]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99 " enable detection of firmware fault and halt firmware - (default=0)");
100
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103
104 /**
105 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
106 *
107 */
108 static int
109 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
110 {
111 int ret = param_set_int(val, kp);
112 struct MPT3SAS_ADAPTER *ioc;
113
114 if (ret)
115 return ret;
116
117 /* global ioc spinlock to protect controller list on list operations */
118 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
119 spin_lock(&gioc_lock);
120 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
121 ioc->fwfault_debug = mpt3sas_fwfault_debug;
122 spin_unlock(&gioc_lock);
123 return 0;
124 }
125 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
126 param_get_int, &mpt3sas_fwfault_debug, 0644);
127
128 /**
129 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
130 * @arg: input argument, used to derive ioc
131 *
132 * Return 0 if controller is removed from pci subsystem.
133 * Return -1 for other case.
134 */
135 static int mpt3sas_remove_dead_ioc_func(void *arg)
136 {
137 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
138 struct pci_dev *pdev;
139
140 if ((ioc == NULL))
141 return -1;
142
143 pdev = ioc->pdev;
144 if ((pdev == NULL))
145 return -1;
146 pci_stop_and_remove_bus_device_locked(pdev);
147 return 0;
148 }
149
150 /**
151 * _base_fault_reset_work - workq handling ioc fault conditions
152 * @work: input argument, used to derive ioc
153 * Context: sleep.
154 *
155 * Return nothing.
156 */
157 static void
158 _base_fault_reset_work(struct work_struct *work)
159 {
160 struct MPT3SAS_ADAPTER *ioc =
161 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
162 unsigned long flags;
163 u32 doorbell;
164 int rc;
165 struct task_struct *p;
166
167
168 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
169 if (ioc->shost_recovery || ioc->pci_error_recovery)
170 goto rearm_timer;
171 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
172
173 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
174 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
175 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
176 ioc->name);
177
178 /* It may be possible that EEH recovery can resolve some of
179 * pci bus failure issues rather removing the dead ioc function
180 * by considering controller is in a non-operational state. So
181 * here priority is given to the EEH recovery. If it doesn't
182 * not resolve this issue, mpt3sas driver will consider this
183 * controller to non-operational state and remove the dead ioc
184 * function.
185 */
186 if (ioc->non_operational_loop++ < 5) {
187 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
188 flags);
189 goto rearm_timer;
190 }
191
192 /*
193 * Call _scsih_flush_pending_cmds callback so that we flush all
194 * pending commands back to OS. This call is required to aovid
195 * deadlock at block layer. Dead IOC will fail to do diag reset,
196 * and this call is safe since dead ioc will never return any
197 * command back from HW.
198 */
199 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
200 /*
201 * Set remove_host flag early since kernel thread will
202 * take some time to execute.
203 */
204 ioc->remove_host = 1;
205 /*Remove the Dead Host */
206 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
207 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
208 if (IS_ERR(p))
209 pr_err(MPT3SAS_FMT
210 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
211 ioc->name, __func__);
212 else
213 pr_err(MPT3SAS_FMT
214 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
215 ioc->name, __func__);
216 return; /* don't rearm timer */
217 }
218
219 ioc->non_operational_loop = 0;
220
221 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
222 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
223 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
224 __func__, (rc == 0) ? "success" : "failed");
225 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
226 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
227 mpt3sas_base_fault_info(ioc, doorbell &
228 MPI2_DOORBELL_DATA_MASK);
229 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
230 MPI2_IOC_STATE_OPERATIONAL)
231 return; /* don't rearm timer */
232 }
233
234 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
235 rearm_timer:
236 if (ioc->fault_reset_work_q)
237 queue_delayed_work(ioc->fault_reset_work_q,
238 &ioc->fault_reset_work,
239 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
240 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
241 }
242
243 /**
244 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
245 * @ioc: per adapter object
246 * Context: sleep.
247 *
248 * Return nothing.
249 */
250 void
251 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
252 {
253 unsigned long flags;
254
255 if (ioc->fault_reset_work_q)
256 return;
257
258 /* initialize fault polling */
259
260 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
261 snprintf(ioc->fault_reset_work_q_name,
262 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
263 ioc->driver_name, ioc->id);
264 ioc->fault_reset_work_q =
265 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
266 if (!ioc->fault_reset_work_q) {
267 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
268 ioc->name, __func__, __LINE__);
269 return;
270 }
271 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
272 if (ioc->fault_reset_work_q)
273 queue_delayed_work(ioc->fault_reset_work_q,
274 &ioc->fault_reset_work,
275 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
276 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
277 }
278
279 /**
280 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
281 * @ioc: per adapter object
282 * Context: sleep.
283 *
284 * Return nothing.
285 */
286 void
287 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
288 {
289 unsigned long flags;
290 struct workqueue_struct *wq;
291
292 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
293 wq = ioc->fault_reset_work_q;
294 ioc->fault_reset_work_q = NULL;
295 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
296 if (wq) {
297 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
298 flush_workqueue(wq);
299 destroy_workqueue(wq);
300 }
301 }
302
303 /**
304 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
305 * @ioc: per adapter object
306 * @fault_code: fault code
307 *
308 * Return nothing.
309 */
310 void
311 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
312 {
313 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
314 ioc->name, fault_code);
315 }
316
317 /**
318 * mpt3sas_halt_firmware - halt's mpt controller firmware
319 * @ioc: per adapter object
320 *
321 * For debugging timeout related issues. Writing 0xCOFFEE00
322 * to the doorbell register will halt controller firmware. With
323 * the purpose to stop both driver and firmware, the enduser can
324 * obtain a ring buffer from controller UART.
325 */
326 void
327 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
328 {
329 u32 doorbell;
330
331 if (!ioc->fwfault_debug)
332 return;
333
334 dump_stack();
335
336 doorbell = readl(&ioc->chip->Doorbell);
337 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
338 mpt3sas_base_fault_info(ioc , doorbell);
339 else {
340 writel(0xC0FFEE00, &ioc->chip->Doorbell);
341 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
342 ioc->name);
343 }
344
345 if (ioc->fwfault_debug == 2)
346 for (;;)
347 ;
348 else
349 panic("panic in %s\n", __func__);
350 }
351
352 /**
353 * _base_sas_ioc_info - verbose translation of the ioc status
354 * @ioc: per adapter object
355 * @mpi_reply: reply mf payload returned from firmware
356 * @request_hdr: request mf
357 *
358 * Return nothing.
359 */
360 static void
361 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
362 MPI2RequestHeader_t *request_hdr)
363 {
364 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
365 MPI2_IOCSTATUS_MASK;
366 char *desc = NULL;
367 u16 frame_sz;
368 char *func_str = NULL;
369
370 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
371 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
372 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
373 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
374 return;
375
376 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
377 return;
378
379 switch (ioc_status) {
380
381 /****************************************************************************
382 * Common IOCStatus values for all replies
383 ****************************************************************************/
384
385 case MPI2_IOCSTATUS_INVALID_FUNCTION:
386 desc = "invalid function";
387 break;
388 case MPI2_IOCSTATUS_BUSY:
389 desc = "busy";
390 break;
391 case MPI2_IOCSTATUS_INVALID_SGL:
392 desc = "invalid sgl";
393 break;
394 case MPI2_IOCSTATUS_INTERNAL_ERROR:
395 desc = "internal error";
396 break;
397 case MPI2_IOCSTATUS_INVALID_VPID:
398 desc = "invalid vpid";
399 break;
400 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
401 desc = "insufficient resources";
402 break;
403 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
404 desc = "insufficient power";
405 break;
406 case MPI2_IOCSTATUS_INVALID_FIELD:
407 desc = "invalid field";
408 break;
409 case MPI2_IOCSTATUS_INVALID_STATE:
410 desc = "invalid state";
411 break;
412 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
413 desc = "op state not supported";
414 break;
415
416 /****************************************************************************
417 * Config IOCStatus values
418 ****************************************************************************/
419
420 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
421 desc = "config invalid action";
422 break;
423 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
424 desc = "config invalid type";
425 break;
426 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
427 desc = "config invalid page";
428 break;
429 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
430 desc = "config invalid data";
431 break;
432 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
433 desc = "config no defaults";
434 break;
435 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
436 desc = "config cant commit";
437 break;
438
439 /****************************************************************************
440 * SCSI IO Reply
441 ****************************************************************************/
442
443 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
444 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
445 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
446 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
447 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
448 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
449 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
450 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
451 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
452 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
453 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
454 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
455 break;
456
457 /****************************************************************************
458 * For use by SCSI Initiator and SCSI Target end-to-end data protection
459 ****************************************************************************/
460
461 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
462 desc = "eedp guard error";
463 break;
464 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
465 desc = "eedp ref tag error";
466 break;
467 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
468 desc = "eedp app tag error";
469 break;
470
471 /****************************************************************************
472 * SCSI Target values
473 ****************************************************************************/
474
475 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
476 desc = "target invalid io index";
477 break;
478 case MPI2_IOCSTATUS_TARGET_ABORTED:
479 desc = "target aborted";
480 break;
481 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
482 desc = "target no conn retryable";
483 break;
484 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
485 desc = "target no connection";
486 break;
487 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
488 desc = "target xfer count mismatch";
489 break;
490 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
491 desc = "target data offset error";
492 break;
493 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
494 desc = "target too much write data";
495 break;
496 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
497 desc = "target iu too short";
498 break;
499 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
500 desc = "target ack nak timeout";
501 break;
502 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
503 desc = "target nak received";
504 break;
505
506 /****************************************************************************
507 * Serial Attached SCSI values
508 ****************************************************************************/
509
510 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
511 desc = "smp request failed";
512 break;
513 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
514 desc = "smp data overrun";
515 break;
516
517 /****************************************************************************
518 * Diagnostic Buffer Post / Diagnostic Release values
519 ****************************************************************************/
520
521 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
522 desc = "diagnostic released";
523 break;
524 default:
525 break;
526 }
527
528 if (!desc)
529 return;
530
531 switch (request_hdr->Function) {
532 case MPI2_FUNCTION_CONFIG:
533 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
534 func_str = "config_page";
535 break;
536 case MPI2_FUNCTION_SCSI_TASK_MGMT:
537 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
538 func_str = "task_mgmt";
539 break;
540 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
541 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
542 func_str = "sas_iounit_ctl";
543 break;
544 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
545 frame_sz = sizeof(Mpi2SepRequest_t);
546 func_str = "enclosure";
547 break;
548 case MPI2_FUNCTION_IOC_INIT:
549 frame_sz = sizeof(Mpi2IOCInitRequest_t);
550 func_str = "ioc_init";
551 break;
552 case MPI2_FUNCTION_PORT_ENABLE:
553 frame_sz = sizeof(Mpi2PortEnableRequest_t);
554 func_str = "port_enable";
555 break;
556 case MPI2_FUNCTION_SMP_PASSTHROUGH:
557 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
558 func_str = "smp_passthru";
559 break;
560 case MPI2_FUNCTION_NVME_ENCAPSULATED:
561 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
562 ioc->sge_size;
563 func_str = "nvme_encapsulated";
564 break;
565 default:
566 frame_sz = 32;
567 func_str = "unknown";
568 break;
569 }
570
571 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
572 ioc->name, desc, ioc_status, request_hdr, func_str);
573
574 _debug_dump_mf(request_hdr, frame_sz/4);
575 }
576
577 /**
578 * _base_display_event_data - verbose translation of firmware asyn events
579 * @ioc: per adapter object
580 * @mpi_reply: reply mf payload returned from firmware
581 *
582 * Return nothing.
583 */
584 static void
585 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
586 Mpi2EventNotificationReply_t *mpi_reply)
587 {
588 char *desc = NULL;
589 u16 event;
590
591 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
592 return;
593
594 event = le16_to_cpu(mpi_reply->Event);
595
596 switch (event) {
597 case MPI2_EVENT_LOG_DATA:
598 desc = "Log Data";
599 break;
600 case MPI2_EVENT_STATE_CHANGE:
601 desc = "Status Change";
602 break;
603 case MPI2_EVENT_HARD_RESET_RECEIVED:
604 desc = "Hard Reset Received";
605 break;
606 case MPI2_EVENT_EVENT_CHANGE:
607 desc = "Event Change";
608 break;
609 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
610 desc = "Device Status Change";
611 break;
612 case MPI2_EVENT_IR_OPERATION_STATUS:
613 if (!ioc->hide_ir_msg)
614 desc = "IR Operation Status";
615 break;
616 case MPI2_EVENT_SAS_DISCOVERY:
617 {
618 Mpi2EventDataSasDiscovery_t *event_data =
619 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
620 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
621 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
622 "start" : "stop");
623 if (event_data->DiscoveryStatus)
624 pr_cont(" discovery_status(0x%08x)",
625 le32_to_cpu(event_data->DiscoveryStatus));
626 pr_cont("\n");
627 return;
628 }
629 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
630 desc = "SAS Broadcast Primitive";
631 break;
632 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
633 desc = "SAS Init Device Status Change";
634 break;
635 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
636 desc = "SAS Init Table Overflow";
637 break;
638 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
639 desc = "SAS Topology Change List";
640 break;
641 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
642 desc = "SAS Enclosure Device Status Change";
643 break;
644 case MPI2_EVENT_IR_VOLUME:
645 if (!ioc->hide_ir_msg)
646 desc = "IR Volume";
647 break;
648 case MPI2_EVENT_IR_PHYSICAL_DISK:
649 if (!ioc->hide_ir_msg)
650 desc = "IR Physical Disk";
651 break;
652 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
653 if (!ioc->hide_ir_msg)
654 desc = "IR Configuration Change List";
655 break;
656 case MPI2_EVENT_LOG_ENTRY_ADDED:
657 if (!ioc->hide_ir_msg)
658 desc = "Log Entry Added";
659 break;
660 case MPI2_EVENT_TEMP_THRESHOLD:
661 desc = "Temperature Threshold";
662 break;
663 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
664 desc = "Cable Event";
665 break;
666 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
667 desc = "PCIE Device Status Change";
668 break;
669 case MPI2_EVENT_PCIE_ENUMERATION:
670 {
671 Mpi26EventDataPCIeEnumeration_t *event_data =
672 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
673 pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
674 (event_data->ReasonCode ==
675 MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
676 "start" : "stop");
677 if (event_data->EnumerationStatus)
678 pr_info("enumeration_status(0x%08x)",
679 le32_to_cpu(event_data->EnumerationStatus));
680 pr_info("\n");
681 return;
682 }
683 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
684 desc = "PCIE Topology Change List";
685 break;
686 }
687
688 if (!desc)
689 return;
690
691 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
692 }
693
694 /**
695 * _base_sas_log_info - verbose translation of firmware log info
696 * @ioc: per adapter object
697 * @log_info: log info
698 *
699 * Return nothing.
700 */
701 static void
702 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
703 {
704 union loginfo_type {
705 u32 loginfo;
706 struct {
707 u32 subcode:16;
708 u32 code:8;
709 u32 originator:4;
710 u32 bus_type:4;
711 } dw;
712 };
713 union loginfo_type sas_loginfo;
714 char *originator_str = NULL;
715
716 sas_loginfo.loginfo = log_info;
717 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
718 return;
719
720 /* each nexus loss loginfo */
721 if (log_info == 0x31170000)
722 return;
723
724 /* eat the loginfos associated with task aborts */
725 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
726 0x31140000 || log_info == 0x31130000))
727 return;
728
729 switch (sas_loginfo.dw.originator) {
730 case 0:
731 originator_str = "IOP";
732 break;
733 case 1:
734 originator_str = "PL";
735 break;
736 case 2:
737 if (!ioc->hide_ir_msg)
738 originator_str = "IR";
739 else
740 originator_str = "WarpDrive";
741 break;
742 }
743
744 pr_warn(MPT3SAS_FMT
745 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
746 ioc->name, log_info,
747 originator_str, sas_loginfo.dw.code,
748 sas_loginfo.dw.subcode);
749 }
750
751 /**
752 * _base_display_reply_info -
753 * @ioc: per adapter object
754 * @smid: system request message index
755 * @msix_index: MSIX table index supplied by the OS
756 * @reply: reply message frame(lower 32bit addr)
757 *
758 * Return nothing.
759 */
760 static void
761 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
762 u32 reply)
763 {
764 MPI2DefaultReply_t *mpi_reply;
765 u16 ioc_status;
766 u32 loginfo = 0;
767
768 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
769 if (unlikely(!mpi_reply)) {
770 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
771 ioc->name, __FILE__, __LINE__, __func__);
772 return;
773 }
774 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
775
776 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
777 (ioc->logging_level & MPT_DEBUG_REPLY)) {
778 _base_sas_ioc_info(ioc , mpi_reply,
779 mpt3sas_base_get_msg_frame(ioc, smid));
780 }
781
782 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
783 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
784 _base_sas_log_info(ioc, loginfo);
785 }
786
787 if (ioc_status || loginfo) {
788 ioc_status &= MPI2_IOCSTATUS_MASK;
789 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
790 }
791 }
792
793 /**
794 * mpt3sas_base_done - base internal command completion routine
795 * @ioc: per adapter object
796 * @smid: system request message index
797 * @msix_index: MSIX table index supplied by the OS
798 * @reply: reply message frame(lower 32bit addr)
799 *
800 * Return 1 meaning mf should be freed from _base_interrupt
801 * 0 means the mf is freed from this function.
802 */
803 u8
804 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
805 u32 reply)
806 {
807 MPI2DefaultReply_t *mpi_reply;
808
809 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
810 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
811 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
812
813 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
814 return 1;
815
816 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
817 if (mpi_reply) {
818 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
819 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
820 }
821 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
822
823 complete(&ioc->base_cmds.done);
824 return 1;
825 }
826
827 /**
828 * _base_async_event - main callback handler for firmware asyn events
829 * @ioc: per adapter object
830 * @msix_index: MSIX table index supplied by the OS
831 * @reply: reply message frame(lower 32bit addr)
832 *
833 * Return 1 meaning mf should be freed from _base_interrupt
834 * 0 means the mf is freed from this function.
835 */
836 static u8
837 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
838 {
839 Mpi2EventNotificationReply_t *mpi_reply;
840 Mpi2EventAckRequest_t *ack_request;
841 u16 smid;
842 struct _event_ack_list *delayed_event_ack;
843
844 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
845 if (!mpi_reply)
846 return 1;
847 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
848 return 1;
849
850 _base_display_event_data(ioc, mpi_reply);
851
852 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
853 goto out;
854 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
855 if (!smid) {
856 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
857 GFP_ATOMIC);
858 if (!delayed_event_ack)
859 goto out;
860 INIT_LIST_HEAD(&delayed_event_ack->list);
861 delayed_event_ack->Event = mpi_reply->Event;
862 delayed_event_ack->EventContext = mpi_reply->EventContext;
863 list_add_tail(&delayed_event_ack->list,
864 &ioc->delayed_event_ack_list);
865 dewtprintk(ioc, pr_info(MPT3SAS_FMT
866 "DELAYED: EVENT ACK: event (0x%04x)\n",
867 ioc->name, le16_to_cpu(mpi_reply->Event)));
868 goto out;
869 }
870
871 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
872 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
873 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
874 ack_request->Event = mpi_reply->Event;
875 ack_request->EventContext = mpi_reply->EventContext;
876 ack_request->VF_ID = 0; /* TODO */
877 ack_request->VP_ID = 0;
878 ioc->put_smid_default(ioc, smid);
879
880 out:
881
882 /* scsih callback handler */
883 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
884
885 /* ctl callback handler */
886 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
887
888 return 1;
889 }
890
891 /**
892 * _base_get_cb_idx - obtain the callback index
893 * @ioc: per adapter object
894 * @smid: system request message index
895 *
896 * Return callback index.
897 */
898 static u8
899 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
900 {
901 int i;
902 u8 cb_idx;
903
904 if (smid < ioc->hi_priority_smid) {
905 i = smid - 1;
906 cb_idx = ioc->scsi_lookup[i].cb_idx;
907 } else if (smid < ioc->internal_smid) {
908 i = smid - ioc->hi_priority_smid;
909 cb_idx = ioc->hpr_lookup[i].cb_idx;
910 } else if (smid <= ioc->hba_queue_depth) {
911 i = smid - ioc->internal_smid;
912 cb_idx = ioc->internal_lookup[i].cb_idx;
913 } else
914 cb_idx = 0xFF;
915 return cb_idx;
916 }
917
918 /**
919 * _base_mask_interrupts - disable interrupts
920 * @ioc: per adapter object
921 *
922 * Disabling ResetIRQ, Reply and Doorbell Interrupts
923 *
924 * Return nothing.
925 */
926 static void
927 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
928 {
929 u32 him_register;
930
931 ioc->mask_interrupts = 1;
932 him_register = readl(&ioc->chip->HostInterruptMask);
933 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
934 writel(him_register, &ioc->chip->HostInterruptMask);
935 readl(&ioc->chip->HostInterruptMask);
936 }
937
938 /**
939 * _base_unmask_interrupts - enable interrupts
940 * @ioc: per adapter object
941 *
942 * Enabling only Reply Interrupts
943 *
944 * Return nothing.
945 */
946 static void
947 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
948 {
949 u32 him_register;
950
951 him_register = readl(&ioc->chip->HostInterruptMask);
952 him_register &= ~MPI2_HIM_RIM;
953 writel(him_register, &ioc->chip->HostInterruptMask);
954 ioc->mask_interrupts = 0;
955 }
956
957 union reply_descriptor {
958 u64 word;
959 struct {
960 u32 low;
961 u32 high;
962 } u;
963 };
964
965 /**
966 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
967 * @irq: irq number (not used)
968 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
969 * @r: pt_regs pointer (not used)
970 *
971 * Return IRQ_HANDLE if processed, else IRQ_NONE.
