]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/qla2xxx/qla_sup.c
[SCSI] qla2xxx: Retrieve board serial-number and description from VPD.
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 *
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16
17 /*
18 * NVRAM support routines
19 */
20
21 /**
22 * qla2x00_lock_nvram_access() -
23 * @ha: HA context
24 */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 uint16_t data;
29 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30
31 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 data = RD_REG_WORD(&reg->nvram);
33 while (data & NVR_BUSY) {
34 udelay(100);
35 data = RD_REG_WORD(&reg->nvram);
36 }
37
38 /* Lock resource */
39 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 udelay(5);
42 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 while ((data & BIT_0) == 0) {
44 /* Lock failed */
45 udelay(100);
46 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 udelay(5);
49 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 }
51 }
52 }
53
54 /**
55 * qla2x00_unlock_nvram_access() -
56 * @ha: HA context
57 */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62
63 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 }
67 }
68
69 /**
70 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71 * request routine to get the word from NVRAM.
72 * @ha: HA context
73 * @addr: Address in NVRAM to read
74 *
75 * Returns the word read from nvram @addr.
76 */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 uint16_t data;
81 uint32_t nv_cmd;
82
83 nv_cmd = addr << 16;
84 nv_cmd |= NV_READ_OP;
85 data = qla2x00_nvram_request(ha, nv_cmd);
86
87 return (data);
88 }
89
90 /**
91 * qla2x00_write_nvram_word() - Write NVRAM data.
92 * @ha: HA context
93 * @addr: Address in NVRAM to write
94 * @data: word to program
95 */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 int count;
100 uint16_t word;
101 uint32_t nv_cmd, wait_cnt;
102 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103
104 qla2x00_nv_write(ha, NVR_DATA_OUT);
105 qla2x00_nv_write(ha, 0);
106 qla2x00_nv_write(ha, 0);
107
108 for (word = 0; word < 8; word++)
109 qla2x00_nv_write(ha, NVR_DATA_OUT);
110
111 qla2x00_nv_deselect(ha);
112
113 /* Write data */
114 nv_cmd = (addr << 16) | NV_WRITE_OP;
115 nv_cmd |= data;
116 nv_cmd <<= 5;
117 for (count = 0; count < 27; count++) {
118 if (nv_cmd & BIT_31)
119 qla2x00_nv_write(ha, NVR_DATA_OUT);
120 else
121 qla2x00_nv_write(ha, 0);
122
123 nv_cmd <<= 1;
124 }
125
126 qla2x00_nv_deselect(ha);
127
128 /* Wait for NVRAM to become ready */
129 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
131 wait_cnt = NVR_WAIT_CNT;
132 do {
133 if (!--wait_cnt) {
134 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 __func__, ha->host_no));
136 break;
137 }
138 NVRAM_DELAY();
139 word = RD_REG_WORD(&reg->nvram);
140 } while ((word & NVR_DATA_IN) == 0);
141
142 qla2x00_nv_deselect(ha);
143
144 /* Disable writes */
145 qla2x00_nv_write(ha, NVR_DATA_OUT);
146 for (count = 0; count < 10; count++)
147 qla2x00_nv_write(ha, 0);
148
149 qla2x00_nv_deselect(ha);
150 }
151
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154 uint32_t tmo)
155 {
156 int ret, count;
157 uint16_t word;
158 uint32_t nv_cmd;
159 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160
161 ret = QLA_SUCCESS;
162
163 qla2x00_nv_write(ha, NVR_DATA_OUT);
164 qla2x00_nv_write(ha, 0);
165 qla2x00_nv_write(ha, 0);
166
167 for (word = 0; word < 8; word++)
168 qla2x00_nv_write(ha, NVR_DATA_OUT);
169
170 qla2x00_nv_deselect(ha);
171
172 /* Write data */
173 nv_cmd = (addr << 16) | NV_WRITE_OP;
174 nv_cmd |= data;
175 nv_cmd <<= 5;
176 for (count = 0; count < 27; count++) {
177 if (nv_cmd & BIT_31)
178 qla2x00_nv_write(ha, NVR_DATA_OUT);
179 else
180 qla2x00_nv_write(ha, 0);
181
182 nv_cmd <<= 1;
183 }
184
185 qla2x00_nv_deselect(ha);
186
187 /* Wait for NVRAM to become ready */
188 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
190 do {
191 NVRAM_DELAY();
192 word = RD_REG_WORD(&reg->nvram);
193 if (!--tmo) {
194 ret = QLA_FUNCTION_FAILED;
195 break;
196 }
197 } while ((word & NVR_DATA_IN) == 0);
198
199 qla2x00_nv_deselect(ha);
200
201 /* Disable writes */
202 qla2x00_nv_write(ha, NVR_DATA_OUT);
203 for (count = 0; count < 10; count++)
204 qla2x00_nv_write(ha, 0);
205
206 qla2x00_nv_deselect(ha);
207
208 return ret;
209 }
210
211 /**
212 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213 * NVRAM.
214 * @ha: HA context
215 * @nv_cmd: NVRAM command
216 *
217 * Bit definitions for NVRAM command:
218 *
219 * Bit 26 = start bit
220 * Bit 25, 24 = opcode
221 * Bit 23-16 = address
222 * Bit 15-0 = write data
223 *
224 * Returns the word read from nvram @addr.
225 */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 uint8_t cnt;
230 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 uint16_t data = 0;
232 uint16_t reg_data;
233
234 /* Send command to NVRAM. */
235 nv_cmd <<= 5;
236 for (cnt = 0; cnt < 11; cnt++) {
237 if (nv_cmd & BIT_31)
238 qla2x00_nv_write(ha, NVR_DATA_OUT);
239 else
240 qla2x00_nv_write(ha, 0);
241 nv_cmd <<= 1;
242 }
243
244 /* Read data from NVRAM. */
245 for (cnt = 0; cnt < 16; cnt++) {
246 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
248 NVRAM_DELAY();
249 data <<= 1;
250 reg_data = RD_REG_WORD(&reg->nvram);
251 if (reg_data & NVR_DATA_IN)
252 data |= BIT_0;
253 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
255 NVRAM_DELAY();
256 }
257
258 /* Deselect chip. */
259 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
261 NVRAM_DELAY();
262
263 return (data);
264 }
265
266 /**
267 * qla2x00_nv_write() - Clean NVRAM operations.
268 * @ha: HA context
269 */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274
275 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
277 NVRAM_DELAY();
278 }
279
280 /**
281 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282 * @ha: HA context
283 * @data: Serial interface selector
284 */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289
290 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
292 NVRAM_DELAY();
293 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 NVR_WRT_ENABLE);
295 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
296 NVRAM_DELAY();
297 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
299 NVRAM_DELAY();
300 }
301
302 /**
303 * qla2x00_clear_nvram_protection() -
304 * @ha: HA context
305 */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 int ret, stat;
310 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 uint32_t word, wait_cnt;
312 uint16_t wprot, wprot_old;
313
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
316
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
328
329 qla2x00_nv_deselect(ha);
330
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337
338 qla2x00_nv_deselect(ha);
339
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346
347 qla2x00_nv_deselect(ha);
348
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 "ready...\n", __func__,
357 ha->host_no));
358 break;
359 }
360 NVRAM_DELAY();
361 word = RD_REG_WORD(&reg->nvram);
362 } while ((word & NVR_DATA_IN) == 0);
363
364 if (wait_cnt)
365 ret = QLA_SUCCESS;
366 } else
367 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368
369 return ret;
370 }
371
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 uint32_t word, wait_cnt;
377
378 if (stat != QLA_SUCCESS)
379 return;
380
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
388
389 qla2x00_nv_deselect(ha);
390
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397
398 qla2x00_nv_deselect(ha);
399
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
406
407 qla2x00_nv_deselect(ha);
408
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 __func__, ha->host_no));
417 break;
418 }
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
422 }
423
424
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
428
429 #define OPTROM_BURST_SIZE 0x1000
430 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
431
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 int rval;
460 uint32_t cnt, data;
461 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462
463 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 /* Wait for READ cycle to complete. */
465 rval = QLA_SUCCESS;
466 for (cnt = 3000;
467 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 rval == QLA_SUCCESS; cnt--) {
469 if (cnt)
470 udelay(10);
471 else
472 rval = QLA_FUNCTION_TIMEOUT;
473 cond_resched();
474 }
475
476 /* TODO: What happens if we time out? */
477 data = 0xDEADDEAD;
478 if (rval == QLA_SUCCESS)
479 data = RD_REG_DWORD(&reg->flash_data);
480
481 return data;
482 }
483
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486 uint32_t dwords)
487 {
488 uint32_t i;
489
490 /* Dword reads to flash. */
491 for (i = 0; i < dwords; i++, faddr++)
492 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 flash_data_to_access_addr(faddr)));
494
495 return dwptr;
496 }
497
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 int rval;
502 uint32_t cnt;
503 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504
505 WRT_REG_DWORD(&reg->flash_data, data);
506 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
507 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 /* Wait for Write cycle to complete. */
509 rval = QLA_SUCCESS;
510 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 rval == QLA_SUCCESS; cnt--) {
512 if (cnt)
513 udelay(10);
514 else
515 rval = QLA_FUNCTION_TIMEOUT;
516 cond_resched();
517 }
518 return rval;
519 }
520
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523 uint8_t *flash_id)
524 {
525 uint32_t ids;
526
527 ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 *man_id = LSB(ids);
529 *flash_id = MSB(ids);
530
531 /* Check if man_id and flash_id are valid. */
532 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 /* Read information using 0x9f opcode
534 * Device ID, Mfg ID would be read in the format:
535 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 * Example: ATMEL 0x00 01 45 1F
537 * Extract MFG and Dev ID from last two bytes.
