]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
95
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 " enable detection of firmware fault and halt firmware - (default=0)");
99
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102
103 /**
104 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105 *
106 */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 int ret = param_set_int(val, kp);
111 struct MPT3SAS_ADAPTER *ioc;
112
113 if (ret)
114 return ret;
115
116 /* global ioc spinlock to protect controller list on list operations */
117 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 spin_lock(&gioc_lock);
119 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 spin_unlock(&gioc_lock);
122 return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 param_get_int, &mpt3sas_fwfault_debug, 0644);
126
127 /**
128 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129 * @arg: input argument, used to derive ioc
130 *
131 * Return 0 if controller is removed from pci subsystem.
132 * Return -1 for other case.
133 */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 struct pci_dev *pdev;
138
139 if ((ioc == NULL))
140 return -1;
141
142 pdev = ioc->pdev;
143 if ((pdev == NULL))
144 return -1;
145 pci_stop_and_remove_bus_device_locked(pdev);
146 return 0;
147 }
148
149 /**
150 * _base_fault_reset_work - workq handling ioc fault conditions
151 * @work: input argument, used to derive ioc
152 * Context: sleep.
153 *
154 * Return nothing.
155 */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 struct MPT3SAS_ADAPTER *ioc =
160 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 unsigned long flags;
162 u32 doorbell;
163 int rc;
164 struct task_struct *p;
165
166
167 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 if (ioc->shost_recovery || ioc->pci_error_recovery)
169 goto rearm_timer;
170 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171
172 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 ioc->name);
176
177 /* It may be possible that EEH recovery can resolve some of
178 * pci bus failure issues rather removing the dead ioc function
179 * by considering controller is in a non-operational state. So
180 * here priority is given to the EEH recovery. If it doesn't
181 * not resolve this issue, mpt3sas driver will consider this
182 * controller to non-operational state and remove the dead ioc
183 * function.
184 */
185 if (ioc->non_operational_loop++ < 5) {
186 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 flags);
188 goto rearm_timer;
189 }
190
191 /*
192 * Call _scsih_flush_pending_cmds callback so that we flush all
193 * pending commands back to OS. This call is required to aovid
194 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 * and this call is safe since dead ioc will never return any
196 * command back from HW.
197 */
198 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 /*
200 * Set remove_host flag early since kernel thread will
201 * take some time to execute.
202 */
203 ioc->remove_host = 1;
204 /*Remove the Dead Host */
205 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 if (IS_ERR(p))
208 pr_err(MPT3SAS_FMT
209 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 ioc->name, __func__);
211 else
212 pr_err(MPT3SAS_FMT
213 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 ioc->name, __func__);
215 return; /* don't rearm timer */
216 }
217
218 ioc->non_operational_loop = 0;
219
220 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 __func__, (rc == 0) ? "success" : "failed");
224 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 mpt3sas_base_fault_info(ioc, doorbell &
227 MPI2_DOORBELL_DATA_MASK);
228 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 MPI2_IOC_STATE_OPERATIONAL)
230 return; /* don't rearm timer */
231 }
232
233 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234 rearm_timer:
235 if (ioc->fault_reset_work_q)
236 queue_delayed_work(ioc->fault_reset_work_q,
237 &ioc->fault_reset_work,
238 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241
242 /**
243 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244 * @ioc: per adapter object
245 * Context: sleep.
246 *
247 * Return nothing.
248 */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 unsigned long flags;
253
254 if (ioc->fault_reset_work_q)
255 return;
256
257 /* initialize fault polling */
258
259 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 snprintf(ioc->fault_reset_work_q_name,
261 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 ioc->driver_name, ioc->id);
263 ioc->fault_reset_work_q =
264 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 if (!ioc->fault_reset_work_q) {
266 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 ioc->name, __func__, __LINE__);
268 return;
269 }
270 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 if (ioc->fault_reset_work_q)
272 queue_delayed_work(ioc->fault_reset_work_q,
273 &ioc->fault_reset_work,
274 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277
278 /**
279 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280 * @ioc: per adapter object
281 * Context: sleep.
282 *
283 * Return nothing.
284 */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 unsigned long flags;
289 struct workqueue_struct *wq;
290
291 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 wq = ioc->fault_reset_work_q;
293 ioc->fault_reset_work_q = NULL;
294 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 if (wq) {
296 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 flush_workqueue(wq);
298 destroy_workqueue(wq);
299 }
300 }
301
302 /**
303 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304 * @ioc: per adapter object
305 * @fault_code: fault code
306 *
307 * Return nothing.
308 */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 ioc->name, fault_code);
314 }
315
316 /**
317 * mpt3sas_halt_firmware - halt's mpt controller firmware
318 * @ioc: per adapter object
319 *
320 * For debugging timeout related issues. Writing 0xCOFFEE00
321 * to the doorbell register will halt controller firmware. With
322 * the purpose to stop both driver and firmware, the enduser can
323 * obtain a ring buffer from controller UART.
324 */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 u32 doorbell;
329
330 if (!ioc->fwfault_debug)
331 return;
332
333 dump_stack();
334
335 doorbell = readl(&ioc->chip->Doorbell);
336 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 mpt3sas_base_fault_info(ioc , doorbell);
338 else {
339 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 ioc->name);
342 }
343
344 if (ioc->fwfault_debug == 2)
345 for (;;)
346 ;
347 else
348 panic("panic in %s\n", __func__);
349 }
350
351 /**
352 * _base_sas_ioc_info - verbose translation of the ioc status
353 * @ioc: per adapter object
354 * @mpi_reply: reply mf payload returned from firmware
355 * @request_hdr: request mf
356 *
357 * Return nothing.
358 */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 MPI2RequestHeader_t *request_hdr)
362 {
363 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 MPI2_IOCSTATUS_MASK;
365 char *desc = NULL;
366 u16 frame_sz;
367 char *func_str = NULL;
368
369 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 return;
374
375 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 return;
377
378 switch (ioc_status) {
379
380 /****************************************************************************
381 * Common IOCStatus values for all replies
382 ****************************************************************************/
383
384 case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 desc = "invalid function";
386 break;
387 case MPI2_IOCSTATUS_BUSY:
388 desc = "busy";
389 break;
390 case MPI2_IOCSTATUS_INVALID_SGL:
391 desc = "invalid sgl";
392 break;
393 case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 desc = "internal error";
395 break;
396 case MPI2_IOCSTATUS_INVALID_VPID:
397 desc = "invalid vpid";
398 break;
399 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 desc = "insufficient resources";
401 break;
402 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 desc = "insufficient power";
404 break;
405 case MPI2_IOCSTATUS_INVALID_FIELD:
406 desc = "invalid field";
407 break;
408 case MPI2_IOCSTATUS_INVALID_STATE:
409 desc = "invalid state";
410 break;
411 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 desc = "op state not supported";
413 break;
414
415 /****************************************************************************
416 * Config IOCStatus values
417 ****************************************************************************/
418
419 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 desc = "config invalid action";
421 break;
422 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 desc = "config invalid type";
424 break;
425 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 desc = "config invalid page";
427 break;
428 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 desc = "config invalid data";
430 break;
431 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 desc = "config no defaults";
433 break;
434 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 desc = "config cant commit";
436 break;
437
438 /****************************************************************************
439 * SCSI IO Reply
440 ****************************************************************************/
441
442 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 break;
455
456 /****************************************************************************
457 * For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459
460 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 desc = "eedp guard error";
462 break;
463 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 desc = "eedp ref tag error";
465 break;
466 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 desc = "eedp app tag error";
468 break;
469
470 /****************************************************************************
471 * SCSI Target values
472 ****************************************************************************/
473
474 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 desc = "target invalid io index";
476 break;
477 case MPI2_IOCSTATUS_TARGET_ABORTED:
478 desc = "target aborted";
479 break;
480 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 desc = "target no conn retryable";
482 break;
483 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 desc = "target no connection";
485 break;
486 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 desc = "target xfer count mismatch";
488 break;
489 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 desc = "target data offset error";
491 break;
492 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 desc = "target too much write data";
494 break;
495 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 desc = "target iu too short";
497 break;
498 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 desc = "target ack nak timeout";
500 break;
501 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 desc = "target nak received";
503 break;
504
505 /****************************************************************************
506 * Serial Attached SCSI values
507 ****************************************************************************/
508
509 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 desc = "smp request failed";
511 break;
512 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 desc = "smp data overrun";
514 break;
515
516 /****************************************************************************
517 * Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519
520 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 desc = "diagnostic released";
522 break;
523 default:
524 break;
525 }
526
527 if (!desc)
528 return;
529
530 switch (request_hdr->Function) {
531 case MPI2_FUNCTION_CONFIG:
532 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 func_str = "config_page";
534 break;
535 case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 func_str = "task_mgmt";
538 break;
539 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 func_str = "sas_iounit_ctl";
542 break;
543 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 frame_sz = sizeof(Mpi2SepRequest_t);
545 func_str = "enclosure";
546 break;
547 case MPI2_FUNCTION_IOC_INIT:
548 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 func_str = "ioc_init";
550 break;
551 case MPI2_FUNCTION_PORT_ENABLE:
552 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 func_str = "port_enable";
554 break;
555 case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 func_str = "smp_passthru";
558 break;
559 default:
560 frame_sz = 32;
561 func_str = "unknown";
562 break;
563 }
564
565 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 ioc->name, desc, ioc_status, request_hdr, func_str);
567
568 _debug_dump_mf(request_hdr, frame_sz/4);
569 }
570
571 /**
572 * _base_display_event_data - verbose translation of firmware asyn events
573 * @ioc: per adapter object
574 * @mpi_reply: reply mf payload returned from firmware
575 *
576 * Return nothing.
577 */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 char *desc = NULL;
583 u16 event;
584
585 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 return;
587
588 event = le16_to_cpu(mpi_reply->Event);
589
590 switch (event) {
591 case MPI2_EVENT_LOG_DATA:
592 desc = "Log Data";
593 break;
594 case MPI2_EVENT_STATE_CHANGE:
595 desc = "Status Change";
596 break;
597 case MPI2_EVENT_HARD_RESET_RECEIVED:
598 desc = "Hard Reset Received";
599 break;
600 case MPI2_EVENT_EVENT_CHANGE:
601 desc = "Event Change";
602 break;
603 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 desc = "Device Status Change";
605 break;
606 case MPI2_EVENT_IR_OPERATION_STATUS:
607 if (!ioc->hide_ir_msg)
608 desc = "IR Operation Status";
609 break;
610 case MPI2_EVENT_SAS_DISCOVERY:
611 {
612 Mpi2EventDataSasDiscovery_t *event_data =
613 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 "start" : "stop");
617 if (event_data->DiscoveryStatus)
618 pr_info("discovery_status(0x%08x)",
619 le32_to_cpu(event_data->DiscoveryStatus));
620 pr_info("\n");
621 return;
622 }
623 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 desc = "SAS Broadcast Primitive";
625 break;
626 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 desc = "SAS Init Device Status Change";
628 break;
629 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 desc = "SAS Init Table Overflow";
631 break;
632 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 desc = "SAS Topology Change List";
634 break;
635 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 desc = "SAS Enclosure Device Status Change";
637 break;
638 case MPI2_EVENT_IR_VOLUME:
639 if (!ioc->hide_ir_msg)
640 desc = "IR Volume";
641 break;
642 case MPI2_EVENT_IR_PHYSICAL_DISK:
643 if (!ioc->hide_ir_msg)
644 desc = "IR Physical Disk";
645 break;
646 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 if (!ioc->hide_ir_msg)
648 desc = "IR Configuration Change List";
649 break;
650 case MPI2_EVENT_LOG_ENTRY_ADDED:
651 if (!ioc->hide_ir_msg)
652 desc = "Log Entry Added";
653 break;
654 case MPI2_EVENT_TEMP_THRESHOLD:
655 desc = "Temperature Threshold";
656 break;
657 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 desc = "Active cable exception";
659 break;
660 }
661
662 if (!desc)
663 return;
664
665 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667
668 /**
669 * _base_sas_log_info - verbose translation of firmware log info
670 * @ioc: per adapter object
671 * @log_info: log info
672 *
673 * Return nothing.
674 */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678 union loginfo_type {
679 u32 loginfo;
680 struct {
681 u32 subcode:16;
682 u32 code:8;
683 u32 originator:4;
684 u32 bus_type:4;
685 } dw;
686 };
687 union loginfo_type sas_loginfo;
688 char *originator_str = NULL;
689
690 sas_loginfo.loginfo = log_info;
691 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 return;
693
694 /* each nexus loss loginfo */
695 if (log_info == 0x31170000)
696 return;
697
698 /* eat the loginfos associated with task aborts */
699 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 0x31140000 || log_info == 0x31130000))
701 return;
702
703 switch (sas_loginfo.dw.originator) {
704 case 0:
705 originator_str = "IOP";
706 break;
707 case 1:
708 originator_str = "PL";
709 break;
710 case 2:
711 if (!ioc->hide_ir_msg)
712 originator_str = "IR";
713 else
714 originator_str = "WarpDrive";
715 break;
716 }
717
718 pr_warn(MPT3SAS_FMT
719 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 ioc->name, log_info,
721 originator_str, sas_loginfo.dw.code,
722 sas_loginfo.dw.subcode);
723 }
724
725 /**
726 * _base_display_reply_info -
727 * @ioc: per adapter object
728 * @smid: system request message index
729 * @msix_index: MSIX table index supplied by the OS
730 * @reply: reply message frame(lower 32bit addr)
731 *
732 * Return nothing.
733 */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 u32 reply)
737 {
738 MPI2DefaultReply_t *mpi_reply;
739 u16 ioc_status;
740 u32 loginfo = 0;
741
742 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 if (unlikely(!mpi_reply)) {
744 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 ioc->name, __FILE__, __LINE__, __func__);
746 return;
747 }
748 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749
750 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 _base_sas_ioc_info(ioc , mpi_reply,
753 mpt3sas_base_get_msg_frame(ioc, smid));
754 }
755
756 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 _base_sas_log_info(ioc, loginfo);
759 }
760
761 if (ioc_status || loginfo) {
762 ioc_status &= MPI2_IOCSTATUS_MASK;
763 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764 }
765 }
766
767 /**
768 * mpt3sas_base_done - base internal command completion routine
769 * @ioc: per adapter object
770 * @smid: system request message index
771 * @msix_index: MSIX table index supplied by the OS
772 * @reply: reply message frame(lower 32bit addr)
773 *
774 * Return 1 meaning mf should be freed from _base_interrupt
775 * 0 means the mf is freed from this function.
776 */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 u32 reply)
780 {
781 MPI2DefaultReply_t *mpi_reply;
782
783 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786
787 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 return 1;
789
790 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 if (mpi_reply) {
792 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794 }
795 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796
797 complete(&ioc->base_cmds.done);
798 return 1;
799 }
800
801 /**
802 * _base_async_event - main callback handler for firmware asyn events
803 * @ioc: per adapter object
804 * @msix_index: MSIX table index supplied by the OS
805 * @reply: reply message frame(lower 32bit addr)
806 *
807 * Return 1 meaning mf should be freed from _base_interrupt
808 * 0 means the mf is freed from this function.
809 */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813 Mpi2EventNotificationReply_t *mpi_reply;
814 Mpi2EventAckRequest_t *ack_request;
815 u16 smid;
816 struct _event_ack_list *delayed_event_ack;
817
818 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 if (!mpi_reply)
820 return 1;
821 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 return 1;
823
824 _base_display_event_data(ioc, mpi_reply);
825
826 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 goto out;
828 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 if (!smid) {
830 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 GFP_ATOMIC);
832 if (!delayed_event_ack)
833 goto out;
834 INIT_LIST_HEAD(&delayed_event_ack->list);
835 delayed_event_ack->Event = mpi_reply->Event;
836 delayed_event_ack->EventContext = mpi_reply->EventContext;
837 list_add_tail(&delayed_event_ack->list,
838 &ioc->delayed_event_ack_list);
839 dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 "DELAYED: EVENT ACK: event (0x%04x)\n",
841 ioc->name, le16_to_cpu(mpi_reply->Event)));
842 goto out;
843 }
844
845 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 ack_request->Event = mpi_reply->Event;
849 ack_request->EventContext = mpi_reply->EventContext;
850 ack_request->VF_ID = 0; /* TODO */
851 ack_request->VP_ID = 0;
852 ioc->put_smid_default(ioc, smid);
853
854 out:
855
856 /* scsih callback handler */
857 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858
859 /* ctl callback handler */
860 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861
862 return 1;
863 }
864
865 /**
866 * _base_get_cb_idx - obtain the callback index
867 * @ioc: per adapter object
868 * @smid: system request message index
869 *
870 * Return callback index.
871 */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875 int i;
876 u8 cb_idx;
877
878 if (smid < ioc->hi_priority_smid) {
879 i = smid - 1;
880 cb_idx = ioc->scsi_lookup[i].cb_idx;
881 } else if (smid < ioc->internal_smid) {
882 i = smid - ioc->hi_priority_smid;
883 cb_idx = ioc->hpr_lookup[i].cb_idx;
884 } else if (smid <= ioc->hba_queue_depth) {
885 i = smid - ioc->internal_smid;
886 cb_idx = ioc->internal_lookup[i].cb_idx;
887 } else
888 cb_idx = 0xFF;
889 return cb_idx;
890 }
891
892 /**
893 * _base_mask_interrupts - disable interrupts
894 * @ioc: per adapter object
895 *
896 * Disabling ResetIRQ, Reply and Doorbell Interrupts
897 *
898 * Return nothing.
899 */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903 u32 him_register;
904
905 ioc->mask_interrupts = 1;
906 him_register = readl(&ioc->chip->HostInterruptMask);
907 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 writel(him_register, &ioc->chip->HostInterruptMask);
909 readl(&ioc->chip->HostInterruptMask);
910 }
911
912 /**
913 * _base_unmask_interrupts - enable interrupts
914 * @ioc: per adapter object
915 *
916 * Enabling only Reply Interrupts
917 *
918 * Return nothing.
919 */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923 u32 him_register;
924
925 him_register = readl(&ioc->chip->HostInterruptMask);
926 him_register &= ~MPI2_HIM_RIM;
927 writel(him_register, &ioc->chip->HostInterruptMask);
928 ioc->mask_interrupts = 0;
929 }
930
931 union reply_descriptor {
932 u64 word;
933 struct {
934 u32 low;
935 u32 high;
936 } u;
937 };
938
939 /**
940 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941 * @irq: irq number (not used)
942 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943 * @r: pt_regs pointer (not used)
944 *
945 * Return IRQ_HANDLE if processed, else IRQ_NONE.