972 */
973 static irqreturn_t
974 _base_interrupt(int irq, void *bus_id)
975 {
976 struct adapter_reply_queue *reply_q = bus_id;
977 union reply_descriptor rd;
978 u32 completed_cmds;
979 u8 request_desript_type;
980 u16 smid;
981 u8 cb_idx;
982 u32 reply;
983 u8 msix_index = reply_q->msix_index;
984 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
985 Mpi2ReplyDescriptorsUnion_t *rpf;
986 u8 rc;
987
988 if (ioc->mask_interrupts)
989 return IRQ_NONE;
990
991 if (!atomic_add_unless(&reply_q->busy, 1, 1))
992 return IRQ_NONE;
993
994 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
995 request_desript_type = rpf->Default.ReplyFlags
996 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
997 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
998 atomic_dec(&reply_q->busy);
999 return IRQ_NONE;
1000 }
1001
1002 completed_cmds = 0;
1003 cb_idx = 0xFF;
1004 do {
1005 rd.word = le64_to_cpu(rpf->Words);
1006 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1007 goto out;
1008 reply = 0;
1009 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1010 if (request_desript_type ==
1011 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1012 request_desript_type ==
1013 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1014 request_desript_type ==
1015 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1016 cb_idx = _base_get_cb_idx(ioc, smid);
1017 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1018 (likely(mpt_callbacks[cb_idx] != NULL))) {
1019 rc = mpt_callbacks[cb_idx](ioc, smid,
1020 msix_index, 0);
1021 if (rc)
1022 mpt3sas_base_free_smid(ioc, smid);
1023 }
1024 } else if (request_desript_type ==
1025 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1026 reply = le32_to_cpu(
1027 rpf->AddressReply.ReplyFrameAddress);
1028 if (reply > ioc->reply_dma_max_address ||
1029 reply < ioc->reply_dma_min_address)
1030 reply = 0;
1031 if (smid) {
1032 cb_idx = _base_get_cb_idx(ioc, smid);
1033 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1034 (likely(mpt_callbacks[cb_idx] != NULL))) {
1035 rc = mpt_callbacks[cb_idx](ioc, smid,
1036 msix_index, reply);
1037 if (reply)
1038 _base_display_reply_info(ioc,
1039 smid, msix_index, reply);
1040 if (rc)
1041 mpt3sas_base_free_smid(ioc,
1042 smid);
1043 }
1044 } else {
1045 _base_async_event(ioc, msix_index, reply);
1046 }
1047
1048 /* reply free queue handling */
1049 if (reply) {
1050 ioc->reply_free_host_index =
1051 (ioc->reply_free_host_index ==
1052 (ioc->reply_free_queue_depth - 1)) ?
1053 0 : ioc->reply_free_host_index + 1;
1054 ioc->reply_free[ioc->reply_free_host_index] =
1055 cpu_to_le32(reply);
1056 writel(ioc->reply_free_host_index,
1057 &ioc->chip->ReplyFreeHostIndex);
1058 }
1059 }
1060
1061 rpf->Words = cpu_to_le64(ULLONG_MAX);
1062 reply_q->reply_post_host_index =
1063 (reply_q->reply_post_host_index ==
1064 (ioc->reply_post_queue_depth - 1)) ? 0 :
1065 reply_q->reply_post_host_index + 1;
1066 request_desript_type =
1067 reply_q->reply_post_free[reply_q->reply_post_host_index].
1068 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1069 completed_cmds++;
1070 /* Update the reply post host index after continuously
1071 * processing the threshold number of Reply Descriptors.
1072 * So that FW can find enough entries to post the Reply
1073 * Descriptors in the reply descriptor post queue.
1074 */
1075 if (completed_cmds > ioc->hba_queue_depth/3) {
1076 if (ioc->combined_reply_queue) {
1077 writel(reply_q->reply_post_host_index |
1078 ((msix_index & 7) <<
1079 MPI2_RPHI_MSIX_INDEX_SHIFT),
1080 ioc->replyPostRegisterIndex[msix_index/8]);
1081 } else {
1082 writel(reply_q->reply_post_host_index |
1083 (msix_index <<
1084 MPI2_RPHI_MSIX_INDEX_SHIFT),
1085 &ioc->chip->ReplyPostHostIndex);
1086 }
1087 completed_cmds = 1;
1088 }
1089 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1090 goto out;
1091 if (!reply_q->reply_post_host_index)
1092 rpf = reply_q->reply_post_free;
1093 else
1094 rpf++;
1095 } while (1);
1096
1097 out:
1098
1099 if (!completed_cmds) {
1100 atomic_dec(&reply_q->busy);
1101 return IRQ_NONE;
1102 }
1103
1104 if (ioc->is_warpdrive) {
1105 writel(reply_q->reply_post_host_index,
1106 ioc->reply_post_host_index[msix_index]);
1107 atomic_dec(&reply_q->busy);
1108 return IRQ_HANDLED;
1109 }
1110
1111 /* Update Reply Post Host Index.
1112 * For those HBA's which support combined reply queue feature
1113 * 1. Get the correct Supplemental Reply Post Host Index Register.
1114 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1115 * Index Register address bank i.e replyPostRegisterIndex[],
1116 * 2. Then update this register with new reply host index value
1117 * in ReplyPostIndex field and the MSIxIndex field with
1118 * msix_index value reduced to a value between 0 and 7,
1119 * using a modulo 8 operation. Since each Supplemental Reply Post
1120 * Host Index Register supports 8 MSI-X vectors.
1121 *
1122 * For other HBA's just update the Reply Post Host Index register with
1123 * new reply host index value in ReplyPostIndex Field and msix_index
1124 * value in MSIxIndex field.
1125 */
1126 if (ioc->combined_reply_queue)
1127 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1128 MPI2_RPHI_MSIX_INDEX_SHIFT),
1129 ioc->replyPostRegisterIndex[msix_index/8]);
1130 else
1131 writel(reply_q->reply_post_host_index | (msix_index <<
1132 MPI2_RPHI_MSIX_INDEX_SHIFT),
1133 &ioc->chip->ReplyPostHostIndex);
1134 atomic_dec(&reply_q->busy);
1135 return IRQ_HANDLED;
1136 }
1137
1138 /**
1139 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1140 * @ioc: per adapter object
1141 *
1142 */
1143 static inline int
1144 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1145 {
1146 return (ioc->facts.IOCCapabilities &
1147 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1148 }
1149
1150 /**
1151 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1152 * @ioc: per adapter object
1153 * Context: non ISR conext
1154 *
1155 * Called when a Task Management request has completed.
1156 *
1157 * Return nothing.
1158 */
1159 void
1160 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1161 {
1162 struct adapter_reply_queue *reply_q;
1163
1164 /* If MSIX capability is turned off
1165 * then multi-queues are not enabled
1166 */
1167 if (!_base_is_controller_msix_enabled(ioc))
1168 return;
1169
1170 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1171 if (ioc->shost_recovery || ioc->remove_host ||
1172 ioc->pci_error_recovery)
1173 return;
1174 /* TMs are on msix_index == 0 */
1175 if (reply_q->msix_index == 0)
1176 continue;
1177 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1178 }
1179 }
1180
1181 /**
1182 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1183 * @cb_idx: callback index
1184 *
1185 * Return nothing.
1186 */
1187 void
1188 mpt3sas_base_release_callback_handler(u8 cb_idx)
1189 {
1190 mpt_callbacks[cb_idx] = NULL;
1191 }
1192
1193 /**
1194 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1195 * @cb_func: callback function
1196 *
1197 * Returns cb_func.
1198 */
1199 u8
1200 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1201 {
1202 u8 cb_idx;
1203
1204 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1205 if (mpt_callbacks[cb_idx] == NULL)
1206 break;
1207
1208 mpt_callbacks[cb_idx] = cb_func;
1209 return cb_idx;
1210 }
1211
1212 /**
1213 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1214 *
1215 * Return nothing.
1216 */
1217 void
1218 mpt3sas_base_initialize_callback_handler(void)
1219 {
1220 u8 cb_idx;
1221
1222 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1223 mpt3sas_base_release_callback_handler(cb_idx);
1224 }
1225
1226
1227 /**
1228 * _base_build_zero_len_sge - build zero length sg entry
1229 * @ioc: per adapter object
1230 * @paddr: virtual address for SGE
1231 *
1232 * Create a zero length scatter gather entry to insure the IOCs hardware has
1233 * something to use if the target device goes brain dead and tries
1234 * to send data even when none is asked for.
1235 *
1236 * Return nothing.
1237 */
1238 static void
1239 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1240 {
1241 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1242 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1243 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1244 MPI2_SGE_FLAGS_SHIFT);
1245 ioc->base_add_sg_single(paddr, flags_length, -1);
1246 }
1247
1248 /**
1249 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1250 * @paddr: virtual address for SGE
1251 * @flags_length: SGE flags and data transfer length
1252 * @dma_addr: Physical address
1253 *
1254 * Return nothing.
1255 */
1256 static void
1257 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1258 {
1259 Mpi2SGESimple32_t *sgel = paddr;
1260
1261 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1262 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1263 sgel->FlagsLength = cpu_to_le32(flags_length);
1264 sgel->Address = cpu_to_le32(dma_addr);
1265 }
1266
1267
1268 /**
1269 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1270 * @paddr: virtual address for SGE
1271 * @flags_length: SGE flags and data transfer length
1272 * @dma_addr: Physical address
1273 *
1274 * Return nothing.
1275 */
1276 static void
1277 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1278 {
1279 Mpi2SGESimple64_t *sgel = paddr;
1280
1281 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1282 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1283 sgel->FlagsLength = cpu_to_le32(flags_length);
1284 sgel->Address = cpu_to_le64(dma_addr);
1285 }
1286
1287 /**
1288 * _base_get_chain_buffer_tracker - obtain chain tracker
1289 * @ioc: per adapter object
1290 * @smid: smid associated to an IO request
1291 *
1292 * Returns chain tracker(from ioc->free_chain_list)
1293 */
1294 static struct chain_tracker *
1295 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1296 {
1297 struct chain_tracker *chain_req;
1298 unsigned long flags;
1299
1300 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1301 if (list_empty(&ioc->free_chain_list)) {
1302 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1303 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1304 "chain buffers not available\n", ioc->name));
1305 return NULL;
1306 }
1307 chain_req = list_entry(ioc->free_chain_list.next,
1308 struct chain_tracker, tracker_list);
1309 list_del_init(&chain_req->tracker_list);
1310 list_add_tail(&chain_req->tracker_list,
1311 &ioc->scsi_lookup[smid - 1].chain_list);
1312 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1313 return chain_req;
1314 }
1315
1316
1317 /**
1318 * _base_build_sg - build generic sg
1319 * @ioc: per adapter object
1320 * @psge: virtual address for SGE
1321 * @data_out_dma: physical address for WRITES
1322 * @data_out_sz: data xfer size for WRITES
1323 * @data_in_dma: physical address for READS
1324 * @data_in_sz: data xfer size for READS
1325 *
1326 * Return nothing.
1327 */
1328 static void
1329 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1330 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1331 size_t data_in_sz)
1332 {
1333 u32 sgl_flags;
1334
1335 if (!data_out_sz && !data_in_sz) {
1336 _base_build_zero_len_sge(ioc, psge);
1337 return;
1338 }
1339
1340 if (data_out_sz && data_in_sz) {
1341 /* WRITE sgel first */
1342 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1343 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1344 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1345 ioc->base_add_sg_single(psge, sgl_flags |
1346 data_out_sz, data_out_dma);
1347
1348 /* incr sgel */
1349 psge += ioc->sge_size;
1350
1351 /* READ sgel last */
1352 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1353 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1354 MPI2_SGE_FLAGS_END_OF_LIST);
1355 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1356 ioc->base_add_sg_single(psge, sgl_flags |
1357 data_in_sz, data_in_dma);
1358 } else if (data_out_sz) /* WRITE */ {
1359 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1360 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1361 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1362 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1363 ioc->base_add_sg_single(psge, sgl_flags |
1364 data_out_sz, data_out_dma);
1365 } else if (data_in_sz) /* READ */ {
1366 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1367 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1368 MPI2_SGE_FLAGS_END_OF_LIST);
1369 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1370 ioc->base_add_sg_single(psge, sgl_flags |
1371 data_in_sz, data_in_dma);
1372 }
1373 }
1374
1375 /* IEEE format sgls */
1376
1377 /**
1378 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1379 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1380 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1381 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1382 * used to describe a larger data buffer. If the data buffer is too large to
1383 * describe using the two PRP entriess inside the NVMe message, then PRP1
1384 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1385 * list located elsewhere in memory to describe the remaining data memory
1386 * segments. The PRP list will be contiguous.
1387
1388 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1389 * consists of a list of PRP entries to describe a number of noncontigous
1390 * physical memory segments as a single memory buffer, just as a SGL does. Note
1391 * however, that this function is only used by the IOCTL call, so the memory
1392 * given will be guaranteed to be contiguous. There is no need to translate
1393 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1394 * contiguous space that is one page size each.
1395 *
1396 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1397 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1398 * contains the second PRP element if the memory being described fits within 2
1399 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1400 *
1401 * A PRP list pointer contains the address of a PRP list, structured as a linear
1402 * array of PRP entries. Each PRP entry in this list describes a segment of
1403 * physical memory.
1404 *
1405 * Each 64-bit PRP entry comprises an address and an offset field. The address
1406 * always points at the beginning of a 4KB physical memory page, and the offset
1407 * describes where within that 4KB page the memory segment begins. Only the
1408 * first element in a PRP list may contain a non-zero offest, implying that all
1409 * memory segments following the first begin at the start of a 4KB page.
1410 *
1411 * Each PRP element normally describes 4KB of physical memory, with exceptions
1412 * for the first and last elements in the list. If the memory being described
1413 * by the list begins at a non-zero offset within the first 4KB page, then the
1414 * first PRP element will contain a non-zero offset indicating where the region
1415 * begins within the 4KB page. The last memory segment may end before the end
1416 * of the 4KB segment, depending upon the overall size of the memory being
1417 * described by the PRP list.
1418 *
1419 * Since PRP entries lack any indication of size, the overall data buffer length
1420 * is used to determine where the end of the data memory buffer is located, and
1421 * how many PRP entries are required to describe it.
1422 *
1423 * @ioc: per adapter object
1424 * @smid: system request message index for getting asscociated SGL
1425 * @nvme_encap_request: the NVMe request msg frame pointer
1426 * @data_out_dma: physical address for WRITES
1427 * @data_out_sz: data xfer size for WRITES
1428 * @data_in_dma: physical address for READS
1429 * @data_in_sz: data xfer size for READS
1430 *
1431 * Returns nothing.
1432 */
1433 static void
1434 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1435 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1436 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1437 size_t data_in_sz)
1438 {
1439 int prp_size = NVME_PRP_SIZE;
1440 __le64 *prp_entry, *prp1_entry, *prp2_entry;
1441 __le64 *prp_page;
1442 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1443 u32 offset, entry_len;
1444 u32 page_mask_result, page_mask;
1445 size_t length;
1446
1447 /*
1448 * Not all commands require a data transfer. If no data, just return
1449 * without constructing any PRP.
1450 */
1451 if (!data_in_sz && !data_out_sz)
1452 return;
1453 /*
1454 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
1455 * PRP1 is located at a 24 byte offset from the start of the NVMe
1456 * command. Then set the current PRP entry pointer to PRP1.
1457 */
1458 prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1459 NVME_CMD_PRP1_OFFSET);
1460 prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1461 NVME_CMD_PRP2_OFFSET);
1462 prp_entry = prp1_entry;
1463 /*
1464 * For the PRP entries, use the specially allocated buffer of
1465 * contiguous memory.
1466 */
1467 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1468 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1469
1470 /*
1471 * Check if we are within 1 entry of a page boundary we don't
1472 * want our first entry to be a PRP List entry.
1473 */
1474 page_mask = ioc->page_size - 1;
1475 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1476 if (!page_mask_result) {
1477 /* Bump up to next page boundary. */
1478 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1479 prp_page_dma = prp_page_dma + prp_size;
1480 }
1481
1482 /*
1483 * Set PRP physical pointer, which initially points to the current PRP
1484 * DMA memory page.
1485 */
1486 prp_entry_dma = prp_page_dma;
1487
1488 /* Get physical address and length of the data buffer. */
1489 if (data_in_sz) {
1490 dma_addr = data_in_dma;
1491 length = data_in_sz;
1492 } else {
1493 dma_addr = data_out_dma;
1494 length = data_out_sz;
1495 }
1496
1497 /* Loop while the length is not zero. */
1498 while (length) {
1499 /*
1500 * Check if we need to put a list pointer here if we are at
1501 * page boundary - prp_size (8 bytes).
1502 */
1503 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1504 if (!page_mask_result) {
1505 /*
1506 * This is the last entry in a PRP List, so we need to
1507 * put a PRP list pointer here. What this does is:
1508 * - bump the current memory pointer to the next
1509 * address, which will be the next full page.
1510 * - set the PRP Entry to point to that page. This
1511 * is now the PRP List pointer.
1512 * - bump the PRP Entry pointer the start of the
1513 * next page. Since all of this PRP memory is
1514 * contiguous, no need to get a new page - it's
1515 * just the next address.
1516 */
1517 prp_entry_dma++;
1518 *prp_entry = cpu_to_le64(prp_entry_dma);
1519 prp_entry++;
1520 }
1521
1522 /* Need to handle if entry will be part of a page. */
1523 offset = dma_addr & page_mask;
1524 entry_len = ioc->page_size - offset;
1525
1526 if (prp_entry == prp1_entry) {
1527 /*
1528 * Must fill in the first PRP pointer (PRP1) before
1529 * moving on.
1530 */
1531 *prp1_entry = cpu_to_le64(dma_addr);
1532
1533 /*
1534 * Now point to the second PRP entry within the
1535 * command (PRP2).
1536 */
1537 prp_entry = prp2_entry;
1538 } else if (prp_entry == prp2_entry) {
1539 /*
1540 * Should the PRP2 entry be a PRP List pointer or just
1541 * a regular PRP pointer? If there is more than one
1542 * more page of data, must use a PRP List pointer.
1543 */
1544 if (length > ioc->page_size) {
1545 /*
1546 * PRP2 will contain a PRP List pointer because
1547 * more PRP's are needed with this command. The
1548 * list will start at the beginning of the
1549 * contiguous buffer.
1550 */
1551 *prp2_entry = cpu_to_le64(prp_entry_dma);
1552
1553 /*
1554 * The next PRP Entry will be the start of the
1555 * first PRP List.
1556 */
1557 prp_entry = prp_page;
1558 } else {
1559 /*
1560 * After this, the PRP Entries are complete.
1561 * This command uses 2 PRP's and no PRP list.
1562 */
1563 *prp2_entry = cpu_to_le64(dma_addr);
1564 }
1565 } else {
1566 /*
1567 * Put entry in list and bump the addresses.
1568 *
1569 * After PRP1 and PRP2 are filled in, this will fill in
1570 * all remaining PRP entries in a PRP List, one per
1571 * each time through the loop.
1572 */
1573 *prp_entry = cpu_to_le64(dma_addr);
1574 prp_entry++;
1575 prp_entry_dma++;
1576 }
1577
1578 /*
1579 * Bump the phys address of the command's data buffer by the
1580 * entry_len.
1581 */
1582 dma_addr += entry_len;
1583
1584 /* Decrement length accounting for last partial page. */
1585 if (entry_len > length)
1586 length = 0;
1587 else
1588 length -= entry_len;
1589 }
1590 }
1591
1592 /**
1593 * base_make_prp_nvme -
1594 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1595 *
1596 * @ioc: per adapter object
1597 * @scmd: SCSI command from the mid-layer
1598 * @mpi_request: mpi request
1599 * @smid: msg Index
1600 * @sge_count: scatter gather element count.
1601 *
1602 * Returns: true: PRPs are built
1603 * false: IEEE SGLs needs to be built
1604 */
1605 static void
1606 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
1607 struct scsi_cmnd *scmd,
1608 Mpi25SCSIIORequest_t *mpi_request,
1609 u16 smid, int sge_count)
1610 {
1611 int sge_len, num_prp_in_chain = 0;
1612 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
1613 __le64 *curr_buff;
1614 dma_addr_t msg_dma, sge_addr, offset;
1615 u32 page_mask, page_mask_result;
1616 struct scatterlist *sg_scmd;
1617 u32 first_prp_len;
1618 int data_len = scsi_bufflen(scmd);
1619 u32 nvme_pg_size;
1620
1621 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
1622 /*
1623 * Nvme has a very convoluted prp format. One prp is required
1624 * for each page or partial page. Driver need to split up OS sg_list
1625 * entries if it is longer than one page or cross a page
1626 * boundary. Driver also have to insert a PRP list pointer entry as
1627 * the last entry in each physical page of the PRP list.
1628 *
1629 * NOTE: The first PRP "entry" is actually placed in the first
1630 * SGL entry in the main message as IEEE 64 format. The 2nd
1631 * entry in the main message is the chain element, and the rest
1632 * of the PRP entries are built in the contiguous pcie buffer.
1633 */
1634 page_mask = nvme_pg_size - 1;
1635
1636 /*
1637 * Native SGL is needed.
1638 * Put a chain element in main message frame that points to the first
1639 * chain buffer.
1640 *
1641 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
1642 * a native SGL.
1643 */
1644
1645 /* Set main message chain element pointer */
1646 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
1647 /*
1648 * For NVMe the chain element needs to be the 2nd SG entry in the main
1649 * message.
1650 */
1651 main_chain_element = (Mpi25IeeeSgeChain64_t *)
1652 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
1653
1654 /*
1655 * For the PRP entries, use the specially allocated buffer of
1656 * contiguous memory. Normal chain buffers can't be used
1657 * because each chain buffer would need to be the size of an OS
1658 * page (4k).
