]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 " max msix vectors");
95
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 " enable detection of firmware fault and halt firmware - (default=0)");
99
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102
103 /**
104 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105 *
106 */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 int ret = param_set_int(val, kp);
111 struct MPT3SAS_ADAPTER *ioc;
112
113 if (ret)
114 return ret;
115
116 /* global ioc spinlock to protect controller list on list operations */
117 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 spin_lock(&gioc_lock);
119 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 spin_unlock(&gioc_lock);
122 return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 param_get_int, &mpt3sas_fwfault_debug, 0644);
126
127 /**
128 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129 * @arg: input argument, used to derive ioc
130 *
131 * Return 0 if controller is removed from pci subsystem.
132 * Return -1 for other case.
133 */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 struct pci_dev *pdev;
138
139 if ((ioc == NULL))
140 return -1;
141
142 pdev = ioc->pdev;
143 if ((pdev == NULL))
144 return -1;
145 pci_stop_and_remove_bus_device_locked(pdev);
146 return 0;
147 }
148
149 /**
150 * _base_fault_reset_work - workq handling ioc fault conditions
151 * @work: input argument, used to derive ioc
152 * Context: sleep.
153 *
154 * Return nothing.
155 */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 struct MPT3SAS_ADAPTER *ioc =
160 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 unsigned long flags;
162 u32 doorbell;
163 int rc;
164 struct task_struct *p;
165
166
167 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 if (ioc->shost_recovery || ioc->pci_error_recovery)
169 goto rearm_timer;
170 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171
172 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 ioc->name);
176
177 /* It may be possible that EEH recovery can resolve some of
178 * pci bus failure issues rather removing the dead ioc function
179 * by considering controller is in a non-operational state. So
180 * here priority is given to the EEH recovery. If it doesn't
181 * not resolve this issue, mpt3sas driver will consider this
182 * controller to non-operational state and remove the dead ioc
183 * function.
184 */
185 if (ioc->non_operational_loop++ < 5) {
186 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 flags);
188 goto rearm_timer;
189 }
190
191 /*
192 * Call _scsih_flush_pending_cmds callback so that we flush all
193 * pending commands back to OS. This call is required to aovid
194 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 * and this call is safe since dead ioc will never return any
196 * command back from HW.
197 */
198 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 /*
200 * Set remove_host flag early since kernel thread will
201 * take some time to execute.
202 */
203 ioc->remove_host = 1;
204 /*Remove the Dead Host */
205 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 if (IS_ERR(p))
208 pr_err(MPT3SAS_FMT
209 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 ioc->name, __func__);
211 else
212 pr_err(MPT3SAS_FMT
213 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 ioc->name, __func__);
215 return; /* don't rearm timer */
216 }
217
218 ioc->non_operational_loop = 0;
219
220 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 __func__, (rc == 0) ? "success" : "failed");
224 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 mpt3sas_base_fault_info(ioc, doorbell &
227 MPI2_DOORBELL_DATA_MASK);
228 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 MPI2_IOC_STATE_OPERATIONAL)
230 return; /* don't rearm timer */
231 }
232
233 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234 rearm_timer:
235 if (ioc->fault_reset_work_q)
236 queue_delayed_work(ioc->fault_reset_work_q,
237 &ioc->fault_reset_work,
238 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241
242 /**
243 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244 * @ioc: per adapter object
245 * Context: sleep.
246 *
247 * Return nothing.
248 */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 unsigned long flags;
253
254 if (ioc->fault_reset_work_q)
255 return;
256
257 /* initialize fault polling */
258
259 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 snprintf(ioc->fault_reset_work_q_name,
261 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 ioc->driver_name, ioc->id);
263 ioc->fault_reset_work_q =
264 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 if (!ioc->fault_reset_work_q) {
266 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 ioc->name, __func__, __LINE__);
268 return;
269 }
270 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 if (ioc->fault_reset_work_q)
272 queue_delayed_work(ioc->fault_reset_work_q,
273 &ioc->fault_reset_work,
274 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277
278 /**
279 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280 * @ioc: per adapter object
281 * Context: sleep.
282 *
283 * Return nothing.
284 */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 unsigned long flags;
289 struct workqueue_struct *wq;
290
291 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 wq = ioc->fault_reset_work_q;
293 ioc->fault_reset_work_q = NULL;
294 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 if (wq) {
296 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 flush_workqueue(wq);
298 destroy_workqueue(wq);
299 }
300 }
301
302 /**
303 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304 * @ioc: per adapter object
305 * @fault_code: fault code
306 *
307 * Return nothing.
308 */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 ioc->name, fault_code);
314 }
315
316 /**
317 * mpt3sas_halt_firmware - halt's mpt controller firmware
318 * @ioc: per adapter object
319 *
320 * For debugging timeout related issues. Writing 0xCOFFEE00
321 * to the doorbell register will halt controller firmware. With
322 * the purpose to stop both driver and firmware, the enduser can
323 * obtain a ring buffer from controller UART.
324 */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 u32 doorbell;
329
330 if (!ioc->fwfault_debug)
331 return;
332
333 dump_stack();
334
335 doorbell = readl(&ioc->chip->Doorbell);
336 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 mpt3sas_base_fault_info(ioc , doorbell);
338 else {
339 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 ioc->name);
342 }
343
344 if (ioc->fwfault_debug == 2)
345 for (;;)
346 ;
347 else
348 panic("panic in %s\n", __func__);
349 }
350
351 /**
352 * _base_sas_ioc_info - verbose translation of the ioc status
353 * @ioc: per adapter object
354 * @mpi_reply: reply mf payload returned from firmware
355 * @request_hdr: request mf
356 *
357 * Return nothing.
358 */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 MPI2RequestHeader_t *request_hdr)
362 {
363 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 MPI2_IOCSTATUS_MASK;
365 char *desc = NULL;
366 u16 frame_sz;
367 char *func_str = NULL;
368
369 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 return;
374
375 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 return;
377
378 switch (ioc_status) {
379
380 /****************************************************************************
381 * Common IOCStatus values for all replies
382 ****************************************************************************/
383
384 case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 desc = "invalid function";
386 break;
387 case MPI2_IOCSTATUS_BUSY:
388 desc = "busy";
389 break;
390 case MPI2_IOCSTATUS_INVALID_SGL:
391 desc = "invalid sgl";
392 break;
393 case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 desc = "internal error";
395 break;
396 case MPI2_IOCSTATUS_INVALID_VPID:
397 desc = "invalid vpid";
398 break;
399 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 desc = "insufficient resources";
401 break;
402 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 desc = "insufficient power";
404 break;
405 case MPI2_IOCSTATUS_INVALID_FIELD:
406 desc = "invalid field";
407 break;
408 case MPI2_IOCSTATUS_INVALID_STATE:
409 desc = "invalid state";
410 break;
411 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 desc = "op state not supported";
413 break;
414
415 /****************************************************************************
416 * Config IOCStatus values
417 ****************************************************************************/
418
419 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 desc = "config invalid action";
421 break;
422 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 desc = "config invalid type";
424 break;
425 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 desc = "config invalid page";
427 break;
428 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 desc = "config invalid data";
430 break;
431 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 desc = "config no defaults";
433 break;
434 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 desc = "config cant commit";
436 break;
437
438 /****************************************************************************
439 * SCSI IO Reply
440 ****************************************************************************/
441
442 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 break;
455
456 /****************************************************************************
457 * For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459
460 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 desc = "eedp guard error";
462 break;
463 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 desc = "eedp ref tag error";
465 break;
466 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 desc = "eedp app tag error";
468 break;
469
470 /****************************************************************************
471 * SCSI Target values
472 ****************************************************************************/
473
474 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 desc = "target invalid io index";
476 break;
477 case MPI2_IOCSTATUS_TARGET_ABORTED:
478 desc = "target aborted";
479 break;
480 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 desc = "target no conn retryable";
482 break;
483 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 desc = "target no connection";
485 break;
486 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 desc = "target xfer count mismatch";
488 break;
489 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 desc = "target data offset error";
491 break;
492 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 desc = "target too much write data";
494 break;
495 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 desc = "target iu too short";
497 break;
498 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 desc = "target ack nak timeout";
500 break;
501 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 desc = "target nak received";
503 break;
504
505 /****************************************************************************
506 * Serial Attached SCSI values
507 ****************************************************************************/
508
509 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 desc = "smp request failed";
511 break;
512 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 desc = "smp data overrun";
514 break;
515
516 /****************************************************************************
517 * Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519
520 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 desc = "diagnostic released";
522 break;
523 default:
524 break;
525 }
526
527 if (!desc)
528 return;
529
530 switch (request_hdr->Function) {
531 case MPI2_FUNCTION_CONFIG:
532 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 func_str = "config_page";
534 break;
535 case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 func_str = "task_mgmt";
538 break;
539 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 func_str = "sas_iounit_ctl";
542 break;
543 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 frame_sz = sizeof(Mpi2SepRequest_t);
545 func_str = "enclosure";
546 break;
547 case MPI2_FUNCTION_IOC_INIT:
548 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 func_str = "ioc_init";
550 break;
551 case MPI2_FUNCTION_PORT_ENABLE:
552 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 func_str = "port_enable";
554 break;
555 case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 func_str = "smp_passthru";
558 break;
559 default:
560 frame_sz = 32;
561 func_str = "unknown";
562 break;
563 }
564
565 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 ioc->name, desc, ioc_status, request_hdr, func_str);
567
568 _debug_dump_mf(request_hdr, frame_sz/4);
569 }
570
571 /**
572 * _base_display_event_data - verbose translation of firmware asyn events
573 * @ioc: per adapter object
574 * @mpi_reply: reply mf payload returned from firmware
575 *
576 * Return nothing.
577 */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 char *desc = NULL;
583 u16 event;
584
585 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 return;
587
588 event = le16_to_cpu(mpi_reply->Event);
589
590 switch (event) {
591 case MPI2_EVENT_LOG_DATA:
592 desc = "Log Data";
593 break;
594 case MPI2_EVENT_STATE_CHANGE:
595 desc = "Status Change";
596 break;
597 case MPI2_EVENT_HARD_RESET_RECEIVED:
598 desc = "Hard Reset Received";
599 break;
600 case MPI2_EVENT_EVENT_CHANGE:
601 desc = "Event Change";
602 break;
603 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 desc = "Device Status Change";
605 break;
606 case MPI2_EVENT_IR_OPERATION_STATUS:
607 if (!ioc->hide_ir_msg)
608 desc = "IR Operation Status";
609 break;
610 case MPI2_EVENT_SAS_DISCOVERY:
611 {
612 Mpi2EventDataSasDiscovery_t *event_data =
613 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 "start" : "stop");
617 if (event_data->DiscoveryStatus)
618 pr_cont(" discovery_status(0x%08x)",
619 le32_to_cpu(event_data->DiscoveryStatus));
620 pr_cont("\n");
621 return;
622 }
623 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 desc = "SAS Broadcast Primitive";
625 break;
626 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 desc = "SAS Init Device Status Change";
628 break;
629 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 desc = "SAS Init Table Overflow";
631 break;
632 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 desc = "SAS Topology Change List";
634 break;
635 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 desc = "SAS Enclosure Device Status Change";
637 break;
638 case MPI2_EVENT_IR_VOLUME:
639 if (!ioc->hide_ir_msg)
640 desc = "IR Volume";
641 break;
642 case MPI2_EVENT_IR_PHYSICAL_DISK:
643 if (!ioc->hide_ir_msg)
644 desc = "IR Physical Disk";
645 break;
646 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 if (!ioc->hide_ir_msg)
648 desc = "IR Configuration Change List";
649 break;
650 case MPI2_EVENT_LOG_ENTRY_ADDED:
651 if (!ioc->hide_ir_msg)
652 desc = "Log Entry Added";
653 break;
654 case MPI2_EVENT_TEMP_THRESHOLD:
655 desc = "Temperature Threshold";
656 break;
657 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 desc = "Active cable exception";
659 break;
660 }
661
662 if (!desc)
663 return;
664
665 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667
668 /**
669 * _base_sas_log_info - verbose translation of firmware log info
670 * @ioc: per adapter object
671 * @log_info: log info
672 *
673 * Return nothing.
674 */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678 union loginfo_type {
679 u32 loginfo;
680 struct {
681 u32 subcode:16;
682 u32 code:8;
683 u32 originator:4;
684 u32 bus_type:4;
685 } dw;
686 };
687 union loginfo_type sas_loginfo;
688 char *originator_str = NULL;
689
690 sas_loginfo.loginfo = log_info;
691 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 return;
693
694 /* each nexus loss loginfo */
695 if (log_info == 0x31170000)
696 return;
697
698 /* eat the loginfos associated with task aborts */
699 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 0x31140000 || log_info == 0x31130000))
701 return;
702
703 switch (sas_loginfo.dw.originator) {
704 case 0:
705 originator_str = "IOP";
706 break;
707 case 1:
708 originator_str = "PL";
709 break;
710 case 2:
711 if (!ioc->hide_ir_msg)
712 originator_str = "IR";
713 else
714 originator_str = "WarpDrive";
715 break;
716 }
717
718 pr_warn(MPT3SAS_FMT
719 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 ioc->name, log_info,
721 originator_str, sas_loginfo.dw.code,
722 sas_loginfo.dw.subcode);
723 }
724
725 /**
726 * _base_display_reply_info -
727 * @ioc: per adapter object
728 * @smid: system request message index
729 * @msix_index: MSIX table index supplied by the OS
730 * @reply: reply message frame(lower 32bit addr)
731 *
732 * Return nothing.
733 */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 u32 reply)
737 {
738 MPI2DefaultReply_t *mpi_reply;
739 u16 ioc_status;
740 u32 loginfo = 0;
741
742 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 if (unlikely(!mpi_reply)) {
744 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 ioc->name, __FILE__, __LINE__, __func__);
746 return;
747 }
748 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749
750 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 _base_sas_ioc_info(ioc , mpi_reply,
753 mpt3sas_base_get_msg_frame(ioc, smid));
754 }
755
756 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 _base_sas_log_info(ioc, loginfo);
759 }
760
761 if (ioc_status || loginfo) {
762 ioc_status &= MPI2_IOCSTATUS_MASK;
763 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764 }
765 }
766
767 /**
768 * mpt3sas_base_done - base internal command completion routine
769 * @ioc: per adapter object
770 * @smid: system request message index
771 * @msix_index: MSIX table index supplied by the OS
772 * @reply: reply message frame(lower 32bit addr)
773 *
774 * Return 1 meaning mf should be freed from _base_interrupt
775 * 0 means the mf is freed from this function.
776 */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 u32 reply)
780 {
781 MPI2DefaultReply_t *mpi_reply;
782
783 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786
787 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 return 1;
789
790 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 if (mpi_reply) {
792 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794 }
795 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796
797 complete(&ioc->base_cmds.done);
798 return 1;
799 }
800
801 /**
802 * _base_async_event - main callback handler for firmware asyn events
803 * @ioc: per adapter object
804 * @msix_index: MSIX table index supplied by the OS
805 * @reply: reply message frame(lower 32bit addr)
806 *
807 * Return 1 meaning mf should be freed from _base_interrupt
808 * 0 means the mf is freed from this function.
809 */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813 Mpi2EventNotificationReply_t *mpi_reply;
814 Mpi2EventAckRequest_t *ack_request;
815 u16 smid;
816 struct _event_ack_list *delayed_event_ack;
817
818 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 if (!mpi_reply)
820 return 1;
821 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 return 1;
823
824 _base_display_event_data(ioc, mpi_reply);
825
826 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 goto out;
828 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 if (!smid) {
830 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 GFP_ATOMIC);
832 if (!delayed_event_ack)
833 goto out;
834 INIT_LIST_HEAD(&delayed_event_ack->list);
835 delayed_event_ack->Event = mpi_reply->Event;
836 delayed_event_ack->EventContext = mpi_reply->EventContext;
837 list_add_tail(&delayed_event_ack->list,
838 &ioc->delayed_event_ack_list);
839 dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 "DELAYED: EVENT ACK: event (0x%04x)\n",
841 ioc->name, le16_to_cpu(mpi_reply->Event)));
842 goto out;
843 }
844
845 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 ack_request->Event = mpi_reply->Event;
849 ack_request->EventContext = mpi_reply->EventContext;
850 ack_request->VF_ID = 0; /* TODO */
851 ack_request->VP_ID = 0;
852 ioc->put_smid_default(ioc, smid);
853
854 out:
855
856 /* scsih callback handler */
857 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858
859 /* ctl callback handler */
860 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861
862 return 1;
863 }
864
865 /**
866 * _base_get_cb_idx - obtain the callback index
867 * @ioc: per adapter object
868 * @smid: system request message index
869 *
870 * Return callback index.
871 */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875 int i;
876 u8 cb_idx;
877
878 if (smid < ioc->hi_priority_smid) {
879 i = smid - 1;
880 cb_idx = ioc->scsi_lookup[i].cb_idx;
881 } else if (smid < ioc->internal_smid) {
882 i = smid - ioc->hi_priority_smid;
883 cb_idx = ioc->hpr_lookup[i].cb_idx;
884 } else if (smid <= ioc->hba_queue_depth) {
885 i = smid - ioc->internal_smid;
886 cb_idx = ioc->internal_lookup[i].cb_idx;
887 } else
888 cb_idx = 0xFF;
889 return cb_idx;
890 }
891
892 /**
893 * _base_mask_interrupts - disable interrupts
894 * @ioc: per adapter object
895 *
896 * Disabling ResetIRQ, Reply and Doorbell Interrupts
897 *
898 * Return nothing.
899 */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903 u32 him_register;
904
905 ioc->mask_interrupts = 1;
906 him_register = readl(&ioc->chip->HostInterruptMask);
907 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 writel(him_register, &ioc->chip->HostInterruptMask);
909 readl(&ioc->chip->HostInterruptMask);
910 }
911
912 /**
913 * _base_unmask_interrupts - enable interrupts
914 * @ioc: per adapter object
915 *
916 * Enabling only Reply Interrupts
917 *
918 * Return nothing.
919 */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923 u32 him_register;
924
925 him_register = readl(&ioc->chip->HostInterruptMask);
926 him_register &= ~MPI2_HIM_RIM;
927 writel(him_register, &ioc->chip->HostInterruptMask);
928 ioc->mask_interrupts = 0;
929 }
930
931 union reply_descriptor {
932 u64 word;
933 struct {
934 u32 low;
935 u32 high;
936 } u;
937 };
938
939 /**
940 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941 * @irq: irq number (not used)
942 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943 * @r: pt_regs pointer (not used)
944 *
945 * Return IRQ_HANDLE if processed, else IRQ_NONE.