538 */
539 ids = qla24xx_read_flash_dword(ha,
540 flash_data_to_access_addr(0xd009f));
541 *man_id = LSB(ids);
542 *flash_id = MSB(ids);
543 }
544 }
545
546 void
547 qla2xxx_get_flash_info(scsi_qla_host_t *ha)
548 {
549 #define FLASH_BLK_SIZE_32K 0x8000
550 #define FLASH_BLK_SIZE_64K 0x10000
551 uint16_t cnt, chksum;
552 uint16_t *wptr;
553 struct qla_fdt_layout *fdt;
554 uint8_t man_id, flash_id;
555
556 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
557 return;
558
559 wptr = (uint16_t *)ha->request_ring;
560 fdt = (struct qla_fdt_layout *)ha->request_ring;
561 ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
562 FA_FLASH_DESCR_ADDR << 2, OPTROM_BURST_SIZE);
563 if (*wptr == __constant_cpu_to_le16(0xffff))
564 goto no_flash_data;
565 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
566 fdt->sig[3] != 'D')
567 goto no_flash_data;
568
569 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
570 cnt++)
571 chksum += le16_to_cpu(*wptr++);
572 if (chksum) {
573 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
574 "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
575 le16_to_cpu(fdt->version)));
576 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
577 goto no_flash_data;
578 }
579
580 ha->fdt_odd_index = le16_to_cpu(fdt->man_id) == 0x1f;
581 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
582 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
583 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
584 if (fdt->unprotect_sec_cmd) {
585 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
586 fdt->unprotect_sec_cmd);
587 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
588 flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
589 flash_conf_to_access_addr(0x0336);
590 }
591
592 DEBUG2(qla_printk(KERN_DEBUG, ha, "Flash[FDT]: (0x%x/0x%x) erase=0x%x "
593 "pro=%x upro=%x idx=%d wrtd=0x%x blk=0x%x.\n",
594 le16_to_cpu(fdt->man_id), le16_to_cpu(fdt->id), ha->fdt_erase_cmd,
595 ha->fdt_protect_sec_cmd, ha->fdt_unprotect_sec_cmd,
596 ha->fdt_odd_index, ha->fdt_wrt_disable, ha->fdt_block_size));
597 return;
598
599 no_flash_data:
600 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
601 ha->fdt_wrt_disable = 0x9c;
602 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
603 switch (man_id) {
604 case 0xbf: /* STT flash. */
605 if (flash_id == 0x8e)
606 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
607 else
608 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
609
610 if (flash_id == 0x80)
611 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
612 break;
613 case 0x13: /* ST M25P80. */
614 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
615 break;
616 case 0x1f: /* Atmel 26DF081A. */
617 ha->fdt_odd_index = 1;
618 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
619 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
620 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
621 ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
622 break;
623 default:
624 /* Default to 64 kb sector size. */
625 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
626 break;
627 }
628
629 DEBUG2(qla_printk(KERN_DEBUG, ha, "Flash[MID]: (0x%x/0x%x) erase=0x%x "
630 "pro=%x upro=%x idx=%d wrtd=0x%x blk=0x%x.\n", man_id, flash_id,
631 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
632 ha->fdt_unprotect_sec_cmd, ha->fdt_odd_index, ha->fdt_wrt_disable,
633 ha->fdt_block_size));
634 }
635
636 static void
637 qla24xx_unprotect_flash(scsi_qla_host_t *ha)
638 {
639 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
640
641 /* Enable flash write. */
642 WRT_REG_DWORD(&reg->ctrl_status,
643 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
644 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
645
646 if (!ha->fdt_wrt_disable)
647 return;
648
649 /* Disable flash write-protection. */
650 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
651 /* Some flash parts need an additional zero-write to clear bits.*/
652 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
653 }
654
655 static void
656 qla24xx_protect_flash(scsi_qla_host_t *ha)
657 {
658 uint32_t cnt;
659 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
660
661 if (!ha->fdt_wrt_disable)
662 goto skip_wrt_protect;
663
664 /* Enable flash write-protection and wait for completion. */
665 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
666 ha->fdt_wrt_disable);
667 for (cnt = 300; cnt &&
668 qla24xx_read_flash_dword(ha,
669 flash_conf_to_access_addr(0x005)) & BIT_0;
670 cnt--) {
671 udelay(10);
672 }
673
674 skip_wrt_protect:
675 /* Disable flash write. */
676 WRT_REG_DWORD(&reg->ctrl_status,
677 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
678 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
679 }
680
681 static int
682 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
683 uint32_t dwords)
684 {
685 int ret;
686 uint32_t liter, miter;
687 uint32_t sec_mask, rest_addr;
688 uint32_t fdata, findex;
689 dma_addr_t optrom_dma;
690 void *optrom = NULL;
691 uint32_t *s, *d;
692
693 ret = QLA_SUCCESS;
694
695 /* Prepare burst-capable write on supported ISPs. */
696 if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
697 dwords > OPTROM_BURST_DWORDS) {
698 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
699 &optrom_dma, GFP_KERNEL);
700 if (!optrom) {
701 qla_printk(KERN_DEBUG, ha,
702 "Unable to allocate memory for optrom burst write "
703 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
704 }
705 }
706
707 rest_addr = (ha->fdt_block_size >> 2) - 1;
708 sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
709
710 qla24xx_unprotect_flash(ha);
711
712 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
713 if (ha->fdt_odd_index) {
714 findex = faddr << 2;
715 fdata = findex & sec_mask;
716 } else {
717 findex = faddr;
718 fdata = (findex & sec_mask) << 2;
719 }
720
721 /* Are we at the beginning of a sector? */
722 if ((findex & rest_addr) == 0) {
723 /* Do sector unprotect. */
724 if (ha->fdt_unprotect_sec_cmd)
725 qla24xx_write_flash_dword(ha,
726 ha->fdt_unprotect_sec_cmd,
727 (fdata & 0xff00) | ((fdata << 16) &
728 0xff0000) | ((fdata >> 16) & 0xff));
729 ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
730 (fdata & 0xff00) |((fdata << 16) &
731 0xff0000) | ((fdata >> 16) & 0xff));
732 if (ret != QLA_SUCCESS) {
733 DEBUG9(printk("%s(%ld) Unable to flash "
734 "sector: address=%x.\n", __func__,
735 ha->host_no, faddr));
736 break;
737 }
738 }
739
740 /* Go with burst-write. */
741 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
742 /* Copy data to DMA'ble buffer. */
743 for (miter = 0, s = optrom, d = dwptr;
744 miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
745 *s = cpu_to_le32(*d);
746
747 ret = qla2x00_load_ram(ha, optrom_dma,
748 flash_data_to_access_addr(faddr),
749 OPTROM_BURST_DWORDS);
750 if (ret != QLA_SUCCESS) {
751 qla_printk(KERN_WARNING, ha,
752 "Unable to burst-write optrom segment "
753 "(%x/%x/%llx).\n", ret,
754 flash_data_to_access_addr(faddr),
755 (unsigned long long)optrom_dma);
756 qla_printk(KERN_WARNING, ha,
757 "Reverting to slow-write.\n");
758
759 dma_free_coherent(&ha->pdev->dev,
760 OPTROM_BURST_SIZE, optrom, optrom_dma);
761 optrom = NULL;
762 } else {
763 liter += OPTROM_BURST_DWORDS - 1;
764 faddr += OPTROM_BURST_DWORDS - 1;
765 dwptr += OPTROM_BURST_DWORDS - 1;
766 continue;
767 }
768 }
769
770 ret = qla24xx_write_flash_dword(ha,
771 flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
772 if (ret != QLA_SUCCESS) {
773 DEBUG9(printk("%s(%ld) Unable to program flash "
774 "address=%x data=%x.\n", __func__,
775 ha->host_no, faddr, *dwptr));
776 break;
777 }
778
779 /* Do sector protect. */
780 if (ha->fdt_unprotect_sec_cmd &&
781 ((faddr & rest_addr) == rest_addr))
782 qla24xx_write_flash_dword(ha,
783 ha->fdt_protect_sec_cmd,
784 (fdata & 0xff00) | ((fdata << 16) &
