]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/ncr53c8xx.c
Merge tag 'seccomp-v5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / ncr53c8xx.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3 ** Device driver for the PCI-SCSI NCR538XX controller family.
4 **
5 ** Copyright (C) 1994 Wolfgang Stanglmeier
6 **
7 **
8 **-----------------------------------------------------------------------------
9 **
10 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
11 ** and is currently maintained by
12 **
13 ** Gerard Roudier <groudier@free.fr>
14 **
15 ** Being given that this driver originates from the FreeBSD version, and
16 ** in order to keep synergy on both, any suggested enhancements and corrections
17 ** received on Linux are automatically a potential candidate for the FreeBSD
18 ** version.
19 **
20 ** The original driver has been written for 386bsd and FreeBSD by
21 ** Wolfgang Stanglmeier <wolf@cologne.de>
22 ** Stefan Esser <se@mi.Uni-Koeln.de>
23 **
24 ** And has been ported to NetBSD by
25 ** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
26 **
27 **-----------------------------------------------------------------------------
28 **
29 ** Brief history
30 **
31 ** December 10 1995 by Gerard Roudier:
32 ** Initial port to Linux.
33 **
34 ** June 23 1996 by Gerard Roudier:
35 ** Support for 64 bits architectures (Alpha).
36 **
37 ** November 30 1996 by Gerard Roudier:
38 ** Support for Fast-20 scsi.
39 ** Support for large DMA fifo and 128 dwords bursting.
40 **
41 ** February 27 1997 by Gerard Roudier:
42 ** Support for Fast-40 scsi.
43 ** Support for on-Board RAM.
44 **
45 ** May 3 1997 by Gerard Roudier:
46 ** Full support for scsi scripts instructions pre-fetching.
47 **
48 ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
49 ** Support for NvRAM detection and reading.
50 **
51 ** August 18 1997 by Cort <cort@cs.nmt.edu>:
52 ** Support for Power/PC (Big Endian).
53 **
54 ** June 20 1998 by Gerard Roudier
55 ** Support for up to 64 tags per lun.
56 ** O(1) everywhere (C and SCRIPTS) for normal cases.
57 ** Low PCI traffic for command handling when on-chip RAM is present.
58 ** Aggressive SCSI SCRIPTS optimizations.
59 **
60 ** 2005 by Matthew Wilcox and James Bottomley
61 ** PCI-ectomy. This driver now supports only the 720 chip (see the
62 ** NCR_Q720 and zalon drivers for the bus probe logic).
63 **
64 *******************************************************************************
65 */
66
67 /*
68 ** Supported SCSI-II features:
69 ** Synchronous negotiation
70 ** Wide negotiation (depends on the NCR Chip)
71 ** Enable disconnection
72 ** Tagged command queuing
73 ** Parity checking
74 ** Etc...
75 **
76 ** Supported NCR/SYMBIOS chips:
77 ** 53C720 (Wide, Fast SCSI-2, intfly problems)
78 */
79
80 /* Name and version of the driver */
81 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
82
83 #define SCSI_NCR_DEBUG_FLAGS (0)
84
85 #include <linux/blkdev.h>
86 #include <linux/delay.h>
87 #include <linux/dma-mapping.h>
88 #include <linux/errno.h>
89 #include <linux/gfp.h>
90 #include <linux/init.h>
91 #include <linux/interrupt.h>
92 #include <linux/ioport.h>
93 #include <linux/mm.h>
94 #include <linux/module.h>
95 #include <linux/sched.h>
96 #include <linux/signal.h>
97 #include <linux/spinlock.h>
98 #include <linux/stat.h>
99 #include <linux/string.h>
100 #include <linux/time.h>
101 #include <linux/timer.h>
102 #include <linux/types.h>
103
104 #include <asm/dma.h>
105 #include <asm/io.h>
106
107 #include <scsi/scsi.h>
108 #include <scsi/scsi_cmnd.h>
109 #include <scsi/scsi_dbg.h>
110 #include <scsi/scsi_device.h>
111 #include <scsi/scsi_tcq.h>
112 #include <scsi/scsi_transport.h>
113 #include <scsi/scsi_transport_spi.h>
114
115 #include "ncr53c8xx.h"
116
117 #define NAME53C8XX "ncr53c8xx"
118
119 /*==========================================================
120 **
121 ** Debugging tags
122 **
123 **==========================================================
124 */
125
126 #define DEBUG_ALLOC (0x0001)
127 #define DEBUG_PHASE (0x0002)
128 #define DEBUG_QUEUE (0x0008)
129 #define DEBUG_RESULT (0x0010)
130 #define DEBUG_POINTER (0x0020)
131 #define DEBUG_SCRIPT (0x0040)
132 #define DEBUG_TINY (0x0080)
133 #define DEBUG_TIMING (0x0100)
134 #define DEBUG_NEGO (0x0200)
135 #define DEBUG_TAGS (0x0400)
136 #define DEBUG_SCATTER (0x0800)
137 #define DEBUG_IC (0x1000)
138
139 /*
140 ** Enable/Disable debug messages.
141 ** Can be changed at runtime too.
142 */
143
144 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
145 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
146 #define DEBUG_FLAGS ncr_debug
147 #else
148 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
149 #endif
150
151 static inline struct list_head *ncr_list_pop(struct list_head *head)
152 {
153 if (!list_empty(head)) {
154 struct list_head *elem = head->next;
155
156 list_del(elem);
157 return elem;
158 }
159
160 return NULL;
161 }
162
163 /*==========================================================
164 **
165 ** Simple power of two buddy-like allocator.
166 **
167 ** This simple code is not intended to be fast, but to
168 ** provide power of 2 aligned memory allocations.
169 ** Since the SCRIPTS processor only supplies 8 bit
170 ** arithmetic, this allocator allows simple and fast
171 ** address calculations from the SCRIPTS code.
172 ** In addition, cache line alignment is guaranteed for
173 ** power of 2 cache line size.
174 ** Enhanced in linux-2.3.44 to provide a memory pool
175 ** per pcidev to support dynamic dma mapping. (I would
176 ** have preferred a real bus abstraction, btw).
177 **
178 **==========================================================
179 */
180
181 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
182 #if PAGE_SIZE >= 8192
183 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
184 #else
185 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
186 #endif
187 #define MEMO_FREE_UNUSED /* Free unused pages immediately */
188 #define MEMO_WARN 1
189 #define MEMO_GFP_FLAGS GFP_ATOMIC
190 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
191 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
192 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
193
194 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
195 typedef struct device *m_bush_t; /* Something that addresses DMAable */
196
197 typedef struct m_link { /* Link between free memory chunks */
198 struct m_link *next;
199 } m_link_s;
200
201 typedef struct m_vtob { /* Virtual to Bus address translation */
202 struct m_vtob *next;
203 m_addr_t vaddr;
204 m_addr_t baddr;
205 } m_vtob_s;
206 #define VTOB_HASH_SHIFT 5
207 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
208 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
209 #define VTOB_HASH_CODE(m) \
210 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
211
212 typedef struct m_pool { /* Memory pool of a given kind */
213 m_bush_t bush;
214 m_addr_t (*getp)(struct m_pool *);
215 void (*freep)(struct m_pool *, m_addr_t);
216 int nump;
217 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
218 struct m_pool *next;
219 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
220 } m_pool_s;
221
222 static void *___m_alloc(m_pool_s *mp, int size)
223 {
224 int i = 0;
225 int s = (1 << MEMO_SHIFT);
226 int j;
227 m_addr_t a;
228 m_link_s *h = mp->h;
229
230 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
231 return NULL;
232
233 while (size > s) {
234 s <<= 1;
235 ++i;
236 }
237
238 j = i;
239 while (!h[j].next) {
240 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
241 h[j].next = (m_link_s *)mp->getp(mp);
242 if (h[j].next)
243 h[j].next->next = NULL;
244 break;
245 }
246 ++j;
247 s <<= 1;
248 }
249 a = (m_addr_t) h[j].next;
250 if (a) {
251 h[j].next = h[j].next->next;
252 while (j > i) {
253 j -= 1;
254 s >>= 1;
255 h[j].next = (m_link_s *) (a+s);
256 h[j].next->next = NULL;
257 }
258 }
259 #ifdef DEBUG
260 printk("___m_alloc(%d) = %p\n", size, (void *) a);
261 #endif
262 return (void *) a;
263 }
264
265 static void ___m_free(m_pool_s *mp, void *ptr, int size)
266 {
267 int i = 0;
268 int s = (1 << MEMO_SHIFT);
269 m_link_s *q;
270 m_addr_t a, b;
271 m_link_s *h = mp->h;
272
273 #ifdef DEBUG
274 printk("___m_free(%p, %d)\n", ptr, size);
275 #endif
276
277 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
278 return;
279
280 while (size > s) {
281 s <<= 1;
282 ++i;
283 }
284
285 a = (m_addr_t) ptr;
286
287 while (1) {
288 #ifdef MEMO_FREE_UNUSED
289 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
290 mp->freep(mp, a);
291 break;
292 }
293 #endif
294 b = a ^ s;
295 q = &h[i];
296 while (q->next && q->next != (m_link_s *) b) {
297 q = q->next;
298 }
299 if (!q->next) {
300 ((m_link_s *) a)->next = h[i].next;
301 h[i].next = (m_link_s *) a;
302 break;
303 }
304 q->next = q->next->next;
305 a = a & b;
306 s <<= 1;
307 ++i;
308 }
309 }
310
311 static DEFINE_SPINLOCK(ncr53c8xx_lock);
312
313 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
314 {
315 void *p;
316
317 p = ___m_alloc(mp, size);
318
319 if (DEBUG_FLAGS & DEBUG_ALLOC)
320 printk ("new %-10s[%4d] @%p.\n", name, size, p);
321
322 if (p)
323 memset(p, 0, size);
324 else if (uflags & MEMO_WARN)
325 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
326
327 return p;
328 }
329
330 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
331
332 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
333 {
334 if (DEBUG_FLAGS & DEBUG_ALLOC)
335 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
336
337 ___m_free(mp, ptr, size);
338
339 }
340
341 /*
342 * With pci bus iommu support, we use a default pool of unmapped memory
343 * for memory we donnot need to DMA from/to and one pool per pcidev for
344 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
345 */
346
347 static m_addr_t ___mp0_getp(m_pool_s *mp)
348 {
349 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
350 if (m)
351 ++mp->nump;
352 return m;
353 }
354
355 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
356 {
357 free_pages(m, MEMO_PAGE_ORDER);
358 --mp->nump;
359 }
360
361 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
362
363 /*
364 * DMAable pools.
365 */
366
367 /*
368 * With pci bus iommu support, we maintain one pool per pcidev and a
369 * hashed reverse table for virtual to bus physical address translations.
370 */
371 static m_addr_t ___dma_getp(m_pool_s *mp)
372 {
373 m_addr_t vp;
374 m_vtob_s *vbp;
375
376 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
377 if (vbp) {
378 dma_addr_t daddr;
379 vp = (m_addr_t) dma_alloc_coherent(mp->bush,
380 PAGE_SIZE<<MEMO_PAGE_ORDER,
381 &daddr, GFP_ATOMIC);
382 if (vp) {
383 int hc = VTOB_HASH_CODE(vp);
384 vbp->vaddr = vp;
385 vbp->baddr = daddr;
386 vbp->next = mp->vtob[hc];
387 mp->vtob[hc] = vbp;
388 ++mp->nump;
389 return vp;
390 }
391 }
392 if (vbp)
393 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
394 return 0;
395 }
396
397 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
398 {
399 m_vtob_s **vbpp, *vbp;
400 int hc = VTOB_HASH_CODE(m);
401
402 vbpp = &mp->vtob[hc];
403 while (*vbpp && (*vbpp)->vaddr != m)
404 vbpp = &(*vbpp)->next;
405 if (*vbpp) {
406 vbp = *vbpp;
407 *vbpp = (*vbpp)->next;
408 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
409 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
410 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
411 --mp->nump;
412 }
413 }
414
415 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
416 {
417 m_pool_s *mp;
418 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
419 return mp;
420 }
421
422 static m_pool_s *___cre_dma_pool(m_bush_t bush)
423 {
424 m_pool_s *mp;
425 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
426 if (mp) {
427 memset(mp, 0, sizeof(*mp));
428 mp->bush = bush;
429 mp->getp = ___dma_getp;
430 mp->freep = ___dma_freep;
431 mp->next = mp0.next;
432 mp0.next = mp;
433 }
434 return mp;
435 }
436
437 static void ___del_dma_pool(m_pool_s *p)
438 {
439 struct m_pool **pp = &mp0.next;
440
441 while (*pp && *pp != p)
442 pp = &(*pp)->next;
443 if (*pp) {
444 *pp = (*pp)->next;
445 __m_free(&mp0, p, sizeof(*p), "MPOOL");
446 }
447 }
448
449 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
450 {
451 u_long flags;
452 struct m_pool *mp;
453 void *m = NULL;
454
455 spin_lock_irqsave(&ncr53c8xx_lock, flags);
456 mp = ___get_dma_pool(bush);
457 if (!mp)
458 mp = ___cre_dma_pool(bush);
459 if (mp)
460 m = __m_calloc(mp, size, name);
461 if (mp && !mp->nump)
462 ___del_dma_pool(mp);
463 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
464
465 return m;
466 }
467
468 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
469 {
470 u_long flags;
471 struct m_pool *mp;
472
473 spin_lock_irqsave(&ncr53c8xx_lock, flags);
474 mp = ___get_dma_pool(bush);
475 if (mp)
476 __m_free(mp, m, size, name);
477 if (mp && !mp->nump)
478 ___del_dma_pool(mp);
479 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
480 }
481
482 static m_addr_t __vtobus(m_bush_t bush, void *m)
483 {
484 u_long flags;
485 m_pool_s *mp;
486 int hc = VTOB_HASH_CODE(m);
487 m_vtob_s *vp = NULL;
488 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
489
490 spin_lock_irqsave(&ncr53c8xx_lock, flags);
491 mp = ___get_dma_pool(bush);
492 if (mp) {
493 vp = mp->vtob[hc];
494 while (vp && (m_addr_t) vp->vaddr != a)
495 vp = vp->next;
496 }
497 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
498 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
499 }
500
501 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
502 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
503 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
504 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
505 #define _vtobus(np, p) __vtobus(np->dev, p)
506 #define vtobus(p) _vtobus(np, p)
507
508 /*
509 * Deal with DMA mapping/unmapping.
510 */
511
512 /* To keep track of the dma mapping (sg/single) that has been set */
513 #define __data_mapped SCp.phase
514 #define __data_mapping SCp.have_data_in
515
516 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
517 {
518 switch(cmd->__data_mapped) {
519 case 2:
520 scsi_dma_unmap(cmd);
521 break;
522 }
523 cmd->__data_mapped = 0;
524 }
525
526 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
527 {
528 int use_sg;
529
530 use_sg = scsi_dma_map(cmd);
531 if (!use_sg)
532 return 0;
533
534 cmd->__data_mapped = 2;
535 cmd->__data_mapping = use_sg;
536
537 return use_sg;
538 }
539
540 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
541 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
542
543 /*==========================================================
544 **
545 ** Driver setup.
546 **
547 ** This structure is initialized from linux config
548 ** options. It can be overridden at boot-up by the boot
549 ** command line.
550 **
551 **==========================================================
552 */
553 static struct ncr_driver_setup
554 driver_setup = SCSI_NCR_DRIVER_SETUP;
555
556 #ifndef MODULE
557 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
558 static struct ncr_driver_setup
559 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
560 #endif
561 #endif /* !MODULE */
562
563 #define initverbose (driver_setup.verbose)
564 #define bootverbose (np->verbose)
565
566
567 /*===================================================================
568 **
569 ** Driver setup from the boot command line
570 **
571 **===================================================================
572 */
573
574 #ifdef MODULE
575 #define ARG_SEP ' '
576 #else
577 #define ARG_SEP ','
578 #endif
579
580 #define OPT_TAGS 1
581 #define OPT_MASTER_PARITY 2
582 #define OPT_SCSI_PARITY 3
583 #define OPT_DISCONNECTION 4
584 #define OPT_SPECIAL_FEATURES 5
585 #define OPT_UNUSED_1 6
586 #define OPT_FORCE_SYNC_NEGO 7
587 #define OPT_REVERSE_PROBE 8
588 #define OPT_DEFAULT_SYNC 9
589 #define OPT_VERBOSE 10
590 #define OPT_DEBUG 11
591 #define OPT_BURST_MAX 12
592 #define OPT_LED_PIN 13
593 #define OPT_MAX_WIDE 14
594 #define OPT_SETTLE_DELAY 15
595 #define OPT_DIFF_SUPPORT 16
596 #define OPT_IRQM 17
597 #define OPT_PCI_FIX_UP 18
598 #define OPT_BUS_CHECK 19
599 #define OPT_OPTIMIZE 20
600 #define OPT_RECOVERY 21
601 #define OPT_SAFE_SETUP 22
602 #define OPT_USE_NVRAM 23
603 #define OPT_EXCLUDE 24
604 #define OPT_HOST_ID 25
605
606 #ifdef SCSI_NCR_IARB_SUPPORT
607 #define OPT_IARB 26
608 #endif
609
610 #ifdef MODULE
611 #define ARG_SEP ' '
612 #else
613 #define ARG_SEP ','
614 #endif
615
616 #ifndef MODULE
617 static char setup_token[] __initdata =
618 "tags:" "mpar:"
619 "spar:" "disc:"
620 "specf:" "ultra:"
621 "fsn:" "revprob:"
622 "sync:" "verb:"
623 "debug:" "burst:"
624 "led:" "wide:"
625 "settle:" "diff:"
626 "irqm:" "pcifix:"
627 "buschk:" "optim:"
628 "recovery:"
629 "safe:" "nvram:"
630 "excl:" "hostid:"
631 #ifdef SCSI_NCR_IARB_SUPPORT
632 "iarb:"
633 #endif
634 ; /* DONNOT REMOVE THIS ';' */
635
636 static int __init get_setup_token(char *p)
637 {
638 char *cur = setup_token;
639 char *pc;
640 int i = 0;
641
642 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
643 ++pc;
644 ++i;
645 if (!strncmp(p, cur, pc - cur))
646 return i;
647 cur = pc;
648 }
649 return 0;
650 }
651
652 static int __init sym53c8xx__setup(char *str)
653 {
654 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
655 char *cur = str;
656 char *pc, *pv;
657 int i, val, c;
658 int xi = 0;
659
660 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
661 char *pe;
662
663 val = 0;
664 pv = pc;
665 c = *++pv;
666
667 if (c == 'n')
668 val = 0;
669 else if (c == 'y')
670 val = 1;
671 else
672 val = (int) simple_strtoul(pv, &pe, 0);
673
674 switch (get_setup_token(cur)) {
675 case OPT_TAGS:
676 driver_setup.default_tags = val;
677 if (pe && *pe == '/') {
678 i = 0;
679 while (*pe && *pe != ARG_SEP &&
680 i < sizeof(driver_setup.tag_ctrl)-1) {
681 driver_setup.tag_ctrl[i++] = *pe++;
682 }
683 driver_setup.tag_ctrl[i] = '\0';
684 }
685 break;
686 case OPT_MASTER_PARITY:
687 driver_setup.master_parity = val;
688 break;
689 case OPT_SCSI_PARITY:
690 driver_setup.scsi_parity = val;
691 break;
692 case OPT_DISCONNECTION:
693 driver_setup.disconnection = val;
694 break;
695 case OPT_SPECIAL_FEATURES:
696 driver_setup.special_features = val;
697 break;
698 case OPT_FORCE_SYNC_NEGO:
699 driver_setup.force_sync_nego = val;
700 break;
701 case OPT_REVERSE_PROBE:
702 driver_setup.reverse_probe = val;
703 break;
704 case OPT_DEFAULT_SYNC:
705 driver_setup.default_sync = val;
706 break;
707 case OPT_VERBOSE:
708 driver_setup.verbose = val;
709 break;
710 case OPT_DEBUG:
711 driver_setup.debug = val;
712 break;
713 case OPT_BURST_MAX:
714 driver_setup.burst_max = val;
715 break;
716 case OPT_LED_PIN:
717 driver_setup.led_pin = val;
718 break;
719 case OPT_MAX_WIDE:
720 driver_setup.max_wide = val? 1:0;
721 break;
722 case OPT_SETTLE_DELAY:
723 driver_setup.settle_delay = val;
724 break;
725 case OPT_DIFF_SUPPORT:
726 driver_setup.diff_support = val;
727 break;
728 case OPT_IRQM:
729 driver_setup.irqm = val;
730 break;
731 case OPT_PCI_FIX_UP:
732 driver_setup.pci_fix_up = val;
733 break;
734 case OPT_BUS_CHECK:
735 driver_setup.bus_check = val;
736 break;
737 case OPT_OPTIMIZE:
738 driver_setup.optimize = val;
739 break;
740 case OPT_RECOVERY:
741 driver_setup.recovery = val;
742 break;
743 case OPT_USE_NVRAM:
744 driver_setup.use_nvram = val;
745 break;
746 case OPT_SAFE_SETUP:
747 memcpy(&driver_setup, &driver_safe_setup,
748 sizeof(driver_setup));
749 break;
750 case OPT_EXCLUDE:
751 if (xi < SCSI_NCR_MAX_EXCLUDES)
752 driver_setup.excludes[xi++] = val;
753 break;
754 case OPT_HOST_ID:
755 driver_setup.host_id = val;
756 break;
757 #ifdef SCSI_NCR_IARB_SUPPORT
758 case OPT_IARB:
759 driver_setup.iarb = val;
760 break;
761 #endif
762 default:
763 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
764 break;
765 }
766
767 if ((cur = strchr(cur, ARG_SEP)) != NULL)
768 ++cur;
769 }
770 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
771 return 1;
772 }
773 #endif /* !MODULE */
774
775 /*===================================================================
776 **
777 ** Get device queue depth from boot command line.
778 **
779 **===================================================================
780 */
781 #define DEF_DEPTH (driver_setup.default_tags)
782 #define ALL_TARGETS -2
783 #define NO_TARGET -1
784 #define ALL_LUNS -2
785 #define NO_LUN -1
786
787 static int device_queue_depth(int unit, int target, int lun)
788 {
789 int c, h, t, u, v;
790 char *p = driver_setup.tag_ctrl;
791 char *ep;
792
793 h = -1;
794 t = NO_TARGET;
795 u = NO_LUN;
796 while ((c = *p++) != 0) {
797 v = simple_strtoul(p, &ep, 0);
798 switch(c) {
799 case '/':
800 ++h;
801 t = ALL_TARGETS;
802 u = ALL_LUNS;
803 break;
804 case 't':
805 if (t != target)
806 t = (target == v) ? v : NO_TARGET;
807 u = ALL_LUNS;
808 break;
809 case 'u':
810 if (u != lun)
811 u = (lun == v) ? v : NO_LUN;
812 break;
813 case 'q':
814 if (h == unit &&
815 (t == ALL_TARGETS || t == target) &&
816 (u == ALL_LUNS || u == lun))
817 return v;
818 break;
819 case '-':
820 t = ALL_TARGETS;
821 u = ALL_LUNS;
822 break;
823 default:
824 break;
825 }
826 p = ep;
827 }
828 return DEF_DEPTH;
829 }
830
831
832 /*==========================================================
833 **
834 ** The CCB done queue uses an array of CCB virtual
835 ** addresses. Empty entries are flagged using the bogus
836 ** virtual address 0xffffffff.
837 **
838 ** Since PCI ensures that only aligned DWORDs are accessed
839 ** atomically, 64 bit little-endian architecture requires
840 ** to test the high order DWORD of the entry to determine
841 ** if it is empty or valid.
842 **
843 ** BTW, I will make things differently as soon as I will
844 ** have a better idea, but this is simple and should work.
845 **
846 **==========================================================
847 */
848
849 #define SCSI_NCR_CCB_DONE_SUPPORT
850 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
851
852 #define MAX_DONE 24
853 #define CCB_DONE_EMPTY 0xffffffffUL
854
855 /* All 32 bit architectures */
856 #if BITS_PER_LONG == 32
857 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
858
859 /* All > 32 bit (64 bit) architectures regardless endian-ness */
860 #else
861 #define CCB_DONE_VALID(cp) \
862 ((((u_long) cp) & 0xffffffff00000000ul) && \
863 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
864 #endif
865
866 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
867
868 /*==========================================================
869 **
870 ** Configuration and Debugging
871 **
872 **==========================================================
873 */
874
875 /*
876 ** SCSI address of this device.
877 ** The boot routines should have set it.
878 ** If not, use this.
879 */
880
881 #ifndef SCSI_NCR_MYADDR
882 #define SCSI_NCR_MYADDR (7)
883 #endif
884
885 /*
886 ** The maximum number of tags per logic unit.
887 ** Used only for disk devices that support tags.
888 */
889
890 #ifndef SCSI_NCR_MAX_TAGS
891 #define SCSI_NCR_MAX_TAGS (8)
892 #endif
893
894 /*
895 ** TAGS are actually limited to 64 tags/lun.
896 ** We need to deal with power of 2, for alignment constraints.
897 */
898 #if SCSI_NCR_MAX_TAGS > 64
899 #define MAX_TAGS (64)
900 #else
901 #define MAX_TAGS SCSI_NCR_MAX_TAGS
902 #endif
903
904 #define NO_TAG (255)
905
906 /*
907 ** Choose appropriate type for tag bitmap.
908 */
909 #if MAX_TAGS > 32
910 typedef u64 tagmap_t;
911 #else
912 typedef u32 tagmap_t;
913 #endif
914
915 /*
916 ** Number of targets supported by the driver.
917 ** n permits target numbers 0..n-1.
918 ** Default is 16, meaning targets #0..#15.
919 ** #7 .. is myself.
920 */
921
922 #ifdef SCSI_NCR_MAX_TARGET
923 #define MAX_TARGET (SCSI_NCR_MAX_TARGET)
924 #else
925 #define MAX_TARGET (16)
926 #endif
927
928 /*
929 ** Number of logic units supported by the driver.
930 ** n enables logic unit numbers 0..n-1.
931 ** The common SCSI devices require only
932 ** one lun, so take 1 as the default.
933 */
934
935 #ifdef SCSI_NCR_MAX_LUN
936 #define MAX_LUN SCSI_NCR_MAX_LUN
937 #else
938 #define MAX_LUN (1)
939 #endif
940
941 /*
942 ** Asynchronous pre-scaler (ns). Shall be 40
943 */
944
945 #ifndef SCSI_NCR_MIN_ASYNC
946 #define SCSI_NCR_MIN_ASYNC (40)
947 #endif
948
949 /*
950 ** The maximum number of jobs scheduled for starting.
951 ** There should be one slot per target, and one slot
952 ** for each tag of each target in use.
953 ** The calculation below is actually quite silly ...
954 */
955
956 #ifdef SCSI_NCR_CAN_QUEUE
957 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
958 #else
959 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
960 #endif
961
962 /*
963 ** We limit the max number of pending IO to 250.
964 ** since we donnot want to allocate more than 1
965 ** PAGE for 'scripth'.
966 */
967 #if MAX_START > 250
968 #undef MAX_START
969 #define MAX_START 250
970 #endif
971
972 /*
973 ** The maximum number of segments a transfer is split into.
974 ** We support up to 127 segments for both read and write.
975 ** The data scripts are broken into 2 sub-scripts.
976 ** 80 (MAX_SCATTERL) segments are moved from a sub-script
977 ** in on-chip RAM. This makes data transfers shorter than
978 ** 80k (assuming 1k fs) as fast as possible.
979 */
980
981 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
982
983 #if (MAX_SCATTER > 80)
984 #define MAX_SCATTERL 80
985 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
986 #else
987 #define MAX_SCATTERL (MAX_SCATTER-1)
988 #define MAX_SCATTERH 1
989 #endif
990
991 /*
992 ** other
993 */
994
995 #define NCR_SNOOP_TIMEOUT (1000000)
996
997 /*
998 ** Other definitions
999 */
1000
1001 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1002
1003 #define initverbose (driver_setup.verbose)
1004 #define bootverbose (np->verbose)
1005
1006 /*==========================================================
1007 **
1008 ** Command control block states.
1009 **
1010 **==========================================================
1011 */
1012
1013 #define HS_IDLE (0)
1014 #define HS_BUSY (1)
1015 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1016 #define HS_DISCONNECT (3) /* Disconnected by target */
1017
1018 #define HS_DONEMASK (0x80)
1019 #define HS_COMPLETE (4|HS_DONEMASK)
1020 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1021 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1022 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1023 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1024 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1025 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1026
1027 /*
1028 ** Invalid host status values used by the SCRIPTS processor
1029 ** when the nexus is not fully identified.
1030 ** Shall never appear in a CCB.
1031 */
1032
1033 #define HS_INVALMASK (0x40)
1034 #define HS_SELECTING (0|HS_INVALMASK)
1035 #define HS_IN_RESELECT (1|HS_INVALMASK)
1036 #define HS_STARTING (2|HS_INVALMASK)
1037
1038 /*
1039 ** Flags set by the SCRIPT processor for commands
1040 ** that have been skipped.
1041 */
1042 #define HS_SKIPMASK (0x20)
1043
1044 /*==========================================================
1045 **
1046 ** Software Interrupt Codes
1047 **
1048 **==========================================================
1049 */
1050
1051 #define SIR_BAD_STATUS (1)
1052 #define SIR_XXXXXXXXXX (2)
1053 #define SIR_NEGO_SYNC (3)
1054 #define SIR_NEGO_WIDE (4)
1055 #define SIR_NEGO_FAILED (5)
1056 #define SIR_NEGO_PROTO (6)
1057 #define SIR_REJECT_RECEIVED (7)
1058 #define SIR_REJECT_SENT (8)
1059 #define SIR_IGN_RESIDUE (9)
1060 #define SIR_MISSING_SAVE (10)
1061 #define SIR_RESEL_NO_MSG_IN (11)
1062 #define SIR_RESEL_NO_IDENTIFY (12)
1063 #define SIR_RESEL_BAD_LUN (13)
1064 #define SIR_RESEL_BAD_TARGET (14)
1065 #define SIR_RESEL_BAD_I_T_L (15)
1066 #define SIR_RESEL_BAD_I_T_L_Q (16)
1067 #define SIR_DONE_OVERFLOW (17)
1068 #define SIR_INTFLY (18)
1069 #define SIR_MAX (18)
1070
1071 /*==========================================================
1072 **
1073 ** Extended error codes.
1074 ** xerr_status field of struct ccb.
1075 **
1076 **==========================================================
1077 */
1078
1079 #define XE_OK (0)
1080 #define XE_EXTRA_DATA (1) /* unexpected data phase */
1081 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1082
1083 /*==========================================================
1084 **
1085 ** Negotiation status.
1086 ** nego_status field of struct ccb.
1087 **
1088 **==========================================================
1089 */
1090
1091 #define NS_NOCHANGE (0)
1092 #define NS_SYNC (1)
1093 #define NS_WIDE (2)
1094 #define NS_PPR (4)
1095
1096 /*==========================================================
1097 **
1098 ** Misc.
1099 **
1100 **==========================================================
1101 */
1102
1103 #define CCB_MAGIC (0xf2691ad2)
1104
1105 /*==========================================================
1106 **
1107 ** Declaration of structs.