946 */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950 struct adapter_reply_queue *reply_q = bus_id;
951 union reply_descriptor rd;
952 u32 completed_cmds;
953 u8 request_desript_type;
954 u16 smid;
955 u8 cb_idx;
956 u32 reply;
957 u8 msix_index = reply_q->msix_index;
958 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 Mpi2ReplyDescriptorsUnion_t *rpf;
960 u8 rc;
961
962 if (ioc->mask_interrupts)
963 return IRQ_NONE;
964
965 if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 return IRQ_NONE;
967
968 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 request_desript_type = rpf->Default.ReplyFlags
970 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 atomic_dec(&reply_q->busy);
973 return IRQ_NONE;
974 }
975
976 completed_cmds = 0;
977 cb_idx = 0xFF;
978 do {
979 rd.word = le64_to_cpu(rpf->Words);
980 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 goto out;
982 reply = 0;
983 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 if (request_desript_type ==
985 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 request_desript_type ==
987 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 cb_idx = _base_get_cb_idx(ioc, smid);
989 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 (likely(mpt_callbacks[cb_idx] != NULL))) {
991 rc = mpt_callbacks[cb_idx](ioc, smid,
992 msix_index, 0);
993 if (rc)
994 mpt3sas_base_free_smid(ioc, smid);
995 }
996 } else if (request_desript_type ==
997 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 reply = le32_to_cpu(
999 rpf->AddressReply.ReplyFrameAddress);
1000 if (reply > ioc->reply_dma_max_address ||
1001 reply < ioc->reply_dma_min_address)
1002 reply = 0;
1003 if (smid) {
1004 cb_idx = _base_get_cb_idx(ioc, smid);
1005 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 rc = mpt_callbacks[cb_idx](ioc, smid,
1008 msix_index, reply);
1009 if (reply)
1010 _base_display_reply_info(ioc,
1011 smid, msix_index, reply);
1012 if (rc)
1013 mpt3sas_base_free_smid(ioc,
1014 smid);
1015 }
1016 } else {
1017 _base_async_event(ioc, msix_index, reply);
1018 }
1019
1020 /* reply free queue handling */
1021 if (reply) {
1022 ioc->reply_free_host_index =
1023 (ioc->reply_free_host_index ==
1024 (ioc->reply_free_queue_depth - 1)) ?
1025 0 : ioc->reply_free_host_index + 1;
1026 ioc->reply_free[ioc->reply_free_host_index] =
1027 cpu_to_le32(reply);
1028 writel(ioc->reply_free_host_index,
1029 &ioc->chip->ReplyFreeHostIndex);
1030 }
1031 }
1032
1033 rpf->Words = cpu_to_le64(ULLONG_MAX);
1034 reply_q->reply_post_host_index =
1035 (reply_q->reply_post_host_index ==
1036 (ioc->reply_post_queue_depth - 1)) ? 0 :
1037 reply_q->reply_post_host_index + 1;
1038 request_desript_type =
1039 reply_q->reply_post_free[reply_q->reply_post_host_index].
1040 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1041 completed_cmds++;
1042 /* Update the reply post host index after continuously
1043 * processing the threshold number of Reply Descriptors.
1044 * So that FW can find enough entries to post the Reply
1045 * Descriptors in the reply descriptor post queue.
1046 */
1047 if (completed_cmds > ioc->hba_queue_depth/3) {
1048 if (ioc->combined_reply_queue) {
1049 writel(reply_q->reply_post_host_index |
1050 ((msix_index & 7) <<
1051 MPI2_RPHI_MSIX_INDEX_SHIFT),
1052 ioc->replyPostRegisterIndex[msix_index/8]);
1053 } else {
1054 writel(reply_q->reply_post_host_index |
1055 (msix_index <<
1056 MPI2_RPHI_MSIX_INDEX_SHIFT),
1057 &ioc->chip->ReplyPostHostIndex);
1058 }
1059 completed_cmds = 1;
1060 }
1061 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1062 goto out;
1063 if (!reply_q->reply_post_host_index)
1064 rpf = reply_q->reply_post_free;
1065 else
1066 rpf++;
1067 } while (1);
1068
1069 out:
1070
1071 if (!completed_cmds) {
1072 atomic_dec(&reply_q->busy);
1073 return IRQ_NONE;
1074 }
1075
1076 if (ioc->is_warpdrive) {
1077 writel(reply_q->reply_post_host_index,
1078 ioc->reply_post_host_index[msix_index]);
1079 atomic_dec(&reply_q->busy);
1080 return IRQ_HANDLED;
1081 }
1082
1083 /* Update Reply Post Host Index.
1084 * For those HBA's which support combined reply queue feature
1085 * 1. Get the correct Supplemental Reply Post Host Index Register.
1086 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1087 * Index Register address bank i.e replyPostRegisterIndex[],
1088 * 2. Then update this register with new reply host index value
1089 * in ReplyPostIndex field and the MSIxIndex field with
1090 * msix_index value reduced to a value between 0 and 7,
1091 * using a modulo 8 operation. Since each Supplemental Reply Post
1092 * Host Index Register supports 8 MSI-X vectors.
1093 *
1094 * For other HBA's just update the Reply Post Host Index register with
1095 * new reply host index value in ReplyPostIndex Field and msix_index
1096 * value in MSIxIndex field.
1097 */
1098 if (ioc->combined_reply_queue)
1099 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1100 MPI2_RPHI_MSIX_INDEX_SHIFT),
1101 ioc->replyPostRegisterIndex[msix_index/8]);
1102 else
1103 writel(reply_q->reply_post_host_index | (msix_index <<
1104 MPI2_RPHI_MSIX_INDEX_SHIFT),
1105 &ioc->chip->ReplyPostHostIndex);
1106 atomic_dec(&reply_q->busy);
1107 return IRQ_HANDLED;
1108 }
1109
1110 /**
1111 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1112 * @ioc: per adapter object
1113 *
1114 */
1115 static inline int
1116 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1117 {
1118 return (ioc->facts.IOCCapabilities &
1119 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1120 }
1121
1122 /**
1123 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1124 * @ioc: per adapter object
1125 * Context: non ISR conext
1126 *
1127 * Called when a Task Management request has completed.
1128 *
1129 * Return nothing.
1130 */
1131 void
1132 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1133 {
1134 struct adapter_reply_queue *reply_q;
1135
1136 /* If MSIX capability is turned off
1137 * then multi-queues are not enabled
1138 */
1139 if (!_base_is_controller_msix_enabled(ioc))
1140 return;
1141
1142 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1143 if (ioc->shost_recovery || ioc->remove_host ||
1144 ioc->pci_error_recovery)
1145 return;
1146 /* TMs are on msix_index == 0 */
1147 if (reply_q->msix_index == 0)
1148 continue;
1149 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1150 }
1151 }
1152
1153 /**
1154 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1155 * @cb_idx: callback index
1156 *
1157 * Return nothing.
1158 */
1159 void
1160 mpt3sas_base_release_callback_handler(u8 cb_idx)
1161 {
1162 mpt_callbacks[cb_idx] = NULL;
1163 }
1164
1165 /**
1166 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1167 * @cb_func: callback function
1168 *
1169 * Returns cb_func.
1170 */
1171 u8
1172 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1173 {
1174 u8 cb_idx;
1175
1176 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1177 if (mpt_callbacks[cb_idx] == NULL)
1178 break;
1179
1180 mpt_callbacks[cb_idx] = cb_func;
1181 return cb_idx;
1182 }
1183
1184 /**
1185 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1186 *
1187 * Return nothing.
1188 */
1189 void
1190 mpt3sas_base_initialize_callback_handler(void)
1191 {
1192 u8 cb_idx;
1193
1194 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1195 mpt3sas_base_release_callback_handler(cb_idx);
1196 }
1197
1198
1199 /**
1200 * _base_build_zero_len_sge - build zero length sg entry
1201 * @ioc: per adapter object
1202 * @paddr: virtual address for SGE
1203 *
1204 * Create a zero length scatter gather entry to insure the IOCs hardware has
1205 * something to use if the target device goes brain dead and tries
1206 * to send data even when none is asked for.
1207 *
1208 * Return nothing.
1209 */
1210 static void
1211 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1212 {
1213 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1214 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1215 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1216 MPI2_SGE_FLAGS_SHIFT);
1217 ioc->base_add_sg_single(paddr, flags_length, -1);
1218 }
1219
1220 /**
1221 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1222 * @paddr: virtual address for SGE
1223 * @flags_length: SGE flags and data transfer length
1224 * @dma_addr: Physical address
1225 *
1226 * Return nothing.
1227 */
1228 static void
1229 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1230 {
1231 Mpi2SGESimple32_t *sgel = paddr;
1232
1233 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1234 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1235 sgel->FlagsLength = cpu_to_le32(flags_length);
1236 sgel->Address = cpu_to_le32(dma_addr);
1237 }
1238
1239
1240 /**
1241 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1242 * @paddr: virtual address for SGE
1243 * @flags_length: SGE flags and data transfer length
1244 * @dma_addr: Physical address
1245 *
1246 * Return nothing.
1247 */
1248 static void
1249 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1250 {
1251 Mpi2SGESimple64_t *sgel = paddr;
1252
1253 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1254 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1255 sgel->FlagsLength = cpu_to_le32(flags_length);
1256 sgel->Address = cpu_to_le64(dma_addr);
1257 }
1258
1259 /**
1260 * _base_get_chain_buffer_tracker - obtain chain tracker
1261 * @ioc: per adapter object
1262 * @smid: smid associated to an IO request
1263 *
1264 * Returns chain tracker(from ioc->free_chain_list)
1265 */
1266 static struct chain_tracker *
1267 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1268 {
1269 struct chain_tracker *chain_req;
1270 unsigned long flags;
1271
1272 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1273 if (list_empty(&ioc->free_chain_list)) {
1274 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1275 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1276 "chain buffers not available\n", ioc->name));
1277 return NULL;
1278 }
1279 chain_req = list_entry(ioc->free_chain_list.next,
1280 struct chain_tracker, tracker_list);
1281 list_del_init(&chain_req->tracker_list);
1282 list_add_tail(&chain_req->tracker_list,
1283 &ioc->scsi_lookup[smid - 1].chain_list);
1284 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1285 return chain_req;
1286 }
1287
1288
1289 /**
1290 * _base_build_sg - build generic sg
1291 * @ioc: per adapter object
1292 * @psge: virtual address for SGE
1293 * @data_out_dma: physical address for WRITES
1294 * @data_out_sz: data xfer size for WRITES
1295 * @data_in_dma: physical address for READS
1296 * @data_in_sz: data xfer size for READS
1297 *
1298 * Return nothing.
1299 */
1300 static void
1301 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1302 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1303 size_t data_in_sz)
1304 {
1305 u32 sgl_flags;
1306
1307 if (!data_out_sz && !data_in_sz) {
1308 _base_build_zero_len_sge(ioc, psge);
1309 return;
1310 }
1311
1312 if (data_out_sz && data_in_sz) {
1313 /* WRITE sgel first */
1314 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1316 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1317 ioc->base_add_sg_single(psge, sgl_flags |
1318 data_out_sz, data_out_dma);
1319
1320 /* incr sgel */
1321 psge += ioc->sge_size;
1322
1323 /* READ sgel last */
1324 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1325 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1326 MPI2_SGE_FLAGS_END_OF_LIST);
1327 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1328 ioc->base_add_sg_single(psge, sgl_flags |
1329 data_in_sz, data_in_dma);
1330 } else if (data_out_sz) /* WRITE */ {
1331 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1332 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1333 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1334 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1335 ioc->base_add_sg_single(psge, sgl_flags |
1336 data_out_sz, data_out_dma);
1337 } else if (data_in_sz) /* READ */ {
1338 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1339 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1340 MPI2_SGE_FLAGS_END_OF_LIST);
1341 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1342 ioc->base_add_sg_single(psge, sgl_flags |
1343 data_in_sz, data_in_dma);
1344 }
1345 }
1346
1347 /* IEEE format sgls */
1348
1349 /**
1350 * _base_add_sg_single_ieee - add sg element for IEEE format
1351 * @paddr: virtual address for SGE
1352 * @flags: SGE flags
1353 * @chain_offset: number of 128 byte elements from start of segment
1354 * @length: data transfer length
1355 * @dma_addr: Physical address
1356 *
1357 * Return nothing.
1358 */
1359 static void
1360 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1361 dma_addr_t dma_addr)
1362 {
1363 Mpi25IeeeSgeChain64_t *sgel = paddr;
1364
1365 sgel->Flags = flags;
1366 sgel->NextChainOffset = chain_offset;
1367 sgel->Length = cpu_to_le32(length);
1368 sgel->Address = cpu_to_le64(dma_addr);
1369 }
1370
1371 /**
1372 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1373 * @ioc: per adapter object
1374 * @paddr: virtual address for SGE
1375 *
1376 * Create a zero length scatter gather entry to insure the IOCs hardware has
1377 * something to use if the target device goes brain dead and tries
1378 * to send data even when none is asked for.
1379 *
1380 * Return nothing.
1381 */
1382 static void
1383 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1384 {
1385 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1386 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1387 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1388
1389 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1390 }
1391
1392 /**
1393 * _base_build_sg_scmd - main sg creation routine
1394 * @ioc: per adapter object
1395 * @scmd: scsi command
1396 * @smid: system request message index
1397 * Context: none.
1398 *
1399 * The main routine that builds scatter gather table from a given
1400 * scsi request sent via the .queuecommand main handler.
1401 *
1402 * Returns 0 success, anything else error
1403 */
1404 static int
1405 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1406 struct scsi_cmnd *scmd, u16 smid)
1407 {
1408 Mpi2SCSIIORequest_t *mpi_request;
1409 dma_addr_t chain_dma;
1410 struct scatterlist *sg_scmd;
1411 void *sg_local, *chain;
1412 u32 chain_offset;
1413 u32 chain_length;
1414 u32 chain_flags;
1415 int sges_left;
1416 u32 sges_in_segment;
1417 u32 sgl_flags;
1418 u32 sgl_flags_last_element;
1419 u32 sgl_flags_end_buffer;
1420 struct chain_tracker *chain_req;
1421
1422 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1423
1424 /* init scatter gather flags */
1425 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1426 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1427 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1428 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1429 << MPI2_SGE_FLAGS_SHIFT;
1430 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1431 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1432 << MPI2_SGE_FLAGS_SHIFT;
1433 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1434
1435 sg_scmd = scsi_sglist(scmd);
1436 sges_left = scsi_dma_map(scmd);
1437 if (sges_left < 0) {
1438 sdev_printk(KERN_ERR, scmd->device,
1439 "pci_map_sg failed: request for %d bytes!\n",
1440 scsi_bufflen(scmd));
1441 return -ENOMEM;
1442 }
1443
1444 sg_local = &mpi_request->SGL;
1445 sges_in_segment = ioc->max_sges_in_main_message;
1446 if (sges_left <= sges_in_segment)
1447 goto fill_in_last_segment;
1448
1449 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1450 (sges_in_segment * ioc->sge_size))/4;
1451
1452 /* fill in main message segment when there is a chain following */
1453 while (sges_in_segment) {
1454 if (sges_in_segment == 1)
1455 ioc->base_add_sg_single(sg_local,
1456 sgl_flags_last_element | sg_dma_len(sg_scmd),
1457 sg_dma_address(sg_scmd));
1458 else
1459 ioc->base_add_sg_single(sg_local, sgl_flags |
1460 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1461 sg_scmd = sg_next(sg_scmd);
1462 sg_local += ioc->sge_size;
1463 sges_left--;
1464 sges_in_segment--;
1465 }
1466
1467 /* initializing the chain flags and pointers */
1468 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1469 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1470 if (!chain_req)
1471 return -1;
1472 chain = chain_req->chain_buffer;
1473 chain_dma = chain_req->chain_buffer_dma;
1474 do {
1475 sges_in_segment = (sges_left <=
1476 ioc->max_sges_in_chain_message) ? sges_left :
1477 ioc->max_sges_in_chain_message;
1478 chain_offset = (sges_left == sges_in_segment) ?
1479 0 : (sges_in_segment * ioc->sge_size)/4;
1480 chain_length = sges_in_segment * ioc->sge_size;
1481 if (chain_offset) {
1482 chain_offset = chain_offset <<
1483 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1484 chain_length += ioc->sge_size;
1485 }
1486 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1487 chain_length, chain_dma);
1488 sg_local = chain;
1489 if (!chain_offset)
1490 goto fill_in_last_segment;
1491
1492 /* fill in chain segments */
1493 while (sges_in_segment) {
1494 if (sges_in_segment == 1)
1495 ioc->base_add_sg_single(sg_local,
1496 sgl_flags_last_element |
1497 sg_dma_len(sg_scmd),
1498 sg_dma_address(sg_scmd));
1499 else
1500 ioc->base_add_sg_single(sg_local, sgl_flags |
1501 sg_dma_len(sg_scmd),
1502 sg_dma_address(sg_scmd));
1503 sg_scmd = sg_next(sg_scmd);
1504 sg_local += ioc->sge_size;
1505 sges_left--;
1506 sges_in_segment--;
1507 }
1508
1509 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1510 if (!chain_req)
1511 return -1;
1512 chain = chain_req->chain_buffer;
1513 chain_dma = chain_req->chain_buffer_dma;
1514 } while (1);
1515
1516
1517 fill_in_last_segment:
1518
1519 /* fill the last segment */
1520 while (sges_left) {
1521 if (sges_left == 1)
1522 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1523 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1524 else
1525 ioc->base_add_sg_single(sg_local, sgl_flags |
1526 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1527 sg_scmd = sg_next(sg_scmd);
1528 sg_local += ioc->sge_size;
1529 sges_left--;
1530 }
1531
1532 return 0;
1533 }
1534
1535 /**
1536 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1537 * @ioc: per adapter object
1538 * @scmd: scsi command
1539 * @smid: system request message index
1540 * Context: none.
1541 *
1542 * The main routine that builds scatter gather table from a given
1543 * scsi request sent via the .queuecommand main handler.
1544 *
1545 * Returns 0 success, anything else error
1546 */
1547 static int
1548 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1549 struct scsi_cmnd *scmd, u16 smid)
1550 {
1551 Mpi2SCSIIORequest_t *mpi_request;
1552 dma_addr_t chain_dma;
1553 struct scatterlist *sg_scmd;
1554 void *sg_local, *chain;
1555 u32 chain_offset;
1556 u32 chain_length;
1557 int sges_left;
1558 u32 sges_in_segment;
1559 u8 simple_sgl_flags;
1560 u8 simple_sgl_flags_last;
1561 u8 chain_sgl_flags;
1562 struct chain_tracker *chain_req;
1563
1564 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1565
1566 /* init scatter gather flags */
1567 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1568 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1569 simple_sgl_flags_last = simple_sgl_flags |
1570 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1571 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1572 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1573
1574 sg_scmd = scsi_sglist(scmd);
1575 sges_left = scsi_dma_map(scmd);
1576 if (sges_left < 0) {
1577 sdev_printk(KERN_ERR, scmd->device,
1578 "pci_map_sg failed: request for %d bytes!\n",
1579 scsi_bufflen(scmd));
1580 return -ENOMEM;
1581 }
1582
1583 sg_local = &mpi_request->SGL;
1584 sges_in_segment = (ioc->request_sz -
1585 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1586 if (sges_left <= sges_in_segment)
1587 goto fill_in_last_segment;
1588
1589 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1590 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1591
1592 /* fill in main message segment when there is a chain following */
1593 while (sges_in_segment > 1) {
1594 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1595 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1596 sg_scmd = sg_next(sg_scmd);
1597 sg_local += ioc->sge_size_ieee;
1598 sges_left--;
1599 sges_in_segment--;
1600 }
1601
1602 /* initializing the pointers */
1603 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1604 if (!chain_req)
1605 return -1;
1606 chain = chain_req->chain_buffer;
1607 chain_dma = chain_req->chain_buffer_dma;
1608 do {
1609 sges_in_segment = (sges_left <=
1610 ioc->max_sges_in_chain_message) ? sges_left :
1611 ioc->max_sges_in_chain_message;
1612 chain_offset = (sges_left == sges_in_segment) ?
