]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/megaraid/megaraid_sas_base.c
scsi: use 64-bit value for 'max_luns'
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / megaraid / megaraid_sas_base.c
1 /*
2 * Linux MegaRAID driver for SAS based RAID controllers
3 *
4 * Copyright (c) 2003-2012 LSI Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 * FILE: megaraid_sas_base.c
21 * Version : 06.803.01.00-rc1
22 *
23 * Authors: LSI Corporation
24 * Sreenivas Bagalkote
25 * Sumant Patro
26 * Bo Yang
27 * Adam Radford <linuxraid@lsi.com>
28 *
29 * Send feedback to: <megaraidlinux@lsi.com>
30 *
31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
32 * ATTN: Linuxraid
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/list.h>
39 #include <linux/moduleparam.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/interrupt.h>
43 #include <linux/delay.h>
44 #include <linux/uio.h>
45 #include <linux/slab.h>
46 #include <asm/uaccess.h>
47 #include <linux/fs.h>
48 #include <linux/compat.h>
49 #include <linux/blkdev.h>
50 #include <linux/mutex.h>
51 #include <linux/poll.h>
52
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_device.h>
56 #include <scsi/scsi_host.h>
57 #include <scsi/scsi_tcq.h>
58 #include "megaraid_sas_fusion.h"
59 #include "megaraid_sas.h"
60
61 /*
62 * Number of sectors per IO command
63 * Will be set in megasas_init_mfi if user does not provide
64 */
65 static unsigned int max_sectors;
66 module_param_named(max_sectors, max_sectors, int, 0);
67 MODULE_PARM_DESC(max_sectors,
68 "Maximum number of sectors per IO command");
69
70 static int msix_disable;
71 module_param(msix_disable, int, S_IRUGO);
72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
73
74 static unsigned int msix_vectors;
75 module_param(msix_vectors, int, S_IRUGO);
76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW");
77
78 static int allow_vf_ioctls;
79 module_param(allow_vf_ioctls, int, S_IRUGO);
80 MODULE_PARM_DESC(allow_vf_ioctls, "Allow ioctls in SR-IOV VF mode. Default: 0");
81
82 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH;
83 module_param(throttlequeuedepth, int, S_IRUGO);
84 MODULE_PARM_DESC(throttlequeuedepth,
85 "Adapter queue depth when throttled due to I/O timeout. Default: 16");
86
87 int resetwaittime = MEGASAS_RESET_WAIT_TIME;
88 module_param(resetwaittime, int, S_IRUGO);
89 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout "
90 "before resetting adapter. Default: 180");
91
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(MEGASAS_VERSION);
94 MODULE_AUTHOR("megaraidlinux@lsi.com");
95 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
96
97 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
98 static int megasas_get_pd_list(struct megasas_instance *instance);
99 static int megasas_ld_list_query(struct megasas_instance *instance,
100 u8 query_type);
101 static int megasas_issue_init_mfi(struct megasas_instance *instance);
102 static int megasas_register_aen(struct megasas_instance *instance,
103 u32 seq_num, u32 class_locale_word);
104 /*
105 * PCI ID table for all supported controllers
106 */
107 static struct pci_device_id megasas_pci_table[] = {
108
109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
110 /* xscale IOP */
111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
112 /* ppc IOP */
113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
114 /* ppc IOP */
115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
116 /* gen2*/
117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
118 /* gen2*/
119 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
120 /* skinny*/
121 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
122 /* skinny*/
123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
124 /* xscale IOP, vega */
125 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
126 /* xscale IOP */
127 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
128 /* Fusion */
129 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_PLASMA)},
130 /* Plasma */
131 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)},
132 /* Invader */
133 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)},
134 /* Fury */
135 {}
136 };
137
138 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
139
140 static int megasas_mgmt_majorno;
141 struct megasas_mgmt_info megasas_mgmt_info;
142 static struct fasync_struct *megasas_async_queue;
143 static DEFINE_MUTEX(megasas_async_queue_mutex);
144
145 static int megasas_poll_wait_aen;
146 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
147 static u32 support_poll_for_event;
148 u32 megasas_dbg_lvl;
149 static u32 support_device_change;
150
151 /* define lock for aen poll */
152 spinlock_t poll_aen_lock;
153
154 void
155 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
156 u8 alt_status);
157 static u32
158 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs);
159 static int
160 megasas_adp_reset_gen2(struct megasas_instance *instance,
161 struct megasas_register_set __iomem *reg_set);
162 static irqreturn_t megasas_isr(int irq, void *devp);
163 static u32
164 megasas_init_adapter_mfi(struct megasas_instance *instance);
165 u32
166 megasas_build_and_issue_cmd(struct megasas_instance *instance,
167 struct scsi_cmnd *scmd);
168 static void megasas_complete_cmd_dpc(unsigned long instance_addr);
169 void
170 megasas_release_fusion(struct megasas_instance *instance);
171 int
172 megasas_ioc_init_fusion(struct megasas_instance *instance);
173 void
174 megasas_free_cmds_fusion(struct megasas_instance *instance);
175 u8
176 megasas_get_map_info(struct megasas_instance *instance);
177 int
178 megasas_sync_map_info(struct megasas_instance *instance);
179 int
180 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd,
181 int seconds);
182 void megasas_reset_reply_desc(struct megasas_instance *instance);
183 int megasas_reset_fusion(struct Scsi_Host *shost, int iotimeout);
184 void megasas_fusion_ocr_wq(struct work_struct *work);
185 static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance,
186 int initial);
187 int megasas_check_mpio_paths(struct megasas_instance *instance,
188 struct scsi_cmnd *scmd);
189
190 void
191 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
192 {
193 instance->instancet->fire_cmd(instance,
194 cmd->frame_phys_addr, 0, instance->reg_set);
195 }
196
197 /**
198 * megasas_get_cmd - Get a command from the free pool
199 * @instance: Adapter soft state
200 *
201 * Returns a free command from the pool
202 */
203 struct megasas_cmd *megasas_get_cmd(struct megasas_instance
204 *instance)
205 {
206 unsigned long flags;
207 struct megasas_cmd *cmd = NULL;
208
209 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
210
211 if (!list_empty(&instance->cmd_pool)) {
212 cmd = list_entry((&instance->cmd_pool)->next,
213 struct megasas_cmd, list);
214 list_del_init(&cmd->list);
215 } else {
216 printk(KERN_ERR "megasas: Command pool empty!\n");
217 }
218
219 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
220 return cmd;
221 }
222
223 /**
224 * megasas_return_cmd - Return a cmd to free command pool
225 * @instance: Adapter soft state
226 * @cmd: Command packet to be returned to free command pool
227 */
228 inline void
229 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
234
235 cmd->scmd = NULL;
236 cmd->frame_count = 0;
237 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
238 (instance->pdev->device != PCI_DEVICE_ID_LSI_PLASMA) &&
239 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
240 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
241 (reset_devices))
242 cmd->frame->hdr.cmd = MFI_CMD_INVALID;
243 list_add_tail(&cmd->list, &instance->cmd_pool);
244
245 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
246 }
247
248
249 /**
250 * The following functions are defined for xscale
251 * (deviceid : 1064R, PERC5) controllers
252 */
253
254 /**
255 * megasas_enable_intr_xscale - Enables interrupts
256 * @regs: MFI register set
257 */
258 static inline void
259 megasas_enable_intr_xscale(struct megasas_instance *instance)
260 {
261 struct megasas_register_set __iomem *regs;
262 regs = instance->reg_set;
263 writel(0, &(regs)->outbound_intr_mask);
264
265 /* Dummy readl to force pci flush */
266 readl(&regs->outbound_intr_mask);
267 }
268
269 /**
270 * megasas_disable_intr_xscale -Disables interrupt
271 * @regs: MFI register set
272 */
273 static inline void
274 megasas_disable_intr_xscale(struct megasas_instance *instance)
275 {
276 struct megasas_register_set __iomem *regs;
277 u32 mask = 0x1f;
278 regs = instance->reg_set;
279 writel(mask, &regs->outbound_intr_mask);
280 /* Dummy readl to force pci flush */
281 readl(&regs->outbound_intr_mask);
282 }
283
284 /**
285 * megasas_read_fw_status_reg_xscale - returns the current FW status value
286 * @regs: MFI register set
287 */
288 static u32
289 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
290 {
291 return readl(&(regs)->outbound_msg_0);
292 }
293 /**
294 * megasas_clear_interrupt_xscale - Check & clear interrupt
295 * @regs: MFI register set
296 */
297 static int
298 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
299 {
300 u32 status;
301 u32 mfiStatus = 0;
302 /*
303 * Check if it is our interrupt
304 */
305 status = readl(&regs->outbound_intr_status);
306
307 if (status & MFI_OB_INTR_STATUS_MASK)
308 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
309 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
310 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
311
312 /*
313 * Clear the interrupt by writing back the same value
314 */
315 if (mfiStatus)
316 writel(status, &regs->outbound_intr_status);
317
318 /* Dummy readl to force pci flush */
319 readl(&regs->outbound_intr_status);
320
321 return mfiStatus;
322 }
323
324 /**
325 * megasas_fire_cmd_xscale - Sends command to the FW
326 * @frame_phys_addr : Physical address of cmd
327 * @frame_count : Number of frames for the command
328 * @regs : MFI register set
329 */
330 static inline void
331 megasas_fire_cmd_xscale(struct megasas_instance *instance,
332 dma_addr_t frame_phys_addr,
333 u32 frame_count,
334 struct megasas_register_set __iomem *regs)
335 {
336 unsigned long flags;
337 spin_lock_irqsave(&instance->hba_lock, flags);
338 writel((frame_phys_addr >> 3)|(frame_count),
339 &(regs)->inbound_queue_port);
340 spin_unlock_irqrestore(&instance->hba_lock, flags);
341 }
342
343 /**
344 * megasas_adp_reset_xscale - For controller reset
345 * @regs: MFI register set
346 */
347 static int
348 megasas_adp_reset_xscale(struct megasas_instance *instance,
349 struct megasas_register_set __iomem *regs)
350 {
351 u32 i;
352 u32 pcidata;
353 writel(MFI_ADP_RESET, &regs->inbound_doorbell);
354
355 for (i = 0; i < 3; i++)
356 msleep(1000); /* sleep for 3 secs */
357 pcidata = 0;
358 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
359 printk(KERN_NOTICE "pcidata = %x\n", pcidata);
360 if (pcidata & 0x2) {
361 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata);
362 pcidata &= ~0x2;
363 pci_write_config_dword(instance->pdev,
364 MFI_1068_PCSR_OFFSET, pcidata);
365
366 for (i = 0; i < 2; i++)
367 msleep(1000); /* need to wait 2 secs again */
368
369 pcidata = 0;
370 pci_read_config_dword(instance->pdev,
371 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
372 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata);
373 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
374 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata);
375 pcidata = 0;
376 pci_write_config_dword(instance->pdev,
377 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
378 }
379 }
380 return 0;
381 }
382
383 /**
384 * megasas_check_reset_xscale - For controller reset check
385 * @regs: MFI register set
386 */
387 static int
388 megasas_check_reset_xscale(struct megasas_instance *instance,
389 struct megasas_register_set __iomem *regs)
390 {
391
392 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) &&
393 (le32_to_cpu(*instance->consumer) ==
394 MEGASAS_ADPRESET_INPROG_SIGN))
395 return 1;
396 return 0;
397 }
398
399 static struct megasas_instance_template megasas_instance_template_xscale = {
400
401 .fire_cmd = megasas_fire_cmd_xscale,
402 .enable_intr = megasas_enable_intr_xscale,
403 .disable_intr = megasas_disable_intr_xscale,
404 .clear_intr = megasas_clear_intr_xscale,
405 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
406 .adp_reset = megasas_adp_reset_xscale,
407 .check_reset = megasas_check_reset_xscale,
408 .service_isr = megasas_isr,
409 .tasklet = megasas_complete_cmd_dpc,
410 .init_adapter = megasas_init_adapter_mfi,
411 .build_and_issue_cmd = megasas_build_and_issue_cmd,
412 .issue_dcmd = megasas_issue_dcmd,
413 };
414
415 /**
416 * This is the end of set of functions & definitions specific
417 * to xscale (deviceid : 1064R, PERC5) controllers
418 */
419
420 /**
421 * The following functions are defined for ppc (deviceid : 0x60)
422 * controllers
423 */
424
425 /**
426 * megasas_enable_intr_ppc - Enables interrupts
427 * @regs: MFI register set
428 */
429 static inline void
430 megasas_enable_intr_ppc(struct megasas_instance *instance)
431 {
432 struct megasas_register_set __iomem *regs;
433 regs = instance->reg_set;
434 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
435
436 writel(~0x80000000, &(regs)->outbound_intr_mask);
437
438 /* Dummy readl to force pci flush */
439 readl(&regs->outbound_intr_mask);
440 }
441
442 /**
443 * megasas_disable_intr_ppc - Disable interrupt
444 * @regs: MFI register set
445 */
446 static inline void
447 megasas_disable_intr_ppc(struct megasas_instance *instance)
448 {
449 struct megasas_register_set __iomem *regs;
450 u32 mask = 0xFFFFFFFF;
451 regs = instance->reg_set;
452 writel(mask, &regs->outbound_intr_mask);
453 /* Dummy readl to force pci flush */
454 readl(&regs->outbound_intr_mask);
455 }
456
457 /**
458 * megasas_read_fw_status_reg_ppc - returns the current FW status value
459 * @regs: MFI register set
460 */
461 static u32
462 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
463 {
464 return readl(&(regs)->outbound_scratch_pad);
465 }
466
467 /**
468 * megasas_clear_interrupt_ppc - Check & clear interrupt
469 * @regs: MFI register set
470 */
471 static int
472 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
473 {
474 u32 status, mfiStatus = 0;
475
476 /*
477 * Check if it is our interrupt
478 */
479 status = readl(&regs->outbound_intr_status);
480
481 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT)
482 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
483
484 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT)
485 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
486
487 /*
488 * Clear the interrupt by writing back the same value
489 */
490 writel(status, &regs->outbound_doorbell_clear);
491
492 /* Dummy readl to force pci flush */
493 readl(&regs->outbound_doorbell_clear);
494
495 return mfiStatus;
496 }
497
498 /**
499 * megasas_fire_cmd_ppc - Sends command to the FW
500 * @frame_phys_addr : Physical address of cmd
501 * @frame_count : Number of frames for the command
502 * @regs : MFI register set
503 */
504 static inline void
505 megasas_fire_cmd_ppc(struct megasas_instance *instance,
506 dma_addr_t frame_phys_addr,
507 u32 frame_count,
508 struct megasas_register_set __iomem *regs)
509 {
510 unsigned long flags;
511 spin_lock_irqsave(&instance->hba_lock, flags);
512 writel((frame_phys_addr | (frame_count<<1))|1,
513 &(regs)->inbound_queue_port);
514 spin_unlock_irqrestore(&instance->hba_lock, flags);
515 }
516
517 /**
518 * megasas_check_reset_ppc - For controller reset check
519 * @regs: MFI register set
520 */
521 static int
522 megasas_check_reset_ppc(struct megasas_instance *instance,
523 struct megasas_register_set __iomem *regs)
524 {
525 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
526 return 1;
527
528 return 0;
529 }
530
531 static struct megasas_instance_template megasas_instance_template_ppc = {
532
533 .fire_cmd = megasas_fire_cmd_ppc,
534 .enable_intr = megasas_enable_intr_ppc,
535 .disable_intr = megasas_disable_intr_ppc,
536 .clear_intr = megasas_clear_intr_ppc,
537 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
538 .adp_reset = megasas_adp_reset_xscale,
539 .check_reset = megasas_check_reset_ppc,
540 .service_isr = megasas_isr,
541 .tasklet = megasas_complete_cmd_dpc,
542 .init_adapter = megasas_init_adapter_mfi,
543 .build_and_issue_cmd = megasas_build_and_issue_cmd,
544 .issue_dcmd = megasas_issue_dcmd,
545 };
546
547 /**
548 * megasas_enable_intr_skinny - Enables interrupts
549 * @regs: MFI register set
550 */
551 static inline void
552 megasas_enable_intr_skinny(struct megasas_instance *instance)
553 {
554 struct megasas_register_set __iomem *regs;
555 regs = instance->reg_set;
556 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
557
558 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
559
560 /* Dummy readl to force pci flush */
561 readl(&regs->outbound_intr_mask);
562 }
563
564 /**
565 * megasas_disable_intr_skinny - Disables interrupt
566 * @regs: MFI register set
567 */
568 static inline void
569 megasas_disable_intr_skinny(struct megasas_instance *instance)
570 {
571 struct megasas_register_set __iomem *regs;
572 u32 mask = 0xFFFFFFFF;
573 regs = instance->reg_set;
574 writel(mask, &regs->outbound_intr_mask);
575 /* Dummy readl to force pci flush */
576 readl(&regs->outbound_intr_mask);
577 }
578
579 /**
580 * megasas_read_fw_status_reg_skinny - returns the current FW status value
581 * @regs: MFI register set
582 */
583 static u32
584 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs)
585 {
586 return readl(&(regs)->outbound_scratch_pad);
587 }
588
589 /**
590 * megasas_clear_interrupt_skinny - Check & clear interrupt
591 * @regs: MFI register set
592 */
593 static int
594 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs)
595 {
596 u32 status;
597 u32 mfiStatus = 0;
598
599 /*
600 * Check if it is our interrupt
601 */
602 status = readl(&regs->outbound_intr_status);
603
604 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
605 return 0;
606 }
607
608 /*
609 * Check if it is our interrupt
610 */
611 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) ==
612 MFI_STATE_FAULT) {
613 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
614 } else
615 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
616
617 /*
618 * Clear the interrupt by writing back the same value
619 */
620 writel(status, &regs->outbound_intr_status);
621
622 /*
623 * dummy read to flush PCI
624 */
625 readl(&regs->outbound_intr_status);
626
627 return mfiStatus;
628 }
629
630 /**
631 * megasas_fire_cmd_skinny - Sends command to the FW
632 * @frame_phys_addr : Physical address of cmd
633 * @frame_count : Number of frames for the command
634 * @regs : MFI register set
635 */
636 static inline void
637 megasas_fire_cmd_skinny(struct megasas_instance *instance,
638 dma_addr_t frame_phys_addr,
639 u32 frame_count,
640 struct megasas_register_set __iomem *regs)
641 {
642 unsigned long flags;
643 spin_lock_irqsave(&instance->hba_lock, flags);
644 writel(upper_32_bits(frame_phys_addr),
645 &(regs)->inbound_high_queue_port);
646 writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1,
647 &(regs)->inbound_low_queue_port);
648 spin_unlock_irqrestore(&instance->hba_lock, flags);
649 }
650
651 /**
652 * megasas_check_reset_skinny - For controller reset check
653 * @regs: MFI register set
654 */
655 static int
656 megasas_check_reset_skinny(struct megasas_instance *instance,
657 struct megasas_register_set __iomem *regs)
658 {
659 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
660 return 1;
661
662 return 0;
663 }
664
665 static struct megasas_instance_template megasas_instance_template_skinny = {
666
667 .fire_cmd = megasas_fire_cmd_skinny,
668 .enable_intr = megasas_enable_intr_skinny,
669 .disable_intr = megasas_disable_intr_skinny,
670 .clear_intr = megasas_clear_intr_skinny,
671 .read_fw_status_reg = megasas_read_fw_status_reg_skinny,
672 .adp_reset = megasas_adp_reset_gen2,
673 .check_reset = megasas_check_reset_skinny,
674 .service_isr = megasas_isr,
675 .tasklet = megasas_complete_cmd_dpc,
676 .init_adapter = megasas_init_adapter_mfi,
677 .build_and_issue_cmd = megasas_build_and_issue_cmd,
678 .issue_dcmd = megasas_issue_dcmd,
679 };
680
681
682 /**
683 * The following functions are defined for gen2 (deviceid : 0x78 0x79)
684 * controllers
685 */
686
687 /**
688 * megasas_enable_intr_gen2 - Enables interrupts
689 * @regs: MFI register set
690 */
691 static inline void
692 megasas_enable_intr_gen2(struct megasas_instance *instance)
693 {
694 struct megasas_register_set __iomem *regs;
695 regs = instance->reg_set;
696 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
697
698 /* write ~0x00000005 (4 & 1) to the intr mask*/
699 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
700
701 /* Dummy readl to force pci flush */
702 readl(&regs->outbound_intr_mask);
703 }
704
705 /**
706 * megasas_disable_intr_gen2 - Disables interrupt
707 * @regs: MFI register set
708 */
709 static inline void
710 megasas_disable_intr_gen2(struct megasas_instance *instance)
711 {
712 struct megasas_register_set __iomem *regs;
713 u32 mask = 0xFFFFFFFF;
714 regs = instance->reg_set;
715 writel(mask, &regs->outbound_intr_mask);
716 /* Dummy readl to force pci flush */
717 readl(&regs->outbound_intr_mask);
718 }
719
720 /**
721 * megasas_read_fw_status_reg_gen2 - returns the current FW status value
722 * @regs: MFI register set
723 */
724 static u32
725 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
726 {
727 return readl(&(regs)->outbound_scratch_pad);
728 }
729
730 /**
731 * megasas_clear_interrupt_gen2 - Check & clear interrupt
732 * @regs: MFI register set
733 */
734 static int
735 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
736 {
737 u32 status;
738 u32 mfiStatus = 0;
739 /*
740 * Check if it is our interrupt
741 */
742 status = readl(&regs->outbound_intr_status);
743
744 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) {
745 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
746 }
747 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
748 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
749 }
750
751 /*
752 * Clear the interrupt by writing back the same value
753 */
754 if (mfiStatus)
755 writel(status, &regs->outbound_doorbell_clear);
756
757 /* Dummy readl to force pci flush */
758 readl(&regs->outbound_intr_status);
759
760 return mfiStatus;
761 }
762 /**
763 * megasas_fire_cmd_gen2 - Sends command to the FW
764 * @frame_phys_addr : Physical address of cmd
765 * @frame_count : Number of frames for the command
766 * @regs : MFI register set
767 */
768 static inline void
769 megasas_fire_cmd_gen2(struct megasas_instance *instance,
770 dma_addr_t frame_phys_addr,
771 u32 frame_count,
772 struct megasas_register_set __iomem *regs)
773 {
774 unsigned long flags;
775 spin_lock_irqsave(&instance->hba_lock, flags);
776 writel((frame_phys_addr | (frame_count<<1))|1,
777 &(regs)->inbound_queue_port);
778 spin_unlock_irqrestore(&instance->hba_lock, flags);
779 }
780
781 /**
782 * megasas_adp_reset_gen2 - For controller reset
783 * @regs: MFI register set
784 */
785 static int
786 megasas_adp_reset_gen2(struct megasas_instance *instance,
787 struct megasas_register_set __iomem *reg_set)
788 {
789 u32 retry = 0 ;
790 u32 HostDiag;
791 u32 *seq_offset = &reg_set->seq_offset;
792 u32 *hostdiag_offset = &reg_set->host_diag;
793
794 if (instance->instancet == &megasas_instance_template_skinny) {
795 seq_offset = &reg_set->fusion_seq_offset;
796 hostdiag_offset = &reg_set->fusion_host_diag;
797 }
798
799 writel(0, seq_offset);
800 writel(4, seq_offset);
801 writel(0xb, seq_offset);
802 writel(2, seq_offset);
803 writel(7, seq_offset);
804 writel(0xd, seq_offset);
805
806 msleep(1000);
807
808 HostDiag = (u32)readl(hostdiag_offset);
809
810 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) {
811 msleep(100);
812 HostDiag = (u32)readl(hostdiag_offset);
813 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n",
814 retry, HostDiag);
815
816 if (retry++ >= 100)
817 return 1;
818
819 }
820
821 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
822
823 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
824
825 ssleep(10);
826
827 HostDiag = (u32)readl(hostdiag_offset);
828 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) {
829 msleep(100);
830 HostDiag = (u32)readl(hostdiag_offset);
831 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n",
832 retry, HostDiag);
833
834 if (retry++ >= 1000)
835 return 1;
836
837 }
838 return 0;
839 }
840
841 /**
842 * megasas_check_reset_gen2 - For controller reset check
843 * @regs: MFI register set
844 */
845 static int
846 megasas_check_reset_gen2(struct megasas_instance *instance,
847 struct megasas_register_set __iomem *regs)
848 {
849 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
850 return 1;
851 }
852
853 return 0;
854 }
855
856 static struct megasas_instance_template megasas_instance_template_gen2 = {
857
858 .fire_cmd = megasas_fire_cmd_gen2,
859 .enable_intr = megasas_enable_intr_gen2,
860 .disable_intr = megasas_disable_intr_gen2,
861 .clear_intr = megasas_clear_intr_gen2,
862 .read_fw_status_reg = megasas_read_fw_status_reg_gen2,
863 .adp_reset = megasas_adp_reset_gen2,
864 .check_reset = megasas_check_reset_gen2,
865 .service_isr = megasas_isr,
866 .tasklet = megasas_complete_cmd_dpc,
867 .init_adapter = megasas_init_adapter_mfi,
868 .build_and_issue_cmd = megasas_build_and_issue_cmd,
869 .issue_dcmd = megasas_issue_dcmd,
870 };
871
872 /**
873 * This is the end of set of functions & definitions
874 * specific to gen2 (deviceid : 0x78, 0x79) controllers
875 */
876
877 /*
878 * Template added for TB (Fusion)
879 */
880 extern struct megasas_instance_template megasas_instance_template_fusion;
881
882 /**
883 * megasas_issue_polled - Issues a polling command
884 * @instance: Adapter soft state
885 * @cmd: Command packet to be issued
886 *
887 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
888 */
889 int
890 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
891 {
892 int seconds;
893
894 struct megasas_header *frame_hdr = &cmd->frame->hdr;
895
896 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE;
897 frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE);
898
899 /*
900 * Issue the frame using inbound queue port
901 */
902 instance->instancet->issue_dcmd(instance, cmd);
903
904 /*
905 * Wait for cmd_status to change
906 */
907 if (instance->requestorId)
908 seconds = MEGASAS_ROUTINE_WAIT_TIME_VF;
909 else
910 seconds = MFI_POLL_TIMEOUT_SECS;
911 return wait_and_poll(instance, cmd, seconds);
912 }
913
914 /**
915 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
916 * @instance: Adapter soft state
917 * @cmd: Command to be issued
918 * @timeout: Timeout in seconds
919 *
920 * This function waits on an event for the command to be returned from ISR.
