]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/scsi_lib.c
2179851cdaf3bd5c5563cb5808883691516faa94
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE 2
43
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
49 };
50
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56 SP(8),
57 SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61 SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63 SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70 SP(SCSI_MAX_SG_SEGMENTS)
71 };
72 #undef SP
73
74 struct kmem_cache *scsi_sdb_cache;
75
76 /*
77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78 * not change behaviour from the previous unplug mechanism, experimentation
79 * may prove this needs changing.
80 */
81 #define SCSI_QUEUE_DELAY 3
82
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85 {
86 struct Scsi_Host *host = cmd->device->host;
87 struct scsi_device *device = cmd->device;
88 struct scsi_target *starget = scsi_target(device);
89
90 /*
91 * Set the appropriate busy bit for the device/host.
92 *
93 * If the host/device isn't busy, assume that something actually
94 * completed, and that we should be able to queue a command now.
95 *
96 * Note that the prior mid-layer assumption that any host could
97 * always queue at least one command is now broken. The mid-layer
98 * will implement a user specifiable stall (see
99 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100 * if a command is requeued with no other commands outstanding
101 * either for the device or for the host.
102 */
103 switch (reason) {
104 case SCSI_MLQUEUE_HOST_BUSY:
105 atomic_set(&host->host_blocked, host->max_host_blocked);
106 break;
107 case SCSI_MLQUEUE_DEVICE_BUSY:
108 case SCSI_MLQUEUE_EH_RETRY:
109 atomic_set(&device->device_blocked,
110 device->max_device_blocked);
111 break;
112 case SCSI_MLQUEUE_TARGET_BUSY:
113 atomic_set(&starget->target_blocked,
114 starget->max_target_blocked);
115 break;
116 }
117 }
118
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120 {
121 struct scsi_device *sdev = cmd->device;
122 struct request_queue *q = cmd->request->q;
123
124 blk_mq_requeue_request(cmd->request);
125 blk_mq_kick_requeue_list(q);
126 put_device(&sdev->sdev_gendev);
127 }
128
129 /**
130 * __scsi_queue_insert - private queue insertion
131 * @cmd: The SCSI command being requeued
132 * @reason: The reason for the requeue
133 * @unbusy: Whether the queue should be unbusied
134 *
135 * This is a private queue insertion. The public interface
136 * scsi_queue_insert() always assumes the queue should be unbusied
137 * because it's always called before the completion. This function is
138 * for a requeue after completion, which should only occur in this
139 * file.
140 */
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142 {
143 struct scsi_device *device = cmd->device;
144 struct request_queue *q = device->request_queue;
145 unsigned long flags;
146
147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 "Inserting command %p into mlqueue\n", cmd));
149
150 scsi_set_blocked(cmd, reason);
151
152 /*
153 * Decrement the counters, since these commands are no longer
154 * active on the host/device.
155 */
156 if (unbusy)
157 scsi_device_unbusy(device);
158
159 /*
160 * Requeue this command. It will go before all other commands
161 * that are already in the queue. Schedule requeue work under
162 * lock such that the kblockd_schedule_work() call happens
163 * before blk_cleanup_queue() finishes.
164 */
165 cmd->result = 0;
166 if (q->mq_ops) {
167 scsi_mq_requeue_cmd(cmd);
168 return;
169 }
170 spin_lock_irqsave(q->queue_lock, flags);
171 blk_requeue_request(q, cmd->request);
172 kblockd_schedule_work(&device->requeue_work);
173 spin_unlock_irqrestore(q->queue_lock, flags);
174 }
175
176 /*
177 * Function: scsi_queue_insert()
178 *
179 * Purpose: Insert a command in the midlevel queue.
180 *
181 * Arguments: cmd - command that we are adding to queue.
182 * reason - why we are inserting command to queue.
183 *
184 * Lock status: Assumed that lock is not held upon entry.
185 *
186 * Returns: Nothing.
187 *
188 * Notes: We do this for one of two cases. Either the host is busy
189 * and it cannot accept any more commands for the time being,
190 * or the device returned QUEUE_FULL and can accept no more
191 * commands.
192 * Notes: This could be called either from an interrupt context or a
193 * normal process context.
194 */
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196 {
197 __scsi_queue_insert(cmd, reason, 1);
198 }
199 /**
200 * scsi_execute - insert request and wait for the result
201 * @sdev: scsi device
202 * @cmd: scsi command
203 * @data_direction: data direction
204 * @buffer: data buffer
205 * @bufflen: len of buffer
206 * @sense: optional sense buffer
207 * @timeout: request timeout in seconds
208 * @retries: number of times to retry request
209 * @flags: or into request flags;
210 * @resid: optional residual length
211 *
212 * returns the req->errors value which is the scsi_cmnd result
213 * field.
214 */
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 unsigned char *sense, int timeout, int retries, u64 flags,
218 int *resid)
219 {
220 struct request *req;
221 int write = (data_direction == DMA_TO_DEVICE);
222 int ret = DRIVER_ERROR << 24;
223
224 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225 if (IS_ERR(req))
226 return ret;
227 blk_rq_set_block_pc(req);
228
229 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
230 buffer, bufflen, __GFP_WAIT))
231 goto out;
232
233 req->cmd_len = COMMAND_SIZE(cmd[0]);
234 memcpy(req->cmd, cmd, req->cmd_len);
235 req->sense = sense;
236 req->sense_len = 0;
237 req->retries = retries;
238 req->timeout = timeout;
239 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240
241 /*
242 * head injection *required* here otherwise quiesce won't work
243 */
244 blk_execute_rq(req->q, NULL, req, 1);
245
246 /*
247 * Some devices (USB mass-storage in particular) may transfer
248 * garbage data together with a residue indicating that the data
249 * is invalid. Prevent the garbage from being misinterpreted
250 * and prevent security leaks by zeroing out the excess data.
251 */
252 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254
255 if (resid)
256 *resid = req->resid_len;
257 ret = req->errors;
258 out:
259 blk_put_request(req);
260
261 return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute);
264
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266 int data_direction, void *buffer, unsigned bufflen,
267 struct scsi_sense_hdr *sshdr, int timeout, int retries,
268 int *resid, u64 flags)
269 {
270 char *sense = NULL;
271 int result;
272
273 if (sshdr) {
274 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275 if (!sense)
276 return DRIVER_ERROR << 24;
277 }
278 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279 sense, timeout, retries, flags, resid);
280 if (sshdr)
281 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282
283 kfree(sense);
284 return result;
285 }
286 EXPORT_SYMBOL(scsi_execute_req_flags);
287
288 /*
289 * Function: scsi_init_cmd_errh()
290 *
291 * Purpose: Initialize cmd fields related to error handling.
292 *
293 * Arguments: cmd - command that is ready to be queued.
294 *
295 * Notes: This function has the job of initializing a number of
296 * fields related to error handling. Typically this will
297 * be called once for each command, as required.
298 */
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300 {
301 cmd->serial_number = 0;
302 scsi_set_resid(cmd, 0);
303 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304 if (cmd->cmd_len == 0)
305 cmd->cmd_len = scsi_command_size(cmd->cmnd);
306 }
307
308 void scsi_device_unbusy(struct scsi_device *sdev)
309 {
310 struct Scsi_Host *shost = sdev->host;
311 struct scsi_target *starget = scsi_target(sdev);
312 unsigned long flags;
313
314 atomic_dec(&shost->host_busy);
315 if (starget->can_queue > 0)
316 atomic_dec(&starget->target_busy);
317
318 if (unlikely(scsi_host_in_recovery(shost) &&
319 (shost->host_failed || shost->host_eh_scheduled))) {
320 spin_lock_irqsave(shost->host_lock, flags);
321 scsi_eh_wakeup(shost);
322 spin_unlock_irqrestore(shost->host_lock, flags);
323 }
324
325 atomic_dec(&sdev->device_busy);
326 }
327
328 static void scsi_kick_queue(struct request_queue *q)
329 {
330 if (q->mq_ops)
331 blk_mq_start_hw_queues(q);
332 else
333 blk_run_queue(q);
334 }
335
336 /*
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
340 *
341 * Called with *no* scsi locks held.
342 */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
348 unsigned long flags;
349
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
353
354 /*
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
359 */
360 scsi_kick_queue(current_sdev->request_queue);
361
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
364 goto out;
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
368 continue;
369 if (scsi_device_get(sdev))
370 continue;
371
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 scsi_kick_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
375
376 scsi_device_put(sdev);
377 }
378 out:
379 spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385 return true;
386 if (atomic_read(&sdev->device_blocked) > 0)
387 return true;
388 return false;
389 }
390
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
392 {
393 if (starget->can_queue > 0) {
394 if (atomic_read(&starget->target_busy) >= starget->can_queue)
395 return true;
396 if (atomic_read(&starget->target_blocked) > 0)
397 return true;
398 }
399 return false;
400 }
401
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404 if (shost->can_queue > 0 &&
405 atomic_read(&shost->host_busy) >= shost->can_queue)
406 return true;
407 if (atomic_read(&shost->host_blocked) > 0)
408 return true;
409 if (shost->host_self_blocked)
410 return true;
411 return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 LIST_HEAD(starved_list);
417 struct scsi_device *sdev;
418 unsigned long flags;
419
420 spin_lock_irqsave(shost->host_lock, flags);
421 list_splice_init(&shost->starved_list, &starved_list);
422
423 while (!list_empty(&starved_list)) {
424 struct request_queue *slq;
425
426 /*
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
430 * starved_list.