1108 **
1109 **==========================================================
1110 */
1111
1112 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1113
1114 struct tcb;
1115 struct lcb;
1116 struct ccb;
1117 struct ncb;
1118 struct script;
1119
1120 struct link {
1121 ncrcmd l_cmd;
1122 ncrcmd l_paddr;
1123 };
1124
1125 struct usrcmd {
1126 u_long target;
1127 u_long lun;
1128 u_long data;
1129 u_long cmd;
1130 };
1131
1132 #define UC_SETSYNC 10
1133 #define UC_SETTAGS 11
1134 #define UC_SETDEBUG 12
1135 #define UC_SETORDER 13
1136 #define UC_SETWIDE 14
1137 #define UC_SETFLAG 15
1138 #define UC_SETVERBOSE 17
1139
1140 #define UF_TRACE (0x01)
1141 #define UF_NODISC (0x02)
1142 #define UF_NOSCAN (0x04)
1143
1144 /*========================================================================
1145 **
1146 ** Declaration of structs: target control block
1147 **
1148 **========================================================================
1149 */
1150 struct tcb {
1151 /*----------------------------------------------------------------
1152 ** During reselection the ncr jumps to this point with SFBR
1153 ** set to the encoded target number with bit 7 set.
1154 ** if it's not this target, jump to the next.
1155 **
1156 ** JUMP IF (SFBR != #target#), @(next tcb)
1157 **----------------------------------------------------------------
1158 */
1159 struct link jump_tcb;
1160
1161 /*----------------------------------------------------------------
1162 ** Load the actual values for the sxfer and the scntl3
1163 ** register (sync/wide mode).
1164 **
1165 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1166 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1167 **----------------------------------------------------------------
1168 */
1169 ncrcmd getscr[6];
1170
1171 /*----------------------------------------------------------------
1172 ** Get the IDENTIFY message and load the LUN to SFBR.
1173 **
1174 ** CALL, <RESEL_LUN>
1175 **----------------------------------------------------------------
1176 */
1177 struct link call_lun;
1178
1179 /*----------------------------------------------------------------
1180 ** Now look for the right lun.
1181 **
1182 ** For i = 0 to 3
1183 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1184 **
1185 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1186 ** It is kind of hashcoding.
1187 **----------------------------------------------------------------
1188 */
1189 struct link jump_lcb[4]; /* JUMPs for reselection */
1190 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1191
1192 /*----------------------------------------------------------------
1193 ** Pointer to the ccb used for negotiation.
1194 ** Prevent from starting a negotiation for all queued commands
1195 ** when tagged command queuing is enabled.
1196 **----------------------------------------------------------------
1197 */
1198 struct ccb * nego_cp;
1199
1200 /*----------------------------------------------------------------
1201 ** statistical data
1202 **----------------------------------------------------------------
1203 */
1204 u_long transfers;
1205 u_long bytes;
1206
1207 /*----------------------------------------------------------------
1208 ** negotiation of wide and synch transfer and device quirks.
1209 **----------------------------------------------------------------
1210 */
1211 #ifdef SCSI_NCR_BIG_ENDIAN
1212 /*0*/ u16 period;
1213 /*2*/ u_char sval;
1214 /*3*/ u_char minsync;
1215 /*0*/ u_char wval;
1216 /*1*/ u_char widedone;
1217 /*2*/ u_char quirks;
1218 /*3*/ u_char maxoffs;
1219 #else
1220 /*0*/ u_char minsync;
1221 /*1*/ u_char sval;
1222 /*2*/ u16 period;
1223 /*0*/ u_char maxoffs;
1224 /*1*/ u_char quirks;
1225 /*2*/ u_char widedone;
1226 /*3*/ u_char wval;
1227 #endif
1228
1229 /* User settable limits and options. */
1230 u_char usrsync;
1231 u_char usrwide;
1232 u_char usrtags;
1233 u_char usrflag;
1234 struct scsi_target *starget;
1235 };
1236
1237 /*========================================================================
1238 **
1239 ** Declaration of structs: lun control block
1240 **
1241 **========================================================================
1242 */
1243 struct lcb {
1244 /*----------------------------------------------------------------
1245 ** During reselection the ncr jumps to this point
1246 ** with SFBR set to the "Identify" message.
1247 ** if it's not this lun, jump to the next.
1248 **
1249 ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1250 **
1251 ** It is this lun. Load TEMP with the nexus jumps table
1252 ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1253 **
1254 ** SCR_COPY (4), p_jump_ccb, TEMP,
1255 ** SCR_JUMP, <RESEL_TAG>
1256 **----------------------------------------------------------------
1257 */
1258 struct link jump_lcb;
1259 ncrcmd load_jump_ccb[3];
1260 struct link jump_tag;
1261 ncrcmd p_jump_ccb; /* Jump table bus address */
1262
1263 /*----------------------------------------------------------------
1264 ** Jump table used by the script processor to directly jump
1265 ** to the CCB corresponding to the reselected nexus.
1266 ** Address is allocated on 256 bytes boundary in order to
1267 ** allow 8 bit calculation of the tag jump entry for up to
1268 ** 64 possible tags.
1269 **----------------------------------------------------------------
1270 */
1271 u32 jump_ccb_0; /* Default table if no tags */
1272 u32 *jump_ccb; /* Virtual address */
1273
1274 /*----------------------------------------------------------------
1275 ** CCB queue management.
1276 **----------------------------------------------------------------
1277 */
1278 struct list_head free_ccbq; /* Queue of available CCBs */
1279 struct list_head busy_ccbq; /* Queue of busy CCBs */
1280 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1281 struct list_head skip_ccbq; /* Queue of skipped CCBs */
1282 u_char actccbs; /* Number of allocated CCBs */
1283 u_char busyccbs; /* CCBs busy for this lun */
1284 u_char queuedccbs; /* CCBs queued to the controller*/
1285 u_char queuedepth; /* Queue depth for this lun */
1286 u_char scdev_depth; /* SCSI device queue depth */
1287 u_char maxnxs; /* Max possible nexuses */
1288
1289 /*----------------------------------------------------------------
1290 ** Control of tagged command queuing.
1291 ** Tags allocation is performed using a circular buffer.
1292 ** This avoids using a loop for tag allocation.
1293 **----------------------------------------------------------------
1294 */
1295 u_char ia_tag; /* Allocation index */
1296 u_char if_tag; /* Freeing index */
1297 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1298 u_char usetags; /* Command queuing is active */
1299 u_char maxtags; /* Max nr of tags asked by user */
1300 u_char numtags; /* Current number of tags */
1301
1302 /*----------------------------------------------------------------
1303 ** QUEUE FULL control and ORDERED tag control.
1304 **----------------------------------------------------------------
1305 */
1306 /*----------------------------------------------------------------
1307 ** QUEUE FULL and ORDERED tag control.
1308 **----------------------------------------------------------------
1309 */
1310 u16 num_good; /* Nr of GOOD since QUEUE FULL */
1311 tagmap_t tags_umap; /* Used tags bitmap */
1312 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1313 u_long tags_stime; /* Last time we set smap=umap */
1314 struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1315 };
1316
1317 /*========================================================================
1318 **
1319 ** Declaration of structs: the launch script.
1320 **
1321 **========================================================================
1322 **
1323 ** It is part of the CCB and is called by the scripts processor to
1324 ** start or restart the data structure (nexus).
1325 ** This 6 DWORDs mini script makes use of prefetching.
1326 **
1327 **------------------------------------------------------------------------
1328 */
1329 struct launch {
1330 /*----------------------------------------------------------------
1331 ** SCR_COPY(4), @(p_phys), @(dsa register)
1332 ** SCR_JUMP, @(scheduler_point)
1333 **----------------------------------------------------------------
1334 */
1335 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1336 struct link schedule; /* Jump to scheduler point */
1337 ncrcmd p_phys; /* 'phys' header bus address */
1338 };
1339
1340 /*========================================================================
1341 **
1342 ** Declaration of structs: global HEADER.
1343 **
1344 **========================================================================
1345 **
1346 ** This substructure is copied from the ccb to a global address after
1347 ** selection (or reselection) and copied back before disconnect.
1348 **
1349 ** These fields are accessible to the script processor.
1350 **
1351 **------------------------------------------------------------------------
1352 */
1353
1354 struct head {
1355 /*----------------------------------------------------------------
1356 ** Saved data pointer.
1357 ** Points to the position in the script responsible for the
1358 ** actual transfer transfer of data.
1359 ** It's written after reception of a SAVE_DATA_POINTER message.
1360 ** The goalpointer points after the last transfer command.
1361 **----------------------------------------------------------------
1362 */
1363 u32 savep;
1364 u32 lastp;
1365 u32 goalp;
1366
1367 /*----------------------------------------------------------------
1368 ** Alternate data pointer.
1369 ** They are copied back to savep/lastp/goalp by the SCRIPTS
1370 ** when the direction is unknown and the device claims data out.
1371 **----------------------------------------------------------------
1372 */
1373 u32 wlastp;
1374 u32 wgoalp;
1375
1376 /*----------------------------------------------------------------
1377 ** The virtual address of the ccb containing this header.
1378 **----------------------------------------------------------------
1379 */
1380 struct ccb * cp;
1381
1382 /*----------------------------------------------------------------
1383 ** Status fields.
1384 **----------------------------------------------------------------
1385 */
1386 u_char scr_st[4]; /* script status */
1387 u_char status[4]; /* host status. must be the */
1388 /* last DWORD of the header. */
1389 };
1390
1391 /*
1392 ** The status bytes are used by the host and the script processor.
1393 **
1394 ** The byte corresponding to the host_status must be stored in the
1395 ** last DWORD of the CCB header since it is used for command
1396 ** completion (ncr_wakeup()). Doing so, we are sure that the header
1397 ** has been entirely copied back to the CCB when the host_status is
1398 ** seen complete by the CPU.
1399 **
1400 ** The last four bytes (status[4]) are copied to the scratchb register
1401 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1402 ** and copied back just after disconnecting.
1403 ** Inside the script the XX_REG are used.
1404 **
1405 ** The first four bytes (scr_st[4]) are used inside the script by
1406 ** "COPY" commands.
1407 ** Because source and destination must have the same alignment
1408 ** in a DWORD, the fields HAVE to be at the chosen offsets.
1409 ** xerr_st 0 (0x34) scratcha
1410 ** sync_st 1 (0x05) sxfer
1411 ** wide_st 3 (0x03) scntl3
1412 */
1413
1414 /*
1415 ** Last four bytes (script)
1416 */
1417 #define QU_REG scr0
1418 #define HS_REG scr1
1419 #define HS_PRT nc_scr1
1420 #define SS_REG scr2
1421 #define SS_PRT nc_scr2
1422 #define PS_REG scr3
1423
1424 /*
1425 ** Last four bytes (host)
1426 */
1427 #ifdef SCSI_NCR_BIG_ENDIAN
1428 #define actualquirks phys.header.status[3]
1429 #define host_status phys.header.status[2]
1430 #define scsi_status phys.header.status[1]
1431 #define parity_status phys.header.status[0]
1432 #else
1433 #define actualquirks phys.header.status[0]
1434 #define host_status phys.header.status[1]
1435 #define scsi_status phys.header.status[2]
1436 #define parity_status phys.header.status[3]
1437 #endif
1438
1439 /*
1440 ** First four bytes (script)
1441 */
1442 #define xerr_st header.scr_st[0]
1443 #define sync_st header.scr_st[1]
1444 #define nego_st header.scr_st[2]
1445 #define wide_st header.scr_st[3]
1446
1447 /*
1448 ** First four bytes (host)
1449 */
1450 #define xerr_status phys.xerr_st
1451 #define nego_status phys.nego_st
1452
1453 #if 0
1454 #define sync_status phys.sync_st
1455 #define wide_status phys.wide_st
1456 #endif
1457
1458 /*==========================================================
1459 **
1460 ** Declaration of structs: Data structure block
1461 **
1462 **==========================================================
1463 **
1464 ** During execution of a ccb by the script processor,
1465 ** the DSA (data structure address) register points
1466 ** to this substructure of the ccb.
1467 ** This substructure contains the header with
1468 ** the script-processor-changeable data and
1469 ** data blocks for the indirect move commands.
1470 **
1471 **----------------------------------------------------------
1472 */
1473
1474 struct dsb {
1475
1476 /*
1477 ** Header.
1478 */
1479
1480 struct head header;
1481
1482 /*
1483 ** Table data for Script
1484 */
1485
1486 struct scr_tblsel select;
1487 struct scr_tblmove smsg ;
1488 struct scr_tblmove cmd ;
1489 struct scr_tblmove sense ;
1490 struct scr_tblmove data[MAX_SCATTER];
1491 };
1492
1493
1494 /*========================================================================
1495 **
1496 ** Declaration of structs: Command control block.
1497 **
1498 **========================================================================
1499 */
1500 struct ccb {
1501 /*----------------------------------------------------------------
1502 ** This is the data structure which is pointed by the DSA
1503 ** register when it is executed by the script processor.
1504 ** It must be the first entry because it contains the header
1505 ** as first entry that must be cache line aligned.
1506 **----------------------------------------------------------------
1507 */
1508 struct dsb phys;
1509
1510 /*----------------------------------------------------------------
1511 ** Mini-script used at CCB execution start-up.
1512 ** Load the DSA with the data structure address (phys) and
1513 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1514 **----------------------------------------------------------------
1515 */
1516 struct launch start;
1517
1518 /*----------------------------------------------------------------
1519 ** Mini-script used at CCB relection to restart the nexus.
1520 ** Load the DSA with the data structure address (phys) and
1521 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1522 **----------------------------------------------------------------
1523 */
1524 struct launch restart;
1525
1526 /*----------------------------------------------------------------
1527 ** If a data transfer phase is terminated too early
1528 ** (after reception of a message (i.e. DISCONNECT)),
1529 ** we have to prepare a mini script to transfer
1530 ** the rest of the data.
1531 **----------------------------------------------------------------
1532 */
1533 ncrcmd patch[8];
1534
1535 /*----------------------------------------------------------------
1536 ** The general SCSI driver provides a
1537 ** pointer to a control block.
1538 **----------------------------------------------------------------
1539 */
1540 struct scsi_cmnd *cmd; /* SCSI command */
1541 u_char cdb_buf[16]; /* Copy of CDB */
1542 u_char sense_buf[64];
1543 int data_len; /* Total data length */
1544
1545 /*----------------------------------------------------------------
1546 ** Message areas.
1547 ** We prepare a message to be sent after selection.
1548 ** We may use a second one if the command is rescheduled
1549 ** due to GETCC or QFULL.
1550 ** Contents are IDENTIFY and SIMPLE_TAG.
1551 ** While negotiating sync or wide transfer,
1552 ** a SDTR or WDTR message is appended.
1553 **----------------------------------------------------------------
1554 */
1555 u_char scsi_smsg [8];
1556 u_char scsi_smsg2[8];
1557
1558 /*----------------------------------------------------------------
1559 ** Other fields.
1560 **----------------------------------------------------------------
1561 */
1562 u_long p_ccb; /* BUS address of this CCB */
1563 u_char sensecmd[6]; /* Sense command */
1564 u_char tag; /* Tag for this transfer */
1565 /* 255 means no tag */
1566 u_char target;
1567 u_char lun;
1568 u_char queued;
1569 u_char auto_sense;
1570 struct ccb * link_ccb; /* Host adapter CCB chain */
1571 struct list_head link_ccbq; /* Link to unit CCB queue */
1572 u32 startp; /* Initial data pointer */
1573 u_long magic; /* Free / busy CCB flag */
1574 };
1575
1576 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1577
1578
1579 /*========================================================================
1580 **
1581 ** Declaration of structs: NCR device descriptor
1582 **
1583 **========================================================================
1584 */
1585 struct ncb {
1586 /*----------------------------------------------------------------
1587 ** The global header.
1588 ** It is accessible to both the host and the script processor.
1589 ** Must be cache line size aligned (32 for x86) in order to
1590 ** allow cache line bursting when it is copied to/from CCB.
1591 **----------------------------------------------------------------
1592 */
1593 struct head header;
1594
1595 /*----------------------------------------------------------------
1596 ** CCBs management queues.
1597 **----------------------------------------------------------------
1598 */
1599 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1600 /* when lcb is not allocated. */
1601 struct scsi_cmnd *done_list; /* Commands waiting for done() */
1602 /* callback to be invoked. */
1603 spinlock_t smp_lock; /* Lock for SMP threading */
1604
1605 /*----------------------------------------------------------------
1606 ** Chip and controller identification.
1607 **----------------------------------------------------------------
1608 */
1609 int unit; /* Unit number */
1610 char inst_name[16]; /* ncb instance name */
1611
1612 /*----------------------------------------------------------------
1613 ** Initial value of some IO register bits.
1614 ** These values are assumed to have been set by BIOS, and may
1615 ** be used for probing adapter implementation differences.
1616 **----------------------------------------------------------------
1617 */
1618 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1619 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1620
1621 /*----------------------------------------------------------------
1622 ** Actual initial value of IO register bits used by the
1623 ** driver. They are loaded at initialisation according to
1624 ** features that are to be enabled.
1625 **----------------------------------------------------------------
1626 */
1627 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1628 rv_ctest4, rv_ctest5, rv_stest2;
1629
1630 /*----------------------------------------------------------------
1631 ** Targets management.
1632 ** During reselection the ncr jumps to jump_tcb.
1633 ** The SFBR register is loaded with the encoded target id.
1634 ** For i = 0 to 3
1635 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1636 **
1637 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1638 ** It is kind of hashcoding.
1639 **----------------------------------------------------------------
1640 */
1641 struct link jump_tcb[4]; /* JUMPs for reselection */
1642 struct tcb target[MAX_TARGET]; /* Target data */
1643
1644 /*----------------------------------------------------------------
1645 ** Virtual and physical bus addresses of the chip.
1646 **----------------------------------------------------------------
1647 */
1648 void __iomem *vaddr; /* Virtual and bus address of */
1649 unsigned long paddr; /* chip's IO registers. */
1650 unsigned long paddr2; /* On-chip RAM bus address. */
1651 volatile /* Pointer to volatile for */
1652 struct ncr_reg __iomem *reg; /* memory mapped IO. */
1653
1654 /*----------------------------------------------------------------
1655 ** SCRIPTS virtual and physical bus addresses.
1656 ** 'script' is loaded in the on-chip RAM if present.
1657 ** 'scripth' stays in main memory.
1658 **----------------------------------------------------------------
1659 */
1660 struct script *script0; /* Copies of script and scripth */
1661 struct scripth *scripth0; /* relocated for this ncb. */
1662 struct scripth *scripth; /* Actual scripth virt. address */
1663 u_long p_script; /* Actual script and scripth */
1664 u_long p_scripth; /* bus addresses. */
1665
1666 /*----------------------------------------------------------------
1667 ** General controller parameters and configuration.
1668 **----------------------------------------------------------------
1669 */
1670 struct device *dev;
1671 u_char revision_id; /* PCI device revision id */
1672 u32 irq; /* IRQ level */
1673 u32 features; /* Chip features map */
1674 u_char myaddr; /* SCSI id of the adapter */
1675 u_char maxburst; /* log base 2 of dwords burst */
1676 u_char maxwide; /* Maximum transfer width */
1677 u_char minsync; /* Minimum sync period factor */
1678 u_char maxsync; /* Maximum sync period factor */
1679 u_char maxoffs; /* Max scsi offset */
1680 u_char multiplier; /* Clock multiplier (1,2,4) */
1681 u_char clock_divn; /* Number of clock divisors */
1682 u_long clock_khz; /* SCSI clock frequency in KHz */
1683
1684 /*----------------------------------------------------------------
1685 ** Start queue management.
1686 ** It is filled up by the host processor and accessed by the
1687 ** SCRIPTS processor in order to start SCSI commands.
1688 **----------------------------------------------------------------
1689 */
1690 u16 squeueput; /* Next free slot of the queue */
1691 u16 actccbs; /* Number of allocated CCBs */
1692 u16 queuedccbs; /* Number of CCBs in start queue*/
1693 u16 queuedepth; /* Start queue depth */
1694
1695 /*----------------------------------------------------------------
1696 ** Timeout handler.
1697 **----------------------------------------------------------------
1698 */
1699 struct timer_list timer; /* Timer handler link header */
1700 u_long lasttime;
1701 u_long settle_time; /* Resetting the SCSI BUS */
1702
1703 /*----------------------------------------------------------------
1704 ** Debugging and profiling.
1705 **----------------------------------------------------------------
1706 */
1707 struct ncr_reg regdump; /* Register dump */
1708 u_long regtime; /* Time it has been done */
1709
1710 /*----------------------------------------------------------------
1711 ** Miscellaneous buffers accessed by the scripts-processor.
1712 ** They shall be DWORD aligned, because they may be read or
1713 ** written with a SCR_COPY script command.
1714 **----------------------------------------------------------------
1715 */
1716 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1717 u_char msgin [8]; /* Buffer for MESSAGE IN */
1718 u32 lastmsg; /* Last SCSI message sent */
1719 u_char scratch; /* Scratch for SCSI receive */
1720
1721 /*----------------------------------------------------------------
1722 ** Miscellaneous configuration and status parameters.
1723 **----------------------------------------------------------------
1724 */
1725 u_char disc; /* Disconnection allowed */
1726 u_char scsi_mode; /* Current SCSI BUS mode */
1727 u_char order; /* Tag order to use */
1728 u_char verbose; /* Verbosity for this controller*/
1729 int ncr_cache; /* Used for cache test at init. */
1730 u_long p_ncb; /* BUS address of this NCB */
1731
1732 /*----------------------------------------------------------------
1733 ** Command completion handling.
1734 **----------------------------------------------------------------
1735 */
1736 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1737 struct ccb *(ccb_done[MAX_DONE]);
1738 int ccb_done_ic;
1739 #endif
1740 /*----------------------------------------------------------------
1741 ** Fields that should be removed or changed.
1742 **----------------------------------------------------------------
1743 */
1744 struct ccb *ccb; /* Global CCB */
1745 struct usrcmd user; /* Command from user */
1746 volatile u_char release_stage; /* Synchronisation stage on release */
1747 };
1748
1749 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1750 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1751
1752 /*==========================================================
1753 **
1754 **
1755 ** Script for NCR-Processor.
1756 **
1757 ** Use ncr_script_fill() to create the variable parts.
1758 ** Use ncr_script_copy_and_bind() to make a copy and
1759 ** bind to physical addresses.
1760 **
1761 **
1762 **==========================================================
1763 **
1764 ** We have to know the offsets of all labels before
1765 ** we reach them (for forward jumps).
1766 ** Therefore we declare a struct here.
1767 ** If you make changes inside the script,
1768 ** DONT FORGET TO CHANGE THE LENGTHS HERE!
1769 **
1770 **----------------------------------------------------------
1771 */
1772
1773 /*
1774 ** For HP Zalon/53c720 systems, the Zalon interface
1775 ** between CPU and 53c720 does prefetches, which causes
1776 ** problems with self modifying scripts. The problem
1777 ** is overcome by calling a dummy subroutine after each
1778 ** modification, to force a refetch of the script on
1779 ** return from the subroutine.
1780 */
1781
1782 #ifdef CONFIG_NCR53C8XX_PREFETCH
1783 #define PREFETCH_FLUSH_CNT 2
1784 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1785 #else
1786 #define PREFETCH_FLUSH_CNT 0
1787 #define PREFETCH_FLUSH
1788 #endif
1789
1790 /*
1791 ** Script fragments which are loaded into the on-chip RAM
1792 ** of 825A, 875 and 895 chips.
1793 */
1794 struct script {
1795 ncrcmd start [ 5];
1796 ncrcmd startpos [ 1];
1797 ncrcmd select [ 6];
1798 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
1799 ncrcmd loadpos [ 4];
1800 ncrcmd send_ident [ 9];
1801 ncrcmd prepare [ 6];
1802 ncrcmd prepare2 [ 7];
1803 ncrcmd command [ 6];
1804 ncrcmd dispatch [ 32];
1805 ncrcmd clrack [ 4];
1806 ncrcmd no_data [ 17];
1807 ncrcmd status [ 8];
1808 ncrcmd msg_in [ 2];
1809 ncrcmd msg_in2 [ 16];
1810 ncrcmd msg_bad [ 4];
1811 ncrcmd setmsg [ 7];
1812 ncrcmd cleanup [ 6];
1813 ncrcmd complete [ 9];
1814 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
1815 ncrcmd cleanup0 [ 1];
1816 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1817 ncrcmd signal [ 12];
1818 #else
1819 ncrcmd signal [ 9];
1820 ncrcmd done_pos [ 1];
1821 ncrcmd done_plug [ 2];
1822 ncrcmd done_end [ 7];
1823 #endif
1824 ncrcmd save_dp [ 7];
1825 ncrcmd restore_dp [ 5];
1826 ncrcmd disconnect [ 10];
1827 ncrcmd msg_out [ 9];
1828 ncrcmd msg_out_done [ 7];
1829 ncrcmd idle [ 2];
1830 ncrcmd reselect [ 8];
1831 ncrcmd reselected [ 8];
1832 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
1833 ncrcmd loadpos1 [ 4];
1834 ncrcmd resel_lun [ 6];
1835 ncrcmd resel_tag [ 6];
1836 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
1837 ncrcmd nexus_indirect [ 4];
1838 ncrcmd resel_notag [ 4];
1839 ncrcmd data_in [MAX_SCATTERL * 4];
1840 ncrcmd data_in2 [ 4];
1841 ncrcmd data_out [MAX_SCATTERL * 4];
1842 ncrcmd data_out2 [ 4];
1843 };
1844
1845 /*
1846 ** Script fragments which stay in main memory for all chips.
1847 */
1848 struct scripth {
1849 ncrcmd tryloop [MAX_START*2];
1850 ncrcmd tryloop2 [ 2];
1851 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1852 ncrcmd done_queue [MAX_DONE*5];
1853 ncrcmd done_queue2 [ 2];
1854 #endif
1855 ncrcmd select_no_atn [ 8];
1856 ncrcmd cancel [ 4];
1857 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
1858 ncrcmd skip2 [ 19];
1859 ncrcmd par_err_data_in [ 6];
1860 ncrcmd par_err_other [ 4];
1861 ncrcmd msg_reject [ 8];
1862 ncrcmd msg_ign_residue [ 24];
1863 ncrcmd msg_extended [ 10];
1864 ncrcmd msg_ext_2 [ 10];
1865 ncrcmd msg_wdtr [ 14];
1866 ncrcmd send_wdtr [ 7];
1867 ncrcmd msg_ext_3 [ 10];
1868 ncrcmd msg_sdtr [ 14];
1869 ncrcmd send_sdtr [ 7];
1870 ncrcmd nego_bad_phase [ 4];
1871 ncrcmd msg_out_abort [ 10];
1872 ncrcmd hdata_in [MAX_SCATTERH * 4];
1873 ncrcmd hdata_in2 [ 2];
1874 ncrcmd hdata_out [MAX_SCATTERH * 4];
1875 ncrcmd hdata_out2 [ 2];
1876 ncrcmd reset [ 4];
1877 ncrcmd aborttag [ 4];
1878 ncrcmd abort [ 2];
1879 ncrcmd abort_resel [ 20];
1880 ncrcmd resend_ident [ 4];
1881 ncrcmd clratn_go_on [ 3];
1882 ncrcmd nxtdsp_go_on [ 1];
1883 ncrcmd sdata_in [ 8];
1884 ncrcmd data_io [ 18];
1885 ncrcmd bad_identify [ 12];
1886 ncrcmd bad_i_t_l [ 4];
1887 ncrcmd bad_i_t_l_q [ 4];
1888 ncrcmd bad_target [ 8];
1889 ncrcmd bad_status [ 8];
1890 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
1891 ncrcmd start_ram0 [ 4];
1892 ncrcmd sto_restart [ 5];
1893 ncrcmd wait_dma [ 2];
1894 ncrcmd snooptest [ 9];
1895 ncrcmd snoopend [ 2];
1896 };
1897
1898 /*==========================================================
1899 **
1900 **
1901 ** Function headers.
1902 **
1903 **
1904 **==========================================================
1905 */
1906
1907 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1908 static void ncr_complete (struct ncb *np, struct ccb *cp);
1909 static void ncr_exception (struct ncb *np);
1910 static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1911 static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1912 static void ncr_init_tcb (struct ncb *np, u_char tn);
1913 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1914 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1915 static void ncr_getclock (struct ncb *np, int mult);
1916 static void ncr_selectclock (struct ncb *np, u_char scntl3);
1917 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1918 static void ncr_chip_reset (struct ncb *np, int delay);
1919 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1920 static int ncr_int_sbmc (struct ncb *np);
1921 static int ncr_int_par (struct ncb *np);
1922 static void ncr_int_ma (struct ncb *np);
1923 static void ncr_int_sir (struct ncb *np);
1924 static void ncr_int_sto (struct ncb *np);
1925 static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1926 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1927
1928 static void ncr_script_copy_and_bind
1929 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1930 static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1931 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1932 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1933 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1934 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1935 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1936 static int ncr_snooptest (struct ncb *np);
1937 static void ncr_timeout (struct ncb *np);
1938 static void ncr_wakeup (struct ncb *np, u_long code);
1939 static void ncr_wakeup_done (struct ncb *np);
1940 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1941 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1942
1943 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1944 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1945 static void process_waiting_list(struct ncb *np, int sts);
1946
1947 #define remove_from_waiting_list(np, cmd) \
1948 retrieve_from_waiting_list(1, (np), (cmd))
1949 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1950 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1951
1952 static inline char *ncr_name (struct ncb *np)
1953 {
1954 return np->inst_name;
1955 }
1956
1957
1958 /*==========================================================
1959 **
1960 **
1961 ** Scripts for NCR-Processor.
1962 **
1963 ** Use ncr_script_bind for binding to physical addresses.
1964 **
1965 **
1966 **==========================================================
1967 **
1968 ** NADDR generates a reference to a field of the controller data.
1969 ** PADDR generates a reference to another part of the script.
1970 ** RADDR generates a reference to a script processor register.
1971 ** FADDR generates a reference to a script processor register
1972 ** with offset.
1973 **
1974 **----------------------------------------------------------
1975 */
1976
1977 #define RELOC_SOFTC 0x40000000
1978 #define RELOC_LABEL 0x50000000
1979 #define RELOC_REGISTER 0x60000000
1980 #if 0
1981 #define RELOC_KVAR 0x70000000
1982 #endif
1983 #define RELOC_LABELH 0x80000000
1984 #define RELOC_MASK 0xf0000000
1985
1986 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
1987 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
1988 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
1989 #define RADDR(label) (RELOC_REGISTER | REG(label))
1990 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
1991 #if 0
1992 #define KVAR(which) (RELOC_KVAR | (which))
1993 #endif
1994
1995 #if 0
1996 #define SCRIPT_KVAR_JIFFIES (0)
1997 #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
1998 #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
1999 /*
2000 * Kernel variables referenced in the scripts.
2001 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2002 */
2003 static void *script_kvars[] __initdata =
2004 { (void *)&jiffies };
2005 #endif
2006
2007 static struct script script0 __initdata = {
2008 /*--------------------------< START >-----------------------*/ {
2009 /*
2010 ** This NOP will be patched with LED ON
2011 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2012 */
2013 SCR_NO_OP,
2014 0,
2015 /*
2016 ** Clear SIGP.
2017 */
2018 SCR_FROM_REG (ctest2),
2019 0,
2020 /*
2021 ** Then jump to a certain point in tryloop.
2022 ** Due to the lack of indirect addressing the code
2023 ** is self modifying here.