946 */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950 struct adapter_reply_queue *reply_q = bus_id;
951 union reply_descriptor rd;
952 u32 completed_cmds;
953 u8 request_desript_type;
954 u16 smid;
955 u8 cb_idx;
956 u32 reply;
957 u8 msix_index = reply_q->msix_index;
958 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 Mpi2ReplyDescriptorsUnion_t *rpf;
960 u8 rc;
961
962 if (ioc->mask_interrupts)
963 return IRQ_NONE;
964
965 if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 return IRQ_NONE;
967
968 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 request_desript_type = rpf->Default.ReplyFlags
970 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 atomic_dec(&reply_q->busy);
973 return IRQ_NONE;
974 }
975
976 completed_cmds = 0;
977 cb_idx = 0xFF;
978 do {
979 rd.word = le64_to_cpu(rpf->Words);
980 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 goto out;
982 reply = 0;
983 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 if (request_desript_type ==
985 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 request_desript_type ==
987 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 cb_idx = _base_get_cb_idx(ioc, smid);
989 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 (likely(mpt_callbacks[cb_idx] != NULL))) {
991 rc = mpt_callbacks[cb_idx](ioc, smid,
992 msix_index, 0);
993 if (rc)
994 mpt3sas_base_free_smid(ioc, smid);
995 }
996 } else if (request_desript_type ==
997 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 reply = le32_to_cpu(
999 rpf->AddressReply.ReplyFrameAddress);
1000 if (reply > ioc->reply_dma_max_address ||
1001 reply < ioc->reply_dma_min_address)
1002 reply = 0;
1003 if (smid) {
1004 cb_idx = _base_get_cb_idx(ioc, smid);
1005 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 rc = mpt_callbacks[cb_idx](ioc, smid,
1008 msix_index, reply);
1009 if (reply)
1010 _base_display_reply_info(ioc,
1011 smid, msix_index, reply);
1012 if (rc)
1013 mpt3sas_base_free_smid(ioc,
1014 smid);
1015 }
1016 } else {
1017 _base_async_event(ioc, msix_index, reply);
1018 }
1019
1020 /* reply free queue handling */
1021 if (reply) {
1022 ioc->reply_free_host_index =
1023 (ioc->reply_free_host_index ==
1024 (ioc->reply_free_queue_depth - 1)) ?
1025 0 : ioc->reply_free_host_index + 1;
1026 ioc->reply_free[ioc->reply_free_host_index] =
1027 cpu_to_le32(reply);
1028 wmb();
1029 writel(ioc->reply_free_host_index,
1030 &ioc->chip->ReplyFreeHostIndex);
1031 }
1032 }
1033
1034 rpf->Words = cpu_to_le64(ULLONG_MAX);
1035 reply_q->reply_post_host_index =
1036 (reply_q->reply_post_host_index ==
1037 (ioc->reply_post_queue_depth - 1)) ? 0 :
1038 reply_q->reply_post_host_index + 1;
1039 request_desript_type =
1040 reply_q->reply_post_free[reply_q->reply_post_host_index].
1041 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1042 completed_cmds++;
1043 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1044 goto out;
1045 if (!reply_q->reply_post_host_index)
1046 rpf = reply_q->reply_post_free;
1047 else
1048 rpf++;
1049 } while (1);
1050
1051 out:
1052
1053 if (!completed_cmds) {
1054 atomic_dec(&reply_q->busy);
1055 return IRQ_NONE;
1056 }
1057
1058 wmb();
1059 if (ioc->is_warpdrive) {
1060 writel(reply_q->reply_post_host_index,
1061 ioc->reply_post_host_index[msix_index]);
1062 atomic_dec(&reply_q->busy);
1063 return IRQ_HANDLED;
1064 }
1065
1066 /* Update Reply Post Host Index.
1067 * For those HBA's which support combined reply queue feature
1068 * 1. Get the correct Supplemental Reply Post Host Index Register.
1069 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1070 * Index Register address bank i.e replyPostRegisterIndex[],
1071 * 2. Then update this register with new reply host index value
1072 * in ReplyPostIndex field and the MSIxIndex field with
1073 * msix_index value reduced to a value between 0 and 7,
1074 * using a modulo 8 operation. Since each Supplemental Reply Post
1075 * Host Index Register supports 8 MSI-X vectors.
1076 *
1077 * For other HBA's just update the Reply Post Host Index register with
1078 * new reply host index value in ReplyPostIndex Field and msix_index
1079 * value in MSIxIndex field.
1080 */
1081 if (ioc->combined_reply_queue)
1082 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1083 MPI2_RPHI_MSIX_INDEX_SHIFT),
1084 ioc->replyPostRegisterIndex[msix_index/8]);
1085 else
1086 writel(reply_q->reply_post_host_index | (msix_index <<
1087 MPI2_RPHI_MSIX_INDEX_SHIFT),
1088 &ioc->chip->ReplyPostHostIndex);
1089 atomic_dec(&reply_q->busy);
1090 return IRQ_HANDLED;
1091 }
1092
1093 /**
1094 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1095 * @ioc: per adapter object
1096 *
1097 */
1098 static inline int
1099 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1100 {
1101 return (ioc->facts.IOCCapabilities &
1102 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1103 }
1104
1105 /**
1106 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1107 * @ioc: per adapter object
1108 * Context: non ISR conext
1109 *
1110 * Called when a Task Management request has completed.
1111 *
1112 * Return nothing.
1113 */
1114 void
1115 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1116 {
1117 struct adapter_reply_queue *reply_q;
1118
1119 /* If MSIX capability is turned off
1120 * then multi-queues are not enabled
1121 */
1122 if (!_base_is_controller_msix_enabled(ioc))
1123 return;
1124
1125 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1126 if (ioc->shost_recovery || ioc->remove_host ||
1127 ioc->pci_error_recovery)
1128 return;
1129 /* TMs are on msix_index == 0 */
1130 if (reply_q->msix_index == 0)
1131 continue;
1132 synchronize_irq(reply_q->vector);
1133 }
1134 }
1135
1136 /**
1137 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1138 * @cb_idx: callback index
1139 *
1140 * Return nothing.
1141 */
1142 void
1143 mpt3sas_base_release_callback_handler(u8 cb_idx)
1144 {
1145 mpt_callbacks[cb_idx] = NULL;
1146 }
1147
1148 /**
1149 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1150 * @cb_func: callback function
1151 *
1152 * Returns cb_func.
1153 */
1154 u8
1155 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1156 {
1157 u8 cb_idx;
1158
1159 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1160 if (mpt_callbacks[cb_idx] == NULL)
1161 break;
1162
1163 mpt_callbacks[cb_idx] = cb_func;
1164 return cb_idx;
1165 }
1166
1167 /**
1168 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1169 *
1170 * Return nothing.
1171 */
1172 void
1173 mpt3sas_base_initialize_callback_handler(void)
1174 {
1175 u8 cb_idx;
1176
1177 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1178 mpt3sas_base_release_callback_handler(cb_idx);
1179 }
1180
1181
1182 /**
1183 * _base_build_zero_len_sge - build zero length sg entry
1184 * @ioc: per adapter object
1185 * @paddr: virtual address for SGE
1186 *
1187 * Create a zero length scatter gather entry to insure the IOCs hardware has
1188 * something to use if the target device goes brain dead and tries
1189 * to send data even when none is asked for.
1190 *
1191 * Return nothing.
1192 */
1193 static void
1194 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1195 {
1196 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1197 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1198 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1199 MPI2_SGE_FLAGS_SHIFT);
1200 ioc->base_add_sg_single(paddr, flags_length, -1);
1201 }
1202
1203 /**
1204 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1205 * @paddr: virtual address for SGE
1206 * @flags_length: SGE flags and data transfer length
1207 * @dma_addr: Physical address
1208 *
1209 * Return nothing.
1210 */
1211 static void
1212 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1213 {
1214 Mpi2SGESimple32_t *sgel = paddr;
1215
1216 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1217 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 sgel->FlagsLength = cpu_to_le32(flags_length);
1219 sgel->Address = cpu_to_le32(dma_addr);
1220 }
1221
1222
1223 /**
1224 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1225 * @paddr: virtual address for SGE
1226 * @flags_length: SGE flags and data transfer length
1227 * @dma_addr: Physical address
1228 *
1229 * Return nothing.
1230 */
1231 static void
1232 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1233 {
1234 Mpi2SGESimple64_t *sgel = paddr;
1235
1236 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1237 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1238 sgel->FlagsLength = cpu_to_le32(flags_length);
1239 sgel->Address = cpu_to_le64(dma_addr);
1240 }
1241
1242 /**
1243 * _base_get_chain_buffer_tracker - obtain chain tracker
1244 * @ioc: per adapter object
1245 * @smid: smid associated to an IO request
1246 *
1247 * Returns chain tracker(from ioc->free_chain_list)
1248 */
1249 static struct chain_tracker *
1250 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1251 {
1252 struct chain_tracker *chain_req;
1253 unsigned long flags;
1254
1255 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1256 if (list_empty(&ioc->free_chain_list)) {
1257 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1258 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1259 "chain buffers not available\n", ioc->name));
1260 return NULL;
1261 }
1262 chain_req = list_entry(ioc->free_chain_list.next,
1263 struct chain_tracker, tracker_list);
1264 list_del_init(&chain_req->tracker_list);
1265 list_add_tail(&chain_req->tracker_list,
1266 &ioc->scsi_lookup[smid - 1].chain_list);
1267 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1268 return chain_req;
1269 }
1270
1271
1272 /**
1273 * _base_build_sg - build generic sg
1274 * @ioc: per adapter object
1275 * @psge: virtual address for SGE
1276 * @data_out_dma: physical address for WRITES
1277 * @data_out_sz: data xfer size for WRITES
1278 * @data_in_dma: physical address for READS
1279 * @data_in_sz: data xfer size for READS
1280 *
1281 * Return nothing.
1282 */
1283 static void
1284 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1285 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1286 size_t data_in_sz)
1287 {
1288 u32 sgl_flags;
1289
1290 if (!data_out_sz && !data_in_sz) {
1291 _base_build_zero_len_sge(ioc, psge);
1292 return;
1293 }
1294
1295 if (data_out_sz && data_in_sz) {
1296 /* WRITE sgel first */
1297 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1298 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1299 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1300 ioc->base_add_sg_single(psge, sgl_flags |
1301 data_out_sz, data_out_dma);
1302
1303 /* incr sgel */
1304 psge += ioc->sge_size;
1305
1306 /* READ sgel last */
1307 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1308 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1309 MPI2_SGE_FLAGS_END_OF_LIST);
1310 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1311 ioc->base_add_sg_single(psge, sgl_flags |
1312 data_in_sz, data_in_dma);
1313 } else if (data_out_sz) /* WRITE */ {
1314 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1316 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1317 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1318 ioc->base_add_sg_single(psge, sgl_flags |
1319 data_out_sz, data_out_dma);
1320 } else if (data_in_sz) /* READ */ {
1321 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1322 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1323 MPI2_SGE_FLAGS_END_OF_LIST);
1324 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1325 ioc->base_add_sg_single(psge, sgl_flags |
1326 data_in_sz, data_in_dma);
1327 }
1328 }
1329
1330 /* IEEE format sgls */
1331
1332 /**
1333 * _base_add_sg_single_ieee - add sg element for IEEE format
1334 * @paddr: virtual address for SGE
1335 * @flags: SGE flags
1336 * @chain_offset: number of 128 byte elements from start of segment
1337 * @length: data transfer length
1338 * @dma_addr: Physical address
1339 *
1340 * Return nothing.
1341 */
1342 static void
1343 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1344 dma_addr_t dma_addr)
1345 {
1346 Mpi25IeeeSgeChain64_t *sgel = paddr;
1347
1348 sgel->Flags = flags;
1349 sgel->NextChainOffset = chain_offset;
1350 sgel->Length = cpu_to_le32(length);
1351 sgel->Address = cpu_to_le64(dma_addr);
1352 }
1353
1354 /**
1355 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1356 * @ioc: per adapter object
1357 * @paddr: virtual address for SGE
1358 *
1359 * Create a zero length scatter gather entry to insure the IOCs hardware has
1360 * something to use if the target device goes brain dead and tries
1361 * to send data even when none is asked for.
1362 *
1363 * Return nothing.
1364 */
1365 static void
1366 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1367 {
1368 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1369 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1370 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1371
1372 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1373 }
1374
1375 /**
1376 * _base_build_sg_scmd - main sg creation routine
1377 * @ioc: per adapter object
1378 * @scmd: scsi command
1379 * @smid: system request message index
1380 * Context: none.
1381 *
1382 * The main routine that builds scatter gather table from a given
1383 * scsi request sent via the .queuecommand main handler.
1384 *
1385 * Returns 0 success, anything else error
1386 */
1387 static int
1388 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1389 struct scsi_cmnd *scmd, u16 smid)
1390 {
1391 Mpi2SCSIIORequest_t *mpi_request;
1392 dma_addr_t chain_dma;
1393 struct scatterlist *sg_scmd;
1394 void *sg_local, *chain;
1395 u32 chain_offset;
1396 u32 chain_length;
1397 u32 chain_flags;
1398 int sges_left;
1399 u32 sges_in_segment;
1400 u32 sgl_flags;
1401 u32 sgl_flags_last_element;
1402 u32 sgl_flags_end_buffer;
1403 struct chain_tracker *chain_req;
1404
1405 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1406
1407 /* init scatter gather flags */
1408 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1409 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1410 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1411 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1412 << MPI2_SGE_FLAGS_SHIFT;
1413 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1414 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1415 << MPI2_SGE_FLAGS_SHIFT;
1416 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1417
1418 sg_scmd = scsi_sglist(scmd);
1419 sges_left = scsi_dma_map(scmd);
1420 if (sges_left < 0) {
1421 sdev_printk(KERN_ERR, scmd->device,
1422 "pci_map_sg failed: request for %d bytes!\n",
1423 scsi_bufflen(scmd));
1424 return -ENOMEM;
1425 }
1426
1427 sg_local = &mpi_request->SGL;
1428 sges_in_segment = ioc->max_sges_in_main_message;
1429 if (sges_left <= sges_in_segment)
1430 goto fill_in_last_segment;
1431
1432 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1433 (sges_in_segment * ioc->sge_size))/4;
1434
1435 /* fill in main message segment when there is a chain following */
1436 while (sges_in_segment) {
1437 if (sges_in_segment == 1)
1438 ioc->base_add_sg_single(sg_local,
1439 sgl_flags_last_element | sg_dma_len(sg_scmd),
1440 sg_dma_address(sg_scmd));
1441 else
1442 ioc->base_add_sg_single(sg_local, sgl_flags |
1443 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1444 sg_scmd = sg_next(sg_scmd);
1445 sg_local += ioc->sge_size;
1446 sges_left--;
1447 sges_in_segment--;
1448 }
1449
1450 /* initializing the chain flags and pointers */
1451 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1452 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1453 if (!chain_req)
1454 return -1;
1455 chain = chain_req->chain_buffer;
1456 chain_dma = chain_req->chain_buffer_dma;
1457 do {
1458 sges_in_segment = (sges_left <=
1459 ioc->max_sges_in_chain_message) ? sges_left :
1460 ioc->max_sges_in_chain_message;
1461 chain_offset = (sges_left == sges_in_segment) ?
1462 0 : (sges_in_segment * ioc->sge_size)/4;
1463 chain_length = sges_in_segment * ioc->sge_size;
1464 if (chain_offset) {
1465 chain_offset = chain_offset <<
1466 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1467 chain_length += ioc->sge_size;
1468 }
1469 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1470 chain_length, chain_dma);
1471 sg_local = chain;
1472 if (!chain_offset)
1473 goto fill_in_last_segment;
1474
1475 /* fill in chain segments */
1476 while (sges_in_segment) {
1477 if (sges_in_segment == 1)
1478 ioc->base_add_sg_single(sg_local,
1479 sgl_flags_last_element |
1480 sg_dma_len(sg_scmd),
1481 sg_dma_address(sg_scmd));
1482 else
1483 ioc->base_add_sg_single(sg_local, sgl_flags |
1484 sg_dma_len(sg_scmd),
1485 sg_dma_address(sg_scmd));
1486 sg_scmd = sg_next(sg_scmd);
1487 sg_local += ioc->sge_size;
1488 sges_left--;
1489 sges_in_segment--;
1490 }
1491
1492 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1493 if (!chain_req)
1494 return -1;
1495 chain = chain_req->chain_buffer;
1496 chain_dma = chain_req->chain_buffer_dma;
1497 } while (1);
1498
1499
1500 fill_in_last_segment:
1501
1502 /* fill the last segment */
1503 while (sges_left) {
1504 if (sges_left == 1)
1505 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1506 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1507 else
1508 ioc->base_add_sg_single(sg_local, sgl_flags |
1509 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1510 sg_scmd = sg_next(sg_scmd);
1511 sg_local += ioc->sge_size;
1512 sges_left--;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /**
1519 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1520 * @ioc: per adapter object
1521 * @scmd: scsi command
1522 * @smid: system request message index
1523 * Context: none.
1524 *
1525 * The main routine that builds scatter gather table from a given
1526 * scsi request sent via the .queuecommand main handler.
1527 *
1528 * Returns 0 success, anything else error
1529 */
1530 static int
1531 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1532 struct scsi_cmnd *scmd, u16 smid)
1533 {
1534 Mpi2SCSIIORequest_t *mpi_request;
1535 dma_addr_t chain_dma;
1536 struct scatterlist *sg_scmd;
1537 void *sg_local, *chain;
1538 u32 chain_offset;
1539 u32 chain_length;
1540 int sges_left;
1541 u32 sges_in_segment;
1542 u8 simple_sgl_flags;
1543 u8 simple_sgl_flags_last;
1544 u8 chain_sgl_flags;
1545 struct chain_tracker *chain_req;
1546
1547 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1548
1549 /* init scatter gather flags */
1550 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1551 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1552 simple_sgl_flags_last = simple_sgl_flags |
1553 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1554 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1555 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1556
1557 sg_scmd = scsi_sglist(scmd);
1558 sges_left = scsi_dma_map(scmd);
1559 if (sges_left < 0) {
1560 sdev_printk(KERN_ERR, scmd->device,
1561 "pci_map_sg failed: request for %d bytes!\n",
1562 scsi_bufflen(scmd));
1563 return -ENOMEM;
1564 }
1565
1566 sg_local = &mpi_request->SGL;
1567 sges_in_segment = (ioc->request_sz -
1568 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1569 if (sges_left <= sges_in_segment)
1570 goto fill_in_last_segment;
1571
1572 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1573 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1574
1575 /* fill in main message segment when there is a chain following */
1576 while (sges_in_segment > 1) {
1577 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1578 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1579 sg_scmd = sg_next(sg_scmd);
1580 sg_local += ioc->sge_size_ieee;
1581 sges_left--;
1582 sges_in_segment--;
1583 }
1584
1585 /* initializing the pointers */
1586 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1587 if (!chain_req)
1588 return -1;
1589 chain = chain_req->chain_buffer;
1590 chain_dma = chain_req->chain_buffer_dma;
1591 do {
1592 sges_in_segment = (sges_left <=
1593 ioc->max_sges_in_chain_message) ? sges_left :
1594 ioc->max_sges_in_chain_message;
1595 chain_offset = (sges_left == sges_in_segment) ?