431 *
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
435 */
436 if (scsi_host_is_busy(shost))
437 break;
438
439 sdev = list_entry(starved_list.next,
440 struct scsi_device, starved_entry);
441 list_del_init(&sdev->starved_entry);
442 if (scsi_target_is_busy(scsi_target(sdev))) {
443 list_move_tail(&sdev->starved_entry,
444 &shost->starved_list);
445 continue;
446 }
447
448 /*
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 */
458 slq = sdev->request_queue;
459 if (!blk_get_queue(slq))
460 continue;
461 spin_unlock_irqrestore(shost->host_lock, flags);
462
463 scsi_kick_queue(slq);
464 blk_put_queue(slq);
465
466 spin_lock_irqsave(shost->host_lock, flags);
467 }
468 /* put any unprocessed entries back */
469 list_splice(&starved_list, &shost->starved_list);
470 spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /*
474 * Function: scsi_run_queue()
475 *
476 * Purpose: Select a proper request queue to serve next
477 *
478 * Arguments: q - last request's queue
479 *
480 * Returns: Nothing
481 *
482 * Notes: The previous command was completely finished, start
483 * a new one if possible.
484 */
485 static void scsi_run_queue(struct request_queue *q)
486 {
487 struct scsi_device *sdev = q->queuedata;
488
489 if (scsi_target(sdev)->single_lun)
490 scsi_single_lun_run(sdev);
491 if (!list_empty(&sdev->host->starved_list))
492 scsi_starved_list_run(sdev->host);
493
494 if (q->mq_ops)
495 blk_mq_start_stopped_hw_queues(q, false);
496 else
497 blk_run_queue(q);
498 }
499
500 void scsi_requeue_run_queue(struct work_struct *work)
501 {
502 struct scsi_device *sdev;
503 struct request_queue *q;
504
505 sdev = container_of(work, struct scsi_device, requeue_work);
506 q = sdev->request_queue;
507 scsi_run_queue(q);
508 }
509
510 /*
511 * Function: scsi_requeue_command()
512 *
513 * Purpose: Handle post-processing of completed commands.
514 *
515 * Arguments: q - queue to operate on
516 * cmd - command that may need to be requeued.
517 *
518 * Returns: Nothing
519 *
520 * Notes: After command completion, there may be blocks left
521 * over which weren't finished by the previous command
522 * this can be for a number of reasons - the main one is
523 * I/O errors in the middle of the request, in which case
524 * we need to request the blocks that come after the bad
525 * sector.
526 * Notes: Upon return, cmd is a stale pointer.
527 */
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529 {
530 struct scsi_device *sdev = cmd->device;
531 struct request *req = cmd->request;
532 unsigned long flags;
533
534 spin_lock_irqsave(q->queue_lock, flags);
535 blk_unprep_request(req);
536 req->special = NULL;
537 scsi_put_command(cmd);
538 blk_requeue_request(q, req);
539 spin_unlock_irqrestore(q->queue_lock, flags);
540
541 scsi_run_queue(q);
542
543 put_device(&sdev->sdev_gendev);
544 }
545
546 void scsi_run_host_queues(struct Scsi_Host *shost)
547 {
548 struct scsi_device *sdev;
549
550 shost_for_each_device(sdev, shost)
551 scsi_run_queue(sdev->request_queue);
552 }
553
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
555 {
556 unsigned int index;
557
558 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559
560 if (nents <= 8)
561 index = 0;
562 else
563 index = get_count_order(nents) - 3;
564
565 return index;
566 }
567
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569 {
570 struct scsi_host_sg_pool *sgp;
571
572 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573 mempool_free(sgl, sgp->pool);
574 }
575
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577 {
578 struct scsi_host_sg_pool *sgp;
579
580 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581 return mempool_alloc(sgp->pool, gfp_mask);
582 }
583
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585 {
586 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
587 return;
588 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589 }
590
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
592 gfp_t gfp_mask, bool mq)
593 {
594 struct scatterlist *first_chunk = NULL;
595 int ret;
596
597 BUG_ON(!nents);
598
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = nents;
602 sg_init_table(sdb->table.sgl, sdb->table.nents);
603 return 0;
604 }
605 first_chunk = sdb->table.sgl;
606 }
607
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, gfp_mask, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
622 }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
640
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
643
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
649 }
650 }
651
652 /*
653 * Function: scsi_release_buffers()
654 *
655 * Purpose: Free resources allocate for a scsi_command.
656 *
657 * Arguments: cmd - command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns: Nothing
662 *
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
667 */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
672
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
690 {
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
694
695 if (blk_update_request(req, error, bytes))
696 return true;
697
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
702
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
705
706 if (req->mq_ctx) {
707 /*
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
710 *
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
713 */
714 scsi_mq_uninit_cmd(cmd);
715
716 __blk_mq_end_request(req, error);
717
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
725
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
728
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
732
733 scsi_release_buffers(cmd);
734
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
737 }
738
739 put_device(&sdev->sdev_gendev);
740 return false;
741 }
742
743 /**
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
747 *
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
756 */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 int error = 0;
760
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
784 }
785
786 return error;
787 }
788
789 /*
790 * Function: scsi_io_completion()
791 *
792 * Purpose: Completion processing for block device I/O requests.
793 *
794 * Arguments: cmd - command that is finished.
795 *
796 * Lock status: Assumed that no lock is held upon entry.
797 *
798 * Returns: Nothing
799 *
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
804 *
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
810 *
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
814 *
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
817 */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
835 }
836
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
840 /*
841 * SG_IO wants current and deferred errors
842 */
843 int len = 8 + cmd->sense_buffer[7];
844
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
849 }
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
852 }
853 /*
854 * __scsi_error_from_host_byte may have reset the host_byte
855 */
856 req->errors = cmd->result;
857
858 req->resid_len = scsi_get_resid(cmd);
859
860 if (scsi_bidi_cmnd(cmd)) {
861 /*
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
864 */
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
870 }
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 /*
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
877 */
878 error = __scsi_error_from_host_byte(cmd, result);
879 }
880
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
883
884 /*
885 * Next deal with any sectors which we were able to correctly
886 * handle.
887 */
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
891
892 /*
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
897 */
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 */
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 ;
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
910 }
911
912 /*
913 * If we finished all bytes in the request we are done now.
914 */
915 if (!scsi_end_request(req, error, good_bytes, 0))
916 return;
917
918 /*
919 * Kill remainder if no retrys.
920 */
921 if (error && scsi_noretry_cmd(cmd)) {
922 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923 BUG();
924 return;
925 }
926
927 /*
928 * If there had been no error, but we have leftover bytes in the
929 * requeues just queue the command up again.
930 */
931 if (result == 0)
932 goto requeue;
933
934 error = __scsi_error_from_host_byte(cmd, result);
935
936 if (host_byte(result) == DID_RESET) {
937 /* Third party bus reset or reset for error recovery
938 * reasons. Just retry the command and see what
939 * happens.
940 */
941 action = ACTION_RETRY;
942 } else if (sense_valid && !sense_deferred) {
943 switch (sshdr.sense_key) {
944 case UNIT_ATTENTION:
945 if (cmd->device->removable) {
946 /* Detected disc change. Set a bit
947 * and quietly refuse further access.
948 */
949 cmd->device->changed = 1;
950 action = ACTION_FAIL;
951 } else {
952 /* Must have been a power glitch, or a
953 * bus reset. Could not have been a
954 * media change, so we just retry the
955 * command and see what happens.
956 */
957 action = ACTION_RETRY;
958 }
959 break;
960 case ILLEGAL_REQUEST:
961 /* If we had an ILLEGAL REQUEST returned, then
962 * we may have performed an unsupported
963 * command. The only thing this should be
964 * would be a ten byte read where only a six
965 * byte read was supported. Also, on a system
966 * where READ CAPACITY failed, we may have
967 * read past the end of the disk.
968 */
969 if ((cmd->device->use_10_for_rw &&
970 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971 (cmd->cmnd[0] == READ_10 ||
972 cmd->cmnd[0] == WRITE_10)) {
973 /* This will issue a new 6-byte command. */
974 cmd->device->use_10_for_rw = 0;
975 action = ACTION_REPREP;
976 } else if (sshdr.asc == 0x10) /* DIX */ {
977 action = ACTION_FAIL;
978 error = -EILSEQ;
979 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981 action = ACTION_FAIL;
982 error = -EREMOTEIO;
983 } else
984 action = ACTION_FAIL;
985 break;
986 case ABORTED_COMMAND:
987 action = ACTION_FAIL;
988 if (sshdr.asc == 0x10) /* DIF */
989 error = -EILSEQ;
990 break;
991 case NOT_READY:
992 /* If the device is in the process of becoming
993 * ready, or has a temporary blockage, retry.
994 */
995 if (sshdr.asc == 0x04) {
996 switch (sshdr.ascq) {
997 case 0x01: /* becoming ready */
998 case 0x04: /* format in progress */
999 case 0x05: /* rebuild in progress */
1000 case 0x06: /* recalculation in progress */
1001 case 0x07: /* operation in progress */
1002 case 0x08: /* Long write in progress */
1003 case 0x09: /* self test in progress */
1004 case 0x14: /* space allocation in progress */
1005 action = ACTION_DELAYED_RETRY;
1006 break;
1007 default:
1008 action = ACTION_FAIL;
1009 break;
1010 }
1011 } else
1012 action = ACTION_FAIL;
1013 break;
1014 case VOLUME_OVERFLOW:
1015 /* See SSC3rXX or current. */
1016 action = ACTION_FAIL;
1017 break;
1018 default:
1019 action = ACTION_FAIL;
1020 break;
1021 }
1022 } else
1023 action = ACTION_FAIL;
1024
1025 if (action != ACTION_FAIL &&
1026 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027 action = ACTION_FAIL;
1028
1029 switch (action) {
1030 case ACTION_FAIL:
1031 /* Give up and fail the remainder of the request */
1032 if (!(req->cmd_flags & REQ_QUIET)) {
1033 static DEFINE_RATELIMIT_STATE(_rs,
1034 DEFAULT_RATELIMIT_INTERVAL,
1035 DEFAULT_RATELIMIT_BURST);
1036
1037 if (unlikely(scsi_logging_level))
1038 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039 SCSI_LOG_MLCOMPLETE_BITS);
1040
1041 /*
1042 * if logging is enabled the failure will be printed
1043 * in scsi_log_completion(), so avoid duplicate messages
1044 */
1045 if (!level && __ratelimit(&_rs)) {
1046 scsi_print_result(cmd, NULL, FAILED);
1047 if (driver_byte(result) & DRIVER_SENSE)
1048 scsi_print_sense(cmd);
1049 scsi_print_command(cmd);
1050 }
1051 }
1052 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053 return;
1054 /*FALLTHRU*/
1055 case ACTION_REPREP:
1056 requeue:
1057 /* Unprep the request and put it back at the head of the queue.
