]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
95
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 " enable detection of firmware fault and halt firmware - (default=0)");
99
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
102
103 /**
104 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105 *
106 */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 int ret = param_set_int(val, kp);
111 struct MPT3SAS_ADAPTER *ioc;
112
113 if (ret)
114 return ret;
115
116 /* global ioc spinlock to protect controller list on list operations */
117 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 spin_lock(&gioc_lock);
119 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 spin_unlock(&gioc_lock);
122 return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 param_get_int, &mpt3sas_fwfault_debug, 0644);
126
127 /**
128 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129 * @arg: input argument, used to derive ioc
130 *
131 * Return 0 if controller is removed from pci subsystem.
132 * Return -1 for other case.
133 */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 struct pci_dev *pdev;
138
139 if ((ioc == NULL))
140 return -1;
141
142 pdev = ioc->pdev;
143 if ((pdev == NULL))
144 return -1;
145 pci_stop_and_remove_bus_device_locked(pdev);
146 return 0;
147 }
148
149 /**
150 * _base_fault_reset_work - workq handling ioc fault conditions
151 * @work: input argument, used to derive ioc
152 * Context: sleep.
153 *
154 * Return nothing.
155 */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 struct MPT3SAS_ADAPTER *ioc =
160 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 unsigned long flags;
162 u32 doorbell;
163 int rc;
164 struct task_struct *p;
165
166
167 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 if (ioc->shost_recovery || ioc->pci_error_recovery)
169 goto rearm_timer;
170 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171
172 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 ioc->name);
176
177 /* It may be possible that EEH recovery can resolve some of
178 * pci bus failure issues rather removing the dead ioc function
179 * by considering controller is in a non-operational state. So
180 * here priority is given to the EEH recovery. If it doesn't
181 * not resolve this issue, mpt3sas driver will consider this
182 * controller to non-operational state and remove the dead ioc
183 * function.
184 */
185 if (ioc->non_operational_loop++ < 5) {
186 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 flags);
188 goto rearm_timer;
189 }
190
191 /*
192 * Call _scsih_flush_pending_cmds callback so that we flush all
193 * pending commands back to OS. This call is required to aovid
194 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 * and this call is safe since dead ioc will never return any
196 * command back from HW.
197 */
198 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 /*
200 * Set remove_host flag early since kernel thread will
201 * take some time to execute.
202 */
203 ioc->remove_host = 1;
204 /*Remove the Dead Host */
205 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 if (IS_ERR(p))
208 pr_err(MPT3SAS_FMT
209 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 ioc->name, __func__);
211 else
212 pr_err(MPT3SAS_FMT
213 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 ioc->name, __func__);
215 return; /* don't rearm timer */
216 }
217
218 ioc->non_operational_loop = 0;
219
220 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
222 FORCE_BIG_HAMMER);
223 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
224 __func__, (rc == 0) ? "success" : "failed");
225 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
226 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
227 mpt3sas_base_fault_info(ioc, doorbell &
228 MPI2_DOORBELL_DATA_MASK);
229 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
230 MPI2_IOC_STATE_OPERATIONAL)
231 return; /* don't rearm timer */
232 }
233
234 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
235 rearm_timer:
236 if (ioc->fault_reset_work_q)
237 queue_delayed_work(ioc->fault_reset_work_q,
238 &ioc->fault_reset_work,
239 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
240 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
241 }
242
243 /**
244 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
245 * @ioc: per adapter object
246 * Context: sleep.
247 *
248 * Return nothing.
249 */
250 void
251 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
252 {
253 unsigned long flags;
254
255 if (ioc->fault_reset_work_q)
256 return;
257
258 /* initialize fault polling */
259
260 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
261 snprintf(ioc->fault_reset_work_q_name,
262 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
263 ioc->driver_name, ioc->id);
264 ioc->fault_reset_work_q =
265 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
266 if (!ioc->fault_reset_work_q) {
267 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
268 ioc->name, __func__, __LINE__);
269 return;
270 }
271 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
272 if (ioc->fault_reset_work_q)
273 queue_delayed_work(ioc->fault_reset_work_q,
274 &ioc->fault_reset_work,
275 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
276 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
277 }
278
279 /**
280 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
281 * @ioc: per adapter object
282 * Context: sleep.
283 *
284 * Return nothing.
285 */
286 void
287 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
288 {
289 unsigned long flags;
290 struct workqueue_struct *wq;
291
292 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
293 wq = ioc->fault_reset_work_q;
294 ioc->fault_reset_work_q = NULL;
295 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
296 if (wq) {
297 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
298 flush_workqueue(wq);
299 destroy_workqueue(wq);
300 }
301 }
302
303 /**
304 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
305 * @ioc: per adapter object
306 * @fault_code: fault code
307 *
308 * Return nothing.
309 */
310 void
311 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
312 {
313 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
314 ioc->name, fault_code);
315 }
316
317 /**
318 * mpt3sas_halt_firmware - halt's mpt controller firmware
319 * @ioc: per adapter object
320 *
321 * For debugging timeout related issues. Writing 0xCOFFEE00
322 * to the doorbell register will halt controller firmware. With
323 * the purpose to stop both driver and firmware, the enduser can
324 * obtain a ring buffer from controller UART.
325 */
326 void
327 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
328 {
329 u32 doorbell;
330
331 if (!ioc->fwfault_debug)
332 return;
333
334 dump_stack();
335
336 doorbell = readl(&ioc->chip->Doorbell);
337 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
338 mpt3sas_base_fault_info(ioc , doorbell);
339 else {
340 writel(0xC0FFEE00, &ioc->chip->Doorbell);
341 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
342 ioc->name);
343 }
344
345 if (ioc->fwfault_debug == 2)
346 for (;;)
347 ;
348 else
349 panic("panic in %s\n", __func__);
350 }
351
352 /**
353 * _base_sas_ioc_info - verbose translation of the ioc status
354 * @ioc: per adapter object
355 * @mpi_reply: reply mf payload returned from firmware
356 * @request_hdr: request mf
357 *
358 * Return nothing.
359 */
360 static void
361 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
362 MPI2RequestHeader_t *request_hdr)
363 {
364 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
365 MPI2_IOCSTATUS_MASK;
366 char *desc = NULL;
367 u16 frame_sz;
368 char *func_str = NULL;
369
370 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
371 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
372 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
373 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
374 return;
375
376 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
377 return;
378
379 switch (ioc_status) {
380
381 /****************************************************************************
382 * Common IOCStatus values for all replies
383 ****************************************************************************/
384
385 case MPI2_IOCSTATUS_INVALID_FUNCTION:
386 desc = "invalid function";
387 break;
388 case MPI2_IOCSTATUS_BUSY:
389 desc = "busy";
390 break;
391 case MPI2_IOCSTATUS_INVALID_SGL:
392 desc = "invalid sgl";
393 break;
394 case MPI2_IOCSTATUS_INTERNAL_ERROR:
395 desc = "internal error";
396 break;
397 case MPI2_IOCSTATUS_INVALID_VPID:
398 desc = "invalid vpid";
399 break;
400 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
401 desc = "insufficient resources";
402 break;
403 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
404 desc = "insufficient power";
405 break;
406 case MPI2_IOCSTATUS_INVALID_FIELD:
407 desc = "invalid field";
408 break;
409 case MPI2_IOCSTATUS_INVALID_STATE:
410 desc = "invalid state";
411 break;
412 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
413 desc = "op state not supported";
414 break;
415
416 /****************************************************************************
417 * Config IOCStatus values
418 ****************************************************************************/
419
420 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
421 desc = "config invalid action";
422 break;
423 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
424 desc = "config invalid type";
425 break;
426 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
427 desc = "config invalid page";
428 break;
429 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
430 desc = "config invalid data";
431 break;
432 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
433 desc = "config no defaults";
434 break;
435 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
436 desc = "config cant commit";
437 break;
438
439 /****************************************************************************
440 * SCSI IO Reply
441 ****************************************************************************/
442
443 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
444 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
445 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
446 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
447 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
448 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
449 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
450 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
451 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
452 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
453 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
454 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
455 break;
456
457 /****************************************************************************
458 * For use by SCSI Initiator and SCSI Target end-to-end data protection
459 ****************************************************************************/
460
461 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
462 desc = "eedp guard error";
463 break;
464 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
465 desc = "eedp ref tag error";
466 break;
467 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
468 desc = "eedp app tag error";
469 break;
470
471 /****************************************************************************
472 * SCSI Target values
473 ****************************************************************************/
474
475 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
476 desc = "target invalid io index";
477 break;
478 case MPI2_IOCSTATUS_TARGET_ABORTED:
479 desc = "target aborted";
480 break;
481 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
482 desc = "target no conn retryable";
483 break;
484 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
485 desc = "target no connection";
486 break;
487 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
488 desc = "target xfer count mismatch";
489 break;
490 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
491 desc = "target data offset error";
492 break;
493 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
494 desc = "target too much write data";
495 break;
496 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
497 desc = "target iu too short";
498 break;
499 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
500 desc = "target ack nak timeout";
501 break;
502 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
503 desc = "target nak received";
504 break;
505
506 /****************************************************************************
507 * Serial Attached SCSI values
508 ****************************************************************************/
509
510 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
511 desc = "smp request failed";
512 break;
513 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
514 desc = "smp data overrun";
515 break;
516
517 /****************************************************************************
518 * Diagnostic Buffer Post / Diagnostic Release values
519 ****************************************************************************/
520
521 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
522 desc = "diagnostic released";
523 break;
524 default:
525 break;
526 }
527
528 if (!desc)
529 return;
530
531 switch (request_hdr->Function) {
532 case MPI2_FUNCTION_CONFIG:
533 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
534 func_str = "config_page";
535 break;
536 case MPI2_FUNCTION_SCSI_TASK_MGMT:
537 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
538 func_str = "task_mgmt";
539 break;
540 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
541 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
542 func_str = "sas_iounit_ctl";
543 break;
544 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
545 frame_sz = sizeof(Mpi2SepRequest_t);
546 func_str = "enclosure";
547 break;
548 case MPI2_FUNCTION_IOC_INIT:
549 frame_sz = sizeof(Mpi2IOCInitRequest_t);
550 func_str = "ioc_init";
551 break;
552 case MPI2_FUNCTION_PORT_ENABLE:
553 frame_sz = sizeof(Mpi2PortEnableRequest_t);
554 func_str = "port_enable";
555 break;
556 case MPI2_FUNCTION_SMP_PASSTHROUGH:
557 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
558 func_str = "smp_passthru";
559 break;
560 default:
561 frame_sz = 32;
562 func_str = "unknown";
563 break;
564 }
565
566 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
567 ioc->name, desc, ioc_status, request_hdr, func_str);
568
569 _debug_dump_mf(request_hdr, frame_sz/4);
570 }
571
572 /**
573 * _base_display_event_data - verbose translation of firmware asyn events
574 * @ioc: per adapter object
575 * @mpi_reply: reply mf payload returned from firmware
576 *
577 * Return nothing.
578 */
579 static void
580 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
581 Mpi2EventNotificationReply_t *mpi_reply)
582 {
583 char *desc = NULL;
584 u16 event;
585
586 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
587 return;
588
589 event = le16_to_cpu(mpi_reply->Event);
590
591 switch (event) {
592 case MPI2_EVENT_LOG_DATA:
593 desc = "Log Data";
594 break;
595 case MPI2_EVENT_STATE_CHANGE:
596 desc = "Status Change";
597 break;
598 case MPI2_EVENT_HARD_RESET_RECEIVED:
599 desc = "Hard Reset Received";
600 break;
601 case MPI2_EVENT_EVENT_CHANGE:
602 desc = "Event Change";
603 break;
604 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
605 desc = "Device Status Change";
606 break;
607 case MPI2_EVENT_IR_OPERATION_STATUS:
608 if (!ioc->hide_ir_msg)
609 desc = "IR Operation Status";
610 break;
611 case MPI2_EVENT_SAS_DISCOVERY:
612 {
613 Mpi2EventDataSasDiscovery_t *event_data =
614 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
615 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
616 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
617 "start" : "stop");
618 if (event_data->DiscoveryStatus)
619 pr_info("discovery_status(0x%08x)",
620 le32_to_cpu(event_data->DiscoveryStatus));
621 pr_info("\n");
622 return;
623 }
624 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
625 desc = "SAS Broadcast Primitive";
626 break;
627 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
628 desc = "SAS Init Device Status Change";
629 break;
630 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
631 desc = "SAS Init Table Overflow";
632 break;
633 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
634 desc = "SAS Topology Change List";
635 break;
636 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
637 desc = "SAS Enclosure Device Status Change";
638 break;
639 case MPI2_EVENT_IR_VOLUME:
640 if (!ioc->hide_ir_msg)
641 desc = "IR Volume";
642 break;
643 case MPI2_EVENT_IR_PHYSICAL_DISK:
644 if (!ioc->hide_ir_msg)
645 desc = "IR Physical Disk";
646 break;
647 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
648 if (!ioc->hide_ir_msg)
649 desc = "IR Configuration Change List";
650 break;
651 case MPI2_EVENT_LOG_ENTRY_ADDED:
652 if (!ioc->hide_ir_msg)
653 desc = "Log Entry Added";
654 break;
655 case MPI2_EVENT_TEMP_THRESHOLD:
656 desc = "Temperature Threshold";
657 break;
658 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
659 desc = "Active cable exception";
660 break;
661 }
662
663 if (!desc)
664 return;
665
666 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
667 }
668
669 /**
670 * _base_sas_log_info - verbose translation of firmware log info
671 * @ioc: per adapter object
672 * @log_info: log info
673 *
674 * Return nothing.
675 */
676 static void
677 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
678 {
679 union loginfo_type {
680 u32 loginfo;
681 struct {
682 u32 subcode:16;
683 u32 code:8;
684 u32 originator:4;
685 u32 bus_type:4;
686 } dw;
687 };
688 union loginfo_type sas_loginfo;
689 char *originator_str = NULL;
690
691 sas_loginfo.loginfo = log_info;
692 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
693 return;
694
695 /* each nexus loss loginfo */
696 if (log_info == 0x31170000)
697 return;
698
699 /* eat the loginfos associated with task aborts */
700 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
701 0x31140000 || log_info == 0x31130000))
702 return;
703
704 switch (sas_loginfo.dw.originator) {
705 case 0:
706 originator_str = "IOP";
707 break;
708 case 1:
709 originator_str = "PL";
710 break;
711 case 2:
712 if (!ioc->hide_ir_msg)
713 originator_str = "IR";
714 else
715 originator_str = "WarpDrive";
716 break;
717 }
718
719 pr_warn(MPT3SAS_FMT
720 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
721 ioc->name, log_info,
722 originator_str, sas_loginfo.dw.code,
723 sas_loginfo.dw.subcode);
724 }
725
726 /**
727 * _base_display_reply_info -
728 * @ioc: per adapter object
729 * @smid: system request message index
730 * @msix_index: MSIX table index supplied by the OS
731 * @reply: reply message frame(lower 32bit addr)
732 *
733 * Return nothing.
734 */
735 static void
736 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
737 u32 reply)
738 {
739 MPI2DefaultReply_t *mpi_reply;
740 u16 ioc_status;
741 u32 loginfo = 0;
742
743 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
744 if (unlikely(!mpi_reply)) {
745 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
746 ioc->name, __FILE__, __LINE__, __func__);
747 return;
748 }
749 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
750
751 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
752 (ioc->logging_level & MPT_DEBUG_REPLY)) {
753 _base_sas_ioc_info(ioc , mpi_reply,
754 mpt3sas_base_get_msg_frame(ioc, smid));
755 }
756
757 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
758 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
759 _base_sas_log_info(ioc, loginfo);
760 }
761
762 if (ioc_status || loginfo) {
763 ioc_status &= MPI2_IOCSTATUS_MASK;
764 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
765 }
766 }
767
768 /**
769 * mpt3sas_base_done - base internal command completion routine
770 * @ioc: per adapter object
771 * @smid: system request message index
772 * @msix_index: MSIX table index supplied by the OS
773 * @reply: reply message frame(lower 32bit addr)
774 *
775 * Return 1 meaning mf should be freed from _base_interrupt
776 * 0 means the mf is freed from this function.
777 */
778 u8
779 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
780 u32 reply)
781 {
782 MPI2DefaultReply_t *mpi_reply;
783
784 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
785 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
786 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
787
788 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
789 return 1;
790
791 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
792 if (mpi_reply) {
793 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
794 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
795 }
796 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
797
798 complete(&ioc->base_cmds.done);
799 return 1;
800 }
801
802 /**
803 * _base_async_event - main callback handler for firmware asyn events
804 * @ioc: per adapter object
805 * @msix_index: MSIX table index supplied by the OS
806 * @reply: reply message frame(lower 32bit addr)
807 *
808 * Return 1 meaning mf should be freed from _base_interrupt
809 * 0 means the mf is freed from this function.
810 */
811 static u8
812 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
813 {
814 Mpi2EventNotificationReply_t *mpi_reply;
815 Mpi2EventAckRequest_t *ack_request;
816 u16 smid;
817 struct _event_ack_list *delayed_event_ack;
818
819 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
820 if (!mpi_reply)
821 return 1;
822 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
823 return 1;
824
825 _base_display_event_data(ioc, mpi_reply);
826
827 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
828 goto out;
829 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
830 if (!smid) {
831 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
832 GFP_ATOMIC);
833 if (!delayed_event_ack)
834 goto out;
835 INIT_LIST_HEAD(&delayed_event_ack->list);
836 delayed_event_ack->Event = mpi_reply->Event;
837 delayed_event_ack->EventContext = mpi_reply->EventContext;
838 list_add_tail(&delayed_event_ack->list,
839 &ioc->delayed_event_ack_list);
840 dewtprintk(ioc, pr_info(MPT3SAS_FMT
841 "DELAYED: EVENT ACK: event (0x%04x)\n",
842 ioc->name, le16_to_cpu(mpi_reply->Event)));
843 goto out;
844 }
845
846 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
847 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
848 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
849 ack_request->Event = mpi_reply->Event;
850 ack_request->EventContext = mpi_reply->EventContext;
851 ack_request->VF_ID = 0; /* TODO */
852 ack_request->VP_ID = 0;
853 mpt3sas_base_put_smid_default(ioc, smid);
854
855 out:
856
857 /* scsih callback handler */
858 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
859
860 /* ctl callback handler */
861 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
862
863 return 1;
864 }
865
866 /**
867 * _base_get_cb_idx - obtain the callback index
868 * @ioc: per adapter object
869 * @smid: system request message index
870 *
871 * Return callback index.