1596 0 : sges_in_segment;
1597 chain_length = sges_in_segment * ioc->sge_size_ieee;
1598 if (chain_offset)
1599 chain_length += ioc->sge_size_ieee;
1600 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1601 chain_offset, chain_length, chain_dma);
1602
1603 sg_local = chain;
1604 if (!chain_offset)
1605 goto fill_in_last_segment;
1606
1607 /* fill in chain segments */
1608 while (sges_in_segment) {
1609 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1610 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1611 sg_scmd = sg_next(sg_scmd);
1612 sg_local += ioc->sge_size_ieee;
1613 sges_left--;
1614 sges_in_segment--;
1615 }
1616
1617 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1618 if (!chain_req)
1619 return -1;
1620 chain = chain_req->chain_buffer;
1621 chain_dma = chain_req->chain_buffer_dma;
1622 } while (1);
1623
1624
1625 fill_in_last_segment:
1626
1627 /* fill the last segment */
1628 while (sges_left > 0) {
1629 if (sges_left == 1)
1630 _base_add_sg_single_ieee(sg_local,
1631 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1632 sg_dma_address(sg_scmd));
1633 else
1634 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1636 sg_scmd = sg_next(sg_scmd);
1637 sg_local += ioc->sge_size_ieee;
1638 sges_left--;
1639 }
1640
1641 return 0;
1642 }
1643
1644 /**
1645 * _base_build_sg_ieee - build generic sg for IEEE format
1646 * @ioc: per adapter object
1647 * @psge: virtual address for SGE
1648 * @data_out_dma: physical address for WRITES
1649 * @data_out_sz: data xfer size for WRITES
1650 * @data_in_dma: physical address for READS
1651 * @data_in_sz: data xfer size for READS
1652 *
1653 * Return nothing.
1654 */
1655 static void
1656 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1657 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1658 size_t data_in_sz)
1659 {
1660 u8 sgl_flags;
1661
1662 if (!data_out_sz && !data_in_sz) {
1663 _base_build_zero_len_sge_ieee(ioc, psge);
1664 return;
1665 }
1666
1667 if (data_out_sz && data_in_sz) {
1668 /* WRITE sgel first */
1669 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1670 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1671 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1672 data_out_dma);
1673
1674 /* incr sgel */
1675 psge += ioc->sge_size_ieee;
1676
1677 /* READ sgel last */
1678 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1679 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1680 data_in_dma);
1681 } else if (data_out_sz) /* WRITE */ {
1682 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1683 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1684 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1685 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1686 data_out_dma);
1687 } else if (data_in_sz) /* READ */ {
1688 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1689 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1690 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1691 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1692 data_in_dma);
1693 }
1694 }
1695
1696 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1697
1698 /**
1699 * _base_config_dma_addressing - set dma addressing
1700 * @ioc: per adapter object
1701 * @pdev: PCI device struct
1702 *
1703 * Returns 0 for success, non-zero for failure.
1704 */
1705 static int
1706 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1707 {
1708 struct sysinfo s;
1709 u64 consistent_dma_mask;
1710
1711 if (ioc->dma_mask)
1712 consistent_dma_mask = DMA_BIT_MASK(64);
1713 else
1714 consistent_dma_mask = DMA_BIT_MASK(32);
1715
1716 if (sizeof(dma_addr_t) > 4) {
1717 const uint64_t required_mask =
1718 dma_get_required_mask(&pdev->dev);
1719 if ((required_mask > DMA_BIT_MASK(32)) &&
1720 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1721 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1722 ioc->base_add_sg_single = &_base_add_sg_single_64;
1723 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1724 ioc->dma_mask = 64;
1725 goto out;
1726 }
1727 }
1728
1729 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1730 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1731 ioc->base_add_sg_single = &_base_add_sg_single_32;
1732 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1733 ioc->dma_mask = 32;
1734 } else
1735 return -ENODEV;
1736
1737 out:
1738 si_meminfo(&s);
1739 pr_info(MPT3SAS_FMT
1740 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1741 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1742
1743 return 0;
1744 }
1745
1746 static int
1747 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1748 struct pci_dev *pdev)
1749 {
1750 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1751 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1752 return -ENODEV;
1753 }
1754 return 0;
1755 }
1756
1757 /**
1758 * _base_check_enable_msix - checks MSIX capabable.
1759 * @ioc: per adapter object
1760 *
1761 * Check to see if card is capable of MSIX, and set number
1762 * of available msix vectors
1763 */
1764 static int
1765 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1766 {
1767 int base;
1768 u16 message_control;
1769
1770 /* Check whether controller SAS2008 B0 controller,
1771 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1772 */
1773 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1774 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1775 return -EINVAL;
1776 }
1777
1778 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1779 if (!base) {
1780 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1781 ioc->name));
1782 return -EINVAL;
1783 }
1784
1785 /* get msix vector count */
1786 /* NUMA_IO not supported for older controllers */
1787 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1788 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1790 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1792 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1793 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1794 ioc->msix_vector_count = 1;
1795 else {
1796 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1797 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1798 }
1799 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1800 "msix is supported, vector_count(%d)\n",
1801 ioc->name, ioc->msix_vector_count));
1802 return 0;
1803 }
1804
1805 /**
1806 * _base_free_irq - free irq
1807 * @ioc: per adapter object
1808 *
1809 * Freeing respective reply_queue from the list.
1810 */
1811 static void
1812 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1813 {
1814 struct adapter_reply_queue *reply_q, *next;
1815
1816 if (list_empty(&ioc->reply_queue_list))
1817 return;
1818
1819 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1820 list_del(&reply_q->list);
1821 if (smp_affinity_enable) {
1822 irq_set_affinity_hint(reply_q->vector, NULL);
1823 free_cpumask_var(reply_q->affinity_hint);
1824 }
1825 free_irq(reply_q->vector, reply_q);
1826 kfree(reply_q);
1827 }
1828 }
1829
1830 /**
1831 * _base_request_irq - request irq
1832 * @ioc: per adapter object
1833 * @index: msix index into vector table
1834 * @vector: irq vector
1835 *
1836 * Inserting respective reply_queue into the list.
1837 */
1838 static int
1839 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1840 {
1841 struct adapter_reply_queue *reply_q;
1842 int r;
1843
1844 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1845 if (!reply_q) {
1846 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1847 ioc->name, (int)sizeof(struct adapter_reply_queue));
1848 return -ENOMEM;
1849 }
1850 reply_q->ioc = ioc;
1851 reply_q->msix_index = index;
1852 reply_q->vector = vector;
1853
1854 if (smp_affinity_enable) {
1855 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1856 kfree(reply_q);
1857 return -ENOMEM;
1858 }
1859 }
1860
1861 atomic_set(&reply_q->busy, 0);
1862 if (ioc->msix_enable)
1863 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1864 ioc->driver_name, ioc->id, index);
1865 else
1866 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1867 ioc->driver_name, ioc->id);
1868 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1869 reply_q);
1870 if (r) {
1871 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1872 reply_q->name, vector);
1873 free_cpumask_var(reply_q->affinity_hint);
1874 kfree(reply_q);
1875 return -EBUSY;
1876 }
1877
1878 INIT_LIST_HEAD(&reply_q->list);
1879 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1880 return 0;
1881 }
1882
1883 /**
1884 * _base_assign_reply_queues - assigning msix index for each cpu
1885 * @ioc: per adapter object
1886 *
1887 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1888 *
1889 * It would nice if we could call irq_set_affinity, however it is not
1890 * an exported symbol
1891 */
1892 static void
1893 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1894 {
1895 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1896 struct adapter_reply_queue *reply_q;
1897
1898 if (!_base_is_controller_msix_enabled(ioc))
1899 return;
1900
1901 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1902
1903 nr_cpus = num_online_cpus();
1904 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1905 ioc->facts.MaxMSIxVectors);
1906 if (!nr_msix)
1907 return;
1908
1909 cpu = cpumask_first(cpu_online_mask);
1910
1911 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1912
1913 unsigned int i, group = nr_cpus / nr_msix;
1914
1915 if (cpu >= nr_cpus)
1916 break;
1917
1918 if (index < nr_cpus % nr_msix)
1919 group++;
1920
1921 for (i = 0 ; i < group ; i++) {
1922 ioc->cpu_msix_table[cpu] = index;
1923 if (smp_affinity_enable)
1924 cpumask_or(reply_q->affinity_hint,
1925 reply_q->affinity_hint, get_cpu_mask(cpu));
1926 cpu = cpumask_next(cpu, cpu_online_mask);
1927 }
1928 if (smp_affinity_enable)
1929 if (irq_set_affinity_hint(reply_q->vector,
1930 reply_q->affinity_hint))
1931 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1932 "Err setting affinity hint to irq vector %d\n",
1933 ioc->name, reply_q->vector));
1934 index++;
1935 }
1936 }
1937
1938 /**
1939 * _base_disable_msix - disables msix
1940 * @ioc: per adapter object
1941 *
1942 */
1943 static void
1944 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1945 {
1946 if (!ioc->msix_enable)
1947 return;
1948 pci_disable_msix(ioc->pdev);
1949 ioc->msix_enable = 0;
1950 }
1951
1952 /**
1953 * _base_enable_msix - enables msix, failback to io_apic
1954 * @ioc: per adapter object
1955 *
1956 */
1957 static int
1958 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1959 {
1960 struct msix_entry *entries, *a;
1961 int r;
1962 int i, local_max_msix_vectors;
1963 u8 try_msix = 0;
1964
1965 if (msix_disable == -1 || msix_disable == 0)
1966 try_msix = 1;
1967
1968 if (!try_msix)
1969 goto try_ioapic;
1970
1971 if (_base_check_enable_msix(ioc) != 0)
1972 goto try_ioapic;
1973
1974 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1975 ioc->msix_vector_count);
1976
1977 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1978 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1979 ioc->cpu_count, max_msix_vectors);
1980
1981 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1982 local_max_msix_vectors = 8;
1983 else
1984 local_max_msix_vectors = max_msix_vectors;
1985
1986 if (local_max_msix_vectors > 0) {
1987 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
1988 ioc->reply_queue_count);
1989 ioc->msix_vector_count = ioc->reply_queue_count;
1990 } else if (local_max_msix_vectors == 0)
1991 goto try_ioapic;
1992
1993 if (ioc->msix_vector_count < ioc->cpu_count)
1994 smp_affinity_enable = 0;
1995
1996 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1997 GFP_KERNEL);
1998 if (!entries) {
1999 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2000 "kcalloc failed @ at %s:%d/%s() !!!\n",
2001 ioc->name, __FILE__, __LINE__, __func__));
2002 goto try_ioapic;
2003 }
2004
2005 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2006 a->entry = i;
2007
2008 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2009 if (r) {
2010 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2011 "pci_enable_msix_exact failed (r=%d) !!!\n",
2012 ioc->name, r));
2013 kfree(entries);
2014 goto try_ioapic;
2015 }
2016
2017 ioc->msix_enable = 1;
2018 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2019 r = _base_request_irq(ioc, i, a->vector);
2020 if (r) {
2021 _base_free_irq(ioc);
2022 _base_disable_msix(ioc);
2023 kfree(entries);
2024 goto try_ioapic;
2025 }
2026 }
2027
2028 kfree(entries);
2029 return 0;
2030
2031 /* failback to io_apic interrupt routing */
2032 try_ioapic:
2033
2034 ioc->reply_queue_count = 1;
2035 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2036
2037 return r;
2038 }
2039
2040 /**
2041 * mpt3sas_base_unmap_resources - free controller resources
2042 * @ioc: per adapter object
2043 */
2044 static void
2045 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2046 {
2047 struct pci_dev *pdev = ioc->pdev;
2048
2049 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2050 ioc->name, __func__));
2051
2052 _base_free_irq(ioc);
2053 _base_disable_msix(ioc);
2054
2055 if (ioc->combined_reply_queue) {
2056 kfree(ioc->replyPostRegisterIndex);
2057 ioc->replyPostRegisterIndex = NULL;
2058 }
2059
2060 if (ioc->chip_phys) {
2061 iounmap(ioc->chip);
2062 ioc->chip_phys = 0;
2063 }
2064
2065 if (pci_is_enabled(pdev)) {
2066 pci_release_selected_regions(ioc->pdev, ioc->bars);
2067 pci_disable_pcie_error_reporting(pdev);
2068 pci_disable_device(pdev);
2069 }
2070 }
2071
2072 /**
2073 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2074 * @ioc: per adapter object
2075 *
2076 * Returns 0 for success, non-zero for failure.
2077 */
2078 int
2079 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2080 {
2081 struct pci_dev *pdev = ioc->pdev;
2082 u32 memap_sz;
2083 u32 pio_sz;
2084 int i, r = 0;
2085 u64 pio_chip = 0;
2086 u64 chip_phys = 0;
2087 struct adapter_reply_queue *reply_q;
2088
2089 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2090 ioc->name, __func__));
2091
2092 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2093 if (pci_enable_device_mem(pdev)) {
2094 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2095 ioc->name);
2096 ioc->bars = 0;
2097 return -ENODEV;
2098 }
2099
2100
2101 if (pci_request_selected_regions(pdev, ioc->bars,
2102 ioc->driver_name)) {
2103 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2104 ioc->name);
2105 ioc->bars = 0;
2106 r = -ENODEV;
2107 goto out_fail;
2108 }
2109
2110 /* AER (Advanced Error Reporting) hooks */
2111 pci_enable_pcie_error_reporting(pdev);
2112
2113 pci_set_master(pdev);
2114
2115
2116 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2117 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2118 ioc->name, pci_name(pdev));
2119 r = -ENODEV;
2120 goto out_fail;
2121 }
2122
2123 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2124 (!memap_sz || !pio_sz); i++) {
2125 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2126 if (pio_sz)
2127 continue;
2128 pio_chip = (u64)pci_resource_start(pdev, i);
2129 pio_sz = pci_resource_len(pdev, i);
2130 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2131 if (memap_sz)
2132 continue;
2133 ioc->chip_phys = pci_resource_start(pdev, i);
2134 chip_phys = (u64)ioc->chip_phys;
2135 memap_sz = pci_resource_len(pdev, i);
2136 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2137 }
2138 }
2139
2140 if (ioc->chip == NULL) {
2141 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2142 " or resource not found\n", ioc->name);
2143 r = -EINVAL;
2144 goto out_fail;
2145 }
2146
2147 _base_mask_interrupts(ioc);
2148
2149 r = _base_get_ioc_facts(ioc);
2150 if (r)
2151 goto out_fail;
2152
2153 if (!ioc->rdpq_array_enable_assigned) {
2154 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2155 ioc->rdpq_array_enable_assigned = 1;
2156 }
2157
2158 r = _base_enable_msix(ioc);
2159 if (r)
2160 goto out_fail;
2161
2162 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2163 * revision HBAs and also only when reply queue count is greater than 8
2164 */
2165 if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2166 /* Determine the Supplemental Reply Post Host Index Registers
2167 * Addresse. Supplemental Reply Post Host Index Registers
2168 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2169 * each register is at offset bytes of
2170 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2171 */
2172 ioc->replyPostRegisterIndex = kcalloc(
2173 ioc->combined_reply_index_count,
2174 sizeof(resource_size_t *), GFP_KERNEL);
2175 if (!ioc->replyPostRegisterIndex) {
2176 dfailprintk(ioc, printk(MPT3SAS_FMT
2177 "allocation for reply Post Register Index failed!!!\n",
2178 ioc->name));
2179 r = -ENOMEM;
2180 goto out_fail;
2181 }
2182
2183 for (i = 0; i < ioc->combined_reply_index_count; i++) {
2184 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2185 ((u8 *)&ioc->chip->Doorbell +
2186 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2187 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2188 }
2189 } else
2190 ioc->combined_reply_queue = 0;
2191
2192 if (ioc->is_warpdrive) {
2193 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2194 &ioc->chip->ReplyPostHostIndex;
2195
2196 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2197 ioc->reply_post_host_index[i] =
2198 (resource_size_t __iomem *)
2199 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2200 * 4)));
2201 }
2202
2203 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2204 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2205 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2206 "IO-APIC enabled"), reply_q->vector);
2207
2208 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2209 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2210 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2211 ioc->name, (unsigned long long)pio_chip, pio_sz);
2212
2213 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2214 pci_save_state(pdev);
2215 return 0;
2216
2217 out_fail:
2218 mpt3sas_base_unmap_resources(ioc);
2219 return r;
2220 }
2221
2222 /**
2223 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2224 * @ioc: per adapter object
2225 * @smid: system request message index(smid zero is invalid)
2226 *
2227 * Returns virt pointer to message frame.
2228 */
2229 void *
2230 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2231 {
2232 return (void *)(ioc->request + (smid * ioc->request_sz));
2233 }
2234
2235 /**
2236 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2237 * @ioc: per adapter object
2238 * @smid: system request message index
2239 *
2240 * Returns virt pointer to sense buffer.
2241 */
2242 void *
2243 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2244 {
2245 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2246 }
2247
2248 /**
2249 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2250 * @ioc: per adapter object
2251 * @smid: system request message index
2252 *
2253 * Returns phys pointer to the low 32bit address of the sense buffer.
2254 */
2255 __le32
2256 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2257 {
2258 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2259 SCSI_SENSE_BUFFERSIZE));
2260 }
2261
2262 /**
2263 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2264 * @ioc: per adapter object
2265 * @phys_addr: lower 32 physical addr of the reply
2266 *
2267 * Converts 32bit lower physical addr into a virt address.
2268 */
2269 void *
2270 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2271 {
2272 if (!phys_addr)
2273 return NULL;
2274 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2275 }
2276
2277 static inline u8
2278 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2279 {
2280 return ioc->cpu_msix_table[raw_smp_processor_id()];
2281 }
2282
2283 /**
2284 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2285 * @ioc: per adapter object
2286 * @cb_idx: callback index
2287 *
2288 * Returns smid (zero is invalid)
2289 */
2290 u16
2291 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2292 {
2293 unsigned long flags;
2294 struct request_tracker *request;
2295 u16 smid;
2296
2297 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2298 if (list_empty(&ioc->internal_free_list)) {
2299 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2300 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2301 ioc->name, __func__);
2302 return 0;
2303 }
2304
2305 request = list_entry(ioc->internal_free_list.next,
2306 struct request_tracker, tracker_list);
2307 request->cb_idx = cb_idx;
2308 smid = request->smid;
2309 list_del(&request->tracker_list);
2310 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2311 return smid;
2312 }
2313
2314 /**
2315 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2316 * @ioc: per adapter object
2317 * @cb_idx: callback index
2318 * @scmd: pointer to scsi command object
2319 *
2320 * Returns smid (zero is invalid)
2321 */
2322 u16
2323 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2324 struct scsi_cmnd *scmd)
2325 {
2326 unsigned long flags;
2327 struct scsiio_tracker *request;
2328 u16 smid;
2329
2330 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2331 if (list_empty(&ioc->free_list)) {
2332 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2333 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2334 ioc->name, __func__);
2335 return 0;
2336 }
2337
2338 request = list_entry(ioc->free_list.next,
2339 struct scsiio_tracker, tracker_list);
2340 request->scmd = scmd;
2341 request->cb_idx = cb_idx;
2342 smid = request->smid;
2343 request->msix_io = _base_get_msix_index(ioc);
2344 list_del(&request->tracker_list);
2345 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2346 return smid;
2347 }
2348
2349 /**
2350 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2351 * @ioc: per adapter object
2352 * @cb_idx: callback index
2353 *
2354 * Returns smid (zero is invalid)
2355 */
2356 u16
2357 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2358 {
2359 unsigned long flags;
2360 struct request_tracker *request;
2361 u16 smid;
2362
2363 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2364 if (list_empty(&ioc->hpr_free_list)) {
2365 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2366 return 0;
2367 }
2368
2369 request = list_entry(ioc->hpr_free_list.next,
2370 struct request_tracker, tracker_list);
2371 request->cb_idx = cb_idx;
2372 smid = request->smid;
2373 list_del(&request->tracker_list);
2374 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2375 return smid;
2376 }
2377
2378 /**
2379 * mpt3sas_base_free_smid - put smid back on free_list
2380 * @ioc: per adapter object
2381 * @smid: system request message index
2382 *
2383 * Return nothing.