785 0xff0000) | ((fdata >> 16) & 0xff));
786 }
787
788 qla24xx_protect_flash(ha);
789
790 if (optrom)
791 dma_free_coherent(&ha->pdev->dev,
792 OPTROM_BURST_SIZE, optrom, optrom_dma);
793
794 return ret;
795 }
796
797 uint8_t *
798 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
799 uint32_t bytes)
800 {
801 uint32_t i;
802 uint16_t *wptr;
803
804 /* Word reads to NVRAM via registers. */
805 wptr = (uint16_t *)buf;
806 qla2x00_lock_nvram_access(ha);
807 for (i = 0; i < bytes >> 1; i++, naddr++)
808 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
809 naddr));
810 qla2x00_unlock_nvram_access(ha);
811
812 return buf;
813 }
814
815 uint8_t *
816 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
817 uint32_t bytes)
818 {
819 uint32_t i;
820 uint32_t *dwptr;
821
822 /* Dword reads to flash. */
823 dwptr = (uint32_t *)buf;
824 for (i = 0; i < bytes >> 2; i++, naddr++)
825 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
826 nvram_data_to_access_addr(naddr)));
827
828 return buf;
829 }
830
831 int
832 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
833 uint32_t bytes)
834 {
835 int ret, stat;
836 uint32_t i;
837 uint16_t *wptr;
838 unsigned long flags;
839
840 ret = QLA_SUCCESS;
841
842 spin_lock_irqsave(&ha->hardware_lock, flags);
843 qla2x00_lock_nvram_access(ha);
844
845 /* Disable NVRAM write-protection. */
846 stat = qla2x00_clear_nvram_protection(ha);
847
848 wptr = (uint16_t *)buf;
849 for (i = 0; i < bytes >> 1; i++, naddr++) {
850 qla2x00_write_nvram_word(ha, naddr,
851 cpu_to_le16(*wptr));
852 wptr++;
853 }
854
855 /* Enable NVRAM write-protection. */
856 qla2x00_set_nvram_protection(ha, stat);
857
858 qla2x00_unlock_nvram_access(ha);
859 spin_unlock_irqrestore(&ha->hardware_lock, flags);
860
861 return ret;
862 }
863
864 int
865 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
866 uint32_t bytes)
867 {
868 int ret;
869 uint32_t i;
870 uint32_t *dwptr;
871 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
872
873 ret = QLA_SUCCESS;
874
875 /* Enable flash write. */
876 WRT_REG_DWORD(&reg->ctrl_status,
877 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
878 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
879
880 /* Disable NVRAM write-protection. */
881 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
882 0);
883 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
884 0);
885
886 /* Dword writes to flash. */
887 dwptr = (uint32_t *)buf;
888 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
889 ret = qla24xx_write_flash_dword(ha,
890 nvram_data_to_access_addr(naddr),
891 cpu_to_le32(*dwptr));
892 if (ret != QLA_SUCCESS) {
893 DEBUG9(printk("%s(%ld) Unable to program "
894 "nvram address=%x data=%x.\n", __func__,
895 ha->host_no, naddr, *dwptr));
896 break;
897 }
898 }
899
900 /* Enable NVRAM write-protection. */
901 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
902 0x8c);
903
904 /* Disable flash write. */
905 WRT_REG_DWORD(&reg->ctrl_status,
906 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
907 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
908
909 return ret;
910 }
911
912 uint8_t *
913 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
914 uint32_t bytes)
915 {
916 uint32_t i;
917 uint32_t *dwptr;
918
919 /* Dword reads to flash. */
920 dwptr = (uint32_t *)buf;
921 for (i = 0; i < bytes >> 2; i++, naddr++)
922 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
923 flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
924
925 return buf;
926 }
927
928 int
929 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
930 uint32_t bytes)
931 {
932 #define RMW_BUFFER_SIZE (64 * 1024)
933 uint8_t *dbuf;
934
935 dbuf = vmalloc(RMW_BUFFER_SIZE);
936 if (!dbuf)
937 return QLA_MEMORY_ALLOC_FAILED;
938 ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
939 RMW_BUFFER_SIZE);
940 memcpy(dbuf + (naddr << 2), buf, bytes);
941 ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
942 RMW_BUFFER_SIZE);
943 vfree(dbuf);
944
945 return QLA_SUCCESS;
946 }
947
948 static inline void
949 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
950 {
951 if (IS_QLA2322(ha)) {
952 /* Flip all colors. */
953 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
954 /* Turn off. */
955 ha->beacon_color_state = 0;
956 *pflags = GPIO_LED_ALL_OFF;
957 } else {
958 /* Turn on. */
959 ha->beacon_color_state = QLA_LED_ALL_ON;
960 *pflags = GPIO_LED_RGA_ON;
961 }
962 } else {
963 /* Flip green led only. */
964 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
965 /* Turn off. */
966 ha->beacon_color_state = 0;
967 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
968 } else {
969 /* Turn on. */
970 ha->beacon_color_state = QLA_LED_GRN_ON;
971 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
972 }
973 }
974 }
975
976 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
977
978 void
979 qla2x00_beacon_blink(struct scsi_qla_host *ha)
980 {
981 uint16_t gpio_enable;
982 uint16_t gpio_data;
983 uint16_t led_color = 0;
984 unsigned long flags;
985 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
986
987 spin_lock_irqsave(&ha->hardware_lock, flags);
988
989 /* Save the Original GPIOE. */
990 if (ha->pio_address) {
991 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
992 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
993 } else {
994 gpio_enable = RD_REG_WORD(&reg->gpioe);
995 gpio_data = RD_REG_WORD(&reg->gpiod);
996 }
997
998 /* Set the modified gpio_enable values */
999 gpio_enable |= GPIO_LED_MASK;
1000
1001 if (ha->pio_address) {
1002 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1003 } else {
1004 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1005 RD_REG_WORD(&reg->gpioe);
1006 }
1007
1008 qla2x00_flip_colors(ha, &led_color);
1009
1010 /* Clear out any previously set LED color. */
1011 gpio_data &= ~GPIO_LED_MASK;
1012
1013 /* Set the new input LED color to GPIOD. */
1014 gpio_data |= led_color;
1015
1016 /* Set the modified gpio_data values */
1017 if (ha->pio_address) {
1018 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1019 } else {
1020 WRT_REG_WORD(&reg->gpiod, gpio_data);
1021 RD_REG_WORD(&reg->gpiod);
1022 }
1023
1024 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1025 }
1026
1027 int
1028 qla2x00_beacon_on(struct scsi_qla_host *ha)
1029 {
1030 uint16_t gpio_enable;
1031 uint16_t gpio_data;
1032 unsigned long flags;
1033 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1034
1035 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1036 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1037
1038 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1039 qla_printk(KERN_WARNING, ha,
1040 "Unable to update fw options (beacon on).\n");
1041 return QLA_FUNCTION_FAILED;
1042 }
1043
1044 /* Turn off LEDs. */
1045 spin_lock_irqsave(&ha->hardware_lock, flags);
1046 if (ha->pio_address) {
1047 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1048 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1049 } else {
1050 gpio_enable = RD_REG_WORD(&reg->gpioe);
1051 gpio_data = RD_REG_WORD(&reg->gpiod);
1052 }
1053 gpio_enable |= GPIO_LED_MASK;
1054
1055 /* Set the modified gpio_enable values. */
1056 if (ha->pio_address) {
1057 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1058 } else {
1059 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1060 RD_REG_WORD(&reg->gpioe);
1061 }
1062
1063 /* Clear out previously set LED colour. */
1064 gpio_data &= ~GPIO_LED_MASK;
1065 if (ha->pio_address) {
1066 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1067 } else {
1068 WRT_REG_WORD(&reg->gpiod, gpio_data);
1069 RD_REG_WORD(&reg->gpiod);
1070 }
1071 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1072
1073 /*
1074 * Let the per HBA timer kick off the blinking process based on
1075 * the following flags. No need to do anything else now.