872 */
873 static u8
874 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
875 {
876 int i;
877 u8 cb_idx;
878
879 if (smid < ioc->hi_priority_smid) {
880 i = smid - 1;
881 cb_idx = ioc->scsi_lookup[i].cb_idx;
882 } else if (smid < ioc->internal_smid) {
883 i = smid - ioc->hi_priority_smid;
884 cb_idx = ioc->hpr_lookup[i].cb_idx;
885 } else if (smid <= ioc->hba_queue_depth) {
886 i = smid - ioc->internal_smid;
887 cb_idx = ioc->internal_lookup[i].cb_idx;
888 } else
889 cb_idx = 0xFF;
890 return cb_idx;
891 }
892
893 /**
894 * _base_mask_interrupts - disable interrupts
895 * @ioc: per adapter object
896 *
897 * Disabling ResetIRQ, Reply and Doorbell Interrupts
898 *
899 * Return nothing.
900 */
901 static void
902 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
903 {
904 u32 him_register;
905
906 ioc->mask_interrupts = 1;
907 him_register = readl(&ioc->chip->HostInterruptMask);
908 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
909 writel(him_register, &ioc->chip->HostInterruptMask);
910 readl(&ioc->chip->HostInterruptMask);
911 }
912
913 /**
914 * _base_unmask_interrupts - enable interrupts
915 * @ioc: per adapter object
916 *
917 * Enabling only Reply Interrupts
918 *
919 * Return nothing.
920 */
921 static void
922 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
923 {
924 u32 him_register;
925
926 him_register = readl(&ioc->chip->HostInterruptMask);
927 him_register &= ~MPI2_HIM_RIM;
928 writel(him_register, &ioc->chip->HostInterruptMask);
929 ioc->mask_interrupts = 0;
930 }
931
932 union reply_descriptor {
933 u64 word;
934 struct {
935 u32 low;
936 u32 high;
937 } u;
938 };
939
940 /**
941 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
942 * @irq: irq number (not used)
943 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
944 * @r: pt_regs pointer (not used)
945 *
946 * Return IRQ_HANDLE if processed, else IRQ_NONE.
947 */
948 static irqreturn_t
949 _base_interrupt(int irq, void *bus_id)
950 {
951 struct adapter_reply_queue *reply_q = bus_id;
952 union reply_descriptor rd;
953 u32 completed_cmds;
954 u8 request_desript_type;
955 u16 smid;
956 u8 cb_idx;
957 u32 reply;
958 u8 msix_index = reply_q->msix_index;
959 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
960 Mpi2ReplyDescriptorsUnion_t *rpf;
961 u8 rc;
962
963 if (ioc->mask_interrupts)
964 return IRQ_NONE;
965
966 if (!atomic_add_unless(&reply_q->busy, 1, 1))
967 return IRQ_NONE;
968
969 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
970 request_desript_type = rpf->Default.ReplyFlags
971 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
972 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
973 atomic_dec(&reply_q->busy);
974 return IRQ_NONE;
975 }
976
977 completed_cmds = 0;
978 cb_idx = 0xFF;
979 do {
980 rd.word = le64_to_cpu(rpf->Words);
981 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
982 goto out;
983 reply = 0;
984 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
985 if (request_desript_type ==
986 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
987 request_desript_type ==
988 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
989 cb_idx = _base_get_cb_idx(ioc, smid);
990 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
991 (likely(mpt_callbacks[cb_idx] != NULL))) {
992 rc = mpt_callbacks[cb_idx](ioc, smid,
993 msix_index, 0);
994 if (rc)
995 mpt3sas_base_free_smid(ioc, smid);
996 }
997 } else if (request_desript_type ==
998 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
999 reply = le32_to_cpu(
1000 rpf->AddressReply.ReplyFrameAddress);
1001 if (reply > ioc->reply_dma_max_address ||
1002 reply < ioc->reply_dma_min_address)
1003 reply = 0;
1004 if (smid) {
1005 cb_idx = _base_get_cb_idx(ioc, smid);
1006 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1007 (likely(mpt_callbacks[cb_idx] != NULL))) {
1008 rc = mpt_callbacks[cb_idx](ioc, smid,
1009 msix_index, reply);
1010 if (reply)
1011 _base_display_reply_info(ioc,
1012 smid, msix_index, reply);
1013 if (rc)
1014 mpt3sas_base_free_smid(ioc,
1015 smid);
1016 }
1017 } else {
1018 _base_async_event(ioc, msix_index, reply);
1019 }
1020
1021 /* reply free queue handling */
1022 if (reply) {
1023 ioc->reply_free_host_index =
1024 (ioc->reply_free_host_index ==
1025 (ioc->reply_free_queue_depth - 1)) ?
1026 0 : ioc->reply_free_host_index + 1;
1027 ioc->reply_free[ioc->reply_free_host_index] =
1028 cpu_to_le32(reply);
1029 wmb();
1030 writel(ioc->reply_free_host_index,
1031 &ioc->chip->ReplyFreeHostIndex);
1032 }
1033 }
1034
1035 rpf->Words = cpu_to_le64(ULLONG_MAX);
1036 reply_q->reply_post_host_index =
1037 (reply_q->reply_post_host_index ==
1038 (ioc->reply_post_queue_depth - 1)) ? 0 :
1039 reply_q->reply_post_host_index + 1;
1040 request_desript_type =
1041 reply_q->reply_post_free[reply_q->reply_post_host_index].
1042 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1043 completed_cmds++;
1044 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1045 goto out;
1046 if (!reply_q->reply_post_host_index)
1047 rpf = reply_q->reply_post_free;
1048 else
1049 rpf++;
1050 } while (1);
1051
1052 out:
1053
1054 if (!completed_cmds) {
1055 atomic_dec(&reply_q->busy);
1056 return IRQ_NONE;
1057 }
1058
1059 wmb();
1060 if (ioc->is_warpdrive) {
1061 writel(reply_q->reply_post_host_index,
1062 ioc->reply_post_host_index[msix_index]);
1063 atomic_dec(&reply_q->busy);
1064 return IRQ_HANDLED;
1065 }
1066
1067 /* Update Reply Post Host Index.
1068 * For those HBA's which support combined reply queue feature
1069 * 1. Get the correct Supplemental Reply Post Host Index Register.
1070 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1071 * Index Register address bank i.e replyPostRegisterIndex[],
1072 * 2. Then update this register with new reply host index value
1073 * in ReplyPostIndex field and the MSIxIndex field with
1074 * msix_index value reduced to a value between 0 and 7,
1075 * using a modulo 8 operation. Since each Supplemental Reply Post
1076 * Host Index Register supports 8 MSI-X vectors.
1077 *
1078 * For other HBA's just update the Reply Post Host Index register with
1079 * new reply host index value in ReplyPostIndex Field and msix_index
1080 * value in MSIxIndex field.
1081 */
1082 if (ioc->msix96_vector)
1083 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1084 MPI2_RPHI_MSIX_INDEX_SHIFT),
1085 ioc->replyPostRegisterIndex[msix_index/8]);
1086 else
1087 writel(reply_q->reply_post_host_index | (msix_index <<
1088 MPI2_RPHI_MSIX_INDEX_SHIFT),
1089 &ioc->chip->ReplyPostHostIndex);
1090 atomic_dec(&reply_q->busy);
1091 return IRQ_HANDLED;
1092 }
1093
1094 /**
1095 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1096 * @ioc: per adapter object
1097 *
1098 */
1099 static inline int
1100 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1101 {
1102 return (ioc->facts.IOCCapabilities &
1103 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1104 }
1105
1106 /**
1107 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1108 * @ioc: per adapter object
1109 * Context: non ISR conext
1110 *
1111 * Called when a Task Management request has completed.
1112 *
1113 * Return nothing.
1114 */
1115 void
1116 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1117 {
1118 struct adapter_reply_queue *reply_q;
1119
1120 /* If MSIX capability is turned off
1121 * then multi-queues are not enabled
1122 */
1123 if (!_base_is_controller_msix_enabled(ioc))
1124 return;
1125
1126 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1127 if (ioc->shost_recovery || ioc->remove_host ||
1128 ioc->pci_error_recovery)
1129 return;
1130 /* TMs are on msix_index == 0 */
1131 if (reply_q->msix_index == 0)
1132 continue;
1133 synchronize_irq(reply_q->vector);
1134 }
1135 }
1136
1137 /**
1138 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1139 * @cb_idx: callback index
1140 *
1141 * Return nothing.
1142 */
1143 void
1144 mpt3sas_base_release_callback_handler(u8 cb_idx)
1145 {
1146 mpt_callbacks[cb_idx] = NULL;
1147 }
1148
1149 /**
1150 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1151 * @cb_func: callback function
1152 *
1153 * Returns cb_func.
1154 */
1155 u8
1156 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1157 {
1158 u8 cb_idx;
1159
1160 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1161 if (mpt_callbacks[cb_idx] == NULL)
1162 break;
1163
1164 mpt_callbacks[cb_idx] = cb_func;
1165 return cb_idx;
1166 }
1167
1168 /**
1169 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1170 *
1171 * Return nothing.
1172 */
1173 void
1174 mpt3sas_base_initialize_callback_handler(void)
1175 {
1176 u8 cb_idx;
1177
1178 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1179 mpt3sas_base_release_callback_handler(cb_idx);
1180 }
1181
1182
1183 /**
1184 * _base_build_zero_len_sge - build zero length sg entry
1185 * @ioc: per adapter object
1186 * @paddr: virtual address for SGE
1187 *
1188 * Create a zero length scatter gather entry to insure the IOCs hardware has
1189 * something to use if the target device goes brain dead and tries
1190 * to send data even when none is asked for.
1191 *
1192 * Return nothing.
1193 */
1194 static void
1195 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1196 {
1197 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1198 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1199 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1200 MPI2_SGE_FLAGS_SHIFT);
1201 ioc->base_add_sg_single(paddr, flags_length, -1);
1202 }
1203
1204 /**
1205 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1206 * @paddr: virtual address for SGE
1207 * @flags_length: SGE flags and data transfer length
1208 * @dma_addr: Physical address
1209 *
1210 * Return nothing.
1211 */
1212 static void
1213 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1214 {
1215 Mpi2SGESimple32_t *sgel = paddr;
1216
1217 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1218 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1219 sgel->FlagsLength = cpu_to_le32(flags_length);
1220 sgel->Address = cpu_to_le32(dma_addr);
1221 }
1222
1223
1224 /**
1225 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1226 * @paddr: virtual address for SGE
1227 * @flags_length: SGE flags and data transfer length
1228 * @dma_addr: Physical address
1229 *
1230 * Return nothing.
1231 */
1232 static void
1233 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1234 {
1235 Mpi2SGESimple64_t *sgel = paddr;
1236
1237 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1238 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1239 sgel->FlagsLength = cpu_to_le32(flags_length);
1240 sgel->Address = cpu_to_le64(dma_addr);
1241 }
1242
1243 /**
1244 * _base_get_chain_buffer_tracker - obtain chain tracker
1245 * @ioc: per adapter object
1246 * @smid: smid associated to an IO request
1247 *
1248 * Returns chain tracker(from ioc->free_chain_list)
1249 */
1250 static struct chain_tracker *
1251 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1252 {
1253 struct chain_tracker *chain_req;
1254 unsigned long flags;
1255
1256 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1257 if (list_empty(&ioc->free_chain_list)) {
1258 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1259 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1260 "chain buffers not available\n", ioc->name));
1261 return NULL;
1262 }
1263 chain_req = list_entry(ioc->free_chain_list.next,
1264 struct chain_tracker, tracker_list);
1265 list_del_init(&chain_req->tracker_list);
1266 list_add_tail(&chain_req->tracker_list,
1267 &ioc->scsi_lookup[smid - 1].chain_list);
1268 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1269 return chain_req;
1270 }
1271
1272
1273 /**
1274 * _base_build_sg - build generic sg
1275 * @ioc: per adapter object
1276 * @psge: virtual address for SGE
1277 * @data_out_dma: physical address for WRITES
1278 * @data_out_sz: data xfer size for WRITES
1279 * @data_in_dma: physical address for READS
1280 * @data_in_sz: data xfer size for READS
1281 *
1282 * Return nothing.
1283 */
1284 static void
1285 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1286 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1287 size_t data_in_sz)
1288 {
1289 u32 sgl_flags;
1290
1291 if (!data_out_sz && !data_in_sz) {
1292 _base_build_zero_len_sge(ioc, psge);
1293 return;
1294 }
1295
1296 if (data_out_sz && data_in_sz) {
1297 /* WRITE sgel first */
1298 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1299 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1300 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1301 ioc->base_add_sg_single(psge, sgl_flags |
1302 data_out_sz, data_out_dma);
1303
1304 /* incr sgel */
1305 psge += ioc->sge_size;
1306
1307 /* READ sgel last */
1308 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1309 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1310 MPI2_SGE_FLAGS_END_OF_LIST);
1311 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1312 ioc->base_add_sg_single(psge, sgl_flags |
1313 data_in_sz, data_in_dma);
1314 } else if (data_out_sz) /* WRITE */ {
1315 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1316 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1317 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1318 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1319 ioc->base_add_sg_single(psge, sgl_flags |
1320 data_out_sz, data_out_dma);
1321 } else if (data_in_sz) /* READ */ {
1322 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1323 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1324 MPI2_SGE_FLAGS_END_OF_LIST);
1325 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1326 ioc->base_add_sg_single(psge, sgl_flags |
1327 data_in_sz, data_in_dma);
1328 }
1329 }
1330
1331 /* IEEE format sgls */
1332
1333 /**
1334 * _base_add_sg_single_ieee - add sg element for IEEE format
1335 * @paddr: virtual address for SGE
1336 * @flags: SGE flags
1337 * @chain_offset: number of 128 byte elements from start of segment
1338 * @length: data transfer length
1339 * @dma_addr: Physical address
1340 *
1341 * Return nothing.
1342 */
1343 static void
1344 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1345 dma_addr_t dma_addr)
1346 {
1347 Mpi25IeeeSgeChain64_t *sgel = paddr;
1348
1349 sgel->Flags = flags;
1350 sgel->NextChainOffset = chain_offset;
1351 sgel->Length = cpu_to_le32(length);
1352 sgel->Address = cpu_to_le64(dma_addr);
1353 }
1354
1355 /**
1356 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1357 * @ioc: per adapter object
1358 * @paddr: virtual address for SGE
1359 *
1360 * Create a zero length scatter gather entry to insure the IOCs hardware has
1361 * something to use if the target device goes brain dead and tries
1362 * to send data even when none is asked for.
1363 *
1364 * Return nothing.
1365 */
1366 static void
1367 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1368 {
1369 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1370 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1371 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1372
1373 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1374 }
1375
1376 /**
1377 * _base_build_sg_scmd - main sg creation routine
1378 * @ioc: per adapter object
1379 * @scmd: scsi command
1380 * @smid: system request message index
1381 * Context: none.
1382 *
1383 * The main routine that builds scatter gather table from a given
1384 * scsi request sent via the .queuecommand main handler.
1385 *
1386 * Returns 0 success, anything else error
1387 */
1388 static int
1389 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1390 struct scsi_cmnd *scmd, u16 smid)
1391 {
1392 Mpi2SCSIIORequest_t *mpi_request;
1393 dma_addr_t chain_dma;
1394 struct scatterlist *sg_scmd;
1395 void *sg_local, *chain;
1396 u32 chain_offset;
1397 u32 chain_length;
1398 u32 chain_flags;
1399 int sges_left;
1400 u32 sges_in_segment;
1401 u32 sgl_flags;
1402 u32 sgl_flags_last_element;
1403 u32 sgl_flags_end_buffer;
1404 struct chain_tracker *chain_req;
1405
1406 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1407
1408 /* init scatter gather flags */
1409 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1410 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1411 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1412 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1413 << MPI2_SGE_FLAGS_SHIFT;
1414 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1415 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1416 << MPI2_SGE_FLAGS_SHIFT;
1417 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1418
1419 sg_scmd = scsi_sglist(scmd);
1420 sges_left = scsi_dma_map(scmd);
1421 if (sges_left < 0) {
1422 sdev_printk(KERN_ERR, scmd->device,
1423 "pci_map_sg failed: request for %d bytes!\n",
1424 scsi_bufflen(scmd));
1425 return -ENOMEM;
1426 }
1427
1428 sg_local = &mpi_request->SGL;
1429 sges_in_segment = ioc->max_sges_in_main_message;
1430 if (sges_left <= sges_in_segment)
1431 goto fill_in_last_segment;
1432
1433 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1434 (sges_in_segment * ioc->sge_size))/4;
1435
1436 /* fill in main message segment when there is a chain following */
1437 while (sges_in_segment) {
1438 if (sges_in_segment == 1)
1439 ioc->base_add_sg_single(sg_local,
1440 sgl_flags_last_element | sg_dma_len(sg_scmd),
1441 sg_dma_address(sg_scmd));
1442 else
1443 ioc->base_add_sg_single(sg_local, sgl_flags |
1444 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1445 sg_scmd = sg_next(sg_scmd);
1446 sg_local += ioc->sge_size;
1447 sges_left--;
1448 sges_in_segment--;
1449 }
1450
1451 /* initializing the chain flags and pointers */
1452 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1453 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1454 if (!chain_req)
1455 return -1;
1456 chain = chain_req->chain_buffer;
1457 chain_dma = chain_req->chain_buffer_dma;
1458 do {
1459 sges_in_segment = (sges_left <=
1460 ioc->max_sges_in_chain_message) ? sges_left :
1461 ioc->max_sges_in_chain_message;
1462 chain_offset = (sges_left == sges_in_segment) ?
1463 0 : (sges_in_segment * ioc->sge_size)/4;
1464 chain_length = sges_in_segment * ioc->sge_size;
1465 if (chain_offset) {
1466 chain_offset = chain_offset <<
1467 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1468 chain_length += ioc->sge_size;
1469 }
1470 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1471 chain_length, chain_dma);
1472 sg_local = chain;
1473 if (!chain_offset)
1474 goto fill_in_last_segment;
1475
1476 /* fill in chain segments */
1477 while (sges_in_segment) {
1478 if (sges_in_segment == 1)
1479 ioc->base_add_sg_single(sg_local,
1480 sgl_flags_last_element |
1481 sg_dma_len(sg_scmd),
1482 sg_dma_address(sg_scmd));
1483 else
1484 ioc->base_add_sg_single(sg_local, sgl_flags |
1485 sg_dma_len(sg_scmd),
1486 sg_dma_address(sg_scmd));
1487 sg_scmd = sg_next(sg_scmd);
1488 sg_local += ioc->sge_size;
1489 sges_left--;
1490 sges_in_segment--;
1491 }
1492
1493 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1494 if (!chain_req)
1495 return -1;
1496 chain = chain_req->chain_buffer;
1497 chain_dma = chain_req->chain_buffer_dma;
1498 } while (1);
1499
1500
1501 fill_in_last_segment:
1502
1503 /* fill the last segment */
1504 while (sges_left) {
1505 if (sges_left == 1)
1506 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1507 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1508 else
1509 ioc->base_add_sg_single(sg_local, sgl_flags |
1510 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1511 sg_scmd = sg_next(sg_scmd);
1512 sg_local += ioc->sge_size;
1513 sges_left--;
1514 }
1515
1516 return 0;
1517 }
1518
1519 /**
1520 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1521 * @ioc: per adapter object
1522 * @scmd: scsi command
1523 * @smid: system request message index
1524 * Context: none.