1058 * A new command will be prepared and issued.
1059 */
1060 if (q->mq_ops) {
1061 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062 scsi_mq_uninit_cmd(cmd);
1063 scsi_mq_requeue_cmd(cmd);
1064 } else {
1065 scsi_release_buffers(cmd);
1066 scsi_requeue_command(q, cmd);
1067 }
1068 break;
1069 case ACTION_RETRY:
1070 /* Retry the same command immediately */
1071 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072 break;
1073 case ACTION_DELAYED_RETRY:
1074 /* Retry the same command after a delay */
1075 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076 break;
1077 }
1078 }
1079
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1081 gfp_t gfp_mask)
1082 {
1083 int count;
1084
1085 /*
1086 * If sg table allocation fails, requeue request later.
1087 */
1088 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1089 gfp_mask, req->mq_ctx != NULL)))
1090 return BLKPREP_DEFER;
1091
1092 /*
1093 * Next, walk the list, and fill in the addresses and sizes of
1094 * each segment.
1095 */
1096 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1097 BUG_ON(count > sdb->table.nents);
1098 sdb->table.nents = count;
1099 sdb->length = blk_rq_bytes(req);
1100 return BLKPREP_OK;
1101 }
1102
1103 /*
1104 * Function: scsi_init_io()
1105 *
1106 * Purpose: SCSI I/O initialize function.
1107 *
1108 * Arguments: cmd - Command descriptor we wish to initialize
1109 *
1110 * Returns: 0 on success
1111 * BLKPREP_DEFER if the failure is retryable
1112 * BLKPREP_KILL if the failure is fatal
1113 */
1114 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1115 {
1116 struct scsi_device *sdev = cmd->device;
1117 struct request *rq = cmd->request;
1118 bool is_mq = (rq->mq_ctx != NULL);
1119 int error;
1120
1121 BUG_ON(!rq->nr_phys_segments);
1122
1123 error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1124 if (error)
1125 goto err_exit;
1126
1127 if (blk_bidi_rq(rq)) {
1128 if (!rq->q->mq_ops) {
1129 struct scsi_data_buffer *bidi_sdb =
1130 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1131 if (!bidi_sdb) {
1132 error = BLKPREP_DEFER;
1133 goto err_exit;
1134 }
1135
1136 rq->next_rq->special = bidi_sdb;
1137 }
1138
1139 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1140 GFP_ATOMIC);
1141 if (error)
1142 goto err_exit;
1143 }
1144
1145 if (blk_integrity_rq(rq)) {
1146 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1147 int ivecs, count;
1148
1149 BUG_ON(prot_sdb == NULL);
1150 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1151
1152 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1153 error = BLKPREP_DEFER;
1154 goto err_exit;
1155 }
1156
1157 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1158 prot_sdb->table.sgl);
1159 BUG_ON(unlikely(count > ivecs));
1160 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1161
1162 cmd->prot_sdb = prot_sdb;
1163 cmd->prot_sdb->table.nents = count;
1164 }
1165
1166 return BLKPREP_OK;
1167 err_exit:
1168 if (is_mq) {
1169 scsi_mq_free_sgtables(cmd);
1170 } else {
1171 scsi_release_buffers(cmd);
1172 cmd->request->special = NULL;
1173 scsi_put_command(cmd);
1174 put_device(&sdev->sdev_gendev);
1175 }
1176 return error;
1177 }
1178 EXPORT_SYMBOL(scsi_init_io);
1179
1180 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1181 struct request *req)
1182 {
1183 struct scsi_cmnd *cmd;
1184
1185 if (!req->special) {
1186 /* Bail if we can't get a reference to the device */
1187 if (!get_device(&sdev->sdev_gendev))
1188 return NULL;
1189
1190 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1191 if (unlikely(!cmd)) {
1192 put_device(&sdev->sdev_gendev);
1193 return NULL;
1194 }
1195 req->special = cmd;
1196 } else {
1197 cmd = req->special;
1198 }
1199
1200 /* pull a tag out of the request if we have one */
1201 cmd->tag = req->tag;
1202 cmd->request = req;
1203
1204 cmd->cmnd = req->cmd;
1205 cmd->prot_op = SCSI_PROT_NORMAL;
1206
1207 return cmd;
1208 }
1209
1210 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1211 {
1212 struct scsi_cmnd *cmd = req->special;
1213
1214 /*
1215 * BLOCK_PC requests may transfer data, in which case they must
1216 * a bio attached to them. Or they might contain a SCSI command
1217 * that does not transfer data, in which case they may optionally
1218 * submit a request without an attached bio.
1219 */
1220 if (req->bio) {
1221 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1222 if (unlikely(ret))
1223 return ret;
1224 } else {
1225 BUG_ON(blk_rq_bytes(req));
1226
1227 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1228 }
1229
1230 cmd->cmd_len = req->cmd_len;
1231 cmd->transfersize = blk_rq_bytes(req);
1232 cmd->allowed = req->retries;
1233 return BLKPREP_OK;
1234 }
1235
1236 /*
1237 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1238 * that still need to be translated to SCSI CDBs from the ULD.
1239 */
1240 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1241 {
1242 struct scsi_cmnd *cmd = req->special;
1243
1244 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1245 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1246 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1247 if (ret != BLKPREP_OK)
1248 return ret;
1249 }
1250
1251 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1252 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1253 }
1254
1255 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1256 {
1257 struct scsi_cmnd *cmd = req->special;
1258
1259 if (!blk_rq_bytes(req))
1260 cmd->sc_data_direction = DMA_NONE;
1261 else if (rq_data_dir(req) == WRITE)
1262 cmd->sc_data_direction = DMA_TO_DEVICE;
1263 else
1264 cmd->sc_data_direction = DMA_FROM_DEVICE;
1265
1266 switch (req->cmd_type) {
1267 case REQ_TYPE_FS:
1268 return scsi_setup_fs_cmnd(sdev, req);
1269 case REQ_TYPE_BLOCK_PC:
1270 return scsi_setup_blk_pc_cmnd(sdev, req);
1271 default:
1272 return BLKPREP_KILL;
1273 }
1274 }
1275
1276 static int
1277 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1278 {
1279 int ret = BLKPREP_OK;
1280
1281 /*
1282 * If the device is not in running state we will reject some
1283 * or all commands.
1284 */
1285 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1286 switch (sdev->sdev_state) {
1287 case SDEV_OFFLINE:
1288 case SDEV_TRANSPORT_OFFLINE:
1289 /*
1290 * If the device is offline we refuse to process any
1291 * commands. The device must be brought online
1292 * before trying any recovery commands.
1293 */
1294 sdev_printk(KERN_ERR, sdev,
1295 "rejecting I/O to offline device\n");
1296 ret = BLKPREP_KILL;
1297 break;
1298 case SDEV_DEL:
1299 /*
1300 * If the device is fully deleted, we refuse to
1301 * process any commands as well.
1302 */
1303 sdev_printk(KERN_ERR, sdev,
1304 "rejecting I/O to dead device\n");
1305 ret = BLKPREP_KILL;
1306 break;
1307 case SDEV_QUIESCE:
1308 case SDEV_BLOCK:
1309 case SDEV_CREATED_BLOCK:
1310 /*
1311 * If the devices is blocked we defer normal commands.
1312 */
1313 if (!(req->cmd_flags & REQ_PREEMPT))
1314 ret = BLKPREP_DEFER;
1315 break;
1316 default:
1317 /*
1318 * For any other not fully online state we only allow
1319 * special commands. In particular any user initiated
1320 * command is not allowed.
1321 */
1322 if (!(req->cmd_flags & REQ_PREEMPT))
1323 ret = BLKPREP_KILL;
1324 break;
1325 }
1326 }
1327 return ret;
1328 }
1329
1330 static int
1331 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1332 {
1333 struct scsi_device *sdev = q->queuedata;
1334
1335 switch (ret) {
1336 case BLKPREP_KILL:
1337 req->errors = DID_NO_CONNECT << 16;
1338 /* release the command and kill it */
1339 if (req->special) {
1340 struct scsi_cmnd *cmd = req->special;
1341 scsi_release_buffers(cmd);
1342 scsi_put_command(cmd);
1343 put_device(&sdev->sdev_gendev);
1344 req->special = NULL;
1345 }
1346 break;
1347 case BLKPREP_DEFER:
1348 /*
1349 * If we defer, the blk_peek_request() returns NULL, but the
1350 * queue must be restarted, so we schedule a callback to happen
1351 * shortly.
1352 */
1353 if (atomic_read(&sdev->device_busy) == 0)
1354 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1355 break;
1356 default:
1357 req->cmd_flags |= REQ_DONTPREP;
1358 }
1359
1360 return ret;
1361 }
1362
1363 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1364 {
1365 struct scsi_device *sdev = q->queuedata;
1366 struct scsi_cmnd *cmd;
1367 int ret;
1368
1369 ret = scsi_prep_state_check(sdev, req);
1370 if (ret != BLKPREP_OK)
1371 goto out;
1372
1373 cmd = scsi_get_cmd_from_req(sdev, req);
1374 if (unlikely(!cmd)) {
1375 ret = BLKPREP_DEFER;
1376 goto out;
1377 }
1378
1379 ret = scsi_setup_cmnd(sdev, req);
1380 out:
1381 return scsi_prep_return(q, req, ret);
1382 }
1383
1384 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1385 {
1386 scsi_uninit_cmd(req->special);
1387 }
1388
1389 /*
1390 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1391 * return 0.