1613 0 : sges_in_segment;
1614 chain_length = sges_in_segment * ioc->sge_size_ieee;
1615 if (chain_offset)
1616 chain_length += ioc->sge_size_ieee;
1617 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1618 chain_offset, chain_length, chain_dma);
1619
1620 sg_local = chain;
1621 if (!chain_offset)
1622 goto fill_in_last_segment;
1623
1624 /* fill in chain segments */
1625 while (sges_in_segment) {
1626 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1627 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1628 sg_scmd = sg_next(sg_scmd);
1629 sg_local += ioc->sge_size_ieee;
1630 sges_left--;
1631 sges_in_segment--;
1632 }
1633
1634 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1635 if (!chain_req)
1636 return -1;
1637 chain = chain_req->chain_buffer;
1638 chain_dma = chain_req->chain_buffer_dma;
1639 } while (1);
1640
1641
1642 fill_in_last_segment:
1643
1644 /* fill the last segment */
1645 while (sges_left > 0) {
1646 if (sges_left == 1)
1647 _base_add_sg_single_ieee(sg_local,
1648 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1649 sg_dma_address(sg_scmd));
1650 else
1651 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1652 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1653 sg_scmd = sg_next(sg_scmd);
1654 sg_local += ioc->sge_size_ieee;
1655 sges_left--;
1656 }
1657
1658 return 0;
1659 }
1660
1661 /**
1662 * _base_build_sg_ieee - build generic sg for IEEE format
1663 * @ioc: per adapter object
1664 * @psge: virtual address for SGE
1665 * @data_out_dma: physical address for WRITES
1666 * @data_out_sz: data xfer size for WRITES
1667 * @data_in_dma: physical address for READS
1668 * @data_in_sz: data xfer size for READS
1669 *
1670 * Return nothing.
1671 */
1672 static void
1673 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1674 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1675 size_t data_in_sz)
1676 {
1677 u8 sgl_flags;
1678
1679 if (!data_out_sz && !data_in_sz) {
1680 _base_build_zero_len_sge_ieee(ioc, psge);
1681 return;
1682 }
1683
1684 if (data_out_sz && data_in_sz) {
1685 /* WRITE sgel first */
1686 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1688 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1689 data_out_dma);
1690
1691 /* incr sgel */
1692 psge += ioc->sge_size_ieee;
1693
1694 /* READ sgel last */
1695 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1696 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1697 data_in_dma);
1698 } else if (data_out_sz) /* WRITE */ {
1699 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1700 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1701 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1702 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1703 data_out_dma);
1704 } else if (data_in_sz) /* READ */ {
1705 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1706 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1707 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1708 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1709 data_in_dma);
1710 }
1711 }
1712
1713 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1714
1715 /**
1716 * _base_config_dma_addressing - set dma addressing
1717 * @ioc: per adapter object
1718 * @pdev: PCI device struct
1719 *
1720 * Returns 0 for success, non-zero for failure.
1721 */
1722 static int
1723 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1724 {
1725 struct sysinfo s;
1726 u64 consistent_dma_mask;
1727
1728 if (ioc->dma_mask)
1729 consistent_dma_mask = DMA_BIT_MASK(64);
1730 else
1731 consistent_dma_mask = DMA_BIT_MASK(32);
1732
1733 if (sizeof(dma_addr_t) > 4) {
1734 const uint64_t required_mask =
1735 dma_get_required_mask(&pdev->dev);
1736 if ((required_mask > DMA_BIT_MASK(32)) &&
1737 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1738 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1739 ioc->base_add_sg_single = &_base_add_sg_single_64;
1740 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1741 ioc->dma_mask = 64;
1742 goto out;
1743 }
1744 }
1745
1746 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1747 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1748 ioc->base_add_sg_single = &_base_add_sg_single_32;
1749 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1750 ioc->dma_mask = 32;
1751 } else
1752 return -ENODEV;
1753
1754 out:
1755 si_meminfo(&s);
1756 pr_info(MPT3SAS_FMT
1757 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1758 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1759
1760 return 0;
1761 }
1762
1763 static int
1764 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1765 struct pci_dev *pdev)
1766 {
1767 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1768 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1769 return -ENODEV;
1770 }
1771 return 0;
1772 }
1773
1774 /**
1775 * _base_check_enable_msix - checks MSIX capabable.
1776 * @ioc: per adapter object
1777 *
1778 * Check to see if card is capable of MSIX, and set number
1779 * of available msix vectors
1780 */
1781 static int
1782 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1783 {
1784 int base;
1785 u16 message_control;
1786
1787 /* Check whether controller SAS2008 B0 controller,
1788 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1789 */
1790 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1791 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1792 return -EINVAL;
1793 }
1794
1795 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1796 if (!base) {
1797 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1798 ioc->name));
1799 return -EINVAL;
1800 }
1801
1802 /* get msix vector count */
1803 /* NUMA_IO not supported for older controllers */
1804 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1805 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1806 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1807 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1808 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1809 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1810 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1811 ioc->msix_vector_count = 1;
1812 else {
1813 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1814 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1815 }
1816 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1817 "msix is supported, vector_count(%d)\n",
1818 ioc->name, ioc->msix_vector_count));
1819 return 0;
1820 }
1821
1822 /**
1823 * _base_free_irq - free irq
1824 * @ioc: per adapter object
1825 *
1826 * Freeing respective reply_queue from the list.
1827 */
1828 static void
1829 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1830 {
1831 struct adapter_reply_queue *reply_q, *next;
1832
1833 if (list_empty(&ioc->reply_queue_list))
1834 return;
1835
1836 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1837 list_del(&reply_q->list);
1838 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
1839 reply_q);
1840 kfree(reply_q);
1841 }
1842 }
1843
1844 /**
1845 * _base_request_irq - request irq
1846 * @ioc: per adapter object
1847 * @index: msix index into vector table
1848 *
1849 * Inserting respective reply_queue into the list.
1850 */
1851 static int
1852 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
1853 {
1854 struct pci_dev *pdev = ioc->pdev;
1855 struct adapter_reply_queue *reply_q;
1856 int r;
1857
1858 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1859 if (!reply_q) {
1860 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1861 ioc->name, (int)sizeof(struct adapter_reply_queue));
1862 return -ENOMEM;
1863 }
1864 reply_q->ioc = ioc;
1865 reply_q->msix_index = index;
1866
1867 atomic_set(&reply_q->busy, 0);
1868 if (ioc->msix_enable)
1869 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1870 ioc->driver_name, ioc->id, index);
1871 else
1872 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1873 ioc->driver_name, ioc->id);
1874 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
1875 IRQF_SHARED, reply_q->name, reply_q);
1876 if (r) {
1877 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1878 reply_q->name, pci_irq_vector(pdev, index));
1879 kfree(reply_q);
1880 return -EBUSY;
1881 }
1882
1883 INIT_LIST_HEAD(&reply_q->list);
1884 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1885 return 0;
1886 }
1887
1888 /**
1889 * _base_assign_reply_queues - assigning msix index for each cpu
1890 * @ioc: per adapter object
1891 *
1892 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1893 *
1894 * It would nice if we could call irq_set_affinity, however it is not
1895 * an exported symbol
1896 */
1897 static void
1898 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1899 {
1900 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1901 struct adapter_reply_queue *reply_q;
1902
1903 if (!_base_is_controller_msix_enabled(ioc))
1904 return;
1905
1906 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1907
1908 nr_cpus = num_online_cpus();
1909 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1910 ioc->facts.MaxMSIxVectors);
1911 if (!nr_msix)
1912 return;
1913
1914 if (smp_affinity_enable) {
1915 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1916 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
1917 reply_q->msix_index);
1918 if (!mask) {
1919 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
1920 ioc->name, reply_q->msix_index);
1921 continue;
1922 }
1923
1924 for_each_cpu(cpu, mask)
1925 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1926 }
1927 return;
1928 }
1929 cpu = cpumask_first(cpu_online_mask);
1930
1931 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1932
1933 unsigned int i, group = nr_cpus / nr_msix;
1934
1935 if (cpu >= nr_cpus)
1936 break;
1937
1938 if (index < nr_cpus % nr_msix)
1939 group++;
1940
1941 for (i = 0 ; i < group ; i++) {
1942 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1943 cpu = cpumask_next(cpu, cpu_online_mask);
1944 }
1945 index++;
1946 }
1947 }
1948
1949 /**
1950 * _base_disable_msix - disables msix
1951 * @ioc: per adapter object
1952 *
1953 */
1954 static void
1955 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1956 {
1957 if (!ioc->msix_enable)
1958 return;
1959 pci_disable_msix(ioc->pdev);
1960 ioc->msix_enable = 0;
1961 }
1962
1963 /**
1964 * _base_enable_msix - enables msix, failback to io_apic
1965 * @ioc: per adapter object
1966 *
1967 */
1968 static int
1969 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1970 {
1971 int r;
1972 int i, local_max_msix_vectors;
1973 u8 try_msix = 0;
1974 unsigned int irq_flags = PCI_IRQ_MSIX;
1975
1976 if (msix_disable == -1 || msix_disable == 0)
1977 try_msix = 1;
1978
1979 if (!try_msix)
1980 goto try_ioapic;
1981
1982 if (_base_check_enable_msix(ioc) != 0)
1983 goto try_ioapic;
1984
1985 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1986 ioc->msix_vector_count);
1987
1988 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1989 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1990 ioc->cpu_count, max_msix_vectors);
1991
1992 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1993 local_max_msix_vectors = 8;
1994 else
1995 local_max_msix_vectors = max_msix_vectors;
1996
1997 if (local_max_msix_vectors > 0)
1998 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
1999 ioc->reply_queue_count);
2000 else if (local_max_msix_vectors == 0)
2001 goto try_ioapic;
2002
2003 if (ioc->msix_vector_count < ioc->cpu_count)
2004 smp_affinity_enable = 0;
2005
2006 if (smp_affinity_enable)
2007 irq_flags |= PCI_IRQ_AFFINITY;
2008
2009 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2010 irq_flags);
2011 if (r < 0) {
2012 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2013 "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2014 ioc->name, r));
2015 goto try_ioapic;
2016 }
2017
2018 ioc->msix_enable = 1;
2019 ioc->reply_queue_count = r;
2020 for (i = 0; i < ioc->reply_queue_count; i++) {
2021 r = _base_request_irq(ioc, i);
2022 if (r) {
2023 _base_free_irq(ioc);
2024 _base_disable_msix(ioc);
2025 goto try_ioapic;
2026 }
2027 }
2028
2029 return 0;
2030
2031 /* failback to io_apic interrupt routing */
2032 try_ioapic:
2033
2034 ioc->reply_queue_count = 1;
2035 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2036 if (r < 0) {
2037 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2038 "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2039 ioc->name, r));
2040 } else
2041 r = _base_request_irq(ioc, 0);
2042
2043 return r;
2044 }
2045
2046 /**
2047 * mpt3sas_base_unmap_resources - free controller resources
2048 * @ioc: per adapter object
2049 */
2050 static void
2051 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2052 {
2053 struct pci_dev *pdev = ioc->pdev;
2054
2055 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2056 ioc->name, __func__));
2057
2058 _base_free_irq(ioc);
2059 _base_disable_msix(ioc);
2060
2061 if (ioc->combined_reply_queue) {
2062 kfree(ioc->replyPostRegisterIndex);
2063 ioc->replyPostRegisterIndex = NULL;
2064 }
2065
2066 if (ioc->chip_phys) {
2067 iounmap(ioc->chip);
2068 ioc->chip_phys = 0;
2069 }
2070
2071 if (pci_is_enabled(pdev)) {
2072 pci_release_selected_regions(ioc->pdev, ioc->bars);
2073 pci_disable_pcie_error_reporting(pdev);
2074 pci_disable_device(pdev);
2075 }
2076 }
2077
2078 /**
2079 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2080 * @ioc: per adapter object
2081 *
2082 * Returns 0 for success, non-zero for failure.
2083 */
2084 int
2085 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2086 {
2087 struct pci_dev *pdev = ioc->pdev;
2088 u32 memap_sz;
2089 u32 pio_sz;
2090 int i, r = 0;
2091 u64 pio_chip = 0;
2092 u64 chip_phys = 0;
2093 struct adapter_reply_queue *reply_q;
2094
2095 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2096 ioc->name, __func__));
2097
2098 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2099 if (pci_enable_device_mem(pdev)) {
2100 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2101 ioc->name);
2102 ioc->bars = 0;
2103 return -ENODEV;
2104 }
2105
2106
2107 if (pci_request_selected_regions(pdev, ioc->bars,
2108 ioc->driver_name)) {
2109 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2110 ioc->name);
2111 ioc->bars = 0;
2112 r = -ENODEV;
2113 goto out_fail;
2114 }
2115
2116 /* AER (Advanced Error Reporting) hooks */
2117 pci_enable_pcie_error_reporting(pdev);
2118
2119 pci_set_master(pdev);
2120
2121
2122 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2123 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2124 ioc->name, pci_name(pdev));
2125 r = -ENODEV;
2126 goto out_fail;
2127 }
2128
2129 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2130 (!memap_sz || !pio_sz); i++) {
2131 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2132 if (pio_sz)
2133 continue;
2134 pio_chip = (u64)pci_resource_start(pdev, i);
2135 pio_sz = pci_resource_len(pdev, i);
2136 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2137 if (memap_sz)
2138 continue;
2139 ioc->chip_phys = pci_resource_start(pdev, i);
2140 chip_phys = (u64)ioc->chip_phys;
2141 memap_sz = pci_resource_len(pdev, i);
2142 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2143 }
2144 }
2145
2146 if (ioc->chip == NULL) {
2147 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2148 " or resource not found\n", ioc->name);
2149 r = -EINVAL;
2150 goto out_fail;
2151 }
2152
2153 _base_mask_interrupts(ioc);
2154
2155 r = _base_get_ioc_facts(ioc);
2156 if (r)
2157 goto out_fail;
2158
2159 if (!ioc->rdpq_array_enable_assigned) {
2160 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2161 ioc->rdpq_array_enable_assigned = 1;
2162 }
2163
2164 r = _base_enable_msix(ioc);
2165 if (r)
2166 goto out_fail;
2167
2168 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2169 * revision HBAs and also only when reply queue count is greater than 8
2170 */
2171 if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2172 /* Determine the Supplemental Reply Post Host Index Registers
2173 * Addresse. Supplemental Reply Post Host Index Registers
2174 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2175 * each register is at offset bytes of
2176 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2177 */
2178 ioc->replyPostRegisterIndex = kcalloc(
2179 ioc->combined_reply_index_count,
2180 sizeof(resource_size_t *), GFP_KERNEL);
2181 if (!ioc->replyPostRegisterIndex) {
2182 dfailprintk(ioc, printk(MPT3SAS_FMT
2183 "allocation for reply Post Register Index failed!!!\n",
2184 ioc->name));
2185 r = -ENOMEM;
2186 goto out_fail;
2187 }
2188
2189 for (i = 0; i < ioc->combined_reply_index_count; i++) {
2190 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2191 ((u8 *)&ioc->chip->Doorbell +
2192 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2193 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2194 }
2195 } else
2196 ioc->combined_reply_queue = 0;
2197
2198 if (ioc->is_warpdrive) {
2199 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2200 &ioc->chip->ReplyPostHostIndex;
2201
2202 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2203 ioc->reply_post_host_index[i] =
2204 (resource_size_t __iomem *)
2205 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2206 * 4)));
2207 }
2208
2209 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2210 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2211 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2212 "IO-APIC enabled"),
2213 pci_irq_vector(ioc->pdev, reply_q->msix_index));
2214
2215 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2216 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2217 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2218 ioc->name, (unsigned long long)pio_chip, pio_sz);
2219
2220 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2221 pci_save_state(pdev);
2222 return 0;
2223
2224 out_fail:
2225 mpt3sas_base_unmap_resources(ioc);
2226 return r;
2227 }
2228
2229 /**
2230 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2231 * @ioc: per adapter object
2232 * @smid: system request message index(smid zero is invalid)
2233 *
2234 * Returns virt pointer to message frame.
2235 */
2236 void *
2237 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2238 {
2239 return (void *)(ioc->request + (smid * ioc->request_sz));
2240 }
2241
2242 /**
2243 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2244 * @ioc: per adapter object
2245 * @smid: system request message index
2246 *
2247 * Returns virt pointer to sense buffer.
2248 */
2249 void *
2250 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2251 {
2252 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2253 }
2254
2255 /**
2256 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2257 * @ioc: per adapter object
2258 * @smid: system request message index
2259 *
2260 * Returns phys pointer to the low 32bit address of the sense buffer.
2261 */
2262 __le32
2263 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2264 {
2265 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2266 SCSI_SENSE_BUFFERSIZE));
2267 }
2268
2269 /**
2270 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2271 * @ioc: per adapter object
2272 * @phys_addr: lower 32 physical addr of the reply
2273 *
2274 * Converts 32bit lower physical addr into a virt address.
2275 */
2276 void *
2277 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2278 {
2279 if (!phys_addr)
2280 return NULL;
2281 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2282 }
2283
2284 static inline u8
2285 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2286 {
2287 return ioc->cpu_msix_table[raw_smp_processor_id()];
2288 }
2289
2290 /**
2291 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2292 * @ioc: per adapter object
2293 * @cb_idx: callback index
2294 *
2295 * Returns smid (zero is invalid)
2296 */
2297 u16
2298 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2299 {
2300 unsigned long flags;
2301 struct request_tracker *request;
2302 u16 smid;
2303
2304 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2305 if (list_empty(&ioc->internal_free_list)) {
2306 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2307 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2308 ioc->name, __func__);
2309 return 0;
2310 }
2311
2312 request = list_entry(ioc->internal_free_list.next,
2313 struct request_tracker, tracker_list);
2314 request->cb_idx = cb_idx;
2315 smid = request->smid;
2316 list_del(&request->tracker_list);
2317 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2318 return smid;
2319 }
2320
2321 /**
2322 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2323 * @ioc: per adapter object
2324 * @cb_idx: callback index
2325 * @scmd: pointer to scsi command object
2326 *
2327 * Returns smid (zero is invalid)
2328 */
2329 u16
2330 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2331 struct scsi_cmnd *scmd)
2332 {
2333 unsigned long flags;
2334 struct scsiio_tracker *request;
2335 u16 smid;
2336
2337 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2338 if (list_empty(&ioc->free_list)) {
2339 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2340 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2341 ioc->name, __func__);
2342 return 0;
2343 }
2344
2345 request = list_entry(ioc->free_list.next,
2346 struct scsiio_tracker, tracker_list);
2347 request->scmd = scmd;
2348 request->cb_idx = cb_idx;
2349 smid = request->smid;
2350 request->msix_io = _base_get_msix_index(ioc);
2351 list_del(&request->tracker_list);
2352 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2353 return smid;
2354 }
2355
2356 /**
2357 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2358 * @ioc: per adapter object
2359 * @cb_idx: callback index
2360 *
2361 * Returns smid (zero is invalid)
2362 */
2363 u16
2364 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2365 {
2366 unsigned long flags;
2367 struct request_tracker *request;
2368 u16 smid;
2369
2370 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2371 if (list_empty(&ioc->hpr_free_list)) {
2372 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2373 return 0;
2374 }
2375
2376 request = list_entry(ioc->hpr_free_list.next,
2377 struct request_tracker, tracker_list);
2378 request->cb_idx = cb_idx;
2379 smid = request->smid;
2380 list_del(&request->tracker_list);
2381 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2382 return smid;
2383 }
2384
2385 /**
2386 * mpt3sas_base_free_smid - put smid back on free_list
2387 * @ioc: per adapter object
2388 * @smid: system request message index
2389 *
2390 * Return nothing.