1076 */
1077 ha->beacon_blink_led = 1;
1078 ha->beacon_color_state = 0;
1079
1080 return QLA_SUCCESS;
1081 }
1082
1083 int
1084 qla2x00_beacon_off(struct scsi_qla_host *ha)
1085 {
1086 int rval = QLA_SUCCESS;
1087
1088 ha->beacon_blink_led = 0;
1089
1090 /* Set the on flag so when it gets flipped it will be off. */
1091 if (IS_QLA2322(ha))
1092 ha->beacon_color_state = QLA_LED_ALL_ON;
1093 else
1094 ha->beacon_color_state = QLA_LED_GRN_ON;
1095
1096 ha->isp_ops->beacon_blink(ha); /* This turns green LED off */
1097
1098 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1099 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1100
1101 rval = qla2x00_set_fw_options(ha, ha->fw_options);
1102 if (rval != QLA_SUCCESS)
1103 qla_printk(KERN_WARNING, ha,
1104 "Unable to update fw options (beacon off).\n");
1105 return rval;
1106 }
1107
1108
1109 static inline void
1110 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1111 {
1112 /* Flip all colors. */
1113 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1114 /* Turn off. */
1115 ha->beacon_color_state = 0;
1116 *pflags = 0;
1117 } else {
1118 /* Turn on. */
1119 ha->beacon_color_state = QLA_LED_ALL_ON;
1120 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1121 }
1122 }
1123
1124 void
1125 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1126 {
1127 uint16_t led_color = 0;
1128 uint32_t gpio_data;
1129 unsigned long flags;
1130 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1131
1132 /* Save the Original GPIOD. */
1133 spin_lock_irqsave(&ha->hardware_lock, flags);
1134 gpio_data = RD_REG_DWORD(&reg->gpiod);
1135
1136 /* Enable the gpio_data reg for update. */
1137 gpio_data |= GPDX_LED_UPDATE_MASK;
1138
1139 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1140 gpio_data = RD_REG_DWORD(&reg->gpiod);
1141
1142 /* Set the color bits. */
1143 qla24xx_flip_colors(ha, &led_color);
1144
1145 /* Clear out any previously set LED color. */
1146 gpio_data &= ~GPDX_LED_COLOR_MASK;
1147
1148 /* Set the new input LED color to GPIOD. */
1149 gpio_data |= led_color;
1150
1151 /* Set the modified gpio_data values. */
1152 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1153 gpio_data = RD_REG_DWORD(&reg->gpiod);
1154 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1155 }
1156
1157 int
1158 qla24xx_beacon_on(struct scsi_qla_host *ha)
1159 {
1160 uint32_t gpio_data;
1161 unsigned long flags;
1162 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1163
1164 if (ha->beacon_blink_led == 0) {
1165 /* Enable firmware for update */
1166 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1167
1168 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1169 return QLA_FUNCTION_FAILED;
1170
1171 if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1172 QLA_SUCCESS) {
1173 qla_printk(KERN_WARNING, ha,
1174 "Unable to update fw options (beacon on).\n");
1175 return QLA_FUNCTION_FAILED;
1176 }
1177
1178 spin_lock_irqsave(&ha->hardware_lock, flags);
1179 gpio_data = RD_REG_DWORD(&reg->gpiod);
1180
1181 /* Enable the gpio_data reg for update. */
1182 gpio_data |= GPDX_LED_UPDATE_MASK;
1183 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1184 RD_REG_DWORD(&reg->gpiod);
1185
1186 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1187 }
1188
1189 /* So all colors blink together. */
1190 ha->beacon_color_state = 0;
1191
1192 /* Let the per HBA timer kick off the blinking process. */
1193 ha->beacon_blink_led = 1;
1194
1195 return QLA_SUCCESS;
1196 }
1197
1198 int
1199 qla24xx_beacon_off(struct scsi_qla_host *ha)
1200 {
1201 uint32_t gpio_data;
1202 unsigned long flags;
1203 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1204
1205 ha->beacon_blink_led = 0;
1206 ha->beacon_color_state = QLA_LED_ALL_ON;
1207
1208 ha->isp_ops->beacon_blink(ha); /* Will flip to all off. */
1209
1210 /* Give control back to firmware. */
1211 spin_lock_irqsave(&ha->hardware_lock, flags);
1212 gpio_data = RD_REG_DWORD(&reg->gpiod);
1213
1214 /* Disable the gpio_data reg for update. */
1215 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1216 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1217 RD_REG_DWORD(&reg->gpiod);
1218 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1219
1220 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1221
1222 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1223 qla_printk(KERN_WARNING, ha,
1224 "Unable to update fw options (beacon off).\n");
1225 return QLA_FUNCTION_FAILED;
1226 }
1227
1228 if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1229 qla_printk(KERN_WARNING, ha,
1230 "Unable to get fw options (beacon off).\n");
1231 return QLA_FUNCTION_FAILED;
1232 }
1233
1234 return QLA_SUCCESS;
1235 }
1236
1237
1238 /*
1239 * Flash support routines
1240 */
1241
1242 /**
1243 * qla2x00_flash_enable() - Setup flash for reading and writing.
1244 * @ha: HA context
1245 */
1246 static void
1247 qla2x00_flash_enable(scsi_qla_host_t *ha)
1248 {
1249 uint16_t data;
1250 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1251
1252 data = RD_REG_WORD(&reg->ctrl_status);
1253 data |= CSR_FLASH_ENABLE;
1254 WRT_REG_WORD(&reg->ctrl_status, data);
1255 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1256 }
1257
1258 /**
1259 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1260 * @ha: HA context
1261 */
1262 static void
1263 qla2x00_flash_disable(scsi_qla_host_t *ha)
1264 {
1265 uint16_t data;
1266 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1267
1268 data = RD_REG_WORD(&reg->ctrl_status);
1269 data &= ~(CSR_FLASH_ENABLE);
1270 WRT_REG_WORD(&reg->ctrl_status, data);
1271 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1272 }
1273
1274 /**
1275 * qla2x00_read_flash_byte() - Reads a byte from flash
1276 * @ha: HA context
1277 * @addr: Address in flash to read
1278 *
1279 * A word is read from the chip, but, only the lower byte is valid.
1280 *
1281 * Returns the byte read from flash @addr.