2024 */
2025 SCR_JUMP,
2026 }/*-------------------------< STARTPOS >--------------------*/,{
2027 PADDRH(tryloop),
2028
2029 }/*-------------------------< SELECT >----------------------*/,{
2030 /*
2031 ** DSA contains the address of a scheduled
2032 ** data structure.
2033 **
2034 ** SCRATCHA contains the address of the script,
2035 ** which starts the next entry.
2036 **
2037 ** Set Initiator mode.
2038 **
2039 ** (Target mode is left as an exercise for the reader)
2040 */
2041
2042 SCR_CLR (SCR_TRG),
2043 0,
2044 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2045 0,
2046
2047 /*
2048 ** And try to select this target.
2049 */
2050 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2051 PADDR (reselect),
2052
2053 }/*-------------------------< SELECT2 >----------------------*/,{
2054 /*
2055 ** Now there are 4 possibilities:
2056 **
2057 ** (1) The ncr loses arbitration.
2058 ** This is ok, because it will try again,
2059 ** when the bus becomes idle.
2060 ** (But beware of the timeout function!)
2061 **
2062 ** (2) The ncr is reselected.
2063 ** Then the script processor takes the jump
2064 ** to the RESELECT label.
2065 **
2066 ** (3) The ncr wins arbitration.
2067 ** Then it will execute SCRIPTS instruction until
2068 ** the next instruction that checks SCSI phase.
2069 ** Then will stop and wait for selection to be
2070 ** complete or selection time-out to occur.
2071 ** As a result the SCRIPTS instructions until
2072 ** LOADPOS + 2 should be executed in parallel with
2073 ** the SCSI core performing selection.
2074 */
2075
2076 /*
2077 ** The MESSAGE_REJECT problem seems to be due to a selection
2078 ** timing problem.
2079 ** Wait immediately for the selection to complete.
2080 ** (2.5x behaves so)
2081 */
2082 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2083 0,
2084
2085 /*
2086 ** Next time use the next slot.
2087 */
2088 SCR_COPY (4),
2089 RADDR (temp),
2090 PADDR (startpos),
2091 /*
2092 ** The ncr doesn't have an indirect load
2093 ** or store command. So we have to
2094 ** copy part of the control block to a
2095 ** fixed place, where we can access it.
2096 **
2097 ** We patch the address part of a
2098 ** COPY command with the DSA-register.
2099 */
2100 SCR_COPY_F (4),
2101 RADDR (dsa),
2102 PADDR (loadpos),
2103 /*
2104 ** Flush script prefetch if required
2105 */
2106 PREFETCH_FLUSH
2107 /*
2108 ** then we do the actual copy.
2109 */
2110 SCR_COPY (sizeof (struct head)),
2111 /*
2112 ** continued after the next label ...
2113 */
2114 }/*-------------------------< LOADPOS >---------------------*/,{
2115 0,
2116 NADDR (header),
2117 /*
2118 ** Wait for the next phase or the selection
2119 ** to complete or time-out.
2120 */
2121 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2122 PADDR (prepare),
2123
2124 }/*-------------------------< SEND_IDENT >----------------------*/,{
2125 /*
2126 ** Selection complete.
2127 ** Send the IDENTIFY and SIMPLE_TAG messages
2128 ** (and the EXTENDED_SDTR message)
2129 */
2130 SCR_MOVE_TBL ^ SCR_MSG_OUT,
2131 offsetof (struct dsb, smsg),
2132 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2133 PADDRH (resend_ident),
2134 SCR_LOAD_REG (scratcha, 0x80),
2135 0,
2136 SCR_COPY (1),
2137 RADDR (scratcha),
2138 NADDR (lastmsg),
2139 }/*-------------------------< PREPARE >----------------------*/,{
2140 /*
2141 ** load the savep (saved pointer) into
2142 ** the TEMP register (actual pointer)
2143 */
2144 SCR_COPY (4),
2145 NADDR (header.savep),
2146 RADDR (temp),
2147 /*
2148 ** Initialize the status registers
2149 */
2150 SCR_COPY (4),
2151 NADDR (header.status),
2152 RADDR (scr0),
2153 }/*-------------------------< PREPARE2 >---------------------*/,{
2154 /*
2155 ** Initialize the msgout buffer with a NOOP message.
2156 */
2157 SCR_LOAD_REG (scratcha, NOP),
2158 0,
2159 SCR_COPY (1),
2160 RADDR (scratcha),
2161 NADDR (msgout),
2162 #if 0
2163 SCR_COPY (1),
2164 RADDR (scratcha),
2165 NADDR (msgin),
2166 #endif
2167 /*
2168 ** Anticipate the COMMAND phase.
2169 ** This is the normal case for initial selection.
2170 */
2171 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2172 PADDR (dispatch),
2173
2174 }/*-------------------------< COMMAND >--------------------*/,{
2175 /*
2176 ** ... and send the command
2177 */
2178 SCR_MOVE_TBL ^ SCR_COMMAND,
2179 offsetof (struct dsb, cmd),
2180 /*
2181 ** If status is still HS_NEGOTIATE, negotiation failed.
2182 ** We check this here, since we want to do that
2183 ** only once.
2184 */
2185 SCR_FROM_REG (HS_REG),
2186 0,
2187 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2188 SIR_NEGO_FAILED,
2189
2190 }/*-----------------------< DISPATCH >----------------------*/,{
2191 /*
2192 ** MSG_IN is the only phase that shall be
2193 ** entered at least once for each (re)selection.
2194 ** So we test it first.
2195 */
2196 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2197 PADDR (msg_in),
2198
2199 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2200 0,
2201 /*
2202 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2203 ** Possible data corruption during Memory Write and Invalidate.
2204 ** This work-around resets the addressing logic prior to the
2205 ** start of the first MOVE of a DATA IN phase.
2206 ** (See Documentation/scsi/ncr53c8xx.txt for more information)
2207 */
2208 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2209 20,
2210 SCR_COPY (4),
2211 RADDR (scratcha),
2212 RADDR (scratcha),
2213 SCR_RETURN,
2214 0,
2215 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2216 PADDR (status),
2217 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2218 PADDR (command),
2219 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2220 PADDR (msg_out),
2221 /*
2222 ** Discard one illegal phase byte, if required.
2223 */
2224 SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2225 0,
2226 SCR_COPY (1),
2227 RADDR (scratcha),
2228 NADDR (xerr_st),
2229 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2230 8,
2231 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2232 NADDR (scratch),
2233 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2234 8,
2235 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2236 NADDR (scratch),
2237 SCR_JUMP,
2238 PADDR (dispatch),
2239
2240 }/*-------------------------< CLRACK >----------------------*/,{
2241 /*
2242 ** Terminate possible pending message phase.
2243 */
2244 SCR_CLR (SCR_ACK),
2245 0,
2246 SCR_JUMP,
2247 PADDR (dispatch),
2248
2249 }/*-------------------------< NO_DATA >--------------------*/,{
2250 /*
2251 ** The target wants to tranfer too much data
2252 ** or in the wrong direction.
2253 ** Remember that in extended error.
2254 */
2255 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2256 0,
2257 SCR_COPY (1),
2258 RADDR (scratcha),
2259 NADDR (xerr_st),
2260 /*
2261 ** Discard one data byte, if required.
2262 */
2263 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2264 8,
2265 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2266 NADDR (scratch),
2267 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2268 8,
2269 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2270 NADDR (scratch),
2271 /*
2272 ** .. and repeat as required.
2273 */
2274 SCR_CALL,
2275 PADDR (dispatch),
2276 SCR_JUMP,
2277 PADDR (no_data),
2278
2279 }/*-------------------------< STATUS >--------------------*/,{
2280 /*
2281 ** get the status
2282 */
2283 SCR_MOVE_ABS (1) ^ SCR_STATUS,
2284 NADDR (scratch),
2285 /*
2286 ** save status to scsi_status.
2287 ** mark as complete.
2288 */
2289 SCR_TO_REG (SS_REG),
2290 0,
2291 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2292 0,
2293 SCR_JUMP,
2294 PADDR (dispatch),
2295 }/*-------------------------< MSG_IN >--------------------*/,{
2296 /*
2297 ** Get the first byte of the message
2298 ** and save it to SCRATCHA.
2299 **
2300 ** The script processor doesn't negate the
2301 ** ACK signal after this transfer.
2302 */
2303 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2304 NADDR (msgin[0]),
2305 }/*-------------------------< MSG_IN2 >--------------------*/,{
2306 /*
2307 ** Handle this message.
2308 */
2309 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2310 PADDR (complete),
2311 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2312 PADDR (disconnect),
2313 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2314 PADDR (save_dp),
2315 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2316 PADDR (restore_dp),
2317 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2318 PADDRH (msg_extended),
2319 SCR_JUMP ^ IFTRUE (DATA (NOP)),
2320 PADDR (clrack),
2321 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2322 PADDRH (msg_reject),
2323 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2324 PADDRH (msg_ign_residue),
2325 /*
2326 ** Rest of the messages left as
2327 ** an exercise ...
2328 **
2329 ** Unimplemented messages:
2330 ** fall through to MSG_BAD.
2331 */
2332 }/*-------------------------< MSG_BAD >------------------*/,{
2333 /*
2334 ** unimplemented message - reject it.
2335 */
2336 SCR_INT,
2337 SIR_REJECT_SENT,
2338 SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2339 0,
2340 }/*-------------------------< SETMSG >----------------------*/,{
2341 SCR_COPY (1),
2342 RADDR (scratcha),
2343 NADDR (msgout),
2344 SCR_SET (SCR_ATN),
2345 0,
2346 SCR_JUMP,
2347 PADDR (clrack),
2348 }/*-------------------------< CLEANUP >-------------------*/,{
2349 /*
2350 ** dsa: Pointer to ccb
2351 ** or xxxxxxFF (no ccb)
2352 **
2353 ** HS_REG: Host-Status (<>0!)
2354 */
2355 SCR_FROM_REG (dsa),
2356 0,
2357 SCR_JUMP ^ IFTRUE (DATA (0xff)),
2358 PADDR (start),
2359 /*
2360 ** dsa is valid.
2361 ** complete the cleanup.
2362 */
2363 SCR_JUMP,
2364 PADDR (cleanup_ok),
2365
2366 }/*-------------------------< COMPLETE >-----------------*/,{
2367 /*
2368 ** Complete message.
2369 **
2370 ** Copy TEMP register to LASTP in header.
2371 */
2372 SCR_COPY (4),
2373 RADDR (temp),
2374 NADDR (header.lastp),
2375 /*
2376 ** When we terminate the cycle by clearing ACK,
2377 ** the target may disconnect immediately.
2378 **
2379 ** We don't want to be told of an
2380 ** "unexpected disconnect",
2381 ** so we disable this feature.
2382 */
2383 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2384 0,
2385 /*
2386 ** Terminate cycle ...
2387 */
2388 SCR_CLR (SCR_ACK|SCR_ATN),
2389 0,
2390 /*
2391 ** ... and wait for the disconnect.
2392 */
2393 SCR_WAIT_DISC,
2394 0,
2395 }/*-------------------------< CLEANUP_OK >----------------*/,{
2396 /*
2397 ** Save host status to header.
2398 */
2399 SCR_COPY (4),
2400 RADDR (scr0),
2401 NADDR (header.status),
2402 /*
2403 ** and copy back the header to the ccb.
2404 */
2405 SCR_COPY_F (4),
2406 RADDR (dsa),
2407 PADDR (cleanup0),
2408 /*
2409 ** Flush script prefetch if required
2410 */
2411 PREFETCH_FLUSH
2412 SCR_COPY (sizeof (struct head)),
2413 NADDR (header),
2414 }/*-------------------------< CLEANUP0 >--------------------*/,{
2415 0,
2416 }/*-------------------------< SIGNAL >----------------------*/,{
2417 /*
2418 ** if job not completed ...
2419 */
2420 SCR_FROM_REG (HS_REG),
2421 0,
2422 /*
2423 ** ... start the next command.
2424 */
2425 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2426 PADDR(start),
2427 /*
2428 ** If command resulted in not GOOD status,
2429 ** call the C code if needed.
2430 */
2431 SCR_FROM_REG (SS_REG),
2432 0,
2433 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2434 PADDRH (bad_status),
2435
2436 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
2437
2438 /*
2439 ** ... signal completion to the host
2440 */
2441 SCR_INT,
2442 SIR_INTFLY,
2443 /*
2444 ** Auf zu neuen Schandtaten!
2445 */
2446 SCR_JUMP,
2447 PADDR(start),
2448
2449 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2450
2451 /*
2452 ** ... signal completion to the host
2453 */
2454 SCR_JUMP,
2455 }/*------------------------< DONE_POS >---------------------*/,{
2456 PADDRH (done_queue),
2457 }/*------------------------< DONE_PLUG >--------------------*/,{
2458 SCR_INT,
2459 SIR_DONE_OVERFLOW,
2460 }/*------------------------< DONE_END >---------------------*/,{
2461 SCR_INT,
2462 SIR_INTFLY,
2463 SCR_COPY (4),
2464 RADDR (temp),
2465 PADDR (done_pos),
2466 SCR_JUMP,
2467 PADDR (start),
2468
2469 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2470
2471 }/*-------------------------< SAVE_DP >------------------*/,{
2472 /*
2473 ** SAVE_DP message:
2474 ** Copy TEMP register to SAVEP in header.
2475 */
2476 SCR_COPY (4),
2477 RADDR (temp),
2478 NADDR (header.savep),
2479 SCR_CLR (SCR_ACK),
2480 0,
2481 SCR_JUMP,
2482 PADDR (dispatch),
2483 }/*-------------------------< RESTORE_DP >---------------*/,{
2484 /*
2485 ** RESTORE_DP message:
2486 ** Copy SAVEP in header to TEMP register.
2487 */
2488 SCR_COPY (4),
2489 NADDR (header.savep),
2490 RADDR (temp),
2491 SCR_JUMP,
2492 PADDR (clrack),
2493
2494 }/*-------------------------< DISCONNECT >---------------*/,{
2495 /*
2496 ** DISCONNECTing ...
2497 **
2498 ** disable the "unexpected disconnect" feature,
2499 ** and remove the ACK signal.
2500 */
2501 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2502 0,
2503 SCR_CLR (SCR_ACK|SCR_ATN),
2504 0,
2505 /*
2506 ** Wait for the disconnect.
2507 */
2508 SCR_WAIT_DISC,
2509 0,
2510 /*
2511 ** Status is: DISCONNECTED.
2512 */
2513 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2514 0,
2515 SCR_JUMP,
2516 PADDR (cleanup_ok),
2517
2518 }/*-------------------------< MSG_OUT >-------------------*/,{
2519 /*
2520 ** The target requests a message.
2521 */
2522 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2523 NADDR (msgout),
2524 SCR_COPY (1),
2525 NADDR (msgout),
2526 NADDR (lastmsg),
2527 /*
2528 ** If it was no ABORT message ...
2529 */
2530 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2531 PADDRH (msg_out_abort),
2532 /*
2533 ** ... wait for the next phase
2534 ** if it's a message out, send it again, ...
2535 */
2536 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2537 PADDR (msg_out),
2538 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2539 /*
2540 ** ... else clear the message ...
2541 */
2542 SCR_LOAD_REG (scratcha, NOP),
2543 0,
2544 SCR_COPY (4),
2545 RADDR (scratcha),
2546 NADDR (msgout),
2547 /*
2548 ** ... and process the next phase
2549 */
2550 SCR_JUMP,
2551 PADDR (dispatch),
2552 }/*-------------------------< IDLE >------------------------*/,{
2553 /*
2554 ** Nothing to do?
2555 ** Wait for reselect.
2556 ** This NOP will be patched with LED OFF
2557 ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2558 */
2559 SCR_NO_OP,
2560 0,
2561 }/*-------------------------< RESELECT >--------------------*/,{
2562 /*
2563 ** make the DSA invalid.
2564 */
2565 SCR_LOAD_REG (dsa, 0xff),
2566 0,
2567 SCR_CLR (SCR_TRG),
2568 0,
2569 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2570 0,
2571 /*
2572 ** Sleep waiting for a reselection.
2573 ** If SIGP is set, special treatment.
2574 **
2575 ** Zu allem bereit ..
2576 */
2577 SCR_WAIT_RESEL,
2578 PADDR(start),
2579 }/*-------------------------< RESELECTED >------------------*/,{
2580 /*
2581 ** This NOP will be patched with LED ON
2582 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2583 */
2584 SCR_NO_OP,
2585 0,
2586 /*
2587 ** ... zu nichts zu gebrauchen ?
2588 **
2589 ** load the target id into the SFBR
2590 ** and jump to the control block.
2591 **
2592 ** Look at the declarations of
2593 ** - struct ncb
2594 ** - struct tcb
2595 ** - struct lcb
2596 ** - struct ccb
2597 ** to understand what's going on.
2598 */
2599 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2600 0,
2601 SCR_TO_REG (sdid),
2602 0,
2603 SCR_JUMP,
2604 NADDR (jump_tcb),
2605
2606 }/*-------------------------< RESEL_DSA >-------------------*/,{
2607 /*
2608 ** Ack the IDENTIFY or TAG previously received.
2609 */
2610 SCR_CLR (SCR_ACK),
2611 0,
2612 /*
2613 ** The ncr doesn't have an indirect load
2614 ** or store command. So we have to
2615 ** copy part of the control block to a
2616 ** fixed place, where we can access it.
2617 **
2618 ** We patch the address part of a
2619 ** COPY command with the DSA-register.
2620 */
2621 SCR_COPY_F (4),
2622 RADDR (dsa),
2623 PADDR (loadpos1),
2624 /*
2625 ** Flush script prefetch if required
2626 */
2627 PREFETCH_FLUSH
2628 /*
2629 ** then we do the actual copy.
2630 */
2631 SCR_COPY (sizeof (struct head)),
2632 /*
2633 ** continued after the next label ...
2634 */
2635
2636 }/*-------------------------< LOADPOS1 >-------------------*/,{
2637 0,
2638 NADDR (header),
2639 /*
2640 ** The DSA contains the data structure address.
2641 */
2642 SCR_JUMP,
2643 PADDR (prepare),
2644
2645 }/*-------------------------< RESEL_LUN >-------------------*/,{
2646 /*
2647 ** come back to this point
2648 ** to get an IDENTIFY message
2649 ** Wait for a msg_in phase.
2650 */
2651 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2652 SIR_RESEL_NO_MSG_IN,
2653 /*
2654 ** message phase.
2655 ** Read the data directly from the BUS DATA lines.
2656 ** This helps to support very old SCSI devices that
2657 ** may reselect without sending an IDENTIFY.
2658 */
2659 SCR_FROM_REG (sbdl),
2660 0,
2661 /*
2662 ** It should be an Identify message.
2663 */
2664 SCR_RETURN,
2665 0,
2666 }/*-------------------------< RESEL_TAG >-------------------*/,{
2667 /*
2668 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2669 ** Aggressive optimization, is'nt it?
2670 ** No need to test the SIMPLE TAG message, since the
2671 ** driver only supports conformant devices for tags. ;-)
2672 */
2673 SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2674 NADDR (msgin),
2675 /*
2676 ** Read the TAG from the SIDL.
2677 ** Still an aggressive optimization. ;-)
2678 ** Compute the CCB indirect jump address which
2679 ** is (#TAG*2 & 0xfc) due to tag numbering using
2680 ** 1,3,5..MAXTAGS*2+1 actual values.
2681 */
2682 SCR_REG_SFBR (sidl, SCR_SHL, 0),
2683 0,
2684 SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2685 0,
2686 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2687 SCR_COPY_F (4),
2688 RADDR (temp),
2689 PADDR (nexus_indirect),
2690 /*
2691 ** Flush script prefetch if required
2692 */
2693 PREFETCH_FLUSH
2694 SCR_COPY (4),
2695 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2696 0,
2697 RADDR (temp),
2698 SCR_RETURN,
2699 0,
2700 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2701 /*
2702 ** No tag expected.
2703 ** Read an throw away the IDENTIFY.
2704 */
2705 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2706 NADDR (msgin),
2707 SCR_JUMP,
2708 PADDR (jump_to_nexus),
2709 }/*-------------------------< DATA_IN >--------------------*/,{
2710 /*
2711 ** Because the size depends on the
2712 ** #define MAX_SCATTERL parameter,
2713 ** it is filled in at runtime.
2714 **
2715 ** ##===========< i=0; i<MAX_SCATTERL >=========
2716 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2717 ** || PADDR (dispatch),
2718 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2719 ** || offsetof (struct dsb, data[ i]),
2720 ** ##==========================================
2721 **
2722 **---------------------------------------------------------
2723 */
2724 0
2725 }/*-------------------------< DATA_IN2 >-------------------*/,{
2726 SCR_CALL,
2727 PADDR (dispatch),
2728 SCR_JUMP,
2729 PADDR (no_data),
2730 }/*-------------------------< DATA_OUT >--------------------*/,{
2731 /*
2732 ** Because the size depends on the
2733 ** #define MAX_SCATTERL parameter,
2734 ** it is filled in at runtime.
2735 **
2736 ** ##===========< i=0; i<MAX_SCATTERL >=========
2737 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2738 ** || PADDR (dispatch),
2739 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2740 ** || offsetof (struct dsb, data[ i]),
2741 ** ##==========================================
2742 **
2743 **---------------------------------------------------------
2744 */
2745 0
2746 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2747 SCR_CALL,
2748 PADDR (dispatch),
2749 SCR_JUMP,
2750 PADDR (no_data),
2751 }/*--------------------------------------------------------*/
2752 };
2753
2754 static struct scripth scripth0 __initdata = {
2755 /*-------------------------< TRYLOOP >---------------------*/{
2756 /*
2757 ** Start the next entry.
2758 ** Called addresses point to the launch script in the CCB.
2759 ** They are patched by the main processor.
2760 **
2761 ** Because the size depends on the
2762 ** #define MAX_START parameter, it is filled
2763 ** in at runtime.
2764 **
2765 **-----------------------------------------------------------
2766 **
2767 ** ##===========< I=0; i<MAX_START >===========
2768 ** || SCR_CALL,
2769 ** || PADDR (idle),
2770 ** ##==========================================
2771 **
2772 **-----------------------------------------------------------
2773 */
2774 0
2775 }/*------------------------< TRYLOOP2 >---------------------*/,{
2776 SCR_JUMP,
2777 PADDRH(tryloop),
2778
2779 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2780
2781 }/*------------------------< DONE_QUEUE >-------------------*/,{
2782 /*
2783 ** Copy the CCB address to the next done entry.
2784 ** Because the size depends on the
2785 ** #define MAX_DONE parameter, it is filled
2786 ** in at runtime.
2787 **
2788 **-----------------------------------------------------------
2789 **
2790 ** ##===========< I=0; i<MAX_DONE >===========
2791 ** || SCR_COPY (sizeof(struct ccb *),
2792 ** || NADDR (header.cp),
2793 ** || NADDR (ccb_done[i]),
2794 ** || SCR_CALL,
2795 ** || PADDR (done_end),
2796 ** ##==========================================
2797 **
2798 **-----------------------------------------------------------
2799 */
2800 0
2801 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2802 SCR_JUMP,
2803 PADDRH (done_queue),
2804
2805 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2806 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2807 /*
2808 ** Set Initiator mode.
2809 ** And try to select this target without ATN.
2810 */
2811
2812 SCR_CLR (SCR_TRG),
2813 0,
2814 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2815 0,
2816 SCR_SEL_TBL ^ offsetof (struct dsb, select),
2817 PADDR (reselect),
2818 SCR_JUMP,
2819 PADDR (select2),
2820
2821 }/*-------------------------< CANCEL >------------------------*/,{
2822
2823 SCR_LOAD_REG (scratcha, HS_ABORTED),
2824 0,
2825 SCR_JUMPR,
2826 8,
2827 }/*-------------------------< SKIP >------------------------*/,{
2828 SCR_LOAD_REG (scratcha, 0),
2829 0,
2830 /*
2831 ** This entry has been canceled.
2832 ** Next time use the next slot.
2833 */
2834 SCR_COPY (4),
2835 RADDR (temp),
2836 PADDR (startpos),
2837 /*
2838 ** The ncr doesn't have an indirect load
2839 ** or store command. So we have to
2840 ** copy part of the control block to a
2841 ** fixed place, where we can access it.
2842 **
2843 ** We patch the address part of a
2844 ** COPY command with the DSA-register.
2845 */
2846 SCR_COPY_F (4),
2847 RADDR (dsa),
2848 PADDRH (skip2),
2849 /*
2850 ** Flush script prefetch if required
2851 */
2852 PREFETCH_FLUSH
2853 /*
2854 ** then we do the actual copy.
2855 */
2856 SCR_COPY (sizeof (struct head)),
2857 /*
2858 ** continued after the next label ...
2859 */
2860 }/*-------------------------< SKIP2 >---------------------*/,{
2861 0,
2862 NADDR (header),
2863 /*
2864 ** Initialize the status registers
2865 */
2866 SCR_COPY (4),
2867 NADDR (header.status),
2868 RADDR (scr0),
2869 /*
2870 ** Force host status.
2871 */
2872 SCR_FROM_REG (scratcha),
2873 0,
2874 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2875 16,
2876 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2877 0,
2878 SCR_JUMPR,
2879 8,
2880 SCR_TO_REG (HS_REG),
2881 0,
2882 SCR_LOAD_REG (SS_REG, S_GOOD),
2883 0,
2884 SCR_JUMP,
2885 PADDR (cleanup_ok),
2886
2887 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2888 /*
2889 ** Ignore all data in byte, until next phase
2890 */
2891 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2892 PADDRH (par_err_other),
2893 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2894 NADDR (scratch),
2895 SCR_JUMPR,
2896 -24,
2897 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2898 /*
2899 ** count it.
2900 */
2901 SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2902 0,
2903 /*
2904 ** jump to dispatcher.
2905 */
2906 SCR_JUMP,
2907 PADDR (dispatch),
2908 }/*-------------------------< MSG_REJECT >---------------*/,{
2909 /*
2910 ** If a negotiation was in progress,
2911 ** negotiation failed.
2912 ** Otherwise, let the C code print
2913 ** some message.
2914 */
2915 SCR_FROM_REG (HS_REG),
2916 0,
2917 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2918 SIR_REJECT_RECEIVED,
2919 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2920 SIR_NEGO_FAILED,
2921 SCR_JUMP,
2922 PADDR (clrack),
2923
2924 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2925 /*
2926 ** Terminate cycle
2927 */
2928 SCR_CLR (SCR_ACK),
2929 0,
2930 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2931 PADDR (dispatch),
2932 /*
2933 ** get residue size.
2934 */
2935 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2936 NADDR (msgin[1]),
2937 /*
2938 ** Size is 0 .. ignore message.
2939 */
2940 SCR_JUMP ^ IFTRUE (DATA (0)),
2941 PADDR (clrack),
2942 /*
2943 ** Size is not 1 .. have to interrupt.
2944 */
2945 SCR_JUMPR ^ IFFALSE (DATA (1)),
2946 40,
2947 /*
2948 ** Check for residue byte in swide register
2949 */
2950 SCR_FROM_REG (scntl2),
2951 0,
2952 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2953 16,
2954 /*
2955 ** There IS data in the swide register.
2956 ** Discard it.
2957 */
2958 SCR_REG_REG (scntl2, SCR_OR, WSR),
2959 0,
2960 SCR_JUMP,
2961 PADDR (clrack),
2962 /*
2963 ** Load again the size to the sfbr register.
2964 */
2965 SCR_FROM_REG (scratcha),
2966 0,
2967 SCR_INT,
2968 SIR_IGN_RESIDUE,
2969 SCR_JUMP,
2970 PADDR (clrack),
2971
2972 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2973 /*
2974 ** Terminate cycle
2975 */
2976 SCR_CLR (SCR_ACK),
2977 0,
2978 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2979 PADDR (dispatch),
2980 /*
2981 ** get length.
2982 */
2983 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2984 NADDR (msgin[1]),
2985 /*
2986 */
2987 SCR_JUMP ^ IFTRUE (DATA (3)),
2988 PADDRH (msg_ext_3),
2989 SCR_JUMP ^ IFFALSE (DATA (2)),
2990 PADDR (msg_bad),
2991 }/*-------------------------< MSG_EXT_2 >----------------*/,{
2992 SCR_CLR (SCR_ACK),
2993 0,
2994 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2995 PADDR (dispatch),
2996 /*
2997 ** get extended message code.
2998 */
2999 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3000 NADDR (msgin[2]),
3001 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3002 PADDRH (msg_wdtr),
3003 /*
3004 ** unknown extended message
3005 */
3006 SCR_JUMP,
3007 PADDR (msg_bad)
3008 }/*-------------------------< MSG_WDTR >-----------------*/,{
3009 SCR_CLR (SCR_ACK),
3010 0,
3011 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3012 PADDR (dispatch),
3013 /*
3014 ** get data bus width
3015 */
3016 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3017 NADDR (msgin[3]),
3018 /*
3019 ** let the host do the real work.
3020 */
3021 SCR_INT,
3022 SIR_NEGO_WIDE,
3023 /*
3024 ** let the target fetch our answer.
3025 */
3026 SCR_SET (SCR_ATN),
3027 0,
3028 SCR_CLR (SCR_ACK),
3029 0,
3030 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3031 PADDRH (nego_bad_phase),
3032
3033 }/*-------------------------< SEND_WDTR >----------------*/,{
3034 /*
3035 ** Send the EXTENDED_WDTR
3036 */
3037 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3038 NADDR (msgout),
3039 SCR_COPY (1),
3040 NADDR (msgout),
3041 NADDR (lastmsg),
3042 SCR_JUMP,
3043 PADDR (msg_out_done),
3044
3045 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3046 SCR_CLR (SCR_ACK),
3047 0,
3048 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3049 PADDR (dispatch),
3050 /*
3051 ** get extended message code.
3052 */
3053 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3054 NADDR (msgin[2]),
3055 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3056 PADDRH (msg_sdtr),
3057 /*
3058 ** unknown extended message
3059 */
3060 SCR_JUMP,
3061 PADDR (msg_bad)
3062
3063 }/*-------------------------< MSG_SDTR >-----------------*/,{
3064 SCR_CLR (SCR_ACK),
3065 0,
3066 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3067 PADDR (dispatch),
3068 /*
3069 ** get period and offset
3070 */
3071 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3072 NADDR (msgin[3]),
3073 /*
3074 ** let the host do the real work.
3075 */
3076 SCR_INT,
3077 SIR_NEGO_SYNC,
3078 /*
3079 ** let the target fetch our answer.
3080 */
3081 SCR_SET (SCR_ATN),
3082 0,
3083 SCR_CLR (SCR_ACK),
3084 0,
3085 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3086 PADDRH (nego_bad_phase),
3087
3088 }/*-------------------------< SEND_SDTR >-------------*/,{
3089 /*
3090 ** Send the EXTENDED_SDTR
3091 */
3092 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3093 NADDR (msgout),
3094 SCR_COPY (1),
3095 NADDR (msgout),
3096 NADDR (lastmsg),
3097 SCR_JUMP,
3098 PADDR (msg_out_done),
3099
3100 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3101 SCR_INT,
3102 SIR_NEGO_PROTO,
3103 SCR_JUMP,
3104 PADDR (dispatch),
3105
3106 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3107 /*
3108 ** After ABORT message,
3109 **
3110 ** expect an immediate disconnect, ...