2391 */
2392 void
2393 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2394 {
2395 unsigned long flags;
2396 int i;
2397 struct chain_tracker *chain_req, *next;
2398
2399 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2400 if (smid < ioc->hi_priority_smid) {
2401 /* scsiio queue */
2402 i = smid - 1;
2403 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2404 list_for_each_entry_safe(chain_req, next,
2405 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2406 list_del_init(&chain_req->tracker_list);
2407 list_add(&chain_req->tracker_list,
2408 &ioc->free_chain_list);
2409 }
2410 }
2411 ioc->scsi_lookup[i].cb_idx = 0xFF;
2412 ioc->scsi_lookup[i].scmd = NULL;
2413 ioc->scsi_lookup[i].direct_io = 0;
2414 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2415 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2416
2417 /*
2418 * See _wait_for_commands_to_complete() call with regards
2419 * to this code.
2420 */
2421 if (ioc->shost_recovery && ioc->pending_io_count) {
2422 if (ioc->pending_io_count == 1)
2423 wake_up(&ioc->reset_wq);
2424 ioc->pending_io_count--;
2425 }
2426 return;
2427 } else if (smid < ioc->internal_smid) {
2428 /* hi-priority */
2429 i = smid - ioc->hi_priority_smid;
2430 ioc->hpr_lookup[i].cb_idx = 0xFF;
2431 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2432 } else if (smid <= ioc->hba_queue_depth) {
2433 /* internal queue */
2434 i = smid - ioc->internal_smid;
2435 ioc->internal_lookup[i].cb_idx = 0xFF;
2436 list_add(&ioc->internal_lookup[i].tracker_list,
2437 &ioc->internal_free_list);
2438 }
2439 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2440 }
2441
2442 /**
2443 * _base_writeq - 64 bit write to MMIO
2444 * @ioc: per adapter object
2445 * @b: data payload
2446 * @addr: address in MMIO space
2447 * @writeq_lock: spin lock
2448 *
2449 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2450 * care of 32 bit environment where its not quarenteed to send the entire word
2451 * in one transfer.
2452 */
2453 #if defined(writeq) && defined(CONFIG_64BIT)
2454 static inline void
2455 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2456 {
2457 writeq(cpu_to_le64(b), addr);
2458 }
2459 #else
2460 static inline void
2461 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2462 {
2463 unsigned long flags;
2464 __u64 data_out = cpu_to_le64(b);
2465
2466 spin_lock_irqsave(writeq_lock, flags);
2467 writel((u32)(data_out), addr);
2468 writel((u32)(data_out >> 32), (addr + 4));
2469 spin_unlock_irqrestore(writeq_lock, flags);
2470 }
2471 #endif
2472
2473 /**
2474 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2475 * @ioc: per adapter object
2476 * @smid: system request message index
2477 * @handle: device handle
2478 *
2479 * Return nothing.
2480 */
2481 static void
2482 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2483 {
2484 Mpi2RequestDescriptorUnion_t descriptor;
2485 u64 *request = (u64 *)&descriptor;
2486
2487
2488 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2489 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2490 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2491 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2492 descriptor.SCSIIO.LMID = 0;
2493 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2494 &ioc->scsi_lookup_lock);
2495 }
2496
2497 /**
2498 * _base_put_smid_fast_path - send fast path request to firmware
2499 * @ioc: per adapter object
2500 * @smid: system request message index
2501 * @handle: device handle
2502 *
2503 * Return nothing.
2504 */
2505 static void
2506 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2507 u16 handle)
2508 {
2509 Mpi2RequestDescriptorUnion_t descriptor;
2510 u64 *request = (u64 *)&descriptor;
2511
2512 descriptor.SCSIIO.RequestFlags =
2513 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2514 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2515 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2516 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2517 descriptor.SCSIIO.LMID = 0;
2518 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2519 &ioc->scsi_lookup_lock);
2520 }
2521
2522 /**
2523 * _base_put_smid_hi_priority - send Task Management request to firmware
2524 * @ioc: per adapter object
2525 * @smid: system request message index
2526 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2527 * Return nothing.
2528 */
2529 static void
2530 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2531 u16 msix_task)
2532 {
2533 Mpi2RequestDescriptorUnion_t descriptor;
2534 u64 *request = (u64 *)&descriptor;
2535
2536 descriptor.HighPriority.RequestFlags =
2537 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2538 descriptor.HighPriority.MSIxIndex = msix_task;
2539 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2540 descriptor.HighPriority.LMID = 0;
2541 descriptor.HighPriority.Reserved1 = 0;
2542 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2543 &ioc->scsi_lookup_lock);
2544 }
2545
2546 /**
2547 * _base_put_smid_default - Default, primarily used for config pages
2548 * @ioc: per adapter object
2549 * @smid: system request message index
2550 *
2551 * Return nothing.
2552 */
2553 static void
2554 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2555 {
2556 Mpi2RequestDescriptorUnion_t descriptor;
2557 u64 *request = (u64 *)&descriptor;
2558
2559 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2560 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2561 descriptor.Default.SMID = cpu_to_le16(smid);
2562 descriptor.Default.LMID = 0;
2563 descriptor.Default.DescriptorTypeDependent = 0;
2564 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2565 &ioc->scsi_lookup_lock);
2566 }
2567
2568 /**
2569 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2570 * Atomic Request Descriptor
2571 * @ioc: per adapter object
2572 * @smid: system request message index
2573 * @handle: device handle, unused in this function, for function type match
2574 *
2575 * Return nothing.
2576 */
2577 static void
2578 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2579 u16 handle)
2580 {
2581 Mpi26AtomicRequestDescriptor_t descriptor;
2582 u32 *request = (u32 *)&descriptor;
2583
2584 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2585 descriptor.MSIxIndex = _base_get_msix_index(ioc);
2586 descriptor.SMID = cpu_to_le16(smid);
2587
2588 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2589 }
2590
2591 /**
2592 * _base_put_smid_fast_path_atomic - send fast path request to firmware
2593 * using Atomic Request Descriptor
2594 * @ioc: per adapter object
2595 * @smid: system request message index
2596 * @handle: device handle, unused in this function, for function type match
2597 * Return nothing
2598 */
2599 static void
2600 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2601 u16 handle)
2602 {
2603 Mpi26AtomicRequestDescriptor_t descriptor;
2604 u32 *request = (u32 *)&descriptor;
2605
2606 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2607 descriptor.MSIxIndex = _base_get_msix_index(ioc);
2608 descriptor.SMID = cpu_to_le16(smid);
2609
2610 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2611 }
2612
2613 /**
2614 * _base_put_smid_hi_priority_atomic - send Task Management request to
2615 * firmware using Atomic Request Descriptor
2616 * @ioc: per adapter object
2617 * @smid: system request message index
2618 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2619 *
2620 * Return nothing.
2621 */
2622 static void
2623 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2624 u16 msix_task)
2625 {
2626 Mpi26AtomicRequestDescriptor_t descriptor;
2627 u32 *request = (u32 *)&descriptor;
2628
2629 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2630 descriptor.MSIxIndex = msix_task;
2631 descriptor.SMID = cpu_to_le16(smid);
2632
2633 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2634 }
2635
2636 /**
2637 * _base_put_smid_default - Default, primarily used for config pages
2638 * use Atomic Request Descriptor
2639 * @ioc: per adapter object
2640 * @smid: system request message index
2641 *
2642 * Return nothing.
2643 */
2644 static void
2645 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2646 {
2647 Mpi26AtomicRequestDescriptor_t descriptor;
2648 u32 *request = (u32 *)&descriptor;
2649
2650 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2651 descriptor.MSIxIndex = _base_get_msix_index(ioc);
2652 descriptor.SMID = cpu_to_le16(smid);
2653
2654 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2655 }
2656
2657 /**
2658 * _base_display_OEMs_branding - Display branding string
2659 * @ioc: per adapter object
2660 *
2661 * Return nothing.
2662 */
2663 static void
2664 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2665 {
2666 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2667 return;
2668
2669 switch (ioc->pdev->subsystem_vendor) {
2670 case PCI_VENDOR_ID_INTEL:
2671 switch (ioc->pdev->device) {
2672 case MPI2_MFGPAGE_DEVID_SAS2008:
2673 switch (ioc->pdev->subsystem_device) {
2674 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2675 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2677 break;
2678 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2679 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2680 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2681 break;
2682 case MPT2SAS_INTEL_SSD910_SSDID:
2683 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2684 MPT2SAS_INTEL_SSD910_BRANDING);
2685 break;
2686 default:
2687 pr_info(MPT3SAS_FMT
2688 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2689 ioc->name, ioc->pdev->subsystem_device);
2690 break;
2691 }
2692 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2693 switch (ioc->pdev->subsystem_device) {
2694 case MPT2SAS_INTEL_RS25GB008_SSDID:
2695 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2696 MPT2SAS_INTEL_RS25GB008_BRANDING);
2697 break;
2698 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2699 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2700 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2701 break;
2702 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2703 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2704 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2705 break;
2706 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2707 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2709 break;
2710 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2711 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2712 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2713 break;
2714 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2715 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2716 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2717 break;
2718 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2719 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2720 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2721 break;
2722 default:
2723 pr_info(MPT3SAS_FMT
2724 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2725 ioc->name, ioc->pdev->subsystem_device);
2726 break;
2727 }
2728 case MPI25_MFGPAGE_DEVID_SAS3008:
2729 switch (ioc->pdev->subsystem_device) {
2730 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2731 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2732 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2733 break;
2734
2735 case MPT3SAS_INTEL_RS3GC008_SSDID:
2736 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2737 MPT3SAS_INTEL_RS3GC008_BRANDING);
2738 break;
2739 case MPT3SAS_INTEL_RS3FC044_SSDID:
2740 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2741 MPT3SAS_INTEL_RS3FC044_BRANDING);
2742 break;
2743 case MPT3SAS_INTEL_RS3UC080_SSDID:
2744 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2745 MPT3SAS_INTEL_RS3UC080_BRANDING);
2746 break;
2747 default:
2748 pr_info(MPT3SAS_FMT
2749 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2750 ioc->name, ioc->pdev->subsystem_device);
2751 break;
2752 }
2753 break;
2754 default:
2755 pr_info(MPT3SAS_FMT
2756 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2757 ioc->name, ioc->pdev->subsystem_device);
2758 break;
2759 }
2760 break;
2761 case PCI_VENDOR_ID_DELL:
2762 switch (ioc->pdev->device) {
2763 case MPI2_MFGPAGE_DEVID_SAS2008:
2764 switch (ioc->pdev->subsystem_device) {
2765 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2766 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2767 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2768 break;
2769 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2770 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2771 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2772 break;
2773 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2774 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2775 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2776 break;
2777 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2778 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2780 break;
2781 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2782 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2784 break;
2785 case MPT2SAS_DELL_PERC_H200_SSDID:
2786 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787 MPT2SAS_DELL_PERC_H200_BRANDING);
2788 break;
2789 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2790 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2791 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2792 break;
2793 default:
2794 pr_info(MPT3SAS_FMT
2795 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2796 ioc->name, ioc->pdev->subsystem_device);
2797 break;
2798 }
2799 break;
2800 case MPI25_MFGPAGE_DEVID_SAS3008:
2801 switch (ioc->pdev->subsystem_device) {
2802 case MPT3SAS_DELL_12G_HBA_SSDID:
2803 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2804 MPT3SAS_DELL_12G_HBA_BRANDING);
2805 break;
2806 default:
2807 pr_info(MPT3SAS_FMT
2808 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2809 ioc->name, ioc->pdev->subsystem_device);
2810 break;
2811 }
2812 break;
2813 default:
2814 pr_info(MPT3SAS_FMT
2815 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2816 ioc->pdev->subsystem_device);
2817 break;
2818 }
2819 break;
2820 case PCI_VENDOR_ID_CISCO:
2821 switch (ioc->pdev->device) {
2822 case MPI25_MFGPAGE_DEVID_SAS3008:
2823 switch (ioc->pdev->subsystem_device) {
2824 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2825 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2826 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2827 break;
2828 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2829 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2830 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2831 break;
2832 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2833 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2834 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2835 break;
2836 default:
2837 pr_info(MPT3SAS_FMT
2838 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2839 ioc->name, ioc->pdev->subsystem_device);
2840 break;
2841 }
2842 break;
2843 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2844 switch (ioc->pdev->subsystem_device) {
2845 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2846 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2847 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2848 break;
2849 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2850 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2851 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2852 );
2853 break;
2854 default:
2855 pr_info(MPT3SAS_FMT
2856 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2857 ioc->name, ioc->pdev->subsystem_device);
2858 break;
2859 }
2860 break;
2861 default:
2862 pr_info(MPT3SAS_FMT
2863 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2864 ioc->name, ioc->pdev->subsystem_device);
2865 break;
2866 }
2867 break;
2868 case MPT2SAS_HP_3PAR_SSVID:
2869 switch (ioc->pdev->device) {
2870 case MPI2_MFGPAGE_DEVID_SAS2004:
2871 switch (ioc->pdev->subsystem_device) {
2872 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2873 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2874 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2875 break;
2876 default:
2877 pr_info(MPT3SAS_FMT
2878 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2879 ioc->name, ioc->pdev->subsystem_device);
2880 break;
2881 }
2882 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2883 switch (ioc->pdev->subsystem_device) {
2884 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2885 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2886 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2887 break;
2888 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2889 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2890 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2891 break;
2892 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2893 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2894 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2895 break;
2896 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2897 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2898 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2899 break;
2900 default:
2901 pr_info(MPT3SAS_FMT
2902 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2903 ioc->name, ioc->pdev->subsystem_device);
2904 break;
2905 }
2906 default:
2907 pr_info(MPT3SAS_FMT
2908 "HP SAS HBA: Subsystem ID: 0x%X\n",
2909 ioc->name, ioc->pdev->subsystem_device);
2910 break;
2911 }
2912 default:
2913 break;
2914 }
2915 }
2916
2917 /**
2918 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2919 * @ioc: per adapter object
2920 *
2921 * Return nothing.
2922 */
2923 static void
2924 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2925 {
2926 int i = 0;
2927 char desc[16];
2928 u32 iounit_pg1_flags;
2929 u32 bios_version;
2930
2931 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2932 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2933 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2934 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2935 ioc->name, desc,
2936 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2937 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2938 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2939 ioc->facts.FWVersion.Word & 0x000000FF,
2940 ioc->pdev->revision,
2941 (bios_version & 0xFF000000) >> 24,
2942 (bios_version & 0x00FF0000) >> 16,
2943 (bios_version & 0x0000FF00) >> 8,
2944 bios_version & 0x000000FF);
2945
2946 _base_display_OEMs_branding(ioc);
2947
2948 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2949
2950 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2951 pr_info("Initiator");
2952 i++;
2953 }
2954
2955 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2956 pr_info("%sTarget", i ? "," : "");
2957 i++;
2958 }
2959
2960 i = 0;
2961 pr_info("), ");
2962 pr_info("Capabilities=(");
2963
2964 if (!ioc->hide_ir_msg) {
2965 if (ioc->facts.IOCCapabilities &
2966 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2967 pr_info("Raid");
2968 i++;
2969 }
2970 }
2971
2972 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2973 pr_info("%sTLR", i ? "," : "");
2974 i++;
2975 }
2976
2977 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2978 pr_info("%sMulticast", i ? "," : "");
2979 i++;
2980 }
2981
2982 if (ioc->facts.IOCCapabilities &
2983 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2984 pr_info("%sBIDI Target", i ? "," : "");
2985 i++;
2986 }
2987
2988 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2989 pr_info("%sEEDP", i ? "," : "");
2990 i++;
2991 }
2992
2993 if (ioc->facts.IOCCapabilities &
2994 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2995 pr_info("%sSnapshot Buffer", i ? "," : "");
2996 i++;
2997 }
2998
2999 if (ioc->facts.IOCCapabilities &
3000 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3001 pr_info("%sDiag Trace Buffer", i ? "," : "");
3002 i++;
3003 }
3004
3005 if (ioc->facts.IOCCapabilities &
3006 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3007 pr_info("%sDiag Extended Buffer", i ? "," : "");
3008 i++;
3009 }
3010
3011 if (ioc->facts.IOCCapabilities &
3012 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3013 pr_info("%sTask Set Full", i ? "," : "");
3014 i++;
3015 }
3016
3017 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3018 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3019 pr_info("%sNCQ", i ? "," : "");
3020 i++;
3021 }
3022
3023 pr_info(")\n");
3024 }
3025
3026 /**
3027 * mpt3sas_base_update_missing_delay - change the missing delay timers
3028 * @ioc: per adapter object
3029 * @device_missing_delay: amount of time till device is reported missing
3030 * @io_missing_delay: interval IO is returned when there is a missing device
3031 *
3032 * Return nothing.
3033 *
3034 * Passed on the command line, this function will modify the device missing
3035 * delay, as well as the io missing delay. This should be called at driver
3036 * load time.