1525 *
1526 * The main routine that builds scatter gather table from a given
1527 * scsi request sent via the .queuecommand main handler.
1528 *
1529 * Returns 0 success, anything else error
1530 */
1531 static int
1532 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1533 struct scsi_cmnd *scmd, u16 smid)
1534 {
1535 Mpi2SCSIIORequest_t *mpi_request;
1536 dma_addr_t chain_dma;
1537 struct scatterlist *sg_scmd;
1538 void *sg_local, *chain;
1539 u32 chain_offset;
1540 u32 chain_length;
1541 int sges_left;
1542 u32 sges_in_segment;
1543 u8 simple_sgl_flags;
1544 u8 simple_sgl_flags_last;
1545 u8 chain_sgl_flags;
1546 struct chain_tracker *chain_req;
1547
1548 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1549
1550 /* init scatter gather flags */
1551 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1552 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1553 simple_sgl_flags_last = simple_sgl_flags |
1554 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1555 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1556 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1557
1558 sg_scmd = scsi_sglist(scmd);
1559 sges_left = scsi_dma_map(scmd);
1560 if (sges_left < 0) {
1561 sdev_printk(KERN_ERR, scmd->device,
1562 "pci_map_sg failed: request for %d bytes!\n",
1563 scsi_bufflen(scmd));
1564 return -ENOMEM;
1565 }
1566
1567 sg_local = &mpi_request->SGL;
1568 sges_in_segment = (ioc->request_sz -
1569 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1570 if (sges_left <= sges_in_segment)
1571 goto fill_in_last_segment;
1572
1573 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1574 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1575
1576 /* fill in main message segment when there is a chain following */
1577 while (sges_in_segment > 1) {
1578 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1579 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1580 sg_scmd = sg_next(sg_scmd);
1581 sg_local += ioc->sge_size_ieee;
1582 sges_left--;
1583 sges_in_segment--;
1584 }
1585
1586 /* initializing the pointers */
1587 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1588 if (!chain_req)
1589 return -1;
1590 chain = chain_req->chain_buffer;
1591 chain_dma = chain_req->chain_buffer_dma;
1592 do {
1593 sges_in_segment = (sges_left <=
1594 ioc->max_sges_in_chain_message) ? sges_left :
1595 ioc->max_sges_in_chain_message;
1596 chain_offset = (sges_left == sges_in_segment) ?
1597 0 : sges_in_segment;
1598 chain_length = sges_in_segment * ioc->sge_size_ieee;
1599 if (chain_offset)
1600 chain_length += ioc->sge_size_ieee;
1601 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1602 chain_offset, chain_length, chain_dma);
1603
1604 sg_local = chain;
1605 if (!chain_offset)
1606 goto fill_in_last_segment;
1607
1608 /* fill in chain segments */
1609 while (sges_in_segment) {
1610 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1611 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1612 sg_scmd = sg_next(sg_scmd);
1613 sg_local += ioc->sge_size_ieee;
1614 sges_left--;
1615 sges_in_segment--;
1616 }
1617
1618 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1619 if (!chain_req)
1620 return -1;
1621 chain = chain_req->chain_buffer;
1622 chain_dma = chain_req->chain_buffer_dma;
1623 } while (1);
1624
1625
1626 fill_in_last_segment:
1627
1628 /* fill the last segment */
1629 while (sges_left > 0) {
1630 if (sges_left == 1)
1631 _base_add_sg_single_ieee(sg_local,
1632 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1633 sg_dma_address(sg_scmd));
1634 else
1635 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1636 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1637 sg_scmd = sg_next(sg_scmd);
1638 sg_local += ioc->sge_size_ieee;
1639 sges_left--;
1640 }
1641
1642 return 0;
1643 }
1644
1645 /**
1646 * _base_build_sg_ieee - build generic sg for IEEE format
1647 * @ioc: per adapter object
1648 * @psge: virtual address for SGE
1649 * @data_out_dma: physical address for WRITES
1650 * @data_out_sz: data xfer size for WRITES
1651 * @data_in_dma: physical address for READS
1652 * @data_in_sz: data xfer size for READS
1653 *
1654 * Return nothing.
1655 */
1656 static void
1657 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1658 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1659 size_t data_in_sz)
1660 {
1661 u8 sgl_flags;
1662
1663 if (!data_out_sz && !data_in_sz) {
1664 _base_build_zero_len_sge_ieee(ioc, psge);
1665 return;
1666 }
1667
1668 if (data_out_sz && data_in_sz) {
1669 /* WRITE sgel first */
1670 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1671 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1672 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1673 data_out_dma);
1674
1675 /* incr sgel */
1676 psge += ioc->sge_size_ieee;
1677
1678 /* READ sgel last */
1679 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1680 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1681 data_in_dma);
1682 } else if (data_out_sz) /* WRITE */ {
1683 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1684 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1685 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1686 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1687 data_out_dma);
1688 } else if (data_in_sz) /* READ */ {
1689 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1690 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1691 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1692 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1693 data_in_dma);
1694 }
1695 }
1696
1697 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1698
1699 /**
1700 * _base_config_dma_addressing - set dma addressing
1701 * @ioc: per adapter object
1702 * @pdev: PCI device struct
1703 *
1704 * Returns 0 for success, non-zero for failure.
1705 */
1706 static int
1707 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1708 {
1709 struct sysinfo s;
1710 u64 consistent_dma_mask;
1711
1712 if (ioc->dma_mask)
1713 consistent_dma_mask = DMA_BIT_MASK(64);
1714 else
1715 consistent_dma_mask = DMA_BIT_MASK(32);
1716
1717 if (sizeof(dma_addr_t) > 4) {
1718 const uint64_t required_mask =
1719 dma_get_required_mask(&pdev->dev);
1720 if ((required_mask > DMA_BIT_MASK(32)) &&
1721 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1722 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1723 ioc->base_add_sg_single = &_base_add_sg_single_64;
1724 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1725 ioc->dma_mask = 64;
1726 goto out;
1727 }
1728 }
1729
1730 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1731 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1732 ioc->base_add_sg_single = &_base_add_sg_single_32;
1733 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1734 ioc->dma_mask = 32;
1735 } else
1736 return -ENODEV;
1737
1738 out:
1739 si_meminfo(&s);
1740 pr_info(MPT3SAS_FMT
1741 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1742 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1743
1744 return 0;
1745 }
1746
1747 static int
1748 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1749 struct pci_dev *pdev)
1750 {
1751 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1752 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1753 return -ENODEV;
1754 }
1755 return 0;
1756 }
1757
1758 /**
1759 * _base_check_enable_msix - checks MSIX capabable.
1760 * @ioc: per adapter object
1761 *
1762 * Check to see if card is capable of MSIX, and set number
1763 * of available msix vectors
1764 */
1765 static int
1766 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1767 {
1768 int base;
1769 u16 message_control;
1770
1771 /* Check whether controller SAS2008 B0 controller,
1772 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1773 */
1774 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1775 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1776 return -EINVAL;
1777 }
1778
1779 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1780 if (!base) {
1781 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1782 ioc->name));
1783 return -EINVAL;
1784 }
1785
1786 /* get msix vector count */
1787 /* NUMA_IO not supported for older controllers */
1788 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1790 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1792 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1793 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1794 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1795 ioc->msix_vector_count = 1;
1796 else {
1797 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1798 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1799 }
1800 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1801 "msix is supported, vector_count(%d)\n",
1802 ioc->name, ioc->msix_vector_count));
1803 return 0;
1804 }
1805
1806 /**
1807 * _base_free_irq - free irq
1808 * @ioc: per adapter object
1809 *
1810 * Freeing respective reply_queue from the list.
1811 */
1812 static void
1813 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1814 {
1815 struct adapter_reply_queue *reply_q, *next;
1816
1817 if (list_empty(&ioc->reply_queue_list))
1818 return;
1819
1820 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1821 list_del(&reply_q->list);
1822 if (smp_affinity_enable) {
1823 irq_set_affinity_hint(reply_q->vector, NULL);
1824 free_cpumask_var(reply_q->affinity_hint);
1825 }
1826 free_irq(reply_q->vector, reply_q);
1827 kfree(reply_q);
1828 }
1829 }
1830
1831 /**
1832 * _base_request_irq - request irq
1833 * @ioc: per adapter object
1834 * @index: msix index into vector table
1835 * @vector: irq vector
1836 *
1837 * Inserting respective reply_queue into the list.
1838 */
1839 static int
1840 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1841 {
1842 struct adapter_reply_queue *reply_q;
1843 int r;
1844
1845 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1846 if (!reply_q) {
1847 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1848 ioc->name, (int)sizeof(struct adapter_reply_queue));
1849 return -ENOMEM;
1850 }
1851 reply_q->ioc = ioc;
1852 reply_q->msix_index = index;
1853 reply_q->vector = vector;
1854
1855 if (smp_affinity_enable) {
1856 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1857 kfree(reply_q);
1858 return -ENOMEM;
1859 }
1860 }
1861
1862 atomic_set(&reply_q->busy, 0);
1863 if (ioc->msix_enable)
1864 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1865 ioc->driver_name, ioc->id, index);
1866 else
1867 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1868 ioc->driver_name, ioc->id);
1869 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1870 reply_q);
1871 if (r) {
1872 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1873 reply_q->name, vector);
1874 free_cpumask_var(reply_q->affinity_hint);
1875 kfree(reply_q);
1876 return -EBUSY;
1877 }
1878
1879 INIT_LIST_HEAD(&reply_q->list);
1880 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1881 return 0;
1882 }
1883
1884 /**
1885 * _base_assign_reply_queues - assigning msix index for each cpu
1886 * @ioc: per adapter object
1887 *
1888 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1889 *
1890 * It would nice if we could call irq_set_affinity, however it is not
1891 * an exported symbol
1892 */
1893 static void
1894 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1895 {
1896 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1897 struct adapter_reply_queue *reply_q;
1898
1899 if (!_base_is_controller_msix_enabled(ioc))
1900 return;
1901
1902 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1903
1904 nr_cpus = num_online_cpus();
1905 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1906 ioc->facts.MaxMSIxVectors);
1907 if (!nr_msix)
1908 return;
1909
1910 cpu = cpumask_first(cpu_online_mask);
1911
1912 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1913
1914 unsigned int i, group = nr_cpus / nr_msix;
1915
1916 if (cpu >= nr_cpus)
1917 break;
1918
1919 if (index < nr_cpus % nr_msix)
1920 group++;
1921
1922 for (i = 0 ; i < group ; i++) {
1923 ioc->cpu_msix_table[cpu] = index;
1924 if (smp_affinity_enable)
1925 cpumask_or(reply_q->affinity_hint,
1926 reply_q->affinity_hint, get_cpu_mask(cpu));
1927 cpu = cpumask_next(cpu, cpu_online_mask);
1928 }
1929 if (smp_affinity_enable)
1930 if (irq_set_affinity_hint(reply_q->vector,
1931 reply_q->affinity_hint))
1932 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1933 "Err setting affinity hint to irq vector %d\n",
1934 ioc->name, reply_q->vector));
1935 index++;
1936 }
1937 }
1938
1939 /**
1940 * _base_disable_msix - disables msix
1941 * @ioc: per adapter object
1942 *
1943 */
1944 static void
1945 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1946 {
1947 if (!ioc->msix_enable)
1948 return;
1949 pci_disable_msix(ioc->pdev);
1950 ioc->msix_enable = 0;
1951 }
1952
1953 /**
1954 * _base_enable_msix - enables msix, failback to io_apic
1955 * @ioc: per adapter object
1956 *
1957 */
1958 static int
1959 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961 struct msix_entry *entries, *a;
1962 int r;
1963 int i;
1964 u8 try_msix = 0;
1965
1966 if (msix_disable == -1 || msix_disable == 0)
1967 try_msix = 1;
1968
1969 if (!try_msix)
1970 goto try_ioapic;
1971
1972 if (_base_check_enable_msix(ioc) != 0)
1973 goto try_ioapic;
1974
1975 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1976 ioc->msix_vector_count);
1977
1978 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1979 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1980 ioc->cpu_count, max_msix_vectors);
1981
1982 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1983 max_msix_vectors = 8;
1984
1985 if (max_msix_vectors > 0) {
1986 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1987 ioc->reply_queue_count);
1988 ioc->msix_vector_count = ioc->reply_queue_count;
1989 } else if (max_msix_vectors == 0)
1990 goto try_ioapic;
1991
1992 if (ioc->msix_vector_count < ioc->cpu_count)
1993 smp_affinity_enable = 0;
1994
1995 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1996 GFP_KERNEL);
1997 if (!entries) {
1998 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1999 "kcalloc failed @ at %s:%d/%s() !!!\n",
2000 ioc->name, __FILE__, __LINE__, __func__));
2001 goto try_ioapic;
2002 }
2003
2004 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2005 a->entry = i;
2006
2007 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2008 if (r) {
2009 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2010 "pci_enable_msix_exact failed (r=%d) !!!\n",
2011 ioc->name, r));
2012 kfree(entries);
2013 goto try_ioapic;
2014 }
2015
2016 ioc->msix_enable = 1;
2017 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2018 r = _base_request_irq(ioc, i, a->vector);
2019 if (r) {
2020 _base_free_irq(ioc);
2021 _base_disable_msix(ioc);
2022 kfree(entries);
2023 goto try_ioapic;
2024 }
2025 }
2026
2027 kfree(entries);
2028 return 0;
2029
2030 /* failback to io_apic interrupt routing */
2031 try_ioapic:
2032
2033 ioc->reply_queue_count = 1;
2034 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2035
2036 return r;
2037 }
2038
2039 /**
2040 * mpt3sas_base_unmap_resources - free controller resources
2041 * @ioc: per adapter object
2042 */
2043 void
2044 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2045 {
2046 struct pci_dev *pdev = ioc->pdev;
2047
2048 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2049 ioc->name, __func__));
2050
2051 _base_free_irq(ioc);
2052 _base_disable_msix(ioc);
2053
2054 if (ioc->msix96_vector) {
2055 kfree(ioc->replyPostRegisterIndex);
2056 ioc->replyPostRegisterIndex = NULL;
2057 }
2058
2059 if (ioc->chip_phys) {
2060 iounmap(ioc->chip);
2061 ioc->chip_phys = 0;
2062 }
2063
2064 if (pci_is_enabled(pdev)) {
2065 pci_release_selected_regions(ioc->pdev, ioc->bars);
2066 pci_disable_pcie_error_reporting(pdev);
2067 pci_disable_device(pdev);
2068 }
2069 }
2070
2071 /**
2072 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2073 * @ioc: per adapter object
2074 *
2075 * Returns 0 for success, non-zero for failure.
2076 */
2077 int
2078 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2079 {
2080 struct pci_dev *pdev = ioc->pdev;
2081 u32 memap_sz;
2082 u32 pio_sz;
2083 int i, r = 0;
2084 u64 pio_chip = 0;
2085 u64 chip_phys = 0;
2086 struct adapter_reply_queue *reply_q;
2087
2088 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2089 ioc->name, __func__));
2090
2091 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2092 if (pci_enable_device_mem(pdev)) {
2093 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2094 ioc->name);
2095 ioc->bars = 0;
2096 return -ENODEV;
2097 }
2098
2099
2100 if (pci_request_selected_regions(pdev, ioc->bars,
2101 ioc->driver_name)) {
2102 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2103 ioc->name);
2104 ioc->bars = 0;
2105 r = -ENODEV;
2106 goto out_fail;
2107 }
2108
2109 /* AER (Advanced Error Reporting) hooks */
2110 pci_enable_pcie_error_reporting(pdev);
2111
2112 pci_set_master(pdev);
2113
2114
2115 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2116 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2117 ioc->name, pci_name(pdev));
2118 r = -ENODEV;
2119 goto out_fail;
2120 }
2121
2122 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2123 (!memap_sz || !pio_sz); i++) {
2124 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2125 if (pio_sz)
2126 continue;
2127 pio_chip = (u64)pci_resource_start(pdev, i);
2128 pio_sz = pci_resource_len(pdev, i);
2129 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2130 if (memap_sz)
2131 continue;
2132 ioc->chip_phys = pci_resource_start(pdev, i);
2133 chip_phys = (u64)ioc->chip_phys;
2134 memap_sz = pci_resource_len(pdev, i);
2135 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2136 }
2137 }
2138
2139 if (ioc->chip == NULL) {
2140 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2141 " or resource not found\n", ioc->name);
2142 r = -EINVAL;
2143 goto out_fail;
2144 }
2145
2146 _base_mask_interrupts(ioc);
2147
2148 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2149 if (r)
2150 goto out_fail;
2151
2152 if (!ioc->rdpq_array_enable_assigned) {
2153 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2154 ioc->rdpq_array_enable_assigned = 1;
2155 }
2156
2157 r = _base_enable_msix(ioc);
2158 if (r)
2159 goto out_fail;
2160
2161 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2162 * revision HBAs and also only when reply queue count is greater than 8
2163 */
2164 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2165 /* Determine the Supplemental Reply Post Host Index Registers
2166 * Addresse. Supplemental Reply Post Host Index Registers
2167 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2168 * each register is at offset bytes of
2169 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2170 */
2171 ioc->replyPostRegisterIndex = kcalloc(
2172 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2173 sizeof(resource_size_t *), GFP_KERNEL);
2174 if (!ioc->replyPostRegisterIndex) {
2175 dfailprintk(ioc, printk(MPT3SAS_FMT
2176 "allocation for reply Post Register Index failed!!!\n",
2177 ioc->name));
2178 r = -ENOMEM;
2179 goto out_fail;
2180 }
2181
2182 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2183 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2184 ((u8 *)&ioc->chip->Doorbell +
2185 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2186 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2187 }
2188 } else
2189 ioc->msix96_vector = 0;
2190
2191 if (ioc->is_warpdrive) {
2192 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2193 &ioc->chip->ReplyPostHostIndex;
2194
2195 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2196 ioc->reply_post_host_index[i] =
2197 (resource_size_t __iomem *)
2198 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2199 * 4)));
2200 }
2201
2202 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2203 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2204 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2205 "IO-APIC enabled"), reply_q->vector);
2206
2207 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2208 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2209 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2210 ioc->name, (unsigned long long)pio_chip, pio_sz);
2211
2212 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2213 pci_save_state(pdev);
2214 return 0;
2215
2216 out_fail:
2217 mpt3sas_base_unmap_resources(ioc);
2218 return r;
2219 }
2220
2221 /**
2222 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2223 * @ioc: per adapter object
2224 * @smid: system request message index(smid zero is invalid)
2225 *
2226 * Returns virt pointer to message frame.