1659 */
1660 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
1661 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1662
1663 main_chain_element->Address = cpu_to_le64(msg_dma);
1664 main_chain_element->NextChainOffset = 0;
1665 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1667 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
1668
1669 /* Build first prp, sge need not to be page aligned*/
1670 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
1671 sg_scmd = scsi_sglist(scmd);
1672 sge_addr = sg_dma_address(sg_scmd);
1673 sge_len = sg_dma_len(sg_scmd);
1674
1675 offset = sge_addr & page_mask;
1676 first_prp_len = nvme_pg_size - offset;
1677
1678 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
1679 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
1680
1681 data_len -= first_prp_len;
1682
1683 if (sge_len > first_prp_len) {
1684 sge_addr += first_prp_len;
1685 sge_len -= first_prp_len;
1686 } else if (data_len && (sge_len == first_prp_len)) {
1687 sg_scmd = sg_next(sg_scmd);
1688 sge_addr = sg_dma_address(sg_scmd);
1689 sge_len = sg_dma_len(sg_scmd);
1690 }
1691
1692 for (;;) {
1693 offset = sge_addr & page_mask;
1694
1695 /* Put PRP pointer due to page boundary*/
1696 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
1697 if (unlikely(!page_mask_result)) {
1698 scmd_printk(KERN_NOTICE,
1699 scmd, "page boundary curr_buff: 0x%p\n",
1700 curr_buff);
1701 msg_dma += 8;
1702 *curr_buff = cpu_to_le64(msg_dma);
1703 curr_buff++;
1704 num_prp_in_chain++;
1705 }
1706
1707 *curr_buff = cpu_to_le64(sge_addr);
1708 curr_buff++;
1709 msg_dma += 8;
1710 num_prp_in_chain++;
1711
1712 sge_addr += nvme_pg_size;
1713 sge_len -= nvme_pg_size;
1714 data_len -= nvme_pg_size;
1715
1716 if (data_len <= 0)
1717 break;
1718
1719 if (sge_len > 0)
1720 continue;
1721
1722 sg_scmd = sg_next(sg_scmd);
1723 sge_addr = sg_dma_address(sg_scmd);
1724 sge_len = sg_dma_len(sg_scmd);
1725 }
1726
1727 main_chain_element->Length =
1728 cpu_to_le32(num_prp_in_chain * sizeof(u64));
1729 return;
1730 }
1731
1732 static bool
1733 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
1734 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
1735 {
1736 u32 data_length = 0;
1737 struct scatterlist *sg_scmd;
1738 bool build_prp = true;
1739
1740 data_length = scsi_bufflen(scmd);
1741 sg_scmd = scsi_sglist(scmd);
1742
1743 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
1744 * we built IEEE SGL
1745 */
1746 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
1747 build_prp = false;
1748
1749 return build_prp;
1750 }
1751
1752 /**
1753 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
1754 * determine if the driver needs to build a native SGL. If so, that native
1755 * SGL is built in the special contiguous buffers allocated especially for
1756 * PCIe SGL creation. If the driver will not build a native SGL, return
1757 * TRUE and a normal IEEE SGL will be built. Currently this routine
1758 * supports NVMe.
1759 * @ioc: per adapter object
1760 * @mpi_request: mf request pointer
1761 * @smid: system request message index
1762 * @scmd: scsi command
1763 * @pcie_device: points to the PCIe device's info
1764 *
1765 * Returns 0 if native SGL was built, 1 if no SGL was built
1766 */
1767 static int
1768 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
1769 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
1770 struct _pcie_device *pcie_device)
1771 {
1772 struct scatterlist *sg_scmd;
1773 int sges_left;
1774
1775 /* Get the SG list pointer and info. */
1776 sg_scmd = scsi_sglist(scmd);
1777 sges_left = scsi_dma_map(scmd);
1778 if (sges_left < 0) {
1779 sdev_printk(KERN_ERR, scmd->device,
1780 "scsi_dma_map failed: request for %d bytes!\n",
1781 scsi_bufflen(scmd));
1782 return 1;
1783 }
1784
1785 /* Check if we need to build a native SG list. */
1786 if (base_is_prp_possible(ioc, pcie_device,
1787 scmd, sges_left) == 0) {
1788 /* We built a native SG list, just return. */
1789 goto out;
1790 }
1791
1792 /*
1793 * Build native NVMe PRP.
1794 */
1795 base_make_prp_nvme(ioc, scmd, mpi_request,
1796 smid, sges_left);
1797
1798 return 0;
1799 out:
1800 scsi_dma_unmap(scmd);
1801 return 1;
1802 }
1803
1804 /**
1805 * _base_add_sg_single_ieee - add sg element for IEEE format
1806 * @paddr: virtual address for SGE
1807 * @flags: SGE flags
1808 * @chain_offset: number of 128 byte elements from start of segment
1809 * @length: data transfer length
1810 * @dma_addr: Physical address
1811 *
1812 * Return nothing.
1813 */
1814 static void
1815 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1816 dma_addr_t dma_addr)
1817 {
1818 Mpi25IeeeSgeChain64_t *sgel = paddr;
1819
1820 sgel->Flags = flags;
1821 sgel->NextChainOffset = chain_offset;
1822 sgel->Length = cpu_to_le32(length);
1823 sgel->Address = cpu_to_le64(dma_addr);
1824 }
1825
1826 /**
1827 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1828 * @ioc: per adapter object
1829 * @paddr: virtual address for SGE
1830 *
1831 * Create a zero length scatter gather entry to insure the IOCs hardware has
1832 * something to use if the target device goes brain dead and tries
1833 * to send data even when none is asked for.
1834 *
1835 * Return nothing.
1836 */
1837 static void
1838 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1839 {
1840 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1841 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1842 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1843
1844 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1845 }
1846
1847 /**
1848 * _base_build_sg_scmd - main sg creation routine
1849 * pcie_device is unused here!
1850 * @ioc: per adapter object
1851 * @scmd: scsi command
1852 * @smid: system request message index
1853 * @unused: unused pcie_device pointer
1854 * Context: none.
1855 *
1856 * The main routine that builds scatter gather table from a given
1857 * scsi request sent via the .queuecommand main handler.
1858 *
1859 * Returns 0 success, anything else error
1860 */
1861 static int
1862 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1863 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
1864 {
1865 Mpi2SCSIIORequest_t *mpi_request;
1866 dma_addr_t chain_dma;
1867 struct scatterlist *sg_scmd;
1868 void *sg_local, *chain;
1869 u32 chain_offset;
1870 u32 chain_length;
1871 u32 chain_flags;
1872 int sges_left;
1873 u32 sges_in_segment;
1874 u32 sgl_flags;
1875 u32 sgl_flags_last_element;
1876 u32 sgl_flags_end_buffer;
1877 struct chain_tracker *chain_req;
1878
1879 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1880
1881 /* init scatter gather flags */
1882 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1883 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1884 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1885 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1886 << MPI2_SGE_FLAGS_SHIFT;
1887 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1888 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1889 << MPI2_SGE_FLAGS_SHIFT;
1890 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1891
1892 sg_scmd = scsi_sglist(scmd);
1893 sges_left = scsi_dma_map(scmd);
1894 if (sges_left < 0) {
1895 sdev_printk(KERN_ERR, scmd->device,
1896 "pci_map_sg failed: request for %d bytes!\n",
1897 scsi_bufflen(scmd));
1898 return -ENOMEM;
1899 }
1900
1901 sg_local = &mpi_request->SGL;
1902 sges_in_segment = ioc->max_sges_in_main_message;
1903 if (sges_left <= sges_in_segment)
1904 goto fill_in_last_segment;
1905
1906 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1907 (sges_in_segment * ioc->sge_size))/4;
1908
1909 /* fill in main message segment when there is a chain following */
1910 while (sges_in_segment) {
1911 if (sges_in_segment == 1)
1912 ioc->base_add_sg_single(sg_local,
1913 sgl_flags_last_element | sg_dma_len(sg_scmd),
1914 sg_dma_address(sg_scmd));
1915 else
1916 ioc->base_add_sg_single(sg_local, sgl_flags |
1917 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1918 sg_scmd = sg_next(sg_scmd);
1919 sg_local += ioc->sge_size;
1920 sges_left--;
1921 sges_in_segment--;
1922 }
1923
1924 /* initializing the chain flags and pointers */
1925 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1926 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1927 if (!chain_req)
1928 return -1;
1929 chain = chain_req->chain_buffer;
1930 chain_dma = chain_req->chain_buffer_dma;
1931 do {
1932 sges_in_segment = (sges_left <=
1933 ioc->max_sges_in_chain_message) ? sges_left :
1934 ioc->max_sges_in_chain_message;
1935 chain_offset = (sges_left == sges_in_segment) ?
1936 0 : (sges_in_segment * ioc->sge_size)/4;
1937 chain_length = sges_in_segment * ioc->sge_size;
1938 if (chain_offset) {
1939 chain_offset = chain_offset <<
1940 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1941 chain_length += ioc->sge_size;
1942 }
1943 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1944 chain_length, chain_dma);
1945 sg_local = chain;
1946 if (!chain_offset)
1947 goto fill_in_last_segment;
1948
1949 /* fill in chain segments */
1950 while (sges_in_segment) {
1951 if (sges_in_segment == 1)
1952 ioc->base_add_sg_single(sg_local,
1953 sgl_flags_last_element |
1954 sg_dma_len(sg_scmd),
1955 sg_dma_address(sg_scmd));
1956 else
1957 ioc->base_add_sg_single(sg_local, sgl_flags |
1958 sg_dma_len(sg_scmd),
1959 sg_dma_address(sg_scmd));
1960 sg_scmd = sg_next(sg_scmd);
1961 sg_local += ioc->sge_size;
1962 sges_left--;
1963 sges_in_segment--;
1964 }
1965
1966 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1967 if (!chain_req)
1968 return -1;
1969 chain = chain_req->chain_buffer;
1970 chain_dma = chain_req->chain_buffer_dma;
1971 } while (1);
1972
1973
1974 fill_in_last_segment:
1975
1976 /* fill the last segment */
1977 while (sges_left) {
1978 if (sges_left == 1)
1979 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1980 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1981 else
1982 ioc->base_add_sg_single(sg_local, sgl_flags |
1983 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1984 sg_scmd = sg_next(sg_scmd);
1985 sg_local += ioc->sge_size;
1986 sges_left--;
1987 }
1988
1989 return 0;
1990 }
1991
1992 /**
1993 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1994 * @ioc: per adapter object
1995 * @scmd: scsi command
1996 * @smid: system request message index
1997 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
1998 * constructed on need.
1999 * Context: none.
2000 *
2001 * The main routine that builds scatter gather table from a given
2002 * scsi request sent via the .queuecommand main handler.
2003 *
2004 * Returns 0 success, anything else error
2005 */
2006 static int
2007 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2008 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2009 {
2010 Mpi25SCSIIORequest_t *mpi_request;
2011 dma_addr_t chain_dma;
2012 struct scatterlist *sg_scmd;
2013 void *sg_local, *chain;
2014 u32 chain_offset;
2015 u32 chain_length;
2016 int sges_left;
2017 u32 sges_in_segment;
2018 u8 simple_sgl_flags;
2019 u8 simple_sgl_flags_last;
2020 u8 chain_sgl_flags;
2021 struct chain_tracker *chain_req;
2022
2023 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2024
2025 /* init scatter gather flags */
2026 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2027 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2028 simple_sgl_flags_last = simple_sgl_flags |
2029 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2030 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2031 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2032
2033 /* Check if we need to build a native SG list. */
2034 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2035 smid, scmd, pcie_device) == 0)) {
2036 /* We built a native SG list, just return. */
2037 return 0;
2038 }
2039
2040 sg_scmd = scsi_sglist(scmd);
2041 sges_left = scsi_dma_map(scmd);
2042 if (sges_left < 0) {
2043 sdev_printk(KERN_ERR, scmd->device,
2044 "pci_map_sg failed: request for %d bytes!\n",
2045 scsi_bufflen(scmd));
2046 return -ENOMEM;
2047 }
2048
2049 sg_local = &mpi_request->SGL;
2050 sges_in_segment = (ioc->request_sz -
2051 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2052 if (sges_left <= sges_in_segment)
2053 goto fill_in_last_segment;
2054
2055 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2056 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2057
2058 /* fill in main message segment when there is a chain following */
2059 while (sges_in_segment > 1) {
2060 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2061 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2062 sg_scmd = sg_next(sg_scmd);
2063 sg_local += ioc->sge_size_ieee;
2064 sges_left--;
2065 sges_in_segment--;
2066 }
2067
2068 /* initializing the pointers */
2069 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
2070 if (!chain_req)
2071 return -1;
2072 chain = chain_req->chain_buffer;
2073 chain_dma = chain_req->chain_buffer_dma;
2074 do {
2075 sges_in_segment = (sges_left <=
2076 ioc->max_sges_in_chain_message) ? sges_left :
2077 ioc->max_sges_in_chain_message;
2078 chain_offset = (sges_left == sges_in_segment) ?
2079 0 : sges_in_segment;
2080 chain_length = sges_in_segment * ioc->sge_size_ieee;
2081 if (chain_offset)
2082 chain_length += ioc->sge_size_ieee;
2083 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2084 chain_offset, chain_length, chain_dma);
2085
2086 sg_local = chain;
2087 if (!chain_offset)
2088 goto fill_in_last_segment;
2089
2090 /* fill in chain segments */
2091 while (sges_in_segment) {
2092 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2093 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2094 sg_scmd = sg_next(sg_scmd);
2095 sg_local += ioc->sge_size_ieee;
2096 sges_left--;
2097 sges_in_segment--;
2098 }
2099
2100 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
2101 if (!chain_req)
2102 return -1;
2103 chain = chain_req->chain_buffer;
2104 chain_dma = chain_req->chain_buffer_dma;
2105 } while (1);
2106
2107
2108 fill_in_last_segment:
2109
2110 /* fill the last segment */
2111 while (sges_left > 0) {
2112 if (sges_left == 1)
2113 _base_add_sg_single_ieee(sg_local,
2114 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2115 sg_dma_address(sg_scmd));
2116 else
2117 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2118 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2119 sg_scmd = sg_next(sg_scmd);
2120 sg_local += ioc->sge_size_ieee;
2121 sges_left--;
2122 }
2123
2124 return 0;
2125 }
2126
2127 /**
2128 * _base_build_sg_ieee - build generic sg for IEEE format
2129 * @ioc: per adapter object
2130 * @psge: virtual address for SGE
2131 * @data_out_dma: physical address for WRITES
2132 * @data_out_sz: data xfer size for WRITES
2133 * @data_in_dma: physical address for READS
2134 * @data_in_sz: data xfer size for READS
2135 *
2136 * Return nothing.
2137 */
2138 static void
2139 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2140 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2141 size_t data_in_sz)
2142 {
2143 u8 sgl_flags;
2144
2145 if (!data_out_sz && !data_in_sz) {
2146 _base_build_zero_len_sge_ieee(ioc, psge);
2147 return;
2148 }
2149
2150 if (data_out_sz && data_in_sz) {
2151 /* WRITE sgel first */
2152 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2153 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2154 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2155 data_out_dma);
2156
2157 /* incr sgel */
2158 psge += ioc->sge_size_ieee;
2159
2160 /* READ sgel last */
2161 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2162 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2163 data_in_dma);
2164 } else if (data_out_sz) /* WRITE */ {
2165 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2166 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2167 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2168 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2169 data_out_dma);
2170 } else if (data_in_sz) /* READ */ {
2171 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2172 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2173 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2174 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2175 data_in_dma);
2176 }
2177 }
2178
2179 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2180
2181 /**
2182 * _base_config_dma_addressing - set dma addressing
2183 * @ioc: per adapter object
2184 * @pdev: PCI device struct
2185 *
2186 * Returns 0 for success, non-zero for failure.
2187 */
2188 static int
2189 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2190 {
2191 struct sysinfo s;
2192 u64 consistent_dma_mask;
2193
2194 if (ioc->dma_mask)
2195 consistent_dma_mask = DMA_BIT_MASK(64);
2196 else
2197 consistent_dma_mask = DMA_BIT_MASK(32);
2198
2199 if (sizeof(dma_addr_t) > 4) {
2200 const uint64_t required_mask =
2201 dma_get_required_mask(&pdev->dev);
2202 if ((required_mask > DMA_BIT_MASK(32)) &&
2203 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2204 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2205 ioc->base_add_sg_single = &_base_add_sg_single_64;
2206 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2207 ioc->dma_mask = 64;
2208 goto out;
2209 }
2210 }
2211
2212 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2213 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2214 ioc->base_add_sg_single = &_base_add_sg_single_32;
2215 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2216 ioc->dma_mask = 32;
2217 } else
2218 return -ENODEV;
2219
2220 out:
2221 si_meminfo(&s);
2222 pr_info(MPT3SAS_FMT
2223 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2224 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2225
2226 return 0;
2227 }
2228
2229 static int
2230 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2231 struct pci_dev *pdev)
2232 {
2233 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2234 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2235 return -ENODEV;
2236 }
2237 return 0;
2238 }
2239
2240 /**
2241 * _base_check_enable_msix - checks MSIX capabable.
2242 * @ioc: per adapter object
2243 *
2244 * Check to see if card is capable of MSIX, and set number
2245 * of available msix vectors
2246 */
2247 static int
2248 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2249 {
2250 int base;
2251 u16 message_control;
2252
2253 /* Check whether controller SAS2008 B0 controller,
2254 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2255 */
2256 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2257 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2258 return -EINVAL;
2259 }
2260
2261 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2262 if (!base) {
2263 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2264 ioc->name));
2265 return -EINVAL;
2266 }
2267
2268 /* get msix vector count */
2269 /* NUMA_IO not supported for older controllers */
2270 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2271 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2272 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2273 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2274 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2275 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2276 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2277 ioc->msix_vector_count = 1;
2278 else {
2279 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2280 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2281 }
2282 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2283 "msix is supported, vector_count(%d)\n",
2284 ioc->name, ioc->msix_vector_count));
2285 return 0;
2286 }
2287
2288 /**
2289 * _base_free_irq - free irq
2290 * @ioc: per adapter object
2291 *
2292 * Freeing respective reply_queue from the list.
2293 */
2294 static void
2295 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2296 {
2297 struct adapter_reply_queue *reply_q, *next;
2298
2299 if (list_empty(&ioc->reply_queue_list))
2300 return;
2301
2302 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2303 list_del(&reply_q->list);
2304 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2305 reply_q);
2306 kfree(reply_q);
2307 }
2308 }
2309
2310 /**
2311 * _base_request_irq - request irq
2312 * @ioc: per adapter object
2313 * @index: msix index into vector table
2314 *
2315 * Inserting respective reply_queue into the list.
2316 */
2317 static int
2318 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2319 {
2320 struct pci_dev *pdev = ioc->pdev;
2321 struct adapter_reply_queue *reply_q;
2322 int r;
2323
2324 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2325 if (!reply_q) {
2326 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2327 ioc->name, (int)sizeof(struct adapter_reply_queue));
2328 return -ENOMEM;
2329 }
2330 reply_q->ioc = ioc;
2331 reply_q->msix_index = index;
2332
2333 atomic_set(&reply_q->busy, 0);
2334 if (ioc->msix_enable)
2335 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2336 ioc->driver_name, ioc->id, index);
2337 else
2338 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2339 ioc->driver_name, ioc->id);
2340 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2341 IRQF_SHARED, reply_q->name, reply_q);
2342 if (r) {
2343 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2344 reply_q->name, pci_irq_vector(pdev, index));
2345 kfree(reply_q);
2346 return -EBUSY;
2347 }
2348
2349 INIT_LIST_HEAD(&reply_q->list);
2350 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2351 return 0;
2352 }
2353
2354 /**
2355 * _base_assign_reply_queues - assigning msix index for each cpu
2356 * @ioc: per adapter object
2357 *
2358 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2359 *
2360 * It would nice if we could call irq_set_affinity, however it is not
2361 * an exported symbol
2362 */
2363 static void
2364 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2365 {
2366 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2367 struct adapter_reply_queue *reply_q;
2368
2369 if (!_base_is_controller_msix_enabled(ioc))
2370 return;
2371
2372 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2373
2374 nr_cpus = num_online_cpus();
2375 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2376 ioc->facts.MaxMSIxVectors);
2377 if (!nr_msix)
2378 return;
2379
2380 if (smp_affinity_enable) {
2381 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2382 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2383 reply_q->msix_index);
2384 if (!mask) {
2385 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2386 ioc->name, reply_q->msix_index);
2387 continue;
2388 }
2389
2390 for_each_cpu(cpu, mask)
2391 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2392 }
2393 return;
2394 }
2395 cpu = cpumask_first(cpu_online_mask);
2396
2397 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2398
2399 unsigned int i, group = nr_cpus / nr_msix;
2400
2401 if (cpu >= nr_cpus)
2402 break;
2403
2404 if (index < nr_cpus % nr_msix)
2405 group++;
2406
2407 for (i = 0 ; i < group ; i++) {
2408 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2409 cpu = cpumask_next(cpu, cpu_online_mask);
2410 }
2411 index++;
2412 }
2413 }
2414
2415 /**
2416 * _base_disable_msix - disables msix
2417 * @ioc: per adapter object
2418 *
2419 */
2420 static void
2421 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2422 {
2423 if (!ioc->msix_enable)
2424 return;
2425 pci_disable_msix(ioc->pdev);
2426 ioc->msix_enable = 0;
2427 }
2428
2429 /**
2430 * _base_enable_msix - enables msix, failback to io_apic
2431 * @ioc: per adapter object
2432 *
2433 */
2434 static int
2435 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2436 {
2437 int r;
2438 int i, local_max_msix_vectors;
2439 u8 try_msix = 0;
2440 unsigned int irq_flags = PCI_IRQ_MSIX;
2441
2442 if (msix_disable == -1 || msix_disable == 0)
2443 try_msix = 1;
2444
2445 if (!try_msix)
2446 goto try_ioapic;
2447
2448 if (_base_check_enable_msix(ioc) != 0)
2449 goto try_ioapic;
2450
2451 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2452 ioc->msix_vector_count);
2453
2454 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2455 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2456 ioc->cpu_count, max_msix_vectors);
2457
2458 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2459 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2460 else
2461 local_max_msix_vectors = max_msix_vectors;
2462
2463 if (local_max_msix_vectors > 0)
2464 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2465 ioc->reply_queue_count);
2466 else if (local_max_msix_vectors == 0)
2467 goto try_ioapic;
2468
2469 if (ioc->msix_vector_count < ioc->cpu_count)
2470 smp_affinity_enable = 0;
2471
2472 if (smp_affinity_enable)
2473 irq_flags |= PCI_IRQ_AFFINITY;
2474
2475 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2476 irq_flags);
2477 if (r < 0) {
2478 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2479 "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2480 ioc->name, r));
2481 goto try_ioapic;
2482 }
2483
2484 ioc->msix_enable = 1;
2485 ioc->reply_queue_count = r;
2486 for (i = 0; i < ioc->reply_queue_count; i++) {
2487 r = _base_request_irq(ioc, i);
2488 if (r) {
2489 _base_free_irq(ioc);
2490 _base_disable_msix(ioc);
2491 goto try_ioapic;
2492 }
2493 }
2494
2495 return 0;
2496
2497 /* failback to io_apic interrupt routing */
2498 try_ioapic:
2499
2500 ioc->reply_queue_count = 1;
2501 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2502 if (r < 0) {
2503 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2504 "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2505 ioc->name, r));
2506 } else
2507 r = _base_request_irq(ioc, 0);
2508
2509 return r;
2510 }
2511
2512 /**
2513 * mpt3sas_base_unmap_resources - free controller resources
2514 * @ioc: per adapter object
2515 */
2516 static void
2517 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2518 {
2519 struct pci_dev *pdev = ioc->pdev;
2520
2521 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2522 ioc->name, __func__));
2523
2524 _base_free_irq(ioc);
2525 _base_disable_msix(ioc);
2526
2527 if (ioc->combined_reply_queue) {
2528 kfree(ioc->replyPostRegisterIndex);
2529 ioc->replyPostRegisterIndex = NULL;
2530 }
2531
2532 if (ioc->chip_phys) {
2533 iounmap(ioc->chip);
2534 ioc->chip_phys = 0;
2535 }
2536
2537 if (pci_is_enabled(pdev)) {
2538 pci_release_selected_regions(ioc->pdev, ioc->bars);
2539 pci_disable_pcie_error_reporting(pdev);
2540 pci_disable_device(pdev);
2541 }
2542 }
2543
2544 /**
2545 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2546 * @ioc: per adapter object
2547 *
2548 * Returns 0 for success, non-zero for failure.