1392 *
1393 * Called with the queue_lock held.
1394 */
1395 static inline int scsi_dev_queue_ready(struct request_queue *q,
1396 struct scsi_device *sdev)
1397 {
1398 unsigned int busy;
1399
1400 busy = atomic_inc_return(&sdev->device_busy) - 1;
1401 if (atomic_read(&sdev->device_blocked)) {
1402 if (busy)
1403 goto out_dec;
1404
1405 /*
1406 * unblock after device_blocked iterates to zero
1407 */
1408 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1409 /*
1410 * For the MQ case we take care of this in the caller.
1411 */
1412 if (!q->mq_ops)
1413 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1414 goto out_dec;
1415 }
1416 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1417 "unblocking device at zero depth\n"));
1418 }
1419
1420 if (busy >= sdev->queue_depth)
1421 goto out_dec;
1422
1423 return 1;
1424 out_dec:
1425 atomic_dec(&sdev->device_busy);
1426 return 0;
1427 }
1428
1429 /*
1430 * scsi_target_queue_ready: checks if there we can send commands to target
1431 * @sdev: scsi device on starget to check.
1432 */
1433 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1434 struct scsi_device *sdev)
1435 {
1436 struct scsi_target *starget = scsi_target(sdev);
1437 unsigned int busy;
1438
1439 if (starget->single_lun) {
1440 spin_lock_irq(shost->host_lock);
1441 if (starget->starget_sdev_user &&
1442 starget->starget_sdev_user != sdev) {
1443 spin_unlock_irq(shost->host_lock);
1444 return 0;
1445 }
1446 starget->starget_sdev_user = sdev;
1447 spin_unlock_irq(shost->host_lock);
1448 }
1449
1450 if (starget->can_queue <= 0)
1451 return 1;
1452
1453 busy = atomic_inc_return(&starget->target_busy) - 1;
1454 if (atomic_read(&starget->target_blocked) > 0) {
1455 if (busy)
1456 goto starved;
1457
1458 /*
1459 * unblock after target_blocked iterates to zero
1460 */
1461 if (atomic_dec_return(&starget->target_blocked) > 0)
1462 goto out_dec;
1463
1464 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1465 "unblocking target at zero depth\n"));
1466 }
1467
1468 if (busy >= starget->can_queue)
1469 goto starved;
1470
1471 return 1;
1472
1473 starved:
1474 spin_lock_irq(shost->host_lock);
1475 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1476 spin_unlock_irq(shost->host_lock);
1477 out_dec:
1478 if (starget->can_queue > 0)
1479 atomic_dec(&starget->target_busy);
1480 return 0;
1481 }
1482
1483 /*
1484 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1485 * return 0. We must end up running the queue again whenever 0 is
1486 * returned, else IO can hang.
1487 */
1488 static inline int scsi_host_queue_ready(struct request_queue *q,
1489 struct Scsi_Host *shost,
1490 struct scsi_device *sdev)
1491 {
1492 unsigned int busy;
1493
1494 if (scsi_host_in_recovery(shost))
1495 return 0;
1496
1497 busy = atomic_inc_return(&shost->host_busy) - 1;
1498 if (atomic_read(&shost->host_blocked) > 0) {
1499 if (busy)
1500 goto starved;
1501
1502 /*
1503 * unblock after host_blocked iterates to zero
1504 */
1505 if (atomic_dec_return(&shost->host_blocked) > 0)
1506 goto out_dec;
1507
1508 SCSI_LOG_MLQUEUE(3,
1509 shost_printk(KERN_INFO, shost,
1510 "unblocking host at zero depth\n"));
1511 }
1512
1513 if (shost->can_queue > 0 && busy >= shost->can_queue)
1514 goto starved;
1515 if (shost->host_self_blocked)
1516 goto starved;
1517
1518 /* We're OK to process the command, so we can't be starved */
1519 if (!list_empty(&sdev->starved_entry)) {
1520 spin_lock_irq(shost->host_lock);
1521 if (!list_empty(&sdev->starved_entry))
1522 list_del_init(&sdev->starved_entry);
1523 spin_unlock_irq(shost->host_lock);
1524 }
1525
1526 return 1;
1527
1528 starved:
1529 spin_lock_irq(shost->host_lock);
1530 if (list_empty(&sdev->starved_entry))
1531 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1532 spin_unlock_irq(shost->host_lock);
1533 out_dec:
1534 atomic_dec(&shost->host_busy);
1535 return 0;
1536 }
1537
1538 /*
1539 * Busy state exporting function for request stacking drivers.
1540 *
1541 * For efficiency, no lock is taken to check the busy state of
1542 * shost/starget/sdev, since the returned value is not guaranteed and
1543 * may be changed after request stacking drivers call the function,
1544 * regardless of taking lock or not.
1545 *
1546 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1547 * needs to return 'not busy'. Otherwise, request stacking drivers
1548 * may hold requests forever.
1549 */
1550 static int scsi_lld_busy(struct request_queue *q)
1551 {
1552 struct scsi_device *sdev = q->queuedata;
1553 struct Scsi_Host *shost;
1554
1555 if (blk_queue_dying(q))
1556 return 0;
1557
1558 shost = sdev->host;
1559
1560 /*
1561 * Ignore host/starget busy state.
1562 * Since block layer does not have a concept of fairness across
1563 * multiple queues, congestion of host/starget needs to be handled
1564 * in SCSI layer.
1565 */
1566 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1567 return 1;
1568
1569 return 0;
1570 }
1571
1572 /*
1573 * Kill a request for a dead device
1574 */
1575 static void scsi_kill_request(struct request *req, struct request_queue *q)
1576 {
1577 struct scsi_cmnd *cmd = req->special;
1578 struct scsi_device *sdev;
1579 struct scsi_target *starget;
1580 struct Scsi_Host *shost;
1581
1582 blk_start_request(req);
1583
1584 scmd_printk(KERN_INFO, cmd, "killing request\n");
1585
1586 sdev = cmd->device;
1587 starget = scsi_target(sdev);
1588 shost = sdev->host;
1589 scsi_init_cmd_errh(cmd);
1590 cmd->result = DID_NO_CONNECT << 16;
1591 atomic_inc(&cmd->device->iorequest_cnt);
1592
1593 /*
1594 * SCSI request completion path will do scsi_device_unbusy(),
1595 * bump busy counts. To bump the counters, we need to dance
1596 * with the locks as normal issue path does.
1597 */
1598 atomic_inc(&sdev->device_busy);
1599 atomic_inc(&shost->host_busy);
1600 if (starget->can_queue > 0)
1601 atomic_inc(&starget->target_busy);
1602
1603 blk_complete_request(req);
1604 }
1605
1606 static void scsi_softirq_done(struct request *rq)
1607 {
1608 struct scsi_cmnd *cmd = rq->special;
1609 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1610 int disposition;
1611
1612 INIT_LIST_HEAD(&cmd->eh_entry);
1613
1614 atomic_inc(&cmd->device->iodone_cnt);
1615 if (cmd->result)
1616 atomic_inc(&cmd->device->ioerr_cnt);
1617
1618 disposition = scsi_decide_disposition(cmd);
1619 if (disposition != SUCCESS &&
1620 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1621 sdev_printk(KERN_ERR, cmd->device,
1622 "timing out command, waited %lus\n",
1623 wait_for/HZ);
1624 disposition = SUCCESS;
1625 }
1626
1627 scsi_log_completion(cmd, disposition);
1628
1629 switch (disposition) {
1630 case SUCCESS:
1631 scsi_finish_command(cmd);
1632 break;
1633 case NEEDS_RETRY:
1634 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1635 break;
1636 case ADD_TO_MLQUEUE:
1637 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1638 break;
1639 default:
1640 if (!scsi_eh_scmd_add(cmd, 0))
1641 scsi_finish_command(cmd);
1642 }
1643 }
1644
1645 /**
1646 * scsi_done - Invoke completion on finished SCSI command.
1647 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1648 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1649 *
1650 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1651 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1652 * calls blk_complete_request() for further processing.
1653 *
1654 * This function is interrupt context safe.
1655 */
1656 static void scsi_done(struct scsi_cmnd *cmd)
1657 {
1658 trace_scsi_dispatch_cmd_done(cmd);
1659 blk_complete_request(cmd->request);
1660 }
1661
1662 /*
1663 * Function: scsi_request_fn()
1664 *
1665 * Purpose: Main strategy routine for SCSI.
1666 *
1667 * Arguments: q - Pointer to actual queue.
1668 *
1669 * Returns: Nothing
1670 *
1671 * Lock status: IO request lock assumed to be held when called.
1672 */
1673 static void scsi_request_fn(struct request_queue *q)
1674 __releases(q->queue_lock)
1675 __acquires(q->queue_lock)
1676 {
1677 struct scsi_device *sdev = q->queuedata;
1678 struct Scsi_Host *shost;
1679 struct scsi_cmnd *cmd;
1680 struct request *req;
1681
1682 /*
1683 * To start with, we keep looping until the queue is empty, or until
1684 * the host is no longer able to accept any more requests.
1685 */
1686 shost = sdev->host;
1687 for (;;) {
1688 int rtn;
1689 /*
1690 * get next queueable request. We do this early to make sure
1691 * that the request is fully prepared even if we cannot
1692 * accept it.
1693 */
1694 req = blk_peek_request(q);
1695 if (!req)
1696 break;
1697
1698 if (unlikely(!scsi_device_online(sdev))) {
1699 sdev_printk(KERN_ERR, sdev,
1700 "rejecting I/O to offline device\n");
1701 scsi_kill_request(req, q);
1702 continue;
1703 }
1704
1705 if (!scsi_dev_queue_ready(q, sdev))
1706 break;
1707
1708 /*
1709 * Remove the request from the request list.