2227 */
2228 void *
2229 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2230 {
2231 return (void *)(ioc->request + (smid * ioc->request_sz));
2232 }
2233
2234 /**
2235 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2236 * @ioc: per adapter object
2237 * @smid: system request message index
2238 *
2239 * Returns virt pointer to sense buffer.
2240 */
2241 void *
2242 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2243 {
2244 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2245 }
2246
2247 /**
2248 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2249 * @ioc: per adapter object
2250 * @smid: system request message index
2251 *
2252 * Returns phys pointer to the low 32bit address of the sense buffer.
2253 */
2254 __le32
2255 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2256 {
2257 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2258 SCSI_SENSE_BUFFERSIZE));
2259 }
2260
2261 /**
2262 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2263 * @ioc: per adapter object
2264 * @phys_addr: lower 32 physical addr of the reply
2265 *
2266 * Converts 32bit lower physical addr into a virt address.
2267 */
2268 void *
2269 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2270 {
2271 if (!phys_addr)
2272 return NULL;
2273 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2274 }
2275
2276 static inline u8
2277 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2278 {
2279 return ioc->cpu_msix_table[raw_smp_processor_id()];
2280 }
2281
2282 /**
2283 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2284 * @ioc: per adapter object
2285 * @cb_idx: callback index
2286 *
2287 * Returns smid (zero is invalid)
2288 */
2289 u16
2290 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2291 {
2292 unsigned long flags;
2293 struct request_tracker *request;
2294 u16 smid;
2295
2296 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2297 if (list_empty(&ioc->internal_free_list)) {
2298 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2299 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2300 ioc->name, __func__);
2301 return 0;
2302 }
2303
2304 request = list_entry(ioc->internal_free_list.next,
2305 struct request_tracker, tracker_list);
2306 request->cb_idx = cb_idx;
2307 smid = request->smid;
2308 list_del(&request->tracker_list);
2309 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2310 return smid;
2311 }
2312
2313 /**
2314 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2315 * @ioc: per adapter object
2316 * @cb_idx: callback index
2317 * @scmd: pointer to scsi command object
2318 *
2319 * Returns smid (zero is invalid)
2320 */
2321 u16
2322 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2323 struct scsi_cmnd *scmd)
2324 {
2325 unsigned long flags;
2326 struct scsiio_tracker *request;
2327 u16 smid;
2328
2329 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2330 if (list_empty(&ioc->free_list)) {
2331 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2332 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2333 ioc->name, __func__);
2334 return 0;
2335 }
2336
2337 request = list_entry(ioc->free_list.next,
2338 struct scsiio_tracker, tracker_list);
2339 request->scmd = scmd;
2340 request->cb_idx = cb_idx;
2341 smid = request->smid;
2342 request->msix_io = _base_get_msix_index(ioc);
2343 list_del(&request->tracker_list);
2344 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2345 return smid;
2346 }
2347
2348 /**
2349 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2350 * @ioc: per adapter object
2351 * @cb_idx: callback index
2352 *
2353 * Returns smid (zero is invalid)
2354 */
2355 u16
2356 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2357 {
2358 unsigned long flags;
2359 struct request_tracker *request;
2360 u16 smid;
2361
2362 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2363 if (list_empty(&ioc->hpr_free_list)) {
2364 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2365 return 0;
2366 }
2367
2368 request = list_entry(ioc->hpr_free_list.next,
2369 struct request_tracker, tracker_list);
2370 request->cb_idx = cb_idx;
2371 smid = request->smid;
2372 list_del(&request->tracker_list);
2373 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2374 return smid;
2375 }
2376
2377 /**
2378 * mpt3sas_base_free_smid - put smid back on free_list
2379 * @ioc: per adapter object
2380 * @smid: system request message index
2381 *
2382 * Return nothing.
2383 */
2384 void
2385 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2386 {
2387 unsigned long flags;
2388 int i;
2389 struct chain_tracker *chain_req, *next;
2390
2391 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2392 if (smid < ioc->hi_priority_smid) {
2393 /* scsiio queue */
2394 i = smid - 1;
2395 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2396 list_for_each_entry_safe(chain_req, next,
2397 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2398 list_del_init(&chain_req->tracker_list);
2399 list_add(&chain_req->tracker_list,
2400 &ioc->free_chain_list);
2401 }
2402 }
2403 ioc->scsi_lookup[i].cb_idx = 0xFF;
2404 ioc->scsi_lookup[i].scmd = NULL;
2405 ioc->scsi_lookup[i].direct_io = 0;
2406 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2407 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2408
2409 /*
2410 * See _wait_for_commands_to_complete() call with regards
2411 * to this code.
2412 */
2413 if (ioc->shost_recovery && ioc->pending_io_count) {
2414 if (ioc->pending_io_count == 1)
2415 wake_up(&ioc->reset_wq);
2416 ioc->pending_io_count--;
2417 }
2418 return;
2419 } else if (smid < ioc->internal_smid) {
2420 /* hi-priority */
2421 i = smid - ioc->hi_priority_smid;
2422 ioc->hpr_lookup[i].cb_idx = 0xFF;
2423 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2424 } else if (smid <= ioc->hba_queue_depth) {
2425 /* internal queue */
2426 i = smid - ioc->internal_smid;
2427 ioc->internal_lookup[i].cb_idx = 0xFF;
2428 list_add(&ioc->internal_lookup[i].tracker_list,
2429 &ioc->internal_free_list);
2430 }
2431 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2432 }
2433
2434 /**
2435 * _base_writeq - 64 bit write to MMIO
2436 * @ioc: per adapter object
2437 * @b: data payload
2438 * @addr: address in MMIO space
2439 * @writeq_lock: spin lock
2440 *
2441 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2442 * care of 32 bit environment where its not quarenteed to send the entire word
2443 * in one transfer.
2444 */
2445 #if defined(writeq) && defined(CONFIG_64BIT)
2446 static inline void
2447 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2448 {
2449 writeq(cpu_to_le64(b), addr);
2450 }
2451 #else
2452 static inline void
2453 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2454 {
2455 unsigned long flags;
2456 __u64 data_out = cpu_to_le64(b);
2457
2458 spin_lock_irqsave(writeq_lock, flags);
2459 writel((u32)(data_out), addr);
2460 writel((u32)(data_out >> 32), (addr + 4));
2461 spin_unlock_irqrestore(writeq_lock, flags);
2462 }
2463 #endif
2464
2465 /**
2466 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2467 * @ioc: per adapter object
2468 * @smid: system request message index
2469 * @handle: device handle
2470 *
2471 * Return nothing.
2472 */
2473 void
2474 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2475 {
2476 Mpi2RequestDescriptorUnion_t descriptor;
2477 u64 *request = (u64 *)&descriptor;
2478
2479
2480 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2481 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2482 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2483 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2484 descriptor.SCSIIO.LMID = 0;
2485 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2486 &ioc->scsi_lookup_lock);
2487 }
2488
2489 /**
2490 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2491 * @ioc: per adapter object
2492 * @smid: system request message index
2493 * @handle: device handle
2494 *
2495 * Return nothing.
2496 */
2497 void
2498 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2499 u16 handle)
2500 {
2501 Mpi2RequestDescriptorUnion_t descriptor;
2502 u64 *request = (u64 *)&descriptor;
2503
2504 descriptor.SCSIIO.RequestFlags =
2505 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2506 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2507 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2508 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2509 descriptor.SCSIIO.LMID = 0;
2510 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2511 &ioc->scsi_lookup_lock);
2512 }
2513
2514 /**
2515 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2516 * @ioc: per adapter object
2517 * @smid: system request message index
2518 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2519 * Return nothing.
2520 */
2521 void
2522 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2523 u16 msix_task)
2524 {
2525 Mpi2RequestDescriptorUnion_t descriptor;
2526 u64 *request = (u64 *)&descriptor;
2527
2528 descriptor.HighPriority.RequestFlags =
2529 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2530 descriptor.HighPriority.MSIxIndex = msix_task;
2531 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2532 descriptor.HighPriority.LMID = 0;
2533 descriptor.HighPriority.Reserved1 = 0;
2534 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2535 &ioc->scsi_lookup_lock);
2536 }
2537
2538 /**
2539 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2540 * @ioc: per adapter object
2541 * @smid: system request message index
2542 *
2543 * Return nothing.
2544 */
2545 void
2546 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2547 {
2548 Mpi2RequestDescriptorUnion_t descriptor;
2549 u64 *request = (u64 *)&descriptor;
2550
2551 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2552 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2553 descriptor.Default.SMID = cpu_to_le16(smid);
2554 descriptor.Default.LMID = 0;
2555 descriptor.Default.DescriptorTypeDependent = 0;
2556 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2557 &ioc->scsi_lookup_lock);
2558 }
2559
2560 /**
2561 * _base_display_OEMs_branding - Display branding string
2562 * @ioc: per adapter object
2563 *
2564 * Return nothing.
2565 */
2566 static void
2567 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2568 {
2569 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2570 return;
2571
2572 switch (ioc->pdev->subsystem_vendor) {
2573 case PCI_VENDOR_ID_INTEL:
2574 switch (ioc->pdev->device) {
2575 case MPI2_MFGPAGE_DEVID_SAS2008:
2576 switch (ioc->pdev->subsystem_device) {
2577 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2578 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2579 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2580 break;
2581 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2582 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2583 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2584 break;
2585 case MPT2SAS_INTEL_SSD910_SSDID:
2586 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2587 MPT2SAS_INTEL_SSD910_BRANDING);
2588 break;
2589 default:
2590 pr_info(MPT3SAS_FMT
2591 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2592 ioc->name, ioc->pdev->subsystem_device);
2593 break;
2594 }
2595 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2596 switch (ioc->pdev->subsystem_device) {
2597 case MPT2SAS_INTEL_RS25GB008_SSDID:
2598 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2599 MPT2SAS_INTEL_RS25GB008_BRANDING);
2600 break;
2601 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2602 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2603 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2604 break;
2605 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2606 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2607 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2608 break;
2609 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2610 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2611 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2612 break;
2613 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2614 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2615 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2616 break;
2617 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2618 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2619 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2620 break;
2621 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2622 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2623 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2624 break;
2625 default:
2626 pr_info(MPT3SAS_FMT
2627 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2628 ioc->name, ioc->pdev->subsystem_device);
2629 break;
2630 }
2631 case MPI25_MFGPAGE_DEVID_SAS3008:
2632 switch (ioc->pdev->subsystem_device) {
2633 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2634 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2635 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2636 break;
2637
2638 case MPT3SAS_INTEL_RS3GC008_SSDID:
2639 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2640 MPT3SAS_INTEL_RS3GC008_BRANDING);
2641 break;
2642 case MPT3SAS_INTEL_RS3FC044_SSDID:
2643 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2644 MPT3SAS_INTEL_RS3FC044_BRANDING);
2645 break;
2646 case MPT3SAS_INTEL_RS3UC080_SSDID:
2647 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2648 MPT3SAS_INTEL_RS3UC080_BRANDING);
2649 break;
2650 default:
2651 pr_info(MPT3SAS_FMT
2652 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2653 ioc->name, ioc->pdev->subsystem_device);
2654 break;
2655 }
2656 break;
2657 default:
2658 pr_info(MPT3SAS_FMT
2659 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2660 ioc->name, ioc->pdev->subsystem_device);
2661 break;
2662 }
2663 break;
2664 case PCI_VENDOR_ID_DELL:
2665 switch (ioc->pdev->device) {
2666 case MPI2_MFGPAGE_DEVID_SAS2008:
2667 switch (ioc->pdev->subsystem_device) {
2668 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2669 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2670 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2671 break;
2672 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2673 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2674 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2675 break;
2676 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2677 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2678 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2679 break;
2680 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2681 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2682 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2683 break;
2684 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2685 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2686 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2687 break;
2688 case MPT2SAS_DELL_PERC_H200_SSDID:
2689 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2690 MPT2SAS_DELL_PERC_H200_BRANDING);
2691 break;
2692 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2693 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2694 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2695 break;
2696 default:
2697 pr_info(MPT3SAS_FMT
2698 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2699 ioc->name, ioc->pdev->subsystem_device);
2700 break;
2701 }
2702 break;
2703 case MPI25_MFGPAGE_DEVID_SAS3008:
2704 switch (ioc->pdev->subsystem_device) {
2705 case MPT3SAS_DELL_12G_HBA_SSDID:
2706 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2707 MPT3SAS_DELL_12G_HBA_BRANDING);
2708 break;
2709 default:
2710 pr_info(MPT3SAS_FMT
2711 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2712 ioc->name, ioc->pdev->subsystem_device);
2713 break;
2714 }
2715 break;
2716 default:
2717 pr_info(MPT3SAS_FMT
2718 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2719 ioc->pdev->subsystem_device);
2720 break;
2721 }
2722 break;
2723 case PCI_VENDOR_ID_CISCO:
2724 switch (ioc->pdev->device) {
2725 case MPI25_MFGPAGE_DEVID_SAS3008:
2726 switch (ioc->pdev->subsystem_device) {
2727 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2728 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2729 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2730 break;
2731 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2732 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2733 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2734 break;
2735 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2736 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2737 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2738 break;
2739 default:
2740 pr_info(MPT3SAS_FMT
2741 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2742 ioc->name, ioc->pdev->subsystem_device);
2743 break;
2744 }
2745 break;
2746 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2747 switch (ioc->pdev->subsystem_device) {
2748 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2749 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2750 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2751 break;
2752 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2753 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2754 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2755 );
2756 break;
2757 default:
2758 pr_info(MPT3SAS_FMT
2759 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2760 ioc->name, ioc->pdev->subsystem_device);
2761 break;
2762 }
2763 break;
2764 default:
2765 pr_info(MPT3SAS_FMT
2766 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2767 ioc->name, ioc->pdev->subsystem_device);
2768 break;
2769 }
2770 break;
2771 case MPT2SAS_HP_3PAR_SSVID:
2772 switch (ioc->pdev->device) {
2773 case MPI2_MFGPAGE_DEVID_SAS2004:
2774 switch (ioc->pdev->subsystem_device) {
2775 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2776 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2777 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2778 break;
2779 default:
2780 pr_info(MPT3SAS_FMT
2781 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2782 ioc->name, ioc->pdev->subsystem_device);
2783 break;
2784 }
2785 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2786 switch (ioc->pdev->subsystem_device) {
2787 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2788 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2789 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2790 break;
2791 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2792 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2793 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2794 break;
2795 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2796 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2797 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2798 break;
2799 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2800 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2801 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2802 break;
2803 default:
2804 pr_info(MPT3SAS_FMT
2805 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2806 ioc->name, ioc->pdev->subsystem_device);
2807 break;
2808 }
2809 default:
2810 pr_info(MPT3SAS_FMT
2811 "HP SAS HBA: Subsystem ID: 0x%X\n",
2812 ioc->name, ioc->pdev->subsystem_device);
2813 break;
2814 }
2815 default:
2816 break;
2817 }
2818 }
2819
2820 /**
2821 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2822 * @ioc: per adapter object
2823 *
2824 * Return nothing.
2825 */
2826 static void
2827 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2828 {
2829 int i = 0;
2830 char desc[16];
2831 u32 iounit_pg1_flags;
2832 u32 bios_version;
2833
2834 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2835 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2836 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2837 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2838 ioc->name, desc,
2839 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2840 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2841 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2842 ioc->facts.FWVersion.Word & 0x000000FF,
2843 ioc->pdev->revision,
2844 (bios_version & 0xFF000000) >> 24,
2845 (bios_version & 0x00FF0000) >> 16,
2846 (bios_version & 0x0000FF00) >> 8,
2847 bios_version & 0x000000FF);
2848
2849 _base_display_OEMs_branding(ioc);
2850
2851 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2852
2853 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2854 pr_info("Initiator");
2855 i++;
2856 }
2857
2858 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2859 pr_info("%sTarget", i ? "," : "");
2860 i++;
2861 }
2862
2863 i = 0;
2864 pr_info("), ");
2865 pr_info("Capabilities=(");
2866
2867 if (!ioc->hide_ir_msg) {
2868 if (ioc->facts.IOCCapabilities &
2869 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2870 pr_info("Raid");
2871 i++;
2872 }
2873 }
2874
2875 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2876 pr_info("%sTLR", i ? "," : "");
2877 i++;
2878 }
2879
2880 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2881 pr_info("%sMulticast", i ? "," : "");
2882 i++;
2883 }
2884
2885 if (ioc->facts.IOCCapabilities &
2886 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2887 pr_info("%sBIDI Target", i ? "," : "");
2888 i++;
2889 }
2890
2891 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2892 pr_info("%sEEDP", i ? "," : "");
2893 i++;
2894 }
2895
2896 if (ioc->facts.IOCCapabilities &
2897 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2898 pr_info("%sSnapshot Buffer", i ? "," : "");
2899 i++;
2900 }
2901
2902 if (ioc->facts.IOCCapabilities &
2903 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2904 pr_info("%sDiag Trace Buffer", i ? "," : "");
2905 i++;
2906 }
2907
2908 if (ioc->facts.IOCCapabilities &
2909 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2910 pr_info("%sDiag Extended Buffer", i ? "," : "");
2911 i++;
2912 }
2913
2914 if (ioc->facts.IOCCapabilities &
2915 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2916 pr_info("%sTask Set Full", i ? "," : "");
2917 i++;
2918 }
2919
2920 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2921 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2922 pr_info("%sNCQ", i ? "," : "");
2923 i++;
2924 }
2925
2926 pr_info(")\n");
2927 }
2928
2929 /**
2930 * mpt3sas_base_update_missing_delay - change the missing delay timers
2931 * @ioc: per adapter object
2932 * @device_missing_delay: amount of time till device is reported missing
2933 * @io_missing_delay: interval IO is returned when there is a missing device
2934 *
2935 * Return nothing.
2936 *
2937 * Passed on the command line, this function will modify the device missing
2938 * delay, as well as the io missing delay. This should be called at driver
2939 * load time.
2940 */
2941 void
2942 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2943 u16 device_missing_delay, u8 io_missing_delay)
2944 {
2945 u16 dmd, dmd_new, dmd_orignal;
2946 u8 io_missing_delay_original;
2947 u16 sz;
2948 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2949 Mpi2ConfigReply_t mpi_reply;
2950 u8 num_phys = 0;
2951 u16 ioc_status;
2952
2953 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2954 if (!num_phys)
2955 return;
2956
2957 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2958 sizeof(Mpi2SasIOUnit1PhyData_t));
2959 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2960 if (!sas_iounit_pg1) {
2961 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2962 ioc->name, __FILE__, __LINE__, __func__);
2963 goto out;
2964 }
2965 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2966 sas_iounit_pg1, sz))) {
2967 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2968 ioc->name, __FILE__, __LINE__, __func__);
2969 goto out;
2970 }
2971 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2972 MPI2_IOCSTATUS_MASK;
2973 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2974 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2975 ioc->name, __FILE__, __LINE__, __func__);
2976 goto out;
2977 }
2978
2979 /* device missing delay */
2980 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2981 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2982 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2983 else
2984 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2985 dmd_orignal = dmd;
2986 if (device_missing_delay > 0x7F) {
2987 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2988 device_missing_delay;
2989 dmd = dmd / 16;
2990 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2991 } else
2992 dmd = device_missing_delay;
2993 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2994
2995 /* io missing delay */
2996 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2997 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2998
2999 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3000 sz)) {
3001 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3002 dmd_new = (dmd &
3003 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3004 else
3005 dmd_new =
3006 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3007 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3008 ioc->name, dmd_orignal, dmd_new);
3009 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3010 ioc->name, io_missing_delay_original,
3011 io_missing_delay);
3012 ioc->device_missing_delay = dmd_new;
3013 ioc->io_missing_delay = io_missing_delay;
3014 }
3015
3016 out:
3017 kfree(sas_iounit_pg1);
3018 }
3019 /**
3020 * _base_static_config_pages - static start of day config pages
3021 * @ioc: per adapter object
3022 *
3023 * Return nothing.