2549 */
2550 int
2551 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2552 {
2553 struct pci_dev *pdev = ioc->pdev;
2554 u32 memap_sz;
2555 u32 pio_sz;
2556 int i, r = 0;
2557 u64 pio_chip = 0;
2558 u64 chip_phys = 0;
2559 struct adapter_reply_queue *reply_q;
2560
2561 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2562 ioc->name, __func__));
2563
2564 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2565 if (pci_enable_device_mem(pdev)) {
2566 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2567 ioc->name);
2568 ioc->bars = 0;
2569 return -ENODEV;
2570 }
2571
2572
2573 if (pci_request_selected_regions(pdev, ioc->bars,
2574 ioc->driver_name)) {
2575 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2576 ioc->name);
2577 ioc->bars = 0;
2578 r = -ENODEV;
2579 goto out_fail;
2580 }
2581
2582 /* AER (Advanced Error Reporting) hooks */
2583 pci_enable_pcie_error_reporting(pdev);
2584
2585 pci_set_master(pdev);
2586
2587
2588 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2589 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2590 ioc->name, pci_name(pdev));
2591 r = -ENODEV;
2592 goto out_fail;
2593 }
2594
2595 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2596 (!memap_sz || !pio_sz); i++) {
2597 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2598 if (pio_sz)
2599 continue;
2600 pio_chip = (u64)pci_resource_start(pdev, i);
2601 pio_sz = pci_resource_len(pdev, i);
2602 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2603 if (memap_sz)
2604 continue;
2605 ioc->chip_phys = pci_resource_start(pdev, i);
2606 chip_phys = (u64)ioc->chip_phys;
2607 memap_sz = pci_resource_len(pdev, i);
2608 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2609 }
2610 }
2611
2612 if (ioc->chip == NULL) {
2613 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2614 " or resource not found\n", ioc->name);
2615 r = -EINVAL;
2616 goto out_fail;
2617 }
2618
2619 _base_mask_interrupts(ioc);
2620
2621 r = _base_get_ioc_facts(ioc);
2622 if (r)
2623 goto out_fail;
2624
2625 if (!ioc->rdpq_array_enable_assigned) {
2626 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2627 ioc->rdpq_array_enable_assigned = 1;
2628 }
2629
2630 r = _base_enable_msix(ioc);
2631 if (r)
2632 goto out_fail;
2633
2634 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2635 * revision HBAs and also only when reply queue count is greater than 8
2636 */
2637 if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2638 /* Determine the Supplemental Reply Post Host Index Registers
2639 * Addresse. Supplemental Reply Post Host Index Registers
2640 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2641 * each register is at offset bytes of
2642 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2643 */
2644 ioc->replyPostRegisterIndex = kcalloc(
2645 ioc->combined_reply_index_count,
2646 sizeof(resource_size_t *), GFP_KERNEL);
2647 if (!ioc->replyPostRegisterIndex) {
2648 dfailprintk(ioc, printk(MPT3SAS_FMT
2649 "allocation for reply Post Register Index failed!!!\n",
2650 ioc->name));
2651 r = -ENOMEM;
2652 goto out_fail;
2653 }
2654
2655 for (i = 0; i < ioc->combined_reply_index_count; i++) {
2656 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2657 ((u8 *)&ioc->chip->Doorbell +
2658 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2659 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2660 }
2661 } else
2662 ioc->combined_reply_queue = 0;
2663
2664 if (ioc->is_warpdrive) {
2665 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2666 &ioc->chip->ReplyPostHostIndex;
2667
2668 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2669 ioc->reply_post_host_index[i] =
2670 (resource_size_t __iomem *)
2671 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2672 * 4)));
2673 }
2674
2675 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2676 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2677 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2678 "IO-APIC enabled"),
2679 pci_irq_vector(ioc->pdev, reply_q->msix_index));
2680
2681 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2682 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2683 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2684 ioc->name, (unsigned long long)pio_chip, pio_sz);
2685
2686 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2687 pci_save_state(pdev);
2688 return 0;
2689
2690 out_fail:
2691 mpt3sas_base_unmap_resources(ioc);
2692 return r;
2693 }
2694
2695 /**
2696 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2697 * @ioc: per adapter object
2698 * @smid: system request message index(smid zero is invalid)
2699 *
2700 * Returns virt pointer to message frame.
2701 */
2702 void *
2703 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2704 {
2705 return (void *)(ioc->request + (smid * ioc->request_sz));
2706 }
2707
2708 /**
2709 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2710 * @ioc: per adapter object
2711 * @smid: system request message index
2712 *
2713 * Returns virt pointer to sense buffer.
2714 */
2715 void *
2716 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2717 {
2718 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2719 }
2720
2721 /**
2722 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2723 * @ioc: per adapter object
2724 * @smid: system request message index
2725 *
2726 * Returns phys pointer to the low 32bit address of the sense buffer.
2727 */
2728 __le32
2729 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2730 {
2731 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2732 SCSI_SENSE_BUFFERSIZE));
2733 }
2734
2735 /**
2736 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
2737 * @ioc: per adapter object
2738 * @smid: system request message index
2739 *
2740 * Returns virt pointer to a PCIe SGL.
2741 */
2742 void *
2743 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2744 {
2745 return (void *)(ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl);
2746 }
2747
2748 /**
2749 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
2750 * @ioc: per adapter object
2751 * @smid: system request message index
2752 *
2753 * Returns phys pointer to the address of the PCIe buffer.
2754 */
2755 dma_addr_t
2756 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2757 {
2758 return ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl_dma;
2759 }
2760
2761 /**
2762 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2763 * @ioc: per adapter object
2764 * @phys_addr: lower 32 physical addr of the reply
2765 *
2766 * Converts 32bit lower physical addr into a virt address.
2767 */
2768 void *
2769 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2770 {
2771 if (!phys_addr)
2772 return NULL;
2773 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2774 }
2775
2776 static inline u8
2777 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2778 {
2779 return ioc->cpu_msix_table[raw_smp_processor_id()];
2780 }
2781
2782 /**
2783 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2784 * @ioc: per adapter object
2785 * @cb_idx: callback index
2786 *
2787 * Returns smid (zero is invalid)
2788 */
2789 u16
2790 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2791 {
2792 unsigned long flags;
2793 struct request_tracker *request;
2794 u16 smid;
2795
2796 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2797 if (list_empty(&ioc->internal_free_list)) {
2798 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2799 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2800 ioc->name, __func__);
2801 return 0;
2802 }
2803
2804 request = list_entry(ioc->internal_free_list.next,
2805 struct request_tracker, tracker_list);
2806 request->cb_idx = cb_idx;
2807 smid = request->smid;
2808 list_del(&request->tracker_list);
2809 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2810 return smid;
2811 }
2812
2813 /**
2814 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2815 * @ioc: per adapter object
2816 * @cb_idx: callback index
2817 * @scmd: pointer to scsi command object
2818 *
2819 * Returns smid (zero is invalid)
2820 */
2821 u16
2822 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2823 struct scsi_cmnd *scmd)
2824 {
2825 unsigned long flags;
2826 struct scsiio_tracker *request;
2827 u16 smid;
2828
2829 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2830 if (list_empty(&ioc->free_list)) {
2831 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2832 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2833 ioc->name, __func__);
2834 return 0;
2835 }
2836
2837 request = list_entry(ioc->free_list.next,
2838 struct scsiio_tracker, tracker_list);
2839 request->scmd = scmd;
2840 request->cb_idx = cb_idx;
2841 smid = request->smid;
2842 request->msix_io = _base_get_msix_index(ioc);
2843 list_del(&request->tracker_list);
2844 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2845 return smid;
2846 }
2847
2848 /**
2849 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2850 * @ioc: per adapter object
2851 * @cb_idx: callback index
2852 *
2853 * Returns smid (zero is invalid)
2854 */
2855 u16
2856 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2857 {
2858 unsigned long flags;
2859 struct request_tracker *request;
2860 u16 smid;
2861
2862 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2863 if (list_empty(&ioc->hpr_free_list)) {
2864 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2865 return 0;
2866 }
2867
2868 request = list_entry(ioc->hpr_free_list.next,
2869 struct request_tracker, tracker_list);
2870 request->cb_idx = cb_idx;
2871 smid = request->smid;
2872 list_del(&request->tracker_list);
2873 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2874 return smid;
2875 }
2876
2877 /**
2878 * mpt3sas_base_free_smid - put smid back on free_list
2879 * @ioc: per adapter object
2880 * @smid: system request message index
2881 *
2882 * Return nothing.
2883 */
2884 void
2885 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2886 {
2887 unsigned long flags;
2888 int i;
2889 struct chain_tracker *chain_req, *next;
2890
2891 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2892 if (smid < ioc->hi_priority_smid) {
2893 /* scsiio queue */
2894 i = smid - 1;
2895 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2896 list_for_each_entry_safe(chain_req, next,
2897 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2898 list_del_init(&chain_req->tracker_list);
2899 list_add(&chain_req->tracker_list,
2900 &ioc->free_chain_list);
2901 }
2902 }
2903 ioc->scsi_lookup[i].cb_idx = 0xFF;
2904 ioc->scsi_lookup[i].scmd = NULL;
2905 ioc->scsi_lookup[i].direct_io = 0;
2906 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2907 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2908
2909 /*
2910 * See _wait_for_commands_to_complete() call with regards
2911 * to this code.
2912 */
2913 if (ioc->shost_recovery && ioc->pending_io_count) {
2914 if (ioc->pending_io_count == 1)
2915 wake_up(&ioc->reset_wq);
2916 ioc->pending_io_count--;
2917 }
2918 return;
2919 } else if (smid < ioc->internal_smid) {
2920 /* hi-priority */
2921 i = smid - ioc->hi_priority_smid;
2922 ioc->hpr_lookup[i].cb_idx = 0xFF;
2923 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2924 } else if (smid <= ioc->hba_queue_depth) {
2925 /* internal queue */
2926 i = smid - ioc->internal_smid;
2927 ioc->internal_lookup[i].cb_idx = 0xFF;
2928 list_add(&ioc->internal_lookup[i].tracker_list,
2929 &ioc->internal_free_list);
2930 }
2931 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2932 }
2933
2934 /**
2935 * _base_writeq - 64 bit write to MMIO
2936 * @ioc: per adapter object
2937 * @b: data payload
2938 * @addr: address in MMIO space
2939 * @writeq_lock: spin lock
2940 *
2941 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2942 * care of 32 bit environment where its not quarenteed to send the entire word
2943 * in one transfer.
2944 */
2945 #if defined(writeq) && defined(CONFIG_64BIT)
2946 static inline void
2947 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2948 {
2949 writeq(cpu_to_le64(b), addr);
2950 }
2951 #else
2952 static inline void
2953 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2954 {
2955 unsigned long flags;
2956 __u64 data_out = cpu_to_le64(b);
2957
2958 spin_lock_irqsave(writeq_lock, flags);
2959 writel((u32)(data_out), addr);
2960 writel((u32)(data_out >> 32), (addr + 4));
2961 spin_unlock_irqrestore(writeq_lock, flags);
2962 }
2963 #endif
2964
2965 /**
2966 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2967 * @ioc: per adapter object
2968 * @smid: system request message index
2969 * @handle: device handle
2970 *
2971 * Return nothing.
2972 */
2973 static void
2974 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2975 {
2976 Mpi2RequestDescriptorUnion_t descriptor;
2977 u64 *request = (u64 *)&descriptor;
2978
2979
2980 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2981 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2982 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2983 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2984 descriptor.SCSIIO.LMID = 0;
2985 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2986 &ioc->scsi_lookup_lock);
2987 }
2988
2989 /**
2990 * _base_put_smid_fast_path - send fast path request to firmware
2991 * @ioc: per adapter object
2992 * @smid: system request message index
2993 * @handle: device handle
2994 *
2995 * Return nothing.
2996 */
2997 static void
2998 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2999 u16 handle)
3000 {
3001 Mpi2RequestDescriptorUnion_t descriptor;
3002 u64 *request = (u64 *)&descriptor;
3003
3004 descriptor.SCSIIO.RequestFlags =
3005 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3006 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3007 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3008 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3009 descriptor.SCSIIO.LMID = 0;
3010 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3011 &ioc->scsi_lookup_lock);
3012 }
3013
3014 /**
3015 * _base_put_smid_hi_priority - send Task Management request to firmware
3016 * @ioc: per adapter object
3017 * @smid: system request message index
3018 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3019 * Return nothing.
3020 */
3021 static void
3022 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3023 u16 msix_task)
3024 {
3025 Mpi2RequestDescriptorUnion_t descriptor;
3026 u64 *request = (u64 *)&descriptor;
3027
3028 descriptor.HighPriority.RequestFlags =
3029 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3030 descriptor.HighPriority.MSIxIndex = msix_task;
3031 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3032 descriptor.HighPriority.LMID = 0;
3033 descriptor.HighPriority.Reserved1 = 0;
3034 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3035 &ioc->scsi_lookup_lock);
3036 }
3037
3038 /**
3039 * _base_put_smid_nvme_encap - send NVMe encapsulated request to
3040 * firmware
3041 * @ioc: per adapter object
3042 * @smid: system request message index
3043 *
3044 * Return nothing.
3045 */
3046 static void
3047 _base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3048 {
3049 Mpi2RequestDescriptorUnion_t descriptor;
3050 u64 *request = (u64 *)&descriptor;
3051
3052 descriptor.Default.RequestFlags =
3053 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3054 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
3055 descriptor.Default.SMID = cpu_to_le16(smid);
3056 descriptor.Default.LMID = 0;
3057 descriptor.Default.DescriptorTypeDependent = 0;
3058 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3059 &ioc->scsi_lookup_lock);
3060 }
3061
3062 /**
3063 * _base_put_smid_default - Default, primarily used for config pages
3064 * @ioc: per adapter object
3065 * @smid: system request message index
3066 *
3067 * Return nothing.
3068 */
3069 static void
3070 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3071 {
3072 Mpi2RequestDescriptorUnion_t descriptor;
3073 u64 *request = (u64 *)&descriptor;
3074
3075 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3076 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
3077 descriptor.Default.SMID = cpu_to_le16(smid);
3078 descriptor.Default.LMID = 0;
3079 descriptor.Default.DescriptorTypeDependent = 0;
3080 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3081 &ioc->scsi_lookup_lock);
3082 }
3083
3084 /**
3085 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
3086 * Atomic Request Descriptor
3087 * @ioc: per adapter object
3088 * @smid: system request message index
3089 * @handle: device handle, unused in this function, for function type match
3090 *
3091 * Return nothing.
3092 */
3093 static void
3094 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3095 u16 handle)
3096 {
3097 Mpi26AtomicRequestDescriptor_t descriptor;
3098 u32 *request = (u32 *)&descriptor;
3099
3100 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3101 descriptor.MSIxIndex = _base_get_msix_index(ioc);
3102 descriptor.SMID = cpu_to_le16(smid);
3103
3104 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3105 }
3106
3107 /**
3108 * _base_put_smid_fast_path_atomic - send fast path request to firmware
3109 * using Atomic Request Descriptor
3110 * @ioc: per adapter object
3111 * @smid: system request message index
3112 * @handle: device handle, unused in this function, for function type match
3113 * Return nothing
3114 */
3115 static void
3116 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3117 u16 handle)
3118 {
3119 Mpi26AtomicRequestDescriptor_t descriptor;
3120 u32 *request = (u32 *)&descriptor;
3121
3122 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3123 descriptor.MSIxIndex = _base_get_msix_index(ioc);
3124 descriptor.SMID = cpu_to_le16(smid);
3125
3126 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3127 }
3128
3129 /**
3130 * _base_put_smid_hi_priority_atomic - send Task Management request to
3131 * firmware using Atomic Request Descriptor
3132 * @ioc: per adapter object
3133 * @smid: system request message index
3134 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
3135 *
3136 * Return nothing.
3137 */
3138 static void
3139 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3140 u16 msix_task)
3141 {
3142 Mpi26AtomicRequestDescriptor_t descriptor;
3143 u32 *request = (u32 *)&descriptor;
3144
3145 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3146 descriptor.MSIxIndex = msix_task;
3147 descriptor.SMID = cpu_to_le16(smid);
3148
3149 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3150 }
3151
3152 /**
3153 * _base_put_smid_nvme_encap_atomic - send NVMe encapsulated request to
3154 * firmware using Atomic Request Descriptor
3155 * @ioc: per adapter object
3156 * @smid: system request message index
3157 *
3158 * Return nothing.
3159 */
3160 static void
3161 _base_put_smid_nvme_encap_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3162 {
3163 Mpi26AtomicRequestDescriptor_t descriptor;
3164 u32 *request = (u32 *)&descriptor;
3165
3166 descriptor.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3167 descriptor.MSIxIndex = _base_get_msix_index(ioc);
3168 descriptor.SMID = cpu_to_le16(smid);
3169
3170 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3171 }
3172
3173 /**
3174 * _base_put_smid_default - Default, primarily used for config pages
3175 * use Atomic Request Descriptor
3176 * @ioc: per adapter object
3177 * @smid: system request message index
3178 *
3179 * Return nothing.
3180 */
3181 static void
3182 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3183 {
3184 Mpi26AtomicRequestDescriptor_t descriptor;
3185 u32 *request = (u32 *)&descriptor;
3186
3187 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3188 descriptor.MSIxIndex = _base_get_msix_index(ioc);
3189 descriptor.SMID = cpu_to_le16(smid);
3190
3191 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3192 }
3193
3194 /**
3195 * _base_display_OEMs_branding - Display branding string
3196 * @ioc: per adapter object
3197 *
3198 * Return nothing.