3037 */
3038 void
3039 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3040 u16 device_missing_delay, u8 io_missing_delay)
3041 {
3042 u16 dmd, dmd_new, dmd_orignal;
3043 u8 io_missing_delay_original;
3044 u16 sz;
3045 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3046 Mpi2ConfigReply_t mpi_reply;
3047 u8 num_phys = 0;
3048 u16 ioc_status;
3049
3050 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3051 if (!num_phys)
3052 return;
3053
3054 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3055 sizeof(Mpi2SasIOUnit1PhyData_t));
3056 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3057 if (!sas_iounit_pg1) {
3058 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3059 ioc->name, __FILE__, __LINE__, __func__);
3060 goto out;
3061 }
3062 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3063 sas_iounit_pg1, sz))) {
3064 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3065 ioc->name, __FILE__, __LINE__, __func__);
3066 goto out;
3067 }
3068 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3069 MPI2_IOCSTATUS_MASK;
3070 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3071 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3072 ioc->name, __FILE__, __LINE__, __func__);
3073 goto out;
3074 }
3075
3076 /* device missing delay */
3077 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3078 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3079 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3080 else
3081 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3082 dmd_orignal = dmd;
3083 if (device_missing_delay > 0x7F) {
3084 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3085 device_missing_delay;
3086 dmd = dmd / 16;
3087 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3088 } else
3089 dmd = device_missing_delay;
3090 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3091
3092 /* io missing delay */
3093 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3094 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3095
3096 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3097 sz)) {
3098 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3099 dmd_new = (dmd &
3100 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3101 else
3102 dmd_new =
3103 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3104 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3105 ioc->name, dmd_orignal, dmd_new);
3106 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3107 ioc->name, io_missing_delay_original,
3108 io_missing_delay);
3109 ioc->device_missing_delay = dmd_new;
3110 ioc->io_missing_delay = io_missing_delay;
3111 }
3112
3113 out:
3114 kfree(sas_iounit_pg1);
3115 }
3116 /**
3117 * _base_static_config_pages - static start of day config pages
3118 * @ioc: per adapter object
3119 *
3120 * Return nothing.
3121 */
3122 static void
3123 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3124 {
3125 Mpi2ConfigReply_t mpi_reply;
3126 u32 iounit_pg1_flags;
3127
3128 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3129 if (ioc->ir_firmware)
3130 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3131 &ioc->manu_pg10);
3132
3133 /*
3134 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3135 * flag unset in NVDATA.
3136 */
3137 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3138 if (ioc->manu_pg11.EEDPTagMode == 0) {
3139 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3140 ioc->name);
3141 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3142 ioc->manu_pg11.EEDPTagMode |= 0x1;
3143 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3144 &ioc->manu_pg11);
3145 }
3146
3147 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3148 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3149 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3150 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3151 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3152 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3153 _base_display_ioc_capabilities(ioc);
3154
3155 /*
3156 * Enable task_set_full handling in iounit_pg1 when the
3157 * facts capabilities indicate that its supported.
3158 */
3159 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3160 if ((ioc->facts.IOCCapabilities &
3161 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3162 iounit_pg1_flags &=
3163 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3164 else
3165 iounit_pg1_flags |=
3166 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3167 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3168 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3169
3170 if (ioc->iounit_pg8.NumSensors)
3171 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3172 }
3173
3174 /**
3175 * _base_release_memory_pools - release memory
3176 * @ioc: per adapter object
3177 *
3178 * Free memory allocated from _base_allocate_memory_pools.
3179 *
3180 * Return nothing.
3181 */
3182 static void
3183 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3184 {
3185 int i = 0;
3186 struct reply_post_struct *rps;
3187
3188 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3189 __func__));
3190
3191 if (ioc->request) {
3192 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3193 ioc->request, ioc->request_dma);
3194 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3195 "request_pool(0x%p): free\n",
3196 ioc->name, ioc->request));
3197 ioc->request = NULL;
3198 }
3199
3200 if (ioc->sense) {
3201 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3202 dma_pool_destroy(ioc->sense_dma_pool);
3203 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3204 "sense_pool(0x%p): free\n",
3205 ioc->name, ioc->sense));
3206 ioc->sense = NULL;
3207 }
3208
3209 if (ioc->reply) {
3210 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3211 dma_pool_destroy(ioc->reply_dma_pool);
3212 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3213 "reply_pool(0x%p): free\n",
3214 ioc->name, ioc->reply));
3215 ioc->reply = NULL;
3216 }
3217
3218 if (ioc->reply_free) {
3219 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3220 ioc->reply_free_dma);
3221 dma_pool_destroy(ioc->reply_free_dma_pool);
3222 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3223 "reply_free_pool(0x%p): free\n",
3224 ioc->name, ioc->reply_free));
3225 ioc->reply_free = NULL;
3226 }
3227
3228 if (ioc->reply_post) {
3229 do {
3230 rps = &ioc->reply_post[i];
3231 if (rps->reply_post_free) {
3232 dma_pool_free(
3233 ioc->reply_post_free_dma_pool,
3234 rps->reply_post_free,
3235 rps->reply_post_free_dma);
3236 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3237 "reply_post_free_pool(0x%p): free\n",
3238 ioc->name, rps->reply_post_free));
3239 rps->reply_post_free = NULL;
3240 }
3241 } while (ioc->rdpq_array_enable &&
3242 (++i < ioc->reply_queue_count));
3243
3244 dma_pool_destroy(ioc->reply_post_free_dma_pool);
3245 kfree(ioc->reply_post);
3246 }
3247
3248 if (ioc->config_page) {
3249 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3250 "config_page(0x%p): free\n", ioc->name,
3251 ioc->config_page));
3252 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3253 ioc->config_page, ioc->config_page_dma);
3254 }
3255
3256 if (ioc->scsi_lookup) {
3257 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3258 ioc->scsi_lookup = NULL;
3259 }
3260 kfree(ioc->hpr_lookup);
3261 kfree(ioc->internal_lookup);
3262 if (ioc->chain_lookup) {
3263 for (i = 0; i < ioc->chain_depth; i++) {
3264 if (ioc->chain_lookup[i].chain_buffer)
3265 dma_pool_free(ioc->chain_dma_pool,
3266 ioc->chain_lookup[i].chain_buffer,
3267 ioc->chain_lookup[i].chain_buffer_dma);
3268 }
3269 dma_pool_destroy(ioc->chain_dma_pool);
3270 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3271 ioc->chain_lookup = NULL;
3272 }
3273 }
3274
3275 /**
3276 * _base_allocate_memory_pools - allocate start of day memory pools
3277 * @ioc: per adapter object
3278 *
3279 * Returns 0 success, anything else error
3280 */
3281 static int
3282 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3283 {
3284 struct mpt3sas_facts *facts;
3285 u16 max_sge_elements;
3286 u16 chains_needed_per_io;
3287 u32 sz, total_sz, reply_post_free_sz;
3288 u32 retry_sz;
3289 u16 max_request_credit;
3290 unsigned short sg_tablesize;
3291 u16 sge_size;
3292 int i;
3293
3294 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3295 __func__));
3296
3297
3298 retry_sz = 0;
3299 facts = &ioc->facts;
3300
3301 /* command line tunables for max sgl entries */
3302 if (max_sgl_entries != -1)
3303 sg_tablesize = max_sgl_entries;
3304 else {
3305 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3306 sg_tablesize = MPT2SAS_SG_DEPTH;
3307 else
3308 sg_tablesize = MPT3SAS_SG_DEPTH;
3309 }
3310
3311 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3312 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3313 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3314 sg_tablesize = min_t(unsigned short, sg_tablesize,
3315 SG_MAX_SEGMENTS);
3316 pr_warn(MPT3SAS_FMT
3317 "sg_tablesize(%u) is bigger than kernel"
3318 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3319 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3320 }
3321 ioc->shost->sg_tablesize = sg_tablesize;
3322
3323 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3324 (facts->RequestCredit / 4));
3325 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3326 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3327 INTERNAL_SCSIIO_CMDS_COUNT)) {
3328 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3329 Credits, it has just %d number of credits\n",
3330 ioc->name, facts->RequestCredit);
3331 return -ENOMEM;
3332 }
3333 ioc->internal_depth = 10;
3334 }
3335
3336 ioc->hi_priority_depth = ioc->internal_depth - (5);
3337 /* command line tunables for max controller queue depth */
3338 if (max_queue_depth != -1 && max_queue_depth != 0) {
3339 max_request_credit = min_t(u16, max_queue_depth +
3340 ioc->internal_depth, facts->RequestCredit);
3341 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3342 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3343 } else
3344 max_request_credit = min_t(u16, facts->RequestCredit,
3345 MAX_HBA_QUEUE_DEPTH);
3346
3347 /* Firmware maintains additional facts->HighPriorityCredit number of
3348 * credits for HiPriprity Request messages, so hba queue depth will be
3349 * sum of max_request_credit and high priority queue depth.
3350 */
3351 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3352
3353 /* request frame size */
3354 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3355
3356 /* reply frame size */
3357 ioc->reply_sz = facts->ReplyFrameSize * 4;
3358
3359 /* chain segment size */
3360 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3361 if (facts->IOCMaxChainSegmentSize)
3362 ioc->chain_segment_sz =
3363 facts->IOCMaxChainSegmentSize *
3364 MAX_CHAIN_ELEMT_SZ;
3365 else
3366 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3367 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3368 MAX_CHAIN_ELEMT_SZ;
3369 } else
3370 ioc->chain_segment_sz = ioc->request_sz;
3371
3372 /* calculate the max scatter element size */
3373 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3374
3375 retry_allocation:
3376 total_sz = 0;
3377 /* calculate number of sg elements left over in the 1st frame */
3378 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3379 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3380 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3381
3382 /* now do the same for a chain buffer */
3383 max_sge_elements = ioc->chain_segment_sz - sge_size;
3384 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3385
3386 /*
3387 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3388 */
3389 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3390 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3391 + 1;
3392 if (chains_needed_per_io > facts->MaxChainDepth) {
3393 chains_needed_per_io = facts->MaxChainDepth;
3394 ioc->shost->sg_tablesize = min_t(u16,
3395 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3396 * chains_needed_per_io), ioc->shost->sg_tablesize);
3397 }
3398 ioc->chains_needed_per_io = chains_needed_per_io;
3399
3400 /* reply free queue sizing - taking into account for 64 FW events */
3401 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3402
3403 /* calculate reply descriptor post queue depth */
3404 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3405 ioc->reply_free_queue_depth + 1 ;
3406 /* align the reply post queue on the next 16 count boundary */
3407 if (ioc->reply_post_queue_depth % 16)
3408 ioc->reply_post_queue_depth += 16 -
3409 (ioc->reply_post_queue_depth % 16);
3410
3411 if (ioc->reply_post_queue_depth >
3412 facts->MaxReplyDescriptorPostQueueDepth) {
3413 ioc->reply_post_queue_depth =
3414 facts->MaxReplyDescriptorPostQueueDepth -
3415 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3416 ioc->hba_queue_depth =
3417 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3418 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3419 }
3420
3421 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3422 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3423 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3424 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3425 ioc->chains_needed_per_io));
3426
3427 /* reply post queue, 16 byte align */
3428 reply_post_free_sz = ioc->reply_post_queue_depth *
3429 sizeof(Mpi2DefaultReplyDescriptor_t);
3430
3431 sz = reply_post_free_sz;
3432 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3433 sz *= ioc->reply_queue_count;
3434
3435 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3436 (ioc->reply_queue_count):1,
3437 sizeof(struct reply_post_struct), GFP_KERNEL);
3438
3439 if (!ioc->reply_post) {
3440 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3441 ioc->name);
3442 goto out;
3443 }
3444 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
3445 &ioc->pdev->dev, sz, 16, 0);
3446 if (!ioc->reply_post_free_dma_pool) {
3447 pr_err(MPT3SAS_FMT
3448 "reply_post_free pool: dma_pool_create failed\n",
3449 ioc->name);
3450 goto out;
3451 }
3452 i = 0;
3453 do {
3454 ioc->reply_post[i].reply_post_free =
3455 dma_pool_alloc(ioc->reply_post_free_dma_pool,
3456 GFP_KERNEL,
3457 &ioc->reply_post[i].reply_post_free_dma);
3458 if (!ioc->reply_post[i].reply_post_free) {
3459 pr_err(MPT3SAS_FMT
3460 "reply_post_free pool: dma_pool_alloc failed\n",
3461 ioc->name);
3462 goto out;
3463 }
3464 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3465 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3466 "reply post free pool (0x%p): depth(%d),"
3467 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3468 ioc->reply_post[i].reply_post_free,
3469 ioc->reply_post_queue_depth, 8, sz/1024));
3470 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3471 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3472 (unsigned long long)
3473 ioc->reply_post[i].reply_post_free_dma));
3474 total_sz += sz;
3475 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3476
3477 if (ioc->dma_mask == 64) {
3478 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3479 pr_warn(MPT3SAS_FMT
3480 "no suitable consistent DMA mask for %s\n",
3481 ioc->name, pci_name(ioc->pdev));
3482 goto out;
3483 }
3484 }
3485
3486 ioc->scsiio_depth = ioc->hba_queue_depth -
3487 ioc->hi_priority_depth - ioc->internal_depth;
3488
3489 /* set the scsi host can_queue depth
3490 * with some internal commands that could be outstanding
3491 */
3492 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3493 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3494 "scsi host: can_queue depth (%d)\n",
3495 ioc->name, ioc->shost->can_queue));
3496
3497
3498 /* contiguous pool for request and chains, 16 byte align, one extra "
3499 * "frame for smid=0
3500 */
3501 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3502 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3503
3504 /* hi-priority queue */
3505 sz += (ioc->hi_priority_depth * ioc->request_sz);
3506
3507 /* internal queue */
3508 sz += (ioc->internal_depth * ioc->request_sz);
3509
3510 ioc->request_dma_sz = sz;
3511 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3512 if (!ioc->request) {
3513 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3514 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3515 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3516 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3517 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3518 goto out;
3519 retry_sz = 64;
3520 ioc->hba_queue_depth -= retry_sz;
3521 _base_release_memory_pools(ioc);
3522 goto retry_allocation;
3523 }
3524
3525 if (retry_sz)
3526 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3527 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3528 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3529 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3530
3531 /* hi-priority queue */
3532 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3533 ioc->request_sz);
3534 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3535 ioc->request_sz);
3536
3537 /* internal queue */
3538 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3539 ioc->request_sz);
3540 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3541 ioc->request_sz);
3542
3543 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3544 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3545 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3546 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3547
3548 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3549 ioc->name, (unsigned long long) ioc->request_dma));
3550 total_sz += sz;
3551
3552 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3553 ioc->scsi_lookup_pages = get_order(sz);
3554 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3555 GFP_KERNEL, ioc->scsi_lookup_pages);
3556 if (!ioc->scsi_lookup) {
3557 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3558 ioc->name, (int)sz);
3559 goto out;
3560 }
3561
3562 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3563 ioc->name, ioc->request, ioc->scsiio_depth));
3564
3565 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3566 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3567 ioc->chain_pages = get_order(sz);
3568 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3569 GFP_KERNEL, ioc->chain_pages);
3570 if (!ioc->chain_lookup) {
3571 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3572 ioc->name);
3573 goto out;
3574 }
3575 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
3576 ioc->chain_segment_sz, 16, 0);
3577 if (!ioc->chain_dma_pool) {
3578 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
3579 ioc->name);
3580 goto out;
3581 }
3582 for (i = 0; i < ioc->chain_depth; i++) {
3583 ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
3584 ioc->chain_dma_pool , GFP_KERNEL,
3585 &ioc->chain_lookup[i].chain_buffer_dma);
3586 if (!ioc->chain_lookup[i].chain_buffer) {
3587 ioc->chain_depth = i;
3588 goto chain_done;
3589 }
3590 total_sz += ioc->chain_segment_sz;
3591 }
3592 chain_done:
3593 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3594 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3595 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3596 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
3597
3598 /* initialize hi-priority queue smid's */
3599 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3600 sizeof(struct request_tracker), GFP_KERNEL);
3601 if (!ioc->hpr_lookup) {
3602 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3603 ioc->name);
3604 goto out;
3605 }
3606 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3607 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3608 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3609 ioc->name, ioc->hi_priority,
3610 ioc->hi_priority_depth, ioc->hi_priority_smid));
3611
3612 /* initialize internal queue smid's */
3613 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3614 sizeof(struct request_tracker), GFP_KERNEL);
3615 if (!ioc->internal_lookup) {
3616 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3617 ioc->name);
3618 goto out;
3619 }
3620 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3621 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3622 "internal(0x%p): depth(%d), start smid(%d)\n",
3623 ioc->name, ioc->internal,
3624 ioc->internal_depth, ioc->internal_smid));
3625
3626 /* sense buffers, 4 byte align */
3627 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3628 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
3629 4, 0);
3630 if (!ioc->sense_dma_pool) {
3631 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
3632 ioc->name);
3633 goto out;
3634 }
3635 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
3636 &ioc->sense_dma);
3637 if (!ioc->sense) {
3638 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
3639 ioc->name);
3640 goto out;
3641 }
3642 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3643 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3644 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3645 SCSI_SENSE_BUFFERSIZE, sz/1024));
3646 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3647 ioc->name, (unsigned long long)ioc->sense_dma));
3648 total_sz += sz;
3649
3650 /* reply pool, 4 byte align */
3651 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3652 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
3653 4, 0);
3654 if (!ioc->reply_dma_pool) {
3655 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
3656 ioc->name);
3657 goto out;
3658 }
3659 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
3660 &ioc->reply_dma);
3661 if (!ioc->reply) {
3662 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
3663 ioc->name);
3664 goto out;
3665 }
3666 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3667 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3668 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3669 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3670 ioc->name, ioc->reply,
3671 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3672 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3673 ioc->name, (unsigned long long)ioc->reply_dma));
3674 total_sz += sz;
3675
3676 /* reply free queue, 16 byte align */
3677 sz = ioc->reply_free_queue_depth * 4;
3678 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
3679 &ioc->pdev->dev, sz, 16, 0);
3680 if (!ioc->reply_free_dma_pool) {
3681 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
3682 ioc->name);
3683 goto out;
3684 }
3685 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
3686 &ioc->reply_free_dma);
3687 if (!ioc->reply_free) {
3688 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
3689 ioc->name);
3690 goto out;
3691 }
3692 memset(ioc->reply_free, 0, sz);
3693 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3694 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3695 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3696 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3697 "reply_free_dma (0x%llx)\n",
3698 ioc->name, (unsigned long long)ioc->reply_free_dma));
3699 total_sz += sz;
3700
3701 ioc->config_page_sz = 512;
3702 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3703 ioc->config_page_sz, &ioc->config_page_dma);
3704 if (!ioc->config_page) {
3705 pr_err(MPT3SAS_FMT
3706 "config page: dma_pool_alloc failed\n",
3707 ioc->name);
3708 goto out;
3709 }
3710 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3711 "config page(0x%p): size(%d)\n",
3712 ioc->name, ioc->config_page, ioc->config_page_sz));
3713 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3714 ioc->name, (unsigned long long)ioc->config_page_dma));
3715 total_sz += ioc->config_page_sz;
3716
3717 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3718 ioc->name, total_sz/1024);
3719 pr_info(MPT3SAS_FMT
3720 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3721 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3722 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3723 ioc->name, ioc->shost->sg_tablesize);
3724 return 0;
3725
3726 out:
3727 return -ENOMEM;
3728 }
3729
3730 /**
3731 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3732 * @ioc: Pointer to MPT_ADAPTER structure
3733 * @cooked: Request raw or cooked IOC state
3734 *
3735 * Returns all IOC Doorbell register bits if cooked==0, else just the
3736 * Doorbell bits in MPI_IOC_STATE_MASK.
