];
3443 if (instance) {
3444 megasas_start_timer(instance,
3445 &instance->io_completion_timer,
3446 megasas_io_completion_timer,
3447 MEGASAS_COMPLETION_TIMER_INTERVAL);
3448 }
3449 }
3450 } else {
3451 /*
3452 * Delete timers for all adapters
3453 */
3454 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3455 instance = megasas_mgmt_info.instance[i];
3456 if (instance)
3457 del_timer_sync(&instance->io_completion_timer);
3458 }
3459 }
3460
3461 out:
3462 return retval;
3463 }
3464
3465 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3466 megasas_sysfs_show_poll_mode_io,
3467 megasas_sysfs_set_poll_mode_io);
3468
3469 /**
3470 * megasas_init - Driver load entry point
3471 */
3472 static int __init megasas_init(void)
3473 {
3474 int rval;
3475
3476 /*
3477 * Announce driver version and other information
3478 */
3479 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3480 MEGASAS_EXT_VERSION);
3481
3482 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3483
3484 /*
3485 * Register character device node
3486 */
3487 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3488
3489 if (rval < 0) {
3490 printk(KERN_DEBUG "megasas: failed to open device node\n");
3491 return rval;
3492 }
3493
3494 megasas_mgmt_majorno = rval;
3495
3496 /*
3497 * Register ourselves as PCI hotplug module
3498 */
3499 rval = pci_register_driver(&megasas_pci_driver);
3500
3501 if (rval) {
3502 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3503 goto err_pcidrv;
3504 }
3505
3506 rval = driver_create_file(&megasas_pci_driver.driver,
3507 &driver_attr_version);
3508 if (rval)
3509 goto err_dcf_attr_ver;
3510 rval = driver_create_file(&megasas_pci_driver.driver,
3511 &driver_attr_release_date);
3512 if (rval)
3513 goto err_dcf_rel_date;
3514 rval = driver_create_file(&megasas_pci_driver.driver,
3515 &driver_attr_dbg_lvl);
3516 if (rval)
3517 goto err_dcf_dbg_lvl;
3518 rval = driver_create_file(&megasas_pci_driver.driver,
3519 &driver_attr_poll_mode_io);
3520 if (rval)
3521 goto err_dcf_poll_mode_io;
3522
3523 return rval;
3524
3525 err_dcf_poll_mode_io:
3526 driver_remove_file(&megasas_pci_driver.driver,
3527 &driver_attr_dbg_lvl);
3528 err_dcf_dbg_lvl:
3529 driver_remove_file(&megasas_pci_driver.driver,
3530 &driver_attr_release_date);
3531 err_dcf_rel_date:
3532 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3533 err_dcf_attr_ver:
3534 pci_unregister_driver(&megasas_pci_driver);
3535 err_pcidrv:
3536 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3537 return rval;
3538 }
3539
3540 /**
3541 * megasas_exit - Driver unload entry point
3542 */
3543 static void __exit megasas_exit(void)
3544 {
3545 driver_remove_file(&megasas_pci_driver.driver,
3546 &driver_attr_poll_mode_io);
3547 driver_remove_file(&megasas_pci_driver.driver,
3548 &driver_attr_dbg_lvl);
3549 driver_remove_file(&megasas_pci_driver.driver,
3550 &driver_attr_release_date);
3551 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3552
3553 pci_unregister_driver(&megasas_pci_driver);
3554 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3555 }
3556
3557 module_init(megasas_init);
3558 module_exit(megasas_exit);