1282 */
1283 static uint8_t
1284 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1285 {
1286 uint16_t data;
1287 uint16_t bank_select;
1288 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1289
1290 bank_select = RD_REG_WORD(&reg->ctrl_status);
1291
1292 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1293 /* Specify 64K address range: */
1294 /* clear out Module Select and Flash Address bits [19:16]. */
1295 bank_select &= ~0xf8;
1296 bank_select |= addr >> 12 & 0xf0;
1297 bank_select |= CSR_FLASH_64K_BANK;
1298 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1299 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1300
1301 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1302 data = RD_REG_WORD(&reg->flash_data);
1303
1304 return (uint8_t)data;
1305 }
1306
1307 /* Setup bit 16 of flash address. */
1308 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1309 bank_select |= CSR_FLASH_64K_BANK;
1310 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1311 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1312 } else if (((addr & BIT_16) == 0) &&
1313 (bank_select & CSR_FLASH_64K_BANK)) {
1314 bank_select &= ~(CSR_FLASH_64K_BANK);
1315 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1316 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1317 }
1318
1319 /* Always perform IO mapped accesses to the FLASH registers. */
1320 if (ha->pio_address) {
1321 uint16_t data2;
1322
1323 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1324 do {
1325 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1326 barrier();
1327 cpu_relax();
1328 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1329 } while (data != data2);
1330 } else {
1331 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1332 data = qla2x00_debounce_register(&reg->flash_data);
1333 }
1334
1335 return (uint8_t)data;
1336 }
1337
1338 /**
1339 * qla2x00_write_flash_byte() - Write a byte to flash
1340 * @ha: HA context
1341 * @addr: Address in flash to write
1342 * @data: Data to write
1343 */
1344 static void
1345 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1346 {
1347 uint16_t bank_select;
1348 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1349
1350 bank_select = RD_REG_WORD(&reg->ctrl_status);
1351 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1352 /* Specify 64K address range: */
1353 /* clear out Module Select and Flash Address bits [19:16]. */
1354 bank_select &= ~0xf8;
1355 bank_select |= addr >> 12 & 0xf0;
1356 bank_select |= CSR_FLASH_64K_BANK;
1357 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1358 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1359
1360 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1361 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1362 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1363 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1364
1365 return;
1366 }
1367
1368 /* Setup bit 16 of flash address. */
1369 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1370 bank_select |= CSR_FLASH_64K_BANK;
1371 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1372 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1373 } else if (((addr & BIT_16) == 0) &&
1374 (bank_select & CSR_FLASH_64K_BANK)) {
1375 bank_select &= ~(CSR_FLASH_64K_BANK);
1376 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1377 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1378 }
1379
1380 /* Always perform IO mapped accesses to the FLASH registers. */
1381 if (ha->pio_address) {
1382 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1383 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1384 } else {
1385 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1386 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1387 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1388 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1389 }
1390 }
1391
1392 /**
1393 * qla2x00_poll_flash() - Polls flash for completion.
1394 * @ha: HA context
1395 * @addr: Address in flash to poll
1396 * @poll_data: Data to be polled
1397 * @man_id: Flash manufacturer ID
1398 * @flash_id: Flash ID
1399 *
1400 * This function polls the device until bit 7 of what is read matches data
1401 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1402 * out (a fatal error). The flash book recommeds reading bit 7 again after
1403 * reading bit 5 as a 1.
1404 *
1405 * Returns 0 on success, else non-zero.
1406 */
1407 static int
1408 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1409 uint8_t man_id, uint8_t flash_id)
1410 {
1411 int status;
1412 uint8_t flash_data;
1413 uint32_t cnt;
1414
1415 status = 1;
1416
1417 /* Wait for 30 seconds for command to finish. */
1418 poll_data &= BIT_7;
1419 for (cnt = 3000000; cnt; cnt--) {
1420 flash_data = qla2x00_read_flash_byte(ha, addr);
1421 if ((flash_data & BIT_7) == poll_data) {
1422 status = 0;
1423 break;
1424 }
1425
1426 if (man_id != 0x40 && man_id != 0xda) {
1427 if ((flash_data & BIT_5) && cnt > 2)
1428 cnt = 2;
1429 }
1430 udelay(10);
1431 barrier();
1432 cond_resched();
1433 }
1434 return status;
1435 }
1436
1437 /**
1438 * qla2x00_program_flash_address() - Programs a flash address
1439 * @ha: HA context
1440 * @addr: Address in flash to program
1441 * @data: Data to be written in flash
1442 * @man_id: Flash manufacturer ID
1443 * @flash_id: Flash ID
1444 *
1445 * Returns 0 on success, else non-zero.
1446 */
1447 static int
1448 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1449 uint8_t man_id, uint8_t flash_id)
1450 {
1451 /* Write Program Command Sequence. */
1452 if (IS_OEM_001(ha)) {
1453 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1454 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1455 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1456 qla2x00_write_flash_byte(ha, addr, data);
1457 } else {
1458 if (man_id == 0xda && flash_id == 0xc1) {
1459 qla2x00_write_flash_byte(ha, addr, data);
1460 if (addr & 0x7e)
1461 return 0;
1462 } else {
1463 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1464 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1465 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1466 qla2x00_write_flash_byte(ha, addr, data);
1467 }
1468 }
1469
1470 udelay(150);
1471
1472 /* Wait for write to complete. */
1473 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1474 }
1475
1476 /**
1477 * qla2x00_erase_flash() - Erase the flash.
1478 * @ha: HA context
1479 * @man_id: Flash manufacturer ID
1480 * @flash_id: Flash ID
1481 *
1482 * Returns 0 on success, else non-zero.
1483 */
1484 static int
1485 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1486 {
1487 /* Individual Sector Erase Command Sequence */
1488 if (IS_OEM_001(ha)) {
1489 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1490 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1491 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1492 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1493 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1494 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1495 } else {
1496 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1497 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1498 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1499 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1500 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1501 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1502 }
1503
1504 udelay(150);
1505
1506 /* Wait for erase to complete. */
1507 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1508 }
1509
1510 /**
1511 * qla2x00_erase_flash_sector() - Erase a flash sector.
1512 * @ha: HA context
1513 * @addr: Flash sector to erase
1514 * @sec_mask: Sector address mask
1515 * @man_id: Flash manufacturer ID
1516 * @flash_id: Flash ID
1517 *
1518 * Returns 0 on success, else non-zero.
1519 */
1520 static int
1521 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1522 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1523 {
1524 /* Individual Sector Erase Command Sequence */
1525 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1526 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1527 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1528 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1529 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1530 if (man_id == 0x1f && flash_id == 0x13)
1531 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1532 else
1533 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1534
1535 udelay(150);
1536
1537 /* Wait for erase to complete. */
1538 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1539 }
1540
1541 /**
1542 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1543 * @man_id: Flash manufacturer ID
1544 * @flash_id: Flash ID
1545 */
1546 static void
1547 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1548 uint8_t *flash_id)
1549 {
1550 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1551 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1552 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1553 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1554 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1555 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1556 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1557 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1558 }
1559
1560 static void
1561 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1562 uint32_t length)
1563 {
1564 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1565 uint32_t midpoint, ilength;
1566 uint8_t data;
1567
1568 midpoint = length / 2;
1569
1570 WRT_REG_WORD(&reg->nvram, 0);
1571 RD_REG_WORD(&reg->nvram);
1572 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1573 if (ilength == midpoint) {
1574 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1575 RD_REG_WORD(&reg->nvram);
1576 }
1577 data = qla2x00_read_flash_byte(ha, saddr);
1578 if (saddr % 100)
1579 udelay(10);
1580 *tmp_buf = data;
1581 cond_resched();
1582 }
1583 }
1584
1585 static inline void
1586 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1587 {
1588 int cnt;
1589 unsigned long flags;
1590 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1591
1592 /* Suspend HBA. */
1593 scsi_block_requests(ha->host);
1594 ha->isp_ops->disable_intrs(ha);
1595 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1596
1597 /* Pause RISC. */
1598 spin_lock_irqsave(&ha->hardware_lock, flags);
1599 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1600 RD_REG_WORD(&reg->hccr);
1601 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1602 for (cnt = 0; cnt < 30000; cnt++) {
1603 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1604 break;
1605 udelay(100);
1606 }
1607 } else {
1608 udelay(10);
1609 }
1610 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1611 }
1612
1613 static inline void
1614 qla2x00_resume_hba(struct scsi_qla_host *ha)
1615 {
1616 /* Resume HBA. */
1617 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1618 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1619 qla2xxx_wake_dpc(ha);
1620 qla2x00_wait_for_hba_online(ha);
1621 scsi_unblock_requests(ha->host);
1622 }
1623
1624 uint8_t *
1625 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1626 uint32_t offset, uint32_t length)
1627 {
1628 uint32_t addr, midpoint;
1629 uint8_t *data;
1630 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1631
1632 /* Suspend HBA. */
1633 qla2x00_suspend_hba(ha);
1634
1635 /* Go with read. */
1636 midpoint = ha->optrom_size / 2;
1637
1638 qla2x00_flash_enable(ha);
1639 WRT_REG_WORD(&reg->nvram, 0);
1640 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1641 for (addr = offset, data = buf; addr < length; addr++, data++) {
1642 if (addr == midpoint) {
1643 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1644 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1645 }
1646
1647 *data = qla2x00_read_flash_byte(ha, addr);
1648 }
1649 qla2x00_flash_disable(ha);
1650
1651 /* Resume HBA. */
1652 qla2x00_resume_hba(ha);
1653
1654 return buf;
1655 }
1656
1657 int
1658 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1659 uint32_t offset, uint32_t length)
1660 {
1661
1662 int rval;
1663 uint8_t man_id, flash_id, sec_number, data;
1664 uint16_t wd;
1665 uint32_t addr, liter, sec_mask, rest_addr;
1666 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1667
1668 /* Suspend HBA. */
1669 qla2x00_suspend_hba(ha);
1670
1671 rval = QLA_SUCCESS;
1672 sec_number = 0;
1673
1674 /* Reset ISP chip. */
1675 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1676 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1677
1678 /* Go with write. */
1679 qla2x00_flash_enable(ha);
1680 do { /* Loop once to provide quick error exit */
1681 /* Structure of flash memory based on manufacturer */
1682 if (IS_OEM_001(ha)) {
1683 /* OEM variant with special flash part. */
1684 man_id = flash_id = 0;
1685 rest_addr = 0xffff;
1686 sec_mask = 0x10000;
1687 goto update_flash;
1688 }
1689 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1690 switch (man_id) {
1691 case 0x20: /* ST flash. */
1692 if (flash_id == 0xd2 || flash_id == 0xe3) {
1693 /*
1694 * ST m29w008at part - 64kb sector size with
1695 * 32kb,8kb,8kb,16kb sectors at memory address
1696 * 0xf0000.