3111 */
3112 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3113 0,
3114 SCR_CLR (SCR_ACK|SCR_ATN),
3115 0,
3116 SCR_WAIT_DISC,
3117 0,
3118 /*
3119 ** ... and set the status to "ABORTED"
3120 */
3121 SCR_LOAD_REG (HS_REG, HS_ABORTED),
3122 0,
3123 SCR_JUMP,
3124 PADDR (cleanup),
3125
3126 }/*-------------------------< HDATA_IN >-------------------*/,{
3127 /*
3128 ** Because the size depends on the
3129 ** #define MAX_SCATTERH parameter,
3130 ** it is filled in at runtime.
3131 **
3132 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3133 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3134 ** || PADDR (dispatch),
3135 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3136 ** || offsetof (struct dsb, data[ i]),
3137 ** ##===================================================
3138 **
3139 **---------------------------------------------------------
3140 */
3141 0
3142 }/*-------------------------< HDATA_IN2 >------------------*/,{
3143 SCR_JUMP,
3144 PADDR (data_in),
3145
3146 }/*-------------------------< HDATA_OUT >-------------------*/,{
3147 /*
3148 ** Because the size depends on the
3149 ** #define MAX_SCATTERH parameter,
3150 ** it is filled in at runtime.
3151 **
3152 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3153 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3154 ** || PADDR (dispatch),
3155 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3156 ** || offsetof (struct dsb, data[ i]),
3157 ** ##===================================================
3158 **
3159 **---------------------------------------------------------
3160 */
3161 0
3162 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3163 SCR_JUMP,
3164 PADDR (data_out),
3165
3166 }/*-------------------------< RESET >----------------------*/,{
3167 /*
3168 ** Send a TARGET_RESET message if bad IDENTIFY
3169 ** received on reselection.
3170 */
3171 SCR_LOAD_REG (scratcha, ABORT_TASK),
3172 0,
3173 SCR_JUMP,
3174 PADDRH (abort_resel),
3175 }/*-------------------------< ABORTTAG >-------------------*/,{
3176 /*
3177 ** Abort a wrong tag received on reselection.
3178 */
3179 SCR_LOAD_REG (scratcha, ABORT_TASK),
3180 0,
3181 SCR_JUMP,
3182 PADDRH (abort_resel),
3183 }/*-------------------------< ABORT >----------------------*/,{
3184 /*
3185 ** Abort a reselection when no active CCB.
3186 */
3187 SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3188 0,
3189 }/*-------------------------< ABORT_RESEL >----------------*/,{
3190 SCR_COPY (1),
3191 RADDR (scratcha),
3192 NADDR (msgout),
3193 SCR_SET (SCR_ATN),
3194 0,
3195 SCR_CLR (SCR_ACK),
3196 0,
3197 /*
3198 ** and send it.
3199 ** we expect an immediate disconnect
3200 */
3201 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3202 0,
3203 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3204 NADDR (msgout),
3205 SCR_COPY (1),
3206 NADDR (msgout),
3207 NADDR (lastmsg),
3208 SCR_CLR (SCR_ACK|SCR_ATN),
3209 0,
3210 SCR_WAIT_DISC,
3211 0,
3212 SCR_JUMP,
3213 PADDR (start),
3214 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3215 /*
3216 ** The target stays in MSG OUT phase after having acked
3217 ** Identify [+ Tag [+ Extended message ]]. Targets shall
3218 ** behave this way on parity error.
3219 ** We must send it again all the messages.
3220 */
3221 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3222 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3223 SCR_JUMP,
3224 PADDR (send_ident),
3225 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3226 SCR_CLR (SCR_ATN),
3227 0,
3228 SCR_JUMP,
3229 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3230 0,
3231 }/*-------------------------< SDATA_IN >-------------------*/,{
3232 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3233 PADDR (dispatch),
3234 SCR_MOVE_TBL ^ SCR_DATA_IN,
3235 offsetof (struct dsb, sense),
3236 SCR_CALL,
3237 PADDR (dispatch),
3238 SCR_JUMP,
3239 PADDR (no_data),
3240 }/*-------------------------< DATA_IO >--------------------*/,{
3241 /*
3242 ** We jump here if the data direction was unknown at the
3243 ** time we had to queue the command to the scripts processor.
3244 ** Pointers had been set as follow in this situation:
3245 ** savep --> DATA_IO
3246 ** lastp --> start pointer when DATA_IN
3247 ** goalp --> goal pointer when DATA_IN
3248 ** wlastp --> start pointer when DATA_OUT
3249 ** wgoalp --> goal pointer when DATA_OUT
3250 ** This script sets savep/lastp/goalp according to the
3251 ** direction chosen by the target.
3252 */
3253 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3254 32,
3255 /*
3256 ** Direction is DATA IN.
3257 ** Warning: we jump here, even when phase is DATA OUT.
3258 */
3259 SCR_COPY (4),
3260 NADDR (header.lastp),
3261 NADDR (header.savep),
3262
3263 /*
3264 ** Jump to the SCRIPTS according to actual direction.
3265 */
3266 SCR_COPY (4),
3267 NADDR (header.savep),
3268 RADDR (temp),
3269 SCR_RETURN,
3270 0,
3271 /*
3272 ** Direction is DATA OUT.
3273 */
3274 SCR_COPY (4),
3275 NADDR (header.wlastp),
3276 NADDR (header.lastp),
3277 SCR_COPY (4),
3278 NADDR (header.wgoalp),
3279 NADDR (header.goalp),
3280 SCR_JUMPR,
3281 -64,
3282 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3283 /*
3284 ** If message phase but not an IDENTIFY,
3285 ** get some help from the C code.
3286 ** Old SCSI device may behave so.
3287 */
3288 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3289 16,
3290 SCR_INT,
3291 SIR_RESEL_NO_IDENTIFY,
3292 SCR_JUMP,
3293 PADDRH (reset),
3294 /*
3295 ** Message is an IDENTIFY, but lun is unknown.
3296 ** Read the message, since we got it directly
3297 ** from the SCSI BUS data lines.
3298 ** Signal problem to C code for logging the event.
3299 ** Send an ABORT_TASK_SET to clear all pending tasks.
3300 */
3301 SCR_INT,
3302 SIR_RESEL_BAD_LUN,
3303 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3304 NADDR (msgin),
3305 SCR_JUMP,
3306 PADDRH (abort),
3307 }/*-------------------------< BAD_I_T_L >------------------*/,{
3308 /*
3309 ** We donnot have a task for that I_T_L.
3310 ** Signal problem to C code for logging the event.
3311 ** Send an ABORT_TASK_SET message.
3312 */
3313 SCR_INT,
3314 SIR_RESEL_BAD_I_T_L,
3315 SCR_JUMP,
3316 PADDRH (abort),
3317 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3318 /*
3319 ** We donnot have a task that matches the tag.
3320 ** Signal problem to C code for logging the event.
3321 ** Send an ABORT_TASK message.
3322 */
3323 SCR_INT,
3324 SIR_RESEL_BAD_I_T_L_Q,
3325 SCR_JUMP,
3326 PADDRH (aborttag),
3327 }/*-------------------------< BAD_TARGET >-----------------*/,{
3328 /*
3329 ** We donnot know the target that reselected us.
3330 ** Grab the first message if any (IDENTIFY).
3331 ** Signal problem to C code for logging the event.
3332 ** TARGET_RESET message.
3333 */
3334 SCR_INT,
3335 SIR_RESEL_BAD_TARGET,
3336 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3337 8,
3338 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3339 NADDR (msgin),
3340 SCR_JUMP,
3341 PADDRH (reset),
3342 }/*-------------------------< BAD_STATUS >-----------------*/,{
3343 /*
3344 ** If command resulted in either QUEUE FULL,
3345 ** CHECK CONDITION or COMMAND TERMINATED,
3346 ** call the C code.
3347 */
3348 SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3349 SIR_BAD_STATUS,
3350 SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3351 SIR_BAD_STATUS,
3352 SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3353 SIR_BAD_STATUS,
3354 SCR_RETURN,
3355 0,
3356 }/*-------------------------< START_RAM >-------------------*/,{
3357 /*
3358 ** Load the script into on-chip RAM,
3359 ** and jump to start point.
3360 */
3361 SCR_COPY_F (4),
3362 RADDR (scratcha),
3363 PADDRH (start_ram0),
3364 /*
3365 ** Flush script prefetch if required
3366 */
3367 PREFETCH_FLUSH
3368 SCR_COPY (sizeof (struct script)),
3369 }/*-------------------------< START_RAM0 >--------------------*/,{
3370 0,
3371 PADDR (start),
3372 SCR_JUMP,
3373 PADDR (start),
3374 }/*-------------------------< STO_RESTART >-------------------*/,{
3375 /*
3376 **
3377 ** Repair start queue (e.g. next time use the next slot)
3378 ** and jump to start point.
3379 */
3380 SCR_COPY (4),
3381 RADDR (temp),
3382 PADDR (startpos),
3383 SCR_JUMP,
3384 PADDR (start),
3385 }/*-------------------------< WAIT_DMA >-------------------*/,{
3386 /*
3387 ** For HP Zalon/53c720 systems, the Zalon interface
3388 ** between CPU and 53c720 does prefetches, which causes
3389 ** problems with self modifying scripts. The problem
3390 ** is overcome by calling a dummy subroutine after each
3391 ** modification, to force a refetch of the script on
3392 ** return from the subroutine.
3393 */
3394 SCR_RETURN,
3395 0,
3396 }/*-------------------------< SNOOPTEST >-------------------*/,{
3397 /*
3398 ** Read the variable.
3399 */
3400 SCR_COPY (4),
3401 NADDR(ncr_cache),
3402 RADDR (scratcha),
3403 /*
3404 ** Write the variable.
3405 */
3406 SCR_COPY (4),
3407 RADDR (temp),
3408 NADDR(ncr_cache),
3409 /*
3410 ** Read back the variable.
3411 */
3412 SCR_COPY (4),
3413 NADDR(ncr_cache),
3414 RADDR (temp),
3415 }/*-------------------------< SNOOPEND >-------------------*/,{
3416 /*
3417 ** And stop.
3418 */
3419 SCR_INT,
3420 99,
3421 }/*--------------------------------------------------------*/
3422 };
3423
3424 /*==========================================================
3425 **
3426 **
3427 ** Fill in #define dependent parts of the script
3428 **
3429 **
3430 **==========================================================
3431 */
3432
3433 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3434 {
3435 int i;
3436 ncrcmd *p;
3437
3438 p = scrh->tryloop;
3439 for (i=0; i<MAX_START; i++) {
3440 *p++ =SCR_CALL;
3441 *p++ =PADDR (idle);
3442 }
3443
3444 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3445
3446 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3447
3448 p = scrh->done_queue;
3449 for (i = 0; i<MAX_DONE; i++) {
3450 *p++ =SCR_COPY (sizeof(struct ccb *));
3451 *p++ =NADDR (header.cp);
3452 *p++ =NADDR (ccb_done[i]);
3453 *p++ =SCR_CALL;
3454 *p++ =PADDR (done_end);
3455 }
3456
3457 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3458
3459 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3460
3461 p = scrh->hdata_in;
3462 for (i=0; i<MAX_SCATTERH; i++) {
3463 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3464 *p++ =PADDR (dispatch);
3465 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3466 *p++ =offsetof (struct dsb, data[i]);
3467 }
3468
3469 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3470
3471 p = scr->data_in;
3472 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3473 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3474 *p++ =PADDR (dispatch);
3475 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3476 *p++ =offsetof (struct dsb, data[i]);
3477 }
3478
3479 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3480
3481 p = scrh->hdata_out;
3482 for (i=0; i<MAX_SCATTERH; i++) {
3483 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3484 *p++ =PADDR (dispatch);
3485 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3486 *p++ =offsetof (struct dsb, data[i]);
3487 }
3488
3489 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3490
3491 p = scr->data_out;
3492 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3493 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3494 *p++ =PADDR (dispatch);
3495 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3496 *p++ =offsetof (struct dsb, data[i]);
3497 }
3498
3499 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3500 }
3501
3502 /*==========================================================
3503 **
3504 **
3505 ** Copy and rebind a script.
3506 **
3507 **
3508 **==========================================================
3509 */
3510
3511 static void __init
3512 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3513 {
3514 ncrcmd opcode, new, old, tmp1, tmp2;
3515 ncrcmd *start, *end;
3516 int relocs;
3517 int opchanged = 0;
3518
3519 start = src;
3520 end = src + len/4;
3521
3522 while (src < end) {
3523
3524 opcode = *src++;
3525 *dst++ = cpu_to_scr(opcode);
3526
3527 /*
3528 ** If we forget to change the length
3529 ** in struct script, a field will be
3530 ** padded with 0. This is an illegal
3531 ** command.
3532 */
3533
3534 if (opcode == 0) {
3535 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3536 ncr_name(np), (int) (src-start-1));
3537 mdelay(1000);
3538 }
3539
3540 if (DEBUG_FLAGS & DEBUG_SCRIPT)
3541 printk (KERN_DEBUG "%p: <%x>\n",
3542 (src-1), (unsigned)opcode);
3543
3544 /*
3545 ** We don't have to decode ALL commands
3546 */
3547 switch (opcode >> 28) {
3548
3549 case 0xc:
3550 /*
3551 ** COPY has TWO arguments.
3552 */
3553 relocs = 2;
3554 tmp1 = src[0];
3555 #ifdef RELOC_KVAR
3556 if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3557 tmp1 = 0;
3558 #endif
3559 tmp2 = src[1];
3560 #ifdef RELOC_KVAR
3561 if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3562 tmp2 = 0;
3563 #endif
3564 if ((tmp1 ^ tmp2) & 3) {
3565 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3566 ncr_name(np), (int) (src-start-1));
3567 mdelay(1000);
3568 }
3569 /*
3570 ** If PREFETCH feature not enabled, remove
3571 ** the NO FLUSH bit if present.
3572 */
3573 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3574 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3575 ++opchanged;
3576 }
3577 break;
3578
3579 case 0x0:
3580 /*
3581 ** MOVE (absolute address)
3582 */
3583 relocs = 1;
3584 break;
3585
3586 case 0x8:
3587 /*
3588 ** JUMP / CALL
3589 ** don't relocate if relative :-)
3590 */
3591 if (opcode & 0x00800000)
3592 relocs = 0;
3593 else
3594 relocs = 1;
3595 break;
3596
3597 case 0x4:
3598 case 0x5:
3599 case 0x6:
3600 case 0x7:
3601 relocs = 1;
3602 break;
3603
3604 default:
3605 relocs = 0;
3606 break;
3607 }
3608
3609 if (relocs) {
3610 while (relocs--) {
3611 old = *src++;
3612
3613 switch (old & RELOC_MASK) {
3614 case RELOC_REGISTER:
3615 new = (old & ~RELOC_MASK) + np->paddr;
3616 break;
3617 case RELOC_LABEL:
3618 new = (old & ~RELOC_MASK) + np->p_script;
3619 break;
3620 case RELOC_LABELH:
3621 new = (old & ~RELOC_MASK) + np->p_scripth;
3622 break;
3623 case RELOC_SOFTC:
3624 new = (old & ~RELOC_MASK) + np->p_ncb;
3625 break;
3626 #ifdef RELOC_KVAR
3627 case RELOC_KVAR:
3628 if (((old & ~RELOC_MASK) <
3629 SCRIPT_KVAR_FIRST) ||
3630 ((old & ~RELOC_MASK) >
3631 SCRIPT_KVAR_LAST))
3632 panic("ncr KVAR out of range");
3633 new = vtophys(script_kvars[old &
3634 ~RELOC_MASK]);
3635 break;
3636 #endif
3637 case 0:
3638 /* Don't relocate a 0 address. */
3639 if (old == 0) {
3640 new = old;
3641 break;
3642 }
3643 /* fall through */
3644 default:
3645 panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3646 break;
3647 }
3648
3649 *dst++ = cpu_to_scr(new);
3650 }
3651 } else
3652 *dst++ = cpu_to_scr(*src++);
3653
3654 }
3655 }
3656
3657 /*
3658 ** Linux host data structure
3659 */
3660
3661 struct host_data {
3662 struct ncb *ncb;
3663 };
3664
3665 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3666
3667 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3668 {
3669 PRINT_ADDR(cp->cmd, "%s: ", label);
3670
3671 spi_print_msg(msg);
3672 printk("\n");
3673 }
3674
3675 /*==========================================================
3676 **
3677 ** NCR chip clock divisor table.
3678 ** Divisors are multiplied by 10,000,000 in order to make
3679 ** calculations more simple.
3680 **
3681 **==========================================================
3682 */
3683
3684 #define _5M 5000000
3685 static u_long div_10M[] =
3686 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3687
3688
3689 /*===============================================================
3690 **
3691 ** Prepare io register values used by ncr_init() according
3692 ** to selected and supported features.
3693 **
3694 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3695 ** transfers. 32,64,128 are only supported by 875 and 895 chips.
3696 ** We use log base 2 (burst length) as internal code, with
3697 ** value 0 meaning "burst disabled".
3698 **
3699 **===============================================================
3700 */
3701
3702 /*
3703 * Burst length from burst code.
3704 */
3705 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3706
3707 /*
3708 * Burst code from io register bits. Burst enable is ctest0 for c720
3709 */
3710 #define burst_code(dmode, ctest0) \
3711 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3712
3713 /*
3714 * Set initial io register bits from burst code.
3715 */
3716 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3717 {
3718 u_char *be = &np->rv_ctest0;
3719 *be &= ~0x80;
3720 np->rv_dmode &= ~(0x3 << 6);
3721 np->rv_ctest5 &= ~0x4;
3722
3723 if (!bc) {
3724 *be |= 0x80;
3725 } else {
3726 --bc;
3727 np->rv_dmode |= ((bc & 0x3) << 6);
3728 np->rv_ctest5 |= (bc & 0x4);
3729 }
3730 }
3731
3732 static void __init ncr_prepare_setting(struct ncb *np)
3733 {
3734 u_char burst_max;
3735 u_long period;
3736 int i;
3737
3738 /*
3739 ** Save assumed BIOS setting
3740 */
3741
3742 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3743 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3744 np->sv_dmode = INB(nc_dmode) & 0xce;
3745 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3746 np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3747 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3748 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3749 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3750 np->sv_gpcntl = INB(nc_gpcntl);
3751 np->sv_stest2 = INB(nc_stest2) & 0x20;
3752 np->sv_stest4 = INB(nc_stest4);
3753
3754 /*
3755 ** Wide ?
3756 */
3757
3758 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3759
3760 /*
3761 * Guess the frequency of the chip's clock.
3762 */
3763 if (np->features & FE_ULTRA)
3764 np->clock_khz = 80000;
3765 else
3766 np->clock_khz = 40000;
3767
3768 /*
3769 * Get the clock multiplier factor.
3770 */
3771 if (np->features & FE_QUAD)
3772 np->multiplier = 4;
3773 else if (np->features & FE_DBLR)
3774 np->multiplier = 2;
3775 else
3776 np->multiplier = 1;
3777
3778 /*
3779 * Measure SCSI clock frequency for chips
3780 * it may vary from assumed one.
3781 */
3782 if (np->features & FE_VARCLK)
3783 ncr_getclock(np, np->multiplier);
3784
3785 /*
3786 * Divisor to be used for async (timer pre-scaler).
3787 */
3788 i = np->clock_divn - 1;
3789 while (--i >= 0) {
3790 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3791 ++i;
3792 break;
3793 }
3794 }
3795 np->rv_scntl3 = i+1;
3796
3797 /*
3798 * Minimum synchronous period factor supported by the chip.
3799 * Btw, 'period' is in tenths of nanoseconds.
3800 */
3801
3802 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3803 if (period <= 250) np->minsync = 10;
3804 else if (period <= 303) np->minsync = 11;
3805 else if (period <= 500) np->minsync = 12;
3806 else np->minsync = (period + 40 - 1) / 40;
3807
3808 /*
3809 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3810 */
3811
3812 if (np->minsync < 25 && !(np->features & FE_ULTRA))
3813 np->minsync = 25;
3814
3815 /*
3816 * Maximum synchronous period factor supported by the chip.
3817 */
3818
3819 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3820 np->maxsync = period > 2540 ? 254 : period / 10;
3821
3822 /*
3823 ** Prepare initial value of other IO registers
3824 */
3825 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3826 np->rv_scntl0 = np->sv_scntl0;
3827 np->rv_dmode = np->sv_dmode;
3828 np->rv_dcntl = np->sv_dcntl;
3829 np->rv_ctest0 = np->sv_ctest0;
3830 np->rv_ctest3 = np->sv_ctest3;
3831 np->rv_ctest4 = np->sv_ctest4;
3832 np->rv_ctest5 = np->sv_ctest5;
3833 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3834 #else
3835
3836 /*
3837 ** Select burst length (dwords)
3838 */
3839 burst_max = driver_setup.burst_max;
3840 if (burst_max == 255)
3841 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3842 if (burst_max > 7)
3843 burst_max = 7;
3844 if (burst_max > np->maxburst)
3845 burst_max = np->maxburst;
3846
3847 /*
3848 ** Select all supported special features
3849 */
3850 if (np->features & FE_ERL)
3851 np->rv_dmode |= ERL; /* Enable Read Line */
3852 if (np->features & FE_BOF)
3853 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3854 if (np->features & FE_ERMP)
3855 np->rv_dmode |= ERMP; /* Enable Read Multiple */
3856 if (np->features & FE_PFEN)
3857 np->rv_dcntl |= PFEN; /* Prefetch Enable */
3858 if (np->features & FE_CLSE)
3859 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3860 if (np->features & FE_WRIE)
3861 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3862 if (np->features & FE_DFS)
3863 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3864 if (np->features & FE_MUX)
3865 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3866 if (np->features & FE_EA)
3867 np->rv_dcntl |= EA; /* Enable ACK */
3868 if (np->features & FE_EHP)
3869 np->rv_ctest0 |= EHP; /* Even host parity */
3870
3871 /*
3872 ** Select some other
3873 */
3874 if (driver_setup.master_parity)
3875 np->rv_ctest4 |= MPEE; /* Master parity checking */
3876 if (driver_setup.scsi_parity)
3877 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3878
3879 /*
3880 ** Get SCSI addr of host adapter (set by bios?).
3881 */
3882 if (np->myaddr == 255) {
3883 np->myaddr = INB(nc_scid) & 0x07;
3884 if (!np->myaddr)
3885 np->myaddr = SCSI_NCR_MYADDR;
3886 }
3887
3888 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3889
3890 /*
3891 * Prepare initial io register bits for burst length
3892 */
3893 ncr_init_burst(np, burst_max);
3894
3895 /*
3896 ** Set SCSI BUS mode.
3897 **
3898 ** - ULTRA2 chips (895/895A/896) report the current
3899 ** BUS mode through the STEST4 IO register.
3900 ** - For previous generation chips (825/825A/875),
3901 ** user has to tell us how to check against HVD,
3902 ** since a 100% safe algorithm is not possible.
3903 */
3904 np->scsi_mode = SMODE_SE;
3905 if (np->features & FE_DIFF) {
3906 switch(driver_setup.diff_support) {
3907 case 4: /* Trust previous settings if present, then GPIO3 */
3908 if (np->sv_scntl3) {
3909 if (np->sv_stest2 & 0x20)
3910 np->scsi_mode = SMODE_HVD;
3911 break;
3912 }
3913 /* fall through */
3914 case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3915 if (INB(nc_gpreg) & 0x08)
3916 break;
3917 /* fall through */
3918 case 2: /* Set HVD unconditionally */
3919 np->scsi_mode = SMODE_HVD;
3920 /* fall through */
3921 case 1: /* Trust previous settings for HVD */
3922 if (np->sv_stest2 & 0x20)
3923 np->scsi_mode = SMODE_HVD;
3924 break;
3925 default:/* Don't care about HVD */
3926 break;
3927 }
3928 }
3929 if (np->scsi_mode == SMODE_HVD)
3930 np->rv_stest2 |= 0x20;
3931
3932 /*
3933 ** Set LED support from SCRIPTS.
3934 ** Ignore this feature for boards known to use a
3935 ** specific GPIO wiring and for the 895A or 896
3936 ** that drive the LED directly.
3937 ** Also probe initial setting of GPIO0 as output.
3938 */
3939 if ((driver_setup.led_pin) &&
3940 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3941 np->features |= FE_LED0;
3942
3943 /*
3944 ** Set irq mode.
3945 */
3946 switch(driver_setup.irqm & 3) {
3947 case 2:
3948 np->rv_dcntl |= IRQM;
3949 break;
3950 case 1:
3951 np->rv_dcntl |= (np->sv_dcntl & IRQM);
3952 break;
3953 default:
3954 break;
3955 }
3956
3957 /*
3958 ** Configure targets according to driver setup.
3959 ** Allow to override sync, wide and NOSCAN from
3960 ** boot command line.
3961 */
3962 for (i = 0 ; i < MAX_TARGET ; i++) {
3963 struct tcb *tp = &np->target[i];
3964
3965 tp->usrsync = driver_setup.default_sync;
3966 tp->usrwide = driver_setup.max_wide;
3967 tp->usrtags = MAX_TAGS;
3968 tp->period = 0xffff;
3969 if (!driver_setup.disconnection)
3970 np->target[i].usrflag = UF_NODISC;
3971 }
3972
3973 /*
3974 ** Announce all that stuff to user.
3975 */
3976
3977 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3978 np->myaddr,
3979 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3980 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
3981 (np->rv_stest2 & 0x20) ? ", Differential" : "");
3982
3983 if (bootverbose > 1) {
3984 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3985 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3986 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3987 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3988
3989 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3990 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3991 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3992 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3993 }
3994
3995 if (bootverbose && np->paddr2)
3996 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
3997 ncr_name(np), np->paddr2);
3998 }
3999
4000 /*==========================================================
4001 **
4002 **
4003 ** Done SCSI commands list management.
4004 **
4005 ** We donnot enter the scsi_done() callback immediately
4006 ** after a command has been seen as completed but we
4007 ** insert it into a list which is flushed outside any kind
4008 ** of driver critical section.
4009 ** This allows to do minimal stuff under interrupt and
4010 ** inside critical sections and to also avoid locking up
4011 ** on recursive calls to driver entry points under SMP.
4012 ** In fact, the only kernel point which is entered by the
4013 ** driver with a driver lock set is kmalloc(GFP_ATOMIC)
4014 ** that shall not reenter the driver under any circumstances,
4015 ** AFAIK.
4016 **
4017 **==========================================================
4018 */
4019 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4020 {
4021 unmap_scsi_data(np, cmd);
4022 cmd->host_scribble = (char *) np->done_list;
4023 np->done_list = cmd;
4024 }
4025
4026 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4027 {
4028 struct scsi_cmnd *cmd;
4029
4030 while (lcmd) {
4031 cmd = lcmd;
4032 lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4033 cmd->scsi_done(cmd);
4034 }
4035 }
4036
4037 /*==========================================================
4038 **
4039 **
4040 ** Prepare the next negotiation message if needed.
4041 **
4042 ** Fill in the part of message buffer that contains the
4043 ** negotiation and the nego_status field of the CCB.
4044 ** Returns the size of the message in bytes.
4045 **
4046 **
4047 **==========================================================
4048 */
4049
4050
4051 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4052 {
4053 struct tcb *tp = &np->target[cp->target];
4054 int msglen = 0;
4055 int nego = 0;
4056 struct scsi_target *starget = tp->starget;
4057
4058 /* negotiate wide transfers ? */
4059 if (!tp->widedone) {
4060 if (spi_support_wide(starget)) {
4061 nego = NS_WIDE;
4062 } else
4063 tp->widedone=1;
4064 }
4065
4066 /* negotiate synchronous transfers? */
4067 if (!nego && !tp->period) {
4068 if (spi_support_sync(starget)) {
4069 nego = NS_SYNC;
4070 } else {
4071 tp->period =0xffff;
4072 dev_info(&starget->dev, "target did not report SYNC.\n");
4073 }
4074 }
4075
4076 switch (nego) {
4077 case NS_SYNC:
4078 msglen += spi_populate_sync_msg(msgptr + msglen,
4079 tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4080 break;
4081 case NS_WIDE:
4082 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4083 break;
4084 }
4085
4086 cp->nego_status = nego;
4087
4088 if (nego) {
4089 tp->nego_cp = cp;
4090 if (DEBUG_FLAGS & DEBUG_NEGO) {
4091 ncr_print_msg(cp, nego == NS_WIDE ?
4092 "wide msgout":"sync_msgout", msgptr);
4093 }
4094 }
4095
4096 return msglen;
4097 }
4098
4099
4100
4101 /*==========================================================
4102 **
4103 **
4104 ** Start execution of a SCSI command.
4105 ** This is called from the generic SCSI driver.
4106 **
4107 **
4108 **==========================================================
4109 */
4110 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4111 {
4112 struct scsi_device *sdev = cmd->device;
4113 struct tcb *tp = &np->target[sdev->id];
4114 struct lcb *lp = tp->lp[sdev->lun];
4115 struct ccb *cp;
4116
4117 int segments;
4118 u_char idmsg, *msgptr;
4119 u32 msglen;
4120 int direction;
4121 u32 lastp, goalp;
4122
4123 /*---------------------------------------------
4124 **
4125 ** Some shortcuts ...
4126 **
4127 **---------------------------------------------
4128 */
4129 if ((sdev->id == np->myaddr ) ||
4130 (sdev->id >= MAX_TARGET) ||
4131 (sdev->lun >= MAX_LUN )) {
4132 return(DID_BAD_TARGET);
4133 }
4134
4135 /*---------------------------------------------
4136 **
4137 ** Complete the 1st TEST UNIT READY command
4138 ** with error condition if the device is
4139 ** flagged NOSCAN, in order to speed up
4140 ** the boot.
4141 **
4142 **---------------------------------------------
4143 */
4144 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4145 (tp->usrflag & UF_NOSCAN)) {
4146 tp->usrflag &= ~UF_NOSCAN;
4147 return DID_BAD_TARGET;
4148 }
4149
4150 if (DEBUG_FLAGS & DEBUG_TINY) {
4151 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4152 }
4153
4154 /*---------------------------------------------------
4155 **
4156 ** Assign a ccb / bind cmd.
4157 ** If resetting, shorten settle_time if necessary
4158 ** in order to avoid spurious timeouts.
4159 ** If resetting or no free ccb,
4160 ** insert cmd into the waiting list.
4161 **
4162 **----------------------------------------------------
4163 */
4164 if (np->settle_time && cmd->request->timeout >= HZ) {
4165 u_long tlimit = jiffies + cmd->request->timeout - HZ;
4166 if (time_after(np->settle_time, tlimit))
4167 np->settle_time = tlimit;
4168 }
4169
4170 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4171 insert_into_waiting_list(np, cmd);
4172 return(DID_OK);
4173 }
4174 cp->cmd = cmd;
4175
4176 /*----------------------------------------------------
4177 **
4178 ** Build the identify / tag / sdtr message
4179 **
4180 **----------------------------------------------------
4181 */
4182
4183 idmsg = IDENTIFY(0, sdev->lun);
4184
4185 if (cp ->tag != NO_TAG ||
4186 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4187 idmsg |= 0x40;
4188
4189 msgptr = cp->scsi_smsg;
4190 msglen = 0;
4191 msgptr[msglen++] = idmsg;
4192
4193 if (cp->tag != NO_TAG) {
4194 char order = np->order;
4195
4196 /*
4197 ** Force ordered tag if necessary to avoid timeouts
4198 ** and to preserve interactivity.