1710 */
1711 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1712 blk_start_request(req);
1713
1714 spin_unlock_irq(q->queue_lock);
1715 cmd = req->special;
1716 if (unlikely(cmd == NULL)) {
1717 printk(KERN_CRIT "impossible request in %s.\n"
1718 "please mail a stack trace to "
1719 "linux-scsi@vger.kernel.org\n",
1720 __func__);
1721 blk_dump_rq_flags(req, "foo");
1722 BUG();
1723 }
1724
1725 /*
1726 * We hit this when the driver is using a host wide
1727 * tag map. For device level tag maps the queue_depth check
1728 * in the device ready fn would prevent us from trying
1729 * to allocate a tag. Since the map is a shared host resource
1730 * we add the dev to the starved list so it eventually gets
1731 * a run when a tag is freed.
1732 */
1733 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1734 spin_lock_irq(shost->host_lock);
1735 if (list_empty(&sdev->starved_entry))
1736 list_add_tail(&sdev->starved_entry,
1737 &shost->starved_list);
1738 spin_unlock_irq(shost->host_lock);
1739 goto not_ready;
1740 }
1741
1742 if (!scsi_target_queue_ready(shost, sdev))
1743 goto not_ready;
1744
1745 if (!scsi_host_queue_ready(q, shost, sdev))
1746 goto host_not_ready;
1747
1748 if (sdev->simple_tags)
1749 cmd->flags |= SCMD_TAGGED;
1750 else
1751 cmd->flags &= ~SCMD_TAGGED;
1752
1753 /*
1754 * Finally, initialize any error handling parameters, and set up
1755 * the timers for timeouts.
1756 */
1757 scsi_init_cmd_errh(cmd);
1758
1759 /*
1760 * Dispatch the command to the low-level driver.
1761 */
1762 cmd->scsi_done = scsi_done;
1763 rtn = scsi_dispatch_cmd(cmd);
1764 if (rtn) {
1765 scsi_queue_insert(cmd, rtn);
1766 spin_lock_irq(q->queue_lock);
1767 goto out_delay;
1768 }
1769 spin_lock_irq(q->queue_lock);
1770 }
1771
1772 return;
1773
1774 host_not_ready:
1775 if (scsi_target(sdev)->can_queue > 0)
1776 atomic_dec(&scsi_target(sdev)->target_busy);
1777 not_ready:
1778 /*
1779 * lock q, handle tag, requeue req, and decrement device_busy. We
1780 * must return with queue_lock held.
1781 *
1782 * Decrementing device_busy without checking it is OK, as all such
1783 * cases (host limits or settings) should run the queue at some
1784 * later time.
1785 */
1786 spin_lock_irq(q->queue_lock);
1787 blk_requeue_request(q, req);
1788 atomic_dec(&sdev->device_busy);
1789 out_delay:
1790 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1791 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1792 }
1793
1794 static inline int prep_to_mq(int ret)
1795 {
1796 switch (ret) {
1797 case BLKPREP_OK:
1798 return 0;
1799 case BLKPREP_DEFER:
1800 return BLK_MQ_RQ_QUEUE_BUSY;
1801 default:
1802 return BLK_MQ_RQ_QUEUE_ERROR;
1803 }
1804 }
1805
1806 static int scsi_mq_prep_fn(struct request *req)
1807 {
1808 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1809 struct scsi_device *sdev = req->q->queuedata;
1810 struct Scsi_Host *shost = sdev->host;
1811 unsigned char *sense_buf = cmd->sense_buffer;
1812 struct scatterlist *sg;
1813
1814 memset(cmd, 0, sizeof(struct scsi_cmnd));
1815
1816 req->special = cmd;
1817
1818 cmd->request = req;
1819 cmd->device = sdev;
1820 cmd->sense_buffer = sense_buf;
1821
1822 cmd->tag = req->tag;
1823
1824 cmd->cmnd = req->cmd;
1825 cmd->prot_op = SCSI_PROT_NORMAL;
1826
1827 INIT_LIST_HEAD(&cmd->list);
1828 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1829 cmd->jiffies_at_alloc = jiffies;
1830
1831 if (shost->use_cmd_list) {
1832 spin_lock_irq(&sdev->list_lock);
1833 list_add_tail(&cmd->list, &sdev->cmd_list);
1834 spin_unlock_irq(&sdev->list_lock);
1835 }
1836
1837 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1838 cmd->sdb.table.sgl = sg;
1839
1840 if (scsi_host_get_prot(shost)) {
1841 cmd->prot_sdb = (void *)sg +
1842 shost->sg_tablesize * sizeof(struct scatterlist);
1843 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1844
1845 cmd->prot_sdb->table.sgl =
1846 (struct scatterlist *)(cmd->prot_sdb + 1);
1847 }
1848
1849 if (blk_bidi_rq(req)) {
1850 struct request *next_rq = req->next_rq;
1851 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1852
1853 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1854 bidi_sdb->table.sgl =
1855 (struct scatterlist *)(bidi_sdb + 1);
1856
1857 next_rq->special = bidi_sdb;
1858 }
1859
1860 blk_mq_start_request(req);
1861
1862 return scsi_setup_cmnd(sdev, req);
1863 }
1864
1865 static void scsi_mq_done(struct scsi_cmnd *cmd)
1866 {
1867 trace_scsi_dispatch_cmd_done(cmd);
1868 blk_mq_complete_request(cmd->request);
1869 }
1870
1871 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1872 bool last)
1873 {
1874 struct request_queue *q = req->q;
1875 struct scsi_device *sdev = q->queuedata;
1876 struct Scsi_Host *shost = sdev->host;
1877 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1878 int ret;
1879 int reason;
1880
1881 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1882 if (ret)
1883 goto out;
1884
1885 ret = BLK_MQ_RQ_QUEUE_BUSY;
1886 if (!get_device(&sdev->sdev_gendev))
1887 goto out;
1888
1889 if (!scsi_dev_queue_ready(q, sdev))
1890 goto out_put_device;
1891 if (!scsi_target_queue_ready(shost, sdev))
1892 goto out_dec_device_busy;
1893 if (!scsi_host_queue_ready(q, shost, sdev))
1894 goto out_dec_target_busy;
1895
1896
1897 if (!(req->cmd_flags & REQ_DONTPREP)) {
1898 ret = prep_to_mq(scsi_mq_prep_fn(req));
1899 if (ret)
1900 goto out_dec_host_busy;
1901 req->cmd_flags |= REQ_DONTPREP;
1902 } else {
1903 blk_mq_start_request(req);
1904 }
1905
1906 if (sdev->simple_tags)
1907 cmd->flags |= SCMD_TAGGED;
1908 else
1909 cmd->flags &= ~SCMD_TAGGED;
1910
1911 scsi_init_cmd_errh(cmd);
1912 cmd->scsi_done = scsi_mq_done;
1913
1914 reason = scsi_dispatch_cmd(cmd);
1915 if (reason) {
1916 scsi_set_blocked(cmd, reason);
1917 ret = BLK_MQ_RQ_QUEUE_BUSY;
1918 goto out_dec_host_busy;
1919 }
1920
1921 return BLK_MQ_RQ_QUEUE_OK;
1922
1923 out_dec_host_busy:
1924 atomic_dec(&shost->host_busy);
1925 out_dec_target_busy:
1926 if (scsi_target(sdev)->can_queue > 0)
1927 atomic_dec(&scsi_target(sdev)->target_busy);
1928 out_dec_device_busy:
1929 atomic_dec(&sdev->device_busy);
1930 out_put_device:
1931 put_device(&sdev->sdev_gendev);
1932 out:
1933 switch (ret) {
1934 case BLK_MQ_RQ_QUEUE_BUSY:
1935 blk_mq_stop_hw_queue(hctx);
1936 if (atomic_read(&sdev->device_busy) == 0 &&
1937 !scsi_device_blocked(sdev))
1938 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1939 break;
1940 case BLK_MQ_RQ_QUEUE_ERROR:
1941 /*
1942 * Make sure to release all allocated ressources when
1943 * we hit an error, as we will never see this command
1944 * again.
1945 */
1946 if (req->cmd_flags & REQ_DONTPREP)
1947 scsi_mq_uninit_cmd(cmd);
1948 break;
1949 default:
1950 break;
1951 }
1952 return ret;
1953 }
1954
1955 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1956 bool reserved)
1957 {
1958 if (reserved)
1959 return BLK_EH_RESET_TIMER;
1960 return scsi_times_out(req);
1961 }
1962
1963 static int scsi_init_request(void *data, struct request *rq,
1964 unsigned int hctx_idx, unsigned int request_idx,
1965 unsigned int numa_node)
1966 {
1967 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1968
1969 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1970 numa_node);
1971 if (!cmd->sense_buffer)
1972 return -ENOMEM;
1973 return 0;
1974 }
1975
1976 static void scsi_exit_request(void *data, struct request *rq,
1977 unsigned int hctx_idx, unsigned int request_idx)
1978 {
1979 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1980
1981 kfree(cmd->sense_buffer);
1982 }
1983
1984 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1985 {
1986 struct device *host_dev;
1987 u64 bounce_limit = 0xffffffff;
1988
1989 if (shost->unchecked_isa_dma)
1990 return BLK_BOUNCE_ISA;
1991 /*
1992 * Platforms with virtual-DMA translation
1993 * hardware have no practical limit.