921 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
922 * Used to issue ioctl commands.
923 */
924 static int
925 megasas_issue_blocked_cmd(struct megasas_instance *instance,
926 struct megasas_cmd *cmd, int timeout)
927 {
928 int ret = 0;
929 cmd->cmd_status = ENODATA;
930
931 instance->instancet->issue_dcmd(instance, cmd);
932 if (timeout) {
933 ret = wait_event_timeout(instance->int_cmd_wait_q,
934 cmd->cmd_status != ENODATA, timeout * HZ);
935 if (!ret)
936 return 1;
937 } else
938 wait_event(instance->int_cmd_wait_q,
939 cmd->cmd_status != ENODATA);
940
941 return 0;
942 }
943
944 /**
945 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
946 * @instance: Adapter soft state
947 * @cmd_to_abort: Previously issued cmd to be aborted
948 * @timeout: Timeout in seconds
949 *
950 * MFI firmware can abort previously issued AEN comamnd (automatic event
951 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
952 * cmd and waits for return status.
953 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
954 */
955 static int
956 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
957 struct megasas_cmd *cmd_to_abort, int timeout)
958 {
959 struct megasas_cmd *cmd;
960 struct megasas_abort_frame *abort_fr;
961 int ret = 0;
962
963 cmd = megasas_get_cmd(instance);
964
965 if (!cmd)
966 return -1;
967
968 abort_fr = &cmd->frame->abort;
969
970 /*
971 * Prepare and issue the abort frame
972 */
973 abort_fr->cmd = MFI_CMD_ABORT;
974 abort_fr->cmd_status = 0xFF;
975 abort_fr->flags = cpu_to_le16(0);
976 abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index);
977 abort_fr->abort_mfi_phys_addr_lo =
978 cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr));
979 abort_fr->abort_mfi_phys_addr_hi =
980 cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr));
981
982 cmd->sync_cmd = 1;
983 cmd->cmd_status = 0xFF;
984
985 instance->instancet->issue_dcmd(instance, cmd);
986
987 if (timeout) {
988 ret = wait_event_timeout(instance->abort_cmd_wait_q,
989 cmd->cmd_status != ENODATA, timeout * HZ);
990 if (!ret) {
991 dev_err(&instance->pdev->dev, "Command timedout"
992 "from %s\n", __func__);
993 return 1;
994 }
995 } else
996 wait_event(instance->abort_cmd_wait_q,
997 cmd->cmd_status != ENODATA);
998
999 cmd->sync_cmd = 0;
1000
1001 megasas_return_cmd(instance, cmd);
1002 return 0;
1003 }
1004
1005 /**
1006 * megasas_make_sgl32 - Prepares 32-bit SGL
1007 * @instance: Adapter soft state
1008 * @scp: SCSI command from the mid-layer
1009 * @mfi_sgl: SGL to be filled in
1010 *
1011 * If successful, this function returns the number of SG elements. Otherwise,
1012 * it returnes -1.
1013 */
1014 static int
1015 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
1016 union megasas_sgl *mfi_sgl)
1017 {
1018 int i;
1019 int sge_count;
1020 struct scatterlist *os_sgl;
1021
1022 sge_count = scsi_dma_map(scp);
1023 BUG_ON(sge_count < 0);
1024
1025 if (sge_count) {
1026 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1027 mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl));
1028 mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl));
1029 }
1030 }
1031 return sge_count;
1032 }
1033
1034 /**
1035 * megasas_make_sgl64 - Prepares 64-bit SGL
1036 * @instance: Adapter soft state
1037 * @scp: SCSI command from the mid-layer
1038 * @mfi_sgl: SGL to be filled in
1039 *
1040 * If successful, this function returns the number of SG elements. Otherwise,
1041 * it returnes -1.
1042 */
1043 static int
1044 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
1045 union megasas_sgl *mfi_sgl)
1046 {
1047 int i;
1048 int sge_count;
1049 struct scatterlist *os_sgl;
1050
1051 sge_count = scsi_dma_map(scp);
1052 BUG_ON(sge_count < 0);
1053
1054 if (sge_count) {
1055 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1056 mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl));
1057 mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl));
1058 }
1059 }
1060 return sge_count;
1061 }
1062
1063 /**
1064 * megasas_make_sgl_skinny - Prepares IEEE SGL
1065 * @instance: Adapter soft state
1066 * @scp: SCSI command from the mid-layer
1067 * @mfi_sgl: SGL to be filled in
1068 *
1069 * If successful, this function returns the number of SG elements. Otherwise,
1070 * it returnes -1.
1071 */
1072 static int
1073 megasas_make_sgl_skinny(struct megasas_instance *instance,
1074 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
1075 {
1076 int i;
1077 int sge_count;
1078 struct scatterlist *os_sgl;
1079
1080 sge_count = scsi_dma_map(scp);
1081
1082 if (sge_count) {
1083 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1084 mfi_sgl->sge_skinny[i].length =
1085 cpu_to_le32(sg_dma_len(os_sgl));
1086 mfi_sgl->sge_skinny[i].phys_addr =
1087 cpu_to_le64(sg_dma_address(os_sgl));
1088 mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0);
1089 }
1090 }
1091 return sge_count;
1092 }
1093
1094 /**
1095 * megasas_get_frame_count - Computes the number of frames
1096 * @frame_type : type of frame- io or pthru frame
1097 * @sge_count : number of sg elements
1098 *
1099 * Returns the number of frames required for numnber of sge's (sge_count)
1100 */
1101
1102 static u32 megasas_get_frame_count(struct megasas_instance *instance,
1103 u8 sge_count, u8 frame_type)
1104 {
1105 int num_cnt;
1106 int sge_bytes;
1107 u32 sge_sz;
1108 u32 frame_count=0;
1109
1110 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1111 sizeof(struct megasas_sge32);
1112
1113 if (instance->flag_ieee) {
1114 sge_sz = sizeof(struct megasas_sge_skinny);
1115 }
1116
1117 /*
1118 * Main frame can contain 2 SGEs for 64-bit SGLs and
1119 * 3 SGEs for 32-bit SGLs for ldio &
1120 * 1 SGEs for 64-bit SGLs and
1121 * 2 SGEs for 32-bit SGLs for pthru frame
1122 */
1123 if (unlikely(frame_type == PTHRU_FRAME)) {
1124 if (instance->flag_ieee == 1) {
1125 num_cnt = sge_count - 1;
1126 } else if (IS_DMA64)
1127 num_cnt = sge_count - 1;
1128 else
1129 num_cnt = sge_count - 2;
1130 } else {
1131 if (instance->flag_ieee == 1) {
1132 num_cnt = sge_count - 1;
1133 } else if (IS_DMA64)
1134 num_cnt = sge_count - 2;
1135 else
1136 num_cnt = sge_count - 3;
1137 }
1138
1139 if(num_cnt>0){
1140 sge_bytes = sge_sz * num_cnt;
1141
1142 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
1143 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
1144 }
1145 /* Main frame */
1146 frame_count +=1;
1147
1148 if (frame_count > 7)
1149 frame_count = 8;
1150 return frame_count;
1151 }
1152
1153 /**
1154 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
1155 * @instance: Adapter soft state
1156 * @scp: SCSI command
1157 * @cmd: Command to be prepared in
1158 *
1159 * This function prepares CDB commands. These are typcially pass-through
1160 * commands to the devices.
1161 */
1162 static int
1163 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
1164 struct megasas_cmd *cmd)
1165 {
1166 u32 is_logical;
1167 u32 device_id;
1168 u16 flags = 0;
1169 struct megasas_pthru_frame *pthru;
1170
1171 is_logical = MEGASAS_IS_LOGICAL(scp);
1172 device_id = MEGASAS_DEV_INDEX(instance, scp);
1173 pthru = (struct megasas_pthru_frame *)cmd->frame;
1174
1175 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1176 flags = MFI_FRAME_DIR_WRITE;
1177 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1178 flags = MFI_FRAME_DIR_READ;
1179 else if (scp->sc_data_direction == PCI_DMA_NONE)
1180 flags = MFI_FRAME_DIR_NONE;
1181
1182 if (instance->flag_ieee == 1) {
1183 flags |= MFI_FRAME_IEEE;
1184 }
1185
1186 /*
1187 * Prepare the DCDB frame
1188 */
1189 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
1190 pthru->cmd_status = 0x0;
1191 pthru->scsi_status = 0x0;
1192 pthru->target_id = device_id;
1193 pthru->lun = scp->device->lun;
1194 pthru->cdb_len = scp->cmd_len;
1195 pthru->timeout = 0;
1196 pthru->pad_0 = 0;
1197 pthru->flags = cpu_to_le16(flags);
1198 pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp));
1199
1200 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
1201
1202 /*
1203 * If the command is for the tape device, set the
1204 * pthru timeout to the os layer timeout value.
1205 */
1206 if (scp->device->type == TYPE_TAPE) {
1207 if ((scp->request->timeout / HZ) > 0xFFFF)
1208 pthru->timeout = 0xFFFF;
1209 else
1210 pthru->timeout = cpu_to_le16(scp->request->timeout / HZ);
1211 }
1212
1213 /*
1214 * Construct SGL
1215 */
1216 if (instance->flag_ieee == 1) {
1217 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1218 pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
1219 &pthru->sgl);
1220 } else if (IS_DMA64) {
1221 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1222 pthru->sge_count = megasas_make_sgl64(instance, scp,
1223 &pthru->sgl);
1224 } else
1225 pthru->sge_count = megasas_make_sgl32(instance, scp,
1226 &pthru->sgl);
1227
1228 if (pthru->sge_count > instance->max_num_sge) {
1229 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n",
1230 pthru->sge_count);
1231 return 0;
1232 }
1233
1234 /*
1235 * Sense info specific
1236 */
1237 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
1238 pthru->sense_buf_phys_addr_hi =
1239 cpu_to_le32(upper_32_bits(cmd->sense_phys_addr));
1240 pthru->sense_buf_phys_addr_lo =
1241 cpu_to_le32(lower_32_bits(cmd->sense_phys_addr));
1242
1243 /*
1244 * Compute the total number of frames this command consumes. FW uses
1245 * this number to pull sufficient number of frames from host memory.
1246 */
1247 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
1248 PTHRU_FRAME);
1249
1250 return cmd->frame_count;
1251 }
1252
1253 /**
1254 * megasas_build_ldio - Prepares IOs to logical devices
1255 * @instance: Adapter soft state
1256 * @scp: SCSI command
1257 * @cmd: Command to be prepared
1258 *
1259 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
1260 */
1261 static int
1262 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
1263 struct megasas_cmd *cmd)
1264 {
1265 u32 device_id;
1266 u8 sc = scp->cmnd[0];
1267 u16 flags = 0;
1268 struct megasas_io_frame *ldio;
1269
1270 device_id = MEGASAS_DEV_INDEX(instance, scp);
1271 ldio = (struct megasas_io_frame *)cmd->frame;
1272
1273 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1274 flags = MFI_FRAME_DIR_WRITE;
1275 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1276 flags = MFI_FRAME_DIR_READ;
1277
1278 if (instance->flag_ieee == 1) {
1279 flags |= MFI_FRAME_IEEE;
1280 }
1281
1282 /*
1283 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
1284 */
1285 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
1286 ldio->cmd_status = 0x0;
1287 ldio->scsi_status = 0x0;
1288 ldio->target_id = device_id;
1289 ldio->timeout = 0;
1290 ldio->reserved_0 = 0;
1291 ldio->pad_0 = 0;
1292 ldio->flags = cpu_to_le16(flags);
1293 ldio->start_lba_hi = 0;
1294 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
1295
1296 /*
1297 * 6-byte READ(0x08) or WRITE(0x0A) cdb
1298 */
1299 if (scp->cmd_len == 6) {
1300 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]);
1301 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) |
1302 ((u32) scp->cmnd[2] << 8) |
1303 (u32) scp->cmnd[3]);
1304
1305 ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF);
1306 }
1307
1308 /*
1309 * 10-byte READ(0x28) or WRITE(0x2A) cdb
1310 */
1311 else if (scp->cmd_len == 10) {
1312 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] |
1313 ((u32) scp->cmnd[7] << 8));
1314 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1315 ((u32) scp->cmnd[3] << 16) |
1316 ((u32) scp->cmnd[4] << 8) |
1317 (u32) scp->cmnd[5]);
1318 }
1319
1320 /*
1321 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
1322 */
1323 else if (scp->cmd_len == 12) {
1324 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
1325 ((u32) scp->cmnd[7] << 16) |
1326 ((u32) scp->cmnd[8] << 8) |
1327 (u32) scp->cmnd[9]);
1328
1329 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1330 ((u32) scp->cmnd[3] << 16) |
1331 ((u32) scp->cmnd[4] << 8) |
1332 (u32) scp->cmnd[5]);
1333 }
1334
1335 /*
1336 * 16-byte READ(0x88) or WRITE(0x8A) cdb
1337 */
1338 else if (scp->cmd_len == 16) {
1339 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) |
1340 ((u32) scp->cmnd[11] << 16) |
1341 ((u32) scp->cmnd[12] << 8) |
1342 (u32) scp->cmnd[13]);
1343
1344 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
1345 ((u32) scp->cmnd[7] << 16) |
1346 ((u32) scp->cmnd[8] << 8) |
1347 (u32) scp->cmnd[9]);
1348
1349 ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1350 ((u32) scp->cmnd[3] << 16) |
1351 ((u32) scp->cmnd[4] << 8) |
1352 (u32) scp->cmnd[5]);
1353
1354 }
1355
1356 /*
1357 * Construct SGL
1358 */
1359 if (instance->flag_ieee) {
1360 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1361 ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
1362 &ldio->sgl);
1363 } else if (IS_DMA64) {
1364 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1365 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
1366 } else
1367 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
1368
1369 if (ldio->sge_count > instance->max_num_sge) {
1370 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n",
1371 ldio->sge_count);
1372 return 0;
1373 }
1374
1375 /*
1376 * Sense info specific
1377 */
1378 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
1379 ldio->sense_buf_phys_addr_hi = 0;
1380 ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr);
1381
1382 /*
1383 * Compute the total number of frames this command consumes. FW uses
1384 * this number to pull sufficient number of frames from host memory.
1385 */
1386 cmd->frame_count = megasas_get_frame_count(instance,
1387 ldio->sge_count, IO_FRAME);
1388
1389 return cmd->frame_count;
1390 }
1391
1392 /**
1393 * megasas_is_ldio - Checks if the cmd is for logical drive
1394 * @scmd: SCSI command
1395 *
1396 * Called by megasas_queue_command to find out if the command to be queued
1397 * is a logical drive command
1398 */
1399 inline int megasas_is_ldio(struct scsi_cmnd *cmd)
1400 {
1401 if (!MEGASAS_IS_LOGICAL(cmd))
1402 return 0;
1403 switch (cmd->cmnd[0]) {
1404 case READ_10:
1405 case WRITE_10:
1406 case READ_12:
1407 case WRITE_12:
1408 case READ_6:
1409 case WRITE_6:
1410 case READ_16:
1411 case WRITE_16:
1412 return 1;
1413 default:
1414 return 0;
1415 }
1416 }
1417
1418 /**
1419 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
1420 * in FW
1421 * @instance: Adapter soft state
1422 */
1423 static inline void
1424 megasas_dump_pending_frames(struct megasas_instance *instance)
1425 {
1426 struct megasas_cmd *cmd;
1427 int i,n;
1428 union megasas_sgl *mfi_sgl;
1429 struct megasas_io_frame *ldio;
1430 struct megasas_pthru_frame *pthru;
1431 u32 sgcount;
1432 u32 max_cmd = instance->max_fw_cmds;
1433
1434 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
1435 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
1436 if (IS_DMA64)
1437 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
1438 else
1439 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
1440
1441 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
1442 for (i = 0; i < max_cmd; i++) {
1443 cmd = instance->cmd_list[i];
1444 if(!cmd->scmd)
1445 continue;
1446 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
1447 if (megasas_is_ldio(cmd->scmd)){
1448 ldio = (struct megasas_io_frame *)cmd->frame;
1449 mfi_sgl = &ldio->sgl;
1450 sgcount = ldio->sge_count;
1451 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x,"
1452 " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
1453 instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id,
1454 le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi),
1455 le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount);
1456 }
1457 else {
1458 pthru = (struct megasas_pthru_frame *) cmd->frame;
1459 mfi_sgl = &pthru->sgl;
1460 sgcount = pthru->sge_count;
1461 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, "
1462 "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
1463 instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id,
1464 pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len),
1465 le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount);
1466 }
1467 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
1468 for (n = 0; n < sgcount; n++){
1469 if (IS_DMA64)
1470 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ",
1471 le32_to_cpu(mfi_sgl->sge64[n].length),
1472 le64_to_cpu(mfi_sgl->sge64[n].phys_addr));
1473 else
1474 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",
1475 le32_to_cpu(mfi_sgl->sge32[n].length),
1476 le32_to_cpu(mfi_sgl->sge32[n].phys_addr));
1477 }
1478 }
1479 printk(KERN_ERR "\n");
1480 } /*for max_cmd*/
1481 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
1482 for (i = 0; i < max_cmd; i++) {
1483
1484 cmd = instance->cmd_list[i];
1485
1486 if(cmd->sync_cmd == 1){
1487 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
1488 }
1489 }
1490 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
1491 }
1492
1493 u32
1494 megasas_build_and_issue_cmd(struct megasas_instance *instance,
1495 struct scsi_cmnd *scmd)
1496 {
1497 struct megasas_cmd *cmd;
1498 u32 frame_count;
1499
1500 cmd = megasas_get_cmd(instance);
1501 if (!cmd)
1502 return SCSI_MLQUEUE_HOST_BUSY;
1503
1504 /*
1505 * Logical drive command
1506 */
1507 if (megasas_is_ldio(scmd))
1508 frame_count = megasas_build_ldio(instance, scmd, cmd);
1509 else
1510 frame_count = megasas_build_dcdb(instance, scmd, cmd);
1511
1512 if (!frame_count)
1513 goto out_return_cmd;
1514
1515 cmd->scmd = scmd;
1516 scmd->SCp.ptr = (char *)cmd;
1517
1518 /*
1519 * Issue the command to the FW
1520 */
1521 atomic_inc(&instance->fw_outstanding);
1522
1523 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
1524 cmd->frame_count-1, instance->reg_set);
1525
1526 return 0;
1527 out_return_cmd:
1528 megasas_return_cmd(instance, cmd);
1529 return 1;
1530 }
1531
1532
1533 /**
1534 * megasas_queue_command - Queue entry point
1535 * @scmd: SCSI command to be queued
1536 * @done: Callback entry point
1537 */
1538 static int
1539 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
1540 {
1541 struct megasas_instance *instance;
1542 unsigned long flags;
1543
1544 instance = (struct megasas_instance *)
1545 scmd->device->host->hostdata;
1546
1547 if (instance->issuepend_done == 0)
1548 return SCSI_MLQUEUE_HOST_BUSY;
1549
1550 spin_lock_irqsave(&instance->hba_lock, flags);
1551
1552 /* Check for an mpio path and adjust behavior */
1553 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
1554 if (megasas_check_mpio_paths(instance, scmd) ==
1555 (DID_RESET << 16)) {
1556 spin_unlock_irqrestore(&instance->hba_lock, flags);
1557 return SCSI_MLQUEUE_HOST_BUSY;
1558 } else {
1559 spin_unlock_irqrestore(&instance->hba_lock, flags);
1560 scmd->result = DID_NO_CONNECT << 16;
1561 done(scmd);
1562 return 0;
1563 }
1564 }
1565
1566 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1567 spin_unlock_irqrestore(&instance->hba_lock, flags);
1568 scmd->result = DID_NO_CONNECT << 16;
1569 done(scmd);
1570 return 0;
1571 }
1572
1573 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
1574 spin_unlock_irqrestore(&instance->hba_lock, flags);
1575 return SCSI_MLQUEUE_HOST_BUSY;
1576 }
1577
1578 spin_unlock_irqrestore(&instance->hba_lock, flags);
1579
1580 scmd->scsi_done = done;
1581 scmd->result = 0;
1582
1583 if (MEGASAS_IS_LOGICAL(scmd) &&
1584 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
1585 scmd->result = DID_BAD_TARGET << 16;
1586 goto out_done;
1587 }
1588
1589 switch (scmd->cmnd[0]) {
1590 case SYNCHRONIZE_CACHE:
1591 /*
1592 * FW takes care of flush cache on its own
1593 * No need to send it down
1594 */
1595 scmd->result = DID_OK << 16;
1596 goto out_done;
1597 default:
1598 break;
1599 }
1600
1601 if (instance->instancet->build_and_issue_cmd(instance, scmd)) {
1602 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n");
1603 return SCSI_MLQUEUE_HOST_BUSY;
1604 }
1605
1606 return 0;
1607
1608 out_done:
1609 done(scmd);
1610 return 0;
1611 }
1612
1613 static DEF_SCSI_QCMD(megasas_queue_command)
1614
1615 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
1616 {
1617 int i;
1618
1619 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
1620
1621 if ((megasas_mgmt_info.instance[i]) &&
1622 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
1623 return megasas_mgmt_info.instance[i];
1624 }
1625
1626 return NULL;
1627 }
1628
1629 static int megasas_slave_configure(struct scsi_device *sdev)
1630 {
1631 u16 pd_index = 0;
1632 struct megasas_instance *instance ;
1633
1634 instance = megasas_lookup_instance(sdev->host->host_no);
1635
1636 /*
1637 * Don't export physical disk devices to the disk driver.
1638 *
1639 * FIXME: Currently we don't export them to the midlayer at all.
1640 * That will be fixed once LSI engineers have audited the
1641 * firmware for possible issues.
1642 */
1643 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS &&
1644 sdev->type == TYPE_DISK) {
1645 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1646 sdev->id;
1647 if (instance->pd_list[pd_index].driveState ==
1648 MR_PD_STATE_SYSTEM) {
1649 blk_queue_rq_timeout(sdev->request_queue,
1650 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1651 return 0;
1652 }
1653 return -ENXIO;
1654 }
1655
1656 /*
1657 * The RAID firmware may require extended timeouts.