1697 */
1698 rest_addr = 0xffff;
1699 sec_mask = 0x10000;
1700 break;
1701 }
1702 /*
1703 * ST m29w010b part - 16kb sector size
1704 * Default to 16kb sectors
1705 */
1706 rest_addr = 0x3fff;
1707 sec_mask = 0x1c000;
1708 break;
1709 case 0x40: /* Mostel flash. */
1710 /* Mostel v29c51001 part - 512 byte sector size. */
1711 rest_addr = 0x1ff;
1712 sec_mask = 0x1fe00;
1713 break;
1714 case 0xbf: /* SST flash. */
1715 /* SST39sf10 part - 4kb sector size. */
1716 rest_addr = 0xfff;
1717 sec_mask = 0x1f000;
1718 break;
1719 case 0xda: /* Winbond flash. */
1720 /* Winbond W29EE011 part - 256 byte sector size. */
1721 rest_addr = 0x7f;
1722 sec_mask = 0x1ff80;
1723 break;
1724 case 0xc2: /* Macronix flash. */
1725 /* 64k sector size. */
1726 if (flash_id == 0x38 || flash_id == 0x4f) {
1727 rest_addr = 0xffff;
1728 sec_mask = 0x10000;
1729 break;
1730 }
1731 /* Fall through... */
1732
1733 case 0x1f: /* Atmel flash. */
1734 /* 512k sector size. */
1735 if (flash_id == 0x13) {
1736 rest_addr = 0x7fffffff;
1737 sec_mask = 0x80000000;
1738 break;
1739 }
1740 /* Fall through... */
1741
1742 case 0x01: /* AMD flash. */
1743 if (flash_id == 0x38 || flash_id == 0x40 ||
1744 flash_id == 0x4f) {
1745 /* Am29LV081 part - 64kb sector size. */
1746 /* Am29LV002BT part - 64kb sector size. */
1747 rest_addr = 0xffff;
1748 sec_mask = 0x10000;
1749 break;
1750 } else if (flash_id == 0x3e) {
1751 /*
1752 * Am29LV008b part - 64kb sector size with
1753 * 32kb,8kb,8kb,16kb sector at memory address
1754 * h0xf0000.
1755 */
1756 rest_addr = 0xffff;
1757 sec_mask = 0x10000;
1758 break;
1759 } else if (flash_id == 0x20 || flash_id == 0x6e) {
1760 /*
1761 * Am29LV010 part or AM29f010 - 16kb sector
1762 * size.
1763 */
1764 rest_addr = 0x3fff;
1765 sec_mask = 0x1c000;
1766 break;
1767 } else if (flash_id == 0x6d) {
1768 /* Am29LV001 part - 8kb sector size. */
1769 rest_addr = 0x1fff;
1770 sec_mask = 0x1e000;
1771 break;
1772 }
1773 default:
1774 /* Default to 16 kb sector size. */
1775 rest_addr = 0x3fff;
1776 sec_mask = 0x1c000;
1777 break;
1778 }
1779
1780 update_flash:
1781 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1782 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
1783 rval = QLA_FUNCTION_FAILED;
1784 break;
1785 }
1786 }
1787
1788 for (addr = offset, liter = 0; liter < length; liter++,
1789 addr++) {
1790 data = buf[liter];
1791 /* Are we at the beginning of a sector? */
1792 if ((addr & rest_addr) == 0) {
1793 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1794 if (addr >= 0x10000UL) {
1795 if (((addr >> 12) & 0xf0) &&
1796 ((man_id == 0x01 &&
1797 flash_id == 0x3e) ||
1798 (man_id == 0x20 &&
1799 flash_id == 0xd2))) {
1800 sec_number++;
1801 if (sec_number == 1) {
1802 rest_addr =
1803 0x7fff;
1804 sec_mask =
1805 0x18000;
1806 } else if (
1807 sec_number == 2 ||
1808 sec_number == 3) {
1809 rest_addr =
1810 0x1fff;
1811 sec_mask =
1812 0x1e000;
1813 } else if (
1814 sec_number == 4) {
1815 rest_addr =
1816 0x3fff;
1817 sec_mask =
1818 0x1c000;
1819 }
1820 }
1821 }
1822 } else if (addr == ha->optrom_size / 2) {
1823 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1824 RD_REG_WORD(&reg->nvram);
1825 }
1826
1827 if (flash_id == 0xda && man_id == 0xc1) {
1828 qla2x00_write_flash_byte(ha, 0x5555,
1829 0xaa);
1830 qla2x00_write_flash_byte(ha, 0x2aaa,
1831 0x55);
1832 qla2x00_write_flash_byte(ha, 0x5555,
1833 0xa0);
1834 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
1835 /* Then erase it */
1836 if (qla2x00_erase_flash_sector(ha,
1837 addr, sec_mask, man_id,
1838 flash_id)) {
1839 rval = QLA_FUNCTION_FAILED;
1840 break;
1841 }
1842 if (man_id == 0x01 && flash_id == 0x6d)
1843 sec_number++;
1844 }
1845 }
1846
1847 if (man_id == 0x01 && flash_id == 0x6d) {
1848 if (sec_number == 1 &&
1849 addr == (rest_addr - 1)) {
1850 rest_addr = 0x0fff;
1851 sec_mask = 0x1f000;
1852 } else if (sec_number == 3 && (addr & 0x7ffe)) {
1853 rest_addr = 0x3fff;
1854 sec_mask = 0x1c000;
1855 }
1856 }
1857
1858 if (qla2x00_program_flash_address(ha, addr, data,
1859 man_id, flash_id)) {
1860 rval = QLA_FUNCTION_FAILED;
1861 break;
1862 }
1863 cond_resched();
1864 }
1865 } while (0);
1866 qla2x00_flash_disable(ha);
1867
1868 /* Resume HBA. */
1869 qla2x00_resume_hba(ha);
1870
1871 return rval;
1872 }
1873
1874 uint8_t *
1875 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1876 uint32_t offset, uint32_t length)
1877 {
1878 /* Suspend HBA. */
1879 scsi_block_requests(ha->host);
1880 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1881
1882 /* Go with read. */
1883 qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
1884
1885 /* Resume HBA. */
1886 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1887 scsi_unblock_requests(ha->host);
1888
1889 return buf;
1890 }
1891
1892 int
1893 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1894 uint32_t offset, uint32_t length)
1895 {
1896 int rval;
1897
1898 /* Suspend HBA. */
1899 scsi_block_requests(ha->host);
1900 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1901
1902 /* Go with write. */
1903 rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
1904 length >> 2);
1905
1906 /* Resume HBA -- RISC reset needed. */
1907 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1908 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1909 qla2xxx_wake_dpc(ha);
1910 qla2x00_wait_for_hba_online(ha);
1911 scsi_unblock_requests(ha->host);
1912
1913 return rval;
1914 }
1915
1916 uint8_t *
1917 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1918 uint32_t offset, uint32_t length)
1919 {
1920 int rval;
1921 dma_addr_t optrom_dma;
1922 void *optrom;
1923 uint8_t *pbuf;
1924 uint32_t faddr, left, burst;
1925
1926 if (offset & 0xfff)
1927 goto slow_read;
1928 if (length < OPTROM_BURST_SIZE)
1929 goto slow_read;
1930
1931 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1932 &optrom_dma, GFP_KERNEL);
1933 if (!optrom) {
1934 qla_printk(KERN_DEBUG, ha,
1935 "Unable to allocate memory for optrom burst read "
1936 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1937
1938 goto slow_read;
1939 }
1940
1941 pbuf = buf;
1942 faddr = offset >> 2;
1943 left = length >> 2;
1944 burst = OPTROM_BURST_DWORDS;
1945 while (left != 0) {
1946 if (burst > left)
1947 burst = left;
1948
1949 rval = qla2x00_dump_ram(ha, optrom_dma,
1950 flash_data_to_access_addr(faddr), burst);
1951 if (rval) {
1952 qla_printk(KERN_WARNING, ha,
1953 "Unable to burst-read optrom segment "
1954 "(%x/%x/%llx).\n", rval,
1955 flash_data_to_access_addr(faddr),
1956 (unsigned long long)optrom_dma);
1957 qla_printk(KERN_WARNING, ha,
1958 "Reverting to slow-read.\n");
1959
1960 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1961 optrom, optrom_dma);
1962 goto slow_read;
1963 }
1964
1965 memcpy(pbuf, optrom, burst * 4);
1966
1967 left -= burst;
1968 faddr += burst;
1969 pbuf += burst * 4;
1970 }
1971
1972 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
1973 optrom_dma);
1974
1975 return buf;
1976
1977 slow_read:
1978 return qla24xx_read_optrom_data(ha, buf, offset, length);
1979 }
1980
1981 /**
1982 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
1983 * @ha: HA context
1984 * @pcids: Pointer to the FCODE PCI data structure
1985 *
1986 * The process of retrieving the FCODE version information is at best
1987 * described as interesting.