4199 */
4200 if (lp && time_after(jiffies, lp->tags_stime)) {
4201 if (lp->tags_smap) {
4202 order = ORDERED_QUEUE_TAG;
4203 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4204 PRINT_ADDR(cmd,
4205 "ordered tag forced.\n");
4206 }
4207 }
4208 lp->tags_stime = jiffies + 3*HZ;
4209 lp->tags_smap = lp->tags_umap;
4210 }
4211
4212 if (order == 0) {
4213 /*
4214 ** Ordered write ops, unordered read ops.
4215 */
4216 switch (cmd->cmnd[0]) {
4217 case 0x08: /* READ_SMALL (6) */
4218 case 0x28: /* READ_BIG (10) */
4219 case 0xa8: /* READ_HUGE (12) */
4220 order = SIMPLE_QUEUE_TAG;
4221 break;
4222 default:
4223 order = ORDERED_QUEUE_TAG;
4224 }
4225 }
4226 msgptr[msglen++] = order;
4227 /*
4228 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4229 ** since we may have to deal with devices that have
4230 ** problems with #TAG 0 or too great #TAG numbers.
4231 */
4232 msgptr[msglen++] = (cp->tag << 1) + 1;
4233 }
4234
4235 /*----------------------------------------------------
4236 **
4237 ** Build the data descriptors
4238 **
4239 **----------------------------------------------------
4240 */
4241
4242 direction = cmd->sc_data_direction;
4243 if (direction != DMA_NONE) {
4244 segments = ncr_scatter(np, cp, cp->cmd);
4245 if (segments < 0) {
4246 ncr_free_ccb(np, cp);
4247 return(DID_ERROR);
4248 }
4249 }
4250 else {
4251 cp->data_len = 0;
4252 segments = 0;
4253 }
4254
4255 /*---------------------------------------------------
4256 **
4257 ** negotiation required?
4258 **
4259 ** (nego_status is filled by ncr_prepare_nego())
4260 **
4261 **---------------------------------------------------
4262 */
4263
4264 cp->nego_status = 0;
4265
4266 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4267 msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4268 }
4269
4270 /*----------------------------------------------------
4271 **
4272 ** Determine xfer direction.
4273 **
4274 **----------------------------------------------------
4275 */
4276 if (!cp->data_len)
4277 direction = DMA_NONE;
4278
4279 /*
4280 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4281 ** but prepare alternate pointers for TO_DEVICE in case
4282 ** of our speculation will be just wrong.
4283 ** SCRIPTS will swap values if needed.
4284 */
4285 switch(direction) {
4286 case DMA_BIDIRECTIONAL:
4287 case DMA_TO_DEVICE:
4288 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4289 if (segments <= MAX_SCATTERL)
4290 lastp = goalp - 8 - (segments * 16);
4291 else {
4292 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4293 lastp -= (segments - MAX_SCATTERL) * 16;
4294 }
4295 if (direction != DMA_BIDIRECTIONAL)
4296 break;
4297 cp->phys.header.wgoalp = cpu_to_scr(goalp);
4298 cp->phys.header.wlastp = cpu_to_scr(lastp);
4299 /* fall through */
4300 case DMA_FROM_DEVICE:
4301 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4302 if (segments <= MAX_SCATTERL)
4303 lastp = goalp - 8 - (segments * 16);
4304 else {
4305 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4306 lastp -= (segments - MAX_SCATTERL) * 16;
4307 }
4308 break;
4309 default:
4310 case DMA_NONE:
4311 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4312 break;
4313 }
4314
4315 /*
4316 ** Set all pointers values needed by SCRIPTS.
4317 ** If direction is unknown, start at data_io.
4318 */
4319 cp->phys.header.lastp = cpu_to_scr(lastp);
4320 cp->phys.header.goalp = cpu_to_scr(goalp);
4321
4322 if (direction == DMA_BIDIRECTIONAL)
4323 cp->phys.header.savep =
4324 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4325 else
4326 cp->phys.header.savep= cpu_to_scr(lastp);
4327
4328 /*
4329 ** Save the initial data pointer in order to be able
4330 ** to redo the command.
4331 */
4332 cp->startp = cp->phys.header.savep;
4333
4334 /*----------------------------------------------------
4335 **
4336 ** fill in ccb
4337 **
4338 **----------------------------------------------------
4339 **
4340 **
4341 ** physical -> virtual backlink
4342 ** Generic SCSI command
4343 */
4344
4345 /*
4346 ** Startqueue
4347 */
4348 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4349 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4350 /*
4351 ** select
4352 */
4353 cp->phys.select.sel_id = sdev_id(sdev);
4354 cp->phys.select.sel_scntl3 = tp->wval;
4355 cp->phys.select.sel_sxfer = tp->sval;
4356 /*
4357 ** message
4358 */
4359 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4360 cp->phys.smsg.size = cpu_to_scr(msglen);
4361
4362 /*
4363 ** command
4364 */
4365 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4366 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4367 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4368
4369 /*
4370 ** status
4371 */
4372 cp->actualquirks = 0;
4373 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4374 cp->scsi_status = S_ILLEGAL;
4375 cp->parity_status = 0;
4376
4377 cp->xerr_status = XE_OK;
4378 #if 0
4379 cp->sync_status = tp->sval;
4380 cp->wide_status = tp->wval;
4381 #endif
4382
4383 /*----------------------------------------------------
4384 **
4385 ** Critical region: start this job.
4386 **
4387 **----------------------------------------------------
4388 */
4389
4390 /* activate this job. */
4391 cp->magic = CCB_MAGIC;
4392
4393 /*
4394 ** insert next CCBs into start queue.
4395 ** 2 max at a time is enough to flush the CCB wait queue.
4396 */
4397 cp->auto_sense = 0;
4398 if (lp)
4399 ncr_start_next_ccb(np, lp, 2);
4400 else
4401 ncr_put_start_queue(np, cp);
4402
4403 /* Command is successfully queued. */
4404
4405 return DID_OK;
4406 }
4407
4408
4409 /*==========================================================
4410 **
4411 **
4412 ** Insert a CCB into the start queue and wake up the
4413 ** SCRIPTS processor.
4414 **
4415 **
4416 **==========================================================
4417 */
4418
4419 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4420 {
4421 struct list_head *qp;
4422 struct ccb *cp;
4423
4424 if (lp->held_ccb)
4425 return;
4426
4427 while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4428 qp = ncr_list_pop(&lp->wait_ccbq);
4429 if (!qp)
4430 break;
4431 ++lp->queuedccbs;
4432 cp = list_entry(qp, struct ccb, link_ccbq);
4433 list_add_tail(qp, &lp->busy_ccbq);
4434 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4435 cpu_to_scr(CCB_PHYS (cp, restart));
4436 ncr_put_start_queue(np, cp);
4437 }
4438 }
4439
4440 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4441 {
4442 u16 qidx;
4443
4444 /*
4445 ** insert into start queue.
4446 */
4447 if (!np->squeueput) np->squeueput = 1;
4448 qidx = np->squeueput + 2;
4449 if (qidx >= MAX_START + MAX_START) qidx = 1;
4450
4451 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4452 MEMORY_BARRIER();
4453 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4454
4455 np->squeueput = qidx;
4456 ++np->queuedccbs;
4457 cp->queued = 1;
4458
4459 if (DEBUG_FLAGS & DEBUG_QUEUE)
4460 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4461
4462 /*
4463 ** Script processor may be waiting for reselect.
4464 ** Wake it up.
4465 */
4466 MEMORY_BARRIER();
4467 OUTB (nc_istat, SIGP);
4468 }
4469
4470
4471 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4472 {
4473 u32 term;
4474 int retv = 0;
4475
4476 np->settle_time = jiffies + settle_delay * HZ;
4477
4478 if (bootverbose > 1)
4479 printk("%s: resetting, "
4480 "command processing suspended for %d seconds\n",
4481 ncr_name(np), settle_delay);
4482
4483 ncr_chip_reset(np, 100);
4484 udelay(2000); /* The 895 needs time for the bus mode to settle */
4485 if (enab_int)
4486 OUTW (nc_sien, RST);
4487 /*
4488 ** Enable Tolerant, reset IRQD if present and
4489 ** properly set IRQ mode, prior to resetting the bus.
4490 */
4491 OUTB (nc_stest3, TE);
4492 OUTB (nc_scntl1, CRST);
4493 udelay(200);
4494
4495 if (!driver_setup.bus_check)
4496 goto out;
4497 /*
4498 ** Check for no terminators or SCSI bus shorts to ground.
4499 ** Read SCSI data bus, data parity bits and control signals.
4500 ** We are expecting RESET to be TRUE and other signals to be
4501 ** FALSE.
4502 */
4503
4504 term = INB(nc_sstat0);
4505 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4506 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4507 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4508 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4509 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4510
4511 if (!(np->features & FE_WIDE))
4512 term &= 0x3ffff;
4513
4514 if (term != (2<<7)) {
4515 printk("%s: suspicious SCSI data while resetting the BUS.\n",
4516 ncr_name(np));
4517 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4518 "0x%lx, expecting 0x%lx\n",
4519 ncr_name(np),
4520 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4521 (u_long)term, (u_long)(2<<7));
4522 if (driver_setup.bus_check == 1)
4523 retv = 1;
4524 }
4525 out:
4526 OUTB (nc_scntl1, 0);
4527 return retv;
4528 }
4529
4530 /*
4531 * Start reset process.
4532 * If reset in progress do nothing.
4533 * The interrupt handler will reinitialize the chip.
4534 * The timeout handler will wait for settle_time before
4535 * clearing it and so resuming command processing.
4536 */
4537 static void ncr_start_reset(struct ncb *np)
4538 {
4539 if (!np->settle_time) {
4540 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4541 }
4542 }
4543
4544 /*==========================================================
4545 **
4546 **
4547 ** Reset the SCSI BUS.
4548 ** This is called from the generic SCSI driver.
4549 **
4550 **
4551 **==========================================================
4552 */
4553 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4554 {
4555 /* struct scsi_device *device = cmd->device; */
4556 struct ccb *cp;
4557 int found;
4558
4559 /*
4560 * Return immediately if reset is in progress.
4561 */
4562 if (np->settle_time) {
4563 return FAILED;
4564 }
4565 /*
4566 * Start the reset process.
4567 * The script processor is then assumed to be stopped.
4568 * Commands will now be queued in the waiting list until a settle
4569 * delay of 2 seconds will be completed.
4570 */
4571 ncr_start_reset(np);
4572 /*
4573 * First, look in the wakeup list
4574 */
4575 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4576 /*
4577 ** look for the ccb of this command.
4578 */
4579 if (cp->host_status == HS_IDLE) continue;
4580 if (cp->cmd == cmd) {
4581 found = 1;
4582 break;
4583 }
4584 }
4585 /*
4586 * Then, look in the waiting list
4587 */
4588 if (!found && retrieve_from_waiting_list(0, np, cmd))
4589 found = 1;
4590 /*
4591 * Wake-up all awaiting commands with DID_RESET.
4592 */
4593 reset_waiting_list(np);
4594 /*
4595 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4596 */
4597 ncr_wakeup(np, HS_RESET);
4598 /*
4599 * If the involved command was not in a driver queue, and the
4600 * scsi driver told us reset is synchronous, and the command is not
4601 * currently in the waiting list, complete it with DID_RESET status,
4602 * in order to keep it alive.
4603 */
4604 if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4605 cmd->result = DID_RESET << 16;
4606 ncr_queue_done_cmd(np, cmd);
4607 }
4608
4609 return SUCCESS;
4610 }
4611
4612 #if 0 /* unused and broken.. */
4613 /*==========================================================
4614 **
4615 **
4616 ** Abort an SCSI command.
4617 ** This is called from the generic SCSI driver.
4618 **
4619 **
4620 **==========================================================
4621 */
4622 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4623 {
4624 /* struct scsi_device *device = cmd->device; */
4625 struct ccb *cp;
4626 int found;
4627 int retv;
4628
4629 /*
4630 * First, look for the scsi command in the waiting list
4631 */
4632 if (remove_from_waiting_list(np, cmd)) {
4633 cmd->result = ScsiResult(DID_ABORT, 0);
4634 ncr_queue_done_cmd(np, cmd);
4635 return SCSI_ABORT_SUCCESS;
4636 }
4637
4638 /*
4639 * Then, look in the wakeup list
4640 */
4641 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4642 /*
4643 ** look for the ccb of this command.
4644 */
4645 if (cp->host_status == HS_IDLE) continue;
4646 if (cp->cmd == cmd) {
4647 found = 1;
4648 break;
4649 }
4650 }
4651
4652 if (!found) {
4653 return SCSI_ABORT_NOT_RUNNING;
4654 }
4655
4656 if (np->settle_time) {
4657 return SCSI_ABORT_SNOOZE;
4658 }
4659
4660 /*
4661 ** If the CCB is active, patch schedule jumps for the
4662 ** script to abort the command.
4663 */
4664
4665 switch(cp->host_status) {
4666 case HS_BUSY:
4667 case HS_NEGOTIATE:
4668 printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4669 cp->start.schedule.l_paddr =
4670 cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4671 retv = SCSI_ABORT_PENDING;
4672 break;
4673 case HS_DISCONNECT:
4674 cp->restart.schedule.l_paddr =
4675 cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4676 retv = SCSI_ABORT_PENDING;
4677 break;
4678 default:
4679 retv = SCSI_ABORT_NOT_RUNNING;
4680 break;
4681
4682 }
4683
4684 /*
4685 ** If there are no requests, the script
4686 ** processor will sleep on SEL_WAIT_RESEL.
4687 ** Let's wake it up, since it may have to work.
4688 */
4689 OUTB (nc_istat, SIGP);
4690
4691 return retv;
4692 }
4693 #endif
4694
4695 static void ncr_detach(struct ncb *np)
4696 {
4697 struct ccb *cp;
4698 struct tcb *tp;
4699 struct lcb *lp;
4700 int target, lun;
4701 int i;
4702 char inst_name[16];
4703
4704 /* Local copy so we don't access np after freeing it! */
4705 strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4706
4707 printk("%s: releasing host resources\n", ncr_name(np));
4708
4709 /*
4710 ** Stop the ncr_timeout process
4711 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4712 */
4713
4714 #ifdef DEBUG_NCR53C8XX
4715 printk("%s: stopping the timer\n", ncr_name(np));
4716 #endif
4717 np->release_stage = 1;
4718 for (i = 50 ; i && np->release_stage != 2 ; i--)
4719 mdelay(100);
4720 if (np->release_stage != 2)
4721 printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4722 else np->release_stage = 2;
4723
4724 /*
4725 ** Disable chip interrupts
4726 */
4727
4728 #ifdef DEBUG_NCR53C8XX
4729 printk("%s: disabling chip interrupts\n", ncr_name(np));
4730 #endif
4731 OUTW (nc_sien , 0);
4732 OUTB (nc_dien , 0);
4733
4734 /*
4735 ** Reset NCR chip
4736 ** Restore bios setting for automatic clock detection.
4737 */
4738
4739 printk("%s: resetting chip\n", ncr_name(np));
4740 ncr_chip_reset(np, 100);
4741
4742 OUTB(nc_dmode, np->sv_dmode);
4743 OUTB(nc_dcntl, np->sv_dcntl);
4744 OUTB(nc_ctest0, np->sv_ctest0);
4745 OUTB(nc_ctest3, np->sv_ctest3);
4746 OUTB(nc_ctest4, np->sv_ctest4);
4747 OUTB(nc_ctest5, np->sv_ctest5);
4748 OUTB(nc_gpcntl, np->sv_gpcntl);
4749 OUTB(nc_stest2, np->sv_stest2);
4750
4751 ncr_selectclock(np, np->sv_scntl3);
4752
4753 /*
4754 ** Free allocated ccb(s)
4755 */
4756
4757 while ((cp=np->ccb->link_ccb) != NULL) {
4758 np->ccb->link_ccb = cp->link_ccb;
4759 if (cp->host_status) {
4760 printk("%s: shall free an active ccb (host_status=%d)\n",
4761 ncr_name(np), cp->host_status);
4762 }
4763 #ifdef DEBUG_NCR53C8XX
4764 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4765 #endif
4766 m_free_dma(cp, sizeof(*cp), "CCB");
4767 }
4768
4769 /* Free allocated tp(s) */
4770
4771 for (target = 0; target < MAX_TARGET ; target++) {
4772 tp=&np->target[target];
4773 for (lun = 0 ; lun < MAX_LUN ; lun++) {
4774 lp = tp->lp[lun];
4775 if (lp) {
4776 #ifdef DEBUG_NCR53C8XX
4777 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4778 #endif
4779 if (lp->jump_ccb != &lp->jump_ccb_0)
4780 m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4781 m_free_dma(lp, sizeof(*lp), "LCB");
4782 }
4783 }
4784 }
4785
4786 if (np->scripth0)
4787 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4788 if (np->script0)
4789 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4790 if (np->ccb)
4791 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4792 m_free_dma(np, sizeof(struct ncb), "NCB");
4793
4794 printk("%s: host resources successfully released\n", inst_name);
4795 }
4796
4797 /*==========================================================
4798 **
4799 **
4800 ** Complete execution of a SCSI command.
4801 ** Signal completion to the generic SCSI driver.
4802 **
4803 **
4804 **==========================================================
4805 */
4806
4807 void ncr_complete (struct ncb *np, struct ccb *cp)
4808 {
4809 struct scsi_cmnd *cmd;
4810 struct tcb *tp;
4811 struct lcb *lp;
4812
4813 /*
4814 ** Sanity check
4815 */
4816
4817 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4818 return;
4819
4820 /*
4821 ** Print minimal debug information.
4822 */
4823
4824 if (DEBUG_FLAGS & DEBUG_TINY)
4825 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4826 cp->host_status,cp->scsi_status);
4827
4828 /*
4829 ** Get command, target and lun pointers.
4830 */
4831
4832 cmd = cp->cmd;
4833 cp->cmd = NULL;
4834 tp = &np->target[cmd->device->id];
4835 lp = tp->lp[cmd->device->lun];
4836
4837 /*
4838 ** We donnot queue more than 1 ccb per target
4839 ** with negotiation at any time. If this ccb was
4840 ** used for negotiation, clear this info in the tcb.
4841 */
4842
4843 if (cp == tp->nego_cp)
4844 tp->nego_cp = NULL;
4845
4846 /*
4847 ** If auto-sense performed, change scsi status.
4848 */
4849 if (cp->auto_sense) {
4850 cp->scsi_status = cp->auto_sense;
4851 }
4852
4853 /*
4854 ** If we were recovering from queue full or performing
4855 ** auto-sense, requeue skipped CCBs to the wait queue.
4856 */
4857
4858 if (lp && lp->held_ccb) {
4859 if (cp == lp->held_ccb) {
4860 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4861 lp->held_ccb = NULL;
4862 }
4863 }
4864
4865 /*
4866 ** Check for parity errors.
4867 */
4868
4869 if (cp->parity_status > 1) {
4870 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4871 }
4872
4873 /*
4874 ** Check for extended errors.
4875 */
4876
4877 if (cp->xerr_status != XE_OK) {
4878 switch (cp->xerr_status) {
4879 case XE_EXTRA_DATA:
4880 PRINT_ADDR(cmd, "extraneous data discarded.\n");
4881 break;
4882 case XE_BAD_PHASE:
4883 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4884 break;
4885 default:
4886 PRINT_ADDR(cmd, "extended error %d.\n",
4887 cp->xerr_status);
4888 break;
4889 }
4890 if (cp->host_status==HS_COMPLETE)
4891 cp->host_status = HS_FAIL;
4892 }
4893
4894 /*
4895 ** Print out any error for debugging purpose.
4896 */
4897 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4898 if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4899 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4900 "scsi_status=%x\n", cmd->cmnd[0],
4901 cp->host_status, cp->scsi_status);
4902 }
4903 }
4904
4905 /*
4906 ** Check the status.
4907 */
4908 if ( (cp->host_status == HS_COMPLETE)
4909 && (cp->scsi_status == S_GOOD ||
4910 cp->scsi_status == S_COND_MET)) {
4911 /*
4912 * All went well (GOOD status).
4913 * CONDITION MET status is returned on
4914 * `Pre-Fetch' or `Search data' success.
4915 */
4916 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4917
4918 /*
4919 ** @RESID@
4920 ** Could dig out the correct value for resid,
4921 ** but it would be quite complicated.
4922 */
4923 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4924
4925 /*
4926 ** Allocate the lcb if not yet.
4927 */
4928 if (!lp)
4929 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4930
4931 tp->bytes += cp->data_len;
4932 tp->transfers ++;
4933
4934 /*
4935 ** If tags was reduced due to queue full,
4936 ** increase tags if 1000 good status received.
4937 */
4938 if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4939 ++lp->num_good;
4940 if (lp->num_good >= 1000) {
4941 lp->num_good = 0;
4942 ++lp->numtags;
4943 ncr_setup_tags (np, cmd->device);
4944 }
4945 }
4946 } else if ((cp->host_status == HS_COMPLETE)
4947 && (cp->scsi_status == S_CHECK_COND)) {
4948 /*
4949 ** Check condition code
4950 */
4951 cmd->result = DID_OK << 16 | S_CHECK_COND;
4952
4953 /*
4954 ** Copy back sense data to caller's buffer.
4955 */
4956 memcpy(cmd->sense_buffer, cp->sense_buf,
4957 min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4958 sizeof(cp->sense_buf)));
4959
4960 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4961 u_char *p = cmd->sense_buffer;
4962 int i;
4963 PRINT_ADDR(cmd, "sense data:");
4964 for (i=0; i<14; i++) printk (" %x", *p++);
4965 printk (".\n");
4966 }
4967 } else if ((cp->host_status == HS_COMPLETE)
4968 && (cp->scsi_status == S_CONFLICT)) {
4969 /*
4970 ** Reservation Conflict condition code
4971 */
4972 cmd->result = DID_OK << 16 | S_CONFLICT;
4973
4974 } else if ((cp->host_status == HS_COMPLETE)
4975 && (cp->scsi_status == S_BUSY ||
4976 cp->scsi_status == S_QUEUE_FULL)) {
4977
4978 /*
4979 ** Target is busy.
4980 */
4981 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4982
4983 } else if ((cp->host_status == HS_SEL_TIMEOUT)
4984 || (cp->host_status == HS_TIMEOUT)) {
4985
4986 /*
4987 ** No response
4988 */
4989 cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
4990
4991 } else if (cp->host_status == HS_RESET) {
4992
4993 /*
4994 ** SCSI bus reset
4995 */
4996 cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
4997
4998 } else if (cp->host_status == HS_ABORTED) {
4999
5000 /*
5001 ** Transfer aborted
5002 */
5003 cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5004
5005 } else {
5006
5007 /*
5008 ** Other protocol messes
5009 */
5010 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5011 cp->host_status, cp->scsi_status, cp);
5012
5013 cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5014 }
5015
5016 /*
5017 ** trace output
5018 */
5019
5020 if (tp->usrflag & UF_TRACE) {
5021 u_char * p;
5022 int i;
5023 PRINT_ADDR(cmd, " CMD:");
5024 p = (u_char*) &cmd->cmnd[0];
5025 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5026
5027 if (cp->host_status==HS_COMPLETE) {
5028 switch (cp->scsi_status) {
5029 case S_GOOD:
5030 printk (" GOOD");
5031 break;
5032 case S_CHECK_COND:
5033 printk (" SENSE:");
5034 p = (u_char*) &cmd->sense_buffer;
5035 for (i=0; i<14; i++)
5036 printk (" %x", *p++);
5037 break;
5038 default:
5039 printk (" STAT: %x\n", cp->scsi_status);
5040 break;
5041 }
5042 } else printk (" HOSTERROR: %x", cp->host_status);
5043 printk ("\n");
5044 }
5045
5046 /*
5047 ** Free this ccb
5048 */
5049 ncr_free_ccb (np, cp);
5050
5051 /*
5052 ** requeue awaiting scsi commands for this lun.
5053 */
5054 if (lp && lp->queuedccbs < lp->queuedepth &&
5055 !list_empty(&lp->wait_ccbq))
5056 ncr_start_next_ccb(np, lp, 2);
5057
5058 /*
5059 ** requeue awaiting scsi commands for this controller.
5060 */
5061 if (np->waiting_list)
5062 requeue_waiting_list(np);
5063
5064 /*
5065 ** signal completion to generic driver.
5066 */
5067 ncr_queue_done_cmd(np, cmd);
5068 }
5069
5070 /*==========================================================
5071 **
5072 **
5073 ** Signal all (or one) control block done.
5074 **
5075 **
5076 **==========================================================
5077 */
5078
5079 /*
5080 ** This CCB has been skipped by the NCR.
5081 ** Queue it in the corresponding unit queue.
5082 */
5083 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5084 {
5085 struct tcb *tp = &np->target[cp->target];
5086 struct lcb *lp = tp->lp[cp->lun];
5087
5088 if (lp && cp != np->ccb) {
5089 cp->host_status &= ~HS_SKIPMASK;
5090 cp->start.schedule.l_paddr =
5091 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5092 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5093 if (cp->queued) {
5094 --lp->queuedccbs;
5095 }
5096 }
5097 if (cp->queued) {
5098 --np->queuedccbs;
5099 cp->queued = 0;
5100 }
5101 }
5102
5103 /*
5104 ** The NCR has completed CCBs.
5105 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5106 */
5107 void ncr_wakeup_done (struct ncb *np)
5108 {
5109 struct ccb *cp;
5110 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5111 int i, j;
5112
5113 i = np->ccb_done_ic;
5114 while (1) {
5115 j = i+1;
5116 if (j >= MAX_DONE)
5117 j = 0;
5118
5119 cp = np->ccb_done[j];
5120 if (!CCB_DONE_VALID(cp))
5121 break;
5122
5123 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5124 np->scripth->done_queue[5*j + 4] =
5125 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5126 MEMORY_BARRIER();
5127 np->scripth->done_queue[5*i + 4] =
5128 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5129
5130 if (cp->host_status & HS_DONEMASK)
5131 ncr_complete (np, cp);
5132 else if (cp->host_status & HS_SKIPMASK)
5133 ncr_ccb_skipped (np, cp);
5134
5135 i = j;
5136 }
5137 np->ccb_done_ic = i;
5138 #else
5139 cp = np->ccb;
5140 while (cp) {
5141 if (cp->host_status & HS_DONEMASK)
5142 ncr_complete (np, cp);
5143 else if (cp->host_status & HS_SKIPMASK)
5144 ncr_ccb_skipped (np, cp);
5145 cp = cp->link_ccb;
5146 }
5147 #endif
5148 }
5149
5150 /*
5151 ** Complete all active CCBs.
5152 */
5153 void ncr_wakeup (struct ncb *np, u_long code)
5154 {
5155 struct ccb *cp = np->ccb;
5156
5157 while (cp) {
5158 if (cp->host_status != HS_IDLE) {
5159 cp->host_status = code;
5160 ncr_complete (np, cp);
5161 }
5162 cp = cp->link_ccb;
5163 }
5164 }
5165
5166 /*
5167 ** Reset ncr chip.
5168 */
5169
5170 /* Some initialisation must be done immediately following reset, for 53c720,
5171 * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5172 * the _detect function.
5173 */
5174 static void ncr_chip_reset(struct ncb *np, int delay)
5175 {
5176 OUTB (nc_istat, SRST);
5177 udelay(delay);
5178 OUTB (nc_istat, 0 );
5179
5180 if (np->features & FE_EHP)
5181 OUTB (nc_ctest0, EHP);
5182 if (np->features & FE_MUX)
5183 OUTB (nc_ctest4, MUX);
5184 }
5185
5186
5187 /*==========================================================
5188 **
5189 **
5190 ** Start NCR chip.
5191 **
5192 **
5193 **==========================================================
5194 */
5195
5196 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5197 {
5198 int i;
5199
5200 /*
5201 ** Reset chip if asked, otherwise just clear fifos.
5202 */
5203
5204 if (reset) {
5205 OUTB (nc_istat, SRST);
5206 udelay(100);
5207 }
5208 else {
5209 OUTB (nc_stest3, TE|CSF);
5210 OUTONB (nc_ctest3, CLF);
5211 }
5212
5213 /*
5214 ** Message.
5215 */
5216
5217 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5218
5219 /*
5220 ** Clear Start Queue
5221 */
5222 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5223 for (i = 1; i < MAX_START + MAX_START; i += 2)
5224 np->scripth0->tryloop[i] =
5225 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5226
5227 /*
5228 ** Start at first entry.
5229 */
5230 np->squeueput = 0;
5231 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5232
5233 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5234 /*
5235 ** Clear Done Queue
5236 */
5237 for (i = 0; i < MAX_DONE; i++) {
5238 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5239 np->scripth0->done_queue[5*i + 4] =
5240 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5241 }
5242 #endif
5243
5244 /*
5245 ** Start at first entry.
5246 */
5247 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5248 np->ccb_done_ic = MAX_DONE-1;
5249 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5250 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5251
5252 /*
5253 ** Wakeup all pending jobs.
5254 */
5255 ncr_wakeup (np, code);
5256
5257 /*
5258 ** Init chip.
5259 */
5260
5261 /*
5262 ** Remove reset; big delay because the 895 needs time for the
5263 ** bus mode to settle
5264 */
5265 ncr_chip_reset(np, 2000);
5266
5267 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5268 /* full arb., ena parity, par->ATN */
5269 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5270
5271 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5272
5273 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5274 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5275 OUTB (nc_istat , SIGP ); /* Signal Process */
5276 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5277 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5278
5279 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5280 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5281 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5282 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5283
5284 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5285 OUTB (nc_stest3, TE); /* TolerANT enable */
5286 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5287
5288 /*
5289 ** Disable disconnects.
5290 */
5291
5292 np->disc = 0;
5293
5294 /*
5295 ** Enable GPIO0 pin for writing if LED support.
5296 */
5297
5298 if (np->features & FE_LED0) {
5299 OUTOFFB (nc_gpcntl, 0x01);
5300 }
5301
5302 /*
5303 ** enable ints
5304 */
5305
5306 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5307 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5308
5309 /*
5310 ** Fill in target structure.
5311 ** Reinitialize usrsync.
5312 ** Reinitialize usrwide.
5313 ** Prepare sync negotiation according to actual SCSI bus mode.
5314 */
5315
5316 for (i=0;i<MAX_TARGET;i++) {
5317 struct tcb *tp = &np->target[i];
5318
5319 tp->sval = 0;
5320 tp->wval = np->rv_scntl3;
5321
5322 if (tp->usrsync != 255) {
5323 if (tp->usrsync <= np->maxsync) {
5324 if (tp->usrsync < np->minsync) {
5325 tp->usrsync = np->minsync;
5326 }
5327 }
5328 else
5329 tp->usrsync = 255;
5330 }
5331
5332 if (tp->usrwide > np->maxwide)
5333 tp->usrwide = np->maxwide;
5334
5335 }
5336
5337 /*
5338 ** Start script processor.
5339 */
5340 if (np->paddr2) {
5341 if (bootverbose)
5342 printk ("%s: Downloading SCSI SCRIPTS.\n",
5343 ncr_name(np));
5344 OUTL (nc_scratcha, vtobus(np->script0));
5345 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5346 }
5347 else
5348 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5349 }
5350
5351 /*==========================================================
5352 **
5353 ** Prepare the negotiation values for wide and
5354 ** synchronous transfers.