1658 */
1659 blk_queue_rq_timeout(sdev->request_queue,
1660 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1661 return 0;
1662 }
1663
1664 static int megasas_slave_alloc(struct scsi_device *sdev)
1665 {
1666 u16 pd_index = 0;
1667 struct megasas_instance *instance ;
1668 instance = megasas_lookup_instance(sdev->host->host_no);
1669 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) &&
1670 (sdev->type == TYPE_DISK)) {
1671 /*
1672 * Open the OS scan to the SYSTEM PD
1673 */
1674 pd_index =
1675 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1676 sdev->id;
1677 if ((instance->pd_list[pd_index].driveState ==
1678 MR_PD_STATE_SYSTEM) &&
1679 (instance->pd_list[pd_index].driveType ==
1680 TYPE_DISK)) {
1681 return 0;
1682 }
1683 return -ENXIO;
1684 }
1685 return 0;
1686 }
1687
1688 void megaraid_sas_kill_hba(struct megasas_instance *instance)
1689 {
1690 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1691 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
1692 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1693 (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) ||
1694 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1695 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
1696 writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
1697 /* Flush */
1698 readl(&instance->reg_set->doorbell);
1699 if (instance->mpio && instance->requestorId)
1700 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
1701 } else {
1702 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
1703 }
1704 }
1705
1706 /**
1707 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be
1708 * restored to max value
1709 * @instance: Adapter soft state
1710 *
1711 */
1712 void
1713 megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
1714 {
1715 unsigned long flags;
1716 if (instance->flag & MEGASAS_FW_BUSY
1717 && time_after(jiffies, instance->last_time + 5 * HZ)
1718 && atomic_read(&instance->fw_outstanding) <
1719 instance->throttlequeuedepth + 1) {
1720
1721 spin_lock_irqsave(instance->host->host_lock, flags);
1722 instance->flag &= ~MEGASAS_FW_BUSY;
1723 if (instance->is_imr) {
1724 instance->host->can_queue =
1725 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
1726 } else
1727 instance->host->can_queue =
1728 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1729
1730 spin_unlock_irqrestore(instance->host->host_lock, flags);
1731 }
1732 }
1733
1734 /**
1735 * megasas_complete_cmd_dpc - Returns FW's controller structure
1736 * @instance_addr: Address of adapter soft state
1737 *
1738 * Tasklet to complete cmds
1739 */
1740 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1741 {
1742 u32 producer;
1743 u32 consumer;
1744 u32 context;
1745 struct megasas_cmd *cmd;
1746 struct megasas_instance *instance =
1747 (struct megasas_instance *)instance_addr;
1748 unsigned long flags;
1749
1750 /* If we have already declared adapter dead, donot complete cmds */
1751 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR )
1752 return;
1753
1754 spin_lock_irqsave(&instance->completion_lock, flags);
1755
1756 producer = le32_to_cpu(*instance->producer);
1757 consumer = le32_to_cpu(*instance->consumer);
1758
1759 while (consumer != producer) {
1760 context = le32_to_cpu(instance->reply_queue[consumer]);
1761 if (context >= instance->max_fw_cmds) {
1762 printk(KERN_ERR "Unexpected context value %x\n",
1763 context);
1764 BUG();
1765 }
1766
1767 cmd = instance->cmd_list[context];
1768
1769 megasas_complete_cmd(instance, cmd, DID_OK);
1770
1771 consumer++;
1772 if (consumer == (instance->max_fw_cmds + 1)) {
1773 consumer = 0;
1774 }
1775 }
1776
1777 *instance->consumer = cpu_to_le32(producer);
1778
1779 spin_unlock_irqrestore(&instance->completion_lock, flags);
1780
1781 /*
1782 * Check if we can restore can_queue
1783 */
1784 megasas_check_and_restore_queue_depth(instance);
1785 }
1786
1787 /**
1788 * megasas_start_timer - Initializes a timer object
1789 * @instance: Adapter soft state
1790 * @timer: timer object to be initialized
1791 * @fn: timer function
1792 * @interval: time interval between timer function call
1793 *
1794 */
1795 void megasas_start_timer(struct megasas_instance *instance,
1796 struct timer_list *timer,
1797 void *fn, unsigned long interval)
1798 {
1799 init_timer(timer);
1800 timer->expires = jiffies + interval;
1801 timer->data = (unsigned long)instance;
1802 timer->function = fn;
1803 add_timer(timer);
1804 }
1805
1806 static void
1807 megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
1808
1809 static void
1810 process_fw_state_change_wq(struct work_struct *work);
1811
1812 void megasas_do_ocr(struct megasas_instance *instance)
1813 {
1814 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
1815 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
1816 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
1817 *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
1818 }
1819 instance->instancet->disable_intr(instance);
1820 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
1821 instance->issuepend_done = 0;
1822
1823 atomic_set(&instance->fw_outstanding, 0);
1824 megasas_internal_reset_defer_cmds(instance);
1825 process_fw_state_change_wq(&instance->work_init);
1826 }
1827
1828 /* This function will get the current SR-IOV LD/VF affiliation */
1829 static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance,
1830 int initial)
1831 {
1832 struct megasas_cmd *cmd;
1833 struct megasas_dcmd_frame *dcmd;
1834 struct MR_LD_VF_AFFILIATION *new_affiliation = NULL;
1835 struct MR_LD_VF_AFFILIATION_111 *new_affiliation_111 = NULL;
1836 struct MR_LD_VF_MAP *newmap = NULL, *savedmap = NULL;
1837 dma_addr_t new_affiliation_h;
1838 dma_addr_t new_affiliation_111_h;
1839 int ld, retval = 0;
1840 u8 thisVf;
1841
1842 cmd = megasas_get_cmd(instance);
1843
1844 if (!cmd) {
1845 printk(KERN_DEBUG "megasas: megasas_get_ld_vf_"
1846 "affiliation: Failed to get cmd for scsi%d.\n",
1847 instance->host->host_no);
1848 return -ENOMEM;
1849 }
1850
1851 dcmd = &cmd->frame->dcmd;
1852
1853 if (!instance->vf_affiliation && !instance->vf_affiliation_111) {
1854 printk(KERN_WARNING "megasas: SR-IOV: Couldn't get LD/VF "
1855 "affiliation for scsi%d.\n", instance->host->host_no);
1856 megasas_return_cmd(instance, cmd);
1857 return -ENOMEM;
1858 }
1859
1860 if (initial)
1861 if (instance->PlasmaFW111)
1862 memset(instance->vf_affiliation_111, 0,
1863 sizeof(struct MR_LD_VF_AFFILIATION_111));
1864 else
1865 memset(instance->vf_affiliation, 0,
1866 (MAX_LOGICAL_DRIVES + 1) *
1867 sizeof(struct MR_LD_VF_AFFILIATION));
1868 else {
1869 if (instance->PlasmaFW111)
1870 new_affiliation_111 =
1871 pci_alloc_consistent(instance->pdev,
1872 sizeof(struct MR_LD_VF_AFFILIATION_111),
1873 &new_affiliation_111_h);
1874 else
1875 new_affiliation =
1876 pci_alloc_consistent(instance->pdev,
1877 (MAX_LOGICAL_DRIVES + 1) *
1878 sizeof(struct MR_LD_VF_AFFILIATION),
1879 &new_affiliation_h);
1880 if (!new_affiliation && !new_affiliation_111) {
1881 printk(KERN_DEBUG "megasas: SR-IOV: Couldn't allocate "
1882 "memory for new affiliation for scsi%d.\n",
1883 instance->host->host_no);
1884 megasas_return_cmd(instance, cmd);
1885 return -ENOMEM;
1886 }
1887 if (instance->PlasmaFW111)
1888 memset(new_affiliation_111, 0,
1889 sizeof(struct MR_LD_VF_AFFILIATION_111));
1890 else
1891 memset(new_affiliation, 0, (MAX_LOGICAL_DRIVES + 1) *
1892 sizeof(struct MR_LD_VF_AFFILIATION));
1893 }
1894
1895 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1896
1897 dcmd->cmd = MFI_CMD_DCMD;
1898 dcmd->cmd_status = 0xFF;
1899 dcmd->sge_count = 1;
1900 dcmd->flags = MFI_FRAME_DIR_BOTH;
1901 dcmd->timeout = 0;
1902 dcmd->pad_0 = 0;
1903 if (instance->PlasmaFW111) {
1904 dcmd->data_xfer_len = sizeof(struct MR_LD_VF_AFFILIATION_111);
1905 dcmd->opcode = MR_DCMD_LD_VF_MAP_GET_ALL_LDS_111;
1906 } else {
1907 dcmd->data_xfer_len = (MAX_LOGICAL_DRIVES + 1) *
1908 sizeof(struct MR_LD_VF_AFFILIATION);
1909 dcmd->opcode = MR_DCMD_LD_VF_MAP_GET_ALL_LDS;
1910 }
1911
1912 if (initial) {
1913 if (instance->PlasmaFW111)
1914 dcmd->sgl.sge32[0].phys_addr =
1915 instance->vf_affiliation_111_h;
1916 else
1917 dcmd->sgl.sge32[0].phys_addr =
1918 instance->vf_affiliation_h;
1919 } else {
1920 if (instance->PlasmaFW111)
1921 dcmd->sgl.sge32[0].phys_addr = new_affiliation_111_h;
1922 else
1923 dcmd->sgl.sge32[0].phys_addr = new_affiliation_h;
1924 }
1925 if (instance->PlasmaFW111)
1926 dcmd->sgl.sge32[0].length =
1927 sizeof(struct MR_LD_VF_AFFILIATION_111);
1928 else
1929 dcmd->sgl.sge32[0].length = (MAX_LOGICAL_DRIVES + 1) *
1930 sizeof(struct MR_LD_VF_AFFILIATION);
1931
1932 printk(KERN_WARNING "megasas: SR-IOV: Getting LD/VF affiliation for "
1933 "scsi%d\n", instance->host->host_no);
1934
1935 megasas_issue_blocked_cmd(instance, cmd, 0);
1936
1937 if (dcmd->cmd_status) {
1938 printk(KERN_WARNING "megasas: SR-IOV: LD/VF affiliation DCMD"
1939 " failed with status 0x%x for scsi%d.\n",
1940 dcmd->cmd_status, instance->host->host_no);
1941 retval = 1; /* Do a scan if we couldn't get affiliation */
1942 goto out;
1943 }
1944
1945 if (!initial) {
1946 if (instance->PlasmaFW111) {
1947 if (!new_affiliation_111->vdCount) {
1948 printk(KERN_WARNING "megasas: SR-IOV: Got new "
1949 "LD/VF affiliation for passive path "
1950 "for scsi%d.\n",
1951 instance->host->host_no);
1952 retval = 1;
1953 goto out;
1954 }
1955 thisVf = new_affiliation_111->thisVf;
1956 for (ld = 0 ; ld < new_affiliation_111->vdCount; ld++)
1957 if (instance->vf_affiliation_111->map[ld].policy[thisVf] != new_affiliation_111->map[ld].policy[thisVf]) {
1958 printk(KERN_WARNING "megasas: SR-IOV: "
1959 "Got new LD/VF affiliation "
1960 "for scsi%d.\n",
1961 instance->host->host_no);
1962 memcpy(instance->vf_affiliation_111,
1963 new_affiliation_111,
1964 sizeof(struct MR_LD_VF_AFFILIATION_111));
1965 retval = 1;
1966 goto out;
1967 }
1968 } else {
1969 if (!new_affiliation->ldCount) {
1970 printk(KERN_WARNING "megasas: SR-IOV: Got new "
1971 "LD/VF affiliation for passive "
1972 "path for scsi%d.\n",
1973 instance->host->host_no);
1974 retval = 1;
1975 goto out;
1976 }
1977 newmap = new_affiliation->map;
1978 savedmap = instance->vf_affiliation->map;
1979 thisVf = new_affiliation->thisVf;
1980 for (ld = 0 ; ld < new_affiliation->ldCount; ld++) {
1981 if (savedmap->policy[thisVf] !=
1982 newmap->policy[thisVf]) {
1983 printk(KERN_WARNING "megasas: SR-IOV: "
1984 "Got new LD/VF affiliation "
1985 "for scsi%d.\n",
1986 instance->host->host_no);
1987 memcpy(instance->vf_affiliation,
1988 new_affiliation,
1989 new_affiliation->size);
1990 retval = 1;
1991 goto out;
1992 }
1993 savedmap = (struct MR_LD_VF_MAP *)
1994 ((unsigned char *)savedmap +
1995 savedmap->size);
1996 newmap = (struct MR_LD_VF_MAP *)
1997 ((unsigned char *)newmap +
1998 newmap->size);
1999 }
2000 }
2001 }
2002 out:
2003 if (new_affiliation) {
2004 if (instance->PlasmaFW111)
2005 pci_free_consistent(instance->pdev,
2006 sizeof(struct MR_LD_VF_AFFILIATION_111),
2007 new_affiliation_111,
2008 new_affiliation_111_h);
2009 else
2010 pci_free_consistent(instance->pdev,
2011 (MAX_LOGICAL_DRIVES + 1) *
2012 sizeof(struct MR_LD_VF_AFFILIATION),
2013 new_affiliation, new_affiliation_h);
2014 }
2015 megasas_return_cmd(instance, cmd);
2016
2017 return retval;
2018 }
2019
2020 /* This function will tell FW to start the SR-IOV heartbeat */
2021 int megasas_sriov_start_heartbeat(struct megasas_instance *instance,
2022 int initial)
2023 {
2024 struct megasas_cmd *cmd;
2025 struct megasas_dcmd_frame *dcmd;
2026 int retval = 0;
2027
2028 cmd = megasas_get_cmd(instance);
2029
2030 if (!cmd) {
2031 printk(KERN_DEBUG "megasas: megasas_sriov_start_heartbeat: "
2032 "Failed to get cmd for scsi%d.\n",
2033 instance->host->host_no);
2034 return -ENOMEM;
2035 }
2036
2037 dcmd = &cmd->frame->dcmd;
2038
2039 if (initial) {
2040 instance->hb_host_mem =
2041 pci_alloc_consistent(instance->pdev,
2042 sizeof(struct MR_CTRL_HB_HOST_MEM),
2043 &instance->hb_host_mem_h);
2044 if (!instance->hb_host_mem) {
2045 printk(KERN_DEBUG "megasas: SR-IOV: Couldn't allocate"
2046 " memory for heartbeat host memory for "
2047 "scsi%d.\n", instance->host->host_no);
2048 retval = -ENOMEM;
2049 goto out;
2050 }
2051 memset(instance->hb_host_mem, 0,
2052 sizeof(struct MR_CTRL_HB_HOST_MEM));
2053 }
2054
2055 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2056
2057 dcmd->mbox.s[0] = sizeof(struct MR_CTRL_HB_HOST_MEM);
2058 dcmd->cmd = MFI_CMD_DCMD;
2059 dcmd->cmd_status = 0xFF;
2060 dcmd->sge_count = 1;
2061 dcmd->flags = MFI_FRAME_DIR_BOTH;
2062 dcmd->timeout = 0;
2063 dcmd->pad_0 = 0;
2064 dcmd->data_xfer_len = sizeof(struct MR_CTRL_HB_HOST_MEM);
2065 dcmd->opcode = MR_DCMD_CTRL_SHARED_HOST_MEM_ALLOC;
2066 dcmd->sgl.sge32[0].phys_addr = instance->hb_host_mem_h;
2067 dcmd->sgl.sge32[0].length = sizeof(struct MR_CTRL_HB_HOST_MEM);
2068
2069 printk(KERN_WARNING "megasas: SR-IOV: Starting heartbeat for scsi%d\n",
2070 instance->host->host_no);
2071
2072 if (!megasas_issue_polled(instance, cmd)) {
2073 retval = 0;
2074 } else {
2075 printk(KERN_WARNING "megasas: SR-IOV: MR_DCMD_CTRL_SHARED_HOST"
2076 "_MEM_ALLOC DCMD timed out for scsi%d\n",
2077 instance->host->host_no);
2078 retval = 1;
2079 goto out;
2080 }
2081
2082
2083 if (dcmd->cmd_status) {
2084 printk(KERN_WARNING "megasas: SR-IOV: MR_DCMD_CTRL_SHARED_HOST"
2085 "_MEM_ALLOC DCMD failed with status 0x%x for scsi%d\n",
2086 dcmd->cmd_status,
2087 instance->host->host_no);
2088 retval = 1;
2089 goto out;
2090 }
2091
2092 out:
2093 megasas_return_cmd(instance, cmd);
2094
2095 return retval;
2096 }
2097
2098 /* Handler for SR-IOV heartbeat */
2099 void megasas_sriov_heartbeat_handler(unsigned long instance_addr)
2100 {
2101 struct megasas_instance *instance =
2102 (struct megasas_instance *)instance_addr;
2103
2104 if (instance->hb_host_mem->HB.fwCounter !=
2105 instance->hb_host_mem->HB.driverCounter) {
2106 instance->hb_host_mem->HB.driverCounter =
2107 instance->hb_host_mem->HB.fwCounter;
2108 mod_timer(&instance->sriov_heartbeat_timer,
2109 jiffies + MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF);
2110 } else {
2111 printk(KERN_WARNING "megasas: SR-IOV: Heartbeat never "
2112 "completed for scsi%d\n", instance->host->host_no);
2113 schedule_work(&instance->work_init);
2114 }
2115 }
2116
2117 /**
2118 * megasas_wait_for_outstanding - Wait for all outstanding cmds
2119 * @instance: Adapter soft state
2120 *
2121 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
2122 * complete all its outstanding commands. Returns error if one or more IOs
2123 * are pending after this time period. It also marks the controller dead.
2124 */
2125 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
2126 {
2127 int i;
2128 u32 reset_index;
2129 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
2130 u8 adprecovery;
2131 unsigned long flags;
2132 struct list_head clist_local;
2133 struct megasas_cmd *reset_cmd;
2134 u32 fw_state;
2135 u8 kill_adapter_flag;
2136
2137 spin_lock_irqsave(&instance->hba_lock, flags);
2138 adprecovery = instance->adprecovery;
2139 spin_unlock_irqrestore(&instance->hba_lock, flags);
2140
2141 if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
2142
2143 INIT_LIST_HEAD(&clist_local);
2144 spin_lock_irqsave(&instance->hba_lock, flags);
2145 list_splice_init(&instance->internal_reset_pending_q,
2146 &clist_local);
2147 spin_unlock_irqrestore(&instance->hba_lock, flags);
2148
2149 printk(KERN_NOTICE "megasas: HBA reset wait ...\n");
2150 for (i = 0; i < wait_time; i++) {
2151 msleep(1000);
2152 spin_lock_irqsave(&instance->hba_lock, flags);
2153 adprecovery = instance->adprecovery;
2154 spin_unlock_irqrestore(&instance->hba_lock, flags);
2155 if (adprecovery == MEGASAS_HBA_OPERATIONAL)
2156 break;
2157 }
2158
2159 if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
2160 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n");
2161 spin_lock_irqsave(&instance->hba_lock, flags);
2162 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
2163 spin_unlock_irqrestore(&instance->hba_lock, flags);
2164 return FAILED;
2165 }
2166
2167 reset_index = 0;
2168 while (!list_empty(&clist_local)) {
2169 reset_cmd = list_entry((&clist_local)->next,
2170 struct megasas_cmd, list);
2171 list_del_init(&reset_cmd->list);
2172 if (reset_cmd->scmd) {
2173 reset_cmd->scmd->result = DID_RESET << 16;
2174 printk(KERN_NOTICE "%d:%p reset [%02x]\n",
2175 reset_index, reset_cmd,
2176 reset_cmd->scmd->cmnd[0]);
2177
2178 reset_cmd->scmd->scsi_done(reset_cmd->scmd);
2179 megasas_return_cmd(instance, reset_cmd);
2180 } else if (reset_cmd->sync_cmd) {
2181 printk(KERN_NOTICE "megasas:%p synch cmds"
2182 "reset queue\n",
2183 reset_cmd);
2184
2185 reset_cmd->cmd_status = ENODATA;
2186 instance->instancet->fire_cmd(instance,
2187 reset_cmd->frame_phys_addr,
2188 0, instance->reg_set);
2189 } else {
2190 printk(KERN_NOTICE "megasas: %p unexpected"
2191 "cmds lst\n",
2192 reset_cmd);
2193 }
2194 reset_index++;
2195 }
2196
2197 return SUCCESS;
2198 }
2199
2200 for (i = 0; i < resetwaittime; i++) {
2201
2202 int outstanding = atomic_read(&instance->fw_outstanding);
2203
2204 if (!outstanding)
2205 break;
2206
2207 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
2208 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
2209 "commands to complete\n",i,outstanding);
2210 /*
2211 * Call cmd completion routine. Cmd to be
2212 * be completed directly without depending on isr.
2213 */
2214 megasas_complete_cmd_dpc((unsigned long)instance);
2215 }
2216
2217 msleep(1000);
2218 }
2219
2220 i = 0;
2221 kill_adapter_flag = 0;
2222 do {
2223 fw_state = instance->instancet->read_fw_status_reg(
2224 instance->reg_set) & MFI_STATE_MASK;
2225 if ((fw_state == MFI_STATE_FAULT) &&
2226 (instance->disableOnlineCtrlReset == 0)) {
2227 if (i == 3) {
2228 kill_adapter_flag = 2;
2229 break;
2230 }
2231 megasas_do_ocr(instance);
2232 kill_adapter_flag = 1;
2233
2234 /* wait for 1 secs to let FW finish the pending cmds */
2235 msleep(1000);
2236 }
2237 i++;
2238 } while (i <= 3);
2239
2240 if (atomic_read(&instance->fw_outstanding) &&
2241 !kill_adapter_flag) {
2242 if (instance->disableOnlineCtrlReset == 0) {
2243
2244 megasas_do_ocr(instance);
2245
2246 /* wait for 5 secs to let FW finish the pending cmds */
2247 for (i = 0; i < wait_time; i++) {
2248 int outstanding =
2249 atomic_read(&instance->fw_outstanding);
2250 if (!outstanding)
2251 return SUCCESS;
2252 msleep(1000);
2253 }
2254 }
2255 }
2256
2257 if (atomic_read(&instance->fw_outstanding) ||
2258 (kill_adapter_flag == 2)) {
2259 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n");
2260 /*
2261 * Send signal to FW to stop processing any pending cmds.
2262 * The controller will be taken offline by the OS now.
2263 */
2264 if ((instance->pdev->device ==
2265 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2266 (instance->pdev->device ==
2267 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
2268 writel(MFI_STOP_ADP,
2269 &instance->reg_set->doorbell);
2270 } else {
2271 writel(MFI_STOP_ADP,
2272 &instance->reg_set->inbound_doorbell);
2273 }
2274 megasas_dump_pending_frames(instance);
2275 spin_lock_irqsave(&instance->hba_lock, flags);
2276 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
2277 spin_unlock_irqrestore(&instance->hba_lock, flags);
2278 return FAILED;
2279 }
2280
2281 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n");
2282
2283 return SUCCESS;
2284 }
2285
2286 /**
2287 * megasas_generic_reset - Generic reset routine
2288 * @scmd: Mid-layer SCSI command
2289 *
2290 * This routine implements a generic reset handler for device, bus and host
2291 * reset requests. Device, bus and host specific reset handlers can use this
2292 * function after they do their specific tasks.
2293 */
2294 static int megasas_generic_reset(struct scsi_cmnd *scmd)
2295 {
2296 int ret_val;
2297 struct megasas_instance *instance;
2298
2299 instance = (struct megasas_instance *)scmd->device->host->hostdata;
2300
2301 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
2302 scmd->cmnd[0], scmd->retries);
2303
2304 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
2305 printk(KERN_ERR "megasas: cannot recover from previous reset "
2306 "failures\n");
2307 return FAILED;
2308 }
2309
2310 ret_val = megasas_wait_for_outstanding(instance);
2311 if (ret_val == SUCCESS)
2312 printk(KERN_NOTICE "megasas: reset successful \n");
2313 else
2314 printk(KERN_ERR "megasas: failed to do reset\n");
2315
2316 return ret_val;
2317 }
2318
2319 /**
2320 * megasas_reset_timer - quiesce the adapter if required
2321 * @scmd: scsi cmnd
2322 *
2323 * Sets the FW busy flag and reduces the host->can_queue if the
2324 * cmd has not been completed within the timeout period.
2325 */
2326 static enum
2327 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
2328 {
2329 struct megasas_instance *instance;
2330 unsigned long flags;
2331
2332 if (time_after(jiffies, scmd->jiffies_at_alloc +
2333 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
2334 return BLK_EH_NOT_HANDLED;
2335 }
2336
2337 instance = (struct megasas_instance *)scmd->device->host->hostdata;
2338 if (!(instance->flag & MEGASAS_FW_BUSY)) {
2339 /* FW is busy, throttle IO */
2340 spin_lock_irqsave(instance->host->host_lock, flags);
2341
2342 instance->host->can_queue = instance->throttlequeuedepth;
2343 instance->last_time = jiffies;
2344 instance->flag |= MEGASAS_FW_BUSY;
2345
2346 spin_unlock_irqrestore(instance->host->host_lock, flags);
2347 }
2348 return BLK_EH_RESET_TIMER;
2349 }
2350
2351 /**
2352 * megasas_reset_device - Device reset handler entry point
2353 */
2354 static int megasas_reset_device(struct scsi_cmnd *scmd)
2355 {
2356 int ret;
2357
2358 /*
2359 * First wait for all commands to complete
2360 */
2361 ret = megasas_generic_reset(scmd);
2362
2363 return ret;
2364 }
2365
2366 /**
2367 * megasas_reset_bus_host - Bus & host reset handler entry point
2368 */
2369 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
2370 {
2371 int ret;
2372 struct megasas_instance *instance;
2373 instance = (struct megasas_instance *)scmd->device->host->hostdata;
2374
2375 /*
2376 * First wait for all commands to complete
2377 */
2378 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
2379 (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) ||
2380 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
2381 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
2382 ret = megasas_reset_fusion(scmd->device->host, 1);
2383 else
2384 ret = megasas_generic_reset(scmd);
2385
2386 return ret;
2387 }
2388
2389 /**
2390 * megasas_bios_param - Returns disk geometry for a disk
2391 * @sdev: device handle
2392 * @bdev: block device
2393 * @capacity: drive capacity
2394 * @geom: geometry parameters
2395 */
2396 static int
2397 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
2398 sector_t capacity, int geom[])
2399 {
2400 int heads;
2401 int sectors;
2402 sector_t cylinders;
2403 unsigned long tmp;
2404 /* Default heads (64) & sectors (32) */
2405 heads = 64;
2406 sectors = 32;
2407
2408 tmp = heads * sectors;
2409 cylinders = capacity;
2410
2411 sector_div(cylinders, tmp);
2412
2413 /*
2414 * Handle extended translation size for logical drives > 1Gb
2415 */
2416
2417 if (capacity >= 0x200000) {
2418 heads = 255;
2419 sectors = 63;
2420 tmp = heads*sectors;
2421 cylinders = capacity;
2422 sector_div(cylinders, tmp);
2423 }
2424
2425 geom[0] = heads;
2426 geom[1] = sectors;
2427 geom[2] = cylinders;
2428
2429 return 0;
2430 }
2431
2432 static void megasas_aen_polling(struct work_struct *work);
2433
2434 /**
2435 * megasas_service_aen - Processes an event notification
2436 * @instance: Adapter soft state
2437 * @cmd: AEN command completed by the ISR
2438 *
2439 * For AEN, driver sends a command down to FW that is held by the FW till an
2440 * event occurs. When an event of interest occurs, FW completes the command
2441 * that it was previously holding.