3024 */
3025 static void
3026 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3027 {
3028 Mpi2ConfigReply_t mpi_reply;
3029 u32 iounit_pg1_flags;
3030
3031 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3032 if (ioc->ir_firmware)
3033 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3034 &ioc->manu_pg10);
3035
3036 /*
3037 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3038 * flag unset in NVDATA.
3039 */
3040 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3041 if (ioc->manu_pg11.EEDPTagMode == 0) {
3042 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3043 ioc->name);
3044 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3045 ioc->manu_pg11.EEDPTagMode |= 0x1;
3046 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3047 &ioc->manu_pg11);
3048 }
3049
3050 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3051 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3052 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3053 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3054 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3055 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3056 _base_display_ioc_capabilities(ioc);
3057
3058 /*
3059 * Enable task_set_full handling in iounit_pg1 when the
3060 * facts capabilities indicate that its supported.
3061 */
3062 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3063 if ((ioc->facts.IOCCapabilities &
3064 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3065 iounit_pg1_flags &=
3066 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3067 else
3068 iounit_pg1_flags |=
3069 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3070 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3071 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3072
3073 if (ioc->iounit_pg8.NumSensors)
3074 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3075 }
3076
3077 /**
3078 * _base_release_memory_pools - release memory
3079 * @ioc: per adapter object
3080 *
3081 * Free memory allocated from _base_allocate_memory_pools.
3082 *
3083 * Return nothing.
3084 */
3085 static void
3086 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3087 {
3088 int i = 0;
3089 struct reply_post_struct *rps;
3090
3091 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3092 __func__));
3093
3094 if (ioc->request) {
3095 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3096 ioc->request, ioc->request_dma);
3097 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3098 "request_pool(0x%p): free\n",
3099 ioc->name, ioc->request));
3100 ioc->request = NULL;
3101 }
3102
3103 if (ioc->sense) {
3104 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3105 if (ioc->sense_dma_pool)
3106 pci_pool_destroy(ioc->sense_dma_pool);
3107 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3108 "sense_pool(0x%p): free\n",
3109 ioc->name, ioc->sense));
3110 ioc->sense = NULL;
3111 }
3112
3113 if (ioc->reply) {
3114 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3115 if (ioc->reply_dma_pool)
3116 pci_pool_destroy(ioc->reply_dma_pool);
3117 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3118 "reply_pool(0x%p): free\n",
3119 ioc->name, ioc->reply));
3120 ioc->reply = NULL;
3121 }
3122
3123 if (ioc->reply_free) {
3124 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3125 ioc->reply_free_dma);
3126 if (ioc->reply_free_dma_pool)
3127 pci_pool_destroy(ioc->reply_free_dma_pool);
3128 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3129 "reply_free_pool(0x%p): free\n",
3130 ioc->name, ioc->reply_free));
3131 ioc->reply_free = NULL;
3132 }
3133
3134 if (ioc->reply_post) {
3135 do {
3136 rps = &ioc->reply_post[i];
3137 if (rps->reply_post_free) {
3138 pci_pool_free(
3139 ioc->reply_post_free_dma_pool,
3140 rps->reply_post_free,
3141 rps->reply_post_free_dma);
3142 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3143 "reply_post_free_pool(0x%p): free\n",
3144 ioc->name, rps->reply_post_free));
3145 rps->reply_post_free = NULL;
3146 }
3147 } while (ioc->rdpq_array_enable &&
3148 (++i < ioc->reply_queue_count));
3149
3150 if (ioc->reply_post_free_dma_pool)
3151 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3152 kfree(ioc->reply_post);
3153 }
3154
3155 if (ioc->config_page) {
3156 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3157 "config_page(0x%p): free\n", ioc->name,
3158 ioc->config_page));
3159 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3160 ioc->config_page, ioc->config_page_dma);
3161 }
3162
3163 if (ioc->scsi_lookup) {
3164 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3165 ioc->scsi_lookup = NULL;
3166 }
3167 kfree(ioc->hpr_lookup);
3168 kfree(ioc->internal_lookup);
3169 if (ioc->chain_lookup) {
3170 for (i = 0; i < ioc->chain_depth; i++) {
3171 if (ioc->chain_lookup[i].chain_buffer)
3172 pci_pool_free(ioc->chain_dma_pool,
3173 ioc->chain_lookup[i].chain_buffer,
3174 ioc->chain_lookup[i].chain_buffer_dma);
3175 }
3176 if (ioc->chain_dma_pool)
3177 pci_pool_destroy(ioc->chain_dma_pool);
3178 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3179 ioc->chain_lookup = NULL;
3180 }
3181 }
3182
3183 /**
3184 * _base_allocate_memory_pools - allocate start of day memory pools
3185 * @ioc: per adapter object
3186 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3187 *
3188 * Returns 0 success, anything else error
3189 */
3190 static int
3191 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3192 {
3193 struct mpt3sas_facts *facts;
3194 u16 max_sge_elements;
3195 u16 chains_needed_per_io;
3196 u32 sz, total_sz, reply_post_free_sz;
3197 u32 retry_sz;
3198 u16 max_request_credit;
3199 unsigned short sg_tablesize;
3200 u16 sge_size;
3201 int i;
3202
3203 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3204 __func__));
3205
3206
3207 retry_sz = 0;
3208 facts = &ioc->facts;
3209
3210 /* command line tunables for max sgl entries */
3211 if (max_sgl_entries != -1)
3212 sg_tablesize = max_sgl_entries;
3213 else {
3214 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3215 sg_tablesize = MPT2SAS_SG_DEPTH;
3216 else
3217 sg_tablesize = MPT3SAS_SG_DEPTH;
3218 }
3219
3220 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3221 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3222 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3223 sg_tablesize = min_t(unsigned short, sg_tablesize,
3224 SG_MAX_SEGMENTS);
3225 pr_warn(MPT3SAS_FMT
3226 "sg_tablesize(%u) is bigger than kernel"
3227 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3228 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3229 }
3230 ioc->shost->sg_tablesize = sg_tablesize;
3231
3232 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3233 (facts->RequestCredit / 4));
3234 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3235 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3236 INTERNAL_SCSIIO_CMDS_COUNT)) {
3237 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3238 Credits, it has just %d number of credits\n",
3239 ioc->name, facts->RequestCredit);
3240 return -ENOMEM;
3241 }
3242 ioc->internal_depth = 10;
3243 }
3244
3245 ioc->hi_priority_depth = ioc->internal_depth - (5);
3246 /* command line tunables for max controller queue depth */
3247 if (max_queue_depth != -1 && max_queue_depth != 0) {
3248 max_request_credit = min_t(u16, max_queue_depth +
3249 ioc->internal_depth, facts->RequestCredit);
3250 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3251 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3252 } else
3253 max_request_credit = min_t(u16, facts->RequestCredit,
3254 MAX_HBA_QUEUE_DEPTH);
3255
3256 /* Firmware maintains additional facts->HighPriorityCredit number of
3257 * credits for HiPriprity Request messages, so hba queue depth will be
3258 * sum of max_request_credit and high priority queue depth.
3259 */
3260 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3261
3262 /* request frame size */
3263 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3264
3265 /* reply frame size */
3266 ioc->reply_sz = facts->ReplyFrameSize * 4;
3267
3268 /* chain segment size */
3269 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3270 if (facts->IOCMaxChainSegmentSize)
3271 ioc->chain_segment_sz =
3272 facts->IOCMaxChainSegmentSize *
3273 MAX_CHAIN_ELEMT_SZ;
3274 else
3275 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3276 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3277 MAX_CHAIN_ELEMT_SZ;
3278 } else
3279 ioc->chain_segment_sz = ioc->request_sz;
3280
3281 /* calculate the max scatter element size */
3282 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3283
3284 retry_allocation:
3285 total_sz = 0;
3286 /* calculate number of sg elements left over in the 1st frame */
3287 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3288 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3289 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3290
3291 /* now do the same for a chain buffer */
3292 max_sge_elements = ioc->chain_segment_sz - sge_size;
3293 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3294
3295 /*
3296 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3297 */
3298 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3299 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3300 + 1;
3301 if (chains_needed_per_io > facts->MaxChainDepth) {
3302 chains_needed_per_io = facts->MaxChainDepth;
3303 ioc->shost->sg_tablesize = min_t(u16,
3304 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3305 * chains_needed_per_io), ioc->shost->sg_tablesize);
3306 }
3307 ioc->chains_needed_per_io = chains_needed_per_io;
3308
3309 /* reply free queue sizing - taking into account for 64 FW events */
3310 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3311
3312 /* calculate reply descriptor post queue depth */
3313 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3314 ioc->reply_free_queue_depth + 1 ;
3315 /* align the reply post queue on the next 16 count boundary */
3316 if (ioc->reply_post_queue_depth % 16)
3317 ioc->reply_post_queue_depth += 16 -
3318 (ioc->reply_post_queue_depth % 16);
3319
3320 if (ioc->reply_post_queue_depth >
3321 facts->MaxReplyDescriptorPostQueueDepth) {
3322 ioc->reply_post_queue_depth =
3323 facts->MaxReplyDescriptorPostQueueDepth -
3324 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3325 ioc->hba_queue_depth =
3326 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3327 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3328 }
3329
3330 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3331 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3332 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3333 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3334 ioc->chains_needed_per_io));
3335
3336 /* reply post queue, 16 byte align */
3337 reply_post_free_sz = ioc->reply_post_queue_depth *
3338 sizeof(Mpi2DefaultReplyDescriptor_t);
3339
3340 sz = reply_post_free_sz;
3341 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3342 sz *= ioc->reply_queue_count;
3343
3344 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3345 (ioc->reply_queue_count):1,
3346 sizeof(struct reply_post_struct), GFP_KERNEL);
3347
3348 if (!ioc->reply_post) {
3349 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3350 ioc->name);
3351 goto out;
3352 }
3353 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3354 ioc->pdev, sz, 16, 0);
3355 if (!ioc->reply_post_free_dma_pool) {
3356 pr_err(MPT3SAS_FMT
3357 "reply_post_free pool: pci_pool_create failed\n",
3358 ioc->name);
3359 goto out;
3360 }
3361 i = 0;
3362 do {
3363 ioc->reply_post[i].reply_post_free =
3364 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3365 GFP_KERNEL,
3366 &ioc->reply_post[i].reply_post_free_dma);
3367 if (!ioc->reply_post[i].reply_post_free) {
3368 pr_err(MPT3SAS_FMT
3369 "reply_post_free pool: pci_pool_alloc failed\n",
3370 ioc->name);
3371 goto out;
3372 }
3373 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3374 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3375 "reply post free pool (0x%p): depth(%d),"
3376 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3377 ioc->reply_post[i].reply_post_free,
3378 ioc->reply_post_queue_depth, 8, sz/1024));
3379 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3380 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3381 (unsigned long long)
3382 ioc->reply_post[i].reply_post_free_dma));
3383 total_sz += sz;
3384 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3385
3386 if (ioc->dma_mask == 64) {
3387 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3388 pr_warn(MPT3SAS_FMT
3389 "no suitable consistent DMA mask for %s\n",
3390 ioc->name, pci_name(ioc->pdev));
3391 goto out;
3392 }
3393 }
3394
3395 ioc->scsiio_depth = ioc->hba_queue_depth -
3396 ioc->hi_priority_depth - ioc->internal_depth;
3397
3398 /* set the scsi host can_queue depth
3399 * with some internal commands that could be outstanding
3400 */
3401 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3402 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3403 "scsi host: can_queue depth (%d)\n",
3404 ioc->name, ioc->shost->can_queue));
3405
3406
3407 /* contiguous pool for request and chains, 16 byte align, one extra "
3408 * "frame for smid=0
3409 */
3410 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3411 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3412
3413 /* hi-priority queue */
3414 sz += (ioc->hi_priority_depth * ioc->request_sz);
3415
3416 /* internal queue */
3417 sz += (ioc->internal_depth * ioc->request_sz);
3418
3419 ioc->request_dma_sz = sz;
3420 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3421 if (!ioc->request) {
3422 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3423 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3424 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3425 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3426 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3427 goto out;
3428 retry_sz = 64;
3429 ioc->hba_queue_depth -= retry_sz;
3430 _base_release_memory_pools(ioc);
3431 goto retry_allocation;
3432 }
3433
3434 if (retry_sz)
3435 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3436 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3437 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3438 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3439
3440 /* hi-priority queue */
3441 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3442 ioc->request_sz);
3443 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3444 ioc->request_sz);
3445
3446 /* internal queue */
3447 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3448 ioc->request_sz);
3449 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3450 ioc->request_sz);
3451
3452 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3453 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3454 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3455 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3456
3457 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3458 ioc->name, (unsigned long long) ioc->request_dma));
3459 total_sz += sz;
3460
3461 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3462 ioc->scsi_lookup_pages = get_order(sz);
3463 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3464 GFP_KERNEL, ioc->scsi_lookup_pages);
3465 if (!ioc->scsi_lookup) {
3466 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3467 ioc->name, (int)sz);
3468 goto out;
3469 }
3470
3471 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3472 ioc->name, ioc->request, ioc->scsiio_depth));
3473
3474 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3475 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3476 ioc->chain_pages = get_order(sz);
3477 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3478 GFP_KERNEL, ioc->chain_pages);
3479 if (!ioc->chain_lookup) {
3480 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3481 ioc->name);
3482 goto out;
3483 }
3484 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3485 ioc->chain_segment_sz, 16, 0);
3486 if (!ioc->chain_dma_pool) {
3487 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3488 ioc->name);
3489 goto out;
3490 }
3491 for (i = 0; i < ioc->chain_depth; i++) {
3492 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3493 ioc->chain_dma_pool , GFP_KERNEL,
3494 &ioc->chain_lookup[i].chain_buffer_dma);
3495 if (!ioc->chain_lookup[i].chain_buffer) {
3496 ioc->chain_depth = i;
3497 goto chain_done;
3498 }
3499 total_sz += ioc->chain_segment_sz;
3500 }
3501 chain_done:
3502 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3503 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3504 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3505 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
3506
3507 /* initialize hi-priority queue smid's */
3508 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3509 sizeof(struct request_tracker), GFP_KERNEL);
3510 if (!ioc->hpr_lookup) {
3511 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3512 ioc->name);
3513 goto out;
3514 }
3515 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3516 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3517 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3518 ioc->name, ioc->hi_priority,
3519 ioc->hi_priority_depth, ioc->hi_priority_smid));
3520
3521 /* initialize internal queue smid's */
3522 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3523 sizeof(struct request_tracker), GFP_KERNEL);
3524 if (!ioc->internal_lookup) {
3525 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3526 ioc->name);
3527 goto out;
3528 }
3529 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3530 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3531 "internal(0x%p): depth(%d), start smid(%d)\n",
3532 ioc->name, ioc->internal,
3533 ioc->internal_depth, ioc->internal_smid));
3534
3535 /* sense buffers, 4 byte align */
3536 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3537 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3538 0);
3539 if (!ioc->sense_dma_pool) {
3540 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3541 ioc->name);
3542 goto out;
3543 }
3544 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3545 &ioc->sense_dma);
3546 if (!ioc->sense) {
3547 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3548 ioc->name);
3549 goto out;
3550 }
3551 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3552 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3553 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3554 SCSI_SENSE_BUFFERSIZE, sz/1024));
3555 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3556 ioc->name, (unsigned long long)ioc->sense_dma));
3557 total_sz += sz;
3558
3559 /* reply pool, 4 byte align */
3560 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3561 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3562 0);
3563 if (!ioc->reply_dma_pool) {
3564 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3565 ioc->name);
3566 goto out;
3567 }
3568 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3569 &ioc->reply_dma);
3570 if (!ioc->reply) {
3571 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3572 ioc->name);
3573 goto out;
3574 }
3575 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3576 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3577 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3578 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3579 ioc->name, ioc->reply,
3580 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3581 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3582 ioc->name, (unsigned long long)ioc->reply_dma));
3583 total_sz += sz;
3584
3585 /* reply free queue, 16 byte align */
3586 sz = ioc->reply_free_queue_depth * 4;
3587 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3588 ioc->pdev, sz, 16, 0);
3589 if (!ioc->reply_free_dma_pool) {
3590 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3591 ioc->name);
3592 goto out;
3593 }
3594 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3595 &ioc->reply_free_dma);
3596 if (!ioc->reply_free) {
3597 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3598 ioc->name);
3599 goto out;
3600 }
3601 memset(ioc->reply_free, 0, sz);
3602 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3603 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3604 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3605 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3606 "reply_free_dma (0x%llx)\n",
3607 ioc->name, (unsigned long long)ioc->reply_free_dma));
3608 total_sz += sz;
3609
3610 ioc->config_page_sz = 512;
3611 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3612 ioc->config_page_sz, &ioc->config_page_dma);
3613 if (!ioc->config_page) {
3614 pr_err(MPT3SAS_FMT
3615 "config page: pci_pool_alloc failed\n",
3616 ioc->name);
3617 goto out;
3618 }
3619 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3620 "config page(0x%p): size(%d)\n",
3621 ioc->name, ioc->config_page, ioc->config_page_sz));
3622 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3623 ioc->name, (unsigned long long)ioc->config_page_dma));
3624 total_sz += ioc->config_page_sz;
3625
3626 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3627 ioc->name, total_sz/1024);
3628 pr_info(MPT3SAS_FMT
3629 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3630 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3631 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3632 ioc->name, ioc->shost->sg_tablesize);
3633 return 0;
3634
3635 out:
3636 return -ENOMEM;
3637 }
3638
3639 /**
3640 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3641 * @ioc: Pointer to MPT_ADAPTER structure
3642 * @cooked: Request raw or cooked IOC state
3643 *
3644 * Returns all IOC Doorbell register bits if cooked==0, else just the
3645 * Doorbell bits in MPI_IOC_STATE_MASK.