5355 **
5356 **==========================================================
5357 */
5358
5359 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5360 {
5361 /*
5362 ** minsync unit is 4ns !
5363 */
5364
5365 u_long minsync = tp->usrsync;
5366
5367 /*
5368 ** SCSI bus mode limit
5369 */
5370
5371 if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5372 if (minsync < 12) minsync = 12;
5373 }
5374
5375 /*
5376 ** our limit ..
5377 */
5378
5379 if (minsync < np->minsync)
5380 minsync = np->minsync;
5381
5382 /*
5383 ** divider limit
5384 */
5385
5386 if (minsync > np->maxsync)
5387 minsync = 255;
5388
5389 if (tp->maxoffs > np->maxoffs)
5390 tp->maxoffs = np->maxoffs;
5391
5392 tp->minsync = minsync;
5393 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5394
5395 /*
5396 ** period=0: has to negotiate sync transfer
5397 */
5398
5399 tp->period=0;
5400
5401 /*
5402 ** widedone=0: has to negotiate wide transfer
5403 */
5404 tp->widedone=0;
5405 }
5406
5407 /*==========================================================
5408 **
5409 ** Get clock factor and sync divisor for a given
5410 ** synchronous factor period.
5411 ** Returns the clock factor (in sxfer) and scntl3
5412 ** synchronous divisor field.
5413 **
5414 **==========================================================
5415 */
5416
5417 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5418 {
5419 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5420 int div = np->clock_divn; /* Number of divisors supported */
5421 u_long fak; /* Sync factor in sxfer */
5422 u_long per; /* Period in tenths of ns */
5423 u_long kpc; /* (per * clk) */
5424
5425 /*
5426 ** Compute the synchronous period in tenths of nano-seconds
5427 */
5428 if (sfac <= 10) per = 250;
5429 else if (sfac == 11) per = 303;
5430 else if (sfac == 12) per = 500;
5431 else per = 40 * sfac;
5432
5433 /*
5434 ** Look for the greatest clock divisor that allows an
5435 ** input speed faster than the period.
5436 */
5437 kpc = per * clk;
5438 while (--div > 0)
5439 if (kpc >= (div_10M[div] << 2)) break;
5440
5441 /*
5442 ** Calculate the lowest clock factor that allows an output
5443 ** speed not faster than the period.
5444 */
5445 fak = (kpc - 1) / div_10M[div] + 1;
5446
5447 #if 0 /* This optimization does not seem very useful */
5448
5449 per = (fak * div_10M[div]) / clk;
5450
5451 /*
5452 ** Why not to try the immediate lower divisor and to choose
5453 ** the one that allows the fastest output speed ?
5454 ** We don't want input speed too much greater than output speed.
5455 */
5456 if (div >= 1 && fak < 8) {
5457 u_long fak2, per2;
5458 fak2 = (kpc - 1) / div_10M[div-1] + 1;
5459 per2 = (fak2 * div_10M[div-1]) / clk;
5460 if (per2 < per && fak2 <= 8) {
5461 fak = fak2;
5462 per = per2;
5463 --div;
5464 }
5465 }
5466 #endif
5467
5468 if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5469
5470 /*
5471 ** Compute and return sync parameters for the ncr
5472 */
5473 *fakp = fak - 4;
5474 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5475 }
5476
5477
5478 /*==========================================================
5479 **
5480 ** Set actual values, sync status and patch all ccbs of
5481 ** a target according to new sync/wide agreement.
5482 **
5483 **==========================================================
5484 */
5485
5486 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5487 {
5488 struct ccb *cp;
5489 struct tcb *tp = &np->target[target];
5490
5491 /*
5492 ** set actual value and sync_status
5493 */
5494 OUTB (nc_sxfer, tp->sval);
5495 np->sync_st = tp->sval;
5496 OUTB (nc_scntl3, tp->wval);
5497 np->wide_st = tp->wval;
5498
5499 /*
5500 ** patch ALL ccbs of this target.
5501 */
5502 for (cp = np->ccb; cp; cp = cp->link_ccb) {
5503 if (!cp->cmd) continue;
5504 if (scmd_id(cp->cmd) != target) continue;
5505 #if 0
5506 cp->sync_status = tp->sval;
5507 cp->wide_status = tp->wval;
5508 #endif
5509 cp->phys.select.sel_scntl3 = tp->wval;
5510 cp->phys.select.sel_sxfer = tp->sval;
5511 }
5512 }
5513
5514 /*==========================================================
5515 **
5516 ** Switch sync mode for current job and it's target
5517 **
5518 **==========================================================
5519 */
5520
5521 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5522 {
5523 struct scsi_cmnd *cmd = cp->cmd;
5524 struct tcb *tp;
5525 u_char target = INB (nc_sdid) & 0x0f;
5526 u_char idiv;
5527
5528 BUG_ON(target != (scmd_id(cmd) & 0xf));
5529
5530 tp = &np->target[target];
5531
5532 if (!scntl3 || !(sxfer & 0x1f))
5533 scntl3 = np->rv_scntl3;
5534 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5535
5536 /*
5537 ** Deduce the value of controller sync period from scntl3.
5538 ** period is in tenths of nano-seconds.
5539 */
5540
5541 idiv = ((scntl3 >> 4) & 0x7);
5542 if ((sxfer & 0x1f) && idiv)
5543 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5544 else
5545 tp->period = 0xffff;
5546
5547 /* Stop there if sync parameters are unchanged */
5548 if (tp->sval == sxfer && tp->wval == scntl3)
5549 return;
5550 tp->sval = sxfer;
5551 tp->wval = scntl3;
5552
5553 if (sxfer & 0x01f) {
5554 /* Disable extended Sreq/Sack filtering */
5555 if (tp->period <= 2000)
5556 OUTOFFB(nc_stest2, EXT);
5557 }
5558
5559 spi_display_xfer_agreement(tp->starget);
5560
5561 /*
5562 ** set actual value and sync_status
5563 ** patch ALL ccbs of this target.
5564 */
5565 ncr_set_sync_wide_status(np, target);
5566 }
5567
5568 /*==========================================================
5569 **
5570 ** Switch wide mode for current job and it's target
5571 ** SCSI specs say: a SCSI device that accepts a WDTR
5572 ** message shall reset the synchronous agreement to
5573 ** asynchronous mode.
5574 **
5575 **==========================================================
5576 */
5577
5578 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5579 {
5580 struct scsi_cmnd *cmd = cp->cmd;
5581 u16 target = INB (nc_sdid) & 0x0f;
5582 struct tcb *tp;
5583 u_char scntl3;
5584 u_char sxfer;
5585
5586 BUG_ON(target != (scmd_id(cmd) & 0xf));
5587
5588 tp = &np->target[target];
5589 tp->widedone = wide+1;
5590 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5591
5592 sxfer = ack ? 0 : tp->sval;
5593
5594 /*
5595 ** Stop there if sync/wide parameters are unchanged
5596 */
5597 if (tp->sval == sxfer && tp->wval == scntl3) return;
5598 tp->sval = sxfer;
5599 tp->wval = scntl3;
5600
5601 /*
5602 ** Bells and whistles ;-)
5603 */
5604 if (bootverbose >= 2) {
5605 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5606 (scntl3 & EWS) ? "en" : "dis");
5607 }
5608
5609 /*
5610 ** set actual value and sync_status
5611 ** patch ALL ccbs of this target.
5612 */
5613 ncr_set_sync_wide_status(np, target);
5614 }
5615
5616 /*==========================================================
5617 **
5618 ** Switch tagged mode for a target.
5619 **
5620 **==========================================================
5621 */
5622
5623 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5624 {
5625 unsigned char tn = sdev->id, ln = sdev->lun;
5626 struct tcb *tp = &np->target[tn];
5627 struct lcb *lp = tp->lp[ln];
5628 u_char reqtags, maxdepth;
5629
5630 /*
5631 ** Just in case ...
5632 */
5633 if ((!tp) || (!lp) || !sdev)
5634 return;
5635
5636 /*
5637 ** If SCSI device queue depth is not yet set, leave here.
5638 */
5639 if (!lp->scdev_depth)
5640 return;
5641
5642 /*
5643 ** Donnot allow more tags than the SCSI driver can queue
5644 ** for this device.
5645 ** Donnot allow more tags than we can handle.
5646 */
5647 maxdepth = lp->scdev_depth;
5648 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5649 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5650 if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5651
5652 /*
5653 ** only devices conformant to ANSI Version >= 2
5654 ** only devices capable of tagged commands
5655 ** only if enabled by user ..
5656 */
5657 if (sdev->tagged_supported && lp->numtags > 1) {
5658 reqtags = lp->numtags;
5659 } else {
5660 reqtags = 1;
5661 }
5662
5663 /*
5664 ** Update max number of tags
5665 */
5666 lp->numtags = reqtags;
5667 if (lp->numtags > lp->maxtags)
5668 lp->maxtags = lp->numtags;
5669
5670 /*
5671 ** If we want to switch tag mode, we must wait
5672 ** for no CCB to be active.
5673 */
5674 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5675 if (lp->queuedepth == reqtags) /* Already announced */
5676 return;
5677 lp->queuedepth = reqtags;
5678 }
5679 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5680 lp->queuedepth = reqtags;
5681 return;
5682 }
5683 else { /* Want to switch tag mode */
5684 if (lp->busyccbs) /* If not yet safe, return */
5685 return;
5686 lp->queuedepth = reqtags;
5687 lp->usetags = reqtags > 1 ? 1 : 0;
5688 }
5689
5690 /*
5691 ** Patch the lun mini-script, according to tag mode.
5692 */
5693 lp->jump_tag.l_paddr = lp->usetags?
5694 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5695 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5696
5697 /*
5698 ** Announce change to user.
5699 */
5700 if (bootverbose) {
5701 if (lp->usetags) {
5702 dev_info(&sdev->sdev_gendev,
5703 "tagged command queue depth set to %d\n",
5704 reqtags);
5705 } else {
5706 dev_info(&sdev->sdev_gendev,
5707 "tagged command queueing disabled\n");
5708 }
5709 }
5710 }
5711
5712 /*==========================================================
5713 **
5714 **
5715 ** ncr timeout handler.
5716 **
5717 **
5718 **==========================================================
5719 **
5720 ** Misused to keep the driver running when
5721 ** interrupts are not configured correctly.
5722 **
5723 **----------------------------------------------------------
5724 */
5725
5726 static void ncr_timeout (struct ncb *np)
5727 {
5728 u_long thistime = jiffies;
5729
5730 /*
5731 ** If release process in progress, let's go
5732 ** Set the release stage from 1 to 2 to synchronize
5733 ** with the release process.
5734 */
5735
5736 if (np->release_stage) {
5737 if (np->release_stage == 1) np->release_stage = 2;
5738 return;
5739 }
5740
5741 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5742 add_timer(&np->timer);
5743
5744 /*
5745 ** If we are resetting the ncr, wait for settle_time before
5746 ** clearing it. Then command processing will be resumed.
5747 */
5748 if (np->settle_time) {
5749 if (np->settle_time <= thistime) {
5750 if (bootverbose > 1)
5751 printk("%s: command processing resumed\n", ncr_name(np));
5752 np->settle_time = 0;
5753 np->disc = 1;
5754 requeue_waiting_list(np);
5755 }
5756 return;
5757 }
5758
5759 /*
5760 ** Since the generic scsi driver only allows us 0.5 second
5761 ** to perform abort of a command, we must look at ccbs about
5762 ** every 0.25 second.
5763 */
5764 if (np->lasttime + 4*HZ < thistime) {
5765 /*
5766 ** block ncr interrupts
5767 */
5768 np->lasttime = thistime;
5769 }
5770
5771 #ifdef SCSI_NCR_BROKEN_INTR
5772 if (INB(nc_istat) & (INTF|SIP|DIP)) {
5773
5774 /*
5775 ** Process pending interrupts.
5776 */
5777 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5778 ncr_exception (np);
5779 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5780 }
5781 #endif /* SCSI_NCR_BROKEN_INTR */
5782 }
5783
5784 /*==========================================================
5785 **
5786 ** log message for real hard errors
5787 **
5788 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5789 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5790 **
5791 ** exception register:
5792 ** ds: dstat
5793 ** si: sist
5794 **
5795 ** SCSI bus lines:
5796 ** so: control lines as driver by NCR.
5797 ** si: control lines as seen by NCR.
5798 ** sd: scsi data lines as seen by NCR.
5799 **
5800 ** wide/fastmode:
5801 ** sxfer: (see the manual)
5802 ** scntl3: (see the manual)
5803 **
5804 ** current script command:
5805 ** dsp: script address (relative to start of script).
5806 ** dbc: first word of script command.
5807 **
5808 ** First 16 register of the chip:
5809 ** r0..rf
5810 **
5811 **==========================================================
5812 */
5813
5814 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5815 {
5816 u32 dsp;
5817 int script_ofs;
5818 int script_size;
5819 char *script_name;
5820 u_char *script_base;
5821 int i;
5822
5823 dsp = INL (nc_dsp);
5824
5825 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5826 script_ofs = dsp - np->p_script;
5827 script_size = sizeof(struct script);
5828 script_base = (u_char *) np->script0;
5829 script_name = "script";
5830 }
5831 else if (np->p_scripth < dsp &&
5832 dsp <= np->p_scripth + sizeof(struct scripth)) {
5833 script_ofs = dsp - np->p_scripth;
5834 script_size = sizeof(struct scripth);
5835 script_base = (u_char *) np->scripth0;
5836 script_name = "scripth";
5837 } else {
5838 script_ofs = dsp;
5839 script_size = 0;
5840 script_base = NULL;
5841 script_name = "mem";
5842 }
5843
5844 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5845 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5846 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5847 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5848 (unsigned)INL (nc_dbc));
5849
5850 if (((script_ofs & 3) == 0) &&
5851 (unsigned)script_ofs < script_size) {
5852 printk ("%s: script cmd = %08x\n", ncr_name(np),
5853 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5854 }
5855
5856 printk ("%s: regdump:", ncr_name(np));
5857 for (i=0; i<16;i++)
5858 printk (" %02x", (unsigned)INB_OFF(i));
5859 printk (".\n");
5860 }
5861
5862 /*============================================================
5863 **
5864 ** ncr chip exception handler.
5865 **
5866 **============================================================
5867 **
5868 ** In normal cases, interrupt conditions occur one at a
5869 ** time. The ncr is able to stack in some extra registers
5870 ** other interrupts that will occur after the first one.
5871 ** But, several interrupts may occur at the same time.
5872 **
5873 ** We probably should only try to deal with the normal
5874 ** case, but it seems that multiple interrupts occur in
5875 ** some cases that are not abnormal at all.
5876 **
5877 ** The most frequent interrupt condition is Phase Mismatch.
5878 ** We should want to service this interrupt quickly.
5879 ** A SCSI parity error may be delivered at the same time.
5880 ** The SIR interrupt is not very frequent in this driver,
5881 ** since the INTFLY is likely used for command completion
5882 ** signaling.
5883 ** The Selection Timeout interrupt may be triggered with
5884 ** IID and/or UDC.
5885 ** The SBMC interrupt (SCSI Bus Mode Change) may probably
5886 ** occur at any time.
5887 **
5888 ** This handler try to deal as cleverly as possible with all
5889 ** the above.
5890 **
5891 **============================================================
5892 */
5893
5894 void ncr_exception (struct ncb *np)
5895 {
5896 u_char istat, dstat;
5897 u16 sist;
5898 int i;
5899
5900 /*
5901 ** interrupt on the fly ?
5902 ** Since the global header may be copied back to a CCB
5903 ** using a posted PCI memory write, the last operation on
5904 ** the istat register is a READ in order to flush posted
5905 ** PCI write commands.
5906 */
5907 istat = INB (nc_istat);
5908 if (istat & INTF) {
5909 OUTB (nc_istat, (istat & SIGP) | INTF);
5910 istat = INB (nc_istat);
5911 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5912 ncr_wakeup_done (np);
5913 }
5914
5915 if (!(istat & (SIP|DIP)))
5916 return;
5917
5918 if (istat & CABRT)
5919 OUTB (nc_istat, CABRT);
5920
5921 /*
5922 ** Steinbach's Guideline for Systems Programming:
5923 ** Never test for an error condition you don't know how to handle.
5924 */
5925
5926 sist = (istat & SIP) ? INW (nc_sist) : 0;
5927 dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5928
5929 if (DEBUG_FLAGS & DEBUG_TINY)
5930 printk ("<%d|%x:%x|%x:%x>",
5931 (int)INB(nc_scr0),
5932 dstat,sist,
5933 (unsigned)INL(nc_dsp),
5934 (unsigned)INL(nc_dbc));
5935
5936 /*========================================================
5937 ** First, interrupts we want to service cleanly.
5938 **
5939 ** Phase mismatch is the most frequent interrupt, and
5940 ** so we have to service it as quickly and as cleanly
5941 ** as possible.
5942 ** Programmed interrupts are rarely used in this driver,
5943 ** but we must handle them cleanly anyway.
5944 ** We try to deal with PAR and SBMC combined with
5945 ** some other interrupt(s).
5946 **=========================================================
5947 */
5948
5949 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5950 !(dstat & (MDPE|BF|ABRT|IID))) {
5951 if ((sist & SBMC) && ncr_int_sbmc (np))
5952 return;
5953 if ((sist & PAR) && ncr_int_par (np))
5954 return;
5955 if (sist & MA) {
5956 ncr_int_ma (np);
5957 return;
5958 }
5959 if (dstat & SIR) {
5960 ncr_int_sir (np);
5961 return;
5962 }
5963 /*
5964 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5965 */
5966 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5967 printk( "%s: unknown interrupt(s) ignored, "
5968 "ISTAT=%x DSTAT=%x SIST=%x\n",
5969 ncr_name(np), istat, dstat, sist);
5970 return;
5971 }
5972 OUTONB_STD ();
5973 return;
5974 }
5975
5976 /*========================================================
5977 ** Now, interrupts that need some fixing up.
5978 ** Order and multiple interrupts is so less important.
5979 **
5980 ** If SRST has been asserted, we just reset the chip.
5981 **
5982 ** Selection is intirely handled by the chip. If the
5983 ** chip says STO, we trust it. Seems some other
5984 ** interrupts may occur at the same time (UDC, IID), so
5985 ** we ignore them. In any case we do enough fix-up
5986 ** in the service routine.
5987 ** We just exclude some fatal dma errors.
5988 **=========================================================
5989 */
5990
5991 if (sist & RST) {
5992 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
5993 return;
5994 }
5995
5996 if ((sist & STO) &&
5997 !(dstat & (MDPE|BF|ABRT))) {
5998 /*
5999 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6000 */
6001 OUTONB (nc_ctest3, CLF);
6002
6003 ncr_int_sto (np);
6004 return;
6005 }
6006
6007 /*=========================================================
6008 ** Now, interrupts we are not able to recover cleanly.
6009 ** (At least for the moment).
6010 **
6011 ** Do the register dump.
6012 ** Log message for real hard errors.
6013 ** Clear all fifos.
6014 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6015 ** BUS and the chip.
6016 ** We are more soft for UDC.
6017 **=========================================================
6018 */
6019
6020 if (time_after(jiffies, np->regtime)) {
6021 np->regtime = jiffies + 10*HZ;
6022 for (i = 0; i<sizeof(np->regdump); i++)
6023 ((char*)&np->regdump)[i] = INB_OFF(i);
6024 np->regdump.nc_dstat = dstat;
6025 np->regdump.nc_sist = sist;
6026 }
6027
6028 ncr_log_hard_error(np, sist, dstat);
6029
6030 printk ("%s: have to clear fifos.\n", ncr_name (np));
6031 OUTB (nc_stest3, TE|CSF);
6032 OUTONB (nc_ctest3, CLF);
6033
6034 if ((sist & (SGE)) ||
6035 (dstat & (MDPE|BF|ABRT|IID))) {
6036 ncr_start_reset(np);
6037 return;
6038 }
6039
6040 if (sist & HTH) {
6041 printk ("%s: handshake timeout\n", ncr_name(np));
6042 ncr_start_reset(np);
6043 return;
6044 }
6045
6046 if (sist & UDC) {
6047 printk ("%s: unexpected disconnect\n", ncr_name(np));
6048 OUTB (HS_PRT, HS_UNEXPECTED);
6049 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6050 return;
6051 }
6052
6053 /*=========================================================
6054 ** We just miss the cause of the interrupt. :(
6055 ** Print a message. The timeout will do the real work.
6056 **=========================================================
6057 */
6058 printk ("%s: unknown interrupt\n", ncr_name(np));
6059 }
6060
6061 /*==========================================================
6062 **
6063 ** ncr chip exception handler for selection timeout
6064 **
6065 **==========================================================
6066 **
6067 ** There seems to be a bug in the 53c810.
6068 ** Although a STO-Interrupt is pending,
6069 ** it continues executing script commands.
6070 ** But it will fail and interrupt (IID) on
6071 ** the next instruction where it's looking
6072 ** for a valid phase.
6073 **
6074 **----------------------------------------------------------
6075 */
6076
6077 void ncr_int_sto (struct ncb *np)
6078 {
6079 u_long dsa;
6080 struct ccb *cp;
6081 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6082
6083 /*
6084 ** look for ccb and set the status.
6085 */
6086
6087 dsa = INL (nc_dsa);
6088 cp = np->ccb;
6089 while (cp && (CCB_PHYS (cp, phys) != dsa))
6090 cp = cp->link_ccb;
6091
6092 if (cp) {
6093 cp-> host_status = HS_SEL_TIMEOUT;
6094 ncr_complete (np, cp);
6095 }
6096
6097 /*
6098 ** repair start queue and jump to start point.
6099 */
6100
6101 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6102 return;
6103 }
6104
6105 /*==========================================================
6106 **
6107 ** ncr chip exception handler for SCSI bus mode change
6108 **
6109 **==========================================================
6110 **
6111 ** spi2-r12 11.2.3 says a transceiver mode change must
6112 ** generate a reset event and a device that detects a reset
6113 ** event shall initiate a hard reset. It says also that a
6114 ** device that detects a mode change shall set data transfer
6115 ** mode to eight bit asynchronous, etc...
6116 ** So, just resetting should be enough.
6117 **
6118 **
6119 **----------------------------------------------------------
6120 */
6121
6122 static int ncr_int_sbmc (struct ncb *np)
6123 {
6124 u_char scsi_mode = INB (nc_stest4) & SMODE;
6125
6126 if (scsi_mode != np->scsi_mode) {
6127 printk("%s: SCSI bus mode change from %x to %x.\n",
6128 ncr_name(np), np->scsi_mode, scsi_mode);
6129
6130 np->scsi_mode = scsi_mode;
6131
6132
6133 /*
6134 ** Suspend command processing for 1 second and
6135 ** reinitialize all except the chip.
6136 */
6137 np->settle_time = jiffies + HZ;
6138 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6139 return 1;
6140 }
6141 return 0;
6142 }
6143
6144 /*==========================================================
6145 **
6146 ** ncr chip exception handler for SCSI parity error.
6147 **
6148 **==========================================================
6149 **
6150 **
6151 **----------------------------------------------------------
6152 */
6153
6154 static int ncr_int_par (struct ncb *np)
6155 {
6156 u_char hsts = INB (HS_PRT);
6157 u32 dbc = INL (nc_dbc);
6158 u_char sstat1 = INB (nc_sstat1);
6159 int phase = -1;
6160 int msg = -1;
6161 u32 jmp;
6162
6163 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6164 ncr_name(np), hsts, dbc, sstat1);
6165
6166 /*
6167 * Ignore the interrupt if the NCR is not connected
6168 * to the SCSI bus, since the right work should have
6169 * been done on unexpected disconnection handling.
6170 */
6171 if (!(INB (nc_scntl1) & ISCON))
6172 return 0;
6173
6174 /*
6175 * If the nexus is not clearly identified, reset the bus.
6176 * We will try to do better later.
6177 */
6178 if (hsts & HS_INVALMASK)
6179 goto reset_all;
6180
6181 /*
6182 * If the SCSI parity error occurs in MSG IN phase, prepare a
6183 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6184 * ERROR message and let the device decide to retry the command
6185 * or to terminate with check condition. If we were in MSG IN
6186 * phase waiting for the response of a negotiation, we will
6187 * get SIR_NEGO_FAILED at dispatch.
6188 */
6189 if (!(dbc & 0xc0000000))
6190 phase = (dbc >> 24) & 7;
6191 if (phase == 7)
6192 msg = MSG_PARITY_ERROR;
6193 else
6194 msg = INITIATOR_ERROR;
6195
6196
6197 /*
6198 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6199 * script that will ignore all data in bytes until phase
6200 * change, since we are not sure the chip will wait the phase
6201 * change prior to delivering the interrupt.
6202 */
6203 if (phase == 1)
6204 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6205 else
6206 jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6207
6208 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6209 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6210
6211 np->msgout[0] = msg;
6212 OUTL_DSP (jmp);
6213 return 1;
6214
6215 reset_all:
6216 ncr_start_reset(np);
6217 return 1;
6218 }
6219
6220 /*==========================================================
6221 **
6222 **
6223 ** ncr chip exception handler for phase errors.
6224 **
6225 **
6226 **==========================================================
6227 **
6228 ** We have to construct a new transfer descriptor,
6229 ** to transfer the rest of the current block.
6230 **
6231 **----------------------------------------------------------
6232 */
6233
6234 static void ncr_int_ma (struct ncb *np)
6235 {
6236 u32 dbc;
6237 u32 rest;
6238 u32 dsp;
6239 u32 dsa;
6240 u32 nxtdsp;
6241 u32 newtmp;
6242 u32 *vdsp;
6243 u32 oadr, olen;
6244 u32 *tblp;
6245 ncrcmd *newcmd;
6246 u_char cmd, sbcl;
6247 struct ccb *cp;
6248
6249 dsp = INL (nc_dsp);
6250 dbc = INL (nc_dbc);
6251 sbcl = INB (nc_sbcl);
6252
6253 cmd = dbc >> 24;
6254 rest = dbc & 0xffffff;
6255
6256 /*
6257 ** Take into account dma fifo and various buffers and latches,
6258 ** only if the interrupted phase is an OUTPUT phase.
6259 */
6260
6261 if ((cmd & 1) == 0) {
6262 u_char ctest5, ss0, ss2;
6263 u16 delta;
6264
6265 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6266 if (ctest5 & DFS)
6267 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6268 else
6269 delta=(INB (nc_dfifo) - rest) & 0x7f;
6270
6271 /*
6272 ** The data in the dma fifo has not been transferred to
6273 ** the target -> add the amount to the rest
6274 ** and clear the data.
6275 ** Check the sstat2 register in case of wide transfer.
6276 */
6277
6278 rest += delta;
6279 ss0 = INB (nc_sstat0);
6280 if (ss0 & OLF) rest++;
6281 if (ss0 & ORF) rest++;
6282 if (INB(nc_scntl3) & EWS) {
6283 ss2 = INB (nc_sstat2);
6284 if (ss2 & OLF1) rest++;
6285 if (ss2 & ORF1) rest++;
6286 }
6287
6288 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6289 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6290 (unsigned) rest, (unsigned) delta, ss0);
6291
6292 } else {
6293 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6294 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6295 }
6296
6297 /*
6298 ** Clear fifos.
6299 */
6300 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6301 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6302
6303 /*
6304 ** locate matching cp.
6305 ** if the interrupted phase is DATA IN or DATA OUT,
6306 ** trust the global header.
6307 */
6308 dsa = INL (nc_dsa);
6309 if (!(cmd & 6)) {
6310 cp = np->header.cp;
6311 if (CCB_PHYS(cp, phys) != dsa)
6312 cp = NULL;
6313 } else {
6314 cp = np->ccb;
6315 while (cp && (CCB_PHYS (cp, phys) != dsa))
6316 cp = cp->link_ccb;
6317 }
6318
6319 /*
6320 ** try to find the interrupted script command,
6321 ** and the address at which to continue.
6322 */
6323 vdsp = NULL;
6324 nxtdsp = 0;
6325 if (dsp > np->p_script &&
6326 dsp <= np->p_script + sizeof(struct script)) {
6327 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6328 nxtdsp = dsp;
6329 }
6330 else if (dsp > np->p_scripth &&
6331 dsp <= np->p_scripth + sizeof(struct scripth)) {
6332 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6333 nxtdsp = dsp;
6334 }
6335 else if (cp) {
6336 if (dsp == CCB_PHYS (cp, patch[2])) {
6337 vdsp = &cp->patch[0];
6338 nxtdsp = scr_to_cpu(vdsp[3]);
6339 }
6340 else if (dsp == CCB_PHYS (cp, patch[6])) {
6341 vdsp = &cp->patch[4];
6342 nxtdsp = scr_to_cpu(vdsp[3]);
6343 }
6344 }
6345
6346 /*
6347 ** log the information
6348 */
6349
6350 if (DEBUG_FLAGS & DEBUG_PHASE) {
6351 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6352 cp, np->header.cp,
6353 (unsigned)dsp,
6354 (unsigned)nxtdsp, vdsp, cmd);
6355 }
6356
6357 /*
6358 ** cp=0 means that the DSA does not point to a valid control
6359 ** block. This should not happen since we donnot use multi-byte
6360 ** move while we are being reselected ot after command complete.
6361 ** We are not able to recover from such a phase error.
6362 */
6363 if (!cp) {
6364 printk ("%s: SCSI phase error fixup: "
6365 "CCB already dequeued (0x%08lx)\n",
6366 ncr_name (np), (u_long) np->header.cp);
6367 goto reset_all;
6368 }
6369
6370 /*
6371 ** get old startaddress and old length.
6372 */
6373
6374 oadr = scr_to_cpu(vdsp[1]);
6375
6376 if (cmd & 0x10) { /* Table indirect */
6377 tblp = (u32 *) ((char*) &cp->phys + oadr);
6378 olen = scr_to_cpu(tblp[0]);
6379 oadr = scr_to_cpu(tblp[1]);
6380 } else {
6381 tblp = (u32 *) 0;
6382 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6383 }
6384
6385 if (DEBUG_FLAGS & DEBUG_PHASE) {
6386 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6387 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6388 tblp,
6389 (unsigned) olen,
6390 (unsigned) oadr);
6391 }
6392
6393 /*
6394 ** check cmd against assumed interrupted script command.
6395 */
6396
6397 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6398 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6399 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6400
6401 goto reset_all;
6402 }
6403
6404 /*
6405 ** cp != np->header.cp means that the header of the CCB
6406 ** currently being processed has not yet been copied to
6407 ** the global header area. That may happen if the device did
6408 ** not accept all our messages after having been selected.
6409 */
6410 if (cp != np->header.cp) {
6411 printk ("%s: SCSI phase error fixup: "
6412 "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6413 ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6414 }
6415
6416 /*
6417 ** if old phase not dataphase, leave here.
6418 */
6419
6420 if (cmd & 0x06) {
6421 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6422 cmd&7, sbcl&7, (unsigned)olen,
6423 (unsigned)oadr, (unsigned)rest);
6424 goto unexpected_phase;
6425 }
6426
6427 /*
6428 ** choose the correct patch area.
6429 ** if savep points to one, choose the other.