3199 */
3200 static void
3201 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3202 {
3203 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3204 return;
3205
3206 switch (ioc->pdev->subsystem_vendor) {
3207 case PCI_VENDOR_ID_INTEL:
3208 switch (ioc->pdev->device) {
3209 case MPI2_MFGPAGE_DEVID_SAS2008:
3210 switch (ioc->pdev->subsystem_device) {
3211 case MPT2SAS_INTEL_RMS2LL080_SSDID:
3212 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3213 MPT2SAS_INTEL_RMS2LL080_BRANDING);
3214 break;
3215 case MPT2SAS_INTEL_RMS2LL040_SSDID:
3216 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3217 MPT2SAS_INTEL_RMS2LL040_BRANDING);
3218 break;
3219 case MPT2SAS_INTEL_SSD910_SSDID:
3220 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3221 MPT2SAS_INTEL_SSD910_BRANDING);
3222 break;
3223 default:
3224 pr_info(MPT3SAS_FMT
3225 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3226 ioc->name, ioc->pdev->subsystem_device);
3227 break;
3228 }
3229 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3230 switch (ioc->pdev->subsystem_device) {
3231 case MPT2SAS_INTEL_RS25GB008_SSDID:
3232 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3233 MPT2SAS_INTEL_RS25GB008_BRANDING);
3234 break;
3235 case MPT2SAS_INTEL_RMS25JB080_SSDID:
3236 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3237 MPT2SAS_INTEL_RMS25JB080_BRANDING);
3238 break;
3239 case MPT2SAS_INTEL_RMS25JB040_SSDID:
3240 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3241 MPT2SAS_INTEL_RMS25JB040_BRANDING);
3242 break;
3243 case MPT2SAS_INTEL_RMS25KB080_SSDID:
3244 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3245 MPT2SAS_INTEL_RMS25KB080_BRANDING);
3246 break;
3247 case MPT2SAS_INTEL_RMS25KB040_SSDID:
3248 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3249 MPT2SAS_INTEL_RMS25KB040_BRANDING);
3250 break;
3251 case MPT2SAS_INTEL_RMS25LB040_SSDID:
3252 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3253 MPT2SAS_INTEL_RMS25LB040_BRANDING);
3254 break;
3255 case MPT2SAS_INTEL_RMS25LB080_SSDID:
3256 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3257 MPT2SAS_INTEL_RMS25LB080_BRANDING);
3258 break;
3259 default:
3260 pr_info(MPT3SAS_FMT
3261 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3262 ioc->name, ioc->pdev->subsystem_device);
3263 break;
3264 }
3265 case MPI25_MFGPAGE_DEVID_SAS3008:
3266 switch (ioc->pdev->subsystem_device) {
3267 case MPT3SAS_INTEL_RMS3JC080_SSDID:
3268 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3269 MPT3SAS_INTEL_RMS3JC080_BRANDING);
3270 break;
3271
3272 case MPT3SAS_INTEL_RS3GC008_SSDID:
3273 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3274 MPT3SAS_INTEL_RS3GC008_BRANDING);
3275 break;
3276 case MPT3SAS_INTEL_RS3FC044_SSDID:
3277 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3278 MPT3SAS_INTEL_RS3FC044_BRANDING);
3279 break;
3280 case MPT3SAS_INTEL_RS3UC080_SSDID:
3281 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3282 MPT3SAS_INTEL_RS3UC080_BRANDING);
3283 break;
3284 default:
3285 pr_info(MPT3SAS_FMT
3286 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3287 ioc->name, ioc->pdev->subsystem_device);
3288 break;
3289 }
3290 break;
3291 default:
3292 pr_info(MPT3SAS_FMT
3293 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3294 ioc->name, ioc->pdev->subsystem_device);
3295 break;
3296 }
3297 break;
3298 case PCI_VENDOR_ID_DELL:
3299 switch (ioc->pdev->device) {
3300 case MPI2_MFGPAGE_DEVID_SAS2008:
3301 switch (ioc->pdev->subsystem_device) {
3302 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3303 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3304 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3305 break;
3306 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3307 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3308 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3309 break;
3310 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3311 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3312 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3313 break;
3314 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3315 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3316 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3317 break;
3318 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3319 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3320 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3321 break;
3322 case MPT2SAS_DELL_PERC_H200_SSDID:
3323 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3324 MPT2SAS_DELL_PERC_H200_BRANDING);
3325 break;
3326 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3327 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3328 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3329 break;
3330 default:
3331 pr_info(MPT3SAS_FMT
3332 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3333 ioc->name, ioc->pdev->subsystem_device);
3334 break;
3335 }
3336 break;
3337 case MPI25_MFGPAGE_DEVID_SAS3008:
3338 switch (ioc->pdev->subsystem_device) {
3339 case MPT3SAS_DELL_12G_HBA_SSDID:
3340 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3341 MPT3SAS_DELL_12G_HBA_BRANDING);
3342 break;
3343 default:
3344 pr_info(MPT3SAS_FMT
3345 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3346 ioc->name, ioc->pdev->subsystem_device);
3347 break;
3348 }
3349 break;
3350 default:
3351 pr_info(MPT3SAS_FMT
3352 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3353 ioc->pdev->subsystem_device);
3354 break;
3355 }
3356 break;
3357 case PCI_VENDOR_ID_CISCO:
3358 switch (ioc->pdev->device) {
3359 case MPI25_MFGPAGE_DEVID_SAS3008:
3360 switch (ioc->pdev->subsystem_device) {
3361 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3362 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3363 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3364 break;
3365 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3366 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3367 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3368 break;
3369 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3370 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3371 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3372 break;
3373 default:
3374 pr_info(MPT3SAS_FMT
3375 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3376 ioc->name, ioc->pdev->subsystem_device);
3377 break;
3378 }
3379 break;
3380 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3381 switch (ioc->pdev->subsystem_device) {
3382 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3383 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3384 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3385 break;
3386 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3387 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3388 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3389 );
3390 break;
3391 default:
3392 pr_info(MPT3SAS_FMT
3393 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3394 ioc->name, ioc->pdev->subsystem_device);
3395 break;
3396 }
3397 break;
3398 default:
3399 pr_info(MPT3SAS_FMT
3400 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3401 ioc->name, ioc->pdev->subsystem_device);
3402 break;
3403 }
3404 break;
3405 case MPT2SAS_HP_3PAR_SSVID:
3406 switch (ioc->pdev->device) {
3407 case MPI2_MFGPAGE_DEVID_SAS2004:
3408 switch (ioc->pdev->subsystem_device) {
3409 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3410 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3411 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3412 break;
3413 default:
3414 pr_info(MPT3SAS_FMT
3415 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3416 ioc->name, ioc->pdev->subsystem_device);
3417 break;
3418 }
3419 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3420 switch (ioc->pdev->subsystem_device) {
3421 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3422 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3423 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3424 break;
3425 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3426 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3427 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3428 break;
3429 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3430 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3431 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3432 break;
3433 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3434 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3435 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3436 break;
3437 default:
3438 pr_info(MPT3SAS_FMT
3439 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3440 ioc->name, ioc->pdev->subsystem_device);
3441 break;
3442 }
3443 default:
3444 pr_info(MPT3SAS_FMT
3445 "HP SAS HBA: Subsystem ID: 0x%X\n",
3446 ioc->name, ioc->pdev->subsystem_device);
3447 break;
3448 }
3449 default:
3450 break;
3451 }
3452 }
3453
3454 /**
3455 * _base_display_ioc_capabilities - Disply IOC's capabilities.
3456 * @ioc: per adapter object
3457 *
3458 * Return nothing.
3459 */
3460 static void
3461 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3462 {
3463 int i = 0;
3464 char desc[16];
3465 u32 iounit_pg1_flags;
3466 u32 bios_version;
3467
3468 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3469 strncpy(desc, ioc->manu_pg0.ChipName, 16);
3470 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3471 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3472 ioc->name, desc,
3473 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3474 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3475 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3476 ioc->facts.FWVersion.Word & 0x000000FF,
3477 ioc->pdev->revision,
3478 (bios_version & 0xFF000000) >> 24,
3479 (bios_version & 0x00FF0000) >> 16,
3480 (bios_version & 0x0000FF00) >> 8,
3481 bios_version & 0x000000FF);
3482
3483 _base_display_OEMs_branding(ioc);
3484
3485 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3486 pr_info("%sNVMe", i ? "," : "");
3487 i++;
3488 }
3489
3490 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3491
3492 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3493 pr_info("Initiator");
3494 i++;
3495 }
3496
3497 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3498 pr_info("%sTarget", i ? "," : "");
3499 i++;
3500 }
3501
3502 i = 0;
3503 pr_info("), ");
3504 pr_info("Capabilities=(");
3505
3506 if (!ioc->hide_ir_msg) {
3507 if (ioc->facts.IOCCapabilities &
3508 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3509 pr_info("Raid");
3510 i++;
3511 }
3512 }
3513
3514 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3515 pr_info("%sTLR", i ? "," : "");
3516 i++;
3517 }
3518
3519 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3520 pr_info("%sMulticast", i ? "," : "");
3521 i++;
3522 }
3523
3524 if (ioc->facts.IOCCapabilities &
3525 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3526 pr_info("%sBIDI Target", i ? "," : "");
3527 i++;
3528 }
3529
3530 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3531 pr_info("%sEEDP", i ? "," : "");
3532 i++;
3533 }
3534
3535 if (ioc->facts.IOCCapabilities &
3536 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3537 pr_info("%sSnapshot Buffer", i ? "," : "");
3538 i++;
3539 }
3540
3541 if (ioc->facts.IOCCapabilities &
3542 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3543 pr_info("%sDiag Trace Buffer", i ? "," : "");
3544 i++;
3545 }
3546
3547 if (ioc->facts.IOCCapabilities &
3548 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3549 pr_info("%sDiag Extended Buffer", i ? "," : "");
3550 i++;
3551 }
3552
3553 if (ioc->facts.IOCCapabilities &
3554 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3555 pr_info("%sTask Set Full", i ? "," : "");
3556 i++;
3557 }
3558
3559 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3560 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3561 pr_info("%sNCQ", i ? "," : "");
3562 i++;
3563 }
3564
3565 pr_info(")\n");
3566 }
3567
3568 /**
3569 * mpt3sas_base_update_missing_delay - change the missing delay timers
3570 * @ioc: per adapter object
3571 * @device_missing_delay: amount of time till device is reported missing
3572 * @io_missing_delay: interval IO is returned when there is a missing device
3573 *
3574 * Return nothing.
3575 *
3576 * Passed on the command line, this function will modify the device missing
3577 * delay, as well as the io missing delay. This should be called at driver
3578 * load time.
3579 */
3580 void
3581 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3582 u16 device_missing_delay, u8 io_missing_delay)
3583 {
3584 u16 dmd, dmd_new, dmd_orignal;
3585 u8 io_missing_delay_original;
3586 u16 sz;
3587 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3588 Mpi2ConfigReply_t mpi_reply;
3589 u8 num_phys = 0;
3590 u16 ioc_status;
3591
3592 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3593 if (!num_phys)
3594 return;
3595
3596 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3597 sizeof(Mpi2SasIOUnit1PhyData_t));
3598 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3599 if (!sas_iounit_pg1) {
3600 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3601 ioc->name, __FILE__, __LINE__, __func__);
3602 goto out;
3603 }
3604 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3605 sas_iounit_pg1, sz))) {
3606 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3607 ioc->name, __FILE__, __LINE__, __func__);
3608 goto out;
3609 }
3610 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3611 MPI2_IOCSTATUS_MASK;
3612 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3613 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3614 ioc->name, __FILE__, __LINE__, __func__);
3615 goto out;
3616 }
3617
3618 /* device missing delay */
3619 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3620 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3621 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3622 else
3623 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3624 dmd_orignal = dmd;
3625 if (device_missing_delay > 0x7F) {
3626 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3627 device_missing_delay;
3628 dmd = dmd / 16;
3629 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3630 } else
3631 dmd = device_missing_delay;
3632 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3633
3634 /* io missing delay */
3635 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3636 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3637
3638 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3639 sz)) {
3640 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3641 dmd_new = (dmd &
3642 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3643 else
3644 dmd_new =
3645 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3646 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3647 ioc->name, dmd_orignal, dmd_new);
3648 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3649 ioc->name, io_missing_delay_original,
3650 io_missing_delay);
3651 ioc->device_missing_delay = dmd_new;
3652 ioc->io_missing_delay = io_missing_delay;
3653 }
3654
3655 out:
3656 kfree(sas_iounit_pg1);
3657 }
3658 /**
3659 * _base_static_config_pages - static start of day config pages
3660 * @ioc: per adapter object
3661 *
3662 * Return nothing.
3663 */
3664 static void
3665 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3666 {
3667 Mpi2ConfigReply_t mpi_reply;
3668 u32 iounit_pg1_flags;
3669
3670 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3671 if (ioc->ir_firmware)
3672 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3673 &ioc->manu_pg10);
3674
3675 /*
3676 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3677 * flag unset in NVDATA.
3678 */
3679 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3680 if (ioc->manu_pg11.EEDPTagMode == 0) {
3681 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3682 ioc->name);
3683 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3684 ioc->manu_pg11.EEDPTagMode |= 0x1;
3685 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3686 &ioc->manu_pg11);
3687 }
3688
3689 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3690 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3691 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3692 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3693 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3694 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3695 _base_display_ioc_capabilities(ioc);
3696
3697 /*
3698 * Enable task_set_full handling in iounit_pg1 when the
3699 * facts capabilities indicate that its supported.
3700 */
3701 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3702 if ((ioc->facts.IOCCapabilities &
3703 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3704 iounit_pg1_flags &=
3705 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3706 else
3707 iounit_pg1_flags |=
3708 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3709 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3710 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3711
3712 if (ioc->iounit_pg8.NumSensors)
3713 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3714 }
3715
3716 /**
3717 * _base_release_memory_pools - release memory
3718 * @ioc: per adapter object
3719 *
3720 * Free memory allocated from _base_allocate_memory_pools.
3721 *
3722 * Return nothing.
3723 */
3724 static void
3725 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3726 {
3727 int i = 0;
3728 struct reply_post_struct *rps;
3729
3730 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3731 __func__));
3732
3733 if (ioc->request) {
3734 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3735 ioc->request, ioc->request_dma);
3736 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3737 "request_pool(0x%p): free\n",
3738 ioc->name, ioc->request));
3739 ioc->request = NULL;
3740 }
3741
3742 if (ioc->sense) {
3743 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3744 dma_pool_destroy(ioc->sense_dma_pool);
3745 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3746 "sense_pool(0x%p): free\n",
3747 ioc->name, ioc->sense));
3748 ioc->sense = NULL;
3749 }
3750
3751 if (ioc->reply) {
3752 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3753 dma_pool_destroy(ioc->reply_dma_pool);
3754 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3755 "reply_pool(0x%p): free\n",
3756 ioc->name, ioc->reply));
3757 ioc->reply = NULL;
3758 }
3759
3760 if (ioc->reply_free) {
3761 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3762 ioc->reply_free_dma);
3763 dma_pool_destroy(ioc->reply_free_dma_pool);
3764 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3765 "reply_free_pool(0x%p): free\n",
3766 ioc->name, ioc->reply_free));
3767 ioc->reply_free = NULL;
3768 }
3769
3770 if (ioc->reply_post) {
3771 do {
3772 rps = &ioc->reply_post[i];
3773 if (rps->reply_post_free) {
3774 dma_pool_free(
3775 ioc->reply_post_free_dma_pool,
3776 rps->reply_post_free,
3777 rps->reply_post_free_dma);
3778 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3779 "reply_post_free_pool(0x%p): free\n",
3780 ioc->name, rps->reply_post_free));
3781 rps->reply_post_free = NULL;
3782 }
3783 } while (ioc->rdpq_array_enable &&
3784 (++i < ioc->reply_queue_count));
3785
3786 dma_pool_destroy(ioc->reply_post_free_dma_pool);
3787 kfree(ioc->reply_post);
3788 }
3789
3790 if (ioc->pcie_sgl_dma_pool) {
3791 for (i = 0; i < ioc->scsiio_depth; i++) {
3792 if (ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl)
3793 pci_pool_free(ioc->pcie_sgl_dma_pool,
3794 ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl,
3795 ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl_dma);
3796 }
3797 if (ioc->pcie_sgl_dma_pool)
3798 pci_pool_destroy(ioc->pcie_sgl_dma_pool);
3799 }
3800
3801 if (ioc->config_page) {
3802 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3803 "config_page(0x%p): free\n", ioc->name,
3804 ioc->config_page));
3805 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3806 ioc->config_page, ioc->config_page_dma);
3807 }
3808
3809 if (ioc->scsi_lookup) {
3810 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3811 ioc->scsi_lookup = NULL;
3812 }
3813 kfree(ioc->hpr_lookup);
3814 kfree(ioc->internal_lookup);
3815 if (ioc->chain_lookup) {
3816 for (i = 0; i < ioc->chain_depth; i++) {
3817 if (ioc->chain_lookup[i].chain_buffer)
3818 dma_pool_free(ioc->chain_dma_pool,
3819 ioc->chain_lookup[i].chain_buffer,
3820 ioc->chain_lookup[i].chain_buffer_dma);
3821 }
3822 dma_pool_destroy(ioc->chain_dma_pool);
3823 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3824 ioc->chain_lookup = NULL;
3825 }
3826 }
3827
3828 /**
3829 * _base_allocate_memory_pools - allocate start of day memory pools
3830 * @ioc: per adapter object
3831 *
3832 * Returns 0 success, anything else error
3833 */
3834 static int
3835 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3836 {
3837 struct mpt3sas_facts *facts;
3838 u16 max_sge_elements;
3839 u16 chains_needed_per_io;
3840 u32 sz, total_sz, reply_post_free_sz;
3841 u32 retry_sz;
3842 u16 max_request_credit, nvme_blocks_needed;
3843 unsigned short sg_tablesize;
3844 u16 sge_size;
3845 int i;
3846
3847 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3848 __func__));
3849
3850
3851 retry_sz = 0;
3852 facts = &ioc->facts;
3853
3854 /* command line tunables for max sgl entries */
3855 if (max_sgl_entries != -1)
3856 sg_tablesize = max_sgl_entries;
3857 else {
3858 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3859 sg_tablesize = MPT2SAS_SG_DEPTH;
3860 else
3861 sg_tablesize = MPT3SAS_SG_DEPTH;
3862 }
3863
3864 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
3865 if (reset_devices)
3866 sg_tablesize = min_t(unsigned short, sg_tablesize,
3867 MPT_KDUMP_MIN_PHYS_SEGMENTS);
3868
3869 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3870 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3871 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3872 sg_tablesize = min_t(unsigned short, sg_tablesize,
3873 SG_MAX_SEGMENTS);
3874 pr_warn(MPT3SAS_FMT
3875 "sg_tablesize(%u) is bigger than kernel"
3876 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3877 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3878 }
3879 ioc->shost->sg_tablesize = sg_tablesize;
3880
3881 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3882 (facts->RequestCredit / 4));
3883 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3884 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3885 INTERNAL_SCSIIO_CMDS_COUNT)) {
3886 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3887 Credits, it has just %d number of credits\n",
3888 ioc->name, facts->RequestCredit);
3889 return -ENOMEM;
3890 }
3891 ioc->internal_depth = 10;
3892 }
3893
3894 ioc->hi_priority_depth = ioc->internal_depth - (5);
3895 /* command line tunables for max controller queue depth */
3896 if (max_queue_depth != -1 && max_queue_depth != 0) {
3897 max_request_credit = min_t(u16, max_queue_depth +
3898 ioc->internal_depth, facts->RequestCredit);
3899 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3900 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3901 } else if (reset_devices)
3902 max_request_credit = min_t(u16, facts->RequestCredit,
3903 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
3904 else
3905 max_request_credit = min_t(u16, facts->RequestCredit,
3906 MAX_HBA_QUEUE_DEPTH);
3907
3908 /* Firmware maintains additional facts->HighPriorityCredit number of
3909 * credits for HiPriprity Request messages, so hba queue depth will be
3910 * sum of max_request_credit and high priority queue depth.
3911 */
3912 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3913
3914 /* request frame size */
3915 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3916
3917 /* reply frame size */
3918 ioc->reply_sz = facts->ReplyFrameSize * 4;
3919
3920 /* chain segment size */
3921 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3922 if (facts->IOCMaxChainSegmentSize)
3923 ioc->chain_segment_sz =
3924 facts->IOCMaxChainSegmentSize *
3925 MAX_CHAIN_ELEMT_SZ;
3926 else
3927 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3928 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3929 MAX_CHAIN_ELEMT_SZ;
3930 } else
3931 ioc->chain_segment_sz = ioc->request_sz;
3932
3933 /* calculate the max scatter element size */
3934 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3935
3936 retry_allocation:
3937 total_sz = 0;
3938 /* calculate number of sg elements left over in the 1st frame */
3939 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3940 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3941 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3942
3943 /* now do the same for a chain buffer */
3944 max_sge_elements = ioc->chain_segment_sz - sge_size;
3945 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3946
3947 /*
3948 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3949 */
3950 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3951 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3952 + 1;
3953 if (chains_needed_per_io > facts->MaxChainDepth) {
3954 chains_needed_per_io = facts->MaxChainDepth;
3955 ioc->shost->sg_tablesize = min_t(u16,
3956 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3957 * chains_needed_per_io), ioc->shost->sg_tablesize);
3958 }
3959 ioc->chains_needed_per_io = chains_needed_per_io;
3960
3961 /* reply free queue sizing - taking into account for 64 FW events */
3962 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3963
3964 /* calculate reply descriptor post queue depth */
3965 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3966 ioc->reply_free_queue_depth + 1 ;
3967 /* align the reply post queue on the next 16 count boundary */
3968 if (ioc->reply_post_queue_depth % 16)
3969 ioc->reply_post_queue_depth += 16 -
3970 (ioc->reply_post_queue_depth % 16);
3971
3972 if (ioc->reply_post_queue_depth >
3973 facts->MaxReplyDescriptorPostQueueDepth) {
3974 ioc->reply_post_queue_depth =
3975 facts->MaxReplyDescriptorPostQueueDepth -
3976 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3977 ioc->hba_queue_depth =
3978 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3979 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3980 }
3981
3982 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3983 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3984 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3985 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3986 ioc->chains_needed_per_io));
3987
3988 /* reply post queue, 16 byte align */
3989 reply_post_free_sz = ioc->reply_post_queue_depth *
3990 sizeof(Mpi2DefaultReplyDescriptor_t);
3991
3992 sz = reply_post_free_sz;
3993 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3994 sz *= ioc->reply_queue_count;
3995
3996 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3997 (ioc->reply_queue_count):1,
3998 sizeof(struct reply_post_struct), GFP_KERNEL);
3999
4000 if (!ioc->reply_post) {
4001 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4002 ioc->name);
4003 goto out;
4004 }
4005 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4006 &ioc->pdev->dev, sz, 16, 0);
4007 if (!ioc->reply_post_free_dma_pool) {
4008 pr_err(MPT3SAS_FMT
4009 "reply_post_free pool: dma_pool_create failed\n",
4010 ioc->name);
4011 goto out;
4012 }
4013 i = 0;
4014 do {
4015 ioc->reply_post[i].reply_post_free =
4016 dma_pool_alloc(ioc->reply_post_free_dma_pool,
4017 GFP_KERNEL,
4018 &ioc->reply_post[i].reply_post_free_dma);
4019 if (!ioc->reply_post[i].reply_post_free) {
4020 pr_err(MPT3SAS_FMT
4021 "reply_post_free pool: dma_pool_alloc failed\n",
4022 ioc->name);
4023 goto out;
4024 }
4025 memset(ioc->reply_post[i].reply_post_free, 0, sz);
4026 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4027 "reply post free pool (0x%p): depth(%d),"
4028 "element_size(%d), pool_size(%d kB)\n", ioc->name,
4029 ioc->reply_post[i].reply_post_free,
4030 ioc->reply_post_queue_depth, 8, sz/1024));
4031 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4032 "reply_post_free_dma = (0x%llx)\n", ioc->name,
4033 (unsigned long long)
4034 ioc->reply_post[i].reply_post_free_dma));
4035 total_sz += sz;
4036 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4037
4038 if (ioc->dma_mask == 64) {
4039 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4040 pr_warn(MPT3SAS_FMT
4041 "no suitable consistent DMA mask for %s\n",
4042 ioc->name, pci_name(ioc->pdev));
4043 goto out;
4044 }
4045 }
4046
4047 ioc->scsiio_depth = ioc->hba_queue_depth -
4048 ioc->hi_priority_depth - ioc->internal_depth;
4049
4050 /* set the scsi host can_queue depth
4051 * with some internal commands that could be outstanding
4052 */
4053 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4054 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4055 "scsi host: can_queue depth (%d)\n",
4056 ioc->name, ioc->shost->can_queue));
4057
4058
4059 /* contiguous pool for request and chains, 16 byte align, one extra "
4060 * "frame for smid=0
4061 */
4062 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4063 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4064
4065 /* hi-priority queue */
4066 sz += (ioc->hi_priority_depth * ioc->request_sz);
4067
4068 /* internal queue */
4069 sz += (ioc->internal_depth * ioc->request_sz);
4070
4071 ioc->request_dma_sz = sz;
4072 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4073 if (!ioc->request) {
4074 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4075 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4076 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4077 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4078 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4079 goto out;
4080 retry_sz = 64;
4081 ioc->hba_queue_depth -= retry_sz;
4082 _base_release_memory_pools(ioc);
4083 goto retry_allocation;
4084 }
4085
4086 if (retry_sz)
4087 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4088 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4089 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4090 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4091
4092 /* hi-priority queue */
4093 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4094 ioc->request_sz);
4095 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4096 ioc->request_sz);
4097
4098 /* internal queue */
4099 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4100 ioc->request_sz);
4101 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4102 ioc->request_sz);
4103
4104 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4105 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4106 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4107 (ioc->hba_queue_depth * ioc->request_sz)/1024));
4108
4109 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4110 ioc->name, (unsigned long long) ioc->request_dma));
4111 total_sz += sz;
4112
4113 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
4114 ioc->scsi_lookup_pages = get_order(sz);
4115 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
4116 GFP_KERNEL, ioc->scsi_lookup_pages);
4117 if (!ioc->scsi_lookup) {
4118 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
4119 ioc->name, (int)sz);
4120 goto out;
4121 }
4122
4123 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4124 ioc->name, ioc->request, ioc->scsiio_depth));
4125
4126 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4127 sz = ioc->chain_depth * sizeof(struct chain_tracker);
4128 ioc->chain_pages = get_order(sz);
4129 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
4130 GFP_KERNEL, ioc->chain_pages);
4131 if (!ioc->chain_lookup) {
4132 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
4133 ioc->name);
4134 goto out;
4135 }
4136 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4137 ioc->chain_segment_sz, 16, 0);
4138 if (!ioc->chain_dma_pool) {
4139 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4140 ioc->name);
4141 goto out;
4142 }
4143 for (i = 0; i < ioc->chain_depth; i++) {
4144 ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
4145 ioc->chain_dma_pool , GFP_KERNEL,
4146 &ioc->chain_lookup[i].chain_buffer_dma);
4147 if (!ioc->chain_lookup[i].chain_buffer) {
4148 ioc->chain_depth = i;
4149 goto chain_done;
4150 }
4151 total_sz += ioc->chain_segment_sz;
4152 }
4153 chain_done:
4154 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4155 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4156 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4157 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
4158
4159 /* initialize hi-priority queue smid's */
4160 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4161 sizeof(struct request_tracker), GFP_KERNEL);
4162 if (!ioc->hpr_lookup) {
4163 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4164 ioc->name);
4165 goto out;
4166 }
4167 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4168 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4169 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4170 ioc->name, ioc->hi_priority,
4171 ioc->hi_priority_depth, ioc->hi_priority_smid));
4172
4173 /* initialize internal queue smid's */
4174 ioc->internal_lookup = kcalloc(ioc->internal_depth,
4175 sizeof(struct request_tracker), GFP_KERNEL);
4176 if (!ioc->internal_lookup) {
4177 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4178 ioc->name);
4179 goto out;
4180 }
4181 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4182 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4183 "internal(0x%p): depth(%d), start smid(%d)\n",
4184 ioc->name, ioc->internal,
4185 ioc->internal_depth, ioc->internal_smid));
4186 /*
4187 * The number of NVMe page sized blocks needed is:
4188 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4189 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4190 * that is placed in the main message frame. 8 is the size of each PRP
4191 * entry or PRP list pointer entry. 8 is subtracted from page_size
4192 * because of the PRP list pointer entry at the end of a page, so this
4193 * is not counted as a PRP entry. The 1 added page is a round up.