3737 */
3738 u32
3739 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3740 {
3741 u32 s, sc;
3742
3743 s = readl(&ioc->chip->Doorbell);
3744 sc = s & MPI2_IOC_STATE_MASK;
3745 return cooked ? sc : s;
3746 }
3747
3748 /**
3749 * _base_wait_on_iocstate - waiting on a particular ioc state
3750 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3751 * @timeout: timeout in second
3752 *
3753 * Returns 0 for success, non-zero for failure.
3754 */
3755 static int
3756 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3757 {
3758 u32 count, cntdn;
3759 u32 current_state;
3760
3761 count = 0;
3762 cntdn = 1000 * timeout;
3763 do {
3764 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3765 if (current_state == ioc_state)
3766 return 0;
3767 if (count && current_state == MPI2_IOC_STATE_FAULT)
3768 break;
3769
3770 usleep_range(1000, 1500);
3771 count++;
3772 } while (--cntdn);
3773
3774 return current_state;
3775 }
3776
3777 /**
3778 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3779 * a write to the doorbell)
3780 * @ioc: per adapter object
3781 * @timeout: timeout in second
3782 *
3783 * Returns 0 for success, non-zero for failure.
3784 *
3785 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3786 */
3787 static int
3788 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3789
3790 static int
3791 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3792 {
3793 u32 cntdn, count;
3794 u32 int_status;
3795
3796 count = 0;
3797 cntdn = 1000 * timeout;
3798 do {
3799 int_status = readl(&ioc->chip->HostInterruptStatus);
3800 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3801 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3802 "%s: successful count(%d), timeout(%d)\n",
3803 ioc->name, __func__, count, timeout));
3804 return 0;
3805 }
3806
3807 usleep_range(1000, 1500);
3808 count++;
3809 } while (--cntdn);
3810
3811 pr_err(MPT3SAS_FMT
3812 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3813 ioc->name, __func__, count, int_status);
3814 return -EFAULT;
3815 }
3816
3817 static int
3818 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3819 {
3820 u32 cntdn, count;
3821 u32 int_status;
3822
3823 count = 0;
3824 cntdn = 2000 * timeout;
3825 do {
3826 int_status = readl(&ioc->chip->HostInterruptStatus);
3827 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3828 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3829 "%s: successful count(%d), timeout(%d)\n",
3830 ioc->name, __func__, count, timeout));
3831 return 0;
3832 }
3833
3834 udelay(500);
3835 count++;
3836 } while (--cntdn);
3837
3838 pr_err(MPT3SAS_FMT
3839 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3840 ioc->name, __func__, count, int_status);
3841 return -EFAULT;
3842
3843 }
3844
3845 /**
3846 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3847 * @ioc: per adapter object
3848 * @timeout: timeout in second
3849 *
3850 * Returns 0 for success, non-zero for failure.
3851 *
3852 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3853 * doorbell.
3854 */
3855 static int
3856 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3857 {
3858 u32 cntdn, count;
3859 u32 int_status;
3860 u32 doorbell;
3861
3862 count = 0;
3863 cntdn = 1000 * timeout;
3864 do {
3865 int_status = readl(&ioc->chip->HostInterruptStatus);
3866 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3867 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3868 "%s: successful count(%d), timeout(%d)\n",
3869 ioc->name, __func__, count, timeout));
3870 return 0;
3871 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3872 doorbell = readl(&ioc->chip->Doorbell);
3873 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3874 MPI2_IOC_STATE_FAULT) {
3875 mpt3sas_base_fault_info(ioc , doorbell);
3876 return -EFAULT;
3877 }
3878 } else if (int_status == 0xFFFFFFFF)
3879 goto out;
3880
3881 usleep_range(1000, 1500);
3882 count++;
3883 } while (--cntdn);
3884
3885 out:
3886 pr_err(MPT3SAS_FMT
3887 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3888 ioc->name, __func__, count, int_status);
3889 return -EFAULT;
3890 }
3891
3892 /**
3893 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3894 * @ioc: per adapter object
3895 * @timeout: timeout in second
3896 *
3897 * Returns 0 for success, non-zero for failure.
3898 *
3899 */
3900 static int
3901 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3902 {
3903 u32 cntdn, count;
3904 u32 doorbell_reg;
3905
3906 count = 0;
3907 cntdn = 1000 * timeout;
3908 do {
3909 doorbell_reg = readl(&ioc->chip->Doorbell);
3910 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3911 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3912 "%s: successful count(%d), timeout(%d)\n",
3913 ioc->name, __func__, count, timeout));
3914 return 0;
3915 }
3916
3917 usleep_range(1000, 1500);
3918 count++;
3919 } while (--cntdn);
3920
3921 pr_err(MPT3SAS_FMT
3922 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3923 ioc->name, __func__, count, doorbell_reg);
3924 return -EFAULT;
3925 }
3926
3927 /**
3928 * _base_send_ioc_reset - send doorbell reset
3929 * @ioc: per adapter object
3930 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3931 * @timeout: timeout in second
3932 *
3933 * Returns 0 for success, non-zero for failure.
3934 */
3935 static int
3936 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3937 {
3938 u32 ioc_state;
3939 int r = 0;
3940
3941 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3942 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3943 ioc->name, __func__);
3944 return -EFAULT;
3945 }
3946
3947 if (!(ioc->facts.IOCCapabilities &
3948 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3949 return -EFAULT;
3950
3951 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3952
3953 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3954 &ioc->chip->Doorbell);
3955 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3956 r = -EFAULT;
3957 goto out;
3958 }
3959 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3960 if (ioc_state) {
3961 pr_err(MPT3SAS_FMT
3962 "%s: failed going to ready state (ioc_state=0x%x)\n",
3963 ioc->name, __func__, ioc_state);
3964 r = -EFAULT;
3965 goto out;
3966 }
3967 out:
3968 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3969 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3970 return r;
3971 }
3972
3973 /**
3974 * _base_handshake_req_reply_wait - send request thru doorbell interface
3975 * @ioc: per adapter object
3976 * @request_bytes: request length
3977 * @request: pointer having request payload
3978 * @reply_bytes: reply length
3979 * @reply: pointer to reply payload
3980 * @timeout: timeout in second
3981 *
3982 * Returns 0 for success, non-zero for failure.
3983 */
3984 static int
3985 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3986 u32 *request, int reply_bytes, u16 *reply, int timeout)
3987 {
3988 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3989 int i;
3990 u8 failed;
3991 __le32 *mfp;
3992
3993 /* make sure doorbell is not in use */
3994 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3995 pr_err(MPT3SAS_FMT
3996 "doorbell is in use (line=%d)\n",
3997 ioc->name, __LINE__);
3998 return -EFAULT;
3999 }
4000
4001 /* clear pending doorbell interrupts from previous state changes */
4002 if (readl(&ioc->chip->HostInterruptStatus) &
4003 MPI2_HIS_IOC2SYS_DB_STATUS)
4004 writel(0, &ioc->chip->HostInterruptStatus);
4005
4006 /* send message to ioc */
4007 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4008 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4009 &ioc->chip->Doorbell);
4010
4011 if ((_base_spin_on_doorbell_int(ioc, 5))) {
4012 pr_err(MPT3SAS_FMT
4013 "doorbell handshake int failed (line=%d)\n",
4014 ioc->name, __LINE__);
4015 return -EFAULT;
4016 }
4017 writel(0, &ioc->chip->HostInterruptStatus);
4018
4019 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4020 pr_err(MPT3SAS_FMT
4021 "doorbell handshake ack failed (line=%d)\n",
4022 ioc->name, __LINE__);
4023 return -EFAULT;
4024 }
4025
4026 /* send message 32-bits at a time */
4027 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4028 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4029 if ((_base_wait_for_doorbell_ack(ioc, 5)))
4030 failed = 1;
4031 }
4032
4033 if (failed) {
4034 pr_err(MPT3SAS_FMT
4035 "doorbell handshake sending request failed (line=%d)\n",
4036 ioc->name, __LINE__);
4037 return -EFAULT;
4038 }
4039
4040 /* now wait for the reply */
4041 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4042 pr_err(MPT3SAS_FMT
4043 "doorbell handshake int failed (line=%d)\n",
4044 ioc->name, __LINE__);
4045 return -EFAULT;
4046 }
4047
4048 /* read the first two 16-bits, it gives the total length of the reply */
4049 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4050 & MPI2_DOORBELL_DATA_MASK);
4051 writel(0, &ioc->chip->HostInterruptStatus);
4052 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4053 pr_err(MPT3SAS_FMT
4054 "doorbell handshake int failed (line=%d)\n",
4055 ioc->name, __LINE__);
4056 return -EFAULT;
4057 }
4058 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4059 & MPI2_DOORBELL_DATA_MASK);
4060 writel(0, &ioc->chip->HostInterruptStatus);
4061
4062 for (i = 2; i < default_reply->MsgLength * 2; i++) {
4063 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4064 pr_err(MPT3SAS_FMT
4065 "doorbell handshake int failed (line=%d)\n",
4066 ioc->name, __LINE__);
4067 return -EFAULT;
4068 }
4069 if (i >= reply_bytes/2) /* overflow case */
4070 readl(&ioc->chip->Doorbell);
4071 else
4072 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4073 & MPI2_DOORBELL_DATA_MASK);
4074 writel(0, &ioc->chip->HostInterruptStatus);
4075 }
4076
4077 _base_wait_for_doorbell_int(ioc, 5);
4078 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4079 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4080 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4081 }
4082 writel(0, &ioc->chip->HostInterruptStatus);
4083
4084 if (ioc->logging_level & MPT_DEBUG_INIT) {
4085 mfp = (__le32 *)reply;
4086 pr_info("\toffset:data\n");
4087 for (i = 0; i < reply_bytes/4; i++)
4088 pr_info("\t[0x%02x]:%08x\n", i*4,
4089 le32_to_cpu(mfp[i]));
4090 }
4091 return 0;
4092 }
4093
4094 /**
4095 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4096 * @ioc: per adapter object
4097 * @mpi_reply: the reply payload from FW
4098 * @mpi_request: the request payload sent to FW
4099 *
4100 * The SAS IO Unit Control Request message allows the host to perform low-level
4101 * operations, such as resets on the PHYs of the IO Unit, also allows the host
4102 * to obtain the IOC assigned device handles for a device if it has other
4103 * identifying information about the device, in addition allows the host to
4104 * remove IOC resources associated with the device.
4105 *
4106 * Returns 0 for success, non-zero for failure.
4107 */
4108 int
4109 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4110 Mpi2SasIoUnitControlReply_t *mpi_reply,
4111 Mpi2SasIoUnitControlRequest_t *mpi_request)
4112 {
4113 u16 smid;
4114 u32 ioc_state;
4115 bool issue_reset = false;
4116 int rc;
4117 void *request;
4118 u16 wait_state_count;
4119
4120 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4121 __func__));
4122
4123 mutex_lock(&ioc->base_cmds.mutex);
4124
4125 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4126 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4127 ioc->name, __func__);
4128 rc = -EAGAIN;
4129 goto out;
4130 }
4131
4132 wait_state_count = 0;
4133 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4134 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4135 if (wait_state_count++ == 10) {
4136 pr_err(MPT3SAS_FMT
4137 "%s: failed due to ioc not operational\n",
4138 ioc->name, __func__);
4139 rc = -EFAULT;
4140 goto out;
4141 }
4142 ssleep(1);
4143 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4144 pr_info(MPT3SAS_FMT
4145 "%s: waiting for operational state(count=%d)\n",
4146 ioc->name, __func__, wait_state_count);
4147 }
4148
4149 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4150 if (!smid) {
4151 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4152 ioc->name, __func__);
4153 rc = -EAGAIN;
4154 goto out;
4155 }
4156
4157 rc = 0;
4158 ioc->base_cmds.status = MPT3_CMD_PENDING;
4159 request = mpt3sas_base_get_msg_frame(ioc, smid);
4160 ioc->base_cmds.smid = smid;
4161 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4162 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4163 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4164 ioc->ioc_link_reset_in_progress = 1;
4165 init_completion(&ioc->base_cmds.done);
4166 ioc->put_smid_default(ioc, smid);
4167 wait_for_completion_timeout(&ioc->base_cmds.done,
4168 msecs_to_jiffies(10000));
4169 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4170 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4171 ioc->ioc_link_reset_in_progress)
4172 ioc->ioc_link_reset_in_progress = 0;
4173 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4174 pr_err(MPT3SAS_FMT "%s: timeout\n",
4175 ioc->name, __func__);
4176 _debug_dump_mf(mpi_request,
4177 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4178 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4179 issue_reset = true;
4180 goto issue_host_reset;
4181 }
4182 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4183 memcpy(mpi_reply, ioc->base_cmds.reply,
4184 sizeof(Mpi2SasIoUnitControlReply_t));
4185 else
4186 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4187 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4188 goto out;
4189
4190 issue_host_reset:
4191 if (issue_reset)
4192 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4193 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4194 rc = -EFAULT;
4195 out:
4196 mutex_unlock(&ioc->base_cmds.mutex);
4197 return rc;
4198 }
4199
4200 /**
4201 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4202 * @ioc: per adapter object
4203 * @mpi_reply: the reply payload from FW
4204 * @mpi_request: the request payload sent to FW
4205 *
4206 * The SCSI Enclosure Processor request message causes the IOC to
4207 * communicate with SES devices to control LED status signals.
4208 *
4209 * Returns 0 for success, non-zero for failure.
4210 */
4211 int
4212 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4213 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4214 {
4215 u16 smid;
4216 u32 ioc_state;
4217 bool issue_reset = false;
4218 int rc;
4219 void *request;
4220 u16 wait_state_count;
4221
4222 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4223 __func__));
4224
4225 mutex_lock(&ioc->base_cmds.mutex);
4226
4227 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4228 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4229 ioc->name, __func__);
4230 rc = -EAGAIN;
4231 goto out;
4232 }
4233
4234 wait_state_count = 0;
4235 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4236 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4237 if (wait_state_count++ == 10) {
4238 pr_err(MPT3SAS_FMT
4239 "%s: failed due to ioc not operational\n",
4240 ioc->name, __func__);
4241 rc = -EFAULT;
4242 goto out;
4243 }
4244 ssleep(1);
4245 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4246 pr_info(MPT3SAS_FMT
4247 "%s: waiting for operational state(count=%d)\n",
4248 ioc->name,
4249 __func__, wait_state_count);
4250 }
4251
4252 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4253 if (!smid) {
4254 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4255 ioc->name, __func__);
4256 rc = -EAGAIN;
4257 goto out;
4258 }
4259
4260 rc = 0;
4261 ioc->base_cmds.status = MPT3_CMD_PENDING;
4262 request = mpt3sas_base_get_msg_frame(ioc, smid);
4263 ioc->base_cmds.smid = smid;
4264 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4265 init_completion(&ioc->base_cmds.done);
4266 ioc->put_smid_default(ioc, smid);
4267 wait_for_completion_timeout(&ioc->base_cmds.done,
4268 msecs_to_jiffies(10000));
4269 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4270 pr_err(MPT3SAS_FMT "%s: timeout\n",
4271 ioc->name, __func__);
4272 _debug_dump_mf(mpi_request,
4273 sizeof(Mpi2SepRequest_t)/4);
4274 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4275 issue_reset = false;
4276 goto issue_host_reset;
4277 }
4278 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4279 memcpy(mpi_reply, ioc->base_cmds.reply,
4280 sizeof(Mpi2SepReply_t));
4281 else
4282 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4283 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4284 goto out;
4285
4286 issue_host_reset:
4287 if (issue_reset)
4288 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4289 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4290 rc = -EFAULT;
4291 out:
4292 mutex_unlock(&ioc->base_cmds.mutex);
4293 return rc;
4294 }
4295
4296 /**
4297 * _base_get_port_facts - obtain port facts reply and save in ioc
4298 * @ioc: per adapter object
4299 *
4300 * Returns 0 for success, non-zero for failure.
4301 */
4302 static int
4303 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4304 {
4305 Mpi2PortFactsRequest_t mpi_request;
4306 Mpi2PortFactsReply_t mpi_reply;
4307 struct mpt3sas_port_facts *pfacts;
4308 int mpi_reply_sz, mpi_request_sz, r;
4309
4310 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4311 __func__));
4312
4313 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4314 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4315 memset(&mpi_request, 0, mpi_request_sz);
4316 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4317 mpi_request.PortNumber = port;
4318 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4319 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4320
4321 if (r != 0) {
4322 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4323 ioc->name, __func__, r);
4324 return r;
4325 }
4326
4327 pfacts = &ioc->pfacts[port];
4328 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4329 pfacts->PortNumber = mpi_reply.PortNumber;
4330 pfacts->VP_ID = mpi_reply.VP_ID;
4331 pfacts->VF_ID = mpi_reply.VF_ID;
4332 pfacts->MaxPostedCmdBuffers =
4333 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4334
4335 return 0;
4336 }
4337
4338 /**
4339 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4340 * @ioc: per adapter object
4341 * @timeout:
4342 *
4343 * Returns 0 for success, non-zero for failure.
4344 */
4345 static int
4346 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4347 {
4348 u32 ioc_state;
4349 int rc;
4350
4351 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4352 __func__));
4353
4354 if (ioc->pci_error_recovery) {
4355 dfailprintk(ioc, printk(MPT3SAS_FMT
4356 "%s: host in pci error recovery\n", ioc->name, __func__));
4357 return -EFAULT;
4358 }
4359
4360 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4361 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4362 ioc->name, __func__, ioc_state));
4363
4364 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4365 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4366 return 0;
4367
4368 if (ioc_state & MPI2_DOORBELL_USED) {
4369 dhsprintk(ioc, printk(MPT3SAS_FMT
4370 "unexpected doorbell active!\n", ioc->name));
4371 goto issue_diag_reset;
4372 }
4373
4374 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4375 mpt3sas_base_fault_info(ioc, ioc_state &
4376 MPI2_DOORBELL_DATA_MASK);
4377 goto issue_diag_reset;
4378 }
4379
4380 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4381 if (ioc_state) {
4382 dfailprintk(ioc, printk(MPT3SAS_FMT
4383 "%s: failed going to ready state (ioc_state=0x%x)\n",
4384 ioc->name, __func__, ioc_state));
4385 return -EFAULT;
4386 }
4387
4388 issue_diag_reset:
4389 rc = _base_diag_reset(ioc);
4390 return rc;
4391 }
4392
4393 /**
4394 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4395 * @ioc: per adapter object
4396 *
4397 * Returns 0 for success, non-zero for failure.