2442 *
2443 * This routines sends SIGIO signal to processes that have registered with the
2444 * driver for AEN.
2445 */
2446 static void
2447 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2448 {
2449 unsigned long flags;
2450 /*
2451 * Don't signal app if it is just an aborted previously registered aen
2452 */
2453 if ((!cmd->abort_aen) && (instance->unload == 0)) {
2454 spin_lock_irqsave(&poll_aen_lock, flags);
2455 megasas_poll_wait_aen = 1;
2456 spin_unlock_irqrestore(&poll_aen_lock, flags);
2457 wake_up(&megasas_poll_wait);
2458 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
2459 }
2460 else
2461 cmd->abort_aen = 0;
2462
2463 instance->aen_cmd = NULL;
2464 megasas_return_cmd(instance, cmd);
2465
2466 if ((instance->unload == 0) &&
2467 ((instance->issuepend_done == 1))) {
2468 struct megasas_aen_event *ev;
2469 ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
2470 if (!ev) {
2471 printk(KERN_ERR "megasas_service_aen: out of memory\n");
2472 } else {
2473 ev->instance = instance;
2474 instance->ev = ev;
2475 INIT_DELAYED_WORK(&ev->hotplug_work,
2476 megasas_aen_polling);
2477 schedule_delayed_work(&ev->hotplug_work, 0);
2478 }
2479 }
2480 }
2481
2482 static int megasas_change_queue_depth(struct scsi_device *sdev,
2483 int queue_depth, int reason)
2484 {
2485 if (reason != SCSI_QDEPTH_DEFAULT)
2486 return -EOPNOTSUPP;
2487
2488 if (queue_depth > sdev->host->can_queue)
2489 queue_depth = sdev->host->can_queue;
2490 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev),
2491 queue_depth);
2492
2493 return queue_depth;
2494 }
2495
2496 /*
2497 * Scsi host template for megaraid_sas driver
2498 */
2499 static struct scsi_host_template megasas_template = {
2500
2501 .module = THIS_MODULE,
2502 .name = "LSI SAS based MegaRAID driver",
2503 .proc_name = "megaraid_sas",
2504 .slave_configure = megasas_slave_configure,
2505 .slave_alloc = megasas_slave_alloc,
2506 .queuecommand = megasas_queue_command,
2507 .eh_device_reset_handler = megasas_reset_device,
2508 .eh_bus_reset_handler = megasas_reset_bus_host,
2509 .eh_host_reset_handler = megasas_reset_bus_host,
2510 .eh_timed_out = megasas_reset_timer,
2511 .bios_param = megasas_bios_param,
2512 .use_clustering = ENABLE_CLUSTERING,
2513 .change_queue_depth = megasas_change_queue_depth,
2514 .no_write_same = 1,
2515 };
2516
2517 /**
2518 * megasas_complete_int_cmd - Completes an internal command
2519 * @instance: Adapter soft state
2520 * @cmd: Command to be completed
2521 *
2522 * The megasas_issue_blocked_cmd() function waits for a command to complete
2523 * after it issues a command. This function wakes up that waiting routine by
2524 * calling wake_up() on the wait queue.
2525 */
2526 static void
2527 megasas_complete_int_cmd(struct megasas_instance *instance,
2528 struct megasas_cmd *cmd)
2529 {
2530 cmd->cmd_status = cmd->frame->io.cmd_status;
2531
2532 if (cmd->cmd_status == ENODATA) {
2533 cmd->cmd_status = 0;
2534 }
2535 wake_up(&instance->int_cmd_wait_q);
2536 }
2537
2538 /**
2539 * megasas_complete_abort - Completes aborting a command
2540 * @instance: Adapter soft state
2541 * @cmd: Cmd that was issued to abort another cmd
2542 *
2543 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
2544 * after it issues an abort on a previously issued command. This function
2545 * wakes up all functions waiting on the same wait queue.
2546 */
2547 static void
2548 megasas_complete_abort(struct megasas_instance *instance,
2549 struct megasas_cmd *cmd)
2550 {
2551 if (cmd->sync_cmd) {
2552 cmd->sync_cmd = 0;
2553 cmd->cmd_status = 0;
2554 wake_up(&instance->abort_cmd_wait_q);
2555 }
2556
2557 return;
2558 }
2559
2560 /**
2561 * megasas_complete_cmd - Completes a command
2562 * @instance: Adapter soft state
2563 * @cmd: Command to be completed
2564 * @alt_status: If non-zero, use this value as status to
2565 * SCSI mid-layer instead of the value returned
2566 * by the FW. This should be used if caller wants
2567 * an alternate status (as in the case of aborted
2568 * commands)
2569 */
2570 void
2571 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
2572 u8 alt_status)
2573 {
2574 int exception = 0;
2575 struct megasas_header *hdr = &cmd->frame->hdr;
2576 unsigned long flags;
2577 struct fusion_context *fusion = instance->ctrl_context;
2578 u32 opcode;
2579
2580 /* flag for the retry reset */
2581 cmd->retry_for_fw_reset = 0;
2582
2583 if (cmd->scmd)
2584 cmd->scmd->SCp.ptr = NULL;
2585
2586 switch (hdr->cmd) {
2587 case MFI_CMD_INVALID:
2588 /* Some older 1068 controller FW may keep a pended
2589 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel
2590 when booting the kdump kernel. Ignore this command to
2591 prevent a kernel panic on shutdown of the kdump kernel. */
2592 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command "
2593 "completed.\n");
2594 printk(KERN_WARNING "megaraid_sas: If you have a controller "
2595 "other than PERC5, please upgrade your firmware.\n");
2596 break;
2597 case MFI_CMD_PD_SCSI_IO:
2598 case MFI_CMD_LD_SCSI_IO:
2599
2600 /*
2601 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
2602 * issued either through an IO path or an IOCTL path. If it
2603 * was via IOCTL, we will send it to internal completion.
2604 */
2605 if (cmd->sync_cmd) {
2606 cmd->sync_cmd = 0;
2607 megasas_complete_int_cmd(instance, cmd);
2608 break;
2609 }
2610
2611 case MFI_CMD_LD_READ:
2612 case MFI_CMD_LD_WRITE:
2613
2614 if (alt_status) {
2615 cmd->scmd->result = alt_status << 16;
2616 exception = 1;
2617 }
2618
2619 if (exception) {
2620
2621 atomic_dec(&instance->fw_outstanding);
2622
2623 scsi_dma_unmap(cmd->scmd);
2624 cmd->scmd->scsi_done(cmd->scmd);
2625 megasas_return_cmd(instance, cmd);
2626
2627 break;
2628 }
2629
2630 switch (hdr->cmd_status) {
2631
2632 case MFI_STAT_OK:
2633 cmd->scmd->result = DID_OK << 16;
2634 break;
2635
2636 case MFI_STAT_SCSI_IO_FAILED:
2637 case MFI_STAT_LD_INIT_IN_PROGRESS:
2638 cmd->scmd->result =
2639 (DID_ERROR << 16) | hdr->scsi_status;
2640 break;
2641
2642 case MFI_STAT_SCSI_DONE_WITH_ERROR:
2643
2644 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
2645
2646 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
2647 memset(cmd->scmd->sense_buffer, 0,
2648 SCSI_SENSE_BUFFERSIZE);
2649 memcpy(cmd->scmd->sense_buffer, cmd->sense,
2650 hdr->sense_len);
2651
2652 cmd->scmd->result |= DRIVER_SENSE << 24;
2653 }
2654
2655 break;
2656
2657 case MFI_STAT_LD_OFFLINE:
2658 case MFI_STAT_DEVICE_NOT_FOUND:
2659 cmd->scmd->result = DID_BAD_TARGET << 16;
2660 break;
2661
2662 default:
2663 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
2664 hdr->cmd_status);
2665 cmd->scmd->result = DID_ERROR << 16;
2666 break;
2667 }
2668
2669 atomic_dec(&instance->fw_outstanding);
2670
2671 scsi_dma_unmap(cmd->scmd);
2672 cmd->scmd->scsi_done(cmd->scmd);
2673 megasas_return_cmd(instance, cmd);
2674
2675 break;
2676
2677 case MFI_CMD_SMP:
2678 case MFI_CMD_STP:
2679 case MFI_CMD_DCMD:
2680 opcode = le32_to_cpu(cmd->frame->dcmd.opcode);
2681 /* Check for LD map update */
2682 if ((opcode == MR_DCMD_LD_MAP_GET_INFO)
2683 && (cmd->frame->dcmd.mbox.b[1] == 1)) {
2684 fusion->fast_path_io = 0;
2685 spin_lock_irqsave(instance->host->host_lock, flags);
2686 if (cmd->frame->hdr.cmd_status != 0) {
2687 if (cmd->frame->hdr.cmd_status !=
2688 MFI_STAT_NOT_FOUND)
2689 printk(KERN_WARNING "megasas: map sync"
2690 "failed, status = 0x%x.\n",
2691 cmd->frame->hdr.cmd_status);
2692 else {
2693 megasas_return_cmd(instance, cmd);
2694 spin_unlock_irqrestore(
2695 instance->host->host_lock,
2696 flags);
2697 break;
2698 }
2699 } else
2700 instance->map_id++;
2701 megasas_return_cmd(instance, cmd);
2702
2703 /*
2704 * Set fast path IO to ZERO.
2705 * Validate Map will set proper value.
2706 * Meanwhile all IOs will go as LD IO.
2707 */
2708 if (MR_ValidateMapInfo(instance))
2709 fusion->fast_path_io = 1;
2710 else
2711 fusion->fast_path_io = 0;
2712 megasas_sync_map_info(instance);
2713 spin_unlock_irqrestore(instance->host->host_lock,
2714 flags);
2715 break;
2716 }
2717 if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
2718 opcode == MR_DCMD_CTRL_EVENT_GET) {
2719 spin_lock_irqsave(&poll_aen_lock, flags);
2720 megasas_poll_wait_aen = 0;
2721 spin_unlock_irqrestore(&poll_aen_lock, flags);
2722 }
2723
2724 /*
2725 * See if got an event notification
2726 */
2727 if (opcode == MR_DCMD_CTRL_EVENT_WAIT)
2728 megasas_service_aen(instance, cmd);
2729 else
2730 megasas_complete_int_cmd(instance, cmd);
2731
2732 break;
2733
2734 case MFI_CMD_ABORT:
2735 /*
2736 * Cmd issued to abort another cmd returned
2737 */
2738 megasas_complete_abort(instance, cmd);
2739 break;
2740
2741 default:
2742 printk("megasas: Unknown command completed! [0x%X]\n",
2743 hdr->cmd);
2744 break;
2745 }
2746 }
2747
2748 /**
2749 * megasas_issue_pending_cmds_again - issue all pending cmds
2750 * in FW again because of the fw reset
2751 * @instance: Adapter soft state
2752 */
2753 static inline void
2754 megasas_issue_pending_cmds_again(struct megasas_instance *instance)
2755 {
2756 struct megasas_cmd *cmd;
2757 struct list_head clist_local;
2758 union megasas_evt_class_locale class_locale;
2759 unsigned long flags;
2760 u32 seq_num;
2761
2762 INIT_LIST_HEAD(&clist_local);
2763 spin_lock_irqsave(&instance->hba_lock, flags);
2764 list_splice_init(&instance->internal_reset_pending_q, &clist_local);
2765 spin_unlock_irqrestore(&instance->hba_lock, flags);
2766
2767 while (!list_empty(&clist_local)) {
2768 cmd = list_entry((&clist_local)->next,
2769 struct megasas_cmd, list);
2770 list_del_init(&cmd->list);
2771
2772 if (cmd->sync_cmd || cmd->scmd) {
2773 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d"
2774 "detected to be pending while HBA reset.\n",
2775 cmd, cmd->scmd, cmd->sync_cmd);
2776
2777 cmd->retry_for_fw_reset++;
2778
2779 if (cmd->retry_for_fw_reset == 3) {
2780 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d"
2781 "was tried multiple times during reset."
2782 "Shutting down the HBA\n",
2783 cmd, cmd->scmd, cmd->sync_cmd);
2784 megaraid_sas_kill_hba(instance);
2785
2786 instance->adprecovery =
2787 MEGASAS_HW_CRITICAL_ERROR;
2788 return;
2789 }
2790 }
2791
2792 if (cmd->sync_cmd == 1) {
2793 if (cmd->scmd) {
2794 printk(KERN_NOTICE "megaraid_sas: unexpected"
2795 "cmd attached to internal command!\n");
2796 }
2797 printk(KERN_NOTICE "megasas: %p synchronous cmd"
2798 "on the internal reset queue,"
2799 "issue it again.\n", cmd);
2800 cmd->cmd_status = ENODATA;
2801 instance->instancet->fire_cmd(instance,
2802 cmd->frame_phys_addr ,
2803 0, instance->reg_set);
2804 } else if (cmd->scmd) {
2805 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]"
2806 "detected on the internal queue, issue again.\n",
2807 cmd, cmd->scmd->cmnd[0]);
2808
2809 atomic_inc(&instance->fw_outstanding);
2810 instance->instancet->fire_cmd(instance,
2811 cmd->frame_phys_addr,
2812 cmd->frame_count-1, instance->reg_set);
2813 } else {
2814 printk(KERN_NOTICE "megasas: %p unexpected cmd on the"
2815 "internal reset defer list while re-issue!!\n",
2816 cmd);
2817 }
2818 }
2819
2820 if (instance->aen_cmd) {
2821 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n");
2822 megasas_return_cmd(instance, instance->aen_cmd);
2823
2824 instance->aen_cmd = NULL;
2825 }
2826
2827 /*
2828 * Initiate AEN (Asynchronous Event Notification)
2829 */
2830 seq_num = instance->last_seq_num;
2831 class_locale.members.reserved = 0;
2832 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2833 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2834
2835 megasas_register_aen(instance, seq_num, class_locale.word);
2836 }
2837
2838 /**
2839 * Move the internal reset pending commands to a deferred queue.
2840 *
2841 * We move the commands pending at internal reset time to a
2842 * pending queue. This queue would be flushed after successful
2843 * completion of the internal reset sequence. if the internal reset
2844 * did not complete in time, the kernel reset handler would flush
2845 * these commands.
2846 **/
2847 static void
2848 megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
2849 {
2850 struct megasas_cmd *cmd;
2851 int i;
2852 u32 max_cmd = instance->max_fw_cmds;
2853 u32 defer_index;
2854 unsigned long flags;
2855
2856 defer_index = 0;
2857 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
2858 for (i = 0; i < max_cmd; i++) {
2859 cmd = instance->cmd_list[i];
2860 if (cmd->sync_cmd == 1 || cmd->scmd) {
2861 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p"
2862 "on the defer queue as internal\n",
2863 defer_index, cmd, cmd->sync_cmd, cmd->scmd);
2864
2865 if (!list_empty(&cmd->list)) {
2866 printk(KERN_NOTICE "megaraid_sas: ERROR while"
2867 " moving this cmd:%p, %d %p, it was"
2868 "discovered on some list?\n",
2869 cmd, cmd->sync_cmd, cmd->scmd);
2870
2871 list_del_init(&cmd->list);
2872 }
2873 defer_index++;
2874 list_add_tail(&cmd->list,
2875 &instance->internal_reset_pending_q);
2876 }
2877 }
2878 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
2879 }
2880
2881
2882 static void
2883 process_fw_state_change_wq(struct work_struct *work)
2884 {
2885 struct megasas_instance *instance =
2886 container_of(work, struct megasas_instance, work_init);
2887 u32 wait;
2888 unsigned long flags;
2889
2890 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) {
2891 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n",
2892 instance->adprecovery);
2893 return ;
2894 }
2895
2896 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
2897 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault"
2898 "state, restarting it...\n");
2899
2900 instance->instancet->disable_intr(instance);
2901 atomic_set(&instance->fw_outstanding, 0);
2902
2903 atomic_set(&instance->fw_reset_no_pci_access, 1);
2904 instance->instancet->adp_reset(instance, instance->reg_set);
2905 atomic_set(&instance->fw_reset_no_pci_access, 0 );
2906
2907 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully,"
2908 "initiating next stage...\n");
2909
2910 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine,"
2911 "state 2 starting...\n");
2912
2913 /*waitting for about 20 second before start the second init*/
2914 for (wait = 0; wait < 30; wait++) {
2915 msleep(1000);
2916 }
2917
2918 if (megasas_transition_to_ready(instance, 1)) {
2919 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n");
2920
2921 megaraid_sas_kill_hba(instance);
2922 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
2923 return ;
2924 }
2925
2926 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
2927 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
2928 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
2929 ) {
2930 *instance->consumer = *instance->producer;
2931 } else {
2932 *instance->consumer = 0;
2933 *instance->producer = 0;
2934 }
2935
2936 megasas_issue_init_mfi(instance);
2937
2938 spin_lock_irqsave(&instance->hba_lock, flags);
2939 instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
2940 spin_unlock_irqrestore(&instance->hba_lock, flags);
2941 instance->instancet->enable_intr(instance);
2942
2943 megasas_issue_pending_cmds_again(instance);
2944 instance->issuepend_done = 1;
2945 }
2946 return ;
2947 }
2948
2949 /**
2950 * megasas_deplete_reply_queue - Processes all completed commands
2951 * @instance: Adapter soft state
2952 * @alt_status: Alternate status to be returned to
2953 * SCSI mid-layer instead of the status
2954 * returned by the FW
2955 * Note: this must be called with hba lock held
2956 */
2957 static int
2958 megasas_deplete_reply_queue(struct megasas_instance *instance,
2959 u8 alt_status)
2960 {
2961 u32 mfiStatus;
2962 u32 fw_state;
2963
2964 if ((mfiStatus = instance->instancet->check_reset(instance,
2965 instance->reg_set)) == 1) {
2966 return IRQ_HANDLED;
2967 }
2968
2969 if ((mfiStatus = instance->instancet->clear_intr(
2970 instance->reg_set)
2971 ) == 0) {
2972 /* Hardware may not set outbound_intr_status in MSI-X mode */
2973 if (!instance->msix_vectors)
2974 return IRQ_NONE;
2975 }
2976
2977 instance->mfiStatus = mfiStatus;
2978
2979 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
2980 fw_state = instance->instancet->read_fw_status_reg(
2981 instance->reg_set) & MFI_STATE_MASK;
2982
2983 if (fw_state != MFI_STATE_FAULT) {
2984 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n",
2985 fw_state);
2986 }
2987
2988 if ((fw_state == MFI_STATE_FAULT) &&
2989 (instance->disableOnlineCtrlReset == 0)) {
2990 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n");
2991
2992 if ((instance->pdev->device ==
2993 PCI_DEVICE_ID_LSI_SAS1064R) ||
2994 (instance->pdev->device ==
2995 PCI_DEVICE_ID_DELL_PERC5) ||
2996 (instance->pdev->device ==
2997 PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
2998
2999 *instance->consumer =
3000 cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
3001 }
3002
3003
3004 instance->instancet->disable_intr(instance);
3005 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
3006 instance->issuepend_done = 0;
3007
3008 atomic_set(&instance->fw_outstanding, 0);
3009 megasas_internal_reset_defer_cmds(instance);
3010
3011 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n",
3012 fw_state, instance->adprecovery);
3013
3014 schedule_work(&instance->work_init);
3015 return IRQ_HANDLED;
3016
3017 } else {
3018 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n",
3019 fw_state, instance->disableOnlineCtrlReset);
3020 }
3021 }
3022
3023 tasklet_schedule(&instance->isr_tasklet);
3024 return IRQ_HANDLED;
3025 }
3026 /**
3027 * megasas_isr - isr entry point
3028 */
3029 static irqreturn_t megasas_isr(int irq, void *devp)
3030 {
3031 struct megasas_irq_context *irq_context = devp;
3032 struct megasas_instance *instance = irq_context->instance;
3033 unsigned long flags;
3034 irqreturn_t rc;
3035
3036 if (atomic_read(&instance->fw_reset_no_pci_access))
3037 return IRQ_HANDLED;
3038
3039 spin_lock_irqsave(&instance->hba_lock, flags);
3040 rc = megasas_deplete_reply_queue(instance, DID_OK);
3041 spin_unlock_irqrestore(&instance->hba_lock, flags);
3042
3043 return rc;
3044 }
3045
3046 /**
3047 * megasas_transition_to_ready - Move the FW to READY state
3048 * @instance: Adapter soft state
3049 *
3050 * During the initialization, FW passes can potentially be in any one of
3051 * several possible states. If the FW in operational, waiting-for-handshake
3052 * states, driver must take steps to bring it to ready state. Otherwise, it
3053 * has to wait for the ready state.