4194 *
4195 * To avoid allocation failures due to the amount of memory that could
4196 * be required for NVMe PRP's, only each set of NVMe blocks will be
4197 * contiguous, so a new set is allocated for each possible I/O.
4198 */
4199 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4200 nvme_blocks_needed =
4201 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4202 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4203 nvme_blocks_needed++;
4204
4205 sz = nvme_blocks_needed * ioc->page_size;
4206 ioc->pcie_sgl_dma_pool =
4207 pci_pool_create("PCIe SGL pool", ioc->pdev, sz, 16, 0);
4208 if (!ioc->pcie_sgl_dma_pool) {
4209 pr_info(MPT3SAS_FMT
4210 "PCIe SGL pool: pci_pool_create failed\n",
4211 ioc->name);
4212 goto out;
4213 }
4214 for (i = 0; i < ioc->scsiio_depth; i++) {
4215 ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl =
4216 pci_pool_alloc(ioc->pcie_sgl_dma_pool,
4217 GFP_KERNEL,
4218 &ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl_dma);
4219 if (!ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl) {
4220 pr_info(MPT3SAS_FMT
4221 "PCIe SGL pool: pci_pool_alloc failed\n",
4222 ioc->name);
4223 goto out;
4224 }
4225 }
4226
4227 dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4228 "element_size(%d), pool_size(%d kB)\n", ioc->name,
4229 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4230 total_sz += sz * ioc->scsiio_depth;
4231 }
4232 /* sense buffers, 4 byte align */
4233 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4234 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4235 4, 0);
4236 if (!ioc->sense_dma_pool) {
4237 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4238 ioc->name);
4239 goto out;
4240 }
4241 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4242 &ioc->sense_dma);
4243 if (!ioc->sense) {
4244 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4245 ioc->name);
4246 goto out;
4247 }
4248 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4249 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4250 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4251 SCSI_SENSE_BUFFERSIZE, sz/1024));
4252 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4253 ioc->name, (unsigned long long)ioc->sense_dma));
4254 total_sz += sz;
4255
4256 /* reply pool, 4 byte align */
4257 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4258 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4259 4, 0);
4260 if (!ioc->reply_dma_pool) {
4261 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4262 ioc->name);
4263 goto out;
4264 }
4265 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4266 &ioc->reply_dma);
4267 if (!ioc->reply) {
4268 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4269 ioc->name);
4270 goto out;
4271 }
4272 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4273 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4274 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4275 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4276 ioc->name, ioc->reply,
4277 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4278 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4279 ioc->name, (unsigned long long)ioc->reply_dma));
4280 total_sz += sz;
4281
4282 /* reply free queue, 16 byte align */
4283 sz = ioc->reply_free_queue_depth * 4;
4284 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4285 &ioc->pdev->dev, sz, 16, 0);
4286 if (!ioc->reply_free_dma_pool) {
4287 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4288 ioc->name);
4289 goto out;
4290 }
4291 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4292 &ioc->reply_free_dma);
4293 if (!ioc->reply_free) {
4294 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4295 ioc->name);
4296 goto out;
4297 }
4298 memset(ioc->reply_free, 0, sz);
4299 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4300 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4301 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4302 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4303 "reply_free_dma (0x%llx)\n",
4304 ioc->name, (unsigned long long)ioc->reply_free_dma));
4305 total_sz += sz;
4306
4307 ioc->config_page_sz = 512;
4308 ioc->config_page = pci_alloc_consistent(ioc->pdev,
4309 ioc->config_page_sz, &ioc->config_page_dma);
4310 if (!ioc->config_page) {
4311 pr_err(MPT3SAS_FMT
4312 "config page: dma_pool_alloc failed\n",
4313 ioc->name);
4314 goto out;
4315 }
4316 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4317 "config page(0x%p): size(%d)\n",
4318 ioc->name, ioc->config_page, ioc->config_page_sz));
4319 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4320 ioc->name, (unsigned long long)ioc->config_page_dma));
4321 total_sz += ioc->config_page_sz;
4322
4323 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4324 ioc->name, total_sz/1024);
4325 pr_info(MPT3SAS_FMT
4326 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4327 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4328 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4329 ioc->name, ioc->shost->sg_tablesize);
4330 return 0;
4331
4332 out:
4333 return -ENOMEM;
4334 }
4335
4336 /**
4337 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4338 * @ioc: Pointer to MPT_ADAPTER structure
4339 * @cooked: Request raw or cooked IOC state
4340 *
4341 * Returns all IOC Doorbell register bits if cooked==0, else just the
4342 * Doorbell bits in MPI_IOC_STATE_MASK.
4343 */
4344 u32
4345 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4346 {
4347 u32 s, sc;
4348
4349 s = readl(&ioc->chip->Doorbell);
4350 sc = s & MPI2_IOC_STATE_MASK;
4351 return cooked ? sc : s;
4352 }
4353
4354 /**
4355 * _base_wait_on_iocstate - waiting on a particular ioc state
4356 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4357 * @timeout: timeout in second
4358 *
4359 * Returns 0 for success, non-zero for failure.
4360 */
4361 static int
4362 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4363 {
4364 u32 count, cntdn;
4365 u32 current_state;
4366
4367 count = 0;
4368 cntdn = 1000 * timeout;
4369 do {
4370 current_state = mpt3sas_base_get_iocstate(ioc, 1);
4371 if (current_state == ioc_state)
4372 return 0;
4373 if (count && current_state == MPI2_IOC_STATE_FAULT)
4374 break;
4375
4376 usleep_range(1000, 1500);
4377 count++;
4378 } while (--cntdn);
4379
4380 return current_state;
4381 }
4382
4383 /**
4384 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4385 * a write to the doorbell)
4386 * @ioc: per adapter object
4387 * @timeout: timeout in second
4388 *
4389 * Returns 0 for success, non-zero for failure.
4390 *
4391 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4392 */
4393 static int
4394 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4395
4396 static int
4397 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4398 {
4399 u32 cntdn, count;
4400 u32 int_status;
4401
4402 count = 0;
4403 cntdn = 1000 * timeout;
4404 do {
4405 int_status = readl(&ioc->chip->HostInterruptStatus);
4406 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4407 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4408 "%s: successful count(%d), timeout(%d)\n",
4409 ioc->name, __func__, count, timeout));
4410 return 0;
4411 }
4412
4413 usleep_range(1000, 1500);
4414 count++;
4415 } while (--cntdn);
4416
4417 pr_err(MPT3SAS_FMT
4418 "%s: failed due to timeout count(%d), int_status(%x)!\n",
4419 ioc->name, __func__, count, int_status);
4420 return -EFAULT;
4421 }
4422
4423 static int
4424 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4425 {
4426 u32 cntdn, count;
4427 u32 int_status;
4428
4429 count = 0;
4430 cntdn = 2000 * timeout;
4431 do {
4432 int_status = readl(&ioc->chip->HostInterruptStatus);
4433 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4434 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4435 "%s: successful count(%d), timeout(%d)\n",
4436 ioc->name, __func__, count, timeout));
4437 return 0;
4438 }
4439
4440 udelay(500);
4441 count++;
4442 } while (--cntdn);
4443
4444 pr_err(MPT3SAS_FMT
4445 "%s: failed due to timeout count(%d), int_status(%x)!\n",
4446 ioc->name, __func__, count, int_status);
4447 return -EFAULT;
4448
4449 }
4450
4451 /**
4452 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
4453 * @ioc: per adapter object
4454 * @timeout: timeout in second
4455 *
4456 * Returns 0 for success, non-zero for failure.
4457 *
4458 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
4459 * doorbell.
4460 */
4461 static int
4462 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
4463 {
4464 u32 cntdn, count;
4465 u32 int_status;
4466 u32 doorbell;
4467
4468 count = 0;
4469 cntdn = 1000 * timeout;
4470 do {
4471 int_status = readl(&ioc->chip->HostInterruptStatus);
4472 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
4473 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4474 "%s: successful count(%d), timeout(%d)\n",
4475 ioc->name, __func__, count, timeout));
4476 return 0;
4477 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4478 doorbell = readl(&ioc->chip->Doorbell);
4479 if ((doorbell & MPI2_IOC_STATE_MASK) ==
4480 MPI2_IOC_STATE_FAULT) {
4481 mpt3sas_base_fault_info(ioc , doorbell);
4482 return -EFAULT;
4483 }
4484 } else if (int_status == 0xFFFFFFFF)
4485 goto out;
4486
4487 usleep_range(1000, 1500);
4488 count++;
4489 } while (--cntdn);
4490
4491 out:
4492 pr_err(MPT3SAS_FMT
4493 "%s: failed due to timeout count(%d), int_status(%x)!\n",
4494 ioc->name, __func__, count, int_status);
4495 return -EFAULT;
4496 }
4497
4498 /**
4499 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
4500 * @ioc: per adapter object
4501 * @timeout: timeout in second
4502 *
4503 * Returns 0 for success, non-zero for failure.
4504 *
4505 */
4506 static int
4507 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
4508 {
4509 u32 cntdn, count;
4510 u32 doorbell_reg;
4511
4512 count = 0;
4513 cntdn = 1000 * timeout;
4514 do {
4515 doorbell_reg = readl(&ioc->chip->Doorbell);
4516 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
4517 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4518 "%s: successful count(%d), timeout(%d)\n",
4519 ioc->name, __func__, count, timeout));
4520 return 0;
4521 }
4522
4523 usleep_range(1000, 1500);
4524 count++;
4525 } while (--cntdn);
4526
4527 pr_err(MPT3SAS_FMT
4528 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
4529 ioc->name, __func__, count, doorbell_reg);
4530 return -EFAULT;
4531 }
4532
4533 /**
4534 * _base_send_ioc_reset - send doorbell reset
4535 * @ioc: per adapter object
4536 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
4537 * @timeout: timeout in second
4538 *
4539 * Returns 0 for success, non-zero for failure.
4540 */
4541 static int
4542 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
4543 {
4544 u32 ioc_state;
4545 int r = 0;
4546
4547 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
4548 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
4549 ioc->name, __func__);
4550 return -EFAULT;
4551 }
4552
4553 if (!(ioc->facts.IOCCapabilities &
4554 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
4555 return -EFAULT;
4556
4557 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
4558
4559 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
4560 &ioc->chip->Doorbell);
4561 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
4562 r = -EFAULT;
4563 goto out;
4564 }
4565 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4566 if (ioc_state) {
4567 pr_err(MPT3SAS_FMT
4568 "%s: failed going to ready state (ioc_state=0x%x)\n",
4569 ioc->name, __func__, ioc_state);
4570 r = -EFAULT;
4571 goto out;
4572 }
4573 out:
4574 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
4575 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
4576 return r;
4577 }
4578
4579 /**
4580 * _base_handshake_req_reply_wait - send request thru doorbell interface
4581 * @ioc: per adapter object
4582 * @request_bytes: request length
4583 * @request: pointer having request payload
4584 * @reply_bytes: reply length
4585 * @reply: pointer to reply payload
4586 * @timeout: timeout in second
4587 *
4588 * Returns 0 for success, non-zero for failure.
4589 */
4590 static int
4591 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
4592 u32 *request, int reply_bytes, u16 *reply, int timeout)
4593 {
4594 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
4595 int i;
4596 u8 failed;
4597 __le32 *mfp;
4598
4599 /* make sure doorbell is not in use */
4600 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
4601 pr_err(MPT3SAS_FMT
4602 "doorbell is in use (line=%d)\n",
4603 ioc->name, __LINE__);
4604 return -EFAULT;
4605 }
4606
4607 /* clear pending doorbell interrupts from previous state changes */
4608 if (readl(&ioc->chip->HostInterruptStatus) &
4609 MPI2_HIS_IOC2SYS_DB_STATUS)
4610 writel(0, &ioc->chip->HostInterruptStatus);
4611
4612 /* send message to ioc */
4613 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4614 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4615 &ioc->chip->Doorbell);
4616
4617 if ((_base_spin_on_doorbell_int(ioc, 5))) {
4618 pr_err(MPT3SAS_FMT
4619 "doorbell handshake int failed (line=%d)\n",
4620 ioc->name, __LINE__);
4621 return -EFAULT;
4622 }
4623 writel(0, &ioc->chip->HostInterruptStatus);
4624
4625 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4626 pr_err(MPT3SAS_FMT
4627 "doorbell handshake ack failed (line=%d)\n",
4628 ioc->name, __LINE__);
4629 return -EFAULT;
4630 }
4631
4632 /* send message 32-bits at a time */
4633 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4634 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4635 if ((_base_wait_for_doorbell_ack(ioc, 5)))
4636 failed = 1;
4637 }
4638
4639 if (failed) {
4640 pr_err(MPT3SAS_FMT
4641 "doorbell handshake sending request failed (line=%d)\n",
4642 ioc->name, __LINE__);
4643 return -EFAULT;
4644 }
4645
4646 /* now wait for the reply */
4647 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4648 pr_err(MPT3SAS_FMT
4649 "doorbell handshake int failed (line=%d)\n",
4650 ioc->name, __LINE__);
4651 return -EFAULT;
4652 }
4653
4654 /* read the first two 16-bits, it gives the total length of the reply */
4655 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4656 & MPI2_DOORBELL_DATA_MASK);
4657 writel(0, &ioc->chip->HostInterruptStatus);
4658 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4659 pr_err(MPT3SAS_FMT
4660 "doorbell handshake int failed (line=%d)\n",
4661 ioc->name, __LINE__);
4662 return -EFAULT;
4663 }
4664 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4665 & MPI2_DOORBELL_DATA_MASK);
4666 writel(0, &ioc->chip->HostInterruptStatus);
4667
4668 for (i = 2; i < default_reply->MsgLength * 2; i++) {
4669 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4670 pr_err(MPT3SAS_FMT
4671 "doorbell handshake int failed (line=%d)\n",
4672 ioc->name, __LINE__);
4673 return -EFAULT;
4674 }
4675 if (i >= reply_bytes/2) /* overflow case */
4676 readl(&ioc->chip->Doorbell);
4677 else
4678 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4679 & MPI2_DOORBELL_DATA_MASK);
4680 writel(0, &ioc->chip->HostInterruptStatus);
4681 }
4682
4683 _base_wait_for_doorbell_int(ioc, 5);
4684 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4685 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4686 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4687 }
4688 writel(0, &ioc->chip->HostInterruptStatus);
4689
4690 if (ioc->logging_level & MPT_DEBUG_INIT) {
4691 mfp = (__le32 *)reply;
4692 pr_info("\toffset:data\n");
4693 for (i = 0; i < reply_bytes/4; i++)
4694 pr_info("\t[0x%02x]:%08x\n", i*4,
4695 le32_to_cpu(mfp[i]));
4696 }
4697 return 0;
4698 }
4699
4700 /**
4701 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4702 * @ioc: per adapter object
4703 * @mpi_reply: the reply payload from FW
4704 * @mpi_request: the request payload sent to FW
4705 *
4706 * The SAS IO Unit Control Request message allows the host to perform low-level
4707 * operations, such as resets on the PHYs of the IO Unit, also allows the host
4708 * to obtain the IOC assigned device handles for a device if it has other
4709 * identifying information about the device, in addition allows the host to
4710 * remove IOC resources associated with the device.
4711 *
4712 * Returns 0 for success, non-zero for failure.
4713 */
4714 int
4715 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4716 Mpi2SasIoUnitControlReply_t *mpi_reply,
4717 Mpi2SasIoUnitControlRequest_t *mpi_request)
4718 {
4719 u16 smid;
4720 u32 ioc_state;
4721 bool issue_reset = false;
4722 int rc;
4723 void *request;
4724 u16 wait_state_count;
4725
4726 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4727 __func__));
4728
4729 mutex_lock(&ioc->base_cmds.mutex);
4730
4731 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4732 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4733 ioc->name, __func__);
4734 rc = -EAGAIN;
4735 goto out;
4736 }
4737
4738 wait_state_count = 0;
4739 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4740 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4741 if (wait_state_count++ == 10) {
4742 pr_err(MPT3SAS_FMT
4743 "%s: failed due to ioc not operational\n",
4744 ioc->name, __func__);
4745 rc = -EFAULT;
4746 goto out;
4747 }
4748 ssleep(1);
4749 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4750 pr_info(MPT3SAS_FMT
4751 "%s: waiting for operational state(count=%d)\n",
4752 ioc->name, __func__, wait_state_count);
4753 }
4754
4755 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4756 if (!smid) {
4757 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4758 ioc->name, __func__);
4759 rc = -EAGAIN;
4760 goto out;
4761 }
4762
4763 rc = 0;
4764 ioc->base_cmds.status = MPT3_CMD_PENDING;
4765 request = mpt3sas_base_get_msg_frame(ioc, smid);
4766 ioc->base_cmds.smid = smid;
4767 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4768 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4769 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4770 ioc->ioc_link_reset_in_progress = 1;
4771 init_completion(&ioc->base_cmds.done);
4772 ioc->put_smid_default(ioc, smid);
4773 wait_for_completion_timeout(&ioc->base_cmds.done,
4774 msecs_to_jiffies(10000));
4775 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4776 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4777 ioc->ioc_link_reset_in_progress)
4778 ioc->ioc_link_reset_in_progress = 0;
4779 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4780 pr_err(MPT3SAS_FMT "%s: timeout\n",
4781 ioc->name, __func__);
4782 _debug_dump_mf(mpi_request,
4783 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4784 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4785 issue_reset = true;
4786 goto issue_host_reset;
4787 }
4788 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4789 memcpy(mpi_reply, ioc->base_cmds.reply,
4790 sizeof(Mpi2SasIoUnitControlReply_t));
4791 else
4792 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4793 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4794 goto out;
4795
4796 issue_host_reset:
4797 if (issue_reset)
4798 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4799 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4800 rc = -EFAULT;
4801 out:
4802 mutex_unlock(&ioc->base_cmds.mutex);
4803 return rc;
4804 }
4805
4806 /**
4807 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4808 * @ioc: per adapter object
4809 * @mpi_reply: the reply payload from FW
4810 * @mpi_request: the request payload sent to FW
4811 *
4812 * The SCSI Enclosure Processor request message causes the IOC to
4813 * communicate with SES devices to control LED status signals.
4814 *
4815 * Returns 0 for success, non-zero for failure.