2384 */
2385 void
2386 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2387 {
2388 unsigned long flags;
2389 int i;
2390 struct chain_tracker *chain_req, *next;
2391
2392 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2393 if (smid < ioc->hi_priority_smid) {
2394 /* scsiio queue */
2395 i = smid - 1;
2396 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2397 list_for_each_entry_safe(chain_req, next,
2398 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2399 list_del_init(&chain_req->tracker_list);
2400 list_add(&chain_req->tracker_list,
2401 &ioc->free_chain_list);
2402 }
2403 }
2404 ioc->scsi_lookup[i].cb_idx = 0xFF;
2405 ioc->scsi_lookup[i].scmd = NULL;
2406 ioc->scsi_lookup[i].direct_io = 0;
2407 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2408 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2409
2410 /*
2411 * See _wait_for_commands_to_complete() call with regards
2412 * to this code.
2413 */
2414 if (ioc->shost_recovery && ioc->pending_io_count) {
2415 if (ioc->pending_io_count == 1)
2416 wake_up(&ioc->reset_wq);
2417 ioc->pending_io_count--;
2418 }
2419 return;
2420 } else if (smid < ioc->internal_smid) {
2421 /* hi-priority */
2422 i = smid - ioc->hi_priority_smid;
2423 ioc->hpr_lookup[i].cb_idx = 0xFF;
2424 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2425 } else if (smid <= ioc->hba_queue_depth) {
2426 /* internal queue */
2427 i = smid - ioc->internal_smid;
2428 ioc->internal_lookup[i].cb_idx = 0xFF;
2429 list_add(&ioc->internal_lookup[i].tracker_list,
2430 &ioc->internal_free_list);
2431 }
2432 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2433 }
2434
2435 /**
2436 * _base_writeq - 64 bit write to MMIO
2437 * @ioc: per adapter object
2438 * @b: data payload
2439 * @addr: address in MMIO space
2440 * @writeq_lock: spin lock
2441 *
2442 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2443 * care of 32 bit environment where its not quarenteed to send the entire word
2444 * in one transfer.
2445 */
2446 #if defined(writeq) && defined(CONFIG_64BIT)
2447 static inline void
2448 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2449 {
2450 writeq(cpu_to_le64(b), addr);
2451 }
2452 #else
2453 static inline void
2454 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2455 {
2456 unsigned long flags;
2457 __u64 data_out = cpu_to_le64(b);
2458
2459 spin_lock_irqsave(writeq_lock, flags);
2460 writel((u32)(data_out), addr);
2461 writel((u32)(data_out >> 32), (addr + 4));
2462 spin_unlock_irqrestore(writeq_lock, flags);
2463 }
2464 #endif
2465
2466 /**
2467 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2468 * @ioc: per adapter object
2469 * @smid: system request message index
2470 * @handle: device handle
2471 *
2472 * Return nothing.
2473 */
2474 static void
2475 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2476 {
2477 Mpi2RequestDescriptorUnion_t descriptor;
2478 u64 *request = (u64 *)&descriptor;
2479
2480
2481 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2482 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2483 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2484 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2485 descriptor.SCSIIO.LMID = 0;
2486 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2487 &ioc->scsi_lookup_lock);
2488 }
2489
2490 /**
2491 * _base_put_smid_fast_path - send fast path request to firmware
2492 * @ioc: per adapter object
2493 * @smid: system request message index
2494 * @handle: device handle
2495 *
2496 * Return nothing.
2497 */
2498 static void
2499 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2500 u16 handle)
2501 {
2502 Mpi2RequestDescriptorUnion_t descriptor;
2503 u64 *request = (u64 *)&descriptor;
2504
2505 descriptor.SCSIIO.RequestFlags =
2506 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2507 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2508 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2509 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2510 descriptor.SCSIIO.LMID = 0;
2511 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2512 &ioc->scsi_lookup_lock);
2513 }
2514
2515 /**
2516 * _base_put_smid_hi_priority - send Task Management request to firmware
2517 * @ioc: per adapter object
2518 * @smid: system request message index
2519 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2520 * Return nothing.
2521 */
2522 static void
2523 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2524 u16 msix_task)
2525 {
2526 Mpi2RequestDescriptorUnion_t descriptor;
2527 u64 *request = (u64 *)&descriptor;
2528
2529 descriptor.HighPriority.RequestFlags =
2530 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2531 descriptor.HighPriority.MSIxIndex = msix_task;
2532 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2533 descriptor.HighPriority.LMID = 0;
2534 descriptor.HighPriority.Reserved1 = 0;
2535 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2536 &ioc->scsi_lookup_lock);
2537 }
2538
2539 /**
2540 * _base_put_smid_default - Default, primarily used for config pages
2541 * @ioc: per adapter object
2542 * @smid: system request message index
2543 *
2544 * Return nothing.
2545 */
2546 static void
2547 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2548 {
2549 Mpi2RequestDescriptorUnion_t descriptor;
2550 u64 *request = (u64 *)&descriptor;
2551
2552 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2553 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2554 descriptor.Default.SMID = cpu_to_le16(smid);
2555 descriptor.Default.LMID = 0;
2556 descriptor.Default.DescriptorTypeDependent = 0;
2557 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2558 &ioc->scsi_lookup_lock);
2559 }
2560
2561 /**
2562 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2563 * Atomic Request Descriptor
2564 * @ioc: per adapter object
2565 * @smid: system request message index
2566 * @handle: device handle, unused in this function, for function type match
2567 *
2568 * Return nothing.
2569 */
2570 static void
2571 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2572 u16 handle)
2573 {
2574 Mpi26AtomicRequestDescriptor_t descriptor;
2575 u32 *request = (u32 *)&descriptor;
2576
2577 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2578 descriptor.MSIxIndex = _base_get_msix_index(ioc);
2579 descriptor.SMID = cpu_to_le16(smid);
2580
2581 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2582 }
2583
2584 /**
2585 * _base_put_smid_fast_path_atomic - send fast path request to firmware
2586 * using Atomic Request Descriptor
2587 * @ioc: per adapter object
2588 * @smid: system request message index
2589 * @handle: device handle, unused in this function, for function type match
2590 * Return nothing
2591 */
2592 static void
2593 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2594 u16 handle)
2595 {
2596 Mpi26AtomicRequestDescriptor_t descriptor;
2597 u32 *request = (u32 *)&descriptor;
2598
2599 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2600 descriptor.MSIxIndex = _base_get_msix_index(ioc);
2601 descriptor.SMID = cpu_to_le16(smid);
2602
2603 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2604 }
2605
2606 /**
2607 * _base_put_smid_hi_priority_atomic - send Task Management request to
2608 * firmware using Atomic Request Descriptor
2609 * @ioc: per adapter object
2610 * @smid: system request message index
2611 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2612 *
2613 * Return nothing.
2614 */
2615 static void
2616 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2617 u16 msix_task)
2618 {
2619 Mpi26AtomicRequestDescriptor_t descriptor;
2620 u32 *request = (u32 *)&descriptor;
2621
2622 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2623 descriptor.MSIxIndex = msix_task;
2624 descriptor.SMID = cpu_to_le16(smid);
2625
2626 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2627 }
2628
2629 /**
2630 * _base_put_smid_default - Default, primarily used for config pages
2631 * use Atomic Request Descriptor
2632 * @ioc: per adapter object
2633 * @smid: system request message index
2634 *
2635 * Return nothing.
2636 */
2637 static void
2638 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2639 {
2640 Mpi26AtomicRequestDescriptor_t descriptor;
2641 u32 *request = (u32 *)&descriptor;
2642
2643 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2644 descriptor.MSIxIndex = _base_get_msix_index(ioc);
2645 descriptor.SMID = cpu_to_le16(smid);
2646
2647 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2648 }
2649
2650 /**
2651 * _base_display_OEMs_branding - Display branding string
2652 * @ioc: per adapter object
2653 *
2654 * Return nothing.
2655 */
2656 static void
2657 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2658 {
2659 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2660 return;
2661
2662 switch (ioc->pdev->subsystem_vendor) {
2663 case PCI_VENDOR_ID_INTEL:
2664 switch (ioc->pdev->device) {
2665 case MPI2_MFGPAGE_DEVID_SAS2008:
2666 switch (ioc->pdev->subsystem_device) {
2667 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2668 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2669 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2670 break;
2671 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2672 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2673 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2674 break;
2675 case MPT2SAS_INTEL_SSD910_SSDID:
2676 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2677 MPT2SAS_INTEL_SSD910_BRANDING);
2678 break;
2679 default:
2680 pr_info(MPT3SAS_FMT
2681 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2682 ioc->name, ioc->pdev->subsystem_device);
2683 break;
2684 }
2685 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2686 switch (ioc->pdev->subsystem_device) {
2687 case MPT2SAS_INTEL_RS25GB008_SSDID:
2688 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2689 MPT2SAS_INTEL_RS25GB008_BRANDING);
2690 break;
2691 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2692 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2694 break;
2695 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2696 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2697 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2698 break;
2699 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2700 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2701 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2702 break;
2703 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2704 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2705 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2706 break;
2707 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2708 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2709 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2710 break;
2711 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2712 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2713 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2714 break;
2715 default:
2716 pr_info(MPT3SAS_FMT
2717 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2718 ioc->name, ioc->pdev->subsystem_device);
2719 break;
2720 }
2721 case MPI25_MFGPAGE_DEVID_SAS3008:
2722 switch (ioc->pdev->subsystem_device) {
2723 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2724 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2725 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2726 break;
2727
2728 case MPT3SAS_INTEL_RS3GC008_SSDID:
2729 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2730 MPT3SAS_INTEL_RS3GC008_BRANDING);
2731 break;
2732 case MPT3SAS_INTEL_RS3FC044_SSDID:
2733 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2734 MPT3SAS_INTEL_RS3FC044_BRANDING);
2735 break;
2736 case MPT3SAS_INTEL_RS3UC080_SSDID:
2737 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2738 MPT3SAS_INTEL_RS3UC080_BRANDING);
2739 break;
2740 default:
2741 pr_info(MPT3SAS_FMT
2742 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2743 ioc->name, ioc->pdev->subsystem_device);
2744 break;
2745 }
2746 break;
2747 default:
2748 pr_info(MPT3SAS_FMT
2749 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2750 ioc->name, ioc->pdev->subsystem_device);
2751 break;
2752 }
2753 break;
2754 case PCI_VENDOR_ID_DELL:
2755 switch (ioc->pdev->device) {
2756 case MPI2_MFGPAGE_DEVID_SAS2008:
2757 switch (ioc->pdev->subsystem_device) {
2758 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2759 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2760 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2761 break;
2762 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2763 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2764 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2765 break;
2766 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2767 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2768 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2769 break;
2770 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2771 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2772 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2773 break;
2774 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2775 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2776 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2777 break;
2778 case MPT2SAS_DELL_PERC_H200_SSDID:
2779 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2780 MPT2SAS_DELL_PERC_H200_BRANDING);
2781 break;
2782 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2783 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2784 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2785 break;
2786 default:
2787 pr_info(MPT3SAS_FMT
2788 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2789 ioc->name, ioc->pdev->subsystem_device);
2790 break;
2791 }
2792 break;
2793 case MPI25_MFGPAGE_DEVID_SAS3008:
2794 switch (ioc->pdev->subsystem_device) {
2795 case MPT3SAS_DELL_12G_HBA_SSDID:
2796 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2797 MPT3SAS_DELL_12G_HBA_BRANDING);
2798 break;
2799 default:
2800 pr_info(MPT3SAS_FMT
2801 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2802 ioc->name, ioc->pdev->subsystem_device);
2803 break;
2804 }
2805 break;
2806 default:
2807 pr_info(MPT3SAS_FMT
2808 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2809 ioc->pdev->subsystem_device);
2810 break;
2811 }
2812 break;
2813 case PCI_VENDOR_ID_CISCO:
2814 switch (ioc->pdev->device) {
2815 case MPI25_MFGPAGE_DEVID_SAS3008:
2816 switch (ioc->pdev->subsystem_device) {
2817 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2818 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2819 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2820 break;
2821 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2822 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2823 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2824 break;
2825 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2826 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2827 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2828 break;
2829 default:
2830 pr_info(MPT3SAS_FMT
2831 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2832 ioc->name, ioc->pdev->subsystem_device);
2833 break;
2834 }
2835 break;
2836 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2837 switch (ioc->pdev->subsystem_device) {
2838 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2839 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2840 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2841 break;
2842 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2843 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2844 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2845 );
2846 break;
2847 default:
2848 pr_info(MPT3SAS_FMT
2849 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2850 ioc->name, ioc->pdev->subsystem_device);
2851 break;
2852 }
2853 break;
2854 default:
2855 pr_info(MPT3SAS_FMT
2856 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2857 ioc->name, ioc->pdev->subsystem_device);
2858 break;
2859 }
2860 break;
2861 case MPT2SAS_HP_3PAR_SSVID:
2862 switch (ioc->pdev->device) {
2863 case MPI2_MFGPAGE_DEVID_SAS2004:
2864 switch (ioc->pdev->subsystem_device) {
2865 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2866 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2867 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2868 break;
2869 default:
2870 pr_info(MPT3SAS_FMT
2871 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2872 ioc->name, ioc->pdev->subsystem_device);
2873 break;
2874 }
2875 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2876 switch (ioc->pdev->subsystem_device) {
2877 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2878 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2879 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2880 break;
2881 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2882 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2883 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2884 break;
2885 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2886 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2887 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2888 break;
2889 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2890 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2891 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2892 break;
2893 default:
2894 pr_info(MPT3SAS_FMT
2895 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2896 ioc->name, ioc->pdev->subsystem_device);
2897 break;
2898 }
2899 default:
2900 pr_info(MPT3SAS_FMT
2901 "HP SAS HBA: Subsystem ID: 0x%X\n",
2902 ioc->name, ioc->pdev->subsystem_device);
2903 break;
2904 }
2905 default:
2906 break;
2907 }
2908 }
2909
2910 /**
2911 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2912 * @ioc: per adapter object
2913 *
2914 * Return nothing.
2915 */
2916 static void
2917 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2918 {
2919 int i = 0;
2920 char desc[16];
2921 u32 iounit_pg1_flags;
2922 u32 bios_version;
2923
2924 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2925 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2926 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2927 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2928 ioc->name, desc,
2929 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2930 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2931 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2932 ioc->facts.FWVersion.Word & 0x000000FF,
2933 ioc->pdev->revision,
2934 (bios_version & 0xFF000000) >> 24,
2935 (bios_version & 0x00FF0000) >> 16,
2936 (bios_version & 0x0000FF00) >> 8,
2937 bios_version & 0x000000FF);
2938
2939 _base_display_OEMs_branding(ioc);
2940
2941 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2942
2943 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2944 pr_info("Initiator");
2945 i++;
2946 }
2947
2948 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2949 pr_info("%sTarget", i ? "," : "");
2950 i++;
2951 }
2952
2953 i = 0;
2954 pr_info("), ");
2955 pr_info("Capabilities=(");
2956
2957 if (!ioc->hide_ir_msg) {
2958 if (ioc->facts.IOCCapabilities &
2959 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2960 pr_info("Raid");
2961 i++;
2962 }
2963 }
2964
2965 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2966 pr_info("%sTLR", i ? "," : "");
2967 i++;
2968 }
2969
2970 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2971 pr_info("%sMulticast", i ? "," : "");
2972 i++;
2973 }
2974
2975 if (ioc->facts.IOCCapabilities &
2976 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2977 pr_info("%sBIDI Target", i ? "," : "");
2978 i++;
2979 }
2980
2981 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2982 pr_info("%sEEDP", i ? "," : "");
2983 i++;
2984 }
2985
2986 if (ioc->facts.IOCCapabilities &
2987 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2988 pr_info("%sSnapshot Buffer", i ? "," : "");
2989 i++;
2990 }
2991
2992 if (ioc->facts.IOCCapabilities &
2993 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2994 pr_info("%sDiag Trace Buffer", i ? "," : "");
2995 i++;
2996 }
2997
2998 if (ioc->facts.IOCCapabilities &
2999 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3000 pr_info("%sDiag Extended Buffer", i ? "," : "");
3001 i++;
3002 }
3003
3004 if (ioc->facts.IOCCapabilities &
3005 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3006 pr_info("%sTask Set Full", i ? "," : "");
3007 i++;
3008 }
3009
3010 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3011 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3012 pr_info("%sNCQ", i ? "," : "");
3013 i++;
3014 }
3015
3016 pr_info(")\n");
3017 }
3018
3019 /**
3020 * mpt3sas_base_update_missing_delay - change the missing delay timers
3021 * @ioc: per adapter object
3022 * @device_missing_delay: amount of time till device is reported missing
3023 * @io_missing_delay: interval IO is returned when there is a missing device
3024 *
3025 * Return nothing.
3026 *
3027 * Passed on the command line, this function will modify the device missing
3028 * delay, as well as the io missing delay. This should be called at driver
3029 * load time.