1994 */
1995 if (!PCI_DMA_BUS_IS_PHYS)
1996 return BLK_BOUNCE_ANY;
1997
1998 host_dev = scsi_get_device(shost);
1999 if (host_dev && host_dev->dma_mask)
2000 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2001
2002 return bounce_limit;
2003 }
2004
2005 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2006 {
2007 struct device *dev = shost->dma_dev;
2008
2009 /*
2010 * this limit is imposed by hardware restrictions
2011 */
2012 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2013 SCSI_MAX_SG_CHAIN_SEGMENTS));
2014
2015 if (scsi_host_prot_dma(shost)) {
2016 shost->sg_prot_tablesize =
2017 min_not_zero(shost->sg_prot_tablesize,
2018 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2019 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2020 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2021 }
2022
2023 blk_queue_max_hw_sectors(q, shost->max_sectors);
2024 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2025 blk_queue_segment_boundary(q, shost->dma_boundary);
2026 dma_set_seg_boundary(dev, shost->dma_boundary);
2027
2028 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2029
2030 if (!shost->use_clustering)
2031 q->limits.cluster = 0;
2032
2033 /*
2034 * set a reasonable default alignment on word boundaries: the
2035 * host and device may alter it using
2036 * blk_queue_update_dma_alignment() later.
2037 */
2038 blk_queue_dma_alignment(q, 0x03);
2039 }
2040
2041 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2042 request_fn_proc *request_fn)
2043 {
2044 struct request_queue *q;
2045
2046 q = blk_init_queue(request_fn, NULL);
2047 if (!q)
2048 return NULL;
2049 __scsi_init_queue(shost, q);
2050 return q;
2051 }
2052 EXPORT_SYMBOL(__scsi_alloc_queue);
2053
2054 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2055 {
2056 struct request_queue *q;
2057
2058 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2059 if (!q)
2060 return NULL;
2061
2062 blk_queue_prep_rq(q, scsi_prep_fn);
2063 blk_queue_unprep_rq(q, scsi_unprep_fn);
2064 blk_queue_softirq_done(q, scsi_softirq_done);
2065 blk_queue_rq_timed_out(q, scsi_times_out);
2066 blk_queue_lld_busy(q, scsi_lld_busy);
2067 return q;
2068 }
2069
2070 static struct blk_mq_ops scsi_mq_ops = {
2071 .map_queue = blk_mq_map_queue,
2072 .queue_rq = scsi_queue_rq,
2073 .complete = scsi_softirq_done,
2074 .timeout = scsi_timeout,
2075 .init_request = scsi_init_request,
2076 .exit_request = scsi_exit_request,
2077 };
2078
2079 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2080 {
2081 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2082 if (IS_ERR(sdev->request_queue))
2083 return NULL;
2084
2085 sdev->request_queue->queuedata = sdev;
2086 __scsi_init_queue(sdev->host, sdev->request_queue);
2087 return sdev->request_queue;
2088 }
2089
2090 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2091 {
2092 unsigned int cmd_size, sgl_size, tbl_size;
2093
2094 tbl_size = shost->sg_tablesize;
2095 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2096 tbl_size = SCSI_MAX_SG_SEGMENTS;
2097 sgl_size = tbl_size * sizeof(struct scatterlist);
2098 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2099 if (scsi_host_get_prot(shost))
2100 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2101
2102 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2103 shost->tag_set.ops = &scsi_mq_ops;
2104 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2105 shost->tag_set.queue_depth = shost->can_queue;
2106 shost->tag_set.cmd_size = cmd_size;
2107 shost->tag_set.numa_node = NUMA_NO_NODE;
2108 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2109 shost->tag_set.driver_data = shost;
2110
2111 return blk_mq_alloc_tag_set(&shost->tag_set);
2112 }
2113
2114 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2115 {
2116 blk_mq_free_tag_set(&shost->tag_set);
2117 }
2118
2119 /*
2120 * Function: scsi_block_requests()
2121 *
2122 * Purpose: Utility function used by low-level drivers to prevent further
2123 * commands from being queued to the device.
2124 *
2125 * Arguments: shost - Host in question
2126 *
2127 * Returns: Nothing
2128 *
2129 * Lock status: No locks are assumed held.
2130 *
2131 * Notes: There is no timer nor any other means by which the requests
2132 * get unblocked other than the low-level driver calling
2133 * scsi_unblock_requests().
2134 */
2135 void scsi_block_requests(struct Scsi_Host *shost)
2136 {
2137 shost->host_self_blocked = 1;
2138 }
2139 EXPORT_SYMBOL(scsi_block_requests);
2140
2141 /*
2142 * Function: scsi_unblock_requests()
2143 *
2144 * Purpose: Utility function used by low-level drivers to allow further
2145 * commands from being queued to the device.
2146 *
2147 * Arguments: shost - Host in question
2148 *
2149 * Returns: Nothing
2150 *
2151 * Lock status: No locks are assumed held.
2152 *
2153 * Notes: There is no timer nor any other means by which the requests
2154 * get unblocked other than the low-level driver calling
2155 * scsi_unblock_requests().
2156 *
2157 * This is done as an API function so that changes to the
2158 * internals of the scsi mid-layer won't require wholesale
2159 * changes to drivers that use this feature.
2160 */
2161 void scsi_unblock_requests(struct Scsi_Host *shost)
2162 {
2163 shost->host_self_blocked = 0;
2164 scsi_run_host_queues(shost);
2165 }
2166 EXPORT_SYMBOL(scsi_unblock_requests);
2167
2168 int __init scsi_init_queue(void)
2169 {
2170 int i;
2171
2172 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2173 sizeof(struct scsi_data_buffer),
2174 0, 0, NULL);
2175 if (!scsi_sdb_cache) {
2176 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2177 return -ENOMEM;
2178 }
2179
2180 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2181 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2182 int size = sgp->size * sizeof(struct scatterlist);
2183
2184 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2185 SLAB_HWCACHE_ALIGN, NULL);
2186 if (!sgp->slab) {
2187 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2188 sgp->name);
2189 goto cleanup_sdb;
2190 }
2191
2192 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2193 sgp->slab);
2194 if (!sgp->pool) {
2195 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2196 sgp->name);
2197 goto cleanup_sdb;
2198 }
2199 }
2200
2201 return 0;
2202
2203 cleanup_sdb:
2204 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2205 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2206 if (sgp->pool)
2207 mempool_destroy(sgp->pool);
2208 if (sgp->slab)
2209 kmem_cache_destroy(sgp->slab);
2210 }
2211 kmem_cache_destroy(scsi_sdb_cache);
2212
2213 return -ENOMEM;
2214 }
2215
2216 void scsi_exit_queue(void)
2217 {
2218 int i;
2219
2220 kmem_cache_destroy(scsi_sdb_cache);
2221
2222 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2223 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2224 mempool_destroy(sgp->pool);
2225 kmem_cache_destroy(sgp->slab);
2226 }
2227 }
2228
2229 /**
2230 * scsi_mode_select - issue a mode select
2231 * @sdev: SCSI device to be queried
2232 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2233 * @sp: Save page bit (0 == don't save, 1 == save)
2234 * @modepage: mode page being requested
2235 * @buffer: request buffer (may not be smaller than eight bytes)
2236 * @len: length of request buffer.
2237 * @timeout: command timeout
2238 * @retries: number of retries before failing
2239 * @data: returns a structure abstracting the mode header data
2240 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2241 * must be SCSI_SENSE_BUFFERSIZE big.
2242 *
2243 * Returns zero if successful; negative error number or scsi
2244 * status on error
2245 *
2246 */
2247 int
2248 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2249 unsigned char *buffer, int len, int timeout, int retries,
2250 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2251 {
2252 unsigned char cmd[10];
2253 unsigned char *real_buffer;
2254 int ret;
2255
2256 memset(cmd, 0, sizeof(cmd));
2257 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2258
2259 if (sdev->use_10_for_ms) {
2260 if (len > 65535)
2261 return -EINVAL;
2262 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2263 if (!real_buffer)
2264 return -ENOMEM;
2265 memcpy(real_buffer + 8, buffer, len);
2266 len += 8;
2267 real_buffer[0] = 0;
2268 real_buffer[1] = 0;
2269 real_buffer[2] = data->medium_type;
2270 real_buffer[3] = data->device_specific;
2271 real_buffer[4] = data->longlba ? 0x01 : 0;
2272 real_buffer[5] = 0;
2273 real_buffer[6] = data->block_descriptor_length >> 8;
2274 real_buffer[7] = data->block_descriptor_length;
2275
2276 cmd[0] = MODE_SELECT_10;
2277 cmd[7] = len >> 8;
2278 cmd[8] = len;
2279 } else {
2280 if (len > 255 || data->block_descriptor_length > 255 ||
2281 data->longlba)
2282 return -EINVAL;
2283
2284 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2285 if (!real_buffer)
2286 return -ENOMEM;
2287 memcpy(real_buffer + 4, buffer, len);
2288 len += 4;
2289 real_buffer[0] = 0;
2290 real_buffer[1] = data->medium_type;
2291 real_buffer[2] = data->device_specific;
2292 real_buffer[3] = data->block_descriptor_length;
2293
2294
2295 cmd[0] = MODE_SELECT;
2296 cmd[4] = len;
2297 }
2298
2299 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2300 sshdr, timeout, retries, NULL);
2301 kfree(real_buffer);
2302 return ret;
2303 }
2304 EXPORT_SYMBOL_GPL(scsi_mode_select);
2305
2306 /**
2307 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2308 * @sdev: SCSI device to be queried
2309 * @dbd: set if mode sense will allow block descriptors to be returned
2310 * @modepage: mode page being requested
2311 * @buffer: request buffer (may not be smaller than eight bytes)
2312 * @len: length of request buffer.
2313 * @timeout: command timeout
2314 * @retries: number of retries before failing
2315 * @data: returns a structure abstracting the mode header data
2316 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2317 * must be SCSI_SENSE_BUFFERSIZE big.
2318 *
2319 * Returns zero if unsuccessful, or the header offset (either 4
2320 * or 8 depending on whether a six or ten byte command was
2321 * issued) if successful.