4816 */
4817 int
4818 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4819 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4820 {
4821 u16 smid;
4822 u32 ioc_state;
4823 bool issue_reset = false;
4824 int rc;
4825 void *request;
4826 u16 wait_state_count;
4827
4828 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4829 __func__));
4830
4831 mutex_lock(&ioc->base_cmds.mutex);
4832
4833 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4834 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4835 ioc->name, __func__);
4836 rc = -EAGAIN;
4837 goto out;
4838 }
4839
4840 wait_state_count = 0;
4841 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4842 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4843 if (wait_state_count++ == 10) {
4844 pr_err(MPT3SAS_FMT
4845 "%s: failed due to ioc not operational\n",
4846 ioc->name, __func__);
4847 rc = -EFAULT;
4848 goto out;
4849 }
4850 ssleep(1);
4851 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4852 pr_info(MPT3SAS_FMT
4853 "%s: waiting for operational state(count=%d)\n",
4854 ioc->name,
4855 __func__, wait_state_count);
4856 }
4857
4858 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4859 if (!smid) {
4860 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4861 ioc->name, __func__);
4862 rc = -EAGAIN;
4863 goto out;
4864 }
4865
4866 rc = 0;
4867 ioc->base_cmds.status = MPT3_CMD_PENDING;
4868 request = mpt3sas_base_get_msg_frame(ioc, smid);
4869 ioc->base_cmds.smid = smid;
4870 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4871 init_completion(&ioc->base_cmds.done);
4872 ioc->put_smid_default(ioc, smid);
4873 wait_for_completion_timeout(&ioc->base_cmds.done,
4874 msecs_to_jiffies(10000));
4875 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4876 pr_err(MPT3SAS_FMT "%s: timeout\n",
4877 ioc->name, __func__);
4878 _debug_dump_mf(mpi_request,
4879 sizeof(Mpi2SepRequest_t)/4);
4880 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4881 issue_reset = false;
4882 goto issue_host_reset;
4883 }
4884 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4885 memcpy(mpi_reply, ioc->base_cmds.reply,
4886 sizeof(Mpi2SepReply_t));
4887 else
4888 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4889 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4890 goto out;
4891
4892 issue_host_reset:
4893 if (issue_reset)
4894 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4895 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4896 rc = -EFAULT;
4897 out:
4898 mutex_unlock(&ioc->base_cmds.mutex);
4899 return rc;
4900 }
4901
4902 /**
4903 * _base_get_port_facts - obtain port facts reply and save in ioc
4904 * @ioc: per adapter object
4905 *
4906 * Returns 0 for success, non-zero for failure.
4907 */
4908 static int
4909 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4910 {
4911 Mpi2PortFactsRequest_t mpi_request;
4912 Mpi2PortFactsReply_t mpi_reply;
4913 struct mpt3sas_port_facts *pfacts;
4914 int mpi_reply_sz, mpi_request_sz, r;
4915
4916 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4917 __func__));
4918
4919 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4920 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4921 memset(&mpi_request, 0, mpi_request_sz);
4922 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4923 mpi_request.PortNumber = port;
4924 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4925 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4926
4927 if (r != 0) {
4928 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4929 ioc->name, __func__, r);
4930 return r;
4931 }
4932
4933 pfacts = &ioc->pfacts[port];
4934 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4935 pfacts->PortNumber = mpi_reply.PortNumber;
4936 pfacts->VP_ID = mpi_reply.VP_ID;
4937 pfacts->VF_ID = mpi_reply.VF_ID;
4938 pfacts->MaxPostedCmdBuffers =
4939 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4940
4941 return 0;
4942 }
4943
4944 /**
4945 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4946 * @ioc: per adapter object
4947 * @timeout:
4948 *
4949 * Returns 0 for success, non-zero for failure.
4950 */
4951 static int
4952 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4953 {
4954 u32 ioc_state;
4955 int rc;
4956
4957 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4958 __func__));
4959
4960 if (ioc->pci_error_recovery) {
4961 dfailprintk(ioc, printk(MPT3SAS_FMT
4962 "%s: host in pci error recovery\n", ioc->name, __func__));
4963 return -EFAULT;
4964 }
4965
4966 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4967 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4968 ioc->name, __func__, ioc_state));
4969
4970 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4971 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4972 return 0;
4973
4974 if (ioc_state & MPI2_DOORBELL_USED) {
4975 dhsprintk(ioc, printk(MPT3SAS_FMT
4976 "unexpected doorbell active!\n", ioc->name));
4977 goto issue_diag_reset;
4978 }
4979
4980 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4981 mpt3sas_base_fault_info(ioc, ioc_state &
4982 MPI2_DOORBELL_DATA_MASK);
4983 goto issue_diag_reset;
4984 }
4985
4986 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4987 if (ioc_state) {
4988 dfailprintk(ioc, printk(MPT3SAS_FMT
4989 "%s: failed going to ready state (ioc_state=0x%x)\n",
4990 ioc->name, __func__, ioc_state));
4991 return -EFAULT;
4992 }
4993
4994 issue_diag_reset:
4995 rc = _base_diag_reset(ioc);
4996 return rc;
4997 }
4998
4999 /**
5000 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5001 * @ioc: per adapter object
5002 *
5003 * Returns 0 for success, non-zero for failure.
5004 */
5005 static int
5006 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5007 {
5008 Mpi2IOCFactsRequest_t mpi_request;
5009 Mpi2IOCFactsReply_t mpi_reply;
5010 struct mpt3sas_facts *facts;
5011 int mpi_reply_sz, mpi_request_sz, r;
5012
5013 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5014 __func__));
5015
5016 r = _base_wait_for_iocstate(ioc, 10);
5017 if (r) {
5018 dfailprintk(ioc, printk(MPT3SAS_FMT
5019 "%s: failed getting to correct state\n",
5020 ioc->name, __func__));
5021 return r;
5022 }
5023 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5024 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5025 memset(&mpi_request, 0, mpi_request_sz);
5026 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5027 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5028 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5029
5030 if (r != 0) {
5031 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5032 ioc->name, __func__, r);
5033 return r;
5034 }
5035
5036 facts = &ioc->facts;
5037 memset(facts, 0, sizeof(struct mpt3sas_facts));
5038 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5039 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5040 facts->VP_ID = mpi_reply.VP_ID;
5041 facts->VF_ID = mpi_reply.VF_ID;
5042 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5043 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5044 facts->WhoInit = mpi_reply.WhoInit;
5045 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5046 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5047 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5048 facts->MaxReplyDescriptorPostQueueDepth =
5049 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5050 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5051 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5052 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5053 ioc->ir_firmware = 1;
5054 if ((facts->IOCCapabilities &
5055 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5056 ioc->rdpq_array_capable = 1;
5057 if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
5058 ioc->atomic_desc_capable = 1;
5059 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5060 facts->IOCRequestFrameSize =
5061 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5062 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5063 facts->IOCMaxChainSegmentSize =
5064 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5065 }
5066 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5067 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5068 ioc->shost->max_id = -1;
5069 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5070 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5071 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5072 facts->HighPriorityCredit =
5073 le16_to_cpu(mpi_reply.HighPriorityCredit);
5074 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5075 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5076 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5077
5078 /*
5079 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5080 */
5081 ioc->page_size = 1 << facts->CurrentHostPageSize;
5082 if (ioc->page_size == 1) {
5083 pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5084 "default host page size to 4k\n", ioc->name);
5085 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5086 }
5087 dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5088 ioc->name, facts->CurrentHostPageSize));
5089
5090 dinitprintk(ioc, pr_info(MPT3SAS_FMT
5091 "hba queue depth(%d), max chains per io(%d)\n",
5092 ioc->name, facts->RequestCredit,
5093 facts->MaxChainDepth));
5094 dinitprintk(ioc, pr_info(MPT3SAS_FMT
5095 "request frame size(%d), reply frame size(%d)\n", ioc->name,
5096 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5097 return 0;
5098 }
5099
5100 /**
5101 * _base_send_ioc_init - send ioc_init to firmware
5102 * @ioc: per adapter object
5103 *
5104 * Returns 0 for success, non-zero for failure.
5105 */
5106 static int
5107 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5108 {
5109 Mpi2IOCInitRequest_t mpi_request;
5110 Mpi2IOCInitReply_t mpi_reply;
5111 int i, r = 0;
5112 ktime_t current_time;
5113 u16 ioc_status;
5114 u32 reply_post_free_array_sz = 0;
5115 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
5116 dma_addr_t reply_post_free_array_dma;
5117
5118 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5119 __func__));
5120
5121 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5122 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5123 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5124 mpi_request.VF_ID = 0; /* TODO */
5125 mpi_request.VP_ID = 0;
5126 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5127 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5128 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5129
5130 if (_base_is_controller_msix_enabled(ioc))
5131 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5132 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5133 mpi_request.ReplyDescriptorPostQueueDepth =
5134 cpu_to_le16(ioc->reply_post_queue_depth);
5135 mpi_request.ReplyFreeQueueDepth =
5136 cpu_to_le16(ioc->reply_free_queue_depth);
5137
5138 mpi_request.SenseBufferAddressHigh =
5139 cpu_to_le32((u64)ioc->sense_dma >> 32);
5140 mpi_request.SystemReplyAddressHigh =
5141 cpu_to_le32((u64)ioc->reply_dma >> 32);
5142 mpi_request.SystemRequestFrameBaseAddress =
5143 cpu_to_le64((u64)ioc->request_dma);
5144 mpi_request.ReplyFreeQueueAddress =
5145 cpu_to_le64((u64)ioc->reply_free_dma);
5146
5147 if (ioc->rdpq_array_enable) {
5148 reply_post_free_array_sz = ioc->reply_queue_count *
5149 sizeof(Mpi2IOCInitRDPQArrayEntry);
5150 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
5151 reply_post_free_array_sz, &reply_post_free_array_dma);
5152 if (!reply_post_free_array) {
5153 pr_err(MPT3SAS_FMT
5154 "reply_post_free_array: pci_alloc_consistent failed\n",
5155 ioc->name);
5156 r = -ENOMEM;
5157 goto out;
5158 }
5159 memset(reply_post_free_array, 0, reply_post_free_array_sz);
5160 for (i = 0; i < ioc->reply_queue_count; i++)
5161 reply_post_free_array[i].RDPQBaseAddress =
5162 cpu_to_le64(
5163 (u64)ioc->reply_post[i].reply_post_free_dma);
5164 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5165 mpi_request.ReplyDescriptorPostQueueAddress =
5166 cpu_to_le64((u64)reply_post_free_array_dma);
5167 } else {
5168 mpi_request.ReplyDescriptorPostQueueAddress =
5169 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5170 }
5171
5172 /* This time stamp specifies number of milliseconds
5173 * since epoch ~ midnight January 1, 1970.
5174 */
5175 current_time = ktime_get_real();
5176 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5177
5178 if (ioc->logging_level & MPT_DEBUG_INIT) {
5179 __le32 *mfp;
5180 int i;
5181
5182 mfp = (__le32 *)&mpi_request;
5183 pr_info("\toffset:data\n");
5184 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5185 pr_info("\t[0x%02x]:%08x\n", i*4,
5186 le32_to_cpu(mfp[i]));
5187 }
5188
5189 r = _base_handshake_req_reply_wait(ioc,
5190 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5191 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5192
5193 if (r != 0) {
5194 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5195 ioc->name, __func__, r);
5196 goto out;
5197 }
5198
5199 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5200 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5201 mpi_reply.IOCLogInfo) {
5202 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5203 r = -EIO;
5204 }
5205
5206 out:
5207 if (reply_post_free_array)
5208 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
5209 reply_post_free_array,
5210 reply_post_free_array_dma);
5211 return r;
5212 }
5213
5214 /**
5215 * mpt3sas_port_enable_done - command completion routine for port enable
5216 * @ioc: per adapter object
5217 * @smid: system request message index
5218 * @msix_index: MSIX table index supplied by the OS
5219 * @reply: reply message frame(lower 32bit addr)
5220 *
5221 * Return 1 meaning mf should be freed from _base_interrupt
5222 * 0 means the mf is freed from this function.
5223 */
5224 u8
5225 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5226 u32 reply)
5227 {
5228 MPI2DefaultReply_t *mpi_reply;
5229 u16 ioc_status;
5230
5231 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5232 return 1;
5233
5234 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5235 if (!mpi_reply)
5236 return 1;
5237
5238 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5239 return 1;
5240
5241 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5242 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5243 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5244 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5245 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5246 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5247 ioc->port_enable_failed = 1;
5248
5249 if (ioc->is_driver_loading) {
5250 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5251 mpt3sas_port_enable_complete(ioc);
5252 return 1;
5253 } else {
5254 ioc->start_scan_failed = ioc_status;
5255 ioc->start_scan = 0;
5256 return 1;
5257 }
5258 }
5259 complete(&ioc->port_enable_cmds.done);
5260 return 1;
5261 }
5262
5263 /**
5264 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5265 * @ioc: per adapter object
5266 *
5267 * Returns 0 for success, non-zero for failure.
5268 */
5269 static int
5270 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5271 {
5272 Mpi2PortEnableRequest_t *mpi_request;
5273 Mpi2PortEnableReply_t *mpi_reply;
5274 int r = 0;
5275 u16 smid;
5276 u16 ioc_status;
5277
5278 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5279
5280 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5281 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5282 ioc->name, __func__);
5283 return -EAGAIN;
5284 }
5285
5286 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5287 if (!smid) {
5288 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5289 ioc->name, __func__);
5290 return -EAGAIN;
5291 }
5292
5293 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5294 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5295 ioc->port_enable_cmds.smid = smid;
5296 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5297 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5298
5299 init_completion(&ioc->port_enable_cmds.done);
5300 ioc->put_smid_default(ioc, smid);
5301 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5302 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5303 pr_err(MPT3SAS_FMT "%s: timeout\n",
5304 ioc->name, __func__);
5305 _debug_dump_mf(mpi_request,
5306 sizeof(Mpi2PortEnableRequest_t)/4);
5307 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5308 r = -EFAULT;
5309 else
5310 r = -ETIME;
5311 goto out;
5312 }
5313
5314 mpi_reply = ioc->port_enable_cmds.reply;
5315 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5316 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5317 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5318 ioc->name, __func__, ioc_status);
5319 r = -EFAULT;
5320 goto out;
5321 }
5322
5323 out:
5324 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5325 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5326 "SUCCESS" : "FAILED"));
5327 return r;
5328 }
5329
5330 /**
5331 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5332 * @ioc: per adapter object
5333 *
5334 * Returns 0 for success, non-zero for failure.
5335 */
5336 int
5337 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5338 {
5339 Mpi2PortEnableRequest_t *mpi_request;
5340 u16 smid;
5341
5342 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5343
5344 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5345 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5346 ioc->name, __func__);
5347 return -EAGAIN;
5348 }
5349
5350 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5351 if (!smid) {
5352 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5353 ioc->name, __func__);
5354 return -EAGAIN;
5355 }
5356
5357 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5358 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5359 ioc->port_enable_cmds.smid = smid;
5360 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5361 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5362
5363 ioc->put_smid_default(ioc, smid);
5364 return 0;
5365 }
5366
5367 /**
5368 * _base_determine_wait_on_discovery - desposition
5369 * @ioc: per adapter object
5370 *
5371 * Decide whether to wait on discovery to complete. Used to either
5372 * locate boot device, or report volumes ahead of physical devices.
5373 *
5374 * Returns 1 for wait, 0 for don't wait
5375 */
5376 static int
5377 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5378 {
5379 /* We wait for discovery to complete if IR firmware is loaded.
5380 * The sas topology events arrive before PD events, so we need time to
5381 * turn on the bit in ioc->pd_handles to indicate PD
5382 * Also, it maybe required to report Volumes ahead of physical
5383 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5384 */
5385 if (ioc->ir_firmware)
5386 return 1;
5387
5388 /* if no Bios, then we don't need to wait */
5389 if (!ioc->bios_pg3.BiosVersion)
5390 return 0;
5391
5392 /* Bios is present, then we drop down here.
5393 *
5394 * If there any entries in the Bios Page 2, then we wait
5395 * for discovery to complete.
5396 */
5397
5398 /* Current Boot Device */
5399 if ((ioc->bios_pg2.CurrentBootDeviceForm &
5400 MPI2_BIOSPAGE2_FORM_MASK) ==
5401 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5402 /* Request Boot Device */
5403 (ioc->bios_pg2.ReqBootDeviceForm &
5404 MPI2_BIOSPAGE2_FORM_MASK) ==
5405 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5406 /* Alternate Request Boot Device */
5407 (ioc->bios_pg2.ReqAltBootDeviceForm &
5408 MPI2_BIOSPAGE2_FORM_MASK) ==
5409 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5410 return 0;
5411
5412 return 1;
5413 }
5414
5415 /**
5416 * _base_unmask_events - turn on notification for this event
5417 * @ioc: per adapter object
5418 * @event: firmware event
5419 *
5420 * The mask is stored in ioc->event_masks.
5421 */
5422 static void
5423 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5424 {
5425 u32 desired_event;
5426
5427 if (event >= 128)
5428 return;
5429
5430 desired_event = (1 << (event % 32));
5431
5432 if (event < 32)
5433 ioc->event_masks[0] &= ~desired_event;
5434 else if (event < 64)
5435 ioc->event_masks[1] &= ~desired_event;
5436 else if (event < 96)
5437 ioc->event_masks[2] &= ~desired_event;
5438 else if (event < 128)
5439 ioc->event_masks[3] &= ~desired_event;
5440 }
5441
5442 /**
5443 * _base_event_notification - send event notification
5444 * @ioc: per adapter object
5445 *
5446 * Returns 0 for success, non-zero for failure.
5447 */
5448 static int
5449 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
5450 {
5451 Mpi2EventNotificationRequest_t *mpi_request;
5452 u16 smid;
5453 int r = 0;
5454 int i;
5455
5456 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5457 __func__));
5458
5459 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5460 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5461 ioc->name, __func__);
5462 return -EAGAIN;
5463 }
5464
5465 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5466 if (!smid) {
5467 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5468 ioc->name, __func__);
5469 return -EAGAIN;
5470 }
5471 ioc->base_cmds.status = MPT3_CMD_PENDING;
5472 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5473 ioc->base_cmds.smid = smid;
5474 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
5475 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
5476 mpi_request->VF_ID = 0; /* TODO */
5477 mpi_request->VP_ID = 0;
5478 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5479 mpi_request->EventMasks[i] =
5480 cpu_to_le32(ioc->event_masks[i]);
5481 init_completion(&ioc->base_cmds.done);
5482 ioc->put_smid_default(ioc, smid);
5483 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
5484 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5485 pr_err(MPT3SAS_FMT "%s: timeout\n",
5486 ioc->name, __func__);
5487 _debug_dump_mf(mpi_request,
5488 sizeof(Mpi2EventNotificationRequest_t)/4);
5489 if (ioc->base_cmds.status & MPT3_CMD_RESET)
5490 r = -EFAULT;
5491 else
5492 r = -ETIME;
5493 } else
5494 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
5495 ioc->name, __func__));
5496 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5497 return r;
5498 }
5499
5500 /**
5501 * mpt3sas_base_validate_event_type - validating event types
5502 * @ioc: per adapter object
5503 * @event: firmware event
5504 *
5505 * This will turn on firmware event notification when application
5506 * ask for that event. We don't mask events that are already enabled.
5507 */
5508 void
5509 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
5510 {
5511 int i, j;
5512 u32 event_mask, desired_event;
5513 u8 send_update_to_fw;
5514
5515 for (i = 0, send_update_to_fw = 0; i <
5516 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
5517 event_mask = ~event_type[i];
5518 desired_event = 1;
5519 for (j = 0; j < 32; j++) {
5520 if (!(event_mask & desired_event) &&
5521 (ioc->event_masks[i] & desired_event)) {
5522 ioc->event_masks[i] &= ~desired_event;
5523 send_update_to_fw = 1;
5524 }
5525 desired_event = (desired_event << 1);
5526 }
5527 }
5528
5529 if (!send_update_to_fw)
5530 return;
5531
5532 mutex_lock(&ioc->base_cmds.mutex);
5533 _base_event_notification(ioc);
5534 mutex_unlock(&ioc->base_cmds.mutex);
5535 }
5536
5537 /**
5538 * _base_diag_reset - the "big hammer" start of day reset
5539 * @ioc: per adapter object
5540 *
5541 * Returns 0 for success, non-zero for failure.
5542 */
5543 static int
5544 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
5545 {
5546 u32 host_diagnostic;
5547 u32 ioc_state;
5548 u32 count;
5549 u32 hcb_size;
5550
5551 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
5552
5553 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
5554 ioc->name));
5555
5556 count = 0;
5557 do {
5558 /* Write magic sequence to WriteSequence register
5559 * Loop until in diagnostic mode
5560 */
5561 drsprintk(ioc, pr_info(MPT3SAS_FMT
5562 "write magic sequence\n", ioc->name));
5563 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5564 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
5565 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
5566 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
5567 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
5568 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
5569 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
5570
5571 /* wait 100 msec */
5572 msleep(100);
5573
5574 if (count++ > 20)
5575 goto out;
5576
5577 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
5578 drsprintk(ioc, pr_info(MPT3SAS_FMT
5579 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
5580 ioc->name, count, host_diagnostic));
5581
5582 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
5583
5584 hcb_size = readl(&ioc->chip->HCBSize);
5585
5586 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
5587 ioc->name));
5588 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
5589 &ioc->chip->HostDiagnostic);
5590
5591 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
5592 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
5593
5594 /* Approximately 300 second max wait */
5595 for (count = 0; count < (300000000 /
5596 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
5597
5598 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
5599
5600 if (host_diagnostic == 0xFFFFFFFF)
5601 goto out;
5602 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
5603 break;
5604
5605 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
5606 }
5607
5608 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
5609
5610 drsprintk(ioc, pr_info(MPT3SAS_FMT
5611 "restart the adapter assuming the HCB Address points to good F/W\n",
5612 ioc->name));
5613 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
5614 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
5615 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
5616
5617 drsprintk(ioc, pr_info(MPT3SAS_FMT
5618 "re-enable the HCDW\n", ioc->name));
5619 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5620 &ioc->chip->HCBSize);
5621 }
5622
5623 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5624 ioc->name));
5625 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5626 &ioc->chip->HostDiagnostic);
5627
5628 drsprintk(ioc, pr_info(MPT3SAS_FMT
5629 "disable writes to the diagnostic register\n", ioc->name));
5630 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5631
5632 drsprintk(ioc, pr_info(MPT3SAS_FMT
5633 "Wait for FW to go to the READY state\n", ioc->name));
5634 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5635 if (ioc_state) {
5636 pr_err(MPT3SAS_FMT
5637 "%s: failed going to ready state (ioc_state=0x%x)\n",
5638 ioc->name, __func__, ioc_state);
5639 goto out;
5640 }
5641
5642 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5643 return 0;
5644
5645 out:
5646 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5647 return -EFAULT;
5648 }
5649
5650 /**
5651 * _base_make_ioc_ready - put controller in READY state
5652 * @ioc: per adapter object
5653 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5654 *
5655 * Returns 0 for success, non-zero for failure.