3030 */
3031 void
3032 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3033 u16 device_missing_delay, u8 io_missing_delay)
3034 {
3035 u16 dmd, dmd_new, dmd_orignal;
3036 u8 io_missing_delay_original;
3037 u16 sz;
3038 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3039 Mpi2ConfigReply_t mpi_reply;
3040 u8 num_phys = 0;
3041 u16 ioc_status;
3042
3043 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3044 if (!num_phys)
3045 return;
3046
3047 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3048 sizeof(Mpi2SasIOUnit1PhyData_t));
3049 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3050 if (!sas_iounit_pg1) {
3051 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3052 ioc->name, __FILE__, __LINE__, __func__);
3053 goto out;
3054 }
3055 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3056 sas_iounit_pg1, sz))) {
3057 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3058 ioc->name, __FILE__, __LINE__, __func__);
3059 goto out;
3060 }
3061 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3062 MPI2_IOCSTATUS_MASK;
3063 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3064 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3065 ioc->name, __FILE__, __LINE__, __func__);
3066 goto out;
3067 }
3068
3069 /* device missing delay */
3070 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3071 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3072 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3073 else
3074 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3075 dmd_orignal = dmd;
3076 if (device_missing_delay > 0x7F) {
3077 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3078 device_missing_delay;
3079 dmd = dmd / 16;
3080 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3081 } else
3082 dmd = device_missing_delay;
3083 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3084
3085 /* io missing delay */
3086 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3087 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3088
3089 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3090 sz)) {
3091 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3092 dmd_new = (dmd &
3093 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3094 else
3095 dmd_new =
3096 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3097 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3098 ioc->name, dmd_orignal, dmd_new);
3099 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3100 ioc->name, io_missing_delay_original,
3101 io_missing_delay);
3102 ioc->device_missing_delay = dmd_new;
3103 ioc->io_missing_delay = io_missing_delay;
3104 }
3105
3106 out:
3107 kfree(sas_iounit_pg1);
3108 }
3109 /**
3110 * _base_static_config_pages - static start of day config pages
3111 * @ioc: per adapter object
3112 *
3113 * Return nothing.
3114 */
3115 static void
3116 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3117 {
3118 Mpi2ConfigReply_t mpi_reply;
3119 u32 iounit_pg1_flags;
3120
3121 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3122 if (ioc->ir_firmware)
3123 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3124 &ioc->manu_pg10);
3125
3126 /*
3127 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3128 * flag unset in NVDATA.
3129 */
3130 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3131 if (ioc->manu_pg11.EEDPTagMode == 0) {
3132 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3133 ioc->name);
3134 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3135 ioc->manu_pg11.EEDPTagMode |= 0x1;
3136 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3137 &ioc->manu_pg11);
3138 }
3139
3140 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3141 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3142 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3143 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3144 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3145 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3146 _base_display_ioc_capabilities(ioc);
3147
3148 /*
3149 * Enable task_set_full handling in iounit_pg1 when the
3150 * facts capabilities indicate that its supported.
3151 */
3152 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3153 if ((ioc->facts.IOCCapabilities &
3154 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3155 iounit_pg1_flags &=
3156 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3157 else
3158 iounit_pg1_flags |=
3159 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3160 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3161 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3162
3163 if (ioc->iounit_pg8.NumSensors)
3164 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3165 }
3166
3167 /**
3168 * _base_release_memory_pools - release memory
3169 * @ioc: per adapter object
3170 *
3171 * Free memory allocated from _base_allocate_memory_pools.
3172 *
3173 * Return nothing.
3174 */
3175 static void
3176 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3177 {
3178 int i = 0;
3179 struct reply_post_struct *rps;
3180
3181 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3182 __func__));
3183
3184 if (ioc->request) {
3185 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3186 ioc->request, ioc->request_dma);
3187 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3188 "request_pool(0x%p): free\n",
3189 ioc->name, ioc->request));
3190 ioc->request = NULL;
3191 }
3192
3193 if (ioc->sense) {
3194 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3195 if (ioc->sense_dma_pool)
3196 pci_pool_destroy(ioc->sense_dma_pool);
3197 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3198 "sense_pool(0x%p): free\n",
3199 ioc->name, ioc->sense));
3200 ioc->sense = NULL;
3201 }
3202
3203 if (ioc->reply) {
3204 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3205 if (ioc->reply_dma_pool)
3206 pci_pool_destroy(ioc->reply_dma_pool);
3207 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3208 "reply_pool(0x%p): free\n",
3209 ioc->name, ioc->reply));
3210 ioc->reply = NULL;
3211 }
3212
3213 if (ioc->reply_free) {
3214 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3215 ioc->reply_free_dma);
3216 if (ioc->reply_free_dma_pool)
3217 pci_pool_destroy(ioc->reply_free_dma_pool);
3218 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3219 "reply_free_pool(0x%p): free\n",
3220 ioc->name, ioc->reply_free));
3221 ioc->reply_free = NULL;
3222 }
3223
3224 if (ioc->reply_post) {
3225 do {
3226 rps = &ioc->reply_post[i];
3227 if (rps->reply_post_free) {
3228 pci_pool_free(
3229 ioc->reply_post_free_dma_pool,
3230 rps->reply_post_free,
3231 rps->reply_post_free_dma);
3232 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3233 "reply_post_free_pool(0x%p): free\n",
3234 ioc->name, rps->reply_post_free));
3235 rps->reply_post_free = NULL;
3236 }
3237 } while (ioc->rdpq_array_enable &&
3238 (++i < ioc->reply_queue_count));
3239
3240 if (ioc->reply_post_free_dma_pool)
3241 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3242 kfree(ioc->reply_post);
3243 }
3244
3245 if (ioc->config_page) {
3246 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3247 "config_page(0x%p): free\n", ioc->name,
3248 ioc->config_page));
3249 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3250 ioc->config_page, ioc->config_page_dma);
3251 }
3252
3253 if (ioc->scsi_lookup) {
3254 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3255 ioc->scsi_lookup = NULL;
3256 }
3257 kfree(ioc->hpr_lookup);
3258 kfree(ioc->internal_lookup);
3259 if (ioc->chain_lookup) {
3260 for (i = 0; i < ioc->chain_depth; i++) {
3261 if (ioc->chain_lookup[i].chain_buffer)
3262 pci_pool_free(ioc->chain_dma_pool,
3263 ioc->chain_lookup[i].chain_buffer,
3264 ioc->chain_lookup[i].chain_buffer_dma);
3265 }
3266 if (ioc->chain_dma_pool)
3267 pci_pool_destroy(ioc->chain_dma_pool);
3268 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3269 ioc->chain_lookup = NULL;
3270 }
3271 }
3272
3273 /**
3274 * _base_allocate_memory_pools - allocate start of day memory pools
3275 * @ioc: per adapter object
3276 *
3277 * Returns 0 success, anything else error
3278 */
3279 static int
3280 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3281 {
3282 struct mpt3sas_facts *facts;
3283 u16 max_sge_elements;
3284 u16 chains_needed_per_io;
3285 u32 sz, total_sz, reply_post_free_sz;
3286 u32 retry_sz;
3287 u16 max_request_credit;
3288 unsigned short sg_tablesize;
3289 u16 sge_size;
3290 int i;
3291
3292 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3293 __func__));
3294
3295
3296 retry_sz = 0;
3297 facts = &ioc->facts;
3298
3299 /* command line tunables for max sgl entries */
3300 if (max_sgl_entries != -1)
3301 sg_tablesize = max_sgl_entries;
3302 else {
3303 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3304 sg_tablesize = MPT2SAS_SG_DEPTH;
3305 else
3306 sg_tablesize = MPT3SAS_SG_DEPTH;
3307 }
3308
3309 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3310 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3311 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3312 sg_tablesize = min_t(unsigned short, sg_tablesize,
3313 SG_MAX_SEGMENTS);
3314 pr_warn(MPT3SAS_FMT
3315 "sg_tablesize(%u) is bigger than kernel"
3316 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3317 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3318 }
3319 ioc->shost->sg_tablesize = sg_tablesize;
3320
3321 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3322 (facts->RequestCredit / 4));
3323 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3324 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3325 INTERNAL_SCSIIO_CMDS_COUNT)) {
3326 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3327 Credits, it has just %d number of credits\n",
3328 ioc->name, facts->RequestCredit);
3329 return -ENOMEM;
3330 }
3331 ioc->internal_depth = 10;
3332 }
3333
3334 ioc->hi_priority_depth = ioc->internal_depth - (5);
3335 /* command line tunables for max controller queue depth */
3336 if (max_queue_depth != -1 && max_queue_depth != 0) {
3337 max_request_credit = min_t(u16, max_queue_depth +
3338 ioc->internal_depth, facts->RequestCredit);
3339 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3340 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3341 } else
3342 max_request_credit = min_t(u16, facts->RequestCredit,
3343 MAX_HBA_QUEUE_DEPTH);
3344
3345 /* Firmware maintains additional facts->HighPriorityCredit number of
3346 * credits for HiPriprity Request messages, so hba queue depth will be
3347 * sum of max_request_credit and high priority queue depth.
3348 */
3349 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3350
3351 /* request frame size */
3352 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3353
3354 /* reply frame size */
3355 ioc->reply_sz = facts->ReplyFrameSize * 4;
3356
3357 /* chain segment size */
3358 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3359 if (facts->IOCMaxChainSegmentSize)
3360 ioc->chain_segment_sz =
3361 facts->IOCMaxChainSegmentSize *
3362 MAX_CHAIN_ELEMT_SZ;
3363 else
3364 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3365 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3366 MAX_CHAIN_ELEMT_SZ;
3367 } else
3368 ioc->chain_segment_sz = ioc->request_sz;
3369
3370 /* calculate the max scatter element size */
3371 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3372
3373 retry_allocation:
3374 total_sz = 0;
3375 /* calculate number of sg elements left over in the 1st frame */
3376 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3377 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3378 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3379
3380 /* now do the same for a chain buffer */
3381 max_sge_elements = ioc->chain_segment_sz - sge_size;
3382 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3383
3384 /*
3385 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3386 */
3387 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3388 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3389 + 1;
3390 if (chains_needed_per_io > facts->MaxChainDepth) {
3391 chains_needed_per_io = facts->MaxChainDepth;
3392 ioc->shost->sg_tablesize = min_t(u16,
3393 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3394 * chains_needed_per_io), ioc->shost->sg_tablesize);
3395 }
3396 ioc->chains_needed_per_io = chains_needed_per_io;
3397
3398 /* reply free queue sizing - taking into account for 64 FW events */
3399 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3400
3401 /* calculate reply descriptor post queue depth */
3402 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3403 ioc->reply_free_queue_depth + 1 ;
3404 /* align the reply post queue on the next 16 count boundary */
3405 if (ioc->reply_post_queue_depth % 16)
3406 ioc->reply_post_queue_depth += 16 -
3407 (ioc->reply_post_queue_depth % 16);
3408
3409 if (ioc->reply_post_queue_depth >
3410 facts->MaxReplyDescriptorPostQueueDepth) {
3411 ioc->reply_post_queue_depth =
3412 facts->MaxReplyDescriptorPostQueueDepth -
3413 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3414 ioc->hba_queue_depth =
3415 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3416 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3417 }
3418
3419 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3420 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3421 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3422 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3423 ioc->chains_needed_per_io));
3424
3425 /* reply post queue, 16 byte align */
3426 reply_post_free_sz = ioc->reply_post_queue_depth *
3427 sizeof(Mpi2DefaultReplyDescriptor_t);
3428
3429 sz = reply_post_free_sz;
3430 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3431 sz *= ioc->reply_queue_count;
3432
3433 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3434 (ioc->reply_queue_count):1,
3435 sizeof(struct reply_post_struct), GFP_KERNEL);
3436
3437 if (!ioc->reply_post) {
3438 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3439 ioc->name);
3440 goto out;
3441 }
3442 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3443 ioc->pdev, sz, 16, 0);
3444 if (!ioc->reply_post_free_dma_pool) {
3445 pr_err(MPT3SAS_FMT
3446 "reply_post_free pool: pci_pool_create failed\n",
3447 ioc->name);
3448 goto out;
3449 }
3450 i = 0;
3451 do {
3452 ioc->reply_post[i].reply_post_free =
3453 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3454 GFP_KERNEL,
3455 &ioc->reply_post[i].reply_post_free_dma);
3456 if (!ioc->reply_post[i].reply_post_free) {
3457 pr_err(MPT3SAS_FMT
3458 "reply_post_free pool: pci_pool_alloc failed\n",
3459 ioc->name);
3460 goto out;
3461 }
3462 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3463 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3464 "reply post free pool (0x%p): depth(%d),"
3465 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3466 ioc->reply_post[i].reply_post_free,
3467 ioc->reply_post_queue_depth, 8, sz/1024));
3468 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3469 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3470 (unsigned long long)
3471 ioc->reply_post[i].reply_post_free_dma));
3472 total_sz += sz;
3473 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3474
3475 if (ioc->dma_mask == 64) {
3476 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3477 pr_warn(MPT3SAS_FMT
3478 "no suitable consistent DMA mask for %s\n",
3479 ioc->name, pci_name(ioc->pdev));
3480 goto out;
3481 }
3482 }
3483
3484 ioc->scsiio_depth = ioc->hba_queue_depth -
3485 ioc->hi_priority_depth - ioc->internal_depth;
3486
3487 /* set the scsi host can_queue depth
3488 * with some internal commands that could be outstanding
3489 */
3490 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3491 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3492 "scsi host: can_queue depth (%d)\n",
3493 ioc->name, ioc->shost->can_queue));
3494
3495
3496 /* contiguous pool for request and chains, 16 byte align, one extra "
3497 * "frame for smid=0
3498 */
3499 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3500 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3501
3502 /* hi-priority queue */
3503 sz += (ioc->hi_priority_depth * ioc->request_sz);
3504
3505 /* internal queue */
3506 sz += (ioc->internal_depth * ioc->request_sz);
3507
3508 ioc->request_dma_sz = sz;
3509 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3510 if (!ioc->request) {
3511 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3512 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3513 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3514 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3515 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3516 goto out;
3517 retry_sz = 64;
3518 ioc->hba_queue_depth -= retry_sz;
3519 _base_release_memory_pools(ioc);
3520 goto retry_allocation;
3521 }
3522
3523 if (retry_sz)
3524 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3525 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3526 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3527 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3528
3529 /* hi-priority queue */
3530 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3531 ioc->request_sz);
3532 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3533 ioc->request_sz);
3534
3535 /* internal queue */
3536 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3537 ioc->request_sz);
3538 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3539 ioc->request_sz);
3540
3541 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3542 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3543 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3544 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3545
3546 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3547 ioc->name, (unsigned long long) ioc->request_dma));
3548 total_sz += sz;
3549
3550 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3551 ioc->scsi_lookup_pages = get_order(sz);
3552 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3553 GFP_KERNEL, ioc->scsi_lookup_pages);
3554 if (!ioc->scsi_lookup) {
3555 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3556 ioc->name, (int)sz);
3557 goto out;
3558 }
3559
3560 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3561 ioc->name, ioc->request, ioc->scsiio_depth));
3562
3563 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3564 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3565 ioc->chain_pages = get_order(sz);
3566 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3567 GFP_KERNEL, ioc->chain_pages);
3568 if (!ioc->chain_lookup) {
3569 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3570 ioc->name);
3571 goto out;
3572 }
3573 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3574 ioc->chain_segment_sz, 16, 0);
3575 if (!ioc->chain_dma_pool) {
3576 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3577 ioc->name);
3578 goto out;
3579 }
3580 for (i = 0; i < ioc->chain_depth; i++) {
3581 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3582 ioc->chain_dma_pool , GFP_KERNEL,
3583 &ioc->chain_lookup[i].chain_buffer_dma);
3584 if (!ioc->chain_lookup[i].chain_buffer) {
3585 ioc->chain_depth = i;
3586 goto chain_done;
3587 }
3588 total_sz += ioc->chain_segment_sz;
3589 }
3590 chain_done:
3591 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3592 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3593 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3594 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
3595
3596 /* initialize hi-priority queue smid's */
3597 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3598 sizeof(struct request_tracker), GFP_KERNEL);
3599 if (!ioc->hpr_lookup) {
3600 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3601 ioc->name);
3602 goto out;
3603 }
3604 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3605 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3606 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3607 ioc->name, ioc->hi_priority,
3608 ioc->hi_priority_depth, ioc->hi_priority_smid));
3609
3610 /* initialize internal queue smid's */
3611 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3612 sizeof(struct request_tracker), GFP_KERNEL);
3613 if (!ioc->internal_lookup) {
3614 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3615 ioc->name);
3616 goto out;
3617 }
3618 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3619 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3620 "internal(0x%p): depth(%d), start smid(%d)\n",
3621 ioc->name, ioc->internal,
3622 ioc->internal_depth, ioc->internal_smid));
3623
3624 /* sense buffers, 4 byte align */
3625 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3626 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3627 0);
3628 if (!ioc->sense_dma_pool) {
3629 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3630 ioc->name);
3631 goto out;
3632 }
3633 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3634 &ioc->sense_dma);
3635 if (!ioc->sense) {
3636 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3637 ioc->name);
3638 goto out;
3639 }
3640 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3641 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3642 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3643 SCSI_SENSE_BUFFERSIZE, sz/1024));
3644 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3645 ioc->name, (unsigned long long)ioc->sense_dma));
3646 total_sz += sz;
3647
3648 /* reply pool, 4 byte align */
3649 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3650 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3651 0);
3652 if (!ioc->reply_dma_pool) {
3653 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3654 ioc->name);
3655 goto out;
3656 }
3657 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3658 &ioc->reply_dma);
3659 if (!ioc->reply) {
3660 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3661 ioc->name);
3662 goto out;
3663 }
3664 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3665 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3666 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3667 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3668 ioc->name, ioc->reply,
3669 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3670 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3671 ioc->name, (unsigned long long)ioc->reply_dma));
3672 total_sz += sz;
3673
3674 /* reply free queue, 16 byte align */
3675 sz = ioc->reply_free_queue_depth * 4;
3676 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3677 ioc->pdev, sz, 16, 0);
3678 if (!ioc->reply_free_dma_pool) {
3679 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3680 ioc->name);
3681 goto out;
3682 }
3683 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3684 &ioc->reply_free_dma);
3685 if (!ioc->reply_free) {
3686 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3687 ioc->name);
3688 goto out;
3689 }
3690 memset(ioc->reply_free, 0, sz);
3691 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3692 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3693 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3694 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3695 "reply_free_dma (0x%llx)\n",
3696 ioc->name, (unsigned long long)ioc->reply_free_dma));
3697 total_sz += sz;
3698
3699 ioc->config_page_sz = 512;
3700 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3701 ioc->config_page_sz, &ioc->config_page_dma);
3702 if (!ioc->config_page) {
3703 pr_err(MPT3SAS_FMT
3704 "config page: pci_pool_alloc failed\n",
3705 ioc->name);
3706 goto out;
3707 }
3708 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3709 "config page(0x%p): size(%d)\n",
3710 ioc->name, ioc->config_page, ioc->config_page_sz));
3711 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3712 ioc->name, (unsigned long long)ioc->config_page_dma));
3713 total_sz += ioc->config_page_sz;
3714
3715 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3716 ioc->name, total_sz/1024);
3717 pr_info(MPT3SAS_FMT
3718 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3719 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3720 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3721 ioc->name, ioc->shost->sg_tablesize);
3722 return 0;
3723
3724 out:
3725 return -ENOMEM;
3726 }
3727
3728 /**
3729 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3730 * @ioc: Pointer to MPT_ADAPTER structure
3731 * @cooked: Request raw or cooked IOC state
3732 *
3733 * Returns all IOC Doorbell register bits if cooked==0, else just the
3734 * Doorbell bits in MPI_IOC_STATE_MASK.