2322 */
2323 int
2324 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2325 unsigned char *buffer, int len, int timeout, int retries,
2326 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2327 {
2328 unsigned char cmd[12];
2329 int use_10_for_ms;
2330 int header_length;
2331 int result;
2332 struct scsi_sense_hdr my_sshdr;
2333
2334 memset(data, 0, sizeof(*data));
2335 memset(&cmd[0], 0, 12);
2336 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2337 cmd[2] = modepage;
2338
2339 /* caller might not be interested in sense, but we need it */
2340 if (!sshdr)
2341 sshdr = &my_sshdr;
2342
2343 retry:
2344 use_10_for_ms = sdev->use_10_for_ms;
2345
2346 if (use_10_for_ms) {
2347 if (len < 8)
2348 len = 8;
2349
2350 cmd[0] = MODE_SENSE_10;
2351 cmd[8] = len;
2352 header_length = 8;
2353 } else {
2354 if (len < 4)
2355 len = 4;
2356
2357 cmd[0] = MODE_SENSE;
2358 cmd[4] = len;
2359 header_length = 4;
2360 }
2361
2362 memset(buffer, 0, len);
2363
2364 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2365 sshdr, timeout, retries, NULL);
2366
2367 /* This code looks awful: what it's doing is making sure an
2368 * ILLEGAL REQUEST sense return identifies the actual command
2369 * byte as the problem. MODE_SENSE commands can return
2370 * ILLEGAL REQUEST if the code page isn't supported */
2371
2372 if (use_10_for_ms && !scsi_status_is_good(result) &&
2373 (driver_byte(result) & DRIVER_SENSE)) {
2374 if (scsi_sense_valid(sshdr)) {
2375 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2376 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2377 /*
2378 * Invalid command operation code
2379 */
2380 sdev->use_10_for_ms = 0;
2381 goto retry;
2382 }
2383 }
2384 }
2385
2386 if(scsi_status_is_good(result)) {
2387 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2388 (modepage == 6 || modepage == 8))) {
2389 /* Initio breakage? */
2390 header_length = 0;
2391 data->length = 13;
2392 data->medium_type = 0;
2393 data->device_specific = 0;
2394 data->longlba = 0;
2395 data->block_descriptor_length = 0;
2396 } else if(use_10_for_ms) {
2397 data->length = buffer[0]*256 + buffer[1] + 2;
2398 data->medium_type = buffer[2];
2399 data->device_specific = buffer[3];
2400 data->longlba = buffer[4] & 0x01;
2401 data->block_descriptor_length = buffer[6]*256
2402 + buffer[7];
2403 } else {
2404 data->length = buffer[0] + 1;
2405 data->medium_type = buffer[1];
2406 data->device_specific = buffer[2];
2407 data->block_descriptor_length = buffer[3];
2408 }
2409 data->header_length = header_length;
2410 }
2411
2412 return result;
2413 }
2414 EXPORT_SYMBOL(scsi_mode_sense);
2415
2416 /**
2417 * scsi_test_unit_ready - test if unit is ready
2418 * @sdev: scsi device to change the state of.
2419 * @timeout: command timeout
2420 * @retries: number of retries before failing
2421 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2422 * returning sense. Make sure that this is cleared before passing
2423 * in.
2424 *
2425 * Returns zero if unsuccessful or an error if TUR failed. For
2426 * removable media, UNIT_ATTENTION sets ->changed flag.
2427 **/
2428 int
2429 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2430 struct scsi_sense_hdr *sshdr_external)
2431 {
2432 char cmd[] = {
2433 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2434 };
2435 struct scsi_sense_hdr *sshdr;
2436 int result;
2437
2438 if (!sshdr_external)
2439 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2440 else
2441 sshdr = sshdr_external;
2442
2443 /* try to eat the UNIT_ATTENTION if there are enough retries */
2444 do {
2445 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2446 timeout, retries, NULL);
2447 if (sdev->removable && scsi_sense_valid(sshdr) &&
2448 sshdr->sense_key == UNIT_ATTENTION)
2449 sdev->changed = 1;
2450 } while (scsi_sense_valid(sshdr) &&
2451 sshdr->sense_key == UNIT_ATTENTION && --retries);
2452
2453 if (!sshdr_external)
2454 kfree(sshdr);
2455 return result;
2456 }
2457 EXPORT_SYMBOL(scsi_test_unit_ready);
2458
2459 /**
2460 * scsi_device_set_state - Take the given device through the device state model.
2461 * @sdev: scsi device to change the state of.
2462 * @state: state to change to.
2463 *
2464 * Returns zero if unsuccessful or an error if the requested
2465 * transition is illegal.
2466 */
2467 int
2468 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2469 {
2470 enum scsi_device_state oldstate = sdev->sdev_state;
2471
2472 if (state == oldstate)
2473 return 0;
2474
2475 switch (state) {
2476 case SDEV_CREATED:
2477 switch (oldstate) {
2478 case SDEV_CREATED_BLOCK:
2479 break;
2480 default:
2481 goto illegal;
2482 }
2483 break;
2484
2485 case SDEV_RUNNING:
2486 switch (oldstate) {
2487 case SDEV_CREATED:
2488 case SDEV_OFFLINE:
2489 case SDEV_TRANSPORT_OFFLINE:
2490 case SDEV_QUIESCE:
2491 case SDEV_BLOCK:
2492 break;
2493 default:
2494 goto illegal;
2495 }
2496 break;
2497
2498 case SDEV_QUIESCE:
2499 switch (oldstate) {
2500 case SDEV_RUNNING:
2501 case SDEV_OFFLINE:
2502 case SDEV_TRANSPORT_OFFLINE:
2503 break;
2504 default:
2505 goto illegal;
2506 }
2507 break;
2508
2509 case SDEV_OFFLINE:
2510 case SDEV_TRANSPORT_OFFLINE:
2511 switch (oldstate) {
2512 case SDEV_CREATED:
2513 case SDEV_RUNNING:
2514 case SDEV_QUIESCE:
2515 case SDEV_BLOCK:
2516 break;
2517 default:
2518 goto illegal;
2519 }
2520 break;
2521
2522 case SDEV_BLOCK:
2523 switch (oldstate) {
2524 case SDEV_RUNNING:
2525 case SDEV_CREATED_BLOCK:
2526 break;
2527 default:
2528 goto illegal;
2529 }
2530 break;
2531
2532 case SDEV_CREATED_BLOCK:
2533 switch (oldstate) {
2534 case SDEV_CREATED:
2535 break;
2536 default:
2537 goto illegal;
2538 }
2539 break;
2540
2541 case SDEV_CANCEL:
2542 switch (oldstate) {
2543 case SDEV_CREATED:
2544 case SDEV_RUNNING:
2545 case SDEV_QUIESCE:
2546 case SDEV_OFFLINE:
2547 case SDEV_TRANSPORT_OFFLINE:
2548 case SDEV_BLOCK:
2549 break;
2550 default:
2551 goto illegal;
2552 }
2553 break;
2554
2555 case SDEV_DEL:
2556 switch (oldstate) {
2557 case SDEV_CREATED:
2558 case SDEV_RUNNING:
2559 case SDEV_OFFLINE:
2560 case SDEV_TRANSPORT_OFFLINE:
2561 case SDEV_CANCEL:
2562 case SDEV_CREATED_BLOCK:
2563 break;
2564 default:
2565 goto illegal;
2566 }
2567 break;
2568
2569 }
2570 sdev->sdev_state = state;
2571 return 0;
2572
2573 illegal:
2574 SCSI_LOG_ERROR_RECOVERY(1,
2575 sdev_printk(KERN_ERR, sdev,
2576 "Illegal state transition %s->%s",
2577 scsi_device_state_name(oldstate),
2578 scsi_device_state_name(state))
2579 );
2580 return -EINVAL;
2581 }
2582 EXPORT_SYMBOL(scsi_device_set_state);
2583
2584 /**
2585 * sdev_evt_emit - emit a single SCSI device uevent
2586 * @sdev: associated SCSI device
2587 * @evt: event to emit
2588 *
2589 * Send a single uevent (scsi_event) to the associated scsi_device.
2590 */
2591 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2592 {
2593 int idx = 0;
2594 char *envp[3];
2595
2596 switch (evt->evt_type) {
2597 case SDEV_EVT_MEDIA_CHANGE:
2598 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2599 break;
2600 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2601 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2602 break;
2603 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2604 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2605 break;
2606 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2607 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2608 break;
2609 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2610 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2611 break;
2612 case SDEV_EVT_LUN_CHANGE_REPORTED:
2613 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2614 break;
2615 default:
2616 /* do nothing */
2617 break;
2618 }
2619
2620 envp[idx++] = NULL;
2621
2622 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2623 }
2624
2625 /**
2626 * sdev_evt_thread - send a uevent for each scsi event
2627 * @work: work struct for scsi_device
2628 *
2629 * Dispatch queued events to their associated scsi_device kobjects
2630 * as uevents.
2631 */
2632 void scsi_evt_thread(struct work_struct *work)
2633 {
2634 struct scsi_device *sdev;
2635 enum scsi_device_event evt_type;
2636 LIST_HEAD(event_list);
2637
2638 sdev = container_of(work, struct scsi_device, event_work);
2639
2640 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2641 if (test_and_clear_bit(evt_type, sdev->pending_events))
2642 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2643
2644 while (1) {
2645 struct scsi_event *evt;
2646 struct list_head *this, *tmp;
2647 unsigned long flags;
2648
2649 spin_lock_irqsave(&sdev->list_lock, flags);
2650 list_splice_init(&sdev->event_list, &event_list);
2651 spin_unlock_irqrestore(&sdev->list_lock, flags);
2652
2653 if (list_empty(&event_list))
2654 break;
2655
2656 list_for_each_safe(this, tmp, &event_list) {
2657 evt = list_entry(this, struct scsi_event, node);
2658 list_del(&evt->node);
2659 scsi_evt_emit(sdev, evt);
2660 kfree(evt);
2661 }
2662 }
2663 }
2664
2665 /**
2666 * sdev_evt_send - send asserted event to uevent thread
2667 * @sdev: scsi_device event occurred on
2668 * @evt: event to send
2669 *
2670 * Assert scsi device event asynchronously.