1988 *
1989 * Within the first 100h bytes of the image an ASCII string is present
1990 * which contains several pieces of information including the FCODE
1991 * version. Unfortunately it seems the only reliable way to retrieve
1992 * the version is by scanning for another sentinel within the string,
1993 * the FCODE build date:
1994 *
1995 * ... 2.00.02 10/17/02 ...
1996 *
1997 * Returns QLA_SUCCESS on successful retrieval of version.
1998 */
1999 static void
2000 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
2001 {
2002 int ret = QLA_FUNCTION_FAILED;
2003 uint32_t istart, iend, iter, vend;
2004 uint8_t do_next, rbyte, *vbyte;
2005
2006 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2007
2008 /* Skip the PCI data structure. */
2009 istart = pcids +
2010 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2011 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2012 iend = istart + 0x100;
2013 do {
2014 /* Scan for the sentinel date string...eeewww. */
2015 do_next = 0;
2016 iter = istart;
2017 while ((iter < iend) && !do_next) {
2018 iter++;
2019 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2020 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2021 '/')
2022 do_next++;
2023 else if (qla2x00_read_flash_byte(ha,
2024 iter + 3) == '/')
2025 do_next++;
2026 }
2027 }
2028 if (!do_next)
2029 break;
2030
2031 /* Backtrack to previous ' ' (space). */
2032 do_next = 0;
2033 while ((iter > istart) && !do_next) {
2034 iter--;
2035 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2036 do_next++;
2037 }
2038 if (!do_next)
2039 break;
2040
2041 /*
2042 * Mark end of version tag, and find previous ' ' (space) or
2043 * string length (recent FCODE images -- major hack ahead!!!).
2044 */
2045 vend = iter - 1;
2046 do_next = 0;
2047 while ((iter > istart) && !do_next) {
2048 iter--;
2049 rbyte = qla2x00_read_flash_byte(ha, iter);
2050 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2051 do_next++;
2052 }
2053 if (!do_next)
2054 break;
2055
2056 /* Mark beginning of version tag, and copy data. */
2057 iter++;
2058 if ((vend - iter) &&
2059 ((vend - iter) < sizeof(ha->fcode_revision))) {
2060 vbyte = ha->fcode_revision;
2061 while (iter <= vend) {
2062 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2063 iter++;
2064 }
2065 ret = QLA_SUCCESS;
2066 }
2067 } while (0);
2068
2069 if (ret != QLA_SUCCESS)
2070 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2071 }
2072
2073 int
2074 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2075 {
2076 int ret = QLA_SUCCESS;
2077 uint8_t code_type, last_image;
2078 uint32_t pcihdr, pcids;
2079 uint8_t *dbyte;
2080 uint16_t *dcode;
2081
2082 if (!ha->pio_address || !mbuf)
2083 return QLA_FUNCTION_FAILED;
2084
2085 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2086 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2087 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2088 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2089
2090 qla2x00_flash_enable(ha);
2091
2092 /* Begin with first PCI expansion ROM header. */
2093 pcihdr = 0;
2094 last_image = 1;
2095 do {
2096 /* Verify PCI expansion ROM header. */
2097 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2098 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2099 /* No signature */
2100 DEBUG2(printk("scsi(%ld): No matching ROM "
2101 "signature.\n", ha->host_no));
2102 ret = QLA_FUNCTION_FAILED;
2103 break;
2104 }
2105
2106 /* Locate PCI data structure. */
2107 pcids = pcihdr +
2108 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2109 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2110
2111 /* Validate signature of PCI data structure. */
2112 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2113 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2114 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2115 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2116 /* Incorrect header. */
2117 DEBUG2(printk("%s(): PCI data struct not found "
2118 "pcir_adr=%x.\n", __func__, pcids));
2119 ret = QLA_FUNCTION_FAILED;
2120 break;
2121 }
2122
2123 /* Read version */
2124 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2125 switch (code_type) {
2126 case ROM_CODE_TYPE_BIOS:
2127 /* Intel x86, PC-AT compatible. */
2128 ha->bios_revision[0] =
2129 qla2x00_read_flash_byte(ha, pcids + 0x12);
2130 ha->bios_revision[1] =
2131 qla2x00_read_flash_byte(ha, pcids + 0x13);
2132 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2133 ha->bios_revision[1], ha->bios_revision[0]));
2134 break;
2135 case ROM_CODE_TYPE_FCODE:
2136 /* Open Firmware standard for PCI (FCode). */
2137 /* Eeeewww... */
2138 qla2x00_get_fcode_version(ha, pcids);
2139 break;
2140 case ROM_CODE_TYPE_EFI:
2141 /* Extensible Firmware Interface (EFI). */
2142 ha->efi_revision[0] =
2143 qla2x00_read_flash_byte(ha, pcids + 0x12);
2144 ha->efi_revision[1] =
2145 qla2x00_read_flash_byte(ha, pcids + 0x13);
2146 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2147 ha->efi_revision[1], ha->efi_revision[0]));
2148 break;
2149 default:
2150 DEBUG2(printk("%s(): Unrecognized code type %x at "
2151 "pcids %x.\n", __func__, code_type, pcids));
2152 break;
2153 }
2154
2155 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2156
2157 /* Locate next PCI expansion ROM. */
2158 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2159 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2160 } while (!last_image);
2161
2162 if (IS_QLA2322(ha)) {
2163 /* Read firmware image information. */
2164 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2165 dbyte = mbuf;
2166 memset(dbyte, 0, 8);
2167 dcode = (uint16_t *)dbyte;
2168
2169 qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
2170 8);
2171 DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2172 __func__, ha->host_no));
2173 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2174
2175 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2176 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2177 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2178 dcode[3] == 0)) {
2179 DEBUG2(printk("%s(): Unrecognized fw revision at "
2180 "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
2181 } else {
2182 /* values are in big endian */
2183 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2184 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2185 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2186 }
2187 }
2188
2189 qla2x00_flash_disable(ha);
2190
2191 return ret;
2192 }
2193
2194 int
2195 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2196 {
2197 int ret = QLA_SUCCESS;
2198 uint32_t pcihdr, pcids;
2199 uint32_t *dcode;
2200 uint8_t *bcode;
2201 uint8_t code_type, last_image;
2202 int i;
2203
2204 if (!mbuf)
2205 return QLA_FUNCTION_FAILED;
2206
2207 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2208 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2209 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2210 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2211
2212 dcode = mbuf;
2213
2214 /* Begin with first PCI expansion ROM header. */