3735 */
3736 u32
3737 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3738 {
3739 u32 s, sc;
3740
3741 s = readl(&ioc->chip->Doorbell);
3742 sc = s & MPI2_IOC_STATE_MASK;
3743 return cooked ? sc : s;
3744 }
3745
3746 /**
3747 * _base_wait_on_iocstate - waiting on a particular ioc state
3748 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3749 * @timeout: timeout in second
3750 *
3751 * Returns 0 for success, non-zero for failure.
3752 */
3753 static int
3754 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3755 {
3756 u32 count, cntdn;
3757 u32 current_state;
3758
3759 count = 0;
3760 cntdn = 1000 * timeout;
3761 do {
3762 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3763 if (current_state == ioc_state)
3764 return 0;
3765 if (count && current_state == MPI2_IOC_STATE_FAULT)
3766 break;
3767
3768 usleep_range(1000, 1500);
3769 count++;
3770 } while (--cntdn);
3771
3772 return current_state;
3773 }
3774
3775 /**
3776 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3777 * a write to the doorbell)
3778 * @ioc: per adapter object
3779 * @timeout: timeout in second
3780 *
3781 * Returns 0 for success, non-zero for failure.
3782 *
3783 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3784 */
3785 static int
3786 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3787
3788 static int
3789 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3790 {
3791 u32 cntdn, count;
3792 u32 int_status;
3793
3794 count = 0;
3795 cntdn = 1000 * timeout;
3796 do {
3797 int_status = readl(&ioc->chip->HostInterruptStatus);
3798 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3799 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3800 "%s: successful count(%d), timeout(%d)\n",
3801 ioc->name, __func__, count, timeout));
3802 return 0;
3803 }
3804
3805 usleep_range(1000, 1500);
3806 count++;
3807 } while (--cntdn);
3808
3809 pr_err(MPT3SAS_FMT
3810 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3811 ioc->name, __func__, count, int_status);
3812 return -EFAULT;
3813 }
3814
3815 static int
3816 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3817 {
3818 u32 cntdn, count;
3819 u32 int_status;
3820
3821 count = 0;
3822 cntdn = 2000 * timeout;
3823 do {
3824 int_status = readl(&ioc->chip->HostInterruptStatus);
3825 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3826 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3827 "%s: successful count(%d), timeout(%d)\n",
3828 ioc->name, __func__, count, timeout));
3829 return 0;
3830 }
3831
3832 udelay(500);
3833 count++;
3834 } while (--cntdn);
3835
3836 pr_err(MPT3SAS_FMT
3837 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3838 ioc->name, __func__, count, int_status);
3839 return -EFAULT;
3840
3841 }
3842
3843 /**
3844 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3845 * @ioc: per adapter object
3846 * @timeout: timeout in second
3847 *
3848 * Returns 0 for success, non-zero for failure.
3849 *
3850 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3851 * doorbell.
3852 */
3853 static int
3854 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3855 {
3856 u32 cntdn, count;
3857 u32 int_status;
3858 u32 doorbell;
3859
3860 count = 0;
3861 cntdn = 1000 * timeout;
3862 do {
3863 int_status = readl(&ioc->chip->HostInterruptStatus);
3864 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3865 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3866 "%s: successful count(%d), timeout(%d)\n",
3867 ioc->name, __func__, count, timeout));
3868 return 0;
3869 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3870 doorbell = readl(&ioc->chip->Doorbell);
3871 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3872 MPI2_IOC_STATE_FAULT) {
3873 mpt3sas_base_fault_info(ioc , doorbell);
3874 return -EFAULT;
3875 }
3876 } else if (int_status == 0xFFFFFFFF)
3877 goto out;
3878
3879 usleep_range(1000, 1500);
3880 count++;
3881 } while (--cntdn);
3882
3883 out:
3884 pr_err(MPT3SAS_FMT
3885 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3886 ioc->name, __func__, count, int_status);
3887 return -EFAULT;
3888 }
3889
3890 /**
3891 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3892 * @ioc: per adapter object
3893 * @timeout: timeout in second
3894 *
3895 * Returns 0 for success, non-zero for failure.
3896 *
3897 */
3898 static int
3899 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3900 {
3901 u32 cntdn, count;
3902 u32 doorbell_reg;
3903
3904 count = 0;
3905 cntdn = 1000 * timeout;
3906 do {
3907 doorbell_reg = readl(&ioc->chip->Doorbell);
3908 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3909 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3910 "%s: successful count(%d), timeout(%d)\n",
3911 ioc->name, __func__, count, timeout));
3912 return 0;
3913 }
3914
3915 usleep_range(1000, 1500);
3916 count++;
3917 } while (--cntdn);
3918
3919 pr_err(MPT3SAS_FMT
3920 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3921 ioc->name, __func__, count, doorbell_reg);
3922 return -EFAULT;
3923 }
3924
3925 /**
3926 * _base_send_ioc_reset - send doorbell reset
3927 * @ioc: per adapter object
3928 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3929 * @timeout: timeout in second
3930 *
3931 * Returns 0 for success, non-zero for failure.
3932 */
3933 static int
3934 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3935 {
3936 u32 ioc_state;
3937 int r = 0;
3938
3939 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3940 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3941 ioc->name, __func__);
3942 return -EFAULT;
3943 }
3944
3945 if (!(ioc->facts.IOCCapabilities &
3946 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3947 return -EFAULT;
3948
3949 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3950
3951 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3952 &ioc->chip->Doorbell);
3953 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3954 r = -EFAULT;
3955 goto out;
3956 }
3957 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3958 if (ioc_state) {
3959 pr_err(MPT3SAS_FMT
3960 "%s: failed going to ready state (ioc_state=0x%x)\n",
3961 ioc->name, __func__, ioc_state);
3962 r = -EFAULT;
3963 goto out;
3964 }
3965 out:
3966 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3967 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3968 return r;
3969 }
3970
3971 /**
3972 * _base_handshake_req_reply_wait - send request thru doorbell interface
3973 * @ioc: per adapter object
3974 * @request_bytes: request length
3975 * @request: pointer having request payload
3976 * @reply_bytes: reply length
3977 * @reply: pointer to reply payload
3978 * @timeout: timeout in second
3979 *
3980 * Returns 0 for success, non-zero for failure.
3981 */
3982 static int
3983 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3984 u32 *request, int reply_bytes, u16 *reply, int timeout)
3985 {
3986 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3987 int i;
3988 u8 failed;
3989 __le32 *mfp;
3990
3991 /* make sure doorbell is not in use */
3992 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3993 pr_err(MPT3SAS_FMT
3994 "doorbell is in use (line=%d)\n",
3995 ioc->name, __LINE__);
3996 return -EFAULT;
3997 }
3998
3999 /* clear pending doorbell interrupts from previous state changes */
4000 if (readl(&ioc->chip->HostInterruptStatus) &
4001 MPI2_HIS_IOC2SYS_DB_STATUS)
4002 writel(0, &ioc->chip->HostInterruptStatus);
4003
4004 /* send message to ioc */
4005 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4006 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4007 &ioc->chip->Doorbell);
4008
4009 if ((_base_spin_on_doorbell_int(ioc, 5))) {
4010 pr_err(MPT3SAS_FMT
4011 "doorbell handshake int failed (line=%d)\n",
4012 ioc->name, __LINE__);
4013 return -EFAULT;
4014 }
4015 writel(0, &ioc->chip->HostInterruptStatus);
4016
4017 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4018 pr_err(MPT3SAS_FMT
4019 "doorbell handshake ack failed (line=%d)\n",
4020 ioc->name, __LINE__);
4021 return -EFAULT;
4022 }
4023
4024 /* send message 32-bits at a time */
4025 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4026 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4027 if ((_base_wait_for_doorbell_ack(ioc, 5)))
4028 failed = 1;
4029 }
4030
4031 if (failed) {
4032 pr_err(MPT3SAS_FMT
4033 "doorbell handshake sending request failed (line=%d)\n",
4034 ioc->name, __LINE__);
4035 return -EFAULT;
4036 }
4037
4038 /* now wait for the reply */
4039 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4040 pr_err(MPT3SAS_FMT
4041 "doorbell handshake int failed (line=%d)\n",
4042 ioc->name, __LINE__);
4043 return -EFAULT;
4044 }
4045
4046 /* read the first two 16-bits, it gives the total length of the reply */
4047 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4048 & MPI2_DOORBELL_DATA_MASK);
4049 writel(0, &ioc->chip->HostInterruptStatus);
4050 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4051 pr_err(MPT3SAS_FMT
4052 "doorbell handshake int failed (line=%d)\n",
4053 ioc->name, __LINE__);
4054 return -EFAULT;
4055 }
4056 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4057 & MPI2_DOORBELL_DATA_MASK);
4058 writel(0, &ioc->chip->HostInterruptStatus);
4059
4060 for (i = 2; i < default_reply->MsgLength * 2; i++) {
4061 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4062 pr_err(MPT3SAS_FMT
4063 "doorbell handshake int failed (line=%d)\n",
4064 ioc->name, __LINE__);
4065 return -EFAULT;
4066 }
4067 if (i >= reply_bytes/2) /* overflow case */
4068 readl(&ioc->chip->Doorbell);
4069 else
4070 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4071 & MPI2_DOORBELL_DATA_MASK);
4072 writel(0, &ioc->chip->HostInterruptStatus);
4073 }
4074
4075 _base_wait_for_doorbell_int(ioc, 5);
4076 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4077 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4078 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4079 }
4080 writel(0, &ioc->chip->HostInterruptStatus);
4081
4082 if (ioc->logging_level & MPT_DEBUG_INIT) {
4083 mfp = (__le32 *)reply;
4084 pr_info("\toffset:data\n");
4085 for (i = 0; i < reply_bytes/4; i++)
4086 pr_info("\t[0x%02x]:%08x\n", i*4,
4087 le32_to_cpu(mfp[i]));
4088 }
4089 return 0;
4090 }
4091
4092 /**
4093 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4094 * @ioc: per adapter object
4095 * @mpi_reply: the reply payload from FW
4096 * @mpi_request: the request payload sent to FW
4097 *
4098 * The SAS IO Unit Control Request message allows the host to perform low-level
4099 * operations, such as resets on the PHYs of the IO Unit, also allows the host
4100 * to obtain the IOC assigned device handles for a device if it has other
4101 * identifying information about the device, in addition allows the host to
4102 * remove IOC resources associated with the device.
4103 *
4104 * Returns 0 for success, non-zero for failure.
4105 */
4106 int
4107 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4108 Mpi2SasIoUnitControlReply_t *mpi_reply,
4109 Mpi2SasIoUnitControlRequest_t *mpi_request)
4110 {
4111 u16 smid;
4112 u32 ioc_state;
4113 bool issue_reset = false;
4114 int rc;
4115 void *request;
4116 u16 wait_state_count;
4117
4118 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4119 __func__));
4120
4121 mutex_lock(&ioc->base_cmds.mutex);
4122
4123 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4124 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4125 ioc->name, __func__);
4126 rc = -EAGAIN;
4127 goto out;
4128 }
4129
4130 wait_state_count = 0;
4131 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4132 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4133 if (wait_state_count++ == 10) {
4134 pr_err(MPT3SAS_FMT
4135 "%s: failed due to ioc not operational\n",
4136 ioc->name, __func__);
4137 rc = -EFAULT;
4138 goto out;
4139 }
4140 ssleep(1);
4141 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4142 pr_info(MPT3SAS_FMT
4143 "%s: waiting for operational state(count=%d)\n",
4144 ioc->name, __func__, wait_state_count);
4145 }
4146
4147 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4148 if (!smid) {
4149 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4150 ioc->name, __func__);
4151 rc = -EAGAIN;
4152 goto out;
4153 }
4154
4155 rc = 0;
4156 ioc->base_cmds.status = MPT3_CMD_PENDING;
4157 request = mpt3sas_base_get_msg_frame(ioc, smid);
4158 ioc->base_cmds.smid = smid;
4159 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4160 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4161 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4162 ioc->ioc_link_reset_in_progress = 1;
4163 init_completion(&ioc->base_cmds.done);
4164 ioc->put_smid_default(ioc, smid);
4165 wait_for_completion_timeout(&ioc->base_cmds.done,
4166 msecs_to_jiffies(10000));
4167 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4168 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4169 ioc->ioc_link_reset_in_progress)
4170 ioc->ioc_link_reset_in_progress = 0;
4171 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4172 pr_err(MPT3SAS_FMT "%s: timeout\n",
4173 ioc->name, __func__);
4174 _debug_dump_mf(mpi_request,
4175 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4176 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4177 issue_reset = true;
4178 goto issue_host_reset;
4179 }
4180 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4181 memcpy(mpi_reply, ioc->base_cmds.reply,
4182 sizeof(Mpi2SasIoUnitControlReply_t));
4183 else
4184 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4185 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4186 goto out;
4187
4188 issue_host_reset:
4189 if (issue_reset)
4190 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4191 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4192 rc = -EFAULT;
4193 out:
4194 mutex_unlock(&ioc->base_cmds.mutex);
4195 return rc;
4196 }
4197
4198 /**
4199 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4200 * @ioc: per adapter object
4201 * @mpi_reply: the reply payload from FW
4202 * @mpi_request: the request payload sent to FW
4203 *
4204 * The SCSI Enclosure Processor request message causes the IOC to
4205 * communicate with SES devices to control LED status signals.
4206 *
4207 * Returns 0 for success, non-zero for failure.
4208 */
4209 int
4210 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4211 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4212 {
4213 u16 smid;
4214 u32 ioc_state;
4215 bool issue_reset = false;
4216 int rc;
4217 void *request;
4218 u16 wait_state_count;
4219
4220 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4221 __func__));
4222
4223 mutex_lock(&ioc->base_cmds.mutex);
4224
4225 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4226 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4227 ioc->name, __func__);
4228 rc = -EAGAIN;
4229 goto out;
4230 }
4231
4232 wait_state_count = 0;
4233 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4234 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4235 if (wait_state_count++ == 10) {
4236 pr_err(MPT3SAS_FMT
4237 "%s: failed due to ioc not operational\n",
4238 ioc->name, __func__);
4239 rc = -EFAULT;
4240 goto out;
4241 }
4242 ssleep(1);
4243 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4244 pr_info(MPT3SAS_FMT
4245 "%s: waiting for operational state(count=%d)\n",
4246 ioc->name,
4247 __func__, wait_state_count);
4248 }
4249
4250 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4251 if (!smid) {
4252 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4253 ioc->name, __func__);
4254 rc = -EAGAIN;
4255 goto out;
4256 }
4257
4258 rc = 0;
4259 ioc->base_cmds.status = MPT3_CMD_PENDING;
4260 request = mpt3sas_base_get_msg_frame(ioc, smid);
4261 ioc->base_cmds.smid = smid;
4262 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4263 init_completion(&ioc->base_cmds.done);
4264 ioc->put_smid_default(ioc, smid);
4265 wait_for_completion_timeout(&ioc->base_cmds.done,
4266 msecs_to_jiffies(10000));
4267 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4268 pr_err(MPT3SAS_FMT "%s: timeout\n",
4269 ioc->name, __func__);
4270 _debug_dump_mf(mpi_request,
4271 sizeof(Mpi2SepRequest_t)/4);
4272 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4273 issue_reset = false;
4274 goto issue_host_reset;
4275 }
4276 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4277 memcpy(mpi_reply, ioc->base_cmds.reply,
4278 sizeof(Mpi2SepReply_t));
4279 else
4280 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4281 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4282 goto out;
4283
4284 issue_host_reset:
4285 if (issue_reset)
4286 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4287 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4288 rc = -EFAULT;
4289 out:
4290 mutex_unlock(&ioc->base_cmds.mutex);
4291 return rc;
4292 }
4293
4294 /**
4295 * _base_get_port_facts - obtain port facts reply and save in ioc
4296 * @ioc: per adapter object
4297 *
4298 * Returns 0 for success, non-zero for failure.
4299 */
4300 static int
4301 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4302 {
4303 Mpi2PortFactsRequest_t mpi_request;
4304 Mpi2PortFactsReply_t mpi_reply;
4305 struct mpt3sas_port_facts *pfacts;
4306 int mpi_reply_sz, mpi_request_sz, r;
4307
4308 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4309 __func__));
4310
4311 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4312 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4313 memset(&mpi_request, 0, mpi_request_sz);
4314 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4315 mpi_request.PortNumber = port;
4316 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4317 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4318
4319 if (r != 0) {
4320 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4321 ioc->name, __func__, r);
4322 return r;
4323 }
4324
4325 pfacts = &ioc->pfacts[port];
4326 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4327 pfacts->PortNumber = mpi_reply.PortNumber;
4328 pfacts->VP_ID = mpi_reply.VP_ID;
4329 pfacts->VF_ID = mpi_reply.VF_ID;
4330 pfacts->MaxPostedCmdBuffers =
4331 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4332
4333 return 0;
4334 }
4335
4336 /**
4337 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4338 * @ioc: per adapter object
4339 * @timeout:
4340 *
4341 * Returns 0 for success, non-zero for failure.
4342 */
4343 static int
4344 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4345 {
4346 u32 ioc_state;
4347 int rc;
4348
4349 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4350 __func__));
4351
4352 if (ioc->pci_error_recovery) {
4353 dfailprintk(ioc, printk(MPT3SAS_FMT
4354 "%s: host in pci error recovery\n", ioc->name, __func__));
4355 return -EFAULT;
4356 }
4357
4358 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4359 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4360 ioc->name, __func__, ioc_state));
4361
4362 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4363 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4364 return 0;
4365
4366 if (ioc_state & MPI2_DOORBELL_USED) {
4367 dhsprintk(ioc, printk(MPT3SAS_FMT
4368 "unexpected doorbell active!\n", ioc->name));
4369 goto issue_diag_reset;
4370 }
4371
4372 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4373 mpt3sas_base_fault_info(ioc, ioc_state &
4374 MPI2_DOORBELL_DATA_MASK);
4375 goto issue_diag_reset;
4376 }
4377
4378 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4379 if (ioc_state) {
4380 dfailprintk(ioc, printk(MPT3SAS_FMT
4381 "%s: failed going to ready state (ioc_state=0x%x)\n",
4382 ioc->name, __func__, ioc_state));
4383 return -EFAULT;
4384 }
4385
4386 issue_diag_reset:
4387 rc = _base_diag_reset(ioc);
4388 return rc;
4389 }
4390
4391 /**
4392 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4393 * @ioc: per adapter object
4394 *
4395 * Returns 0 for success, non-zero for failure.