3054 */
3055 int
3056 megasas_transition_to_ready(struct megasas_instance *instance, int ocr)
3057 {
3058 int i;
3059 u8 max_wait;
3060 u32 fw_state;
3061 u32 cur_state;
3062 u32 abs_state, curr_abs_state;
3063
3064 abs_state = instance->instancet->read_fw_status_reg(instance->reg_set);
3065 fw_state = abs_state & MFI_STATE_MASK;
3066
3067 if (fw_state != MFI_STATE_READY)
3068 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
3069 " state\n");
3070
3071 while (fw_state != MFI_STATE_READY) {
3072
3073 switch (fw_state) {
3074
3075 case MFI_STATE_FAULT:
3076 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
3077 if (ocr) {
3078 max_wait = MEGASAS_RESET_WAIT_TIME;
3079 cur_state = MFI_STATE_FAULT;
3080 break;
3081 } else
3082 return -ENODEV;
3083
3084 case MFI_STATE_WAIT_HANDSHAKE:
3085 /*
3086 * Set the CLR bit in inbound doorbell
3087 */
3088 if ((instance->pdev->device ==
3089 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
3090 (instance->pdev->device ==
3091 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
3092 (instance->pdev->device ==
3093 PCI_DEVICE_ID_LSI_FUSION) ||
3094 (instance->pdev->device ==
3095 PCI_DEVICE_ID_LSI_PLASMA) ||
3096 (instance->pdev->device ==
3097 PCI_DEVICE_ID_LSI_INVADER) ||
3098 (instance->pdev->device ==
3099 PCI_DEVICE_ID_LSI_FURY)) {
3100 writel(
3101 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
3102 &instance->reg_set->doorbell);
3103 } else {
3104 writel(
3105 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
3106 &instance->reg_set->inbound_doorbell);
3107 }
3108
3109 max_wait = MEGASAS_RESET_WAIT_TIME;
3110 cur_state = MFI_STATE_WAIT_HANDSHAKE;
3111 break;
3112
3113 case MFI_STATE_BOOT_MESSAGE_PENDING:
3114 if ((instance->pdev->device ==
3115 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
3116 (instance->pdev->device ==
3117 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
3118 (instance->pdev->device ==
3119 PCI_DEVICE_ID_LSI_FUSION) ||
3120 (instance->pdev->device ==
3121 PCI_DEVICE_ID_LSI_PLASMA) ||
3122 (instance->pdev->device ==
3123 PCI_DEVICE_ID_LSI_INVADER) ||
3124 (instance->pdev->device ==
3125 PCI_DEVICE_ID_LSI_FURY)) {
3126 writel(MFI_INIT_HOTPLUG,
3127 &instance->reg_set->doorbell);
3128 } else
3129 writel(MFI_INIT_HOTPLUG,
3130 &instance->reg_set->inbound_doorbell);
3131
3132 max_wait = MEGASAS_RESET_WAIT_TIME;
3133 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
3134 break;
3135
3136 case MFI_STATE_OPERATIONAL:
3137 /*
3138 * Bring it to READY state; assuming max wait 10 secs
3139 */
3140 instance->instancet->disable_intr(instance);
3141 if ((instance->pdev->device ==
3142 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
3143 (instance->pdev->device ==
3144 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
3145 (instance->pdev->device
3146 == PCI_DEVICE_ID_LSI_FUSION) ||
3147 (instance->pdev->device
3148 == PCI_DEVICE_ID_LSI_PLASMA) ||
3149 (instance->pdev->device
3150 == PCI_DEVICE_ID_LSI_INVADER) ||
3151 (instance->pdev->device
3152 == PCI_DEVICE_ID_LSI_FURY)) {
3153 writel(MFI_RESET_FLAGS,
3154 &instance->reg_set->doorbell);
3155 if ((instance->pdev->device ==
3156 PCI_DEVICE_ID_LSI_FUSION) ||
3157 (instance->pdev->device ==
3158 PCI_DEVICE_ID_LSI_PLASMA) ||
3159 (instance->pdev->device ==
3160 PCI_DEVICE_ID_LSI_INVADER) ||
3161 (instance->pdev->device ==
3162 PCI_DEVICE_ID_LSI_FURY)) {
3163 for (i = 0; i < (10 * 1000); i += 20) {
3164 if (readl(
3165 &instance->
3166 reg_set->
3167 doorbell) & 1)
3168 msleep(20);
3169 else
3170 break;
3171 }
3172 }
3173 } else
3174 writel(MFI_RESET_FLAGS,
3175 &instance->reg_set->inbound_doorbell);
3176
3177 max_wait = MEGASAS_RESET_WAIT_TIME;
3178 cur_state = MFI_STATE_OPERATIONAL;
3179 break;
3180
3181 case MFI_STATE_UNDEFINED:
3182 /*
3183 * This state should not last for more than 2 seconds
3184 */
3185 max_wait = MEGASAS_RESET_WAIT_TIME;
3186 cur_state = MFI_STATE_UNDEFINED;
3187 break;
3188
3189 case MFI_STATE_BB_INIT:
3190 max_wait = MEGASAS_RESET_WAIT_TIME;
3191 cur_state = MFI_STATE_BB_INIT;
3192 break;
3193
3194 case MFI_STATE_FW_INIT:
3195 max_wait = MEGASAS_RESET_WAIT_TIME;
3196 cur_state = MFI_STATE_FW_INIT;
3197 break;
3198
3199 case MFI_STATE_FW_INIT_2:
3200 max_wait = MEGASAS_RESET_WAIT_TIME;
3201 cur_state = MFI_STATE_FW_INIT_2;
3202 break;
3203
3204 case MFI_STATE_DEVICE_SCAN:
3205 max_wait = MEGASAS_RESET_WAIT_TIME;
3206 cur_state = MFI_STATE_DEVICE_SCAN;
3207 break;
3208
3209 case MFI_STATE_FLUSH_CACHE:
3210 max_wait = MEGASAS_RESET_WAIT_TIME;
3211 cur_state = MFI_STATE_FLUSH_CACHE;
3212 break;
3213
3214 default:
3215 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
3216 fw_state);
3217 return -ENODEV;
3218 }
3219
3220 /*
3221 * The cur_state should not last for more than max_wait secs
3222 */
3223 for (i = 0; i < (max_wait * 1000); i++) {
3224 curr_abs_state = instance->instancet->
3225 read_fw_status_reg(instance->reg_set);
3226
3227 if (abs_state == curr_abs_state) {
3228 msleep(1);
3229 } else
3230 break;
3231 }
3232
3233 /*
3234 * Return error if fw_state hasn't changed after max_wait
3235 */
3236 if (curr_abs_state == abs_state) {
3237 printk(KERN_DEBUG "FW state [%d] hasn't changed "
3238 "in %d secs\n", fw_state, max_wait);
3239 return -ENODEV;
3240 }
3241
3242 abs_state = curr_abs_state;
3243 fw_state = curr_abs_state & MFI_STATE_MASK;
3244 }
3245 printk(KERN_INFO "megasas: FW now in Ready state\n");
3246
3247 return 0;
3248 }
3249
3250 /**
3251 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
3252 * @instance: Adapter soft state
3253 */
3254 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
3255 {
3256 int i;
3257 u32 max_cmd = instance->max_mfi_cmds;
3258 struct megasas_cmd *cmd;
3259
3260 if (!instance->frame_dma_pool)
3261 return;
3262
3263 /*
3264 * Return all frames to pool
3265 */
3266 for (i = 0; i < max_cmd; i++) {
3267
3268 cmd = instance->cmd_list[i];
3269
3270 if (cmd->frame)
3271 pci_pool_free(instance->frame_dma_pool, cmd->frame,
3272 cmd->frame_phys_addr);
3273
3274 if (cmd->sense)
3275 pci_pool_free(instance->sense_dma_pool, cmd->sense,
3276 cmd->sense_phys_addr);
3277 }
3278
3279 /*
3280 * Now destroy the pool itself
3281 */
3282 pci_pool_destroy(instance->frame_dma_pool);
3283 pci_pool_destroy(instance->sense_dma_pool);
3284
3285 instance->frame_dma_pool = NULL;
3286 instance->sense_dma_pool = NULL;
3287 }
3288
3289 /**
3290 * megasas_create_frame_pool - Creates DMA pool for cmd frames
3291 * @instance: Adapter soft state
3292 *
3293 * Each command packet has an embedded DMA memory buffer that is used for
3294 * filling MFI frame and the SG list that immediately follows the frame. This
3295 * function creates those DMA memory buffers for each command packet by using
3296 * PCI pool facility.
3297 */
3298 static int megasas_create_frame_pool(struct megasas_instance *instance)
3299 {
3300 int i;
3301 u32 max_cmd;
3302 u32 sge_sz;
3303 u32 sgl_sz;
3304 u32 total_sz;
3305 u32 frame_count;
3306 struct megasas_cmd *cmd;
3307
3308 max_cmd = instance->max_mfi_cmds;
3309
3310 /*
3311 * Size of our frame is 64 bytes for MFI frame, followed by max SG
3312 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
3313 */
3314 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
3315 sizeof(struct megasas_sge32);
3316
3317 if (instance->flag_ieee) {
3318 sge_sz = sizeof(struct megasas_sge_skinny);
3319 }
3320
3321 /*
3322 * Calculated the number of 64byte frames required for SGL
3323 */
3324 sgl_sz = sge_sz * instance->max_num_sge;
3325 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
3326 frame_count = 15;
3327
3328 /*
3329 * We need one extra frame for the MFI command
3330 */
3331 frame_count++;
3332
3333 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
3334 /*
3335 * Use DMA pool facility provided by PCI layer
3336 */
3337 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
3338 instance->pdev, total_sz, 64,
3339 0);
3340
3341 if (!instance->frame_dma_pool) {
3342 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
3343 return -ENOMEM;
3344 }
3345
3346 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
3347 instance->pdev, 128, 4, 0);
3348
3349 if (!instance->sense_dma_pool) {
3350 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
3351
3352 pci_pool_destroy(instance->frame_dma_pool);
3353 instance->frame_dma_pool = NULL;
3354
3355 return -ENOMEM;
3356 }
3357
3358 /*
3359 * Allocate and attach a frame to each of the commands in cmd_list.
3360 * By making cmd->index as the context instead of the &cmd, we can
3361 * always use 32bit context regardless of the architecture
3362 */
3363 for (i = 0; i < max_cmd; i++) {
3364
3365 cmd = instance->cmd_list[i];
3366
3367 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
3368 GFP_KERNEL, &cmd->frame_phys_addr);
3369
3370 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
3371 GFP_KERNEL, &cmd->sense_phys_addr);
3372
3373 /*
3374 * megasas_teardown_frame_pool() takes care of freeing
3375 * whatever has been allocated
3376 */
3377 if (!cmd->frame || !cmd->sense) {
3378 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
3379 megasas_teardown_frame_pool(instance);
3380 return -ENOMEM;
3381 }
3382
3383 memset(cmd->frame, 0, total_sz);
3384 cmd->frame->io.context = cpu_to_le32(cmd->index);
3385 cmd->frame->io.pad_0 = 0;
3386 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
3387 (instance->pdev->device != PCI_DEVICE_ID_LSI_PLASMA) &&
3388 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
3389 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
3390 (reset_devices))
3391 cmd->frame->hdr.cmd = MFI_CMD_INVALID;
3392 }
3393
3394 return 0;
3395 }
3396
3397 /**
3398 * megasas_free_cmds - Free all the cmds in the free cmd pool
3399 * @instance: Adapter soft state
3400 */
3401 void megasas_free_cmds(struct megasas_instance *instance)
3402 {
3403 int i;
3404 /* First free the MFI frame pool */
3405 megasas_teardown_frame_pool(instance);
3406
3407 /* Free all the commands in the cmd_list */
3408 for (i = 0; i < instance->max_mfi_cmds; i++)
3409
3410 kfree(instance->cmd_list[i]);
3411
3412 /* Free the cmd_list buffer itself */
3413 kfree(instance->cmd_list);
3414 instance->cmd_list = NULL;
3415
3416 INIT_LIST_HEAD(&instance->cmd_pool);
3417 }
3418
3419 /**
3420 * megasas_alloc_cmds - Allocates the command packets
3421 * @instance: Adapter soft state
3422 *
3423 * Each command that is issued to the FW, whether IO commands from the OS or
3424 * internal commands like IOCTLs, are wrapped in local data structure called
3425 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
3426 * the FW.
3427 *
3428 * Each frame has a 32-bit field called context (tag). This context is used
3429 * to get back the megasas_cmd from the frame when a frame gets completed in
3430 * the ISR. Typically the address of the megasas_cmd itself would be used as
3431 * the context. But we wanted to keep the differences between 32 and 64 bit
3432 * systems to the mininum. We always use 32 bit integers for the context. In
3433 * this driver, the 32 bit values are the indices into an array cmd_list.
3434 * This array is used only to look up the megasas_cmd given the context. The
3435 * free commands themselves are maintained in a linked list called cmd_pool.
3436 */
3437 int megasas_alloc_cmds(struct megasas_instance *instance)
3438 {
3439 int i;
3440 int j;
3441 u32 max_cmd;
3442 struct megasas_cmd *cmd;
3443
3444 max_cmd = instance->max_mfi_cmds;
3445
3446 /*
3447 * instance->cmd_list is an array of struct megasas_cmd pointers.
3448 * Allocate the dynamic array first and then allocate individual
3449 * commands.
3450 */
3451 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
3452
3453 if (!instance->cmd_list) {
3454 printk(KERN_DEBUG "megasas: out of memory\n");
3455 return -ENOMEM;
3456 }
3457
3458 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
3459
3460 for (i = 0; i < max_cmd; i++) {
3461 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
3462 GFP_KERNEL);
3463
3464 if (!instance->cmd_list[i]) {
3465
3466 for (j = 0; j < i; j++)
3467 kfree(instance->cmd_list[j]);
3468
3469 kfree(instance->cmd_list);
3470 instance->cmd_list = NULL;
3471
3472 return -ENOMEM;
3473 }
3474 }
3475
3476 /*
3477 * Add all the commands to command pool (instance->cmd_pool)
3478 */
3479 for (i = 0; i < max_cmd; i++) {
3480 cmd = instance->cmd_list[i];
3481 memset(cmd, 0, sizeof(struct megasas_cmd));
3482 cmd->index = i;
3483 cmd->scmd = NULL;
3484 cmd->instance = instance;
3485
3486 list_add_tail(&cmd->list, &instance->cmd_pool);
3487 }
3488
3489 /*
3490 * Create a frame pool and assign one frame to each cmd
3491 */
3492 if (megasas_create_frame_pool(instance)) {
3493 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
3494 megasas_free_cmds(instance);
3495 }
3496
3497 return 0;
3498 }
3499
3500 /*
3501 * megasas_get_pd_list_info - Returns FW's pd_list structure
3502 * @instance: Adapter soft state
3503 * @pd_list: pd_list structure
3504 *
3505 * Issues an internal command (DCMD) to get the FW's controller PD
3506 * list structure. This information is mainly used to find out SYSTEM
3507 * supported by the FW.
3508 */
3509 static int
3510 megasas_get_pd_list(struct megasas_instance *instance)
3511 {
3512 int ret = 0, pd_index = 0;
3513 struct megasas_cmd *cmd;
3514 struct megasas_dcmd_frame *dcmd;
3515 struct MR_PD_LIST *ci;
3516 struct MR_PD_ADDRESS *pd_addr;
3517 dma_addr_t ci_h = 0;
3518
3519 cmd = megasas_get_cmd(instance);
3520
3521 if (!cmd) {
3522 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n");
3523 return -ENOMEM;
3524 }
3525
3526 dcmd = &cmd->frame->dcmd;
3527
3528 ci = pci_alloc_consistent(instance->pdev,
3529 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h);
3530
3531 if (!ci) {
3532 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n");
3533 megasas_return_cmd(instance, cmd);
3534 return -ENOMEM;
3535 }
3536
3537 memset(ci, 0, sizeof(*ci));
3538 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3539
3540 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
3541 dcmd->mbox.b[1] = 0;
3542 dcmd->cmd = MFI_CMD_DCMD;
3543 dcmd->cmd_status = 0xFF;
3544 dcmd->sge_count = 1;
3545 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3546 dcmd->timeout = 0;
3547 dcmd->pad_0 = 0;
3548 dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
3549 dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY);
3550 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3551 dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
3552
3553 if (!megasas_issue_polled(instance, cmd)) {
3554 ret = 0;
3555 } else {
3556 ret = -1;
3557 }
3558
3559 /*
3560 * the following function will get the instance PD LIST.
3561 */
3562
3563 pd_addr = ci->addr;
3564
3565 if ( ret == 0 &&
3566 (le32_to_cpu(ci->count) <
3567 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) {
3568
3569 memset(instance->local_pd_list, 0,
3570 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
3571
3572 for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) {
3573
3574 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid =
3575 le16_to_cpu(pd_addr->deviceId);
3576 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType =
3577 pd_addr->scsiDevType;
3578 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState =
3579 MR_PD_STATE_SYSTEM;
3580 pd_addr++;
3581 }
3582 memcpy(instance->pd_list, instance->local_pd_list,
3583 sizeof(instance->pd_list));
3584 }
3585
3586 pci_free_consistent(instance->pdev,
3587 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
3588 ci, ci_h);
3589 megasas_return_cmd(instance, cmd);
3590
3591 return ret;
3592 }
3593
3594 /*
3595 * megasas_get_ld_list_info - Returns FW's ld_list structure
3596 * @instance: Adapter soft state
3597 * @ld_list: ld_list structure
3598 *
3599 * Issues an internal command (DCMD) to get the FW's controller PD
3600 * list structure. This information is mainly used to find out SYSTEM
3601 * supported by the FW.
3602 */
3603 static int
3604 megasas_get_ld_list(struct megasas_instance *instance)
3605 {
3606 int ret = 0, ld_index = 0, ids = 0;
3607 struct megasas_cmd *cmd;
3608 struct megasas_dcmd_frame *dcmd;
3609 struct MR_LD_LIST *ci;
3610 dma_addr_t ci_h = 0;
3611 u32 ld_count;
3612
3613 cmd = megasas_get_cmd(instance);
3614
3615 if (!cmd) {
3616 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n");
3617 return -ENOMEM;
3618 }
3619
3620 dcmd = &cmd->frame->dcmd;
3621
3622 ci = pci_alloc_consistent(instance->pdev,
3623 sizeof(struct MR_LD_LIST),
3624 &ci_h);
3625
3626 if (!ci) {
3627 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n");
3628 megasas_return_cmd(instance, cmd);
3629 return -ENOMEM;
3630 }
3631
3632 memset(ci, 0, sizeof(*ci));
3633 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3634
3635 dcmd->cmd = MFI_CMD_DCMD;
3636 dcmd->cmd_status = 0xFF;
3637 dcmd->sge_count = 1;
3638 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3639 dcmd->timeout = 0;
3640 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST));
3641 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST);
3642 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3643 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST));
3644 dcmd->pad_0 = 0;
3645
3646 if (!megasas_issue_polled(instance, cmd)) {
3647 ret = 0;
3648 } else {
3649 ret = -1;
3650 }
3651
3652 ld_count = le32_to_cpu(ci->ldCount);
3653
3654 /* the following function will get the instance PD LIST */
3655
3656 if ((ret == 0) && (ld_count <= MAX_LOGICAL_DRIVES)) {
3657 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3658
3659 for (ld_index = 0; ld_index < ld_count; ld_index++) {
3660 if (ci->ldList[ld_index].state != 0) {
3661 ids = ci->ldList[ld_index].ref.targetId;
3662 instance->ld_ids[ids] =
3663 ci->ldList[ld_index].ref.targetId;
3664 }
3665 }
3666 }
3667
3668 pci_free_consistent(instance->pdev,
3669 sizeof(struct MR_LD_LIST),
3670 ci,
3671 ci_h);
3672
3673 megasas_return_cmd(instance, cmd);
3674 return ret;
3675 }
3676
3677 /**
3678 * megasas_ld_list_query - Returns FW's ld_list structure
3679 * @instance: Adapter soft state
3680 * @ld_list: ld_list structure
3681 *
3682 * Issues an internal command (DCMD) to get the FW's controller PD
3683 * list structure. This information is mainly used to find out SYSTEM
3684 * supported by the FW.
3685 */
3686 static int
3687 megasas_ld_list_query(struct megasas_instance *instance, u8 query_type)
3688 {
3689 int ret = 0, ld_index = 0, ids = 0;
3690 struct megasas_cmd *cmd;
3691 struct megasas_dcmd_frame *dcmd;
3692 struct MR_LD_TARGETID_LIST *ci;
3693 dma_addr_t ci_h = 0;
3694 u32 tgtid_count;
3695
3696 cmd = megasas_get_cmd(instance);
3697
3698 if (!cmd) {
3699 printk(KERN_WARNING
3700 "megasas:(megasas_ld_list_query): Failed to get cmd\n");
3701 return -ENOMEM;
3702 }
3703
3704 dcmd = &cmd->frame->dcmd;
3705
3706 ci = pci_alloc_consistent(instance->pdev,
3707 sizeof(struct MR_LD_TARGETID_LIST), &ci_h);
3708
3709 if (!ci) {
3710 printk(KERN_WARNING
3711 "megasas: Failed to alloc mem for ld_list_query\n");
3712 megasas_return_cmd(instance, cmd);
3713 return -ENOMEM;
3714 }
3715
3716 memset(ci, 0, sizeof(*ci));
3717 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3718
3719 dcmd->mbox.b[0] = query_type;
3720
3721 dcmd->cmd = MFI_CMD_DCMD;
3722 dcmd->cmd_status = 0xFF;
3723 dcmd->sge_count = 1;
3724 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3725 dcmd->timeout = 0;
3726 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
3727 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY);
3728 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3729 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
3730 dcmd->pad_0 = 0;
3731
3732 if (!megasas_issue_polled(instance, cmd) && !dcmd->cmd_status) {
3733 ret = 0;
3734 } else {
3735 /* On failure, call older LD list DCMD */
3736 ret = 1;
3737 }
3738
3739 tgtid_count = le32_to_cpu(ci->count);
3740
3741 if ((ret == 0) && (tgtid_count <= (MAX_LOGICAL_DRIVES))) {
3742 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3743 for (ld_index = 0; ld_index < tgtid_count; ld_index++) {
3744 ids = ci->targetId[ld_index];
3745 instance->ld_ids[ids] = ci->targetId[ld_index];
3746 }
3747
3748 }
3749
3750 pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST),
3751 ci, ci_h);
3752
3753 megasas_return_cmd(instance, cmd);
3754
3755 return ret;
3756 }
3757
3758 /**
3759 * megasas_get_controller_info - Returns FW's controller structure
3760 * @instance: Adapter soft state
3761 * @ctrl_info: Controller information structure
3762 *
3763 * Issues an internal command (DCMD) to get the FW's controller structure.
3764 * This information is mainly used to find out the maximum IO transfer per
3765 * command supported by the FW.
3766 */
3767 static int
3768 megasas_get_ctrl_info(struct megasas_instance *instance,
3769 struct megasas_ctrl_info *ctrl_info)
3770 {
3771 int ret = 0;
3772 struct megasas_cmd *cmd;
3773 struct megasas_dcmd_frame *dcmd;
3774 struct megasas_ctrl_info *ci;
3775 dma_addr_t ci_h = 0;
3776
3777 cmd = megasas_get_cmd(instance);
3778
3779 if (!cmd) {
3780 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
3781 return -ENOMEM;
3782 }
3783
3784 dcmd = &cmd->frame->dcmd;
3785
3786 ci = pci_alloc_consistent(instance->pdev,
3787 sizeof(struct megasas_ctrl_info), &ci_h);
3788
3789 if (!ci) {
3790 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
3791 megasas_return_cmd(instance, cmd);
3792 return -ENOMEM;
3793 }
3794
3795 memset(ci, 0, sizeof(*ci));
3796 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3797
3798 dcmd->cmd = MFI_CMD_DCMD;
3799 dcmd->cmd_status = 0xFF;
3800 dcmd->sge_count = 1;
3801 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3802 dcmd->timeout = 0;
3803 dcmd->pad_0 = 0;
3804 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info));
3805 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO);
3806 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3807 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info));
3808
3809 if (!megasas_issue_polled(instance, cmd)) {
3810 ret = 0;
3811 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
3812 } else {
3813 ret = -1;
3814 }
3815
3816 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
3817 ci, ci_h);
3818
3819 megasas_return_cmd(instance, cmd);
3820 return ret;
3821 }
3822
3823 /**
3824 * megasas_issue_init_mfi - Initializes the FW
3825 * @instance: Adapter soft state
3826 *
3827 * Issues the INIT MFI cmd
3828 */
3829 static int
3830 megasas_issue_init_mfi(struct megasas_instance *instance)
3831 {
3832 u32 context;
3833
3834 struct megasas_cmd *cmd;
3835
3836 struct megasas_init_frame *init_frame;
3837 struct megasas_init_queue_info *initq_info;
3838 dma_addr_t init_frame_h;
3839 dma_addr_t initq_info_h;
3840
3841 /*
3842 * Prepare a init frame. Note the init frame points to queue info
3843 * structure. Each frame has SGL allocated after first 64 bytes. For
3844 * this frame - since we don't need any SGL - we use SGL's space as
3845 * queue info structure
3846 *
3847 * We will not get a NULL command below. We just created the pool.
3848 */
3849 cmd = megasas_get_cmd(instance);
3850
3851 init_frame = (struct megasas_init_frame *)cmd->frame;
3852 initq_info = (struct megasas_init_queue_info *)
3853 ((unsigned long)init_frame + 64);
3854
3855 init_frame_h = cmd->frame_phys_addr;
3856 initq_info_h = init_frame_h + 64;
3857
3858 context = init_frame->context;
3859 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
3860 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
3861 init_frame->context = context;
3862
3863 initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1);
3864 initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h);
3865
3866 initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h);
3867 initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h);
3868
3869 init_frame->cmd = MFI_CMD_INIT;
3870 init_frame->cmd_status = 0xFF;
3871 init_frame->queue_info_new_phys_addr_lo =
3872 cpu_to_le32(lower_32_bits(initq_info_h));
3873 init_frame->queue_info_new_phys_addr_hi =
3874 cpu_to_le32(upper_32_bits(initq_info_h));
3875
3876 init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info));
3877
3878 /*
3879 * disable the intr before firing the init frame to FW
3880 */
3881 instance->instancet->disable_intr(instance);
3882
3883 /*
3884 * Issue the init frame in polled mode
3885 */
3886
3887 if (megasas_issue_polled(instance, cmd)) {
3888 printk(KERN_ERR "megasas: Failed to init firmware\n");
3889 megasas_return_cmd(instance, cmd);
3890 goto fail_fw_init;
3891 }
3892
3893 megasas_return_cmd(instance, cmd);
3894
3895 return 0;
3896
3897 fail_fw_init:
3898 return -EINVAL;
3899 }
3900
3901 static u32
3902 megasas_init_adapter_mfi(struct megasas_instance *instance)
3903 {
3904 struct megasas_register_set __iomem *reg_set;
3905 u32 context_sz;
3906 u32 reply_q_sz;
3907
3908 reg_set = instance->reg_set;
3909
3910 /*
3911 * Get various operational parameters from status register
3912 */
3913 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
3914 /*
3915 * Reduce the max supported cmds by 1. This is to ensure that the
3916 * reply_q_sz (1 more than the max cmd that driver may send)
3917 * does not exceed max cmds that the FW can support
3918 */
3919 instance->max_fw_cmds = instance->max_fw_cmds-1;
3920 instance->max_mfi_cmds = instance->max_fw_cmds;
3921 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
3922 0x10;
3923 /*
3924 * Create a pool of commands
3925 */
3926 if (megasas_alloc_cmds(instance))
3927 goto fail_alloc_cmds;
3928
3929 /*
3930 * Allocate memory for reply queue. Length of reply queue should
3931 * be _one_ more than the maximum commands handled by the firmware.
3932 *
3933 * Note: When FW completes commands, it places corresponding contex
3934 * values in this circular reply queue. This circular queue is a fairly
3935 * typical producer-consumer queue. FW is the producer (of completed
3936 * commands) and the driver is the consumer.