3646 */
3647 u32
3648 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3649 {
3650 u32 s, sc;
3651
3652 s = readl(&ioc->chip->Doorbell);
3653 sc = s & MPI2_IOC_STATE_MASK;
3654 return cooked ? sc : s;
3655 }
3656
3657 /**
3658 * _base_wait_on_iocstate - waiting on a particular ioc state
3659 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3660 * @timeout: timeout in second
3661 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3662 *
3663 * Returns 0 for success, non-zero for failure.
3664 */
3665 static int
3666 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3667 int sleep_flag)
3668 {
3669 u32 count, cntdn;
3670 u32 current_state;
3671
3672 count = 0;
3673 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3674 do {
3675 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3676 if (current_state == ioc_state)
3677 return 0;
3678 if (count && current_state == MPI2_IOC_STATE_FAULT)
3679 break;
3680 if (sleep_flag == CAN_SLEEP)
3681 usleep_range(1000, 1500);
3682 else
3683 udelay(500);
3684 count++;
3685 } while (--cntdn);
3686
3687 return current_state;
3688 }
3689
3690 /**
3691 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3692 * a write to the doorbell)
3693 * @ioc: per adapter object
3694 * @timeout: timeout in second
3695 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3696 *
3697 * Returns 0 for success, non-zero for failure.
3698 *
3699 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3700 */
3701 static int
3702 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3703
3704 static int
3705 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3706 int sleep_flag)
3707 {
3708 u32 cntdn, count;
3709 u32 int_status;
3710
3711 count = 0;
3712 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3713 do {
3714 int_status = readl(&ioc->chip->HostInterruptStatus);
3715 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3716 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3717 "%s: successful count(%d), timeout(%d)\n",
3718 ioc->name, __func__, count, timeout));
3719 return 0;
3720 }
3721 if (sleep_flag == CAN_SLEEP)
3722 usleep_range(1000, 1500);
3723 else
3724 udelay(500);
3725 count++;
3726 } while (--cntdn);
3727
3728 pr_err(MPT3SAS_FMT
3729 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3730 ioc->name, __func__, count, int_status);
3731 return -EFAULT;
3732 }
3733
3734 /**
3735 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3736 * @ioc: per adapter object
3737 * @timeout: timeout in second
3738 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3739 *
3740 * Returns 0 for success, non-zero for failure.
3741 *
3742 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3743 * doorbell.
3744 */
3745 static int
3746 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3747 int sleep_flag)
3748 {
3749 u32 cntdn, count;
3750 u32 int_status;
3751 u32 doorbell;
3752
3753 count = 0;
3754 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3755 do {
3756 int_status = readl(&ioc->chip->HostInterruptStatus);
3757 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3758 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3759 "%s: successful count(%d), timeout(%d)\n",
3760 ioc->name, __func__, count, timeout));
3761 return 0;
3762 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3763 doorbell = readl(&ioc->chip->Doorbell);
3764 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3765 MPI2_IOC_STATE_FAULT) {
3766 mpt3sas_base_fault_info(ioc , doorbell);
3767 return -EFAULT;
3768 }
3769 } else if (int_status == 0xFFFFFFFF)
3770 goto out;
3771
3772 if (sleep_flag == CAN_SLEEP)
3773 usleep_range(1000, 1500);
3774 else
3775 udelay(500);
3776 count++;
3777 } while (--cntdn);
3778
3779 out:
3780 pr_err(MPT3SAS_FMT
3781 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3782 ioc->name, __func__, count, int_status);
3783 return -EFAULT;
3784 }
3785
3786 /**
3787 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3788 * @ioc: per adapter object
3789 * @timeout: timeout in second
3790 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3791 *
3792 * Returns 0 for success, non-zero for failure.
3793 *
3794 */
3795 static int
3796 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3797 int sleep_flag)
3798 {
3799 u32 cntdn, count;
3800 u32 doorbell_reg;
3801
3802 count = 0;
3803 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3804 do {
3805 doorbell_reg = readl(&ioc->chip->Doorbell);
3806 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3807 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3808 "%s: successful count(%d), timeout(%d)\n",
3809 ioc->name, __func__, count, timeout));
3810 return 0;
3811 }
3812 if (sleep_flag == CAN_SLEEP)
3813 usleep_range(1000, 1500);
3814 else
3815 udelay(500);
3816 count++;
3817 } while (--cntdn);
3818
3819 pr_err(MPT3SAS_FMT
3820 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3821 ioc->name, __func__, count, doorbell_reg);
3822 return -EFAULT;
3823 }
3824
3825 /**
3826 * _base_send_ioc_reset - send doorbell reset
3827 * @ioc: per adapter object
3828 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3829 * @timeout: timeout in second
3830 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3831 *
3832 * Returns 0 for success, non-zero for failure.
3833 */
3834 static int
3835 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3836 int sleep_flag)
3837 {
3838 u32 ioc_state;
3839 int r = 0;
3840
3841 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3842 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3843 ioc->name, __func__);
3844 return -EFAULT;
3845 }
3846
3847 if (!(ioc->facts.IOCCapabilities &
3848 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3849 return -EFAULT;
3850
3851 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3852
3853 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3854 &ioc->chip->Doorbell);
3855 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3856 r = -EFAULT;
3857 goto out;
3858 }
3859 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3860 timeout, sleep_flag);
3861 if (ioc_state) {
3862 pr_err(MPT3SAS_FMT
3863 "%s: failed going to ready state (ioc_state=0x%x)\n",
3864 ioc->name, __func__, ioc_state);
3865 r = -EFAULT;
3866 goto out;
3867 }
3868 out:
3869 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3870 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3871 return r;
3872 }
3873
3874 /**
3875 * _base_handshake_req_reply_wait - send request thru doorbell interface
3876 * @ioc: per adapter object
3877 * @request_bytes: request length
3878 * @request: pointer having request payload
3879 * @reply_bytes: reply length
3880 * @reply: pointer to reply payload
3881 * @timeout: timeout in second
3882 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3883 *
3884 * Returns 0 for success, non-zero for failure.
3885 */
3886 static int
3887 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3888 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3889 {
3890 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3891 int i;
3892 u8 failed;
3893 u16 dummy;
3894 __le32 *mfp;
3895
3896 /* make sure doorbell is not in use */
3897 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3898 pr_err(MPT3SAS_FMT
3899 "doorbell is in use (line=%d)\n",
3900 ioc->name, __LINE__);
3901 return -EFAULT;
3902 }
3903
3904 /* clear pending doorbell interrupts from previous state changes */
3905 if (readl(&ioc->chip->HostInterruptStatus) &
3906 MPI2_HIS_IOC2SYS_DB_STATUS)
3907 writel(0, &ioc->chip->HostInterruptStatus);
3908
3909 /* send message to ioc */
3910 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3911 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3912 &ioc->chip->Doorbell);
3913
3914 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3915 pr_err(MPT3SAS_FMT
3916 "doorbell handshake int failed (line=%d)\n",
3917 ioc->name, __LINE__);
3918 return -EFAULT;
3919 }
3920 writel(0, &ioc->chip->HostInterruptStatus);
3921
3922 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3923 pr_err(MPT3SAS_FMT
3924 "doorbell handshake ack failed (line=%d)\n",
3925 ioc->name, __LINE__);
3926 return -EFAULT;
3927 }
3928
3929 /* send message 32-bits at a time */
3930 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3931 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3932 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3933 failed = 1;
3934 }
3935
3936 if (failed) {
3937 pr_err(MPT3SAS_FMT
3938 "doorbell handshake sending request failed (line=%d)\n",
3939 ioc->name, __LINE__);
3940 return -EFAULT;
3941 }
3942
3943 /* now wait for the reply */
3944 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3945 pr_err(MPT3SAS_FMT
3946 "doorbell handshake int failed (line=%d)\n",
3947 ioc->name, __LINE__);
3948 return -EFAULT;
3949 }
3950
3951 /* read the first two 16-bits, it gives the total length of the reply */
3952 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3953 & MPI2_DOORBELL_DATA_MASK);
3954 writel(0, &ioc->chip->HostInterruptStatus);
3955 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3956 pr_err(MPT3SAS_FMT
3957 "doorbell handshake int failed (line=%d)\n",
3958 ioc->name, __LINE__);
3959 return -EFAULT;
3960 }
3961 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3962 & MPI2_DOORBELL_DATA_MASK);
3963 writel(0, &ioc->chip->HostInterruptStatus);
3964
3965 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3966 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3967 pr_err(MPT3SAS_FMT
3968 "doorbell handshake int failed (line=%d)\n",
3969 ioc->name, __LINE__);
3970 return -EFAULT;
3971 }
3972 if (i >= reply_bytes/2) /* overflow case */
3973 dummy = readl(&ioc->chip->Doorbell);
3974 else
3975 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3976 & MPI2_DOORBELL_DATA_MASK);
3977 writel(0, &ioc->chip->HostInterruptStatus);
3978 }
3979
3980 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3981 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3982 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3983 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3984 }
3985 writel(0, &ioc->chip->HostInterruptStatus);
3986
3987 if (ioc->logging_level & MPT_DEBUG_INIT) {
3988 mfp = (__le32 *)reply;
3989 pr_info("\toffset:data\n");
3990 for (i = 0; i < reply_bytes/4; i++)
3991 pr_info("\t[0x%02x]:%08x\n", i*4,
3992 le32_to_cpu(mfp[i]));
3993 }
3994 return 0;
3995 }
3996
3997 /**
3998 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3999 * @ioc: per adapter object
4000 * @mpi_reply: the reply payload from FW
4001 * @mpi_request: the request payload sent to FW
4002 *
4003 * The SAS IO Unit Control Request message allows the host to perform low-level
4004 * operations, such as resets on the PHYs of the IO Unit, also allows the host
4005 * to obtain the IOC assigned device handles for a device if it has other
4006 * identifying information about the device, in addition allows the host to
4007 * remove IOC resources associated with the device.
4008 *
4009 * Returns 0 for success, non-zero for failure.
4010 */
4011 int
4012 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4013 Mpi2SasIoUnitControlReply_t *mpi_reply,
4014 Mpi2SasIoUnitControlRequest_t *mpi_request)
4015 {
4016 u16 smid;
4017 u32 ioc_state;
4018 unsigned long timeleft;
4019 bool issue_reset = false;
4020 int rc;
4021 void *request;
4022 u16 wait_state_count;
4023
4024 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4025 __func__));
4026
4027 mutex_lock(&ioc->base_cmds.mutex);
4028
4029 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4030 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4031 ioc->name, __func__);
4032 rc = -EAGAIN;
4033 goto out;
4034 }
4035
4036 wait_state_count = 0;
4037 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4038 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4039 if (wait_state_count++ == 10) {
4040 pr_err(MPT3SAS_FMT
4041 "%s: failed due to ioc not operational\n",
4042 ioc->name, __func__);
4043 rc = -EFAULT;
4044 goto out;
4045 }
4046 ssleep(1);
4047 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4048 pr_info(MPT3SAS_FMT
4049 "%s: waiting for operational state(count=%d)\n",
4050 ioc->name, __func__, wait_state_count);
4051 }
4052
4053 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4054 if (!smid) {
4055 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4056 ioc->name, __func__);
4057 rc = -EAGAIN;
4058 goto out;
4059 }
4060
4061 rc = 0;
4062 ioc->base_cmds.status = MPT3_CMD_PENDING;
4063 request = mpt3sas_base_get_msg_frame(ioc, smid);
4064 ioc->base_cmds.smid = smid;
4065 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4066 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4067 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4068 ioc->ioc_link_reset_in_progress = 1;
4069 init_completion(&ioc->base_cmds.done);
4070 mpt3sas_base_put_smid_default(ioc, smid);
4071 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4072 msecs_to_jiffies(10000));
4073 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4074 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4075 ioc->ioc_link_reset_in_progress)
4076 ioc->ioc_link_reset_in_progress = 0;
4077 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4078 pr_err(MPT3SAS_FMT "%s: timeout\n",
4079 ioc->name, __func__);
4080 _debug_dump_mf(mpi_request,
4081 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4082 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4083 issue_reset = true;
4084 goto issue_host_reset;
4085 }
4086 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4087 memcpy(mpi_reply, ioc->base_cmds.reply,
4088 sizeof(Mpi2SasIoUnitControlReply_t));
4089 else
4090 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4091 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4092 goto out;
4093
4094 issue_host_reset:
4095 if (issue_reset)
4096 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4097 FORCE_BIG_HAMMER);
4098 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4099 rc = -EFAULT;
4100 out:
4101 mutex_unlock(&ioc->base_cmds.mutex);
4102 return rc;
4103 }
4104
4105 /**
4106 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4107 * @ioc: per adapter object
4108 * @mpi_reply: the reply payload from FW
4109 * @mpi_request: the request payload sent to FW
4110 *
4111 * The SCSI Enclosure Processor request message causes the IOC to
4112 * communicate with SES devices to control LED status signals.
4113 *
4114 * Returns 0 for success, non-zero for failure.
4115 */
4116 int
4117 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4118 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4119 {
4120 u16 smid;
4121 u32 ioc_state;
4122 unsigned long timeleft;
4123 bool issue_reset = false;
4124 int rc;
4125 void *request;
4126 u16 wait_state_count;
4127
4128 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4129 __func__));
4130
4131 mutex_lock(&ioc->base_cmds.mutex);
4132
4133 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4134 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4135 ioc->name, __func__);
4136 rc = -EAGAIN;
4137 goto out;
4138 }
4139
4140 wait_state_count = 0;
4141 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4142 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4143 if (wait_state_count++ == 10) {
4144 pr_err(MPT3SAS_FMT
4145 "%s: failed due to ioc not operational\n",
4146 ioc->name, __func__);
4147 rc = -EFAULT;
4148 goto out;
4149 }
4150 ssleep(1);
4151 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4152 pr_info(MPT3SAS_FMT
4153 "%s: waiting for operational state(count=%d)\n",
4154 ioc->name,
4155 __func__, wait_state_count);
4156 }
4157
4158 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4159 if (!smid) {
4160 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4161 ioc->name, __func__);
4162 rc = -EAGAIN;
4163 goto out;
4164 }
4165
4166 rc = 0;
4167 ioc->base_cmds.status = MPT3_CMD_PENDING;
4168 request = mpt3sas_base_get_msg_frame(ioc, smid);
4169 ioc->base_cmds.smid = smid;
4170 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4171 init_completion(&ioc->base_cmds.done);
4172 mpt3sas_base_put_smid_default(ioc, smid);
4173 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4174 msecs_to_jiffies(10000));
4175 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4176 pr_err(MPT3SAS_FMT "%s: timeout\n",
4177 ioc->name, __func__);
4178 _debug_dump_mf(mpi_request,
4179 sizeof(Mpi2SepRequest_t)/4);
4180 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4181 issue_reset = false;
4182 goto issue_host_reset;
4183 }
4184 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4185 memcpy(mpi_reply, ioc->base_cmds.reply,
4186 sizeof(Mpi2SepReply_t));
4187 else
4188 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4189 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4190 goto out;
4191
4192 issue_host_reset:
4193 if (issue_reset)
4194 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4195 FORCE_BIG_HAMMER);
4196 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4197 rc = -EFAULT;
4198 out:
4199 mutex_unlock(&ioc->base_cmds.mutex);
4200 return rc;
4201 }
4202
4203 /**
4204 * _base_get_port_facts - obtain port facts reply and save in ioc
4205 * @ioc: per adapter object
4206 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4207 *
4208 * Returns 0 for success, non-zero for failure.
4209 */
4210 static int
4211 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4212 {
4213 Mpi2PortFactsRequest_t mpi_request;
4214 Mpi2PortFactsReply_t mpi_reply;
4215 struct mpt3sas_port_facts *pfacts;
4216 int mpi_reply_sz, mpi_request_sz, r;
4217
4218 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4219 __func__));
4220
4221 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4222 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4223 memset(&mpi_request, 0, mpi_request_sz);
4224 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4225 mpi_request.PortNumber = port;
4226 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4227 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4228
4229 if (r != 0) {
4230 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4231 ioc->name, __func__, r);
4232 return r;
4233 }
4234
4235 pfacts = &ioc->pfacts[port];
4236 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4237 pfacts->PortNumber = mpi_reply.PortNumber;
4238 pfacts->VP_ID = mpi_reply.VP_ID;
4239 pfacts->VF_ID = mpi_reply.VF_ID;
4240 pfacts->MaxPostedCmdBuffers =
4241 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4242
4243 return 0;
4244 }
4245
4246 /**
4247 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4248 * @ioc: per adapter object
4249 * @timeout:
4250 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4251 *
4252 * Returns 0 for success, non-zero for failure.
4253 */
4254 static int
4255 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4256 int sleep_flag)
4257 {
4258 u32 ioc_state;
4259 int rc;
4260
4261 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4262 __func__));
4263
4264 if (ioc->pci_error_recovery) {
4265 dfailprintk(ioc, printk(MPT3SAS_FMT
4266 "%s: host in pci error recovery\n", ioc->name, __func__));
4267 return -EFAULT;
4268 }
4269
4270 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4271 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4272 ioc->name, __func__, ioc_state));
4273
4274 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4275 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4276 return 0;
4277
4278 if (ioc_state & MPI2_DOORBELL_USED) {
4279 dhsprintk(ioc, printk(MPT3SAS_FMT
4280 "unexpected doorbell active!\n", ioc->name));
4281 goto issue_diag_reset;
4282 }
4283
4284 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4285 mpt3sas_base_fault_info(ioc, ioc_state &
4286 MPI2_DOORBELL_DATA_MASK);
4287 goto issue_diag_reset;
4288 }
4289
4290 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4291 timeout, sleep_flag);
4292 if (ioc_state) {
4293 dfailprintk(ioc, printk(MPT3SAS_FMT
4294 "%s: failed going to ready state (ioc_state=0x%x)\n",
4295 ioc->name, __func__, ioc_state));
4296 return -EFAULT;
4297 }
4298
4299 issue_diag_reset:
4300 rc = _base_diag_reset(ioc, sleep_flag);
4301 return rc;
4302 }
4303
4304 /**
4305 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4306 * @ioc: per adapter object
4307 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4308 *
4309 * Returns 0 for success, non-zero for failure.