4396 */
4397 static int
4398 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4399 {
4400 Mpi2IOCFactsRequest_t mpi_request;
4401 Mpi2IOCFactsReply_t mpi_reply;
4402 struct mpt3sas_facts *facts;
4403 int mpi_reply_sz, mpi_request_sz, r;
4404
4405 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4406 __func__));
4407
4408 r = _base_wait_for_iocstate(ioc, 10);
4409 if (r) {
4410 dfailprintk(ioc, printk(MPT3SAS_FMT
4411 "%s: failed getting to correct state\n",
4412 ioc->name, __func__));
4413 return r;
4414 }
4415 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4416 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4417 memset(&mpi_request, 0, mpi_request_sz);
4418 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4419 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4420 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4421
4422 if (r != 0) {
4423 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4424 ioc->name, __func__, r);
4425 return r;
4426 }
4427
4428 facts = &ioc->facts;
4429 memset(facts, 0, sizeof(struct mpt3sas_facts));
4430 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4431 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4432 facts->VP_ID = mpi_reply.VP_ID;
4433 facts->VF_ID = mpi_reply.VF_ID;
4434 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4435 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4436 facts->WhoInit = mpi_reply.WhoInit;
4437 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4438 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4439 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4440 facts->MaxReplyDescriptorPostQueueDepth =
4441 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4442 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4443 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4444 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4445 ioc->ir_firmware = 1;
4446 if ((facts->IOCCapabilities &
4447 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4448 ioc->rdpq_array_capable = 1;
4449 if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4450 ioc->atomic_desc_capable = 1;
4451 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4452 facts->IOCRequestFrameSize =
4453 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4454 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4455 facts->IOCMaxChainSegmentSize =
4456 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4457 }
4458 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4459 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4460 ioc->shost->max_id = -1;
4461 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4462 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4463 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4464 facts->HighPriorityCredit =
4465 le16_to_cpu(mpi_reply.HighPriorityCredit);
4466 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4467 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4468
4469 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4470 "hba queue depth(%d), max chains per io(%d)\n",
4471 ioc->name, facts->RequestCredit,
4472 facts->MaxChainDepth));
4473 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4474 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4475 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4476 return 0;
4477 }
4478
4479 /**
4480 * _base_send_ioc_init - send ioc_init to firmware
4481 * @ioc: per adapter object
4482 *
4483 * Returns 0 for success, non-zero for failure.
4484 */
4485 static int
4486 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4487 {
4488 Mpi2IOCInitRequest_t mpi_request;
4489 Mpi2IOCInitReply_t mpi_reply;
4490 int i, r = 0;
4491 ktime_t current_time;
4492 u16 ioc_status;
4493 u32 reply_post_free_array_sz = 0;
4494 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4495 dma_addr_t reply_post_free_array_dma;
4496
4497 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4498 __func__));
4499
4500 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4501 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4502 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4503 mpi_request.VF_ID = 0; /* TODO */
4504 mpi_request.VP_ID = 0;
4505 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4506 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4507
4508 if (_base_is_controller_msix_enabled(ioc))
4509 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4510 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4511 mpi_request.ReplyDescriptorPostQueueDepth =
4512 cpu_to_le16(ioc->reply_post_queue_depth);
4513 mpi_request.ReplyFreeQueueDepth =
4514 cpu_to_le16(ioc->reply_free_queue_depth);
4515
4516 mpi_request.SenseBufferAddressHigh =
4517 cpu_to_le32((u64)ioc->sense_dma >> 32);
4518 mpi_request.SystemReplyAddressHigh =
4519 cpu_to_le32((u64)ioc->reply_dma >> 32);
4520 mpi_request.SystemRequestFrameBaseAddress =
4521 cpu_to_le64((u64)ioc->request_dma);
4522 mpi_request.ReplyFreeQueueAddress =
4523 cpu_to_le64((u64)ioc->reply_free_dma);
4524
4525 if (ioc->rdpq_array_enable) {
4526 reply_post_free_array_sz = ioc->reply_queue_count *
4527 sizeof(Mpi2IOCInitRDPQArrayEntry);
4528 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4529 reply_post_free_array_sz, &reply_post_free_array_dma);
4530 if (!reply_post_free_array) {
4531 pr_err(MPT3SAS_FMT
4532 "reply_post_free_array: pci_alloc_consistent failed\n",
4533 ioc->name);
4534 r = -ENOMEM;
4535 goto out;
4536 }
4537 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4538 for (i = 0; i < ioc->reply_queue_count; i++)
4539 reply_post_free_array[i].RDPQBaseAddress =
4540 cpu_to_le64(
4541 (u64)ioc->reply_post[i].reply_post_free_dma);
4542 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4543 mpi_request.ReplyDescriptorPostQueueAddress =
4544 cpu_to_le64((u64)reply_post_free_array_dma);
4545 } else {
4546 mpi_request.ReplyDescriptorPostQueueAddress =
4547 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4548 }
4549
4550 /* This time stamp specifies number of milliseconds
4551 * since epoch ~ midnight January 1, 1970.
4552 */
4553 current_time = ktime_get_real();
4554 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4555
4556 if (ioc->logging_level & MPT_DEBUG_INIT) {
4557 __le32 *mfp;
4558 int i;
4559
4560 mfp = (__le32 *)&mpi_request;
4561 pr_info("\toffset:data\n");
4562 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4563 pr_info("\t[0x%02x]:%08x\n", i*4,
4564 le32_to_cpu(mfp[i]));
4565 }
4566
4567 r = _base_handshake_req_reply_wait(ioc,
4568 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4569 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4570
4571 if (r != 0) {
4572 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4573 ioc->name, __func__, r);
4574 goto out;
4575 }
4576
4577 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4578 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4579 mpi_reply.IOCLogInfo) {
4580 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4581 r = -EIO;
4582 }
4583
4584 out:
4585 if (reply_post_free_array)
4586 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4587 reply_post_free_array,
4588 reply_post_free_array_dma);
4589 return r;
4590 }
4591
4592 /**
4593 * mpt3sas_port_enable_done - command completion routine for port enable
4594 * @ioc: per adapter object
4595 * @smid: system request message index
4596 * @msix_index: MSIX table index supplied by the OS
4597 * @reply: reply message frame(lower 32bit addr)
4598 *
4599 * Return 1 meaning mf should be freed from _base_interrupt
4600 * 0 means the mf is freed from this function.
4601 */
4602 u8
4603 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4604 u32 reply)
4605 {
4606 MPI2DefaultReply_t *mpi_reply;
4607 u16 ioc_status;
4608
4609 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4610 return 1;
4611
4612 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4613 if (!mpi_reply)
4614 return 1;
4615
4616 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4617 return 1;
4618
4619 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4620 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4621 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4622 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4623 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4624 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4625 ioc->port_enable_failed = 1;
4626
4627 if (ioc->is_driver_loading) {
4628 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4629 mpt3sas_port_enable_complete(ioc);
4630 return 1;
4631 } else {
4632 ioc->start_scan_failed = ioc_status;
4633 ioc->start_scan = 0;
4634 return 1;
4635 }
4636 }
4637 complete(&ioc->port_enable_cmds.done);
4638 return 1;
4639 }
4640
4641 /**
4642 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4643 * @ioc: per adapter object
4644 *
4645 * Returns 0 for success, non-zero for failure.
4646 */
4647 static int
4648 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4649 {
4650 Mpi2PortEnableRequest_t *mpi_request;
4651 Mpi2PortEnableReply_t *mpi_reply;
4652 int r = 0;
4653 u16 smid;
4654 u16 ioc_status;
4655
4656 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4657
4658 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4659 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4660 ioc->name, __func__);
4661 return -EAGAIN;
4662 }
4663
4664 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4665 if (!smid) {
4666 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4667 ioc->name, __func__);
4668 return -EAGAIN;
4669 }
4670
4671 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4672 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4673 ioc->port_enable_cmds.smid = smid;
4674 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4675 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4676
4677 init_completion(&ioc->port_enable_cmds.done);
4678 ioc->put_smid_default(ioc, smid);
4679 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4680 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4681 pr_err(MPT3SAS_FMT "%s: timeout\n",
4682 ioc->name, __func__);
4683 _debug_dump_mf(mpi_request,
4684 sizeof(Mpi2PortEnableRequest_t)/4);
4685 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4686 r = -EFAULT;
4687 else
4688 r = -ETIME;
4689 goto out;
4690 }
4691
4692 mpi_reply = ioc->port_enable_cmds.reply;
4693 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4694 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4695 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4696 ioc->name, __func__, ioc_status);
4697 r = -EFAULT;
4698 goto out;
4699 }
4700
4701 out:
4702 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4703 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4704 "SUCCESS" : "FAILED"));
4705 return r;
4706 }
4707
4708 /**
4709 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4710 * @ioc: per adapter object
4711 *
4712 * Returns 0 for success, non-zero for failure.
4713 */
4714 int
4715 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4716 {
4717 Mpi2PortEnableRequest_t *mpi_request;
4718 u16 smid;
4719
4720 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4721
4722 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4723 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4724 ioc->name, __func__);
4725 return -EAGAIN;
4726 }
4727
4728 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4729 if (!smid) {
4730 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4731 ioc->name, __func__);
4732 return -EAGAIN;
4733 }
4734
4735 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4736 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4737 ioc->port_enable_cmds.smid = smid;
4738 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4739 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4740
4741 ioc->put_smid_default(ioc, smid);
4742 return 0;
4743 }
4744
4745 /**
4746 * _base_determine_wait_on_discovery - desposition
4747 * @ioc: per adapter object
4748 *
4749 * Decide whether to wait on discovery to complete. Used to either
4750 * locate boot device, or report volumes ahead of physical devices.
4751 *
4752 * Returns 1 for wait, 0 for don't wait
4753 */
4754 static int
4755 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4756 {
4757 /* We wait for discovery to complete if IR firmware is loaded.
4758 * The sas topology events arrive before PD events, so we need time to
4759 * turn on the bit in ioc->pd_handles to indicate PD
4760 * Also, it maybe required to report Volumes ahead of physical
4761 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4762 */
4763 if (ioc->ir_firmware)
4764 return 1;
4765
4766 /* if no Bios, then we don't need to wait */
4767 if (!ioc->bios_pg3.BiosVersion)
4768 return 0;
4769
4770 /* Bios is present, then we drop down here.
4771 *
4772 * If there any entries in the Bios Page 2, then we wait
4773 * for discovery to complete.
4774 */
4775
4776 /* Current Boot Device */
4777 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4778 MPI2_BIOSPAGE2_FORM_MASK) ==
4779 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4780 /* Request Boot Device */
4781 (ioc->bios_pg2.ReqBootDeviceForm &
4782 MPI2_BIOSPAGE2_FORM_MASK) ==
4783 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4784 /* Alternate Request Boot Device */
4785 (ioc->bios_pg2.ReqAltBootDeviceForm &
4786 MPI2_BIOSPAGE2_FORM_MASK) ==
4787 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4788 return 0;
4789
4790 return 1;
4791 }
4792
4793 /**
4794 * _base_unmask_events - turn on notification for this event
4795 * @ioc: per adapter object
4796 * @event: firmware event
4797 *
4798 * The mask is stored in ioc->event_masks.
4799 */
4800 static void
4801 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4802 {
4803 u32 desired_event;
4804
4805 if (event >= 128)
4806 return;
4807
4808 desired_event = (1 << (event % 32));
4809
4810 if (event < 32)
4811 ioc->event_masks[0] &= ~desired_event;
4812 else if (event < 64)
4813 ioc->event_masks[1] &= ~desired_event;
4814 else if (event < 96)
4815 ioc->event_masks[2] &= ~desired_event;
4816 else if (event < 128)
4817 ioc->event_masks[3] &= ~desired_event;
4818 }
4819
4820 /**
4821 * _base_event_notification - send event notification
4822 * @ioc: per adapter object
4823 *
4824 * Returns 0 for success, non-zero for failure.
4825 */
4826 static int
4827 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4828 {
4829 Mpi2EventNotificationRequest_t *mpi_request;
4830 u16 smid;
4831 int r = 0;
4832 int i;
4833
4834 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4835 __func__));
4836
4837 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4838 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4839 ioc->name, __func__);
4840 return -EAGAIN;
4841 }
4842
4843 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4844 if (!smid) {
4845 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4846 ioc->name, __func__);
4847 return -EAGAIN;
4848 }
4849 ioc->base_cmds.status = MPT3_CMD_PENDING;
4850 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4851 ioc->base_cmds.smid = smid;
4852 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4853 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4854 mpi_request->VF_ID = 0; /* TODO */
4855 mpi_request->VP_ID = 0;
4856 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4857 mpi_request->EventMasks[i] =
4858 cpu_to_le32(ioc->event_masks[i]);
4859 init_completion(&ioc->base_cmds.done);
4860 ioc->put_smid_default(ioc, smid);
4861 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4862 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4863 pr_err(MPT3SAS_FMT "%s: timeout\n",
4864 ioc->name, __func__);
4865 _debug_dump_mf(mpi_request,
4866 sizeof(Mpi2EventNotificationRequest_t)/4);
4867 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4868 r = -EFAULT;
4869 else
4870 r = -ETIME;
4871 } else
4872 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4873 ioc->name, __func__));
4874 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4875 return r;
4876 }
4877
4878 /**
4879 * mpt3sas_base_validate_event_type - validating event types
4880 * @ioc: per adapter object
4881 * @event: firmware event
4882 *
4883 * This will turn on firmware event notification when application
4884 * ask for that event. We don't mask events that are already enabled.
4885 */
4886 void
4887 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4888 {
4889 int i, j;
4890 u32 event_mask, desired_event;
4891 u8 send_update_to_fw;
4892
4893 for (i = 0, send_update_to_fw = 0; i <
4894 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4895 event_mask = ~event_type[i];
4896 desired_event = 1;
4897 for (j = 0; j < 32; j++) {
4898 if (!(event_mask & desired_event) &&
4899 (ioc->event_masks[i] & desired_event)) {
4900 ioc->event_masks[i] &= ~desired_event;
4901 send_update_to_fw = 1;
4902 }
4903 desired_event = (desired_event << 1);
4904 }
4905 }
4906
4907 if (!send_update_to_fw)
4908 return;
4909
4910 mutex_lock(&ioc->base_cmds.mutex);
4911 _base_event_notification(ioc);
4912 mutex_unlock(&ioc->base_cmds.mutex);
4913 }
4914
4915 /**
4916 * _base_diag_reset - the "big hammer" start of day reset
4917 * @ioc: per adapter object
4918 *
4919 * Returns 0 for success, non-zero for failure.
4920 */
4921 static int
4922 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4923 {
4924 u32 host_diagnostic;
4925 u32 ioc_state;
4926 u32 count;
4927 u32 hcb_size;
4928
4929 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4930
4931 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4932 ioc->name));
4933
4934 count = 0;
4935 do {
4936 /* Write magic sequence to WriteSequence register
4937 * Loop until in diagnostic mode
4938 */
4939 drsprintk(ioc, pr_info(MPT3SAS_FMT
4940 "write magic sequence\n", ioc->name));
4941 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4942 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4943 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4944 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4945 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4946 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4947 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4948
4949 /* wait 100 msec */
4950 msleep(100);
4951
4952 if (count++ > 20)
4953 goto out;
4954
4955 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4956 drsprintk(ioc, pr_info(MPT3SAS_FMT
4957 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4958 ioc->name, count, host_diagnostic));
4959
4960 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4961
4962 hcb_size = readl(&ioc->chip->HCBSize);
4963
4964 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4965 ioc->name));
4966 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4967 &ioc->chip->HostDiagnostic);
4968
4969 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4970 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4971
4972 /* Approximately 300 second max wait */
4973 for (count = 0; count < (300000000 /
4974 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4975
4976 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4977
4978 if (host_diagnostic == 0xFFFFFFFF)
4979 goto out;
4980 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4981 break;
4982
4983 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4984 }
4985
4986 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4987
4988 drsprintk(ioc, pr_info(MPT3SAS_FMT
4989 "restart the adapter assuming the HCB Address points to good F/W\n",
4990 ioc->name));
4991 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4992 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4993 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4994
4995 drsprintk(ioc, pr_info(MPT3SAS_FMT
4996 "re-enable the HCDW\n", ioc->name));
4997 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4998 &ioc->chip->HCBSize);
4999 }
5000
5001 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5002 ioc->name));
5003 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5004 &ioc->chip->HostDiagnostic);
5005
5006 drsprintk(ioc, pr_info(MPT3SAS_FMT
5007 "disable writes to the diagnostic register\n", ioc->name));
5008 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5009
5010 drsprintk(ioc, pr_info(MPT3SAS_FMT
5011 "Wait for FW to go to the READY state\n", ioc->name));
5012 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5013 if (ioc_state) {
5014 pr_err(MPT3SAS_FMT
5015 "%s: failed going to ready state (ioc_state=0x%x)\n",
5016 ioc->name, __func__, ioc_state);
5017 goto out;
5018 }
5019
5020 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5021 return 0;
5022
5023 out:
5024 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5025 return -EFAULT;
5026 }
5027
5028 /**
5029 * _base_make_ioc_ready - put controller in READY state
5030 * @ioc: per adapter object
5031 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5032 *
5033 * Returns 0 for success, non-zero for failure.
5034 */
5035 static int
5036 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5037 {
5038 u32 ioc_state;
5039 int rc;
5040 int count;
5041
5042 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5043 __func__));
5044
5045 if (ioc->pci_error_recovery)
5046 return 0;
5047
5048 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5049 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5050 ioc->name, __func__, ioc_state));
5051
5052 /* if in RESET state, it should move to READY state shortly */
5053 count = 0;
5054 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5055 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5056 MPI2_IOC_STATE_READY) {
5057 if (count++ == 10) {
5058 pr_err(MPT3SAS_FMT
5059 "%s: failed going to ready state (ioc_state=0x%x)\n",
5060 ioc->name, __func__, ioc_state);
5061 return -EFAULT;
5062 }
5063 ssleep(1);
5064 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5065 }
5066 }
5067
5068 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5069 return 0;
5070
5071 if (ioc_state & MPI2_DOORBELL_USED) {
5072 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5073 "unexpected doorbell active!\n",
5074 ioc->name));
5075 goto issue_diag_reset;
5076 }
5077
5078 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5079 mpt3sas_base_fault_info(ioc, ioc_state &
5080 MPI2_DOORBELL_DATA_MASK);
5081 goto issue_diag_reset;
5082 }
5083
5084 if (type == FORCE_BIG_HAMMER)
5085 goto issue_diag_reset;
5086
5087 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5088 if (!(_base_send_ioc_reset(ioc,
5089 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5090 return 0;
5091 }
5092
5093 issue_diag_reset:
5094 rc = _base_diag_reset(ioc);
5095 return rc;
5096 }
5097
5098 /**
5099 * _base_make_ioc_operational - put controller in OPERATIONAL state
5100 * @ioc: per adapter object
5101 *
5102 * Returns 0 for success, non-zero for failure.