3937 */
3938 context_sz = sizeof(u32);
3939 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
3940
3941 instance->reply_queue = pci_alloc_consistent(instance->pdev,
3942 reply_q_sz,
3943 &instance->reply_queue_h);
3944
3945 if (!instance->reply_queue) {
3946 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
3947 goto fail_reply_queue;
3948 }
3949
3950 if (megasas_issue_init_mfi(instance))
3951 goto fail_fw_init;
3952
3953 instance->fw_support_ieee = 0;
3954 instance->fw_support_ieee =
3955 (instance->instancet->read_fw_status_reg(reg_set) &
3956 0x04000000);
3957
3958 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d",
3959 instance->fw_support_ieee);
3960
3961 if (instance->fw_support_ieee)
3962 instance->flag_ieee = 1;
3963
3964 return 0;
3965
3966 fail_fw_init:
3967
3968 pci_free_consistent(instance->pdev, reply_q_sz,
3969 instance->reply_queue, instance->reply_queue_h);
3970 fail_reply_queue:
3971 megasas_free_cmds(instance);
3972
3973 fail_alloc_cmds:
3974 return 1;
3975 }
3976
3977 /**
3978 * megasas_init_fw - Initializes the FW
3979 * @instance: Adapter soft state
3980 *
3981 * This is the main function for initializing firmware
3982 */
3983
3984 static int megasas_init_fw(struct megasas_instance *instance)
3985 {
3986 u32 max_sectors_1;
3987 u32 max_sectors_2;
3988 u32 tmp_sectors, msix_enable, scratch_pad_2;
3989 resource_size_t base_addr;
3990 struct megasas_register_set __iomem *reg_set;
3991 struct megasas_ctrl_info *ctrl_info;
3992 unsigned long bar_list;
3993 int i, loop, fw_msix_count = 0;
3994 struct IOV_111 *iovPtr;
3995
3996 /* Find first memory bar */
3997 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
3998 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long));
3999 if (pci_request_selected_regions(instance->pdev, instance->bar,
4000 "megasas: LSI")) {
4001 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
4002 return -EBUSY;
4003 }
4004
4005 base_addr = pci_resource_start(instance->pdev, instance->bar);
4006 instance->reg_set = ioremap_nocache(base_addr, 8192);
4007
4008 if (!instance->reg_set) {
4009 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
4010 goto fail_ioremap;
4011 }
4012
4013 reg_set = instance->reg_set;
4014
4015 switch (instance->pdev->device) {
4016 case PCI_DEVICE_ID_LSI_FUSION:
4017 case PCI_DEVICE_ID_LSI_PLASMA:
4018 case PCI_DEVICE_ID_LSI_INVADER:
4019 case PCI_DEVICE_ID_LSI_FURY:
4020 instance->instancet = &megasas_instance_template_fusion;
4021 break;
4022 case PCI_DEVICE_ID_LSI_SAS1078R:
4023 case PCI_DEVICE_ID_LSI_SAS1078DE:
4024 instance->instancet = &megasas_instance_template_ppc;
4025 break;
4026 case PCI_DEVICE_ID_LSI_SAS1078GEN2:
4027 case PCI_DEVICE_ID_LSI_SAS0079GEN2:
4028 instance->instancet = &megasas_instance_template_gen2;
4029 break;
4030 case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
4031 case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
4032 instance->instancet = &megasas_instance_template_skinny;
4033 break;
4034 case PCI_DEVICE_ID_LSI_SAS1064R:
4035 case PCI_DEVICE_ID_DELL_PERC5:
4036 default:
4037 instance->instancet = &megasas_instance_template_xscale;
4038 break;
4039 }
4040
4041 if (megasas_transition_to_ready(instance, 0)) {
4042 atomic_set(&instance->fw_reset_no_pci_access, 1);
4043 instance->instancet->adp_reset
4044 (instance, instance->reg_set);
4045 atomic_set(&instance->fw_reset_no_pci_access, 0);
4046 dev_info(&instance->pdev->dev,
4047 "megasas: FW restarted successfully from %s!\n",
4048 __func__);
4049
4050 /*waitting for about 30 second before retry*/
4051 ssleep(30);
4052
4053 if (megasas_transition_to_ready(instance, 0))
4054 goto fail_ready_state;
4055 }
4056
4057 /*
4058 * MSI-X host index 0 is common for all adapter.
4059 * It is used for all MPT based Adapters.
4060 */
4061 instance->reply_post_host_index_addr[0] =
4062 (u32 *)((u8 *)instance->reg_set +
4063 MPI2_REPLY_POST_HOST_INDEX_OFFSET);
4064
4065 /* Check if MSI-X is supported while in ready state */
4066 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) &
4067 0x4000000) >> 0x1a;
4068 if (msix_enable && !msix_disable) {
4069 scratch_pad_2 = readl
4070 (&instance->reg_set->outbound_scratch_pad_2);
4071 /* Check max MSI-X vectors */
4072 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4073 (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA)) {
4074 instance->msix_vectors = (scratch_pad_2
4075 & MR_MAX_REPLY_QUEUES_OFFSET) + 1;
4076 fw_msix_count = instance->msix_vectors;
4077 if (msix_vectors)
4078 instance->msix_vectors =
4079 min(msix_vectors,
4080 instance->msix_vectors);
4081 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER)
4082 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
4083 /* Invader/Fury supports more than 8 MSI-X */
4084 instance->msix_vectors = ((scratch_pad_2
4085 & MR_MAX_REPLY_QUEUES_EXT_OFFSET)
4086 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
4087 fw_msix_count = instance->msix_vectors;
4088 /* Save 1-15 reply post index address to local memory
4089 * Index 0 is already saved from reg offset
4090 * MPI2_REPLY_POST_HOST_INDEX_OFFSET
4091 */
4092 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) {
4093 instance->reply_post_host_index_addr[loop] =
4094 (u32 *)((u8 *)instance->reg_set +
4095 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET
4096 + (loop * 0x10));
4097 }
4098 if (msix_vectors)
4099 instance->msix_vectors = min(msix_vectors,
4100 instance->msix_vectors);
4101 } else
4102 instance->msix_vectors = 1;
4103 /* Don't bother allocating more MSI-X vectors than cpus */
4104 instance->msix_vectors = min(instance->msix_vectors,
4105 (unsigned int)num_online_cpus());
4106 for (i = 0; i < instance->msix_vectors; i++)
4107 instance->msixentry[i].entry = i;
4108 i = pci_enable_msix(instance->pdev, instance->msixentry,
4109 instance->msix_vectors);
4110 if (i >= 0) {
4111 if (i) {
4112 if (!pci_enable_msix(instance->pdev,
4113 instance->msixentry, i))
4114 instance->msix_vectors = i;
4115 else
4116 instance->msix_vectors = 0;
4117 }
4118 } else
4119 instance->msix_vectors = 0;
4120
4121 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports"
4122 "<%d> MSIX vector,Online CPUs: <%d>,"
4123 "Current MSIX <%d>\n", instance->host->host_no,
4124 fw_msix_count, (unsigned int)num_online_cpus(),
4125 instance->msix_vectors);
4126 }
4127
4128 /* Get operational params, sge flags, send init cmd to controller */
4129 if (instance->instancet->init_adapter(instance))
4130 goto fail_init_adapter;
4131
4132 printk(KERN_ERR "megasas: INIT adapter done\n");
4133
4134 /** for passthrough
4135 * the following function will get the PD LIST.
4136 */
4137
4138 memset(instance->pd_list, 0 ,
4139 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)));
4140 if (megasas_get_pd_list(instance) < 0) {
4141 printk(KERN_ERR "megasas: failed to get PD list\n");
4142 goto fail_init_adapter;
4143 }
4144
4145 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
4146 if (megasas_ld_list_query(instance,
4147 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
4148 megasas_get_ld_list(instance);
4149
4150 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
4151
4152 /*
4153 * Compute the max allowed sectors per IO: The controller info has two
4154 * limits on max sectors. Driver should use the minimum of these two.
4155 *
4156 * 1 << stripe_sz_ops.min = max sectors per strip
4157 *
4158 * Note that older firmwares ( < FW ver 30) didn't report information
4159 * to calculate max_sectors_1. So the number ended up as zero always.
4160 */
4161 tmp_sectors = 0;
4162 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
4163
4164 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
4165 le16_to_cpu(ctrl_info->max_strips_per_io);
4166 max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size);
4167
4168 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
4169
4170 /*Check whether controller is iMR or MR */
4171 if (ctrl_info->memory_size) {
4172 instance->is_imr = 0;
4173 dev_info(&instance->pdev->dev, "Controller type: MR,"
4174 "Memory size is: %dMB\n",
4175 le16_to_cpu(ctrl_info->memory_size));
4176 } else {
4177 instance->is_imr = 1;
4178 dev_info(&instance->pdev->dev,
4179 "Controller type: iMR\n");
4180 }
4181 /* OnOffProperties are converted into CPU arch*/
4182 le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties);
4183 instance->disableOnlineCtrlReset =
4184 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
4185 /* adapterOperations2 are converted into CPU arch*/
4186 le32_to_cpus((u32 *)&ctrl_info->adapterOperations2);
4187 instance->mpio = ctrl_info->adapterOperations2.mpio;
4188 instance->UnevenSpanSupport =
4189 ctrl_info->adapterOperations2.supportUnevenSpans;
4190 if (instance->UnevenSpanSupport) {
4191 struct fusion_context *fusion = instance->ctrl_context;
4192 dev_info(&instance->pdev->dev, "FW supports: "
4193 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport);
4194 if (MR_ValidateMapInfo(instance))
4195 fusion->fast_path_io = 1;
4196 else
4197 fusion->fast_path_io = 0;
4198
4199 }
4200 if (ctrl_info->host_interface.SRIOV) {
4201 if (!ctrl_info->adapterOperations2.activePassive)
4202 instance->PlasmaFW111 = 1;
4203
4204 if (!instance->PlasmaFW111)
4205 instance->requestorId =
4206 ctrl_info->iov.requestorId;
4207 else {
4208 iovPtr = (struct IOV_111 *)((unsigned char *)ctrl_info + IOV_111_OFFSET);
4209 instance->requestorId = iovPtr->requestorId;
4210 }
4211 printk(KERN_WARNING "megaraid_sas: I am VF "
4212 "requestorId %d\n", instance->requestorId);
4213 }
4214 }
4215 instance->max_sectors_per_req = instance->max_num_sge *
4216 PAGE_SIZE / 512;
4217 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
4218 instance->max_sectors_per_req = tmp_sectors;
4219
4220 kfree(ctrl_info);
4221
4222 /* Check for valid throttlequeuedepth module parameter */
4223 if (instance->is_imr) {
4224 if (throttlequeuedepth > (instance->max_fw_cmds -
4225 MEGASAS_SKINNY_INT_CMDS))
4226 instance->throttlequeuedepth =
4227 MEGASAS_THROTTLE_QUEUE_DEPTH;
4228 else
4229 instance->throttlequeuedepth = throttlequeuedepth;
4230 } else {
4231 if (throttlequeuedepth > (instance->max_fw_cmds -
4232 MEGASAS_INT_CMDS))
4233 instance->throttlequeuedepth =
4234 MEGASAS_THROTTLE_QUEUE_DEPTH;
4235 else
4236 instance->throttlequeuedepth = throttlequeuedepth;
4237 }
4238
4239 /*
4240 * Setup tasklet for cmd completion
4241 */
4242
4243 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
4244 (unsigned long)instance);
4245
4246 /* Launch SR-IOV heartbeat timer */
4247 if (instance->requestorId) {
4248 if (!megasas_sriov_start_heartbeat(instance, 1))
4249 megasas_start_timer(instance,
4250 &instance->sriov_heartbeat_timer,
4251 megasas_sriov_heartbeat_handler,
4252 MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF);
4253 else
4254 instance->skip_heartbeat_timer_del = 1;
4255 }
4256
4257 return 0;
4258
4259 fail_init_adapter:
4260 fail_ready_state:
4261 iounmap(instance->reg_set);
4262
4263 fail_ioremap:
4264 pci_release_selected_regions(instance->pdev, instance->bar);
4265
4266 return -EINVAL;
4267 }
4268
4269 /**
4270 * megasas_release_mfi - Reverses the FW initialization
4271 * @intance: Adapter soft state
4272 */
4273 static void megasas_release_mfi(struct megasas_instance *instance)
4274 {
4275 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
4276
4277 if (instance->reply_queue)
4278 pci_free_consistent(instance->pdev, reply_q_sz,
4279 instance->reply_queue, instance->reply_queue_h);
4280
4281 megasas_free_cmds(instance);
4282
4283 iounmap(instance->reg_set);
4284
4285 pci_release_selected_regions(instance->pdev, instance->bar);
4286 }
4287
4288 /**
4289 * megasas_get_seq_num - Gets latest event sequence numbers
4290 * @instance: Adapter soft state
4291 * @eli: FW event log sequence numbers information
4292 *
4293 * FW maintains a log of all events in a non-volatile area. Upper layers would
4294 * usually find out the latest sequence number of the events, the seq number at
4295 * the boot etc. They would "read" all the events below the latest seq number
4296 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
4297 * number), they would subsribe to AEN (asynchronous event notification) and
4298 * wait for the events to happen.
4299 */
4300 static int
4301 megasas_get_seq_num(struct megasas_instance *instance,
4302 struct megasas_evt_log_info *eli)
4303 {
4304 struct megasas_cmd *cmd;
4305 struct megasas_dcmd_frame *dcmd;
4306 struct megasas_evt_log_info *el_info;
4307 dma_addr_t el_info_h = 0;
4308
4309 cmd = megasas_get_cmd(instance);
4310
4311 if (!cmd) {
4312 return -ENOMEM;
4313 }
4314
4315 dcmd = &cmd->frame->dcmd;
4316 el_info = pci_alloc_consistent(instance->pdev,
4317 sizeof(struct megasas_evt_log_info),
4318 &el_info_h);
4319
4320 if (!el_info) {
4321 megasas_return_cmd(instance, cmd);
4322 return -ENOMEM;
4323 }
4324
4325 memset(el_info, 0, sizeof(*el_info));
4326 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4327
4328 dcmd->cmd = MFI_CMD_DCMD;
4329 dcmd->cmd_status = 0x0;
4330 dcmd->sge_count = 1;
4331 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
4332 dcmd->timeout = 0;
4333 dcmd->pad_0 = 0;
4334 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info));
4335 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO);
4336 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h);
4337 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info));
4338
4339 if (megasas_issue_blocked_cmd(instance, cmd, 30))
4340 dev_err(&instance->pdev->dev, "Command timedout"
4341 "from %s\n", __func__);
4342 else {
4343 /*
4344 * Copy the data back into callers buffer
4345 */
4346 eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num);
4347 eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num);
4348 eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num);
4349 eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num);
4350 eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num);
4351 }
4352
4353 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
4354 el_info, el_info_h);
4355
4356 megasas_return_cmd(instance, cmd);
4357
4358 return 0;
4359 }
4360
4361 /**
4362 * megasas_register_aen - Registers for asynchronous event notification
4363 * @instance: Adapter soft state
4364 * @seq_num: The starting sequence number
4365 * @class_locale: Class of the event
4366 *
4367 * This function subscribes for AEN for events beyond the @seq_num. It requests
4368 * to be notified if and only if the event is of type @class_locale
4369 */
4370 static int
4371 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
4372 u32 class_locale_word)
4373 {
4374 int ret_val;
4375 struct megasas_cmd *cmd;
4376 struct megasas_dcmd_frame *dcmd;
4377 union megasas_evt_class_locale curr_aen;
4378 union megasas_evt_class_locale prev_aen;
4379
4380 /*
4381 * If there an AEN pending already (aen_cmd), check if the
4382 * class_locale of that pending AEN is inclusive of the new
4383 * AEN request we currently have. If it is, then we don't have
4384 * to do anything. In other words, whichever events the current
4385 * AEN request is subscribing to, have already been subscribed
4386 * to.
4387 *
4388 * If the old_cmd is _not_ inclusive, then we have to abort
4389 * that command, form a class_locale that is superset of both
4390 * old and current and re-issue to the FW
4391 */
4392
4393 curr_aen.word = class_locale_word;
4394
4395 if (instance->aen_cmd) {
4396
4397 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
4398 prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale);
4399
4400 /*
4401 * A class whose enum value is smaller is inclusive of all
4402 * higher values. If a PROGRESS (= -1) was previously
4403 * registered, then a new registration requests for higher
4404 * classes need not be sent to FW. They are automatically
4405 * included.
4406 *
4407 * Locale numbers don't have such hierarchy. They are bitmap
4408 * values
4409 */
4410 if ((prev_aen.members.class <= curr_aen.members.class) &&
4411 !((prev_aen.members.locale & curr_aen.members.locale) ^
4412 curr_aen.members.locale)) {
4413 /*
4414 * Previously issued event registration includes
4415 * current request. Nothing to do.
4416 */
4417 return 0;
4418 } else {
4419 curr_aen.members.locale |= prev_aen.members.locale;
4420
4421 if (prev_aen.members.class < curr_aen.members.class)
4422 curr_aen.members.class = prev_aen.members.class;
4423
4424 instance->aen_cmd->abort_aen = 1;
4425 ret_val = megasas_issue_blocked_abort_cmd(instance,
4426 instance->
4427 aen_cmd, 30);
4428
4429 if (ret_val) {
4430 printk(KERN_DEBUG "megasas: Failed to abort "
4431 "previous AEN command\n");
4432 return ret_val;
4433 }
4434 }
4435 }
4436
4437 cmd = megasas_get_cmd(instance);
4438
4439 if (!cmd)
4440 return -ENOMEM;
4441
4442 dcmd = &cmd->frame->dcmd;
4443
4444 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
4445
4446 /*
4447 * Prepare DCMD for aen registration
4448 */
4449 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4450
4451 dcmd->cmd = MFI_CMD_DCMD;
4452 dcmd->cmd_status = 0x0;
4453 dcmd->sge_count = 1;
4454 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
4455 dcmd->timeout = 0;
4456 dcmd->pad_0 = 0;
4457 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail));
4458 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT);
4459 dcmd->mbox.w[0] = cpu_to_le32(seq_num);
4460 instance->last_seq_num = seq_num;
4461 dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word);
4462 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h);
4463 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail));
4464
4465 if (instance->aen_cmd != NULL) {
4466 megasas_return_cmd(instance, cmd);
4467 return 0;
4468 }
4469
4470 /*
4471 * Store reference to the cmd used to register for AEN. When an
4472 * application wants us to register for AEN, we have to abort this
4473 * cmd and re-register with a new EVENT LOCALE supplied by that app
4474 */
4475 instance->aen_cmd = cmd;
4476
4477 /*
4478 * Issue the aen registration frame
4479 */
4480 instance->instancet->issue_dcmd(instance, cmd);
4481
4482 return 0;
4483 }
4484
4485 /**
4486 * megasas_start_aen - Subscribes to AEN during driver load time
4487 * @instance: Adapter soft state
4488 */
4489 static int megasas_start_aen(struct megasas_instance *instance)
4490 {
4491 struct megasas_evt_log_info eli;
4492 union megasas_evt_class_locale class_locale;
4493
4494 /*
4495 * Get the latest sequence number from FW
4496 */
4497 memset(&eli, 0, sizeof(eli));
4498
4499 if (megasas_get_seq_num(instance, &eli))
4500 return -1;
4501
4502 /*
4503 * Register AEN with FW for latest sequence number plus 1
4504 */
4505 class_locale.members.reserved = 0;
4506 class_locale.members.locale = MR_EVT_LOCALE_ALL;
4507 class_locale.members.class = MR_EVT_CLASS_DEBUG;
4508
4509 return megasas_register_aen(instance,
4510 eli.newest_seq_num + 1,
4511 class_locale.word);
4512 }
4513
4514 /**
4515 * megasas_io_attach - Attaches this driver to SCSI mid-layer
4516 * @instance: Adapter soft state
4517 */
4518 static int megasas_io_attach(struct megasas_instance *instance)
4519 {
4520 struct Scsi_Host *host = instance->host;
4521
4522 /*
4523 * Export parameters required by SCSI mid-layer
4524 */
4525 host->irq = instance->pdev->irq;
4526 host->unique_id = instance->unique_id;
4527 if (instance->is_imr) {
4528 host->can_queue =
4529 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
4530 } else
4531 host->can_queue =
4532 instance->max_fw_cmds - MEGASAS_INT_CMDS;
4533 host->this_id = instance->init_id;
4534 host->sg_tablesize = instance->max_num_sge;
4535
4536 if (instance->fw_support_ieee)
4537 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
4538
4539 /*
4540 * Check if the module parameter value for max_sectors can be used
4541 */
4542 if (max_sectors && max_sectors < instance->max_sectors_per_req)
4543 instance->max_sectors_per_req = max_sectors;
4544 else {
4545 if (max_sectors) {
4546 if (((instance->pdev->device ==
4547 PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
4548 (instance->pdev->device ==
4549 PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
4550 (max_sectors <= MEGASAS_MAX_SECTORS)) {
4551 instance->max_sectors_per_req = max_sectors;
4552 } else {
4553 printk(KERN_INFO "megasas: max_sectors should be > 0"
4554 "and <= %d (or < 1MB for GEN2 controller)\n",
4555 instance->max_sectors_per_req);
4556 }
4557 }
4558 }
4559
4560 host->max_sectors = instance->max_sectors_per_req;
4561 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
4562 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
4563 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
4564 host->max_lun = MEGASAS_MAX_LUN;
4565 host->max_cmd_len = 16;
4566
4567 /* Fusion only supports host reset */
4568 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4569 (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) ||
4570 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4571 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
4572 host->hostt->eh_device_reset_handler = NULL;
4573 host->hostt->eh_bus_reset_handler = NULL;
4574 }
4575
4576 /*
4577 * Notify the mid-layer about the new controller
4578 */
4579 if (scsi_add_host(host, &instance->pdev->dev)) {
4580 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
4581 return -ENODEV;
4582 }
4583
4584 /*
4585 * Trigger SCSI to scan our drives
4586 */
4587 scsi_scan_host(host);
4588 return 0;
4589 }
4590
4591 static int
4592 megasas_set_dma_mask(struct pci_dev *pdev)
4593 {
4594 /*
4595 * All our contollers are capable of performing 64-bit DMA
4596 */
4597 if (IS_DMA64) {
4598 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
4599
4600 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4601 goto fail_set_dma_mask;
4602 }
4603 } else {
4604 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4605 goto fail_set_dma_mask;
4606 }
4607 /*
4608 * Ensure that all data structures are allocated in 32-bit
4609 * memory.