4398 */
4399 static int
4400 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4401 {
4402 Mpi2IOCFactsRequest_t mpi_request;
4403 Mpi2IOCFactsReply_t mpi_reply;
4404 struct mpt3sas_facts *facts;
4405 int mpi_reply_sz, mpi_request_sz, r;
4406
4407 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4408 __func__));
4409
4410 r = _base_wait_for_iocstate(ioc, 10);
4411 if (r) {
4412 dfailprintk(ioc, printk(MPT3SAS_FMT
4413 "%s: failed getting to correct state\n",
4414 ioc->name, __func__));
4415 return r;
4416 }
4417 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4418 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4419 memset(&mpi_request, 0, mpi_request_sz);
4420 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4421 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4422 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4423
4424 if (r != 0) {
4425 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4426 ioc->name, __func__, r);
4427 return r;
4428 }
4429
4430 facts = &ioc->facts;
4431 memset(facts, 0, sizeof(struct mpt3sas_facts));
4432 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4433 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4434 facts->VP_ID = mpi_reply.VP_ID;
4435 facts->VF_ID = mpi_reply.VF_ID;
4436 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4437 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4438 facts->WhoInit = mpi_reply.WhoInit;
4439 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4440 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4441 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4442 facts->MaxReplyDescriptorPostQueueDepth =
4443 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4444 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4445 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4446 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4447 ioc->ir_firmware = 1;
4448 if ((facts->IOCCapabilities &
4449 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4450 ioc->rdpq_array_capable = 1;
4451 if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4452 ioc->atomic_desc_capable = 1;
4453 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4454 facts->IOCRequestFrameSize =
4455 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4456 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4457 facts->IOCMaxChainSegmentSize =
4458 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4459 }
4460 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4461 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4462 ioc->shost->max_id = -1;
4463 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4464 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4465 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4466 facts->HighPriorityCredit =
4467 le16_to_cpu(mpi_reply.HighPriorityCredit);
4468 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4469 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4470
4471 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4472 "hba queue depth(%d), max chains per io(%d)\n",
4473 ioc->name, facts->RequestCredit,
4474 facts->MaxChainDepth));
4475 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4476 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4477 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4478 return 0;
4479 }
4480
4481 /**
4482 * _base_send_ioc_init - send ioc_init to firmware
4483 * @ioc: per adapter object
4484 *
4485 * Returns 0 for success, non-zero for failure.
4486 */
4487 static int
4488 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4489 {
4490 Mpi2IOCInitRequest_t mpi_request;
4491 Mpi2IOCInitReply_t mpi_reply;
4492 int i, r = 0;
4493 ktime_t current_time;
4494 u16 ioc_status;
4495 u32 reply_post_free_array_sz = 0;
4496 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4497 dma_addr_t reply_post_free_array_dma;
4498
4499 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4500 __func__));
4501
4502 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4503 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4504 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4505 mpi_request.VF_ID = 0; /* TODO */
4506 mpi_request.VP_ID = 0;
4507 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4508 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4509
4510 if (_base_is_controller_msix_enabled(ioc))
4511 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4512 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4513 mpi_request.ReplyDescriptorPostQueueDepth =
4514 cpu_to_le16(ioc->reply_post_queue_depth);
4515 mpi_request.ReplyFreeQueueDepth =
4516 cpu_to_le16(ioc->reply_free_queue_depth);
4517
4518 mpi_request.SenseBufferAddressHigh =
4519 cpu_to_le32((u64)ioc->sense_dma >> 32);
4520 mpi_request.SystemReplyAddressHigh =
4521 cpu_to_le32((u64)ioc->reply_dma >> 32);
4522 mpi_request.SystemRequestFrameBaseAddress =
4523 cpu_to_le64((u64)ioc->request_dma);
4524 mpi_request.ReplyFreeQueueAddress =
4525 cpu_to_le64((u64)ioc->reply_free_dma);
4526
4527 if (ioc->rdpq_array_enable) {
4528 reply_post_free_array_sz = ioc->reply_queue_count *
4529 sizeof(Mpi2IOCInitRDPQArrayEntry);
4530 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4531 reply_post_free_array_sz, &reply_post_free_array_dma);
4532 if (!reply_post_free_array) {
4533 pr_err(MPT3SAS_FMT
4534 "reply_post_free_array: pci_alloc_consistent failed\n",
4535 ioc->name);
4536 r = -ENOMEM;
4537 goto out;
4538 }
4539 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4540 for (i = 0; i < ioc->reply_queue_count; i++)
4541 reply_post_free_array[i].RDPQBaseAddress =
4542 cpu_to_le64(
4543 (u64)ioc->reply_post[i].reply_post_free_dma);
4544 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4545 mpi_request.ReplyDescriptorPostQueueAddress =
4546 cpu_to_le64((u64)reply_post_free_array_dma);
4547 } else {
4548 mpi_request.ReplyDescriptorPostQueueAddress =
4549 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4550 }
4551
4552 /* This time stamp specifies number of milliseconds
4553 * since epoch ~ midnight January 1, 1970.
4554 */
4555 current_time = ktime_get_real();
4556 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4557
4558 if (ioc->logging_level & MPT_DEBUG_INIT) {
4559 __le32 *mfp;
4560 int i;
4561
4562 mfp = (__le32 *)&mpi_request;
4563 pr_info("\toffset:data\n");
4564 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4565 pr_info("\t[0x%02x]:%08x\n", i*4,
4566 le32_to_cpu(mfp[i]));
4567 }
4568
4569 r = _base_handshake_req_reply_wait(ioc,
4570 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4571 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4572
4573 if (r != 0) {
4574 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4575 ioc->name, __func__, r);
4576 goto out;
4577 }
4578
4579 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4580 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4581 mpi_reply.IOCLogInfo) {
4582 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4583 r = -EIO;
4584 }
4585
4586 out:
4587 if (reply_post_free_array)
4588 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4589 reply_post_free_array,
4590 reply_post_free_array_dma);
4591 return r;
4592 }
4593
4594 /**
4595 * mpt3sas_port_enable_done - command completion routine for port enable
4596 * @ioc: per adapter object
4597 * @smid: system request message index
4598 * @msix_index: MSIX table index supplied by the OS
4599 * @reply: reply message frame(lower 32bit addr)
4600 *
4601 * Return 1 meaning mf should be freed from _base_interrupt
4602 * 0 means the mf is freed from this function.
4603 */
4604 u8
4605 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4606 u32 reply)
4607 {
4608 MPI2DefaultReply_t *mpi_reply;
4609 u16 ioc_status;
4610
4611 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4612 return 1;
4613
4614 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4615 if (!mpi_reply)
4616 return 1;
4617
4618 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4619 return 1;
4620
4621 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4622 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4623 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4624 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4625 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4626 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4627 ioc->port_enable_failed = 1;
4628
4629 if (ioc->is_driver_loading) {
4630 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4631 mpt3sas_port_enable_complete(ioc);
4632 return 1;
4633 } else {
4634 ioc->start_scan_failed = ioc_status;
4635 ioc->start_scan = 0;
4636 return 1;
4637 }
4638 }
4639 complete(&ioc->port_enable_cmds.done);
4640 return 1;
4641 }
4642
4643 /**
4644 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4645 * @ioc: per adapter object
4646 *
4647 * Returns 0 for success, non-zero for failure.
4648 */
4649 static int
4650 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4651 {
4652 Mpi2PortEnableRequest_t *mpi_request;
4653 Mpi2PortEnableReply_t *mpi_reply;
4654 int r = 0;
4655 u16 smid;
4656 u16 ioc_status;
4657
4658 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4659
4660 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4661 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4662 ioc->name, __func__);
4663 return -EAGAIN;
4664 }
4665
4666 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4667 if (!smid) {
4668 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4669 ioc->name, __func__);
4670 return -EAGAIN;
4671 }
4672
4673 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4674 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4675 ioc->port_enable_cmds.smid = smid;
4676 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4677 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4678
4679 init_completion(&ioc->port_enable_cmds.done);
4680 ioc->put_smid_default(ioc, smid);
4681 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4682 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4683 pr_err(MPT3SAS_FMT "%s: timeout\n",
4684 ioc->name, __func__);
4685 _debug_dump_mf(mpi_request,
4686 sizeof(Mpi2PortEnableRequest_t)/4);
4687 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4688 r = -EFAULT;
4689 else
4690 r = -ETIME;
4691 goto out;
4692 }
4693
4694 mpi_reply = ioc->port_enable_cmds.reply;
4695 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4696 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4697 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4698 ioc->name, __func__, ioc_status);
4699 r = -EFAULT;
4700 goto out;
4701 }
4702
4703 out:
4704 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4705 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4706 "SUCCESS" : "FAILED"));
4707 return r;
4708 }
4709
4710 /**
4711 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4712 * @ioc: per adapter object
4713 *
4714 * Returns 0 for success, non-zero for failure.
4715 */
4716 int
4717 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4718 {
4719 Mpi2PortEnableRequest_t *mpi_request;
4720 u16 smid;
4721
4722 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4723
4724 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4725 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4726 ioc->name, __func__);
4727 return -EAGAIN;
4728 }
4729
4730 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4731 if (!smid) {
4732 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4733 ioc->name, __func__);
4734 return -EAGAIN;
4735 }
4736
4737 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4738 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4739 ioc->port_enable_cmds.smid = smid;
4740 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4741 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4742
4743 ioc->put_smid_default(ioc, smid);
4744 return 0;
4745 }
4746
4747 /**
4748 * _base_determine_wait_on_discovery - desposition
4749 * @ioc: per adapter object
4750 *
4751 * Decide whether to wait on discovery to complete. Used to either
4752 * locate boot device, or report volumes ahead of physical devices.
4753 *
4754 * Returns 1 for wait, 0 for don't wait
4755 */
4756 static int
4757 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4758 {
4759 /* We wait for discovery to complete if IR firmware is loaded.
4760 * The sas topology events arrive before PD events, so we need time to
4761 * turn on the bit in ioc->pd_handles to indicate PD
4762 * Also, it maybe required to report Volumes ahead of physical
4763 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4764 */
4765 if (ioc->ir_firmware)
4766 return 1;
4767
4768 /* if no Bios, then we don't need to wait */
4769 if (!ioc->bios_pg3.BiosVersion)
4770 return 0;
4771
4772 /* Bios is present, then we drop down here.
4773 *
4774 * If there any entries in the Bios Page 2, then we wait
4775 * for discovery to complete.
4776 */
4777
4778 /* Current Boot Device */
4779 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4780 MPI2_BIOSPAGE2_FORM_MASK) ==
4781 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4782 /* Request Boot Device */
4783 (ioc->bios_pg2.ReqBootDeviceForm &
4784 MPI2_BIOSPAGE2_FORM_MASK) ==
4785 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4786 /* Alternate Request Boot Device */
4787 (ioc->bios_pg2.ReqAltBootDeviceForm &
4788 MPI2_BIOSPAGE2_FORM_MASK) ==
4789 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4790 return 0;
4791
4792 return 1;
4793 }
4794
4795 /**
4796 * _base_unmask_events - turn on notification for this event
4797 * @ioc: per adapter object
4798 * @event: firmware event
4799 *
4800 * The mask is stored in ioc->event_masks.
4801 */
4802 static void
4803 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4804 {
4805 u32 desired_event;
4806
4807 if (event >= 128)
4808 return;
4809
4810 desired_event = (1 << (event % 32));
4811
4812 if (event < 32)
4813 ioc->event_masks[0] &= ~desired_event;
4814 else if (event < 64)
4815 ioc->event_masks[1] &= ~desired_event;
4816 else if (event < 96)
4817 ioc->event_masks[2] &= ~desired_event;
4818 else if (event < 128)
4819 ioc->event_masks[3] &= ~desired_event;
4820 }
4821
4822 /**
4823 * _base_event_notification - send event notification
4824 * @ioc: per adapter object
4825 *
4826 * Returns 0 for success, non-zero for failure.
4827 */
4828 static int
4829 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4830 {
4831 Mpi2EventNotificationRequest_t *mpi_request;
4832 u16 smid;
4833 int r = 0;
4834 int i;
4835
4836 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4837 __func__));
4838
4839 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4840 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4841 ioc->name, __func__);
4842 return -EAGAIN;
4843 }
4844
4845 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4846 if (!smid) {
4847 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4848 ioc->name, __func__);
4849 return -EAGAIN;
4850 }
4851 ioc->base_cmds.status = MPT3_CMD_PENDING;
4852 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4853 ioc->base_cmds.smid = smid;
4854 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4855 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4856 mpi_request->VF_ID = 0; /* TODO */
4857 mpi_request->VP_ID = 0;
4858 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4859 mpi_request->EventMasks[i] =
4860 cpu_to_le32(ioc->event_masks[i]);
4861 init_completion(&ioc->base_cmds.done);
4862 ioc->put_smid_default(ioc, smid);
4863 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4864 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4865 pr_err(MPT3SAS_FMT "%s: timeout\n",
4866 ioc->name, __func__);
4867 _debug_dump_mf(mpi_request,
4868 sizeof(Mpi2EventNotificationRequest_t)/4);
4869 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4870 r = -EFAULT;
4871 else
4872 r = -ETIME;
4873 } else
4874 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4875 ioc->name, __func__));
4876 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4877 return r;
4878 }
4879
4880 /**
4881 * mpt3sas_base_validate_event_type - validating event types
4882 * @ioc: per adapter object
4883 * @event: firmware event
4884 *
4885 * This will turn on firmware event notification when application
4886 * ask for that event. We don't mask events that are already enabled.
4887 */
4888 void
4889 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4890 {
4891 int i, j;
4892 u32 event_mask, desired_event;
4893 u8 send_update_to_fw;
4894
4895 for (i = 0, send_update_to_fw = 0; i <
4896 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4897 event_mask = ~event_type[i];
4898 desired_event = 1;
4899 for (j = 0; j < 32; j++) {
4900 if (!(event_mask & desired_event) &&
4901 (ioc->event_masks[i] & desired_event)) {
4902 ioc->event_masks[i] &= ~desired_event;
4903 send_update_to_fw = 1;
4904 }
4905 desired_event = (desired_event << 1);
4906 }
4907 }
4908
4909 if (!send_update_to_fw)
4910 return;
4911
4912 mutex_lock(&ioc->base_cmds.mutex);
4913 _base_event_notification(ioc);
4914 mutex_unlock(&ioc->base_cmds.mutex);
4915 }
4916
4917 /**
4918 * _base_diag_reset - the "big hammer" start of day reset
4919 * @ioc: per adapter object
4920 *
4921 * Returns 0 for success, non-zero for failure.
4922 */
4923 static int
4924 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4925 {
4926 u32 host_diagnostic;
4927 u32 ioc_state;
4928 u32 count;
4929 u32 hcb_size;
4930
4931 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4932
4933 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4934 ioc->name));
4935
4936 count = 0;
4937 do {
4938 /* Write magic sequence to WriteSequence register
4939 * Loop until in diagnostic mode
4940 */
4941 drsprintk(ioc, pr_info(MPT3SAS_FMT
4942 "write magic sequence\n", ioc->name));
4943 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4944 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4945 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4946 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4947 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4948 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4949 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4950
4951 /* wait 100 msec */
4952 msleep(100);
4953
4954 if (count++ > 20)
4955 goto out;
4956
4957 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4958 drsprintk(ioc, pr_info(MPT3SAS_FMT
4959 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4960 ioc->name, count, host_diagnostic));
4961
4962 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4963
4964 hcb_size = readl(&ioc->chip->HCBSize);
4965
4966 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4967 ioc->name));
4968 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4969 &ioc->chip->HostDiagnostic);
4970
4971 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4972 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4973
4974 /* Approximately 300 second max wait */
4975 for (count = 0; count < (300000000 /
4976 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4977
4978 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4979
4980 if (host_diagnostic == 0xFFFFFFFF)
4981 goto out;
4982 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4983 break;
4984
4985 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4986 }
4987
4988 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4989
4990 drsprintk(ioc, pr_info(MPT3SAS_FMT
4991 "restart the adapter assuming the HCB Address points to good F/W\n",
4992 ioc->name));
4993 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4994 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4995 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4996
4997 drsprintk(ioc, pr_info(MPT3SAS_FMT
4998 "re-enable the HCDW\n", ioc->name));
4999 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5000 &ioc->chip->HCBSize);
5001 }
5002
5003 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5004 ioc->name));
5005 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5006 &ioc->chip->HostDiagnostic);
5007
5008 drsprintk(ioc, pr_info(MPT3SAS_FMT
5009 "disable writes to the diagnostic register\n", ioc->name));
5010 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5011
5012 drsprintk(ioc, pr_info(MPT3SAS_FMT
5013 "Wait for FW to go to the READY state\n", ioc->name));
5014 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5015 if (ioc_state) {
5016 pr_err(MPT3SAS_FMT
5017 "%s: failed going to ready state (ioc_state=0x%x)\n",
5018 ioc->name, __func__, ioc_state);
5019 goto out;
5020 }
5021
5022 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5023 return 0;
5024
5025 out:
5026 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5027 return -EFAULT;
5028 }
5029
5030 /**
5031 * _base_make_ioc_ready - put controller in READY state
5032 * @ioc: per adapter object
5033 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5034 *
5035 * Returns 0 for success, non-zero for failure.
5036 */
5037 static int
5038 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5039 {
5040 u32 ioc_state;
5041 int rc;
5042 int count;
5043
5044 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5045 __func__));
5046
5047 if (ioc->pci_error_recovery)
5048 return 0;
5049
5050 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5051 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5052 ioc->name, __func__, ioc_state));
5053
5054 /* if in RESET state, it should move to READY state shortly */
5055 count = 0;
5056 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5057 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5058 MPI2_IOC_STATE_READY) {
5059 if (count++ == 10) {
5060 pr_err(MPT3SAS_FMT
5061 "%s: failed going to ready state (ioc_state=0x%x)\n",
5062 ioc->name, __func__, ioc_state);
5063 return -EFAULT;
5064 }
5065 ssleep(1);
5066 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5067 }
5068 }
5069
5070 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5071 return 0;
5072
5073 if (ioc_state & MPI2_DOORBELL_USED) {
5074 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5075 "unexpected doorbell active!\n",
5076 ioc->name));
5077 goto issue_diag_reset;
5078 }
5079
5080 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5081 mpt3sas_base_fault_info(ioc, ioc_state &
5082 MPI2_DOORBELL_DATA_MASK);
5083 goto issue_diag_reset;
5084 }
5085
5086 if (type == FORCE_BIG_HAMMER)
5087 goto issue_diag_reset;
5088
5089 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5090 if (!(_base_send_ioc_reset(ioc,
5091 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5092 return 0;
5093 }
5094
5095 issue_diag_reset:
5096 rc = _base_diag_reset(ioc);
5097 return rc;
5098 }
5099
5100 /**
5101 * _base_make_ioc_operational - put controller in OPERATIONAL state
5102 * @ioc: per adapter object
5103 *
5104 * Returns 0 for success, non-zero for failure.