4310 */
4311 static int
4312 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4313 {
4314 Mpi2IOCFactsRequest_t mpi_request;
4315 Mpi2IOCFactsReply_t mpi_reply;
4316 struct mpt3sas_facts *facts;
4317 int mpi_reply_sz, mpi_request_sz, r;
4318
4319 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4320 __func__));
4321
4322 r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4323 if (r) {
4324 dfailprintk(ioc, printk(MPT3SAS_FMT
4325 "%s: failed getting to correct state\n",
4326 ioc->name, __func__));
4327 return r;
4328 }
4329 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4330 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4331 memset(&mpi_request, 0, mpi_request_sz);
4332 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4333 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4334 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4335
4336 if (r != 0) {
4337 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4338 ioc->name, __func__, r);
4339 return r;
4340 }
4341
4342 facts = &ioc->facts;
4343 memset(facts, 0, sizeof(struct mpt3sas_facts));
4344 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4345 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4346 facts->VP_ID = mpi_reply.VP_ID;
4347 facts->VF_ID = mpi_reply.VF_ID;
4348 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4349 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4350 facts->WhoInit = mpi_reply.WhoInit;
4351 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4352 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4353 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4354 facts->MaxReplyDescriptorPostQueueDepth =
4355 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4356 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4357 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4358 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4359 ioc->ir_firmware = 1;
4360 if ((facts->IOCCapabilities &
4361 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4362 ioc->rdpq_array_capable = 1;
4363 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4364 facts->IOCRequestFrameSize =
4365 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4366 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4367 facts->IOCMaxChainSegmentSize =
4368 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4369 }
4370 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4371 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4372 ioc->shost->max_id = -1;
4373 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4374 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4375 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4376 facts->HighPriorityCredit =
4377 le16_to_cpu(mpi_reply.HighPriorityCredit);
4378 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4379 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4380
4381 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4382 "hba queue depth(%d), max chains per io(%d)\n",
4383 ioc->name, facts->RequestCredit,
4384 facts->MaxChainDepth));
4385 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4386 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4387 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4388 return 0;
4389 }
4390
4391 /**
4392 * _base_send_ioc_init - send ioc_init to firmware
4393 * @ioc: per adapter object
4394 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4395 *
4396 * Returns 0 for success, non-zero for failure.
4397 */
4398 static int
4399 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4400 {
4401 Mpi2IOCInitRequest_t mpi_request;
4402 Mpi2IOCInitReply_t mpi_reply;
4403 int i, r = 0;
4404 ktime_t current_time;
4405 u16 ioc_status;
4406 u32 reply_post_free_array_sz = 0;
4407 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4408 dma_addr_t reply_post_free_array_dma;
4409
4410 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4411 __func__));
4412
4413 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4414 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4415 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4416 mpi_request.VF_ID = 0; /* TODO */
4417 mpi_request.VP_ID = 0;
4418 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4419 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4420
4421 if (_base_is_controller_msix_enabled(ioc))
4422 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4423 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4424 mpi_request.ReplyDescriptorPostQueueDepth =
4425 cpu_to_le16(ioc->reply_post_queue_depth);
4426 mpi_request.ReplyFreeQueueDepth =
4427 cpu_to_le16(ioc->reply_free_queue_depth);
4428
4429 mpi_request.SenseBufferAddressHigh =
4430 cpu_to_le32((u64)ioc->sense_dma >> 32);
4431 mpi_request.SystemReplyAddressHigh =
4432 cpu_to_le32((u64)ioc->reply_dma >> 32);
4433 mpi_request.SystemRequestFrameBaseAddress =
4434 cpu_to_le64((u64)ioc->request_dma);
4435 mpi_request.ReplyFreeQueueAddress =
4436 cpu_to_le64((u64)ioc->reply_free_dma);
4437
4438 if (ioc->rdpq_array_enable) {
4439 reply_post_free_array_sz = ioc->reply_queue_count *
4440 sizeof(Mpi2IOCInitRDPQArrayEntry);
4441 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4442 reply_post_free_array_sz, &reply_post_free_array_dma);
4443 if (!reply_post_free_array) {
4444 pr_err(MPT3SAS_FMT
4445 "reply_post_free_array: pci_alloc_consistent failed\n",
4446 ioc->name);
4447 r = -ENOMEM;
4448 goto out;
4449 }
4450 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4451 for (i = 0; i < ioc->reply_queue_count; i++)
4452 reply_post_free_array[i].RDPQBaseAddress =
4453 cpu_to_le64(
4454 (u64)ioc->reply_post[i].reply_post_free_dma);
4455 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4456 mpi_request.ReplyDescriptorPostQueueAddress =
4457 cpu_to_le64((u64)reply_post_free_array_dma);
4458 } else {
4459 mpi_request.ReplyDescriptorPostQueueAddress =
4460 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4461 }
4462
4463 /* This time stamp specifies number of milliseconds
4464 * since epoch ~ midnight January 1, 1970.
4465 */
4466 current_time = ktime_get_real();
4467 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4468
4469 if (ioc->logging_level & MPT_DEBUG_INIT) {
4470 __le32 *mfp;
4471 int i;
4472
4473 mfp = (__le32 *)&mpi_request;
4474 pr_info("\toffset:data\n");
4475 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4476 pr_info("\t[0x%02x]:%08x\n", i*4,
4477 le32_to_cpu(mfp[i]));
4478 }
4479
4480 r = _base_handshake_req_reply_wait(ioc,
4481 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4482 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4483 sleep_flag);
4484
4485 if (r != 0) {
4486 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4487 ioc->name, __func__, r);
4488 goto out;
4489 }
4490
4491 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4492 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4493 mpi_reply.IOCLogInfo) {
4494 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4495 r = -EIO;
4496 }
4497
4498 out:
4499 if (reply_post_free_array)
4500 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4501 reply_post_free_array,
4502 reply_post_free_array_dma);
4503 return r;
4504 }
4505
4506 /**
4507 * mpt3sas_port_enable_done - command completion routine for port enable
4508 * @ioc: per adapter object
4509 * @smid: system request message index
4510 * @msix_index: MSIX table index supplied by the OS
4511 * @reply: reply message frame(lower 32bit addr)
4512 *
4513 * Return 1 meaning mf should be freed from _base_interrupt
4514 * 0 means the mf is freed from this function.
4515 */
4516 u8
4517 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4518 u32 reply)
4519 {
4520 MPI2DefaultReply_t *mpi_reply;
4521 u16 ioc_status;
4522
4523 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4524 return 1;
4525
4526 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4527 if (!mpi_reply)
4528 return 1;
4529
4530 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4531 return 1;
4532
4533 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4534 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4535 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4536 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4537 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4538 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4539 ioc->port_enable_failed = 1;
4540
4541 if (ioc->is_driver_loading) {
4542 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4543 mpt3sas_port_enable_complete(ioc);
4544 return 1;
4545 } else {
4546 ioc->start_scan_failed = ioc_status;
4547 ioc->start_scan = 0;
4548 return 1;
4549 }
4550 }
4551 complete(&ioc->port_enable_cmds.done);
4552 return 1;
4553 }
4554
4555 /**
4556 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4557 * @ioc: per adapter object
4558 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4559 *
4560 * Returns 0 for success, non-zero for failure.
4561 */
4562 static int
4563 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4564 {
4565 Mpi2PortEnableRequest_t *mpi_request;
4566 Mpi2PortEnableReply_t *mpi_reply;
4567 unsigned long timeleft;
4568 int r = 0;
4569 u16 smid;
4570 u16 ioc_status;
4571
4572 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4573
4574 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4575 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4576 ioc->name, __func__);
4577 return -EAGAIN;
4578 }
4579
4580 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4581 if (!smid) {
4582 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4583 ioc->name, __func__);
4584 return -EAGAIN;
4585 }
4586
4587 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4588 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4589 ioc->port_enable_cmds.smid = smid;
4590 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4591 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4592
4593 init_completion(&ioc->port_enable_cmds.done);
4594 mpt3sas_base_put_smid_default(ioc, smid);
4595 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4596 300*HZ);
4597 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4598 pr_err(MPT3SAS_FMT "%s: timeout\n",
4599 ioc->name, __func__);
4600 _debug_dump_mf(mpi_request,
4601 sizeof(Mpi2PortEnableRequest_t)/4);
4602 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4603 r = -EFAULT;
4604 else
4605 r = -ETIME;
4606 goto out;
4607 }
4608
4609 mpi_reply = ioc->port_enable_cmds.reply;
4610 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4611 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4612 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4613 ioc->name, __func__, ioc_status);
4614 r = -EFAULT;
4615 goto out;
4616 }
4617
4618 out:
4619 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4620 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4621 "SUCCESS" : "FAILED"));
4622 return r;
4623 }
4624
4625 /**
4626 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4627 * @ioc: per adapter object
4628 *
4629 * Returns 0 for success, non-zero for failure.
4630 */
4631 int
4632 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4633 {
4634 Mpi2PortEnableRequest_t *mpi_request;
4635 u16 smid;
4636
4637 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4638
4639 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4640 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4641 ioc->name, __func__);
4642 return -EAGAIN;
4643 }
4644
4645 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4646 if (!smid) {
4647 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4648 ioc->name, __func__);
4649 return -EAGAIN;
4650 }
4651
4652 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4653 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4654 ioc->port_enable_cmds.smid = smid;
4655 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4656 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4657
4658 mpt3sas_base_put_smid_default(ioc, smid);
4659 return 0;
4660 }
4661
4662 /**
4663 * _base_determine_wait_on_discovery - desposition
4664 * @ioc: per adapter object
4665 *
4666 * Decide whether to wait on discovery to complete. Used to either
4667 * locate boot device, or report volumes ahead of physical devices.
4668 *
4669 * Returns 1 for wait, 0 for don't wait
4670 */
4671 static int
4672 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4673 {
4674 /* We wait for discovery to complete if IR firmware is loaded.
4675 * The sas topology events arrive before PD events, so we need time to
4676 * turn on the bit in ioc->pd_handles to indicate PD
4677 * Also, it maybe required to report Volumes ahead of physical
4678 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4679 */
4680 if (ioc->ir_firmware)
4681 return 1;
4682
4683 /* if no Bios, then we don't need to wait */
4684 if (!ioc->bios_pg3.BiosVersion)
4685 return 0;
4686
4687 /* Bios is present, then we drop down here.
4688 *
4689 * If there any entries in the Bios Page 2, then we wait
4690 * for discovery to complete.
4691 */
4692
4693 /* Current Boot Device */
4694 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4695 MPI2_BIOSPAGE2_FORM_MASK) ==
4696 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4697 /* Request Boot Device */
4698 (ioc->bios_pg2.ReqBootDeviceForm &
4699 MPI2_BIOSPAGE2_FORM_MASK) ==
4700 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4701 /* Alternate Request Boot Device */
4702 (ioc->bios_pg2.ReqAltBootDeviceForm &
4703 MPI2_BIOSPAGE2_FORM_MASK) ==
4704 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4705 return 0;
4706
4707 return 1;
4708 }
4709
4710 /**
4711 * _base_unmask_events - turn on notification for this event
4712 * @ioc: per adapter object
4713 * @event: firmware event
4714 *
4715 * The mask is stored in ioc->event_masks.
4716 */
4717 static void
4718 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4719 {
4720 u32 desired_event;
4721
4722 if (event >= 128)
4723 return;
4724
4725 desired_event = (1 << (event % 32));
4726
4727 if (event < 32)
4728 ioc->event_masks[0] &= ~desired_event;
4729 else if (event < 64)
4730 ioc->event_masks[1] &= ~desired_event;
4731 else if (event < 96)
4732 ioc->event_masks[2] &= ~desired_event;
4733 else if (event < 128)
4734 ioc->event_masks[3] &= ~desired_event;
4735 }
4736
4737 /**
4738 * _base_event_notification - send event notification
4739 * @ioc: per adapter object
4740 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4741 *
4742 * Returns 0 for success, non-zero for failure.
4743 */
4744 static int
4745 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4746 {
4747 Mpi2EventNotificationRequest_t *mpi_request;
4748 unsigned long timeleft;
4749 u16 smid;
4750 int r = 0;
4751 int i;
4752
4753 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4754 __func__));
4755
4756 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4757 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4758 ioc->name, __func__);
4759 return -EAGAIN;
4760 }
4761
4762 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4763 if (!smid) {
4764 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4765 ioc->name, __func__);
4766 return -EAGAIN;
4767 }
4768 ioc->base_cmds.status = MPT3_CMD_PENDING;
4769 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4770 ioc->base_cmds.smid = smid;
4771 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4772 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4773 mpi_request->VF_ID = 0; /* TODO */
4774 mpi_request->VP_ID = 0;
4775 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4776 mpi_request->EventMasks[i] =
4777 cpu_to_le32(ioc->event_masks[i]);
4778 init_completion(&ioc->base_cmds.done);
4779 mpt3sas_base_put_smid_default(ioc, smid);
4780 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4781 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4782 pr_err(MPT3SAS_FMT "%s: timeout\n",
4783 ioc->name, __func__);
4784 _debug_dump_mf(mpi_request,
4785 sizeof(Mpi2EventNotificationRequest_t)/4);
4786 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4787 r = -EFAULT;
4788 else
4789 r = -ETIME;
4790 } else
4791 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4792 ioc->name, __func__));
4793 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4794 return r;
4795 }
4796
4797 /**
4798 * mpt3sas_base_validate_event_type - validating event types
4799 * @ioc: per adapter object
4800 * @event: firmware event
4801 *
4802 * This will turn on firmware event notification when application
4803 * ask for that event. We don't mask events that are already enabled.
4804 */
4805 void
4806 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4807 {
4808 int i, j;
4809 u32 event_mask, desired_event;
4810 u8 send_update_to_fw;
4811
4812 for (i = 0, send_update_to_fw = 0; i <
4813 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4814 event_mask = ~event_type[i];
4815 desired_event = 1;
4816 for (j = 0; j < 32; j++) {
4817 if (!(event_mask & desired_event) &&
4818 (ioc->event_masks[i] & desired_event)) {
4819 ioc->event_masks[i] &= ~desired_event;
4820 send_update_to_fw = 1;
4821 }
4822 desired_event = (desired_event << 1);
4823 }
4824 }
4825
4826 if (!send_update_to_fw)
4827 return;
4828
4829 mutex_lock(&ioc->base_cmds.mutex);
4830 _base_event_notification(ioc, CAN_SLEEP);
4831 mutex_unlock(&ioc->base_cmds.mutex);
4832 }
4833
4834 /**
4835 * _base_diag_reset - the "big hammer" start of day reset
4836 * @ioc: per adapter object
4837 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4838 *
4839 * Returns 0 for success, non-zero for failure.
4840 */
4841 static int
4842 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4843 {
4844 u32 host_diagnostic;
4845 u32 ioc_state;
4846 u32 count;
4847 u32 hcb_size;
4848
4849 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4850
4851 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4852 ioc->name));
4853
4854 count = 0;
4855 do {
4856 /* Write magic sequence to WriteSequence register
4857 * Loop until in diagnostic mode
4858 */
4859 drsprintk(ioc, pr_info(MPT3SAS_FMT
4860 "write magic sequence\n", ioc->name));
4861 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4862 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4863 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4864 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4865 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4866 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4867 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4868
4869 /* wait 100 msec */
4870 if (sleep_flag == CAN_SLEEP)
4871 msleep(100);
4872 else
4873 mdelay(100);
4874
4875 if (count++ > 20)
4876 goto out;
4877
4878 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4879 drsprintk(ioc, pr_info(MPT3SAS_FMT
4880 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4881 ioc->name, count, host_diagnostic));
4882
4883 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4884
4885 hcb_size = readl(&ioc->chip->HCBSize);
4886
4887 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4888 ioc->name));
4889 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4890 &ioc->chip->HostDiagnostic);
4891
4892 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4893 if (sleep_flag == CAN_SLEEP)
4894 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4895 else
4896 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4897
4898 /* Approximately 300 second max wait */
4899 for (count = 0; count < (300000000 /
4900 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4901
4902 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4903
4904 if (host_diagnostic == 0xFFFFFFFF)
4905 goto out;
4906 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4907 break;
4908
4909 /* Wait to pass the second read delay window */
4910 if (sleep_flag == CAN_SLEEP)
4911 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4912 / 1000);
4913 else
4914 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4915 / 1000);
4916 }
4917
4918 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4919
4920 drsprintk(ioc, pr_info(MPT3SAS_FMT
4921 "restart the adapter assuming the HCB Address points to good F/W\n",
4922 ioc->name));
4923 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4924 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4925 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4926
4927 drsprintk(ioc, pr_info(MPT3SAS_FMT
4928 "re-enable the HCDW\n", ioc->name));
4929 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4930 &ioc->chip->HCBSize);
4931 }
4932
4933 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4934 ioc->name));
4935 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4936 &ioc->chip->HostDiagnostic);
4937
4938 drsprintk(ioc, pr_info(MPT3SAS_FMT
4939 "disable writes to the diagnostic register\n", ioc->name));
4940 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4941
4942 drsprintk(ioc, pr_info(MPT3SAS_FMT
4943 "Wait for FW to go to the READY state\n", ioc->name));
4944 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4945 sleep_flag);
4946 if (ioc_state) {
4947 pr_err(MPT3SAS_FMT
4948 "%s: failed going to ready state (ioc_state=0x%x)\n",
4949 ioc->name, __func__, ioc_state);
4950 goto out;
4951 }
4952
4953 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4954 return 0;
4955
4956 out:
4957 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4958 return -EFAULT;
4959 }
4960
4961 /**
4962 * _base_make_ioc_ready - put controller in READY state
4963 * @ioc: per adapter object
4964 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4965 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4966 *
4967 * Returns 0 for success, non-zero for failure.
4968 */
4969 static int
4970 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4971 enum reset_type type)
4972 {
4973 u32 ioc_state;
4974 int rc;
4975 int count;
4976
4977 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4978 __func__));
4979
4980 if (ioc->pci_error_recovery)
4981 return 0;
4982
4983 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4984 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4985 ioc->name, __func__, ioc_state));
4986
4987 /* if in RESET state, it should move to READY state shortly */
4988 count = 0;
4989 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4990 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4991 MPI2_IOC_STATE_READY) {
4992 if (count++ == 10) {
4993 pr_err(MPT3SAS_FMT
4994 "%s: failed going to ready state (ioc_state=0x%x)\n",
4995 ioc->name, __func__, ioc_state);
4996 return -EFAULT;
4997 }
4998 if (sleep_flag == CAN_SLEEP)
4999 ssleep(1);
5000 else
5001 mdelay(1000);
5002 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5003 }
5004 }
5005
5006 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5007 return 0;
5008
5009 if (ioc_state & MPI2_DOORBELL_USED) {
5010 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5011 "unexpected doorbell active!\n",
5012 ioc->name));
5013 goto issue_diag_reset;
5014 }
5015
5016 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5017 mpt3sas_base_fault_info(ioc, ioc_state &
5018 MPI2_DOORBELL_DATA_MASK);
5019 goto issue_diag_reset;
5020 }
5021
5022 if (type == FORCE_BIG_HAMMER)
5023 goto issue_diag_reset;
5024
5025 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5026 if (!(_base_send_ioc_reset(ioc,
5027 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
5028 return 0;
5029 }
5030
5031 issue_diag_reset:
5032 rc = _base_diag_reset(ioc, CAN_SLEEP);
5033 return rc;
5034 }
5035
5036 /**
5037 * _base_make_ioc_operational - put controller in OPERATIONAL state
5038 * @ioc: per adapter object
5039 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5040 *
5041 * Returns 0 for success, non-zero for failure.