5656 */
5657 static int
5658 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5659 {
5660 u32 ioc_state;
5661 int rc;
5662 int count;
5663
5664 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5665 __func__));
5666
5667 if (ioc->pci_error_recovery)
5668 return 0;
5669
5670 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5671 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5672 ioc->name, __func__, ioc_state));
5673
5674 /* if in RESET state, it should move to READY state shortly */
5675 count = 0;
5676 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5677 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5678 MPI2_IOC_STATE_READY) {
5679 if (count++ == 10) {
5680 pr_err(MPT3SAS_FMT
5681 "%s: failed going to ready state (ioc_state=0x%x)\n",
5682 ioc->name, __func__, ioc_state);
5683 return -EFAULT;
5684 }
5685 ssleep(1);
5686 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5687 }
5688 }
5689
5690 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5691 return 0;
5692
5693 if (ioc_state & MPI2_DOORBELL_USED) {
5694 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5695 "unexpected doorbell active!\n",
5696 ioc->name));
5697 goto issue_diag_reset;
5698 }
5699
5700 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5701 mpt3sas_base_fault_info(ioc, ioc_state &
5702 MPI2_DOORBELL_DATA_MASK);
5703 goto issue_diag_reset;
5704 }
5705
5706 if (type == FORCE_BIG_HAMMER)
5707 goto issue_diag_reset;
5708
5709 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5710 if (!(_base_send_ioc_reset(ioc,
5711 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5712 return 0;
5713 }
5714
5715 issue_diag_reset:
5716 rc = _base_diag_reset(ioc);
5717 return rc;
5718 }
5719
5720 /**
5721 * _base_make_ioc_operational - put controller in OPERATIONAL state
5722 * @ioc: per adapter object
5723 *
5724 * Returns 0 for success, non-zero for failure.
5725 */
5726 static int
5727 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5728 {
5729 int r, i, index;
5730 unsigned long flags;
5731 u32 reply_address;
5732 u16 smid;
5733 struct _tr_list *delayed_tr, *delayed_tr_next;
5734 struct _sc_list *delayed_sc, *delayed_sc_next;
5735 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5736 u8 hide_flag;
5737 struct adapter_reply_queue *reply_q;
5738 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5739
5740 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5741 __func__));
5742
5743 /* clean the delayed target reset list */
5744 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5745 &ioc->delayed_tr_list, list) {
5746 list_del(&delayed_tr->list);
5747 kfree(delayed_tr);
5748 }
5749
5750
5751 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5752 &ioc->delayed_tr_volume_list, list) {
5753 list_del(&delayed_tr->list);
5754 kfree(delayed_tr);
5755 }
5756
5757 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5758 &ioc->delayed_sc_list, list) {
5759 list_del(&delayed_sc->list);
5760 kfree(delayed_sc);
5761 }
5762
5763 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5764 &ioc->delayed_event_ack_list, list) {
5765 list_del(&delayed_event_ack->list);
5766 kfree(delayed_event_ack);
5767 }
5768
5769 /* initialize the scsi lookup free list */
5770 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5771 INIT_LIST_HEAD(&ioc->free_list);
5772 smid = 1;
5773 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5774 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5775 ioc->scsi_lookup[i].cb_idx = 0xFF;
5776 ioc->scsi_lookup[i].smid = smid;
5777 ioc->scsi_lookup[i].scmd = NULL;
5778 ioc->scsi_lookup[i].direct_io = 0;
5779 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5780 &ioc->free_list);
5781 }
5782
5783 /* hi-priority queue */
5784 INIT_LIST_HEAD(&ioc->hpr_free_list);
5785 smid = ioc->hi_priority_smid;
5786 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5787 ioc->hpr_lookup[i].cb_idx = 0xFF;
5788 ioc->hpr_lookup[i].smid = smid;
5789 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5790 &ioc->hpr_free_list);
5791 }
5792
5793 /* internal queue */
5794 INIT_LIST_HEAD(&ioc->internal_free_list);
5795 smid = ioc->internal_smid;
5796 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5797 ioc->internal_lookup[i].cb_idx = 0xFF;
5798 ioc->internal_lookup[i].smid = smid;
5799 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5800 &ioc->internal_free_list);
5801 }
5802
5803 /* chain pool */
5804 INIT_LIST_HEAD(&ioc->free_chain_list);
5805 for (i = 0; i < ioc->chain_depth; i++)
5806 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5807 &ioc->free_chain_list);
5808
5809 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5810
5811 /* initialize Reply Free Queue */
5812 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5813 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5814 ioc->reply_sz)
5815 ioc->reply_free[i] = cpu_to_le32(reply_address);
5816
5817 /* initialize reply queues */
5818 if (ioc->is_driver_loading)
5819 _base_assign_reply_queues(ioc);
5820
5821 /* initialize Reply Post Free Queue */
5822 index = 0;
5823 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5824 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5825 /*
5826 * If RDPQ is enabled, switch to the next allocation.
5827 * Otherwise advance within the contiguous region.
5828 */
5829 if (ioc->rdpq_array_enable) {
5830 reply_q->reply_post_free =
5831 ioc->reply_post[index++].reply_post_free;
5832 } else {
5833 reply_q->reply_post_free = reply_post_free_contig;
5834 reply_post_free_contig += ioc->reply_post_queue_depth;
5835 }
5836
5837 reply_q->reply_post_host_index = 0;
5838 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5839 reply_q->reply_post_free[i].Words =
5840 cpu_to_le64(ULLONG_MAX);
5841 if (!_base_is_controller_msix_enabled(ioc))
5842 goto skip_init_reply_post_free_queue;
5843 }
5844 skip_init_reply_post_free_queue:
5845
5846 r = _base_send_ioc_init(ioc);
5847 if (r)
5848 return r;
5849
5850 /* initialize reply free host index */
5851 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5852 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5853
5854 /* initialize reply post host index */
5855 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5856 if (ioc->combined_reply_queue)
5857 writel((reply_q->msix_index & 7)<<
5858 MPI2_RPHI_MSIX_INDEX_SHIFT,
5859 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5860 else
5861 writel(reply_q->msix_index <<
5862 MPI2_RPHI_MSIX_INDEX_SHIFT,
5863 &ioc->chip->ReplyPostHostIndex);
5864
5865 if (!_base_is_controller_msix_enabled(ioc))
5866 goto skip_init_reply_post_host_index;
5867 }
5868
5869 skip_init_reply_post_host_index:
5870
5871 _base_unmask_interrupts(ioc);
5872 r = _base_event_notification(ioc);
5873 if (r)
5874 return r;
5875
5876 _base_static_config_pages(ioc);
5877
5878 if (ioc->is_driver_loading) {
5879
5880 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5881 == 0x80) {
5882 hide_flag = (u8) (
5883 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5884 MFG_PAGE10_HIDE_SSDS_MASK);
5885 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5886 ioc->mfg_pg10_hide_flag = hide_flag;
5887 }
5888
5889 ioc->wait_for_discovery_to_complete =
5890 _base_determine_wait_on_discovery(ioc);
5891
5892 return r; /* scan_start and scan_finished support */
5893 }
5894
5895 r = _base_send_port_enable(ioc);
5896 if (r)
5897 return r;
5898
5899 return r;
5900 }
5901
5902 /**
5903 * mpt3sas_base_free_resources - free resources controller resources
5904 * @ioc: per adapter object
5905 *
5906 * Return nothing.
5907 */
5908 void
5909 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5910 {
5911 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5912 __func__));
5913
5914 /* synchronizing freeing resource with pci_access_mutex lock */
5915 mutex_lock(&ioc->pci_access_mutex);
5916 if (ioc->chip_phys && ioc->chip) {
5917 _base_mask_interrupts(ioc);
5918 ioc->shost_recovery = 1;
5919 _base_make_ioc_ready(ioc, SOFT_RESET);
5920 ioc->shost_recovery = 0;
5921 }
5922
5923 mpt3sas_base_unmap_resources(ioc);
5924 mutex_unlock(&ioc->pci_access_mutex);
5925 return;
5926 }
5927
5928 /**
5929 * mpt3sas_base_attach - attach controller instance
5930 * @ioc: per adapter object
5931 *
5932 * Returns 0 for success, non-zero for failure.
5933 */
5934 int
5935 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5936 {
5937 int r, i;
5938 int cpu_id, last_cpu_id = 0;
5939
5940 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5941 __func__));
5942
5943 /* setup cpu_msix_table */
5944 ioc->cpu_count = num_online_cpus();
5945 for_each_online_cpu(cpu_id)
5946 last_cpu_id = cpu_id;
5947 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5948 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5949 ioc->reply_queue_count = 1;
5950 if (!ioc->cpu_msix_table) {
5951 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5952 "allocation for cpu_msix_table failed!!!\n",
5953 ioc->name));
5954 r = -ENOMEM;
5955 goto out_free_resources;
5956 }
5957
5958 if (ioc->is_warpdrive) {
5959 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5960 sizeof(resource_size_t *), GFP_KERNEL);
5961 if (!ioc->reply_post_host_index) {
5962 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5963 "for reply_post_host_index failed!!!\n",
5964 ioc->name));
5965 r = -ENOMEM;
5966 goto out_free_resources;
5967 }
5968 }
5969
5970 ioc->rdpq_array_enable_assigned = 0;
5971 ioc->dma_mask = 0;
5972 r = mpt3sas_base_map_resources(ioc);
5973 if (r)
5974 goto out_free_resources;
5975
5976 pci_set_drvdata(ioc->pdev, ioc->shost);
5977 r = _base_get_ioc_facts(ioc);
5978 if (r)
5979 goto out_free_resources;
5980
5981 switch (ioc->hba_mpi_version_belonged) {
5982 case MPI2_VERSION:
5983 ioc->build_sg_scmd = &_base_build_sg_scmd;
5984 ioc->build_sg = &_base_build_sg;
5985 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5986 break;
5987 case MPI25_VERSION:
5988 case MPI26_VERSION:
5989 /*
5990 * In SAS3.0,
5991 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5992 * Target Status - all require the IEEE formated scatter gather
5993 * elements.
5994 */
5995 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5996 ioc->build_sg = &_base_build_sg_ieee;
5997 ioc->build_nvme_prp = &_base_build_nvme_prp;
5998 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5999 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6000
6001 break;
6002 }
6003
6004 if (ioc->atomic_desc_capable) {
6005 ioc->put_smid_default = &_base_put_smid_default_atomic;
6006 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
6007 ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
6008 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
6009 ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap_atomic;
6010 } else {
6011 ioc->put_smid_default = &_base_put_smid_default;
6012 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6013 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
6014 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
6015 ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap;
6016 }
6017
6018
6019 /*
6020 * These function pointers for other requests that don't
6021 * the require IEEE scatter gather elements.
6022 *
6023 * For example Configuration Pages and SAS IOUNIT Control don't.
6024 */
6025 ioc->build_sg_mpi = &_base_build_sg;
6026 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6027
6028 r = _base_make_ioc_ready(ioc, SOFT_RESET);
6029 if (r)
6030 goto out_free_resources;
6031
6032 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6033 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6034 if (!ioc->pfacts) {
6035 r = -ENOMEM;
6036 goto out_free_resources;
6037 }
6038
6039 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6040 r = _base_get_port_facts(ioc, i);
6041 if (r)
6042 goto out_free_resources;
6043 }
6044
6045 r = _base_allocate_memory_pools(ioc);
6046 if (r)
6047 goto out_free_resources;
6048
6049 init_waitqueue_head(&ioc->reset_wq);
6050
6051 /* allocate memory pd handle bitmask list */
6052 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6053 if (ioc->facts.MaxDevHandle % 8)
6054 ioc->pd_handles_sz++;
6055 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6056 GFP_KERNEL);
6057 if (!ioc->pd_handles) {
6058 r = -ENOMEM;
6059 goto out_free_resources;
6060 }
6061 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6062 GFP_KERNEL);
6063 if (!ioc->blocking_handles) {
6064 r = -ENOMEM;
6065 goto out_free_resources;
6066 }
6067
6068 /* allocate memory for pending OS device add list */
6069 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6070 if (ioc->facts.MaxDevHandle % 8)
6071 ioc->pend_os_device_add_sz++;
6072 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6073 GFP_KERNEL);
6074 if (!ioc->pend_os_device_add)
6075 goto out_free_resources;
6076
6077 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6078 ioc->device_remove_in_progress =
6079 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6080 if (!ioc->device_remove_in_progress)
6081 goto out_free_resources;
6082
6083 ioc->fwfault_debug = mpt3sas_fwfault_debug;
6084
6085 /* base internal command bits */
6086 mutex_init(&ioc->base_cmds.mutex);
6087 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6088 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6089
6090 /* port_enable command bits */
6091 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6092 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6093
6094 /* transport internal command bits */
6095 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6096 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6097 mutex_init(&ioc->transport_cmds.mutex);
6098
6099 /* scsih internal command bits */
6100 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6101 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6102 mutex_init(&ioc->scsih_cmds.mutex);
6103
6104 /* task management internal command bits */
6105 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6106 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6107 mutex_init(&ioc->tm_cmds.mutex);
6108
6109 /* config page internal command bits */
6110 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6111 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6112 mutex_init(&ioc->config_cmds.mutex);
6113
6114 /* ctl module internal command bits */
6115 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6116 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6117 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6118 mutex_init(&ioc->ctl_cmds.mutex);
6119
6120 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6121 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6122 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6123 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6124 r = -ENOMEM;
6125 goto out_free_resources;
6126 }
6127
6128 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6129 ioc->event_masks[i] = -1;
6130
6131 /* here we enable the events we care about */
6132 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6133 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6134 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6135 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6136 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6137 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6138 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6139 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6140 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6141 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6142 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6143 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6144 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6145 if (ioc->is_gen35_ioc) {
6146 _base_unmask_events(ioc,
6147 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6148 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6149 _base_unmask_events(ioc,
6150 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6151 }
6152 }
6153 r = _base_make_ioc_operational(ioc);
6154 if (r)
6155 goto out_free_resources;
6156
6157 ioc->non_operational_loop = 0;
6158 ioc->got_task_abort_from_ioctl = 0;
6159 return 0;
6160
6161 out_free_resources:
6162
6163 ioc->remove_host = 1;
6164
6165 mpt3sas_base_free_resources(ioc);
6166 _base_release_memory_pools(ioc);
6167 pci_set_drvdata(ioc->pdev, NULL);
6168 kfree(ioc->cpu_msix_table);
6169 if (ioc->is_warpdrive)
6170 kfree(ioc->reply_post_host_index);
6171 kfree(ioc->pd_handles);
6172 kfree(ioc->blocking_handles);
6173 kfree(ioc->device_remove_in_progress);
6174 kfree(ioc->pend_os_device_add);
6175 kfree(ioc->tm_cmds.reply);
6176 kfree(ioc->transport_cmds.reply);
6177 kfree(ioc->scsih_cmds.reply);
6178 kfree(ioc->config_cmds.reply);
6179 kfree(ioc->base_cmds.reply);
6180 kfree(ioc->port_enable_cmds.reply);
6181 kfree(ioc->ctl_cmds.reply);
6182 kfree(ioc->ctl_cmds.sense);
6183 kfree(ioc->pfacts);
6184 ioc->ctl_cmds.reply = NULL;
6185 ioc->base_cmds.reply = NULL;
6186 ioc->tm_cmds.reply = NULL;
6187 ioc->scsih_cmds.reply = NULL;
6188 ioc->transport_cmds.reply = NULL;
6189 ioc->config_cmds.reply = NULL;
6190 ioc->pfacts = NULL;
6191 return r;
6192 }
6193
6194
6195 /**
6196 * mpt3sas_base_detach - remove controller instance
6197 * @ioc: per adapter object
6198 *
6199 * Return nothing.
6200 */
6201 void
6202 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6203 {
6204 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6205 __func__));
6206
6207 mpt3sas_base_stop_watchdog(ioc);
6208 mpt3sas_base_free_resources(ioc);
6209 _base_release_memory_pools(ioc);
6210 pci_set_drvdata(ioc->pdev, NULL);
6211 kfree(ioc->cpu_msix_table);
6212 if (ioc->is_warpdrive)
6213 kfree(ioc->reply_post_host_index);
6214 kfree(ioc->pd_handles);
6215 kfree(ioc->blocking_handles);
6216 kfree(ioc->device_remove_in_progress);
6217 kfree(ioc->pend_os_device_add);
6218 kfree(ioc->pfacts);
6219 kfree(ioc->ctl_cmds.reply);
6220 kfree(ioc->ctl_cmds.sense);
6221 kfree(ioc->base_cmds.reply);
6222 kfree(ioc->port_enable_cmds.reply);
6223 kfree(ioc->tm_cmds.reply);
6224 kfree(ioc->transport_cmds.reply);
6225 kfree(ioc->scsih_cmds.reply);
6226 kfree(ioc->config_cmds.reply);
6227 }
6228
6229 /**
6230 * _base_reset_handler - reset callback handler (for base)
6231 * @ioc: per adapter object
6232 * @reset_phase: phase
6233 *
6234 * The handler for doing any required cleanup or initialization.
6235 *
6236 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
6237 * MPT3_IOC_DONE_RESET
6238 *
6239 * Return nothing.
6240 */
6241 static void
6242 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
6243 {
6244 mpt3sas_scsih_reset_handler(ioc, reset_phase);
6245 mpt3sas_ctl_reset_handler(ioc, reset_phase);
6246 switch (reset_phase) {
6247 case MPT3_IOC_PRE_RESET:
6248 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6249 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6250 break;
6251 case MPT3_IOC_AFTER_RESET:
6252 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6253 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6254 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6255 ioc->transport_cmds.status |= MPT3_CMD_RESET;
6256 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6257 complete(&ioc->transport_cmds.done);
6258 }
6259 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6260 ioc->base_cmds.status |= MPT3_CMD_RESET;
6261 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6262 complete(&ioc->base_cmds.done);
6263 }
6264 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6265 ioc->port_enable_failed = 1;
6266 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6267 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6268 if (ioc->is_driver_loading) {
6269 ioc->start_scan_failed =
6270 MPI2_IOCSTATUS_INTERNAL_ERROR;
6271 ioc->start_scan = 0;
6272 ioc->port_enable_cmds.status =
6273 MPT3_CMD_NOT_USED;
6274 } else
6275 complete(&ioc->port_enable_cmds.done);
6276 }
6277 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6278 ioc->config_cmds.status |= MPT3_CMD_RESET;
6279 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6280 ioc->config_cmds.smid = USHRT_MAX;
6281 complete(&ioc->config_cmds.done);
6282 }
6283 break;
6284 case MPT3_IOC_DONE_RESET:
6285 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6286 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6287 break;
6288 }
6289 }
6290
6291 /**
6292 * _wait_for_commands_to_complete - reset controller
6293 * @ioc: Pointer to MPT_ADAPTER structure
6294 *
6295 * This function waiting(3s) for all pending commands to complete
6296 * prior to putting controller in reset.
6297 */
6298 static void
6299 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6300 {
6301 u32 ioc_state;
6302 unsigned long flags;
6303 u16 i;
6304
6305 ioc->pending_io_count = 0;
6306
6307 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6308 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6309 return;
6310
6311 /* pending command count */
6312 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6313 for (i = 0; i < ioc->scsiio_depth; i++)
6314 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
6315 ioc->pending_io_count++;
6316 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6317
6318 if (!ioc->pending_io_count)
6319 return;
6320
6321 /* wait for pending commands to complete */
6322 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6323 }
6324
6325 /**
6326 * mpt3sas_base_hard_reset_handler - reset controller
6327 * @ioc: Pointer to MPT_ADAPTER structure
6328 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6329 *
6330 * Returns 0 for success, non-zero for failure.
6331 */
6332 int
6333 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6334 enum reset_type type)
6335 {
6336 int r;
6337 unsigned long flags;
6338 u32 ioc_state;
6339 u8 is_fault = 0, is_trigger = 0;
6340
6341 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6342 __func__));
6343
6344 if (ioc->pci_error_recovery) {
6345 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6346 ioc->name, __func__);
6347 r = 0;
6348 goto out_unlocked;
6349 }
6350
6351 if (mpt3sas_fwfault_debug)
6352 mpt3sas_halt_firmware(ioc);
6353
6354 /* wait for an active reset in progress to complete */
6355 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
6356 do {
6357 ssleep(1);
6358 } while (ioc->shost_recovery == 1);
6359 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6360 __func__));
6361 return ioc->ioc_reset_in_progress_status;
6362 }
6363
6364 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6365 ioc->shost_recovery = 1;
6366 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6367
6368 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6369 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6370 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6371 MPT3_DIAG_BUFFER_IS_RELEASED))) {
6372 is_trigger = 1;
6373 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6374 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6375 is_fault = 1;
6376 }
6377 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
6378 _wait_for_commands_to_complete(ioc);
6379 _base_mask_interrupts(ioc);
6380 r = _base_make_ioc_ready(ioc, type);
6381 if (r)
6382 goto out;
6383 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
6384
6385 /* If this hard reset is called while port enable is active, then
6386 * there is no reason to call make_ioc_operational
6387 */
6388 if (ioc->is_driver_loading && ioc->port_enable_failed) {
6389 ioc->remove_host = 1;
6390 r = -EFAULT;
6391 goto out;
6392 }
6393 r = _base_get_ioc_facts(ioc);
6394 if (r)
6395 goto out;
6396
6397 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6398 panic("%s: Issue occurred with flashing controller firmware."
6399 "Please reboot the system and ensure that the correct"
6400 " firmware version is running\n", ioc->name);
6401
6402 r = _base_make_ioc_operational(ioc);
6403 if (!r)
6404 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
6405
6406 out:
6407 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
6408 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
6409
6410 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6411 ioc->ioc_reset_in_progress_status = r;
6412 ioc->shost_recovery = 0;
6413 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6414 ioc->ioc_reset_count++;
6415 mutex_unlock(&ioc->reset_in_progress_mutex);
6416
6417 out_unlocked:
6418 if ((r == 0) && is_trigger) {
6419 if (is_fault)
6420 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6421 else
6422 mpt3sas_trigger_master(ioc,
6423 MASTER_TRIGGER_ADAPTER_RESET);
6424 }
6425 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6426 __func__));
6427 return r;
6428 }