4610 */
4611 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) {
4612 /* Try 32bit DMA mask and 32 bit Consistent dma mask */
4613 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
4614 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
4615 dev_info(&pdev->dev, "set 32bit DMA mask"
4616 "and 32 bit consistent mask\n");
4617 else
4618 goto fail_set_dma_mask;
4619 }
4620
4621 return 0;
4622
4623 fail_set_dma_mask:
4624 return 1;
4625 }
4626
4627 /**
4628 * megasas_probe_one - PCI hotplug entry point
4629 * @pdev: PCI device structure
4630 * @id: PCI ids of supported hotplugged adapter
4631 */
4632 static int megasas_probe_one(struct pci_dev *pdev,
4633 const struct pci_device_id *id)
4634 {
4635 int rval, pos, i, j, cpu;
4636 struct Scsi_Host *host;
4637 struct megasas_instance *instance;
4638 u16 control = 0;
4639
4640 /* Reset MSI-X in the kdump kernel */
4641 if (reset_devices) {
4642 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4643 if (pos) {
4644 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS,
4645 &control);
4646 if (control & PCI_MSIX_FLAGS_ENABLE) {
4647 dev_info(&pdev->dev, "resetting MSI-X\n");
4648 pci_write_config_word(pdev,
4649 pos + PCI_MSIX_FLAGS,
4650 control &
4651 ~PCI_MSIX_FLAGS_ENABLE);
4652 }
4653 }
4654 }
4655
4656 /*
4657 * Announce PCI information
4658 */
4659 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
4660 pdev->vendor, pdev->device, pdev->subsystem_vendor,
4661 pdev->subsystem_device);
4662
4663 printk("bus %d:slot %d:func %d\n",
4664 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
4665
4666 /*
4667 * PCI prepping: enable device set bus mastering and dma mask
4668 */
4669 rval = pci_enable_device_mem(pdev);
4670
4671 if (rval) {
4672 return rval;
4673 }
4674
4675 pci_set_master(pdev);
4676
4677 if (megasas_set_dma_mask(pdev))
4678 goto fail_set_dma_mask;
4679
4680 host = scsi_host_alloc(&megasas_template,
4681 sizeof(struct megasas_instance));
4682
4683 if (!host) {
4684 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
4685 goto fail_alloc_instance;
4686 }
4687
4688 instance = (struct megasas_instance *)host->hostdata;
4689 memset(instance, 0, sizeof(*instance));
4690 atomic_set( &instance->fw_reset_no_pci_access, 0 );
4691 instance->pdev = pdev;
4692
4693 switch (instance->pdev->device) {
4694 case PCI_DEVICE_ID_LSI_FUSION:
4695 case PCI_DEVICE_ID_LSI_PLASMA:
4696 case PCI_DEVICE_ID_LSI_INVADER:
4697 case PCI_DEVICE_ID_LSI_FURY:
4698 {
4699 struct fusion_context *fusion;
4700
4701 instance->ctrl_context =
4702 kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
4703 if (!instance->ctrl_context) {
4704 printk(KERN_DEBUG "megasas: Failed to allocate "
4705 "memory for Fusion context info\n");
4706 goto fail_alloc_dma_buf;
4707 }
4708 fusion = instance->ctrl_context;
4709 INIT_LIST_HEAD(&fusion->cmd_pool);
4710 spin_lock_init(&fusion->cmd_pool_lock);
4711 }
4712 break;
4713 default: /* For all other supported controllers */
4714
4715 instance->producer =
4716 pci_alloc_consistent(pdev, sizeof(u32),
4717 &instance->producer_h);
4718 instance->consumer =
4719 pci_alloc_consistent(pdev, sizeof(u32),
4720 &instance->consumer_h);
4721
4722 if (!instance->producer || !instance->consumer) {
4723 printk(KERN_DEBUG "megasas: Failed to allocate"
4724 "memory for producer, consumer\n");
4725 goto fail_alloc_dma_buf;
4726 }
4727
4728 *instance->producer = 0;
4729 *instance->consumer = 0;
4730 break;
4731 }
4732
4733 megasas_poll_wait_aen = 0;
4734 instance->flag_ieee = 0;
4735 instance->ev = NULL;
4736 instance->issuepend_done = 1;
4737 instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
4738 instance->is_imr = 0;
4739 megasas_poll_wait_aen = 0;
4740
4741 instance->evt_detail = pci_alloc_consistent(pdev,
4742 sizeof(struct
4743 megasas_evt_detail),
4744 &instance->evt_detail_h);
4745
4746 if (!instance->evt_detail) {
4747 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
4748 "event detail structure\n");
4749 goto fail_alloc_dma_buf;
4750 }
4751
4752 /*
4753 * Initialize locks and queues
4754 */
4755 INIT_LIST_HEAD(&instance->cmd_pool);
4756 INIT_LIST_HEAD(&instance->internal_reset_pending_q);
4757
4758 atomic_set(&instance->fw_outstanding,0);
4759
4760 init_waitqueue_head(&instance->int_cmd_wait_q);
4761 init_waitqueue_head(&instance->abort_cmd_wait_q);
4762
4763 spin_lock_init(&instance->cmd_pool_lock);
4764 spin_lock_init(&instance->hba_lock);
4765 spin_lock_init(&instance->completion_lock);
4766
4767 mutex_init(&instance->aen_mutex);
4768 mutex_init(&instance->reset_mutex);
4769
4770 /*
4771 * Initialize PCI related and misc parameters
4772 */
4773 instance->host = host;
4774 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
4775 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
4776
4777 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
4778 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
4779 instance->flag_ieee = 1;
4780 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
4781 } else
4782 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
4783
4784 megasas_dbg_lvl = 0;
4785 instance->flag = 0;
4786 instance->unload = 1;
4787 instance->last_time = 0;
4788 instance->disableOnlineCtrlReset = 1;
4789 instance->UnevenSpanSupport = 0;
4790
4791 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4792 (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) ||
4793 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4794 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4795 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
4796 else
4797 INIT_WORK(&instance->work_init, process_fw_state_change_wq);
4798
4799 /*
4800 * Initialize MFI Firmware
4801 */
4802 if (megasas_init_fw(instance))
4803 goto fail_init_mfi;
4804
4805 if (instance->requestorId) {
4806 if (instance->PlasmaFW111) {
4807 instance->vf_affiliation_111 =
4808 pci_alloc_consistent(pdev, sizeof(struct MR_LD_VF_AFFILIATION_111),
4809 &instance->vf_affiliation_111_h);
4810 if (!instance->vf_affiliation_111)
4811 printk(KERN_WARNING "megasas: Can't allocate "
4812 "memory for VF affiliation buffer\n");
4813 } else {
4814 instance->vf_affiliation =
4815 pci_alloc_consistent(pdev,
4816 (MAX_LOGICAL_DRIVES + 1) *
4817 sizeof(struct MR_LD_VF_AFFILIATION),
4818 &instance->vf_affiliation_h);
4819 if (!instance->vf_affiliation)
4820 printk(KERN_WARNING "megasas: Can't allocate "
4821 "memory for VF affiliation buffer\n");
4822 }
4823 }
4824
4825 retry_irq_register:
4826 /*
4827 * Register IRQ
4828 */
4829 if (instance->msix_vectors) {
4830 cpu = cpumask_first(cpu_online_mask);
4831 for (i = 0; i < instance->msix_vectors; i++) {
4832 instance->irq_context[i].instance = instance;
4833 instance->irq_context[i].MSIxIndex = i;
4834 if (request_irq(instance->msixentry[i].vector,
4835 instance->instancet->service_isr, 0,
4836 "megasas",
4837 &instance->irq_context[i])) {
4838 printk(KERN_DEBUG "megasas: Failed to "
4839 "register IRQ for vector %d.\n", i);
4840 for (j = 0; j < i; j++) {
4841 irq_set_affinity_hint(
4842 instance->msixentry[j].vector, NULL);
4843 free_irq(
4844 instance->msixentry[j].vector,
4845 &instance->irq_context[j]);
4846 }
4847 /* Retry irq register for IO_APIC */
4848 instance->msix_vectors = 0;
4849 goto retry_irq_register;
4850 }
4851 if (irq_set_affinity_hint(instance->msixentry[i].vector,
4852 get_cpu_mask(cpu)))
4853 dev_err(&instance->pdev->dev, "Error setting"
4854 "affinity hint for cpu %d\n", cpu);
4855 cpu = cpumask_next(cpu, cpu_online_mask);
4856 }
4857 } else {
4858 instance->irq_context[0].instance = instance;
4859 instance->irq_context[0].MSIxIndex = 0;
4860 if (request_irq(pdev->irq, instance->instancet->service_isr,
4861 IRQF_SHARED, "megasas",
4862 &instance->irq_context[0])) {
4863 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4864 goto fail_irq;
4865 }
4866 }
4867
4868 instance->instancet->enable_intr(instance);
4869
4870 /*
4871 * Store instance in PCI softstate
4872 */
4873 pci_set_drvdata(pdev, instance);
4874
4875 /*
4876 * Add this controller to megasas_mgmt_info structure so that it
4877 * can be exported to management applications
4878 */
4879 megasas_mgmt_info.count++;
4880 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
4881 megasas_mgmt_info.max_index++;
4882
4883 /*
4884 * Register with SCSI mid-layer
4885 */
4886 if (megasas_io_attach(instance))
4887 goto fail_io_attach;
4888
4889 instance->unload = 0;
4890
4891 /*
4892 * Initiate AEN (Asynchronous Event Notification)
4893 */
4894 if (megasas_start_aen(instance)) {
4895 printk(KERN_DEBUG "megasas: start aen failed\n");
4896 goto fail_start_aen;
4897 }
4898
4899 return 0;
4900
4901 fail_start_aen:
4902 fail_io_attach:
4903 megasas_mgmt_info.count--;
4904 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
4905 megasas_mgmt_info.max_index--;
4906
4907 instance->instancet->disable_intr(instance);
4908 if (instance->msix_vectors)
4909 for (i = 0; i < instance->msix_vectors; i++) {
4910 irq_set_affinity_hint(
4911 instance->msixentry[i].vector, NULL);
4912 free_irq(instance->msixentry[i].vector,
4913 &instance->irq_context[i]);
4914 }
4915 else
4916 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4917 fail_irq:
4918 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4919 (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) ||
4920 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4921 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4922 megasas_release_fusion(instance);
4923 else
4924 megasas_release_mfi(instance);
4925 fail_init_mfi:
4926 if (instance->msix_vectors)
4927 pci_disable_msix(instance->pdev);
4928 fail_alloc_dma_buf:
4929 if (instance->evt_detail)
4930 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4931 instance->evt_detail,
4932 instance->evt_detail_h);
4933
4934 if (instance->producer)
4935 pci_free_consistent(pdev, sizeof(u32), instance->producer,
4936 instance->producer_h);
4937 if (instance->consumer)
4938 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4939 instance->consumer_h);
4940 scsi_host_put(host);
4941
4942 fail_alloc_instance:
4943 fail_set_dma_mask:
4944 pci_disable_device(pdev);
4945
4946 return -ENODEV;
4947 }
4948
4949 /**
4950 * megasas_flush_cache - Requests FW to flush all its caches
4951 * @instance: Adapter soft state
4952 */
4953 static void megasas_flush_cache(struct megasas_instance *instance)
4954 {
4955 struct megasas_cmd *cmd;
4956 struct megasas_dcmd_frame *dcmd;
4957
4958 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4959 return;
4960
4961 cmd = megasas_get_cmd(instance);
4962
4963 if (!cmd)
4964 return;
4965
4966 dcmd = &cmd->frame->dcmd;
4967
4968 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4969
4970 dcmd->cmd = MFI_CMD_DCMD;
4971 dcmd->cmd_status = 0x0;
4972 dcmd->sge_count = 0;
4973 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
4974 dcmd->timeout = 0;
4975 dcmd->pad_0 = 0;
4976 dcmd->data_xfer_len = 0;
4977 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH);
4978 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
4979
4980 if (megasas_issue_blocked_cmd(instance, cmd, 30))
4981 dev_err(&instance->pdev->dev, "Command timedout"
4982 " from %s\n", __func__);
4983
4984 megasas_return_cmd(instance, cmd);
4985
4986 return;
4987 }
4988
4989 /**
4990 * megasas_shutdown_controller - Instructs FW to shutdown the controller
4991 * @instance: Adapter soft state
4992 * @opcode: Shutdown/Hibernate
4993 */
4994 static void megasas_shutdown_controller(struct megasas_instance *instance,
4995 u32 opcode)
4996 {
4997 struct megasas_cmd *cmd;
4998 struct megasas_dcmd_frame *dcmd;
4999
5000 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
5001 return;
5002
5003 cmd = megasas_get_cmd(instance);
5004
5005 if (!cmd)
5006 return;
5007
5008 if (instance->aen_cmd)
5009 megasas_issue_blocked_abort_cmd(instance,
5010 instance->aen_cmd, 30);
5011 if (instance->map_update_cmd)
5012 megasas_issue_blocked_abort_cmd(instance,
5013 instance->map_update_cmd, 30);
5014 dcmd = &cmd->frame->dcmd;
5015
5016 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
5017
5018 dcmd->cmd = MFI_CMD_DCMD;
5019 dcmd->cmd_status = 0x0;
5020 dcmd->sge_count = 0;
5021 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
5022 dcmd->timeout = 0;
5023 dcmd->pad_0 = 0;
5024 dcmd->data_xfer_len = 0;
5025 dcmd->opcode = cpu_to_le32(opcode);
5026
5027 if (megasas_issue_blocked_cmd(instance, cmd, 30))
5028 dev_err(&instance->pdev->dev, "Command timedout"
5029 "from %s\n", __func__);
5030
5031 megasas_return_cmd(instance, cmd);
5032
5033 return;
5034 }
5035
5036 #ifdef CONFIG_PM
5037 /**
5038 * megasas_suspend - driver suspend entry point
5039 * @pdev: PCI device structure
5040 * @state: PCI power state to suspend routine
5041 */
5042 static int
5043 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
5044 {
5045 struct Scsi_Host *host;
5046 struct megasas_instance *instance;
5047 int i;
5048
5049 instance = pci_get_drvdata(pdev);
5050 host = instance->host;
5051 instance->unload = 1;
5052
5053 /* Shutdown SR-IOV heartbeat timer */
5054 if (instance->requestorId && !instance->skip_heartbeat_timer_del)
5055 del_timer_sync(&instance->sriov_heartbeat_timer);
5056
5057 megasas_flush_cache(instance);
5058 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
5059
5060 /* cancel the delayed work if this work still in queue */
5061 if (instance->ev != NULL) {
5062 struct megasas_aen_event *ev = instance->ev;
5063 cancel_delayed_work_sync(&ev->hotplug_work);
5064 instance->ev = NULL;
5065 }
5066
5067 tasklet_kill(&instance->isr_tasklet);
5068
5069 pci_set_drvdata(instance->pdev, instance);
5070 instance->instancet->disable_intr(instance);
5071
5072 if (instance->msix_vectors)
5073 for (i = 0; i < instance->msix_vectors; i++) {
5074 irq_set_affinity_hint(
5075 instance->msixentry[i].vector, NULL);
5076 free_irq(instance->msixentry[i].vector,
5077 &instance->irq_context[i]);
5078 }
5079 else
5080 free_irq(instance->pdev->irq, &instance->irq_context[0]);
5081 if (instance->msix_vectors)
5082 pci_disable_msix(instance->pdev);
5083
5084 pci_save_state(pdev);
5085 pci_disable_device(pdev);
5086
5087 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5088
5089 return 0;
5090 }
5091
5092 /**
5093 * megasas_resume- driver resume entry point
5094 * @pdev: PCI device structure
5095 */
5096 static int
5097 megasas_resume(struct pci_dev *pdev)
5098 {
5099 int rval, i, j, cpu;
5100 struct Scsi_Host *host;
5101 struct megasas_instance *instance;
5102
5103 instance = pci_get_drvdata(pdev);
5104 host = instance->host;
5105 pci_set_power_state(pdev, PCI_D0);
5106 pci_enable_wake(pdev, PCI_D0, 0);
5107 pci_restore_state(pdev);
5108
5109 /*
5110 * PCI prepping: enable device set bus mastering and dma mask
5111 */
5112 rval = pci_enable_device_mem(pdev);
5113
5114 if (rval) {
5115 printk(KERN_ERR "megasas: Enable device failed\n");
5116 return rval;
5117 }
5118
5119 pci_set_master(pdev);
5120
5121 if (megasas_set_dma_mask(pdev))
5122 goto fail_set_dma_mask;
5123
5124 /*
5125 * Initialize MFI Firmware
5126 */
5127
5128 atomic_set(&instance->fw_outstanding, 0);
5129
5130 /*
5131 * We expect the FW state to be READY
5132 */
5133 if (megasas_transition_to_ready(instance, 0))
5134 goto fail_ready_state;
5135
5136 /* Now re-enable MSI-X */
5137 if (instance->msix_vectors)
5138 pci_enable_msix(instance->pdev, instance->msixentry,
5139 instance->msix_vectors);
5140
5141 switch (instance->pdev->device) {
5142 case PCI_DEVICE_ID_LSI_FUSION:
5143 case PCI_DEVICE_ID_LSI_PLASMA:
5144 case PCI_DEVICE_ID_LSI_INVADER:
5145 case PCI_DEVICE_ID_LSI_FURY:
5146 {
5147 megasas_reset_reply_desc(instance);
5148 if (megasas_ioc_init_fusion(instance)) {
5149 megasas_free_cmds(instance);
5150 megasas_free_cmds_fusion(instance);
5151 goto fail_init_mfi;
5152 }
5153 if (!megasas_get_map_info(instance))
5154 megasas_sync_map_info(instance);
5155 }
5156 break;
5157 default:
5158 *instance->producer = 0;
5159 *instance->consumer = 0;
5160 if (megasas_issue_init_mfi(instance))
5161 goto fail_init_mfi;
5162 break;
5163 }
5164
5165 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
5166 (unsigned long)instance);
5167
5168 /*
5169 * Register IRQ
5170 */
5171 if (instance->msix_vectors) {
5172 cpu = cpumask_first(cpu_online_mask);
5173 for (i = 0 ; i < instance->msix_vectors; i++) {
5174 instance->irq_context[i].instance = instance;
5175 instance->irq_context[i].MSIxIndex = i;
5176 if (request_irq(instance->msixentry[i].vector,
5177 instance->instancet->service_isr, 0,
5178 "megasas",
5179 &instance->irq_context[i])) {
5180 printk(KERN_DEBUG "megasas: Failed to "
5181 "register IRQ for vector %d.\n", i);
5182 for (j = 0; j < i; j++) {
5183 irq_set_affinity_hint(
5184 instance->msixentry[j].vector, NULL);
5185 free_irq(
5186 instance->msixentry[j].vector,
5187 &instance->irq_context[j]);
5188 }
5189 goto fail_irq;
5190 }
5191
5192 if (irq_set_affinity_hint(instance->msixentry[i].vector,
5193 get_cpu_mask(cpu)))
5194 dev_err(&instance->pdev->dev, "Error setting"
5195 "affinity hint for cpu %d\n", cpu);
5196 cpu = cpumask_next(cpu, cpu_online_mask);
5197 }
5198 } else {
5199 instance->irq_context[0].instance = instance;
5200 instance->irq_context[0].MSIxIndex = 0;
5201 if (request_irq(pdev->irq, instance->instancet->service_isr,
5202 IRQF_SHARED, "megasas",
5203 &instance->irq_context[0])) {
5204 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
5205 goto fail_irq;
5206 }
5207 }
5208
5209 /* Re-launch SR-IOV heartbeat timer */
5210 if (instance->requestorId) {
5211 if (!megasas_sriov_start_heartbeat(instance, 0))
5212 megasas_start_timer(instance,
5213 &instance->sriov_heartbeat_timer,
5214 megasas_sriov_heartbeat_handler,
5215 MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF);
5216 else
5217 instance->skip_heartbeat_timer_del = 1;
5218 }
5219
5220 instance->instancet->enable_intr(instance);
5221 instance->unload = 0;
5222
5223 /*
5224 * Initiate AEN (Asynchronous Event Notification)
5225 */
5226 if (megasas_start_aen(instance))
5227 printk(KERN_ERR "megasas: Start AEN failed\n");
5228
5229 return 0;
5230
5231 fail_irq:
5232 fail_init_mfi:
5233 if (instance->evt_detail)
5234 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
5235 instance->evt_detail,
5236 instance->evt_detail_h);
5237
5238 if (instance->producer)
5239 pci_free_consistent(pdev, sizeof(u32), instance->producer,
5240 instance->producer_h);
5241 if (instance->consumer)
5242 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
5243 instance->consumer_h);
5244 scsi_host_put(host);
5245
5246 fail_set_dma_mask:
5247 fail_ready_state:
5248
5249 pci_disable_device(pdev);
5250
5251 return -ENODEV;
5252 }
5253 #else
5254 #define megasas_suspend NULL
5255 #define megasas_resume NULL
5256 #endif
5257
5258 /**
5259 * megasas_detach_one - PCI hot"un"plug entry point
5260 * @pdev: PCI device structure
5261 */
5262 static void megasas_detach_one(struct pci_dev *pdev)
5263 {
5264 int i;
5265 struct Scsi_Host *host;
5266 struct megasas_instance *instance;
5267 struct fusion_context *fusion;
5268
5269 instance = pci_get_drvdata(pdev);
5270 instance->unload = 1;
5271 host = instance->host;
5272 fusion = instance->ctrl_context;
5273
5274 /* Shutdown SR-IOV heartbeat timer */
5275 if (instance->requestorId && !instance->skip_heartbeat_timer_del)
5276 del_timer_sync(&instance->sriov_heartbeat_timer);
5277
5278 scsi_remove_host(instance->host);
5279 megasas_flush_cache(instance);
5280 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
5281
5282 /* cancel the delayed work if this work still in queue*/
5283 if (instance->ev != NULL) {
5284 struct megasas_aen_event *ev = instance->ev;
5285 cancel_delayed_work_sync(&ev->hotplug_work);
5286 instance->ev = NULL;
5287 }
5288
5289 /* cancel all wait events */
5290 wake_up_all(&instance->int_cmd_wait_q);
5291
5292 tasklet_kill(&instance->isr_tasklet);
5293
5294 /*
5295 * Take the instance off the instance array. Note that we will not
5296 * decrement the max_index. We let this array be sparse array
5297 */
5298 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
5299 if (megasas_mgmt_info.instance[i] == instance) {
5300 megasas_mgmt_info.count--;
5301 megasas_mgmt_info.instance[i] = NULL;
5302
5303 break;
5304 }
5305 }
5306
5307 instance->instancet->disable_intr(instance);
5308
5309 if (instance->msix_vectors)
5310 for (i = 0; i < instance->msix_vectors; i++) {
5311 irq_set_affinity_hint(
5312 instance->msixentry[i].vector, NULL);
5313 free_irq(instance->msixentry[i].vector,
5314 &instance->irq_context[i]);
5315 }
5316 else
5317 free_irq(instance->pdev->irq, &instance->irq_context[0]);
5318 if (instance->msix_vectors)
5319 pci_disable_msix(instance->pdev);
5320
5321 switch (instance->pdev->device) {
5322 case PCI_DEVICE_ID_LSI_FUSION:
5323 case PCI_DEVICE_ID_LSI_PLASMA:
5324 case PCI_DEVICE_ID_LSI_INVADER:
5325 case PCI_DEVICE_ID_LSI_FURY:
5326 megasas_release_fusion(instance);
5327 for (i = 0; i < 2 ; i++)
5328 if (fusion->ld_map[i])
5329 dma_free_coherent(&instance->pdev->dev,
5330 fusion->map_sz,
5331 fusion->ld_map[i],
5332 fusion->
5333 ld_map_phys[i]);
5334 kfree(instance->ctrl_context);
5335 break;
5336 default:
5337 megasas_release_mfi(instance);
5338 pci_free_consistent(pdev, sizeof(u32),
5339 instance->producer,
5340 instance->producer_h);
5341 pci_free_consistent(pdev, sizeof(u32),
5342 instance->consumer,
5343 instance->consumer_h);
5344 break;
5345 }
5346
5347 if (instance->evt_detail)
5348 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
5349 instance->evt_detail, instance->evt_detail_h);
5350
5351 if (instance->vf_affiliation)
5352 pci_free_consistent(pdev, (MAX_LOGICAL_DRIVES + 1) *
5353 sizeof(struct MR_LD_VF_AFFILIATION),
5354 instance->vf_affiliation,
5355 instance->vf_affiliation_h);
5356
5357 if (instance->vf_affiliation_111)
5358 pci_free_consistent(pdev,
5359 sizeof(struct MR_LD_VF_AFFILIATION_111),
5360 instance->vf_affiliation_111,
5361 instance->vf_affiliation_111_h);
5362
5363 if (instance->hb_host_mem)
5364 pci_free_consistent(pdev, sizeof(struct MR_CTRL_HB_HOST_MEM),
5365 instance->hb_host_mem,
5366 instance->hb_host_mem_h);
5367
5368 scsi_host_put(host);
5369
5370 pci_disable_device(pdev);
5371
5372 return;
5373 }
5374
5375 /**
5376 * megasas_shutdown - Shutdown entry point
5377 * @device: Generic device structure
5378 */
5379 static void megasas_shutdown(struct pci_dev *pdev)
5380 {
5381 int i;
5382 struct megasas_instance *instance = pci_get_drvdata(pdev);
5383
5384 instance->unload = 1;
5385 megasas_flush_cache(instance);
5386 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
5387 instance->instancet->disable_intr(instance);
5388 if (instance->msix_vectors)
5389 for (i = 0; i < instance->msix_vectors; i++) {
5390 irq_set_affinity_hint(
5391 instance->msixentry[i].vector, NULL);
5392 free_irq(instance->msixentry[i].vector,
5393 &instance->irq_context[i]);
5394 }
5395 else
5396 free_irq(instance->pdev->irq, &instance->irq_context[0]);
5397 if (instance->msix_vectors)
5398 pci_disable_msix(instance->pdev);
5399 }
5400
5401 /**
5402 * megasas_mgmt_open - char node "open" entry point
5403 */
5404 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
5405 {
5406 /*
5407 * Allow only those users with admin rights
5408 */
5409 if (!capable(CAP_SYS_ADMIN))
5410 return -EACCES;
5411
5412 return 0;
5413 }
5414
5415 /**
5416 * megasas_mgmt_fasync - Async notifier registration from applications
5417 *
5418 * This function adds the calling process to a driver global queue. When an
5419 * event occurs, SIGIO will be sent to all processes in this queue.
5420 */
5421 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
5422 {
5423 int rc;
5424
5425 mutex_lock(&megasas_async_queue_mutex);
5426
5427 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
5428
5429 mutex_unlock(&megasas_async_queue_mutex);
5430
5431 if (rc >= 0) {
5432 /* For sanity check when we get ioctl */
5433 filep->private_data = filep;
5434 return 0;
5435 }
5436
5437 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
5438
5439 return rc;
5440 }
5441
5442 /**
5443 * megasas_mgmt_poll - char node "poll" entry point
5444 * */
5445 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait)
5446 {
5447 unsigned int mask;
5448 unsigned long flags;
5449 poll_wait(file, &megasas_poll_wait, wait);
5450 spin_lock_irqsave(&poll_aen_lock, flags);
5451 if (megasas_poll_wait_aen)
5452 mask = (POLLIN | POLLRDNORM);
5453 else
5454 mask = 0;
5455 spin_unlock_irqrestore(&poll_aen_lock, flags);
5456 return mask;
5457 }
5458
5459 /**
5460 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
5461 * @instance: Adapter soft state
5462 * @argp: User's ioctl packet
5463 */
5464 static int
5465 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
5466 struct megasas_iocpacket __user * user_ioc,
5467 struct megasas_iocpacket *ioc)
5468 {
5469 struct megasas_sge32 *kern_sge32;
5470 struct megasas_cmd *cmd;
5471 void *kbuff_arr[MAX_IOCTL_SGE];
5472 dma_addr_t buf_handle = 0;
5473 int error = 0, i;
5474 void *sense = NULL;
5475 dma_addr_t sense_handle;
5476 unsigned long *sense_ptr;
5477
5478 memset(kbuff_arr, 0, sizeof(kbuff_arr));
5479
5480 if (ioc->sge_count > MAX_IOCTL_SGE) {
5481 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
5482 ioc->sge_count, MAX_IOCTL_SGE);
5483 return -EINVAL;
5484 }
5485
5486 cmd = megasas_get_cmd(instance);
5487 if (!cmd) {
5488 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
5489 return -ENOMEM;
5490 }
5491
5492 /*
5493 * User's IOCTL packet has 2 frames (maximum). Copy those two
5494 * frames into our cmd's frames. cmd->frame's context will get
5495 * overwritten when we copy from user's frames. So set that value
5496 * alone separately
5497 */
5498 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
5499 cmd->frame->hdr.context = cpu_to_le32(cmd->index);
5500 cmd->frame->hdr.pad_0 = 0;
5501 cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE |
5502 MFI_FRAME_SGL64 |
5503 MFI_FRAME_SENSE64));
5504
5505 /*
5506 * The management interface between applications and the fw uses
5507 * MFI frames. E.g, RAID configuration changes, LD property changes
5508 * etc are accomplishes through different kinds of MFI frames. The
5509 * driver needs to care only about substituting user buffers with
5510 * kernel buffers in SGLs. The location of SGL is embedded in the
5511 * struct iocpacket itself.