5042 */
5043 static int
5044 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5045 {
5046 int r, i, index;
5047 unsigned long flags;
5048 u32 reply_address;
5049 u16 smid;
5050 struct _tr_list *delayed_tr, *delayed_tr_next;
5051 struct _sc_list *delayed_sc, *delayed_sc_next;
5052 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5053 u8 hide_flag;
5054 struct adapter_reply_queue *reply_q;
5055 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5056
5057 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5058 __func__));
5059
5060 /* clean the delayed target reset list */
5061 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5062 &ioc->delayed_tr_list, list) {
5063 list_del(&delayed_tr->list);
5064 kfree(delayed_tr);
5065 }
5066
5067
5068 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5069 &ioc->delayed_tr_volume_list, list) {
5070 list_del(&delayed_tr->list);
5071 kfree(delayed_tr);
5072 }
5073
5074 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5075 &ioc->delayed_sc_list, list) {
5076 list_del(&delayed_sc->list);
5077 kfree(delayed_sc);
5078 }
5079
5080 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5081 &ioc->delayed_event_ack_list, list) {
5082 list_del(&delayed_event_ack->list);
5083 kfree(delayed_event_ack);
5084 }
5085
5086 /* initialize the scsi lookup free list */
5087 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5088 INIT_LIST_HEAD(&ioc->free_list);
5089 smid = 1;
5090 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5091 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5092 ioc->scsi_lookup[i].cb_idx = 0xFF;
5093 ioc->scsi_lookup[i].smid = smid;
5094 ioc->scsi_lookup[i].scmd = NULL;
5095 ioc->scsi_lookup[i].direct_io = 0;
5096 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5097 &ioc->free_list);
5098 }
5099
5100 /* hi-priority queue */
5101 INIT_LIST_HEAD(&ioc->hpr_free_list);
5102 smid = ioc->hi_priority_smid;
5103 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5104 ioc->hpr_lookup[i].cb_idx = 0xFF;
5105 ioc->hpr_lookup[i].smid = smid;
5106 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5107 &ioc->hpr_free_list);
5108 }
5109
5110 /* internal queue */
5111 INIT_LIST_HEAD(&ioc->internal_free_list);
5112 smid = ioc->internal_smid;
5113 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5114 ioc->internal_lookup[i].cb_idx = 0xFF;
5115 ioc->internal_lookup[i].smid = smid;
5116 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5117 &ioc->internal_free_list);
5118 }
5119
5120 /* chain pool */
5121 INIT_LIST_HEAD(&ioc->free_chain_list);
5122 for (i = 0; i < ioc->chain_depth; i++)
5123 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5124 &ioc->free_chain_list);
5125
5126 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5127
5128 /* initialize Reply Free Queue */
5129 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5130 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5131 ioc->reply_sz)
5132 ioc->reply_free[i] = cpu_to_le32(reply_address);
5133
5134 /* initialize reply queues */
5135 if (ioc->is_driver_loading)
5136 _base_assign_reply_queues(ioc);
5137
5138 /* initialize Reply Post Free Queue */
5139 index = 0;
5140 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5141 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5142 /*
5143 * If RDPQ is enabled, switch to the next allocation.
5144 * Otherwise advance within the contiguous region.
5145 */
5146 if (ioc->rdpq_array_enable) {
5147 reply_q->reply_post_free =
5148 ioc->reply_post[index++].reply_post_free;
5149 } else {
5150 reply_q->reply_post_free = reply_post_free_contig;
5151 reply_post_free_contig += ioc->reply_post_queue_depth;
5152 }
5153
5154 reply_q->reply_post_host_index = 0;
5155 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5156 reply_q->reply_post_free[i].Words =
5157 cpu_to_le64(ULLONG_MAX);
5158 if (!_base_is_controller_msix_enabled(ioc))
5159 goto skip_init_reply_post_free_queue;
5160 }
5161 skip_init_reply_post_free_queue:
5162
5163 r = _base_send_ioc_init(ioc, sleep_flag);
5164 if (r)
5165 return r;
5166
5167 /* initialize reply free host index */
5168 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5169 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5170
5171 /* initialize reply post host index */
5172 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5173 if (ioc->msix96_vector)
5174 writel((reply_q->msix_index & 7)<<
5175 MPI2_RPHI_MSIX_INDEX_SHIFT,
5176 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5177 else
5178 writel(reply_q->msix_index <<
5179 MPI2_RPHI_MSIX_INDEX_SHIFT,
5180 &ioc->chip->ReplyPostHostIndex);
5181
5182 if (!_base_is_controller_msix_enabled(ioc))
5183 goto skip_init_reply_post_host_index;
5184 }
5185
5186 skip_init_reply_post_host_index:
5187
5188 _base_unmask_interrupts(ioc);
5189 r = _base_event_notification(ioc, sleep_flag);
5190 if (r)
5191 return r;
5192
5193 if (sleep_flag == CAN_SLEEP)
5194 _base_static_config_pages(ioc);
5195
5196
5197 if (ioc->is_driver_loading) {
5198
5199 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5200 == 0x80) {
5201 hide_flag = (u8) (
5202 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5203 MFG_PAGE10_HIDE_SSDS_MASK);
5204 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5205 ioc->mfg_pg10_hide_flag = hide_flag;
5206 }
5207
5208 ioc->wait_for_discovery_to_complete =
5209 _base_determine_wait_on_discovery(ioc);
5210
5211 return r; /* scan_start and scan_finished support */
5212 }
5213
5214 r = _base_send_port_enable(ioc, sleep_flag);
5215 if (r)
5216 return r;
5217
5218 return r;
5219 }
5220
5221 /**
5222 * mpt3sas_base_free_resources - free resources controller resources
5223 * @ioc: per adapter object
5224 *
5225 * Return nothing.
5226 */
5227 void
5228 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5229 {
5230 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5231 __func__));
5232
5233 /* synchronizing freeing resource with pci_access_mutex lock */
5234 mutex_lock(&ioc->pci_access_mutex);
5235 if (ioc->chip_phys && ioc->chip) {
5236 _base_mask_interrupts(ioc);
5237 ioc->shost_recovery = 1;
5238 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5239 ioc->shost_recovery = 0;
5240 }
5241
5242 mpt3sas_base_unmap_resources(ioc);
5243 mutex_unlock(&ioc->pci_access_mutex);
5244 return;
5245 }
5246
5247 /**
5248 * mpt3sas_base_attach - attach controller instance
5249 * @ioc: per adapter object
5250 *
5251 * Returns 0 for success, non-zero for failure.
5252 */
5253 int
5254 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5255 {
5256 int r, i;
5257 int cpu_id, last_cpu_id = 0;
5258
5259 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5260 __func__));
5261
5262 /* setup cpu_msix_table */
5263 ioc->cpu_count = num_online_cpus();
5264 for_each_online_cpu(cpu_id)
5265 last_cpu_id = cpu_id;
5266 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5267 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5268 ioc->reply_queue_count = 1;
5269 if (!ioc->cpu_msix_table) {
5270 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5271 "allocation for cpu_msix_table failed!!!\n",
5272 ioc->name));
5273 r = -ENOMEM;
5274 goto out_free_resources;
5275 }
5276
5277 if (ioc->is_warpdrive) {
5278 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5279 sizeof(resource_size_t *), GFP_KERNEL);
5280 if (!ioc->reply_post_host_index) {
5281 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5282 "for cpu_msix_table failed!!!\n", ioc->name));
5283 r = -ENOMEM;
5284 goto out_free_resources;
5285 }
5286 }
5287
5288 ioc->rdpq_array_enable_assigned = 0;
5289 ioc->dma_mask = 0;
5290 r = mpt3sas_base_map_resources(ioc);
5291 if (r)
5292 goto out_free_resources;
5293
5294 pci_set_drvdata(ioc->pdev, ioc->shost);
5295 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5296 if (r)
5297 goto out_free_resources;
5298
5299 switch (ioc->hba_mpi_version_belonged) {
5300 case MPI2_VERSION:
5301 ioc->build_sg_scmd = &_base_build_sg_scmd;
5302 ioc->build_sg = &_base_build_sg;
5303 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5304 break;
5305 case MPI25_VERSION:
5306 case MPI26_VERSION:
5307 /*
5308 * In SAS3.0,
5309 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5310 * Target Status - all require the IEEE formated scatter gather
5311 * elements.
5312 */
5313 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5314 ioc->build_sg = &_base_build_sg_ieee;
5315 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5316 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5317 break;
5318 }
5319
5320 /*
5321 * These function pointers for other requests that don't
5322 * the require IEEE scatter gather elements.
5323 *
5324 * For example Configuration Pages and SAS IOUNIT Control don't.
5325 */
5326 ioc->build_sg_mpi = &_base_build_sg;
5327 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5328
5329 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5330 if (r)
5331 goto out_free_resources;
5332
5333 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5334 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5335 if (!ioc->pfacts) {
5336 r = -ENOMEM;
5337 goto out_free_resources;
5338 }
5339
5340 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5341 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5342 if (r)
5343 goto out_free_resources;
5344 }
5345
5346 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5347 if (r)
5348 goto out_free_resources;
5349
5350 init_waitqueue_head(&ioc->reset_wq);
5351
5352 /* allocate memory pd handle bitmask list */
5353 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5354 if (ioc->facts.MaxDevHandle % 8)
5355 ioc->pd_handles_sz++;
5356 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5357 GFP_KERNEL);
5358 if (!ioc->pd_handles) {
5359 r = -ENOMEM;
5360 goto out_free_resources;
5361 }
5362 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5363 GFP_KERNEL);
5364 if (!ioc->blocking_handles) {
5365 r = -ENOMEM;
5366 goto out_free_resources;
5367 }
5368
5369 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5370
5371 /* base internal command bits */
5372 mutex_init(&ioc->base_cmds.mutex);
5373 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5374 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5375
5376 /* port_enable command bits */
5377 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5378 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5379
5380 /* transport internal command bits */
5381 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5382 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5383 mutex_init(&ioc->transport_cmds.mutex);
5384
5385 /* scsih internal command bits */
5386 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5387 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5388 mutex_init(&ioc->scsih_cmds.mutex);
5389
5390 /* task management internal command bits */
5391 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5392 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5393 mutex_init(&ioc->tm_cmds.mutex);
5394
5395 /* config page internal command bits */
5396 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5397 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5398 mutex_init(&ioc->config_cmds.mutex);
5399
5400 /* ctl module internal command bits */
5401 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5402 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5403 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5404 mutex_init(&ioc->ctl_cmds.mutex);
5405
5406 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5407 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5408 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5409 !ioc->ctl_cmds.sense) {
5410 r = -ENOMEM;
5411 goto out_free_resources;
5412 }
5413
5414 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5415 ioc->event_masks[i] = -1;
5416
5417 /* here we enable the events we care about */
5418 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5419 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5420 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5421 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5422 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5423 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5424 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5425 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5426 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5427 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5428 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5429 if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5430 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5431
5432 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5433 if (r)
5434 goto out_free_resources;
5435
5436 ioc->non_operational_loop = 0;
5437 return 0;
5438
5439 out_free_resources:
5440
5441 ioc->remove_host = 1;
5442
5443 mpt3sas_base_free_resources(ioc);
5444 _base_release_memory_pools(ioc);
5445 pci_set_drvdata(ioc->pdev, NULL);
5446 kfree(ioc->cpu_msix_table);
5447 if (ioc->is_warpdrive)
5448 kfree(ioc->reply_post_host_index);
5449 kfree(ioc->pd_handles);
5450 kfree(ioc->blocking_handles);
5451 kfree(ioc->tm_cmds.reply);
5452 kfree(ioc->transport_cmds.reply);
5453 kfree(ioc->scsih_cmds.reply);
5454 kfree(ioc->config_cmds.reply);
5455 kfree(ioc->base_cmds.reply);
5456 kfree(ioc->port_enable_cmds.reply);
5457 kfree(ioc->ctl_cmds.reply);
5458 kfree(ioc->ctl_cmds.sense);
5459 kfree(ioc->pfacts);
5460 ioc->ctl_cmds.reply = NULL;
5461 ioc->base_cmds.reply = NULL;
5462 ioc->tm_cmds.reply = NULL;
5463 ioc->scsih_cmds.reply = NULL;
5464 ioc->transport_cmds.reply = NULL;
5465 ioc->config_cmds.reply = NULL;
5466 ioc->pfacts = NULL;
5467 return r;
5468 }
5469
5470
5471 /**
5472 * mpt3sas_base_detach - remove controller instance
5473 * @ioc: per adapter object
5474 *
5475 * Return nothing.
5476 */
5477 void
5478 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5479 {
5480 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5481 __func__));
5482
5483 mpt3sas_base_stop_watchdog(ioc);
5484 mpt3sas_base_free_resources(ioc);
5485 _base_release_memory_pools(ioc);
5486 pci_set_drvdata(ioc->pdev, NULL);
5487 kfree(ioc->cpu_msix_table);
5488 if (ioc->is_warpdrive)
5489 kfree(ioc->reply_post_host_index);
5490 kfree(ioc->pd_handles);
5491 kfree(ioc->blocking_handles);
5492 kfree(ioc->pfacts);
5493 kfree(ioc->ctl_cmds.reply);
5494 kfree(ioc->ctl_cmds.sense);
5495 kfree(ioc->base_cmds.reply);
5496 kfree(ioc->port_enable_cmds.reply);
5497 kfree(ioc->tm_cmds.reply);
5498 kfree(ioc->transport_cmds.reply);
5499 kfree(ioc->scsih_cmds.reply);
5500 kfree(ioc->config_cmds.reply);
5501 }
5502
5503 /**
5504 * _base_reset_handler - reset callback handler (for base)
5505 * @ioc: per adapter object
5506 * @reset_phase: phase
5507 *
5508 * The handler for doing any required cleanup or initialization.
5509 *
5510 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5511 * MPT3_IOC_DONE_RESET
5512 *
5513 * Return nothing.
5514 */
5515 static void
5516 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5517 {
5518 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5519 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5520 switch (reset_phase) {
5521 case MPT3_IOC_PRE_RESET:
5522 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5523 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5524 break;
5525 case MPT3_IOC_AFTER_RESET:
5526 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5527 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5528 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5529 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5530 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5531 complete(&ioc->transport_cmds.done);
5532 }
5533 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5534 ioc->base_cmds.status |= MPT3_CMD_RESET;
5535 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5536 complete(&ioc->base_cmds.done);
5537 }
5538 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5539 ioc->port_enable_failed = 1;
5540 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5541 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5542 if (ioc->is_driver_loading) {
5543 ioc->start_scan_failed =
5544 MPI2_IOCSTATUS_INTERNAL_ERROR;
5545 ioc->start_scan = 0;
5546 ioc->port_enable_cmds.status =
5547 MPT3_CMD_NOT_USED;
5548 } else
5549 complete(&ioc->port_enable_cmds.done);
5550 }
5551 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5552 ioc->config_cmds.status |= MPT3_CMD_RESET;
5553 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5554 ioc->config_cmds.smid = USHRT_MAX;
5555 complete(&ioc->config_cmds.done);
5556 }
5557 break;
5558 case MPT3_IOC_DONE_RESET:
5559 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5560 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5561 break;
5562 }
5563 }
5564
5565 /**
5566 * _wait_for_commands_to_complete - reset controller
5567 * @ioc: Pointer to MPT_ADAPTER structure
5568 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5569 *
5570 * This function waiting(3s) for all pending commands to complete
5571 * prior to putting controller in reset.
5572 */
5573 static void
5574 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5575 {
5576 u32 ioc_state;
5577 unsigned long flags;
5578 u16 i;
5579
5580 ioc->pending_io_count = 0;
5581 if (sleep_flag != CAN_SLEEP)
5582 return;
5583
5584 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5585 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5586 return;
5587
5588 /* pending command count */
5589 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5590 for (i = 0; i < ioc->scsiio_depth; i++)
5591 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5592 ioc->pending_io_count++;
5593 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5594
5595 if (!ioc->pending_io_count)
5596 return;
5597
5598 /* wait for pending commands to complete */
5599 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5600 }
5601
5602 /**
5603 * mpt3sas_base_hard_reset_handler - reset controller
5604 * @ioc: Pointer to MPT_ADAPTER structure
5605 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5606 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5607 *
5608 * Returns 0 for success, non-zero for failure.
5609 */
5610 int
5611 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5612 enum reset_type type)
5613 {
5614 int r;
5615 unsigned long flags;
5616 u32 ioc_state;
5617 u8 is_fault = 0, is_trigger = 0;
5618
5619 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5620 __func__));
5621
5622 if (ioc->pci_error_recovery) {
5623 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5624 ioc->name, __func__);
5625 r = 0;
5626 goto out_unlocked;
5627 }
5628
5629 if (mpt3sas_fwfault_debug)
5630 mpt3sas_halt_firmware(ioc);
5631
5632 /* TODO - What we really should be doing is pulling
5633 * out all the code associated with NO_SLEEP; its never used.
5634 * That is legacy code from mpt fusion driver, ported over.
5635 * I will leave this BUG_ON here for now till its been resolved.
5636 */
5637 BUG_ON(sleep_flag == NO_SLEEP);
5638
5639 /* wait for an active reset in progress to complete */
5640 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5641 do {
5642 ssleep(1);
5643 } while (ioc->shost_recovery == 1);
5644 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5645 __func__));
5646 return ioc->ioc_reset_in_progress_status;
5647 }
5648
5649 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5650 ioc->shost_recovery = 1;
5651 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5652
5653 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5654 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5655 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5656 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5657 is_trigger = 1;
5658 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5659 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5660 is_fault = 1;
5661 }
5662 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5663 _wait_for_commands_to_complete(ioc, sleep_flag);
5664 _base_mask_interrupts(ioc);
5665 r = _base_make_ioc_ready(ioc, sleep_flag, type);
5666 if (r)
5667 goto out;
5668 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5669
5670 /* If this hard reset is called while port enable is active, then
5671 * there is no reason to call make_ioc_operational
5672 */
5673 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5674 ioc->remove_host = 1;
5675 r = -EFAULT;
5676 goto out;
5677 }
5678 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5679 if (r)
5680 goto out;
5681
5682 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5683 panic("%s: Issue occurred with flashing controller firmware."
5684 "Please reboot the system and ensure that the correct"
5685 " firmware version is running\n", ioc->name);
5686
5687 r = _base_make_ioc_operational(ioc, sleep_flag);
5688 if (!r)
5689 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5690
5691 out:
5692 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5693 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5694
5695 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5696 ioc->ioc_reset_in_progress_status = r;
5697 ioc->shost_recovery = 0;
5698 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5699 ioc->ioc_reset_count++;
5700 mutex_unlock(&ioc->reset_in_progress_mutex);
5701
5702 out_unlocked:
5703 if ((r == 0) && is_trigger) {
5704 if (is_fault)
5705 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5706 else
5707 mpt3sas_trigger_master(ioc,
5708 MASTER_TRIGGER_ADAPTER_RESET);
5709 }
5710 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5711 __func__));
5712 return r;
5713 }