6430 */
6431
6432 newcmd = cp->patch;
6433 newtmp = CCB_PHYS (cp, patch);
6434 if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6435 newcmd = &cp->patch[4];
6436 newtmp = CCB_PHYS (cp, patch[4]);
6437 }
6438
6439 /*
6440 ** fillin the commands
6441 */
6442
6443 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6444 newcmd[1] = cpu_to_scr(oadr + olen - rest);
6445 newcmd[2] = cpu_to_scr(SCR_JUMP);
6446 newcmd[3] = cpu_to_scr(nxtdsp);
6447
6448 if (DEBUG_FLAGS & DEBUG_PHASE) {
6449 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6450 (int) (newcmd - cp->patch),
6451 (unsigned)scr_to_cpu(newcmd[0]),
6452 (unsigned)scr_to_cpu(newcmd[1]),
6453 (unsigned)scr_to_cpu(newcmd[2]),
6454 (unsigned)scr_to_cpu(newcmd[3]));
6455 }
6456 /*
6457 ** fake the return address (to the patch).
6458 ** and restart script processor at dispatcher.
6459 */
6460 OUTL (nc_temp, newtmp);
6461 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6462 return;
6463
6464 /*
6465 ** Unexpected phase changes that occurs when the current phase
6466 ** is not a DATA IN or DATA OUT phase are due to error conditions.
6467 ** Such event may only happen when the SCRIPTS is using a
6468 ** multibyte SCSI MOVE.
6469 **
6470 ** Phase change Some possible cause
6471 **
6472 ** COMMAND --> MSG IN SCSI parity error detected by target.
6473 ** COMMAND --> STATUS Bad command or refused by target.
6474 ** MSG OUT --> MSG IN Message rejected by target.
6475 ** MSG OUT --> COMMAND Bogus target that discards extended
6476 ** negotiation messages.
6477 **
6478 ** The code below does not care of the new phase and so
6479 ** trusts the target. Why to annoy it ?
6480 ** If the interrupted phase is COMMAND phase, we restart at
6481 ** dispatcher.
6482 ** If a target does not get all the messages after selection,
6483 ** the code assumes blindly that the target discards extended
6484 ** messages and clears the negotiation status.
6485 ** If the target does not want all our response to negotiation,
6486 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6487 ** bloat for such a should_not_happen situation).
6488 ** In all other situation, we reset the BUS.
6489 ** Are these assumptions reasonable ? (Wait and see ...)
6490 */
6491 unexpected_phase:
6492 dsp -= 8;
6493 nxtdsp = 0;
6494
6495 switch (cmd & 7) {
6496 case 2: /* COMMAND phase */
6497 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6498 break;
6499 #if 0
6500 case 3: /* STATUS phase */
6501 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6502 break;
6503 #endif
6504 case 6: /* MSG OUT phase */
6505 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6506 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6507 cp->host_status = HS_BUSY;
6508 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6509 }
6510 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6511 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6512 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6513 }
6514 break;
6515 #if 0
6516 case 7: /* MSG IN phase */
6517 nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6518 break;
6519 #endif
6520 }
6521
6522 if (nxtdsp) {
6523 OUTL_DSP (nxtdsp);
6524 return;
6525 }
6526
6527 reset_all:
6528 ncr_start_reset(np);
6529 }
6530
6531
6532 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6533 {
6534 struct scsi_cmnd *cmd = cp->cmd;
6535 struct tcb *tp = &np->target[cmd->device->id];
6536 struct lcb *lp = tp->lp[cmd->device->lun];
6537 struct list_head *qp;
6538 struct ccb * cp2;
6539 int disc_cnt = 0;
6540 int busy_cnt = 0;
6541 u32 startp;
6542 u_char s_status = INB (SS_PRT);
6543
6544 /*
6545 ** Let the SCRIPTS processor skip all not yet started CCBs,
6546 ** and count disconnected CCBs. Since the busy queue is in
6547 ** the same order as the chip start queue, disconnected CCBs
6548 ** are before cp and busy ones after.
6549 */
6550 if (lp) {
6551 qp = lp->busy_ccbq.prev;
6552 while (qp != &lp->busy_ccbq) {
6553 cp2 = list_entry(qp, struct ccb, link_ccbq);
6554 qp = qp->prev;
6555 ++busy_cnt;
6556 if (cp2 == cp)
6557 break;
6558 cp2->start.schedule.l_paddr =
6559 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6560 }
6561 lp->held_ccb = cp; /* Requeue when this one completes */
6562 disc_cnt = lp->queuedccbs - busy_cnt;
6563 }
6564
6565 switch(s_status) {
6566 default: /* Just for safety, should never happen */
6567 case S_QUEUE_FULL:
6568 /*
6569 ** Decrease number of tags to the number of
6570 ** disconnected commands.
6571 */
6572 if (!lp)
6573 goto out;
6574 if (bootverbose >= 1) {
6575 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6576 "CCBs\n", busy_cnt, disc_cnt);
6577 }
6578 if (disc_cnt < lp->numtags) {
6579 lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6580 lp->num_good = 0;
6581 ncr_setup_tags (np, cmd->device);
6582 }
6583 /*
6584 ** Requeue the command to the start queue.
6585 ** If any disconnected commands,
6586 ** Clear SIGP.
6587 ** Jump to reselect.
6588 */
6589 cp->phys.header.savep = cp->startp;
6590 cp->host_status = HS_BUSY;
6591 cp->scsi_status = S_ILLEGAL;
6592
6593 ncr_put_start_queue(np, cp);
6594 if (disc_cnt)
6595 INB (nc_ctest2); /* Clear SIGP */
6596 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6597 return;
6598 case S_TERMINATED:
6599 case S_CHECK_COND:
6600 /*
6601 ** If we were requesting sense, give up.
6602 */
6603 if (cp->auto_sense)
6604 goto out;
6605
6606 /*
6607 ** Device returned CHECK CONDITION status.
6608 ** Prepare all needed data strutures for getting
6609 ** sense data.
6610 **
6611 ** identify message
6612 */
6613 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6614 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6615 cp->phys.smsg.size = cpu_to_scr(1);
6616
6617 /*
6618 ** sense command
6619 */
6620 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6621 cp->phys.cmd.size = cpu_to_scr(6);
6622
6623 /*
6624 ** patch requested size into sense command
6625 */
6626 cp->sensecmd[0] = 0x03;
6627 cp->sensecmd[1] = (cmd->device->lun & 0x7) << 5;
6628 cp->sensecmd[4] = sizeof(cp->sense_buf);
6629
6630 /*
6631 ** sense data
6632 */
6633 memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6634 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6635 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6636
6637 /*
6638 ** requeue the command.
6639 */
6640 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6641
6642 cp->phys.header.savep = startp;
6643 cp->phys.header.goalp = startp + 24;
6644 cp->phys.header.lastp = startp;
6645 cp->phys.header.wgoalp = startp + 24;
6646 cp->phys.header.wlastp = startp;
6647
6648 cp->host_status = HS_BUSY;
6649 cp->scsi_status = S_ILLEGAL;
6650 cp->auto_sense = s_status;
6651
6652 cp->start.schedule.l_paddr =
6653 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6654
6655 /*
6656 ** Select without ATN for quirky devices.
6657 */
6658 if (cmd->device->select_no_atn)
6659 cp->start.schedule.l_paddr =
6660 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6661
6662 ncr_put_start_queue(np, cp);
6663
6664 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6665 return;
6666 }
6667
6668 out:
6669 OUTONB_STD ();
6670 return;
6671 }
6672
6673
6674 /*==========================================================
6675 **
6676 **
6677 ** ncr chip exception handler for programmed interrupts.
6678 **
6679 **
6680 **==========================================================
6681 */
6682
6683 void ncr_int_sir (struct ncb *np)
6684 {
6685 u_char scntl3;
6686 u_char chg, ofs, per, fak, wide;
6687 u_char num = INB (nc_dsps);
6688 struct ccb *cp=NULL;
6689 u_long dsa = INL (nc_dsa);
6690 u_char target = INB (nc_sdid) & 0x0f;
6691 struct tcb *tp = &np->target[target];
6692 struct scsi_target *starget = tp->starget;
6693
6694 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6695
6696 switch (num) {
6697 case SIR_INTFLY:
6698 /*
6699 ** This is used for HP Zalon/53c720 where INTFLY
6700 ** operation is currently broken.
6701 */
6702 ncr_wakeup_done(np);
6703 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6704 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6705 #else
6706 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6707 #endif
6708 return;
6709 case SIR_RESEL_NO_MSG_IN:
6710 case SIR_RESEL_NO_IDENTIFY:
6711 /*
6712 ** If devices reselecting without sending an IDENTIFY
6713 ** message still exist, this should help.
6714 ** We just assume lun=0, 1 CCB, no tag.
6715 */
6716 if (tp->lp[0]) {
6717 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6718 return;
6719 }
6720 /* fall through */
6721 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6722 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6723 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6724 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6725 printk ("%s:%d: SIR %d, "
6726 "incorrect nexus identification on reselection\n",
6727 ncr_name (np), target, num);
6728 goto out;
6729 case SIR_DONE_OVERFLOW:
6730 printk ("%s:%d: SIR %d, "
6731 "CCB done queue overflow\n",
6732 ncr_name (np), target, num);
6733 goto out;
6734 case SIR_BAD_STATUS:
6735 cp = np->header.cp;
6736 if (!cp || CCB_PHYS (cp, phys) != dsa)
6737 goto out;
6738 ncr_sir_to_redo(np, num, cp);
6739 return;
6740 default:
6741 /*
6742 ** lookup the ccb
6743 */
6744 cp = np->ccb;
6745 while (cp && (CCB_PHYS (cp, phys) != dsa))
6746 cp = cp->link_ccb;
6747
6748 BUG_ON(!cp);
6749 BUG_ON(cp != np->header.cp);
6750
6751 if (!cp || cp != np->header.cp)
6752 goto out;
6753 }
6754
6755 switch (num) {
6756 /*-----------------------------------------------------------------------------
6757 **
6758 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6759 ** ("Everything you've always wanted to know about transfer mode
6760 ** negotiation")
6761 **
6762 ** We try to negotiate sync and wide transfer only after
6763 ** a successful inquire command. We look at byte 7 of the
6764 ** inquire data to determine the capabilities of the target.
6765 **
6766 ** When we try to negotiate, we append the negotiation message
6767 ** to the identify and (maybe) simple tag message.
6768 ** The host status field is set to HS_NEGOTIATE to mark this
6769 ** situation.
6770 **
6771 ** If the target doesn't answer this message immediately
6772 ** (as required by the standard), the SIR_NEGO_FAIL interrupt
6773 ** will be raised eventually.
6774 ** The handler removes the HS_NEGOTIATE status, and sets the
6775 ** negotiated value to the default (async / nowide).
6776 **
6777 ** If we receive a matching answer immediately, we check it
6778 ** for validity, and set the values.
6779 **
6780 ** If we receive a Reject message immediately, we assume the
6781 ** negotiation has failed, and fall back to standard values.
6782 **
6783 ** If we receive a negotiation message while not in HS_NEGOTIATE
6784 ** state, it's a target initiated negotiation. We prepare a
6785 ** (hopefully) valid answer, set our parameters, and send back
6786 ** this answer to the target.
6787 **
6788 ** If the target doesn't fetch the answer (no message out phase),
6789 ** we assume the negotiation has failed, and fall back to default
6790 ** settings.
6791 **
6792 ** When we set the values, we adjust them in all ccbs belonging
6793 ** to this target, in the controller's register, and in the "phys"
6794 ** field of the controller's struct ncb.
6795 **
6796 ** Possible cases: hs sir msg_in value send goto
6797 ** We try to negotiate:
6798 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6799 ** -> target rejected our msg NEG FAIL reject defa. - dispatch
6800 ** -> target answered (ok) NEG SYNC sdtr set - clrack
6801 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6802 ** -> target answered (ok) NEG WIDE wdtr set - clrack
6803 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6804 ** -> any other msgin NEG FAIL noop defa. - dispatch
6805 **
6806 ** Target tries to negotiate:
6807 ** -> incoming message --- SYNC sdtr set SDTR -
6808 ** -> incoming message --- WIDE wdtr set WDTR -
6809 ** We sent our answer:
6810 ** -> target doesn't msgout --- PROTO ? defa. - dispatch
6811 **
6812 **-----------------------------------------------------------------------------
6813 */
6814
6815 case SIR_NEGO_FAILED:
6816 /*-------------------------------------------------------
6817 **
6818 ** Negotiation failed.
6819 ** Target doesn't send an answer message,
6820 ** or target rejected our message.
6821 **
6822 ** Remove negotiation request.
6823 **
6824 **-------------------------------------------------------
6825 */
6826 OUTB (HS_PRT, HS_BUSY);
6827
6828 /* fall through */
6829
6830 case SIR_NEGO_PROTO:
6831 /*-------------------------------------------------------
6832 **
6833 ** Negotiation failed.
6834 ** Target doesn't fetch the answer message.
6835 **
6836 **-------------------------------------------------------
6837 */
6838
6839 if (DEBUG_FLAGS & DEBUG_NEGO) {
6840 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6841 "status=%x.\n", num, cp->nego_status);
6842 }
6843
6844 /*
6845 ** any error in negotiation:
6846 ** fall back to default mode.
6847 */
6848 switch (cp->nego_status) {
6849
6850 case NS_SYNC:
6851 spi_period(starget) = 0;
6852 spi_offset(starget) = 0;
6853 ncr_setsync (np, cp, 0, 0xe0);
6854 break;
6855
6856 case NS_WIDE:
6857 spi_width(starget) = 0;
6858 ncr_setwide (np, cp, 0, 0);
6859 break;
6860
6861 }
6862 np->msgin [0] = NOP;
6863 np->msgout[0] = NOP;
6864 cp->nego_status = 0;
6865 break;
6866
6867 case SIR_NEGO_SYNC:
6868 if (DEBUG_FLAGS & DEBUG_NEGO) {
6869 ncr_print_msg(cp, "sync msgin", np->msgin);
6870 }
6871
6872 chg = 0;
6873 per = np->msgin[3];
6874 ofs = np->msgin[4];
6875 if (ofs==0) per=255;
6876
6877 /*
6878 ** if target sends SDTR message,
6879 ** it CAN transfer synch.
6880 */
6881
6882 if (ofs && starget)
6883 spi_support_sync(starget) = 1;
6884
6885 /*
6886 ** check values against driver limits.
6887 */
6888
6889 if (per < np->minsync)
6890 {chg = 1; per = np->minsync;}
6891 if (per < tp->minsync)
6892 {chg = 1; per = tp->minsync;}
6893 if (ofs > tp->maxoffs)
6894 {chg = 1; ofs = tp->maxoffs;}
6895
6896 /*
6897 ** Check against controller limits.
6898 */
6899 fak = 7;
6900 scntl3 = 0;
6901 if (ofs != 0) {
6902 ncr_getsync(np, per, &fak, &scntl3);
6903 if (fak > 7) {
6904 chg = 1;
6905 ofs = 0;
6906 }
6907 }
6908 if (ofs == 0) {
6909 fak = 7;
6910 per = 0;
6911 scntl3 = 0;
6912 tp->minsync = 0;
6913 }
6914
6915 if (DEBUG_FLAGS & DEBUG_NEGO) {
6916 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6917 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6918 }
6919
6920 if (INB (HS_PRT) == HS_NEGOTIATE) {
6921 OUTB (HS_PRT, HS_BUSY);
6922 switch (cp->nego_status) {
6923
6924 case NS_SYNC:
6925 /* This was an answer message */
6926 if (chg) {
6927 /* Answer wasn't acceptable. */
6928 spi_period(starget) = 0;
6929 spi_offset(starget) = 0;
6930 ncr_setsync(np, cp, 0, 0xe0);
6931 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6932 } else {
6933 /* Answer is ok. */
6934 spi_period(starget) = per;
6935 spi_offset(starget) = ofs;
6936 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6937 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6938 }
6939 return;
6940
6941 case NS_WIDE:
6942 spi_width(starget) = 0;
6943 ncr_setwide(np, cp, 0, 0);
6944 break;
6945 }
6946 }
6947
6948 /*
6949 ** It was a request. Set value and
6950 ** prepare an answer message
6951 */
6952
6953 spi_period(starget) = per;
6954 spi_offset(starget) = ofs;
6955 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6956
6957 spi_populate_sync_msg(np->msgout, per, ofs);
6958 cp->nego_status = NS_SYNC;
6959
6960 if (DEBUG_FLAGS & DEBUG_NEGO) {
6961 ncr_print_msg(cp, "sync msgout", np->msgout);
6962 }
6963
6964 if (!ofs) {
6965 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6966 return;
6967 }
6968 np->msgin [0] = NOP;
6969
6970 break;
6971
6972 case SIR_NEGO_WIDE:
6973 /*
6974 ** Wide request message received.
6975 */
6976 if (DEBUG_FLAGS & DEBUG_NEGO) {
6977 ncr_print_msg(cp, "wide msgin", np->msgin);
6978 }
6979
6980 /*
6981 ** get requested values.
6982 */
6983
6984 chg = 0;
6985 wide = np->msgin[3];
6986
6987 /*
6988 ** if target sends WDTR message,
6989 ** it CAN transfer wide.
6990 */
6991
6992 if (wide && starget)
6993 spi_support_wide(starget) = 1;
6994
6995 /*
6996 ** check values against driver limits.
6997 */
6998
6999 if (wide > tp->usrwide)
7000 {chg = 1; wide = tp->usrwide;}
7001
7002 if (DEBUG_FLAGS & DEBUG_NEGO) {
7003 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7004 chg);
7005 }
7006
7007 if (INB (HS_PRT) == HS_NEGOTIATE) {
7008 OUTB (HS_PRT, HS_BUSY);
7009 switch (cp->nego_status) {
7010
7011 case NS_WIDE:
7012 /*
7013 ** This was an answer message
7014 */
7015 if (chg) {
7016 /* Answer wasn't acceptable. */
7017 spi_width(starget) = 0;
7018 ncr_setwide(np, cp, 0, 1);
7019 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7020 } else {
7021 /* Answer is ok. */
7022 spi_width(starget) = wide;
7023 ncr_setwide(np, cp, wide, 1);
7024 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7025 }
7026 return;
7027
7028 case NS_SYNC:
7029 spi_period(starget) = 0;
7030 spi_offset(starget) = 0;
7031 ncr_setsync(np, cp, 0, 0xe0);
7032 break;
7033 }
7034 }
7035
7036 /*
7037 ** It was a request, set value and
7038 ** prepare an answer message
7039 */
7040
7041 spi_width(starget) = wide;
7042 ncr_setwide(np, cp, wide, 1);
7043 spi_populate_width_msg(np->msgout, wide);
7044
7045 np->msgin [0] = NOP;
7046
7047 cp->nego_status = NS_WIDE;
7048
7049 if (DEBUG_FLAGS & DEBUG_NEGO) {
7050 ncr_print_msg(cp, "wide msgout", np->msgin);
7051 }
7052 break;
7053
7054 /*--------------------------------------------------------------------
7055 **
7056 ** Processing of special messages
7057 **
7058 **--------------------------------------------------------------------
7059 */
7060
7061 case SIR_REJECT_RECEIVED:
7062 /*-----------------------------------------------
7063 **
7064 ** We received a MESSAGE_REJECT.
7065 **
7066 **-----------------------------------------------
7067 */
7068
7069 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7070 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7071 break;
7072
7073 case SIR_REJECT_SENT:
7074 /*-----------------------------------------------
7075 **
7076 ** We received an unknown message
7077 **
7078 **-----------------------------------------------
7079 */
7080
7081 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7082 break;
7083
7084 /*--------------------------------------------------------------------
7085 **
7086 ** Processing of special messages
7087 **
7088 **--------------------------------------------------------------------
7089 */
7090
7091 case SIR_IGN_RESIDUE:
7092 /*-----------------------------------------------
7093 **
7094 ** We received an IGNORE RESIDUE message,
7095 ** which couldn't be handled by the script.
7096 **
7097 **-----------------------------------------------
7098 */
7099
7100 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7101 "implemented.\n");
7102 break;
7103 #if 0
7104 case SIR_MISSING_SAVE:
7105 /*-----------------------------------------------
7106 **
7107 ** We received an DISCONNECT message,
7108 ** but the datapointer wasn't saved before.
7109 **
7110 **-----------------------------------------------
7111 */
7112
7113 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7114 "not saved: data=%x save=%x goal=%x.\n",
7115 (unsigned) INL (nc_temp),
7116 (unsigned) scr_to_cpu(np->header.savep),
7117 (unsigned) scr_to_cpu(np->header.goalp));
7118 break;
7119 #endif
7120 }
7121
7122 out:
7123 OUTONB_STD ();
7124 }
7125
7126 /*==========================================================
7127 **
7128 **
7129 ** Acquire a control block
7130 **
7131 **
7132 **==========================================================
7133 */
7134
7135 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7136 {
7137 u_char tn = cmd->device->id;
7138 u_char ln = cmd->device->lun;
7139 struct tcb *tp = &np->target[tn];
7140 struct lcb *lp = tp->lp[ln];
7141 u_char tag = NO_TAG;
7142 struct ccb *cp = NULL;
7143
7144 /*
7145 ** Lun structure available ?
7146 */
7147 if (lp) {
7148 struct list_head *qp;
7149 /*
7150 ** Keep from using more tags than we can handle.
7151 */
7152 if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7153 return NULL;
7154
7155 /*
7156 ** Allocate a new CCB if needed.
7157 */
7158 if (list_empty(&lp->free_ccbq))
7159 ncr_alloc_ccb(np, tn, ln);
7160
7161 /*
7162 ** Look for free CCB
7163 */
7164 qp = ncr_list_pop(&lp->free_ccbq);
7165 if (qp) {
7166 cp = list_entry(qp, struct ccb, link_ccbq);
7167 if (cp->magic) {
7168 PRINT_ADDR(cmd, "ccb free list corrupted "
7169 "(@%p)\n", cp);
7170 cp = NULL;
7171 } else {
7172 list_add_tail(qp, &lp->wait_ccbq);
7173 ++lp->busyccbs;
7174 }
7175 }
7176
7177 /*
7178 ** If a CCB is available,
7179 ** Get a tag for this nexus if required.
7180 */
7181 if (cp) {
7182 if (lp->usetags)
7183 tag = lp->cb_tags[lp->ia_tag];
7184 }
7185 else if (lp->actccbs > 0)
7186 return NULL;
7187 }
7188
7189 /*
7190 ** if nothing available, take the default.
7191 */
7192 if (!cp)
7193 cp = np->ccb;
7194
7195 /*
7196 ** Wait until available.
7197 */
7198 #if 0
7199 while (cp->magic) {
7200 if (flags & SCSI_NOSLEEP) break;
7201 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7202 break;
7203 }
7204 #endif
7205
7206 if (cp->magic)
7207 return NULL;
7208
7209 cp->magic = 1;
7210
7211 /*
7212 ** Move to next available tag if tag used.
7213 */
7214 if (lp) {
7215 if (tag != NO_TAG) {
7216 ++lp->ia_tag;
7217 if (lp->ia_tag == MAX_TAGS)
7218 lp->ia_tag = 0;
7219 lp->tags_umap |= (((tagmap_t) 1) << tag);
7220 }
7221 }
7222
7223 /*
7224 ** Remember all informations needed to free this CCB.
7225 */
7226 cp->tag = tag;
7227 cp->target = tn;
7228 cp->lun = ln;
7229
7230 if (DEBUG_FLAGS & DEBUG_TAGS) {
7231 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7232 }
7233
7234 return cp;
7235 }
7236
7237 /*==========================================================
7238 **
7239 **
7240 ** Release one control block
7241 **
7242 **
7243 **==========================================================
7244 */
7245
7246 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7247 {
7248 struct tcb *tp = &np->target[cp->target];
7249 struct lcb *lp = tp->lp[cp->lun];
7250
7251 if (DEBUG_FLAGS & DEBUG_TAGS) {
7252 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7253 }
7254
7255 /*
7256 ** If lun control block available,
7257 ** decrement active commands and increment credit,
7258 ** free the tag if any and remove the JUMP for reselect.
7259 */
7260 if (lp) {
7261 if (cp->tag != NO_TAG) {
7262 lp->cb_tags[lp->if_tag++] = cp->tag;
7263 if (lp->if_tag == MAX_TAGS)
7264 lp->if_tag = 0;
7265 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7266 lp->tags_smap &= lp->tags_umap;
7267 lp->jump_ccb[cp->tag] =
7268 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7269 } else {
7270 lp->jump_ccb[0] =
7271 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7272 }
7273 }
7274
7275 /*
7276 ** Make this CCB available.
7277 */
7278
7279 if (lp) {
7280 if (cp != np->ccb)
7281 list_move(&cp->link_ccbq, &lp->free_ccbq);
7282 --lp->busyccbs;
7283 if (cp->queued) {
7284 --lp->queuedccbs;
7285 }
7286 }
7287 cp -> host_status = HS_IDLE;
7288 cp -> magic = 0;
7289 if (cp->queued) {
7290 --np->queuedccbs;
7291 cp->queued = 0;
7292 }
7293
7294 #if 0
7295 if (cp == np->ccb)
7296 wakeup ((caddr_t) cp);
7297 #endif
7298 }
7299
7300
7301 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7302
7303 /*------------------------------------------------------------------------
7304 ** Initialize the fixed part of a CCB structure.
7305 **------------------------------------------------------------------------
7306 **------------------------------------------------------------------------
7307 */
7308 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7309 {
7310 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7311
7312 /*
7313 ** Remember virtual and bus address of this ccb.
7314 */
7315 cp->p_ccb = vtobus(cp);
7316 cp->phys.header.cp = cp;
7317
7318 /*
7319 ** This allows list_del to work for the default ccb.
7320 */
7321 INIT_LIST_HEAD(&cp->link_ccbq);
7322
7323 /*
7324 ** Initialyze the start and restart launch script.
7325 **
7326 ** COPY(4) @(...p_phys), @(dsa)
7327 ** JUMP @(sched_point)
7328 */
7329 cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7330 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7331 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7332 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7333 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7334
7335 memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7336
7337 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7338 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7339 }
7340
7341
7342 /*------------------------------------------------------------------------
7343 ** Allocate a CCB and initialize its fixed part.
7344 **------------------------------------------------------------------------
7345 **------------------------------------------------------------------------
7346 */
7347 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7348 {
7349 struct tcb *tp = &np->target[tn];
7350 struct lcb *lp = tp->lp[ln];
7351 struct ccb *cp = NULL;
7352
7353 /*
7354 ** Allocate memory for this CCB.
7355 */
7356 cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7357 if (!cp)
7358 return;
7359
7360 /*
7361 ** Count it and initialyze it.
7362 */
7363 lp->actccbs++;
7364 np->actccbs++;
7365 memset(cp, 0, sizeof (*cp));
7366 ncr_init_ccb(np, cp);
7367
7368 /*
7369 ** Chain into wakeup list and free ccb queue and take it
7370 ** into account for tagged commands.
7371 */
7372 cp->link_ccb = np->ccb->link_ccb;
7373 np->ccb->link_ccb = cp;
7374
7375 list_add(&cp->link_ccbq, &lp->free_ccbq);
7376 }
7377
7378 /*==========================================================
7379 **
7380 **
7381 ** Allocation of resources for Targets/Luns/Tags.
7382 **
7383 **
7384 **==========================================================
7385 */
7386
7387
7388 /*------------------------------------------------------------------------
7389 ** Target control block initialisation.
7390 **------------------------------------------------------------------------
7391 ** This data structure is fully initialized after a SCSI command
7392 ** has been successfully completed for this target.
7393 ** It contains a SCRIPT that is called on target reselection.
7394 **------------------------------------------------------------------------
7395 */
7396 static void ncr_init_tcb (struct ncb *np, u_char tn)
7397 {
7398 struct tcb *tp = &np->target[tn];
7399 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7400 int th = tn & 3;
7401 int i;
7402
7403 /*
7404 ** Jump to next tcb if SFBR does not match this target.
7405 ** JUMP IF (SFBR != #target#), @(next tcb)
7406 */
7407 tp->jump_tcb.l_cmd =
7408 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7409 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7410
7411 /*
7412 ** Load the synchronous transfer register.
7413 ** COPY @(tp->sval), @(sxfer)
7414 */
7415 tp->getscr[0] = cpu_to_scr(copy_1);
7416 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7417 #ifdef SCSI_NCR_BIG_ENDIAN
7418 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7419 #else
7420 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7421 #endif
7422
7423 /*
7424 ** Load the timing register.
7425 ** COPY @(tp->wval), @(scntl3)
7426 */
7427 tp->getscr[3] = cpu_to_scr(copy_1);
7428 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7429 #ifdef SCSI_NCR_BIG_ENDIAN
7430 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7431 #else
7432 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7433 #endif
7434
7435 /*
7436 ** Get the IDENTIFY message and the lun.
7437 ** CALL @script(resel_lun)
7438 */
7439 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7440 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7441
7442 /*
7443 ** Look for the lun control block of this nexus.
7444 ** For i = 0 to 3
7445 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7446 */
7447 for (i = 0 ; i < 4 ; i++) {
7448 tp->jump_lcb[i].l_cmd =
7449 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7450 tp->jump_lcb[i].l_paddr =
7451 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7452 }
7453
7454 /*
7455 ** Link this target control block to the JUMP chain.
7456 */
7457 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7458
7459 /*
7460 ** These assert's should be moved at driver initialisations.
7461 */
7462 #ifdef SCSI_NCR_BIG_ENDIAN
7463 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7464 offsetof(struct tcb , sval )) &3) != 3);
7465 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7466 offsetof(struct tcb , wval )) &3) != 3);
7467 #else
7468 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7469 offsetof(struct tcb , sval )) &3) != 0);
7470 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7471 offsetof(struct tcb , wval )) &3) != 0);
7472 #endif
7473 }
7474
7475
7476 /*------------------------------------------------------------------------
7477 ** Lun control block allocation and initialization.
7478 **------------------------------------------------------------------------
7479 ** This data structure is allocated and initialized after a SCSI
7480 ** command has been successfully completed for this target/lun.
7481 **------------------------------------------------------------------------
7482 */
7483 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7484 {
7485 struct tcb *tp = &np->target[tn];
7486 struct lcb *lp = tp->lp[ln];
7487 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7488 int lh = ln & 3;
7489
7490 /*
7491 ** Already done, return.
7492 */
7493 if (lp)
7494 return lp;
7495
7496 /*
7497 ** Allocate the lcb.
7498 */
7499 lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7500 if (!lp)
7501 goto fail;
7502 memset(lp, 0, sizeof(*lp));
7503 tp->lp[ln] = lp;
7504
7505 /*
7506 ** Initialize the target control block if not yet.
7507 */
7508 if (!tp->jump_tcb.l_cmd)
7509 ncr_init_tcb(np, tn);
7510
7511 /*
7512 ** Initialize the CCB queue headers.
7513 */
7514 INIT_LIST_HEAD(&lp->free_ccbq);
7515 INIT_LIST_HEAD(&lp->busy_ccbq);
7516 INIT_LIST_HEAD(&lp->wait_ccbq);
7517 INIT_LIST_HEAD(&lp->skip_ccbq);
7518
7519 /*
7520 ** Set max CCBs to 1 and use the default 1 entry
7521 ** jump table by default.
7522 */
7523 lp->maxnxs = 1;
7524 lp->jump_ccb = &lp->jump_ccb_0;
7525 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7526
7527 /*
7528 ** Initilialyze the reselect script:
7529 **
7530 ** Jump to next lcb if SFBR does not match this lun.
7531 ** Load TEMP with the CCB direct jump table bus address.
7532 ** Get the SIMPLE TAG message and the tag.