5103 */
5104 static int
5105 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5106 {
5107 int r, i, index;
5108 unsigned long flags;
5109 u32 reply_address;
5110 u16 smid;
5111 struct _tr_list *delayed_tr, *delayed_tr_next;
5112 struct _sc_list *delayed_sc, *delayed_sc_next;
5113 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5114 u8 hide_flag;
5115 struct adapter_reply_queue *reply_q;
5116 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5117
5118 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5119 __func__));
5120
5121 /* clean the delayed target reset list */
5122 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5123 &ioc->delayed_tr_list, list) {
5124 list_del(&delayed_tr->list);
5125 kfree(delayed_tr);
5126 }
5127
5128
5129 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5130 &ioc->delayed_tr_volume_list, list) {
5131 list_del(&delayed_tr->list);
5132 kfree(delayed_tr);
5133 }
5134
5135 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5136 &ioc->delayed_sc_list, list) {
5137 list_del(&delayed_sc->list);
5138 kfree(delayed_sc);
5139 }
5140
5141 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5142 &ioc->delayed_event_ack_list, list) {
5143 list_del(&delayed_event_ack->list);
5144 kfree(delayed_event_ack);
5145 }
5146
5147 /* initialize the scsi lookup free list */
5148 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5149 INIT_LIST_HEAD(&ioc->free_list);
5150 smid = 1;
5151 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5152 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5153 ioc->scsi_lookup[i].cb_idx = 0xFF;
5154 ioc->scsi_lookup[i].smid = smid;
5155 ioc->scsi_lookup[i].scmd = NULL;
5156 ioc->scsi_lookup[i].direct_io = 0;
5157 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5158 &ioc->free_list);
5159 }
5160
5161 /* hi-priority queue */
5162 INIT_LIST_HEAD(&ioc->hpr_free_list);
5163 smid = ioc->hi_priority_smid;
5164 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5165 ioc->hpr_lookup[i].cb_idx = 0xFF;
5166 ioc->hpr_lookup[i].smid = smid;
5167 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5168 &ioc->hpr_free_list);
5169 }
5170
5171 /* internal queue */
5172 INIT_LIST_HEAD(&ioc->internal_free_list);
5173 smid = ioc->internal_smid;
5174 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5175 ioc->internal_lookup[i].cb_idx = 0xFF;
5176 ioc->internal_lookup[i].smid = smid;
5177 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5178 &ioc->internal_free_list);
5179 }
5180
5181 /* chain pool */
5182 INIT_LIST_HEAD(&ioc->free_chain_list);
5183 for (i = 0; i < ioc->chain_depth; i++)
5184 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5185 &ioc->free_chain_list);
5186
5187 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5188
5189 /* initialize Reply Free Queue */
5190 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5191 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5192 ioc->reply_sz)
5193 ioc->reply_free[i] = cpu_to_le32(reply_address);
5194
5195 /* initialize reply queues */
5196 if (ioc->is_driver_loading)
5197 _base_assign_reply_queues(ioc);
5198
5199 /* initialize Reply Post Free Queue */
5200 index = 0;
5201 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5202 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5203 /*
5204 * If RDPQ is enabled, switch to the next allocation.
5205 * Otherwise advance within the contiguous region.
5206 */
5207 if (ioc->rdpq_array_enable) {
5208 reply_q->reply_post_free =
5209 ioc->reply_post[index++].reply_post_free;
5210 } else {
5211 reply_q->reply_post_free = reply_post_free_contig;
5212 reply_post_free_contig += ioc->reply_post_queue_depth;
5213 }
5214
5215 reply_q->reply_post_host_index = 0;
5216 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5217 reply_q->reply_post_free[i].Words =
5218 cpu_to_le64(ULLONG_MAX);
5219 if (!_base_is_controller_msix_enabled(ioc))
5220 goto skip_init_reply_post_free_queue;
5221 }
5222 skip_init_reply_post_free_queue:
5223
5224 r = _base_send_ioc_init(ioc);
5225 if (r)
5226 return r;
5227
5228 /* initialize reply free host index */
5229 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5230 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5231
5232 /* initialize reply post host index */
5233 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5234 if (ioc->combined_reply_queue)
5235 writel((reply_q->msix_index & 7)<<
5236 MPI2_RPHI_MSIX_INDEX_SHIFT,
5237 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5238 else
5239 writel(reply_q->msix_index <<
5240 MPI2_RPHI_MSIX_INDEX_SHIFT,
5241 &ioc->chip->ReplyPostHostIndex);
5242
5243 if (!_base_is_controller_msix_enabled(ioc))
5244 goto skip_init_reply_post_host_index;
5245 }
5246
5247 skip_init_reply_post_host_index:
5248
5249 _base_unmask_interrupts(ioc);
5250 r = _base_event_notification(ioc);
5251 if (r)
5252 return r;
5253
5254 _base_static_config_pages(ioc);
5255
5256 if (ioc->is_driver_loading) {
5257
5258 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5259 == 0x80) {
5260 hide_flag = (u8) (
5261 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5262 MFG_PAGE10_HIDE_SSDS_MASK);
5263 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5264 ioc->mfg_pg10_hide_flag = hide_flag;
5265 }
5266
5267 ioc->wait_for_discovery_to_complete =
5268 _base_determine_wait_on_discovery(ioc);
5269
5270 return r; /* scan_start and scan_finished support */
5271 }
5272
5273 r = _base_send_port_enable(ioc);
5274 if (r)
5275 return r;
5276
5277 return r;
5278 }
5279
5280 /**
5281 * mpt3sas_base_free_resources - free resources controller resources
5282 * @ioc: per adapter object
5283 *
5284 * Return nothing.
5285 */
5286 void
5287 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5288 {
5289 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5290 __func__));
5291
5292 /* synchronizing freeing resource with pci_access_mutex lock */
5293 mutex_lock(&ioc->pci_access_mutex);
5294 if (ioc->chip_phys && ioc->chip) {
5295 _base_mask_interrupts(ioc);
5296 ioc->shost_recovery = 1;
5297 _base_make_ioc_ready(ioc, SOFT_RESET);
5298 ioc->shost_recovery = 0;
5299 }
5300
5301 mpt3sas_base_unmap_resources(ioc);
5302 mutex_unlock(&ioc->pci_access_mutex);
5303 return;
5304 }
5305
5306 /**
5307 * mpt3sas_base_attach - attach controller instance
5308 * @ioc: per adapter object
5309 *
5310 * Returns 0 for success, non-zero for failure.
5311 */
5312 int
5313 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5314 {
5315 int r, i;
5316 int cpu_id, last_cpu_id = 0;
5317
5318 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5319 __func__));
5320
5321 /* setup cpu_msix_table */
5322 ioc->cpu_count = num_online_cpus();
5323 for_each_online_cpu(cpu_id)
5324 last_cpu_id = cpu_id;
5325 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5326 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5327 ioc->reply_queue_count = 1;
5328 if (!ioc->cpu_msix_table) {
5329 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5330 "allocation for cpu_msix_table failed!!!\n",
5331 ioc->name));
5332 r = -ENOMEM;
5333 goto out_free_resources;
5334 }
5335
5336 if (ioc->is_warpdrive) {
5337 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5338 sizeof(resource_size_t *), GFP_KERNEL);
5339 if (!ioc->reply_post_host_index) {
5340 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5341 "for cpu_msix_table failed!!!\n", ioc->name));
5342 r = -ENOMEM;
5343 goto out_free_resources;
5344 }
5345 }
5346
5347 ioc->rdpq_array_enable_assigned = 0;
5348 ioc->dma_mask = 0;
5349 r = mpt3sas_base_map_resources(ioc);
5350 if (r)
5351 goto out_free_resources;
5352
5353 pci_set_drvdata(ioc->pdev, ioc->shost);
5354 r = _base_get_ioc_facts(ioc);
5355 if (r)
5356 goto out_free_resources;
5357
5358 switch (ioc->hba_mpi_version_belonged) {
5359 case MPI2_VERSION:
5360 ioc->build_sg_scmd = &_base_build_sg_scmd;
5361 ioc->build_sg = &_base_build_sg;
5362 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5363 break;
5364 case MPI25_VERSION:
5365 case MPI26_VERSION:
5366 /*
5367 * In SAS3.0,
5368 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5369 * Target Status - all require the IEEE formated scatter gather
5370 * elements.
5371 */
5372 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5373 ioc->build_sg = &_base_build_sg_ieee;
5374 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5375 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5376
5377 break;
5378 }
5379
5380 if (ioc->atomic_desc_capable) {
5381 ioc->put_smid_default = &_base_put_smid_default_atomic;
5382 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5383 ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5384 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5385 } else {
5386 ioc->put_smid_default = &_base_put_smid_default;
5387 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5388 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5389 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5390 }
5391
5392
5393 /*
5394 * These function pointers for other requests that don't
5395 * the require IEEE scatter gather elements.
5396 *
5397 * For example Configuration Pages and SAS IOUNIT Control don't.
5398 */
5399 ioc->build_sg_mpi = &_base_build_sg;
5400 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5401
5402 r = _base_make_ioc_ready(ioc, SOFT_RESET);
5403 if (r)
5404 goto out_free_resources;
5405
5406 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5407 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5408 if (!ioc->pfacts) {
5409 r = -ENOMEM;
5410 goto out_free_resources;
5411 }
5412
5413 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5414 r = _base_get_port_facts(ioc, i);
5415 if (r)
5416 goto out_free_resources;
5417 }
5418
5419 r = _base_allocate_memory_pools(ioc);
5420 if (r)
5421 goto out_free_resources;
5422
5423 init_waitqueue_head(&ioc->reset_wq);
5424
5425 /* allocate memory pd handle bitmask list */
5426 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5427 if (ioc->facts.MaxDevHandle % 8)
5428 ioc->pd_handles_sz++;
5429 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5430 GFP_KERNEL);
5431 if (!ioc->pd_handles) {
5432 r = -ENOMEM;
5433 goto out_free_resources;
5434 }
5435 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5436 GFP_KERNEL);
5437 if (!ioc->blocking_handles) {
5438 r = -ENOMEM;
5439 goto out_free_resources;
5440 }
5441
5442 /* allocate memory for pending OS device add list */
5443 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5444 if (ioc->facts.MaxDevHandle % 8)
5445 ioc->pend_os_device_add_sz++;
5446 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5447 GFP_KERNEL);
5448 if (!ioc->pend_os_device_add)
5449 goto out_free_resources;
5450
5451 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5452 ioc->device_remove_in_progress =
5453 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5454 if (!ioc->device_remove_in_progress)
5455 goto out_free_resources;
5456
5457 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5458
5459 /* base internal command bits */
5460 mutex_init(&ioc->base_cmds.mutex);
5461 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5462 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5463
5464 /* port_enable command bits */
5465 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5466 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5467
5468 /* transport internal command bits */
5469 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5470 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5471 mutex_init(&ioc->transport_cmds.mutex);
5472
5473 /* scsih internal command bits */
5474 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5475 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5476 mutex_init(&ioc->scsih_cmds.mutex);
5477
5478 /* task management internal command bits */
5479 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5480 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5481 mutex_init(&ioc->tm_cmds.mutex);
5482
5483 /* config page internal command bits */
5484 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5485 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5486 mutex_init(&ioc->config_cmds.mutex);
5487
5488 /* ctl module internal command bits */
5489 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5490 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5491 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5492 mutex_init(&ioc->ctl_cmds.mutex);
5493
5494 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5495 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5496 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5497 !ioc->ctl_cmds.sense) {
5498 r = -ENOMEM;
5499 goto out_free_resources;
5500 }
5501
5502 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5503 ioc->event_masks[i] = -1;
5504
5505 /* here we enable the events we care about */
5506 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5507 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5508 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5509 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5510 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5511 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5512 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5513 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5514 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5515 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5516 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5517 if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5518 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5519
5520 r = _base_make_ioc_operational(ioc);
5521 if (r)
5522 goto out_free_resources;
5523
5524 ioc->non_operational_loop = 0;
5525 return 0;
5526
5527 out_free_resources:
5528
5529 ioc->remove_host = 1;
5530
5531 mpt3sas_base_free_resources(ioc);
5532 _base_release_memory_pools(ioc);
5533 pci_set_drvdata(ioc->pdev, NULL);
5534 kfree(ioc->cpu_msix_table);
5535 if (ioc->is_warpdrive)
5536 kfree(ioc->reply_post_host_index);
5537 kfree(ioc->pd_handles);
5538 kfree(ioc->blocking_handles);
5539 kfree(ioc->device_remove_in_progress);
5540 kfree(ioc->pend_os_device_add);
5541 kfree(ioc->tm_cmds.reply);
5542 kfree(ioc->transport_cmds.reply);
5543 kfree(ioc->scsih_cmds.reply);
5544 kfree(ioc->config_cmds.reply);
5545 kfree(ioc->base_cmds.reply);
5546 kfree(ioc->port_enable_cmds.reply);
5547 kfree(ioc->ctl_cmds.reply);
5548 kfree(ioc->ctl_cmds.sense);
5549 kfree(ioc->pfacts);
5550 ioc->ctl_cmds.reply = NULL;
5551 ioc->base_cmds.reply = NULL;
5552 ioc->tm_cmds.reply = NULL;
5553 ioc->scsih_cmds.reply = NULL;
5554 ioc->transport_cmds.reply = NULL;
5555 ioc->config_cmds.reply = NULL;
5556 ioc->pfacts = NULL;
5557 return r;
5558 }
5559
5560
5561 /**
5562 * mpt3sas_base_detach - remove controller instance
5563 * @ioc: per adapter object
5564 *
5565 * Return nothing.
5566 */
5567 void
5568 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5569 {
5570 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5571 __func__));
5572
5573 mpt3sas_base_stop_watchdog(ioc);
5574 mpt3sas_base_free_resources(ioc);
5575 _base_release_memory_pools(ioc);
5576 pci_set_drvdata(ioc->pdev, NULL);
5577 kfree(ioc->cpu_msix_table);
5578 if (ioc->is_warpdrive)
5579 kfree(ioc->reply_post_host_index);
5580 kfree(ioc->pd_handles);
5581 kfree(ioc->blocking_handles);
5582 kfree(ioc->device_remove_in_progress);
5583 kfree(ioc->pend_os_device_add);
5584 kfree(ioc->pfacts);
5585 kfree(ioc->ctl_cmds.reply);
5586 kfree(ioc->ctl_cmds.sense);
5587 kfree(ioc->base_cmds.reply);
5588 kfree(ioc->port_enable_cmds.reply);
5589 kfree(ioc->tm_cmds.reply);
5590 kfree(ioc->transport_cmds.reply);
5591 kfree(ioc->scsih_cmds.reply);
5592 kfree(ioc->config_cmds.reply);
5593 }
5594
5595 /**
5596 * _base_reset_handler - reset callback handler (for base)
5597 * @ioc: per adapter object
5598 * @reset_phase: phase
5599 *
5600 * The handler for doing any required cleanup or initialization.
5601 *
5602 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5603 * MPT3_IOC_DONE_RESET
5604 *
5605 * Return nothing.
5606 */
5607 static void
5608 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5609 {
5610 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5611 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5612 switch (reset_phase) {
5613 case MPT3_IOC_PRE_RESET:
5614 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5615 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5616 break;
5617 case MPT3_IOC_AFTER_RESET:
5618 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5619 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5620 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5621 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5622 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5623 complete(&ioc->transport_cmds.done);
5624 }
5625 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5626 ioc->base_cmds.status |= MPT3_CMD_RESET;
5627 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5628 complete(&ioc->base_cmds.done);
5629 }
5630 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5631 ioc->port_enable_failed = 1;
5632 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5633 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5634 if (ioc->is_driver_loading) {
5635 ioc->start_scan_failed =
5636 MPI2_IOCSTATUS_INTERNAL_ERROR;
5637 ioc->start_scan = 0;
5638 ioc->port_enable_cmds.status =
5639 MPT3_CMD_NOT_USED;
5640 } else
5641 complete(&ioc->port_enable_cmds.done);
5642 }
5643 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5644 ioc->config_cmds.status |= MPT3_CMD_RESET;
5645 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5646 ioc->config_cmds.smid = USHRT_MAX;
5647 complete(&ioc->config_cmds.done);
5648 }
5649 break;
5650 case MPT3_IOC_DONE_RESET:
5651 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5652 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5653 break;
5654 }
5655 }
5656
5657 /**
5658 * _wait_for_commands_to_complete - reset controller
5659 * @ioc: Pointer to MPT_ADAPTER structure
5660 *
5661 * This function waiting(3s) for all pending commands to complete
5662 * prior to putting controller in reset.
5663 */
5664 static void
5665 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5666 {
5667 u32 ioc_state;
5668 unsigned long flags;
5669 u16 i;
5670
5671 ioc->pending_io_count = 0;
5672
5673 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5674 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5675 return;
5676
5677 /* pending command count */
5678 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5679 for (i = 0; i < ioc->scsiio_depth; i++)
5680 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5681 ioc->pending_io_count++;
5682 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5683
5684 if (!ioc->pending_io_count)
5685 return;
5686
5687 /* wait for pending commands to complete */
5688 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5689 }
5690
5691 /**
5692 * mpt3sas_base_hard_reset_handler - reset controller
5693 * @ioc: Pointer to MPT_ADAPTER structure
5694 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5695 *
5696 * Returns 0 for success, non-zero for failure.
5697 */
5698 int
5699 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5700 enum reset_type type)
5701 {
5702 int r;
5703 unsigned long flags;
5704 u32 ioc_state;
5705 u8 is_fault = 0, is_trigger = 0;
5706
5707 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5708 __func__));
5709
5710 if (ioc->pci_error_recovery) {
5711 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5712 ioc->name, __func__);
5713 r = 0;
5714 goto out_unlocked;
5715 }
5716
5717 if (mpt3sas_fwfault_debug)
5718 mpt3sas_halt_firmware(ioc);
5719
5720 /* wait for an active reset in progress to complete */
5721 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5722 do {
5723 ssleep(1);
5724 } while (ioc->shost_recovery == 1);
5725 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5726 __func__));
5727 return ioc->ioc_reset_in_progress_status;
5728 }
5729
5730 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5731 ioc->shost_recovery = 1;
5732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5733
5734 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5735 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5736 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5737 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5738 is_trigger = 1;
5739 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5740 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5741 is_fault = 1;
5742 }
5743 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5744 _wait_for_commands_to_complete(ioc);
5745 _base_mask_interrupts(ioc);
5746 r = _base_make_ioc_ready(ioc, type);
5747 if (r)
5748 goto out;
5749 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5750
5751 /* If this hard reset is called while port enable is active, then
5752 * there is no reason to call make_ioc_operational
5753 */
5754 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5755 ioc->remove_host = 1;
5756 r = -EFAULT;
5757 goto out;
5758 }
5759 r = _base_get_ioc_facts(ioc);
5760 if (r)
5761 goto out;
5762
5763 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5764 panic("%s: Issue occurred with flashing controller firmware."
5765 "Please reboot the system and ensure that the correct"
5766 " firmware version is running\n", ioc->name);
5767
5768 r = _base_make_ioc_operational(ioc);
5769 if (!r)
5770 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5771
5772 out:
5773 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5774 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5775
5776 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5777 ioc->ioc_reset_in_progress_status = r;
5778 ioc->shost_recovery = 0;
5779 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5780 ioc->ioc_reset_count++;
5781 mutex_unlock(&ioc->reset_in_progress_mutex);
5782
5783 out_unlocked:
5784 if ((r == 0) && is_trigger) {
5785 if (is_fault)
5786 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5787 else
5788 mpt3sas_trigger_master(ioc,
5789 MASTER_TRIGGER_ADAPTER_RESET);
5790 }
5791 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5792 __func__));
5793 return r;
5794 }