2215 pcihdr = 0;
2216 last_image = 1;
2217 do {
2218 /* Verify PCI expansion ROM header. */
2219 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2220 bcode = mbuf + (pcihdr % 4);
2221 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2222 /* No signature */
2223 DEBUG2(printk("scsi(%ld): No matching ROM "
2224 "signature.\n", ha->host_no));
2225 ret = QLA_FUNCTION_FAILED;
2226 break;
2227 }
2228
2229 /* Locate PCI data structure. */
2230 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2231
2232 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2233 bcode = mbuf + (pcihdr % 4);
2234
2235 /* Validate signature of PCI data structure. */
2236 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2237 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2238 /* Incorrect header. */
2239 DEBUG2(printk("%s(): PCI data struct not found "
2240 "pcir_adr=%x.\n", __func__, pcids));
2241 ret = QLA_FUNCTION_FAILED;
2242 break;
2243 }
2244
2245 /* Read version */
2246 code_type = bcode[0x14];
2247 switch (code_type) {
2248 case ROM_CODE_TYPE_BIOS:
2249 /* Intel x86, PC-AT compatible. */
2250 ha->bios_revision[0] = bcode[0x12];
2251 ha->bios_revision[1] = bcode[0x13];
2252 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2253 ha->bios_revision[1], ha->bios_revision[0]));
2254 break;
2255 case ROM_CODE_TYPE_FCODE:
2256 /* Open Firmware standard for PCI (FCode). */
2257 ha->fcode_revision[0] = bcode[0x12];
2258 ha->fcode_revision[1] = bcode[0x13];
2259 DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2260 ha->fcode_revision[1], ha->fcode_revision[0]));
2261 break;
2262 case ROM_CODE_TYPE_EFI:
2263 /* Extensible Firmware Interface (EFI). */
2264 ha->efi_revision[0] = bcode[0x12];
2265 ha->efi_revision[1] = bcode[0x13];
2266 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2267 ha->efi_revision[1], ha->efi_revision[0]));
2268 break;
2269 default:
2270 DEBUG2(printk("%s(): Unrecognized code type %x at "
2271 "pcids %x.\n", __func__, code_type, pcids));
2272 break;
2273 }
2274
2275 last_image = bcode[0x15] & BIT_7;
2276
2277 /* Locate next PCI expansion ROM. */
2278 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2279 } while (!last_image);
2280
2281 /* Read firmware image information. */
2282 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2283 dcode = mbuf;
2284
2285 qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
2286 for (i = 0; i < 4; i++)
2287 dcode[i] = be32_to_cpu(dcode[i]);
2288
2289 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2290 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2291 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2292 dcode[3] == 0)) {
2293 DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2294 __func__, FA_RISC_CODE_ADDR));
2295 } else {
2296 ha->fw_revision[0] = dcode[0];
2297 ha->fw_revision[1] = dcode[1];
2298 ha->fw_revision[2] = dcode[2];
2299 ha->fw_revision[3] = dcode[3];
2300 }
2301
2302 return ret;
2303 }
2304
2305 static int
2306 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2307 {
2308 if (pos >= end || *pos != 0x82)
2309 return 0;
2310
2311 pos += 3 + pos[1];
2312 if (pos >= end || *pos != 0x90)
2313 return 0;
2314
2315 pos += 3 + pos[1];
2316 if (pos >= end || *pos != 0x78)
2317 return 0;
2318
2319 return 1;
2320 }
2321
2322 int
2323 qla2xxx_get_vpd_field(scsi_qla_host_t *ha, char *key, char *str, size_t size)
2324 {
2325 uint8_t *pos = ha->vpd;
2326 uint8_t *end = pos + ha->vpd_size;
2327 int len = 0;
2328
2329 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2330 return 0;
2331
2332 while (pos < end && *pos != 0x78) {
2333 len = (*pos == 0x82) ? pos[1] : pos[2];
2334
2335 if (!strncmp(pos, key, strlen(key)))
2336 break;
2337
2338 if (*pos != 0x90 && *pos != 0x91)
2339 pos += len;
2340
2341 pos += 3;
2342 }
2343
2344 if (pos < end - len && *pos != 0x78)
2345 return snprintf(str, size, "%.*s", len, pos + 3);
2346
2347 return 0;
2348 }
2349
2350 static int
2351 qla2xxx_hw_event_store(scsi_qla_host_t *ha, uint32_t *fdata)
2352 {
2353 uint32_t d[2], faddr;
2354
2355 /* Locate first empty entry. */
2356 for (;;) {
2357 if (ha->hw_event_ptr >=
2358 ha->hw_event_start + FA_HW_EVENT_SIZE) {
2359 DEBUG2(qla_printk(KERN_WARNING, ha,
2360 "HW event -- Log Full!\n"));
2361 return QLA_MEMORY_ALLOC_FAILED;
2362 }
2363
2364 qla24xx_read_flash_data(ha, d, ha->hw_event_ptr, 2);
2365 faddr = flash_data_to_access_addr(ha->hw_event_ptr);
2366 ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2367 if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
2368 d[1] == __constant_cpu_to_le32(0xffffffff)) {
2369 qla24xx_unprotect_flash(ha);
2370
2371 qla24xx_write_flash_dword(ha, faddr++,
2372 cpu_to_le32(jiffies));
2373 qla24xx_write_flash_dword(ha, faddr++, 0);
2374 qla24xx_write_flash_dword(ha, faddr++, *fdata++);
2375 qla24xx_write_flash_dword(ha, faddr++, *fdata);
2376
2377 qla24xx_protect_flash(ha);
2378 break;
2379 }
2380 }
2381 return QLA_SUCCESS;
2382 }
2383
2384 int
2385 qla2xxx_hw_event_log(scsi_qla_host_t *ha, uint16_t code, uint16_t d1,
2386 uint16_t d2, uint16_t d3)
2387 {
2388 #define QMARK(a, b, c, d) \
2389 cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2390
2391 int rval;
2392 uint32_t marker[2], fdata[4];
2393
2394 if (ha->hw_event_start == 0)
2395 return QLA_FUNCTION_FAILED;
2396
2397 DEBUG2(qla_printk(KERN_WARNING, ha,
2398 "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
2399
2400 /* If marker not already found, locate or write. */
2401 if (!ha->flags.hw_event_marker_found) {
2402 /* Create marker. */
2403 marker[0] = QMARK('L', ha->fw_major_version,
2404 ha->fw_minor_version, ha->fw_subminor_version);
2405 marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
2406 QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
2407
2408 /* Locate marker. */
2409 ha->hw_event_ptr = ha->hw_event_start;
2410 for (;;) {
2411 qla24xx_read_flash_data(ha, fdata, ha->hw_event_ptr,
2412 4);
2413 if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
2414 fdata[1] == __constant_cpu_to_le32(0xffffffff))
2415 break;
2416 ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2417 if (ha->hw_event_ptr >=
2418 ha->hw_event_start + FA_HW_EVENT_SIZE) {
2419 DEBUG2(qla_printk(KERN_WARNING, ha,
2420 "HW event -- Log Full!\n"));
2421 return QLA_MEMORY_ALLOC_FAILED;
2422 }
2423 if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
2424 ha->flags.hw_event_marker_found = 1;
2425 break;
2426 }
2427 }
2428 /* No marker, write it. */
2429 if (!ha->flags.hw_event_marker_found) {
2430 rval = qla2xxx_hw_event_store(ha, marker);
2431 if (rval != QLA_SUCCESS) {
2432 DEBUG2(qla_printk(KERN_WARNING, ha,
2433 "HW event -- Failed marker write=%x.!\n",
2434 rval));
2435 return rval;
2436 }
2437 ha->flags.hw_event_marker_found = 1;
2438 }
2439 }
2440
2441 /* Store error. */
2442 fdata[0] = cpu_to_le32(code << 16 | d1);
2443 fdata[1] = cpu_to_le32(d2 << 16 | d3);
2444 rval = qla2xxx_hw_event_store(ha, fdata);
2445 if (rval != QLA_SUCCESS) {
2446 DEBUG2(qla_printk(KERN_WARNING, ha,
2447 "HW event -- Failed error write=%x.!\n",
2448 rval));
2449 }
2450
2451 return rval;
2452 }