7533 **
7534 ** JUMP IF (SFBR != #lun#), @(next lcb)
7535 ** COPY @(lp->p_jump_ccb), @(temp)
7536 ** JUMP @script(resel_notag)
7537 */
7538 lp->jump_lcb.l_cmd =
7539 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7540 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7541
7542 lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7543 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7544 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7545
7546 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7547 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7548
7549 /*
7550 ** Link this lun control block to the JUMP chain.
7551 */
7552 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7553
7554 /*
7555 ** Initialize command queuing control.
7556 */
7557 lp->busyccbs = 1;
7558 lp->queuedccbs = 1;
7559 lp->queuedepth = 1;
7560 fail:
7561 return lp;
7562 }
7563
7564
7565 /*------------------------------------------------------------------------
7566 ** Lun control block setup on INQUIRY data received.
7567 **------------------------------------------------------------------------
7568 ** We only support WIDE, SYNC for targets and CMDQ for logical units.
7569 ** This setup is done on each INQUIRY since we are expecting user
7570 ** will play with CHANGE DEFINITION commands. :-)
7571 **------------------------------------------------------------------------
7572 */
7573 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7574 {
7575 unsigned char tn = sdev->id, ln = sdev->lun;
7576 struct tcb *tp = &np->target[tn];
7577 struct lcb *lp = tp->lp[ln];
7578
7579 /* If no lcb, try to allocate it. */
7580 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7581 goto fail;
7582
7583 /*
7584 ** If unit supports tagged commands, allocate the
7585 ** CCB JUMP table if not yet.
7586 */
7587 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7588 int i;
7589 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7590 if (!lp->jump_ccb) {
7591 lp->jump_ccb = &lp->jump_ccb_0;
7592 goto fail;
7593 }
7594 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7595 for (i = 0 ; i < 64 ; i++)
7596 lp->jump_ccb[i] =
7597 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7598 for (i = 0 ; i < MAX_TAGS ; i++)
7599 lp->cb_tags[i] = i;
7600 lp->maxnxs = MAX_TAGS;
7601 lp->tags_stime = jiffies + 3*HZ;
7602 ncr_setup_tags (np, sdev);
7603 }
7604
7605
7606 fail:
7607 return lp;
7608 }
7609
7610 /*==========================================================
7611 **
7612 **
7613 ** Build Scatter Gather Block
7614 **
7615 **
7616 **==========================================================
7617 **
7618 ** The transfer area may be scattered among
7619 ** several non adjacent physical pages.
7620 **
7621 ** We may use MAX_SCATTER blocks.
7622 **
7623 **----------------------------------------------------------
7624 */
7625
7626 /*
7627 ** We try to reduce the number of interrupts caused
7628 ** by unexpected phase changes due to disconnects.
7629 ** A typical harddisk may disconnect before ANY block.
7630 ** If we wanted to avoid unexpected phase changes at all
7631 ** we had to use a break point every 512 bytes.
7632 ** Of course the number of scatter/gather blocks is
7633 ** limited.
7634 ** Under Linux, the scatter/gatter blocks are provided by
7635 ** the generic driver. We just have to copy addresses and
7636 ** sizes to the data segment array.
7637 */
7638
7639 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7640 {
7641 int segment = 0;
7642 int use_sg = scsi_sg_count(cmd);
7643
7644 cp->data_len = 0;
7645
7646 use_sg = map_scsi_sg_data(np, cmd);
7647 if (use_sg > 0) {
7648 struct scatterlist *sg;
7649 struct scr_tblmove *data;
7650
7651 if (use_sg > MAX_SCATTER) {
7652 unmap_scsi_data(np, cmd);
7653 return -1;
7654 }
7655
7656 data = &cp->phys.data[MAX_SCATTER - use_sg];
7657
7658 scsi_for_each_sg(cmd, sg, use_sg, segment) {
7659 dma_addr_t baddr = sg_dma_address(sg);
7660 unsigned int len = sg_dma_len(sg);
7661
7662 ncr_build_sge(np, &data[segment], baddr, len);
7663 cp->data_len += len;
7664 }
7665 } else
7666 segment = -2;
7667
7668 return segment;
7669 }
7670
7671 /*==========================================================
7672 **
7673 **
7674 ** Test the bus snoop logic :-(
7675 **
7676 ** Has to be called with interrupts disabled.
7677 **
7678 **
7679 **==========================================================
7680 */
7681
7682 static int __init ncr_regtest (struct ncb* np)
7683 {
7684 register volatile u32 data;
7685 /*
7686 ** ncr registers may NOT be cached.
7687 ** write 0xffffffff to a read only register area,
7688 ** and try to read it back.
7689 */
7690 data = 0xffffffff;
7691 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7692 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7693 #if 1
7694 if (data == 0xffffffff) {
7695 #else
7696 if ((data & 0xe2f0fffd) != 0x02000080) {
7697 #endif
7698 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7699 (unsigned) data);
7700 return (0x10);
7701 }
7702 return (0);
7703 }
7704
7705 static int __init ncr_snooptest (struct ncb* np)
7706 {
7707 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7708 int i, err=0;
7709 if (np->reg) {
7710 err |= ncr_regtest (np);
7711 if (err)
7712 return (err);
7713 }
7714
7715 /* init */
7716 pc = NCB_SCRIPTH_PHYS (np, snooptest);
7717 host_wr = 1;
7718 ncr_wr = 2;
7719 /*
7720 ** Set memory and register.
7721 */
7722 np->ncr_cache = cpu_to_scr(host_wr);
7723 OUTL (nc_temp, ncr_wr);
7724 /*
7725 ** Start script (exchange values)
7726 */
7727 OUTL_DSP (pc);
7728 /*
7729 ** Wait 'til done (with timeout)
7730 */
7731 for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7732 if (INB(nc_istat) & (INTF|SIP|DIP))
7733 break;
7734 /*
7735 ** Save termination position.
7736 */
7737 pc = INL (nc_dsp);
7738 /*
7739 ** Read memory and register.
7740 */
7741 host_rd = scr_to_cpu(np->ncr_cache);
7742 ncr_rd = INL (nc_scratcha);
7743 ncr_bk = INL (nc_temp);
7744 /*
7745 ** Reset ncr chip
7746 */
7747 ncr_chip_reset(np, 100);
7748 /*
7749 ** check for timeout
7750 */
7751 if (i>=NCR_SNOOP_TIMEOUT) {
7752 printk ("CACHE TEST FAILED: timeout.\n");
7753 return (0x20);
7754 }
7755 /*
7756 ** Check termination position.
7757 */
7758 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7759 printk ("CACHE TEST FAILED: script execution failed.\n");
7760 printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7761 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7762 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7763 return (0x40);
7764 }
7765 /*
7766 ** Show results.
7767 */
7768 if (host_wr != ncr_rd) {
7769 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7770 (int) host_wr, (int) ncr_rd);
7771 err |= 1;
7772 }
7773 if (host_rd != ncr_wr) {
7774 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7775 (int) ncr_wr, (int) host_rd);
7776 err |= 2;
7777 }
7778 if (ncr_bk != ncr_wr) {
7779 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7780 (int) ncr_wr, (int) ncr_bk);
7781 err |= 4;
7782 }
7783 return (err);
7784 }
7785
7786 /*==========================================================
7787 **
7788 ** Determine the ncr's clock frequency.
7789 ** This is essential for the negotiation
7790 ** of the synchronous transfer rate.
7791 **
7792 **==========================================================
7793 **
7794 ** Note: we have to return the correct value.
7795 ** THERE IS NO SAFE DEFAULT VALUE.
7796 **
7797 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7798 ** 53C860 and 53C875 rev. 1 support fast20 transfers but
7799 ** do not have a clock doubler and so are provided with a
7800 ** 80 MHz clock. All other fast20 boards incorporate a doubler
7801 ** and so should be delivered with a 40 MHz clock.
7802 ** The future fast40 chips (895/895) use a 40 Mhz base clock
7803 ** and provide a clock quadrupler (160 Mhz). The code below
7804 ** tries to deal as cleverly as possible with all this stuff.
7805 **
7806 **----------------------------------------------------------
7807 */
7808
7809 /*
7810 * Select NCR SCSI clock frequency
7811 */
7812 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7813 {
7814 if (np->multiplier < 2) {
7815 OUTB(nc_scntl3, scntl3);
7816 return;
7817 }
7818
7819 if (bootverbose >= 2)
7820 printk ("%s: enabling clock multiplier\n", ncr_name(np));
7821
7822 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7823 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7824 int i = 20;
7825 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7826 udelay(20);
7827 if (!i)
7828 printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7829 } else /* Wait 20 micro-seconds for doubler */
7830 udelay(20);
7831 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7832 OUTB(nc_scntl3, scntl3);
7833 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7834 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7835 }
7836
7837
7838 /*
7839 * calculate NCR SCSI clock frequency (in KHz)
7840 */
7841 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7842 {
7843 unsigned ms = 0;
7844 char count = 0;
7845
7846 /*
7847 * Measure GEN timer delay in order
7848 * to calculate SCSI clock frequency
7849 *
7850 * This code will never execute too
7851 * many loop iterations (if DELAY is
7852 * reasonably correct). It could get
7853 * too low a delay (too high a freq.)
7854 * if the CPU is slow executing the
7855 * loop for some reason (an NMI, for
7856 * example). For this reason we will
7857 * if multiple measurements are to be
7858 * performed trust the higher delay
7859 * (lower frequency returned).
7860 */
7861 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7862 OUTW (nc_sien , 0); /* mask all scsi interrupts */
7863 (void) INW (nc_sist); /* clear pending scsi interrupt */
7864 OUTB (nc_dien , 0); /* mask all dma interrupts */
7865 (void) INW (nc_sist); /* another one, just to be sure :) */
7866 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7867 OUTB (nc_stime1, 0); /* disable general purpose timer */
7868 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7869 while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7870 for (count = 0; count < 10; count ++)
7871 udelay(100); /* count ms */
7872 }
7873 OUTB (nc_stime1, 0); /* disable general purpose timer */
7874 /*
7875 * set prescaler to divide by whatever 0 means
7876 * 0 ought to choose divide by 2, but appears
7877 * to set divide by 3.5 mode in my 53c810 ...
7878 */
7879 OUTB (nc_scntl3, 0);
7880
7881 if (bootverbose >= 2)
7882 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7883 /*
7884 * adjust for prescaler, and convert into KHz
7885 */
7886 return ms ? ((1 << gen) * 4340) / ms : 0;
7887 }
7888
7889 /*
7890 * Get/probe NCR SCSI clock frequency
7891 */
7892 static void __init ncr_getclock (struct ncb *np, int mult)
7893 {
7894 unsigned char scntl3 = INB(nc_scntl3);
7895 unsigned char stest1 = INB(nc_stest1);
7896 unsigned f1;
7897
7898 np->multiplier = 1;
7899 f1 = 40000;
7900
7901 /*
7902 ** True with 875 or 895 with clock multiplier selected
7903 */
7904 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7905 if (bootverbose >= 2)
7906 printk ("%s: clock multiplier found\n", ncr_name(np));
7907 np->multiplier = mult;
7908 }
7909
7910 /*
7911 ** If multiplier not found or scntl3 not 7,5,3,
7912 ** reset chip and get frequency from general purpose timer.
7913 ** Otherwise trust scntl3 BIOS setting.
7914 */
7915 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7916 unsigned f2;
7917
7918 ncr_chip_reset(np, 5);
7919
7920 (void) ncrgetfreq (np, 11); /* throw away first result */
7921 f1 = ncrgetfreq (np, 11);
7922 f2 = ncrgetfreq (np, 11);
7923
7924 if(bootverbose)
7925 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7926
7927 if (f1 > f2) f1 = f2; /* trust lower result */
7928
7929 if (f1 < 45000) f1 = 40000;
7930 else if (f1 < 55000) f1 = 50000;
7931 else f1 = 80000;
7932
7933 if (f1 < 80000 && mult > 1) {
7934 if (bootverbose >= 2)
7935 printk ("%s: clock multiplier assumed\n", ncr_name(np));
7936 np->multiplier = mult;
7937 }
7938 } else {
7939 if ((scntl3 & 7) == 3) f1 = 40000;
7940 else if ((scntl3 & 7) == 5) f1 = 80000;
7941 else f1 = 160000;
7942
7943 f1 /= np->multiplier;
7944 }
7945
7946 /*
7947 ** Compute controller synchronous parameters.
7948 */
7949 f1 *= np->multiplier;
7950 np->clock_khz = f1;
7951 }
7952
7953 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7954
7955 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7956 {
7957 struct Scsi_Host *host = device->host;
7958 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7959 struct tcb *tp = &np->target[device->id];
7960 tp->starget = device->sdev_target;
7961
7962 return 0;
7963 }
7964
7965 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7966 {
7967 struct Scsi_Host *host = device->host;
7968 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7969 struct tcb *tp = &np->target[device->id];
7970 struct lcb *lp = tp->lp[device->lun];
7971 int numtags, depth_to_use;
7972
7973 ncr_setup_lcb(np, device);
7974
7975 /*
7976 ** Select queue depth from driver setup.
7977 ** Donnot use more than configured by user.
7978 ** Use at least 2.
7979 ** Donnot use more than our maximum.
7980 */
7981 numtags = device_queue_depth(np->unit, device->id, device->lun);
7982 if (numtags > tp->usrtags)
7983 numtags = tp->usrtags;
7984 if (!device->tagged_supported)
7985 numtags = 1;
7986 depth_to_use = numtags;
7987 if (depth_to_use < 2)
7988 depth_to_use = 2;
7989 if (depth_to_use > MAX_TAGS)
7990 depth_to_use = MAX_TAGS;
7991
7992 scsi_change_queue_depth(device, depth_to_use);
7993
7994 /*
7995 ** Since the queue depth is not tunable under Linux,
7996 ** we need to know this value in order not to
7997 ** announce stupid things to user.
7998 **
7999 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8000 ** In fact we just tuned it, or did I miss
8001 ** something important? :)
8002 */
8003 if (lp) {
8004 lp->numtags = lp->maxtags = numtags;
8005 lp->scdev_depth = depth_to_use;
8006 }
8007 ncr_setup_tags (np, device);
8008
8009 #ifdef DEBUG_NCR53C8XX
8010 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8011 np->unit, device->id, device->lun, depth_to_use);
8012 #endif
8013
8014 if (spi_support_sync(device->sdev_target) &&
8015 !spi_initial_dv(device->sdev_target))
8016 spi_dv_device(device);
8017 return 0;
8018 }
8019
8020 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
8021 {
8022 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8023 unsigned long flags;
8024 int sts;
8025
8026 #ifdef DEBUG_NCR53C8XX
8027 printk("ncr53c8xx_queue_command\n");
8028 #endif
8029
8030 cmd->scsi_done = done;
8031 cmd->host_scribble = NULL;
8032 cmd->__data_mapped = 0;
8033 cmd->__data_mapping = 0;
8034
8035 spin_lock_irqsave(&np->smp_lock, flags);
8036
8037 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8038 cmd->result = sts << 16;
8039 #ifdef DEBUG_NCR53C8XX
8040 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8041 #endif
8042 }
8043 #ifdef DEBUG_NCR53C8XX
8044 else
8045 printk("ncr53c8xx : command successfully queued\n");
8046 #endif
8047
8048 spin_unlock_irqrestore(&np->smp_lock, flags);
8049
8050 if (sts != DID_OK) {
8051 unmap_scsi_data(np, cmd);
8052 done(cmd);
8053 sts = 0;
8054 }
8055
8056 return sts;
8057 }
8058
8059 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
8060
8061 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8062 {
8063 unsigned long flags;
8064 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8065 struct host_data *host_data = (struct host_data *)shost->hostdata;
8066 struct ncb *np = host_data->ncb;
8067 struct scsi_cmnd *done_list;
8068
8069 #ifdef DEBUG_NCR53C8XX
8070 printk("ncr53c8xx : interrupt received\n");
8071 #endif
8072
8073 if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8074
8075 spin_lock_irqsave(&np->smp_lock, flags);
8076 ncr_exception(np);
8077 done_list = np->done_list;
8078 np->done_list = NULL;
8079 spin_unlock_irqrestore(&np->smp_lock, flags);
8080
8081 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8082
8083 if (done_list)
8084 ncr_flush_done_cmds(done_list);
8085 return IRQ_HANDLED;
8086 }
8087
8088 static void ncr53c8xx_timeout(struct timer_list *t)
8089 {
8090 struct ncb *np = from_timer(np, t, timer);
8091 unsigned long flags;
8092 struct scsi_cmnd *done_list;
8093
8094 spin_lock_irqsave(&np->smp_lock, flags);
8095 ncr_timeout(np);
8096 done_list = np->done_list;
8097 np->done_list = NULL;
8098 spin_unlock_irqrestore(&np->smp_lock, flags);
8099
8100 if (done_list)
8101 ncr_flush_done_cmds(done_list);
8102 }
8103
8104 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8105 {
8106 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8107 int sts;
8108 unsigned long flags;
8109 struct scsi_cmnd *done_list;
8110
8111 /*
8112 * If the mid-level driver told us reset is synchronous, it seems
8113 * that we must call the done() callback for the involved command,
8114 * even if this command was not queued to the low-level driver,
8115 * before returning SUCCESS.
8116 */
8117
8118 spin_lock_irqsave(&np->smp_lock, flags);
8119 sts = ncr_reset_bus(np, cmd, 1);
8120
8121 done_list = np->done_list;
8122 np->done_list = NULL;
8123 spin_unlock_irqrestore(&np->smp_lock, flags);
8124
8125 ncr_flush_done_cmds(done_list);
8126
8127 return sts;
8128 }
8129
8130 #if 0 /* unused and broken */
8131 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8132 {
8133 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8134 int sts;
8135 unsigned long flags;
8136 struct scsi_cmnd *done_list;
8137
8138 printk("ncr53c8xx_abort\n");
8139
8140 NCR_LOCK_NCB(np, flags);
8141
8142 sts = ncr_abort_command(np, cmd);
8143 out:
8144 done_list = np->done_list;
8145 np->done_list = NULL;
8146 NCR_UNLOCK_NCB(np, flags);
8147
8148 ncr_flush_done_cmds(done_list);
8149
8150 return sts;
8151 }
8152 #endif
8153
8154
8155 /*
8156 ** Scsi command waiting list management.
8157 **
8158 ** It may happen that we cannot insert a scsi command into the start queue,
8159 ** in the following circumstances.
8160 ** Too few preallocated ccb(s),
8161 ** maxtags < cmd_per_lun of the Linux host control block,
8162 ** etc...
8163 ** Such scsi commands are inserted into a waiting list.
8164 ** When a scsi command complete, we try to requeue the commands of the
8165 ** waiting list.
8166 */
8167
8168 #define next_wcmd host_scribble
8169
8170 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8171 {
8172 struct scsi_cmnd *wcmd;
8173
8174 #ifdef DEBUG_WAITING_LIST
8175 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8176 #endif
8177 cmd->next_wcmd = NULL;
8178 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8179 else {
8180 while (wcmd->next_wcmd)
8181 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8182 wcmd->next_wcmd = (char *) cmd;
8183 }
8184 }
8185
8186 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8187 {
8188 struct scsi_cmnd **pcmd = &np->waiting_list;
8189
8190 while (*pcmd) {
8191 if (cmd == *pcmd) {
8192 if (to_remove) {
8193 *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8194 cmd->next_wcmd = NULL;
8195 }
8196 #ifdef DEBUG_WAITING_LIST
8197 printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8198 #endif
8199 return cmd;
8200 }
8201 pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8202 }
8203 return NULL;
8204 }
8205
8206 static void process_waiting_list(struct ncb *np, int sts)
8207 {
8208 struct scsi_cmnd *waiting_list, *wcmd;
8209
8210 waiting_list = np->waiting_list;
8211 np->waiting_list = NULL;
8212
8213 #ifdef DEBUG_WAITING_LIST
8214 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8215 #endif
8216 while ((wcmd = waiting_list) != NULL) {
8217 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8218 wcmd->next_wcmd = NULL;
8219 if (sts == DID_OK) {
8220 #ifdef DEBUG_WAITING_LIST
8221 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8222 #endif
8223 sts = ncr_queue_command(np, wcmd);
8224 }
8225 if (sts != DID_OK) {
8226 #ifdef DEBUG_WAITING_LIST
8227 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8228 #endif
8229 wcmd->result = sts << 16;
8230 ncr_queue_done_cmd(np, wcmd);
8231 }
8232 }
8233 }
8234
8235 #undef next_wcmd
8236
8237 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8238 struct device_attribute *attr, char *buf)
8239 {
8240 struct Scsi_Host *host = class_to_shost(dev);
8241 struct host_data *host_data = (struct host_data *)host->hostdata;
8242
8243 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8244 }
8245
8246 static struct device_attribute ncr53c8xx_revision_attr = {
8247 .attr = { .name = "revision", .mode = S_IRUGO, },
8248 .show = show_ncr53c8xx_revision,
8249 };
8250
8251 static struct device_attribute *ncr53c8xx_host_attrs[] = {
8252 &ncr53c8xx_revision_attr,
8253 NULL
8254 };
8255
8256 /*==========================================================
8257 **
8258 ** Boot command line.
8259 **
8260 **==========================================================
8261 */
8262 #ifdef MODULE
8263 char *ncr53c8xx; /* command line passed by insmod */
8264 module_param(ncr53c8xx, charp, 0);
8265 #endif
8266
8267 #ifndef MODULE
8268 static int __init ncr53c8xx_setup(char *str)
8269 {
8270 return sym53c8xx__setup(str);
8271 }
8272
8273 __setup("ncr53c8xx=", ncr53c8xx_setup);
8274 #endif
8275
8276
8277 /*
8278 * Host attach and initialisations.
8279 *
8280 * Allocate host data and ncb structure.
8281 * Request IO region and remap MMIO region.
8282 * Do chip initialization.
8283 * If all is OK, install interrupt handling and
8284 * start the timer daemon.
8285 */
8286 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8287 int unit, struct ncr_device *device)
8288 {
8289 struct host_data *host_data;
8290 struct ncb *np = NULL;
8291 struct Scsi_Host *instance = NULL;
8292 u_long flags = 0;
8293 int i;
8294
8295 if (!tpnt->name)
8296 tpnt->name = SCSI_NCR_DRIVER_NAME;
8297 if (!tpnt->shost_attrs)
8298 tpnt->shost_attrs = ncr53c8xx_host_attrs;
8299
8300 tpnt->queuecommand = ncr53c8xx_queue_command;
8301 tpnt->slave_configure = ncr53c8xx_slave_configure;
8302 tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8303 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8304 tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8305 tpnt->this_id = 7;
8306 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
8307 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
8308
8309 if (device->differential)
8310 driver_setup.diff_support = device->differential;
8311
8312 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8313 unit, device->chip.revision_id, device->slot.irq);
8314
8315 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8316 if (!instance)
8317 goto attach_error;
8318 host_data = (struct host_data *) instance->hostdata;
8319
8320 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8321 if (!np)
8322 goto attach_error;
8323 spin_lock_init(&np->smp_lock);
8324 np->dev = device->dev;
8325 np->p_ncb = vtobus(np);
8326 host_data->ncb = np;
8327
8328 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8329 if (!np->ccb)
8330 goto attach_error;
8331
8332 /* Store input information in the host data structure. */
8333 np->unit = unit;
8334 np->verbose = driver_setup.verbose;
8335 sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8336 np->revision_id = device->chip.revision_id;
8337 np->features = device->chip.features;
8338 np->clock_divn = device->chip.nr_divisor;
8339 np->maxoffs = device->chip.offset_max;
8340 np->maxburst = device->chip.burst_max;
8341 np->myaddr = device->host_id;
8342
8343 /* Allocate SCRIPTS areas. */
8344 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8345 if (!np->script0)
8346 goto attach_error;
8347 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8348 if (!np->scripth0)
8349 goto attach_error;
8350
8351 timer_setup(&np->timer, ncr53c8xx_timeout, 0);
8352
8353 /* Try to map the controller chip to virtual and physical memory. */
8354
8355 np->paddr = device->slot.base;
8356 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8357
8358 if (device->slot.base_v)
8359 np->vaddr = device->slot.base_v;
8360 else
8361 np->vaddr = ioremap(device->slot.base_c, 128);
8362
8363 if (!np->vaddr) {
8364 printk(KERN_ERR
8365 "%s: can't map memory mapped IO region\n",ncr_name(np));
8366 goto attach_error;
8367 } else {
8368 if (bootverbose > 1)
8369 printk(KERN_INFO
8370 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8371 }
8372
8373 /* Make the controller's registers available. Now the INB INW INL
8374 * OUTB OUTW OUTL macros can be used safely.
8375 */
8376
8377 np->reg = (struct ncr_reg __iomem *)np->vaddr;
8378
8379 /* Do chip dependent initialization. */
8380 ncr_prepare_setting(np);
8381
8382 if (np->paddr2 && sizeof(struct script) > 4096) {
8383 np->paddr2 = 0;
8384 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8385 ncr_name(np));
8386 }
8387
8388 instance->max_channel = 0;
8389 instance->this_id = np->myaddr;
8390 instance->max_id = np->maxwide ? 16 : 8;
8391 instance->max_lun = SCSI_NCR_MAX_LUN;
8392 instance->base = (unsigned long) np->reg;
8393 instance->irq = device->slot.irq;
8394 instance->unique_id = device->slot.base;
8395 instance->dma_channel = 0;
8396 instance->cmd_per_lun = MAX_TAGS;
8397 instance->can_queue = (MAX_START-4);
8398 /* This can happen if you forget to call ncr53c8xx_init from
8399 * your module_init */
8400 BUG_ON(!ncr53c8xx_transport_template);
8401 instance->transportt = ncr53c8xx_transport_template;
8402
8403 /* Patch script to physical addresses */
8404 ncr_script_fill(&script0, &scripth0);
8405
8406 np->scripth = np->scripth0;
8407 np->p_scripth = vtobus(np->scripth);
8408 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8409
8410 ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8411 (ncrcmd *) np->script0, sizeof(struct script));
8412 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8413 (ncrcmd *) np->scripth0, sizeof(struct scripth));
8414 np->ccb->p_ccb = vtobus (np->ccb);
8415
8416 /* Patch the script for LED support. */
8417
8418 if (np->features & FE_LED0) {
8419 np->script0->idle[0] =
8420 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8421 np->script0->reselected[0] =
8422 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8423 np->script0->start[0] =
8424 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8425 }
8426
8427 /*
8428 * Look for the target control block of this nexus.
8429 * For i = 0 to 3
8430 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8431 */
8432 for (i = 0 ; i < 4 ; i++) {
8433 np->jump_tcb[i].l_cmd =
8434 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8435 np->jump_tcb[i].l_paddr =
8436 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8437 }
8438
8439 ncr_chip_reset(np, 100);
8440
8441 /* Now check the cache handling of the chipset. */
8442
8443 if (ncr_snooptest(np)) {
8444 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8445 goto attach_error;
8446 }
8447
8448 /* Install the interrupt handler. */
8449 np->irq = device->slot.irq;
8450
8451 /* Initialize the fixed part of the default ccb. */
8452 ncr_init_ccb(np, np->ccb);
8453
8454 /*
8455 * After SCSI devices have been opened, we cannot reset the bus
8456 * safely, so we do it here. Interrupt handler does the real work.
8457 * Process the reset exception if interrupts are not enabled yet.
8458 * Then enable disconnects.
8459 */
8460 spin_lock_irqsave(&np->smp_lock, flags);
8461 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8462 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8463
8464 spin_unlock_irqrestore(&np->smp_lock, flags);
8465 goto attach_error;
8466 }
8467 ncr_exception(np);
8468
8469 np->disc = 1;
8470
8471 /*
8472 * The middle-level SCSI driver does not wait for devices to settle.
8473 * Wait synchronously if more than 2 seconds.
8474 */
8475 if (driver_setup.settle_delay > 2) {
8476 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8477 ncr_name(np), driver_setup.settle_delay);
8478 mdelay(1000 * driver_setup.settle_delay);
8479 }
8480
8481 /* start the timeout daemon */
8482 np->lasttime=0;
8483 ncr_timeout (np);
8484
8485 /* use SIMPLE TAG messages by default */
8486 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8487 np->order = SIMPLE_QUEUE_TAG;
8488 #endif
8489
8490 spin_unlock_irqrestore(&np->smp_lock, flags);
8491
8492 return instance;
8493
8494 attach_error:
8495 if (!instance)
8496 return NULL;
8497 printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8498 if (!np)
8499 goto unregister;
8500 if (np->scripth0)
8501 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8502 if (np->script0)
8503 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8504 if (np->ccb)
8505 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8506 m_free_dma(np, sizeof(struct ncb), "NCB");
8507 host_data->ncb = NULL;
8508
8509 unregister:
8510 scsi_host_put(instance);
8511
8512 return NULL;
8513 }
8514
8515
8516 void ncr53c8xx_release(struct Scsi_Host *host)
8517 {
8518 struct host_data *host_data = shost_priv(host);
8519 #ifdef DEBUG_NCR53C8XX
8520 printk("ncr53c8xx: release\n");
8521 #endif
8522 if (host_data->ncb)
8523 ncr_detach(host_data->ncb);
8524 scsi_host_put(host);
8525 }
8526
8527 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8528 {
8529 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8530 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8531 struct tcb *tp = &np->target[starget->id];
8532
8533 if (period > np->maxsync)
8534 period = np->maxsync;
8535 else if (period < np->minsync)
8536 period = np->minsync;
8537
8538 tp->usrsync = period;
8539
8540 ncr_negotiate(np, tp);
8541 }
8542
8543 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8544 {
8545 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8546 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8547 struct tcb *tp = &np->target[starget->id];
8548
8549 if (offset > np->maxoffs)
8550 offset = np->maxoffs;
8551 else if (offset < 0)
8552 offset = 0;
8553
8554 tp->maxoffs = offset;
8555
8556 ncr_negotiate(np, tp);
8557 }
8558
8559 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8560 {
8561 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8562 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8563 struct tcb *tp = &np->target[starget->id];
8564
8565 if (width > np->maxwide)
8566 width = np->maxwide;
8567 else if (width < 0)
8568 width = 0;
8569
8570 tp->usrwide = width;
8571
8572 ncr_negotiate(np, tp);
8573 }
8574
8575 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8576 {
8577 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8578 enum spi_signal_type type;
8579
8580 switch (np->scsi_mode) {
8581 case SMODE_SE:
8582 type = SPI_SIGNAL_SE;
8583 break;
8584 case SMODE_HVD:
8585 type = SPI_SIGNAL_HVD;
8586 break;
8587 default:
8588 type = SPI_SIGNAL_UNKNOWN;
8589 break;
8590 }
8591 spi_signalling(shost) = type;
8592 }
8593
8594 static struct spi_function_template ncr53c8xx_transport_functions = {
8595 .set_period = ncr53c8xx_set_period,
8596 .show_period = 1,
8597 .set_offset = ncr53c8xx_set_offset,
8598 .show_offset = 1,
8599 .set_width = ncr53c8xx_set_width,
8600 .show_width = 1,
8601 .get_signalling = ncr53c8xx_get_signalling,
8602 };
8603
8604 int __init ncr53c8xx_init(void)
8605 {
8606 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8607 if (!ncr53c8xx_transport_template)
8608 return -ENODEV;
8609 return 0;
8610 }
8611
8612 void ncr53c8xx_exit(void)
8613 {
8614 spi_release_transport(ncr53c8xx_transport_template);
8615 }