5512 */
5513 kern_sge32 = (struct megasas_sge32 *)
5514 ((unsigned long)cmd->frame + ioc->sgl_off);
5515
5516 /*
5517 * For each user buffer, create a mirror buffer and copy in
5518 */
5519 for (i = 0; i < ioc->sge_count; i++) {
5520 if (!ioc->sgl[i].iov_len)
5521 continue;
5522
5523 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
5524 ioc->sgl[i].iov_len,
5525 &buf_handle, GFP_KERNEL);
5526 if (!kbuff_arr[i]) {
5527 printk(KERN_DEBUG "megasas: Failed to alloc "
5528 "kernel SGL buffer for IOCTL \n");
5529 error = -ENOMEM;
5530 goto out;
5531 }
5532
5533 /*
5534 * We don't change the dma_coherent_mask, so
5535 * pci_alloc_consistent only returns 32bit addresses
5536 */
5537 kern_sge32[i].phys_addr = cpu_to_le32(buf_handle);
5538 kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len);
5539
5540 /*
5541 * We created a kernel buffer corresponding to the
5542 * user buffer. Now copy in from the user buffer
5543 */
5544 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
5545 (u32) (ioc->sgl[i].iov_len))) {
5546 error = -EFAULT;
5547 goto out;
5548 }
5549 }
5550
5551 if (ioc->sense_len) {
5552 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
5553 &sense_handle, GFP_KERNEL);
5554 if (!sense) {
5555 error = -ENOMEM;
5556 goto out;
5557 }
5558
5559 sense_ptr =
5560 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off);
5561 *sense_ptr = cpu_to_le32(sense_handle);
5562 }
5563
5564 /*
5565 * Set the sync_cmd flag so that the ISR knows not to complete this
5566 * cmd to the SCSI mid-layer
5567 */
5568 cmd->sync_cmd = 1;
5569 megasas_issue_blocked_cmd(instance, cmd, 0);
5570 cmd->sync_cmd = 0;
5571
5572 /*
5573 * copy out the kernel buffers to user buffers
5574 */
5575 for (i = 0; i < ioc->sge_count; i++) {
5576 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
5577 ioc->sgl[i].iov_len)) {
5578 error = -EFAULT;
5579 goto out;
5580 }
5581 }
5582
5583 /*
5584 * copy out the sense
5585 */
5586 if (ioc->sense_len) {
5587 /*
5588 * sense_ptr points to the location that has the user
5589 * sense buffer address
5590 */
5591 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw +
5592 ioc->sense_off);
5593
5594 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
5595 sense, ioc->sense_len)) {
5596 printk(KERN_ERR "megasas: Failed to copy out to user "
5597 "sense data\n");
5598 error = -EFAULT;
5599 goto out;
5600 }
5601 }
5602
5603 /*
5604 * copy the status codes returned by the fw
5605 */
5606 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
5607 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
5608 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
5609 error = -EFAULT;
5610 }
5611
5612 out:
5613 if (sense) {
5614 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
5615 sense, sense_handle);
5616 }
5617
5618 for (i = 0; i < ioc->sge_count; i++) {
5619 if (kbuff_arr[i])
5620 dma_free_coherent(&instance->pdev->dev,
5621 le32_to_cpu(kern_sge32[i].length),
5622 kbuff_arr[i],
5623 le32_to_cpu(kern_sge32[i].phys_addr));
5624 }
5625
5626 megasas_return_cmd(instance, cmd);
5627 return error;
5628 }
5629
5630 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
5631 {
5632 struct megasas_iocpacket __user *user_ioc =
5633 (struct megasas_iocpacket __user *)arg;
5634 struct megasas_iocpacket *ioc;
5635 struct megasas_instance *instance;
5636 int error;
5637 int i;
5638 unsigned long flags;
5639 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5640
5641 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
5642 if (!ioc)
5643 return -ENOMEM;
5644
5645 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
5646 error = -EFAULT;
5647 goto out_kfree_ioc;
5648 }
5649
5650 instance = megasas_lookup_instance(ioc->host_no);
5651 if (!instance) {
5652 error = -ENODEV;
5653 goto out_kfree_ioc;
5654 }
5655
5656 /* Adjust ioctl wait time for VF mode */
5657 if (instance->requestorId)
5658 wait_time = MEGASAS_ROUTINE_WAIT_TIME_VF;
5659
5660 /* Block ioctls in VF mode */
5661 if (instance->requestorId && !allow_vf_ioctls) {
5662 error = -ENODEV;
5663 goto out_kfree_ioc;
5664 }
5665
5666 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5667 printk(KERN_ERR "Controller in crit error\n");
5668 error = -ENODEV;
5669 goto out_kfree_ioc;
5670 }
5671
5672 if (instance->unload == 1) {
5673 error = -ENODEV;
5674 goto out_kfree_ioc;
5675 }
5676
5677 /*
5678 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
5679 */
5680 if (down_interruptible(&instance->ioctl_sem)) {
5681 error = -ERESTARTSYS;
5682 goto out_kfree_ioc;
5683 }
5684
5685 for (i = 0; i < wait_time; i++) {
5686
5687 spin_lock_irqsave(&instance->hba_lock, flags);
5688 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5689 spin_unlock_irqrestore(&instance->hba_lock, flags);
5690 break;
5691 }
5692 spin_unlock_irqrestore(&instance->hba_lock, flags);
5693
5694 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5695 printk(KERN_NOTICE "megasas: waiting"
5696 "for controller reset to finish\n");
5697 }
5698
5699 msleep(1000);
5700 }
5701
5702 spin_lock_irqsave(&instance->hba_lock, flags);
5703 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5704 spin_unlock_irqrestore(&instance->hba_lock, flags);
5705
5706 printk(KERN_ERR "megaraid_sas: timed out while"
5707 "waiting for HBA to recover\n");
5708 error = -ENODEV;
5709 goto out_up;
5710 }
5711 spin_unlock_irqrestore(&instance->hba_lock, flags);
5712
5713 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
5714 out_up:
5715 up(&instance->ioctl_sem);
5716
5717 out_kfree_ioc:
5718 kfree(ioc);
5719 return error;
5720 }
5721
5722 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
5723 {
5724 struct megasas_instance *instance;
5725 struct megasas_aen aen;
5726 int error;
5727 int i;
5728 unsigned long flags;
5729 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5730
5731 if (file->private_data != file) {
5732 printk(KERN_DEBUG "megasas: fasync_helper was not "
5733 "called first\n");
5734 return -EINVAL;
5735 }
5736
5737 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
5738 return -EFAULT;
5739
5740 instance = megasas_lookup_instance(aen.host_no);
5741
5742 if (!instance)
5743 return -ENODEV;
5744
5745 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5746 return -ENODEV;
5747 }
5748
5749 if (instance->unload == 1) {
5750 return -ENODEV;
5751 }
5752
5753 for (i = 0; i < wait_time; i++) {
5754
5755 spin_lock_irqsave(&instance->hba_lock, flags);
5756 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5757 spin_unlock_irqrestore(&instance->hba_lock,
5758 flags);
5759 break;
5760 }
5761
5762 spin_unlock_irqrestore(&instance->hba_lock, flags);
5763
5764 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5765 printk(KERN_NOTICE "megasas: waiting for"
5766 "controller reset to finish\n");
5767 }
5768
5769 msleep(1000);
5770 }
5771
5772 spin_lock_irqsave(&instance->hba_lock, flags);
5773 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5774 spin_unlock_irqrestore(&instance->hba_lock, flags);
5775 printk(KERN_ERR "megaraid_sas: timed out while waiting"
5776 "for HBA to recover.\n");
5777 return -ENODEV;
5778 }
5779 spin_unlock_irqrestore(&instance->hba_lock, flags);
5780
5781 mutex_lock(&instance->aen_mutex);
5782 error = megasas_register_aen(instance, aen.seq_num,
5783 aen.class_locale_word);
5784 mutex_unlock(&instance->aen_mutex);
5785 return error;
5786 }
5787
5788 /**
5789 * megasas_mgmt_ioctl - char node ioctl entry point
5790 */
5791 static long
5792 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5793 {
5794 switch (cmd) {
5795 case MEGASAS_IOC_FIRMWARE:
5796 return megasas_mgmt_ioctl_fw(file, arg);
5797
5798 case MEGASAS_IOC_GET_AEN:
5799 return megasas_mgmt_ioctl_aen(file, arg);
5800 }
5801
5802 return -ENOTTY;
5803 }
5804
5805 #ifdef CONFIG_COMPAT
5806 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
5807 {
5808 struct compat_megasas_iocpacket __user *cioc =
5809 (struct compat_megasas_iocpacket __user *)arg;
5810 struct megasas_iocpacket __user *ioc =
5811 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
5812 int i;
5813 int error = 0;
5814 compat_uptr_t ptr;
5815
5816 if (clear_user(ioc, sizeof(*ioc)))
5817 return -EFAULT;
5818
5819 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
5820 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
5821 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
5822 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
5823 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
5824 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
5825 return -EFAULT;
5826
5827 /*
5828 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when
5829 * sense_len is not null, so prepare the 64bit value under
5830 * the same condition.
5831 */
5832 if (ioc->sense_len) {
5833 void __user **sense_ioc_ptr =
5834 (void __user **)(ioc->frame.raw + ioc->sense_off);
5835 compat_uptr_t *sense_cioc_ptr =
5836 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off);
5837 if (get_user(ptr, sense_cioc_ptr) ||
5838 put_user(compat_ptr(ptr), sense_ioc_ptr))
5839 return -EFAULT;
5840 }
5841
5842 for (i = 0; i < MAX_IOCTL_SGE; i++) {
5843 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
5844 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
5845 copy_in_user(&ioc->sgl[i].iov_len,
5846 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
5847 return -EFAULT;
5848 }
5849
5850 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
5851
5852 if (copy_in_user(&cioc->frame.hdr.cmd_status,
5853 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
5854 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
5855 return -EFAULT;
5856 }
5857 return error;
5858 }
5859
5860 static long
5861 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
5862 unsigned long arg)
5863 {
5864 switch (cmd) {
5865 case MEGASAS_IOC_FIRMWARE32:
5866 return megasas_mgmt_compat_ioctl_fw(file, arg);
5867 case MEGASAS_IOC_GET_AEN:
5868 return megasas_mgmt_ioctl_aen(file, arg);
5869 }
5870
5871 return -ENOTTY;
5872 }
5873 #endif
5874
5875 /*
5876 * File operations structure for management interface
5877 */
5878 static const struct file_operations megasas_mgmt_fops = {
5879 .owner = THIS_MODULE,
5880 .open = megasas_mgmt_open,
5881 .fasync = megasas_mgmt_fasync,
5882 .unlocked_ioctl = megasas_mgmt_ioctl,
5883 .poll = megasas_mgmt_poll,
5884 #ifdef CONFIG_COMPAT
5885 .compat_ioctl = megasas_mgmt_compat_ioctl,
5886 #endif
5887 .llseek = noop_llseek,
5888 };
5889
5890 /*
5891 * PCI hotplug support registration structure
5892 */
5893 static struct pci_driver megasas_pci_driver = {
5894
5895 .name = "megaraid_sas",
5896 .id_table = megasas_pci_table,
5897 .probe = megasas_probe_one,
5898 .remove = megasas_detach_one,
5899 .suspend = megasas_suspend,
5900 .resume = megasas_resume,
5901 .shutdown = megasas_shutdown,
5902 };
5903
5904 /*
5905 * Sysfs driver attributes
5906 */
5907 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
5908 {
5909 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
5910 MEGASAS_VERSION);
5911 }
5912
5913 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
5914
5915 static ssize_t
5916 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
5917 {
5918 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
5919 MEGASAS_RELDATE);
5920 }
5921
5922 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
5923 NULL);
5924
5925 static ssize_t
5926 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf)
5927 {
5928 return sprintf(buf, "%u\n", support_poll_for_event);
5929 }
5930
5931 static DRIVER_ATTR(support_poll_for_event, S_IRUGO,
5932 megasas_sysfs_show_support_poll_for_event, NULL);
5933
5934 static ssize_t
5935 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf)
5936 {
5937 return sprintf(buf, "%u\n", support_device_change);
5938 }
5939
5940 static DRIVER_ATTR(support_device_change, S_IRUGO,
5941 megasas_sysfs_show_support_device_change, NULL);
5942
5943 static ssize_t
5944 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
5945 {
5946 return sprintf(buf, "%u\n", megasas_dbg_lvl);
5947 }
5948
5949 static ssize_t
5950 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
5951 {
5952 int retval = count;
5953 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
5954 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
5955 retval = -EINVAL;
5956 }
5957 return retval;
5958 }
5959
5960 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
5961 megasas_sysfs_set_dbg_lvl);
5962
5963 static void
5964 megasas_aen_polling(struct work_struct *work)
5965 {
5966 struct megasas_aen_event *ev =
5967 container_of(work, struct megasas_aen_event, hotplug_work.work);
5968 struct megasas_instance *instance = ev->instance;
5969 union megasas_evt_class_locale class_locale;
5970 struct Scsi_Host *host;
5971 struct scsi_device *sdev1;
5972 u16 pd_index = 0;
5973 u16 ld_index = 0;
5974 int i, j, doscan = 0;
5975 u32 seq_num, wait_time = MEGASAS_RESET_WAIT_TIME;
5976 int error;
5977
5978 if (!instance) {
5979 printk(KERN_ERR "invalid instance!\n");
5980 kfree(ev);
5981 return;
5982 }
5983
5984 /* Adjust event workqueue thread wait time for VF mode */
5985 if (instance->requestorId)
5986 wait_time = MEGASAS_ROUTINE_WAIT_TIME_VF;
5987
5988 /* Don't run the event workqueue thread if OCR is running */
5989 for (i = 0; i < wait_time; i++) {
5990 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL)
5991 break;
5992 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5993 printk(KERN_NOTICE "megasas: %s waiting for "
5994 "controller reset to finish for scsi%d\n",
5995 __func__, instance->host->host_no);
5996 }
5997 msleep(1000);
5998 }
5999
6000 instance->ev = NULL;
6001 host = instance->host;
6002 if (instance->evt_detail) {
6003
6004 switch (le32_to_cpu(instance->evt_detail->code)) {
6005 case MR_EVT_PD_INSERTED:
6006 if (megasas_get_pd_list(instance) == 0) {
6007 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
6008 for (j = 0;
6009 j < MEGASAS_MAX_DEV_PER_CHANNEL;
6010 j++) {
6011
6012 pd_index =
6013 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
6014
6015 sdev1 =
6016 scsi_device_lookup(host, i, j, 0);
6017
6018 if (instance->pd_list[pd_index].driveState
6019 == MR_PD_STATE_SYSTEM) {
6020 if (!sdev1) {
6021 scsi_add_device(host, i, j, 0);
6022 }
6023
6024 if (sdev1)
6025 scsi_device_put(sdev1);
6026 }
6027 }
6028 }
6029 }
6030 doscan = 0;
6031 break;
6032
6033 case MR_EVT_PD_REMOVED:
6034 if (megasas_get_pd_list(instance) == 0) {
6035 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
6036 for (j = 0;
6037 j < MEGASAS_MAX_DEV_PER_CHANNEL;
6038 j++) {
6039
6040 pd_index =
6041 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
6042
6043 sdev1 =
6044 scsi_device_lookup(host, i, j, 0);
6045
6046 if (instance->pd_list[pd_index].driveState
6047 == MR_PD_STATE_SYSTEM) {
6048 if (sdev1) {
6049 scsi_device_put(sdev1);
6050 }
6051 } else {
6052 if (sdev1) {
6053 scsi_remove_device(sdev1);
6054 scsi_device_put(sdev1);
6055 }
6056 }
6057 }
6058 }
6059 }
6060 doscan = 0;
6061 break;
6062
6063 case MR_EVT_LD_OFFLINE:
6064 case MR_EVT_CFG_CLEARED:
6065 case MR_EVT_LD_DELETED:
6066 if (!instance->requestorId ||
6067 (instance->requestorId &&
6068 megasas_get_ld_vf_affiliation(instance, 0))) {
6069 if (megasas_ld_list_query(instance,
6070 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
6071 megasas_get_ld_list(instance);
6072 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
6073 for (j = 0;
6074 j < MEGASAS_MAX_DEV_PER_CHANNEL;
6075 j++) {
6076
6077 ld_index =
6078 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
6079
6080 sdev1 = scsi_device_lookup(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0);
6081
6082 if (instance->ld_ids[ld_index]
6083 != 0xff) {
6084 if (sdev1)
6085 scsi_device_put(sdev1);
6086 } else {
6087 if (sdev1) {
6088 scsi_remove_device(sdev1);
6089 scsi_device_put(sdev1);
6090 }
6091 }
6092 }
6093 }
6094 doscan = 0;
6095 }
6096 break;
6097 case MR_EVT_LD_CREATED:
6098 if (!instance->requestorId ||
6099 (instance->requestorId &&
6100 megasas_get_ld_vf_affiliation(instance, 0))) {
6101 if (megasas_ld_list_query(instance,
6102 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
6103 megasas_get_ld_list(instance);
6104 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
6105 for (j = 0;
6106 j < MEGASAS_MAX_DEV_PER_CHANNEL;
6107 j++) {
6108 ld_index =
6109 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
6110
6111 sdev1 = scsi_device_lookup(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0);
6112
6113 if (instance->ld_ids[ld_index]
6114 != 0xff) {
6115 if (!sdev1)
6116 scsi_add_device(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0);
6117 }
6118 if (sdev1)
6119 scsi_device_put(sdev1);
6120 }
6121 }
6122 doscan = 0;
6123 }
6124 break;
6125 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
6126 case MR_EVT_FOREIGN_CFG_IMPORTED:
6127 case MR_EVT_LD_STATE_CHANGE:
6128 doscan = 1;
6129 break;
6130 default:
6131 doscan = 0;
6132 break;
6133 }
6134 } else {
6135 printk(KERN_ERR "invalid evt_detail!\n");
6136 kfree(ev);
6137 return;
6138 }
6139
6140 if (doscan) {
6141 printk(KERN_INFO "megaraid_sas: scanning for scsi%d...\n",
6142 instance->host->host_no);
6143 if (megasas_get_pd_list(instance) == 0) {
6144 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
6145 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
6146 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j;
6147 sdev1 = scsi_device_lookup(host, i, j, 0);
6148 if (instance->pd_list[pd_index].driveState ==
6149 MR_PD_STATE_SYSTEM) {
6150 if (!sdev1) {
6151 scsi_add_device(host, i, j, 0);
6152 }
6153 if (sdev1)
6154 scsi_device_put(sdev1);
6155 } else {
6156 if (sdev1) {
6157 scsi_remove_device(sdev1);
6158 scsi_device_put(sdev1);
6159 }
6160 }
6161 }
6162 }
6163 }
6164
6165 if (!instance->requestorId ||
6166 (instance->requestorId &&
6167 megasas_get_ld_vf_affiliation(instance, 0))) {
6168 if (megasas_ld_list_query(instance,
6169 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
6170 megasas_get_ld_list(instance);
6171 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
6172 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL;
6173 j++) {
6174 ld_index =
6175 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
6176
6177 sdev1 = scsi_device_lookup(host,
6178 MEGASAS_MAX_PD_CHANNELS + i, j, 0);
6179 if (instance->ld_ids[ld_index]
6180 != 0xff) {
6181 if (!sdev1)
6182 scsi_add_device(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0);
6183 else
6184 scsi_device_put(sdev1);
6185 } else {
6186 if (sdev1) {
6187 scsi_remove_device(sdev1);
6188 scsi_device_put(sdev1);
6189 }
6190 }
6191 }
6192 }
6193 }
6194 }
6195
6196 if ( instance->aen_cmd != NULL ) {
6197 kfree(ev);
6198 return ;
6199 }
6200
6201 seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1;
6202
6203 /* Register AEN with FW for latest sequence number plus 1 */
6204 class_locale.members.reserved = 0;
6205 class_locale.members.locale = MR_EVT_LOCALE_ALL;
6206 class_locale.members.class = MR_EVT_CLASS_DEBUG;
6207 mutex_lock(&instance->aen_mutex);
6208 error = megasas_register_aen(instance, seq_num,
6209 class_locale.word);
6210 mutex_unlock(&instance->aen_mutex);
6211
6212 if (error)
6213 printk(KERN_ERR "register aen failed error %x\n", error);
6214
6215 kfree(ev);
6216 }
6217
6218 /**
6219 * megasas_init - Driver load entry point
6220 */
6221 static int __init megasas_init(void)
6222 {
6223 int rval;
6224
6225 /*
6226 * Announce driver version and other information
6227 */
6228 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
6229 MEGASAS_EXT_VERSION);
6230
6231 spin_lock_init(&poll_aen_lock);
6232
6233 support_poll_for_event = 2;
6234 support_device_change = 1;
6235
6236 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
6237
6238 /*
6239 * Register character device node
6240 */
6241 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
6242
6243 if (rval < 0) {
6244 printk(KERN_DEBUG "megasas: failed to open device node\n");
6245 return rval;
6246 }
6247
6248 megasas_mgmt_majorno = rval;
6249
6250 /*
6251 * Register ourselves as PCI hotplug module
6252 */
6253 rval = pci_register_driver(&megasas_pci_driver);
6254
6255 if (rval) {
6256 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
6257 goto err_pcidrv;
6258 }
6259
6260 rval = driver_create_file(&megasas_pci_driver.driver,
6261 &driver_attr_version);
6262 if (rval)
6263 goto err_dcf_attr_ver;
6264 rval = driver_create_file(&megasas_pci_driver.driver,
6265 &driver_attr_release_date);
6266 if (rval)
6267 goto err_dcf_rel_date;
6268
6269 rval = driver_create_file(&megasas_pci_driver.driver,
6270 &driver_attr_support_poll_for_event);
6271 if (rval)
6272 goto err_dcf_support_poll_for_event;
6273
6274 rval = driver_create_file(&megasas_pci_driver.driver,
6275 &driver_attr_dbg_lvl);
6276 if (rval)
6277 goto err_dcf_dbg_lvl;
6278 rval = driver_create_file(&megasas_pci_driver.driver,
6279 &driver_attr_support_device_change);
6280 if (rval)
6281 goto err_dcf_support_device_change;
6282
6283 return rval;
6284
6285 err_dcf_support_device_change:
6286 driver_remove_file(&megasas_pci_driver.driver,
6287 &driver_attr_dbg_lvl);
6288 err_dcf_dbg_lvl:
6289 driver_remove_file(&megasas_pci_driver.driver,
6290 &driver_attr_support_poll_for_event);
6291
6292 err_dcf_support_poll_for_event:
6293 driver_remove_file(&megasas_pci_driver.driver,
6294 &driver_attr_release_date);
6295
6296 err_dcf_rel_date:
6297 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
6298 err_dcf_attr_ver:
6299 pci_unregister_driver(&megasas_pci_driver);
6300 err_pcidrv:
6301 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
6302 return rval;
6303 }
6304
6305 /**
6306 * megasas_exit - Driver unload entry point
6307 */
6308 static void __exit megasas_exit(void)
6309 {
6310 driver_remove_file(&megasas_pci_driver.driver,
6311 &driver_attr_dbg_lvl);
6312 driver_remove_file(&megasas_pci_driver.driver,
6313 &driver_attr_support_poll_for_event);
6314 driver_remove_file(&megasas_pci_driver.driver,
6315 &driver_attr_support_device_change);
6316 driver_remove_file(&megasas_pci_driver.driver,
6317 &driver_attr_release_date);
6318 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
6319
6320 pci_unregister_driver(&megasas_pci_driver);
6321 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
6322 }
6323
6324 module_init(megasas_init);
6325 module_exit(megasas_exit);