5105 */
5106 static int
5107 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5108 {
5109 int r, i, index;
5110 unsigned long flags;
5111 u32 reply_address;
5112 u16 smid;
5113 struct _tr_list *delayed_tr, *delayed_tr_next;
5114 struct _sc_list *delayed_sc, *delayed_sc_next;
5115 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5116 u8 hide_flag;
5117 struct adapter_reply_queue *reply_q;
5118 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5119
5120 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5121 __func__));
5122
5123 /* clean the delayed target reset list */
5124 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5125 &ioc->delayed_tr_list, list) {
5126 list_del(&delayed_tr->list);
5127 kfree(delayed_tr);
5128 }
5129
5130
5131 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5132 &ioc->delayed_tr_volume_list, list) {
5133 list_del(&delayed_tr->list);
5134 kfree(delayed_tr);
5135 }
5136
5137 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5138 &ioc->delayed_sc_list, list) {
5139 list_del(&delayed_sc->list);
5140 kfree(delayed_sc);
5141 }
5142
5143 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5144 &ioc->delayed_event_ack_list, list) {
5145 list_del(&delayed_event_ack->list);
5146 kfree(delayed_event_ack);
5147 }
5148
5149 /* initialize the scsi lookup free list */
5150 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5151 INIT_LIST_HEAD(&ioc->free_list);
5152 smid = 1;
5153 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5154 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5155 ioc->scsi_lookup[i].cb_idx = 0xFF;
5156 ioc->scsi_lookup[i].smid = smid;
5157 ioc->scsi_lookup[i].scmd = NULL;
5158 ioc->scsi_lookup[i].direct_io = 0;
5159 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5160 &ioc->free_list);
5161 }
5162
5163 /* hi-priority queue */
5164 INIT_LIST_HEAD(&ioc->hpr_free_list);
5165 smid = ioc->hi_priority_smid;
5166 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5167 ioc->hpr_lookup[i].cb_idx = 0xFF;
5168 ioc->hpr_lookup[i].smid = smid;
5169 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5170 &ioc->hpr_free_list);
5171 }
5172
5173 /* internal queue */
5174 INIT_LIST_HEAD(&ioc->internal_free_list);
5175 smid = ioc->internal_smid;
5176 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5177 ioc->internal_lookup[i].cb_idx = 0xFF;
5178 ioc->internal_lookup[i].smid = smid;
5179 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5180 &ioc->internal_free_list);
5181 }
5182
5183 /* chain pool */
5184 INIT_LIST_HEAD(&ioc->free_chain_list);
5185 for (i = 0; i < ioc->chain_depth; i++)
5186 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5187 &ioc->free_chain_list);
5188
5189 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5190
5191 /* initialize Reply Free Queue */
5192 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5193 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5194 ioc->reply_sz)
5195 ioc->reply_free[i] = cpu_to_le32(reply_address);
5196
5197 /* initialize reply queues */
5198 if (ioc->is_driver_loading)
5199 _base_assign_reply_queues(ioc);
5200
5201 /* initialize Reply Post Free Queue */
5202 index = 0;
5203 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5204 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5205 /*
5206 * If RDPQ is enabled, switch to the next allocation.
5207 * Otherwise advance within the contiguous region.
5208 */
5209 if (ioc->rdpq_array_enable) {
5210 reply_q->reply_post_free =
5211 ioc->reply_post[index++].reply_post_free;
5212 } else {
5213 reply_q->reply_post_free = reply_post_free_contig;
5214 reply_post_free_contig += ioc->reply_post_queue_depth;
5215 }
5216
5217 reply_q->reply_post_host_index = 0;
5218 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5219 reply_q->reply_post_free[i].Words =
5220 cpu_to_le64(ULLONG_MAX);
5221 if (!_base_is_controller_msix_enabled(ioc))
5222 goto skip_init_reply_post_free_queue;
5223 }
5224 skip_init_reply_post_free_queue:
5225
5226 r = _base_send_ioc_init(ioc);
5227 if (r)
5228 return r;
5229
5230 /* initialize reply free host index */
5231 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5232 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5233
5234 /* initialize reply post host index */
5235 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5236 if (ioc->combined_reply_queue)
5237 writel((reply_q->msix_index & 7)<<
5238 MPI2_RPHI_MSIX_INDEX_SHIFT,
5239 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5240 else
5241 writel(reply_q->msix_index <<
5242 MPI2_RPHI_MSIX_INDEX_SHIFT,
5243 &ioc->chip->ReplyPostHostIndex);
5244
5245 if (!_base_is_controller_msix_enabled(ioc))
5246 goto skip_init_reply_post_host_index;
5247 }
5248
5249 skip_init_reply_post_host_index:
5250
5251 _base_unmask_interrupts(ioc);
5252 r = _base_event_notification(ioc);
5253 if (r)
5254 return r;
5255
5256 _base_static_config_pages(ioc);
5257
5258 if (ioc->is_driver_loading) {
5259
5260 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5261 == 0x80) {
5262 hide_flag = (u8) (
5263 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5264 MFG_PAGE10_HIDE_SSDS_MASK);
5265 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5266 ioc->mfg_pg10_hide_flag = hide_flag;
5267 }
5268
5269 ioc->wait_for_discovery_to_complete =
5270 _base_determine_wait_on_discovery(ioc);
5271
5272 return r; /* scan_start and scan_finished support */
5273 }
5274
5275 r = _base_send_port_enable(ioc);
5276 if (r)
5277 return r;
5278
5279 return r;
5280 }
5281
5282 /**
5283 * mpt3sas_base_free_resources - free resources controller resources
5284 * @ioc: per adapter object
5285 *
5286 * Return nothing.
5287 */
5288 void
5289 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5290 {
5291 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5292 __func__));
5293
5294 /* synchronizing freeing resource with pci_access_mutex lock */
5295 mutex_lock(&ioc->pci_access_mutex);
5296 if (ioc->chip_phys && ioc->chip) {
5297 _base_mask_interrupts(ioc);
5298 ioc->shost_recovery = 1;
5299 _base_make_ioc_ready(ioc, SOFT_RESET);
5300 ioc->shost_recovery = 0;
5301 }
5302
5303 mpt3sas_base_unmap_resources(ioc);
5304 mutex_unlock(&ioc->pci_access_mutex);
5305 return;
5306 }
5307
5308 /**
5309 * mpt3sas_base_attach - attach controller instance
5310 * @ioc: per adapter object
5311 *
5312 * Returns 0 for success, non-zero for failure.
5313 */
5314 int
5315 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5316 {
5317 int r, i;
5318 int cpu_id, last_cpu_id = 0;
5319
5320 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5321 __func__));
5322
5323 /* setup cpu_msix_table */
5324 ioc->cpu_count = num_online_cpus();
5325 for_each_online_cpu(cpu_id)
5326 last_cpu_id = cpu_id;
5327 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5328 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5329 ioc->reply_queue_count = 1;
5330 if (!ioc->cpu_msix_table) {
5331 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5332 "allocation for cpu_msix_table failed!!!\n",
5333 ioc->name));
5334 r = -ENOMEM;
5335 goto out_free_resources;
5336 }
5337
5338 if (ioc->is_warpdrive) {
5339 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5340 sizeof(resource_size_t *), GFP_KERNEL);
5341 if (!ioc->reply_post_host_index) {
5342 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5343 "for reply_post_host_index failed!!!\n",
5344 ioc->name));
5345 r = -ENOMEM;
5346 goto out_free_resources;
5347 }
5348 }
5349
5350 ioc->rdpq_array_enable_assigned = 0;
5351 ioc->dma_mask = 0;
5352 r = mpt3sas_base_map_resources(ioc);
5353 if (r)
5354 goto out_free_resources;
5355
5356 pci_set_drvdata(ioc->pdev, ioc->shost);
5357 r = _base_get_ioc_facts(ioc);
5358 if (r)
5359 goto out_free_resources;
5360
5361 switch (ioc->hba_mpi_version_belonged) {
5362 case MPI2_VERSION:
5363 ioc->build_sg_scmd = &_base_build_sg_scmd;
5364 ioc->build_sg = &_base_build_sg;
5365 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5366 break;
5367 case MPI25_VERSION:
5368 case MPI26_VERSION:
5369 /*
5370 * In SAS3.0,
5371 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5372 * Target Status - all require the IEEE formated scatter gather
5373 * elements.
5374 */
5375 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5376 ioc->build_sg = &_base_build_sg_ieee;
5377 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5378 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5379
5380 break;
5381 }
5382
5383 if (ioc->atomic_desc_capable) {
5384 ioc->put_smid_default = &_base_put_smid_default_atomic;
5385 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5386 ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5387 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5388 } else {
5389 ioc->put_smid_default = &_base_put_smid_default;
5390 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5391 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5392 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5393 }
5394
5395
5396 /*
5397 * These function pointers for other requests that don't
5398 * the require IEEE scatter gather elements.
5399 *
5400 * For example Configuration Pages and SAS IOUNIT Control don't.
5401 */
5402 ioc->build_sg_mpi = &_base_build_sg;
5403 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5404
5405 r = _base_make_ioc_ready(ioc, SOFT_RESET);
5406 if (r)
5407 goto out_free_resources;
5408
5409 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5410 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5411 if (!ioc->pfacts) {
5412 r = -ENOMEM;
5413 goto out_free_resources;
5414 }
5415
5416 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5417 r = _base_get_port_facts(ioc, i);
5418 if (r)
5419 goto out_free_resources;
5420 }
5421
5422 r = _base_allocate_memory_pools(ioc);
5423 if (r)
5424 goto out_free_resources;
5425
5426 init_waitqueue_head(&ioc->reset_wq);
5427
5428 /* allocate memory pd handle bitmask list */
5429 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5430 if (ioc->facts.MaxDevHandle % 8)
5431 ioc->pd_handles_sz++;
5432 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5433 GFP_KERNEL);
5434 if (!ioc->pd_handles) {
5435 r = -ENOMEM;
5436 goto out_free_resources;
5437 }
5438 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5439 GFP_KERNEL);
5440 if (!ioc->blocking_handles) {
5441 r = -ENOMEM;
5442 goto out_free_resources;
5443 }
5444
5445 /* allocate memory for pending OS device add list */
5446 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5447 if (ioc->facts.MaxDevHandle % 8)
5448 ioc->pend_os_device_add_sz++;
5449 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5450 GFP_KERNEL);
5451 if (!ioc->pend_os_device_add)
5452 goto out_free_resources;
5453
5454 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5455 ioc->device_remove_in_progress =
5456 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5457 if (!ioc->device_remove_in_progress)
5458 goto out_free_resources;
5459
5460 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5461
5462 /* base internal command bits */
5463 mutex_init(&ioc->base_cmds.mutex);
5464 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5465 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5466
5467 /* port_enable command bits */
5468 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5469 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5470
5471 /* transport internal command bits */
5472 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5473 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5474 mutex_init(&ioc->transport_cmds.mutex);
5475
5476 /* scsih internal command bits */
5477 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5478 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5479 mutex_init(&ioc->scsih_cmds.mutex);
5480
5481 /* task management internal command bits */
5482 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5483 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5484 mutex_init(&ioc->tm_cmds.mutex);
5485
5486 /* config page internal command bits */
5487 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5488 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5489 mutex_init(&ioc->config_cmds.mutex);
5490
5491 /* ctl module internal command bits */
5492 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5493 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5494 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5495 mutex_init(&ioc->ctl_cmds.mutex);
5496
5497 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
5498 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
5499 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
5500 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
5501 r = -ENOMEM;
5502 goto out_free_resources;
5503 }
5504
5505 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5506 ioc->event_masks[i] = -1;
5507
5508 /* here we enable the events we care about */
5509 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5510 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5511 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5512 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5513 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5514 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5515 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5516 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5517 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5518 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5519 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5520 if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5521 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5522
5523 r = _base_make_ioc_operational(ioc);
5524 if (r)
5525 goto out_free_resources;
5526
5527 ioc->non_operational_loop = 0;
5528 ioc->got_task_abort_from_ioctl = 0;
5529 return 0;
5530
5531 out_free_resources:
5532
5533 ioc->remove_host = 1;
5534
5535 mpt3sas_base_free_resources(ioc);
5536 _base_release_memory_pools(ioc);
5537 pci_set_drvdata(ioc->pdev, NULL);
5538 kfree(ioc->cpu_msix_table);
5539 if (ioc->is_warpdrive)
5540 kfree(ioc->reply_post_host_index);
5541 kfree(ioc->pd_handles);
5542 kfree(ioc->blocking_handles);
5543 kfree(ioc->device_remove_in_progress);
5544 kfree(ioc->pend_os_device_add);
5545 kfree(ioc->tm_cmds.reply);
5546 kfree(ioc->transport_cmds.reply);
5547 kfree(ioc->scsih_cmds.reply);
5548 kfree(ioc->config_cmds.reply);
5549 kfree(ioc->base_cmds.reply);
5550 kfree(ioc->port_enable_cmds.reply);
5551 kfree(ioc->ctl_cmds.reply);
5552 kfree(ioc->ctl_cmds.sense);
5553 kfree(ioc->pfacts);
5554 ioc->ctl_cmds.reply = NULL;
5555 ioc->base_cmds.reply = NULL;
5556 ioc->tm_cmds.reply = NULL;
5557 ioc->scsih_cmds.reply = NULL;
5558 ioc->transport_cmds.reply = NULL;
5559 ioc->config_cmds.reply = NULL;
5560 ioc->pfacts = NULL;
5561 return r;
5562 }
5563
5564
5565 /**
5566 * mpt3sas_base_detach - remove controller instance
5567 * @ioc: per adapter object
5568 *
5569 * Return nothing.
5570 */
5571 void
5572 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5573 {
5574 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5575 __func__));
5576
5577 mpt3sas_base_stop_watchdog(ioc);
5578 mpt3sas_base_free_resources(ioc);
5579 _base_release_memory_pools(ioc);
5580 pci_set_drvdata(ioc->pdev, NULL);
5581 kfree(ioc->cpu_msix_table);
5582 if (ioc->is_warpdrive)
5583 kfree(ioc->reply_post_host_index);
5584 kfree(ioc->pd_handles);
5585 kfree(ioc->blocking_handles);
5586 kfree(ioc->device_remove_in_progress);
5587 kfree(ioc->pend_os_device_add);
5588 kfree(ioc->pfacts);
5589 kfree(ioc->ctl_cmds.reply);
5590 kfree(ioc->ctl_cmds.sense);
5591 kfree(ioc->base_cmds.reply);
5592 kfree(ioc->port_enable_cmds.reply);
5593 kfree(ioc->tm_cmds.reply);
5594 kfree(ioc->transport_cmds.reply);
5595 kfree(ioc->scsih_cmds.reply);
5596 kfree(ioc->config_cmds.reply);
5597 }
5598
5599 /**
5600 * _base_reset_handler - reset callback handler (for base)
5601 * @ioc: per adapter object
5602 * @reset_phase: phase
5603 *
5604 * The handler for doing any required cleanup or initialization.
5605 *
5606 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5607 * MPT3_IOC_DONE_RESET
5608 *
5609 * Return nothing.
5610 */
5611 static void
5612 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5613 {
5614 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5615 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5616 switch (reset_phase) {
5617 case MPT3_IOC_PRE_RESET:
5618 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5619 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5620 break;
5621 case MPT3_IOC_AFTER_RESET:
5622 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5623 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5624 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5625 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5626 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5627 complete(&ioc->transport_cmds.done);
5628 }
5629 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5630 ioc->base_cmds.status |= MPT3_CMD_RESET;
5631 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5632 complete(&ioc->base_cmds.done);
5633 }
5634 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5635 ioc->port_enable_failed = 1;
5636 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5637 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5638 if (ioc->is_driver_loading) {
5639 ioc->start_scan_failed =
5640 MPI2_IOCSTATUS_INTERNAL_ERROR;
5641 ioc->start_scan = 0;
5642 ioc->port_enable_cmds.status =
5643 MPT3_CMD_NOT_USED;
5644 } else
5645 complete(&ioc->port_enable_cmds.done);
5646 }
5647 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5648 ioc->config_cmds.status |= MPT3_CMD_RESET;
5649 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5650 ioc->config_cmds.smid = USHRT_MAX;
5651 complete(&ioc->config_cmds.done);
5652 }
5653 break;
5654 case MPT3_IOC_DONE_RESET:
5655 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5656 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5657 break;
5658 }
5659 }
5660
5661 /**
5662 * _wait_for_commands_to_complete - reset controller
5663 * @ioc: Pointer to MPT_ADAPTER structure
5664 *
5665 * This function waiting(3s) for all pending commands to complete
5666 * prior to putting controller in reset.
5667 */
5668 static void
5669 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5670 {
5671 u32 ioc_state;
5672 unsigned long flags;
5673 u16 i;
5674
5675 ioc->pending_io_count = 0;
5676
5677 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5678 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5679 return;
5680
5681 /* pending command count */
5682 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5683 for (i = 0; i < ioc->scsiio_depth; i++)
5684 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5685 ioc->pending_io_count++;
5686 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5687
5688 if (!ioc->pending_io_count)
5689 return;
5690
5691 /* wait for pending commands to complete */
5692 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5693 }
5694
5695 /**
5696 * mpt3sas_base_hard_reset_handler - reset controller
5697 * @ioc: Pointer to MPT_ADAPTER structure
5698 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5699 *
5700 * Returns 0 for success, non-zero for failure.
5701 */
5702 int
5703 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5704 enum reset_type type)
5705 {
5706 int r;
5707 unsigned long flags;
5708 u32 ioc_state;
5709 u8 is_fault = 0, is_trigger = 0;
5710
5711 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5712 __func__));
5713
5714 if (ioc->pci_error_recovery) {
5715 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5716 ioc->name, __func__);
5717 r = 0;
5718 goto out_unlocked;
5719 }
5720
5721 if (mpt3sas_fwfault_debug)
5722 mpt3sas_halt_firmware(ioc);
5723
5724 /* wait for an active reset in progress to complete */
5725 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5726 do {
5727 ssleep(1);
5728 } while (ioc->shost_recovery == 1);
5729 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5730 __func__));
5731 return ioc->ioc_reset_in_progress_status;
5732 }
5733
5734 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5735 ioc->shost_recovery = 1;
5736 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5737
5738 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5739 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5740 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5741 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5742 is_trigger = 1;
5743 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5744 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5745 is_fault = 1;
5746 }
5747 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5748 _wait_for_commands_to_complete(ioc);
5749 _base_mask_interrupts(ioc);
5750 r = _base_make_ioc_ready(ioc, type);
5751 if (r)
5752 goto out;
5753 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5754
5755 /* If this hard reset is called while port enable is active, then
5756 * there is no reason to call make_ioc_operational
5757 */
5758 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5759 ioc->remove_host = 1;
5760 r = -EFAULT;
5761 goto out;
5762 }
5763 r = _base_get_ioc_facts(ioc);
5764 if (r)
5765 goto out;
5766
5767 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5768 panic("%s: Issue occurred with flashing controller firmware."
5769 "Please reboot the system and ensure that the correct"
5770 " firmware version is running\n", ioc->name);
5771
5772 r = _base_make_ioc_operational(ioc);
5773 if (!r)
5774 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5775
5776 out:
5777 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5778 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5779
5780 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5781 ioc->ioc_reset_in_progress_status = r;
5782 ioc->shost_recovery = 0;
5783 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5784 ioc->ioc_reset_count++;
5785 mutex_unlock(&ioc->reset_in_progress_mutex);
5786
5787 out_unlocked:
5788 if ((r == 0) && is_trigger) {
5789 if (is_fault)
5790 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5791 else
5792 mpt3sas_trigger_master(ioc,
5793 MASTER_TRIGGER_ADAPTER_RESET);
5794 }
5795 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5796 __func__));
5797 return r;
5798 }