2671 */
2672 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2673 {
2674 unsigned long flags;
2675
2676 #if 0
2677 /* FIXME: currently this check eliminates all media change events
2678 * for polled devices. Need to update to discriminate between AN
2679 * and polled events */
2680 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2681 kfree(evt);
2682 return;
2683 }
2684 #endif
2685
2686 spin_lock_irqsave(&sdev->list_lock, flags);
2687 list_add_tail(&evt->node, &sdev->event_list);
2688 schedule_work(&sdev->event_work);
2689 spin_unlock_irqrestore(&sdev->list_lock, flags);
2690 }
2691 EXPORT_SYMBOL_GPL(sdev_evt_send);
2692
2693 /**
2694 * sdev_evt_alloc - allocate a new scsi event
2695 * @evt_type: type of event to allocate
2696 * @gfpflags: GFP flags for allocation
2697 *
2698 * Allocates and returns a new scsi_event.
2699 */
2700 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2701 gfp_t gfpflags)
2702 {
2703 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2704 if (!evt)
2705 return NULL;
2706
2707 evt->evt_type = evt_type;
2708 INIT_LIST_HEAD(&evt->node);
2709
2710 /* evt_type-specific initialization, if any */
2711 switch (evt_type) {
2712 case SDEV_EVT_MEDIA_CHANGE:
2713 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2714 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2715 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2716 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2717 case SDEV_EVT_LUN_CHANGE_REPORTED:
2718 default:
2719 /* do nothing */
2720 break;
2721 }
2722
2723 return evt;
2724 }
2725 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2726
2727 /**
2728 * sdev_evt_send_simple - send asserted event to uevent thread
2729 * @sdev: scsi_device event occurred on
2730 * @evt_type: type of event to send
2731 * @gfpflags: GFP flags for allocation
2732 *
2733 * Assert scsi device event asynchronously, given an event type.
2734 */
2735 void sdev_evt_send_simple(struct scsi_device *sdev,
2736 enum scsi_device_event evt_type, gfp_t gfpflags)
2737 {
2738 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2739 if (!evt) {
2740 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2741 evt_type);
2742 return;
2743 }
2744
2745 sdev_evt_send(sdev, evt);
2746 }
2747 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2748
2749 /**
2750 * scsi_device_quiesce - Block user issued commands.
2751 * @sdev: scsi device to quiesce.
2752 *
2753 * This works by trying to transition to the SDEV_QUIESCE state
2754 * (which must be a legal transition). When the device is in this
2755 * state, only special requests will be accepted, all others will
2756 * be deferred. Since special requests may also be requeued requests,
2757 * a successful return doesn't guarantee the device will be
2758 * totally quiescent.
2759 *
2760 * Must be called with user context, may sleep.
2761 *
2762 * Returns zero if unsuccessful or an error if not.
2763 */
2764 int
2765 scsi_device_quiesce(struct scsi_device *sdev)
2766 {
2767 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2768 if (err)
2769 return err;
2770
2771 scsi_run_queue(sdev->request_queue);
2772 while (atomic_read(&sdev->device_busy)) {
2773 msleep_interruptible(200);
2774 scsi_run_queue(sdev->request_queue);
2775 }
2776 return 0;
2777 }
2778 EXPORT_SYMBOL(scsi_device_quiesce);
2779
2780 /**
2781 * scsi_device_resume - Restart user issued commands to a quiesced device.
2782 * @sdev: scsi device to resume.
2783 *
2784 * Moves the device from quiesced back to running and restarts the
2785 * queues.
2786 *
2787 * Must be called with user context, may sleep.
2788 */
2789 void scsi_device_resume(struct scsi_device *sdev)
2790 {
2791 /* check if the device state was mutated prior to resume, and if
2792 * so assume the state is being managed elsewhere (for example
2793 * device deleted during suspend)
2794 */
2795 if (sdev->sdev_state != SDEV_QUIESCE ||
2796 scsi_device_set_state(sdev, SDEV_RUNNING))
2797 return;
2798 scsi_run_queue(sdev->request_queue);
2799 }
2800 EXPORT_SYMBOL(scsi_device_resume);
2801
2802 static void
2803 device_quiesce_fn(struct scsi_device *sdev, void *data)
2804 {
2805 scsi_device_quiesce(sdev);
2806 }
2807
2808 void
2809 scsi_target_quiesce(struct scsi_target *starget)
2810 {
2811 starget_for_each_device(starget, NULL, device_quiesce_fn);
2812 }
2813 EXPORT_SYMBOL(scsi_target_quiesce);
2814
2815 static void
2816 device_resume_fn(struct scsi_device *sdev, void *data)
2817 {
2818 scsi_device_resume(sdev);
2819 }
2820
2821 void
2822 scsi_target_resume(struct scsi_target *starget)
2823 {
2824 starget_for_each_device(starget, NULL, device_resume_fn);
2825 }
2826 EXPORT_SYMBOL(scsi_target_resume);
2827
2828 /**
2829 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2830 * @sdev: device to block
2831 *
2832 * Block request made by scsi lld's to temporarily stop all
2833 * scsi commands on the specified device. Called from interrupt
2834 * or normal process context.
2835 *
2836 * Returns zero if successful or error if not
2837 *
2838 * Notes:
2839 * This routine transitions the device to the SDEV_BLOCK state
2840 * (which must be a legal transition). When the device is in this
2841 * state, all commands are deferred until the scsi lld reenables
2842 * the device with scsi_device_unblock or device_block_tmo fires.
2843 */
2844 int
2845 scsi_internal_device_block(struct scsi_device *sdev)
2846 {
2847 struct request_queue *q = sdev->request_queue;
2848 unsigned long flags;
2849 int err = 0;
2850
2851 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2852 if (err) {
2853 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2854
2855 if (err)
2856 return err;
2857 }
2858
2859 /*
2860 * The device has transitioned to SDEV_BLOCK. Stop the
2861 * block layer from calling the midlayer with this device's
2862 * request queue.
2863 */
2864 if (q->mq_ops) {
2865 blk_mq_stop_hw_queues(q);
2866 } else {
2867 spin_lock_irqsave(q->queue_lock, flags);
2868 blk_stop_queue(q);
2869 spin_unlock_irqrestore(q->queue_lock, flags);
2870 }
2871
2872 return 0;
2873 }
2874 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2875
2876 /**
2877 * scsi_internal_device_unblock - resume a device after a block request
2878 * @sdev: device to resume
2879 * @new_state: state to set devices to after unblocking
2880 *
2881 * Called by scsi lld's or the midlayer to restart the device queue
2882 * for the previously suspended scsi device. Called from interrupt or
2883 * normal process context.
2884 *
2885 * Returns zero if successful or error if not.
2886 *
2887 * Notes:
2888 * This routine transitions the device to the SDEV_RUNNING state
2889 * or to one of the offline states (which must be a legal transition)
2890 * allowing the midlayer to goose the queue for this device.
2891 */
2892 int
2893 scsi_internal_device_unblock(struct scsi_device *sdev,
2894 enum scsi_device_state new_state)
2895 {
2896 struct request_queue *q = sdev->request_queue;
2897 unsigned long flags;
2898
2899 /*
2900 * Try to transition the scsi device to SDEV_RUNNING or one of the
2901 * offlined states and goose the device queue if successful.
2902 */
2903 if ((sdev->sdev_state == SDEV_BLOCK) ||
2904 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2905 sdev->sdev_state = new_state;
2906 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2907 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2908 new_state == SDEV_OFFLINE)
2909 sdev->sdev_state = new_state;
2910 else
2911 sdev->sdev_state = SDEV_CREATED;
2912 } else if (sdev->sdev_state != SDEV_CANCEL &&
2913 sdev->sdev_state != SDEV_OFFLINE)
2914 return -EINVAL;
2915
2916 if (q->mq_ops) {
2917 blk_mq_start_stopped_hw_queues(q, false);
2918 } else {
2919 spin_lock_irqsave(q->queue_lock, flags);
2920 blk_start_queue(q);
2921 spin_unlock_irqrestore(q->queue_lock, flags);
2922 }
2923
2924 return 0;
2925 }
2926 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2927
2928 static void
2929 device_block(struct scsi_device *sdev, void *data)
2930 {
2931 scsi_internal_device_block(sdev);
2932 }
2933
2934 static int
2935 target_block(struct device *dev, void *data)
2936 {
2937 if (scsi_is_target_device(dev))
2938 starget_for_each_device(to_scsi_target(dev), NULL,
2939 device_block);
2940 return 0;
2941 }
2942
2943 void
2944 scsi_target_block(struct device *dev)
2945 {
2946 if (scsi_is_target_device(dev))
2947 starget_for_each_device(to_scsi_target(dev), NULL,
2948 device_block);
2949 else
2950 device_for_each_child(dev, NULL, target_block);
2951 }
2952 EXPORT_SYMBOL_GPL(scsi_target_block);
2953
2954 static void
2955 device_unblock(struct scsi_device *sdev, void *data)
2956 {
2957 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2958 }
2959
2960 static int
2961 target_unblock(struct device *dev, void *data)
2962 {
2963 if (scsi_is_target_device(dev))
2964 starget_for_each_device(to_scsi_target(dev), data,
2965 device_unblock);
2966 return 0;
2967 }
2968
2969 void
2970 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2971 {
2972 if (scsi_is_target_device(dev))
2973 starget_for_each_device(to_scsi_target(dev), &new_state,
2974 device_unblock);
2975 else
2976 device_for_each_child(dev, &new_state, target_unblock);
2977 }
2978 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2979
2980 /**
2981 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2982 * @sgl: scatter-gather list
2983 * @sg_count: number of segments in sg
2984 * @offset: offset in bytes into sg, on return offset into the mapped area
2985 * @len: bytes to map, on return number of bytes mapped
2986 *
2987 * Returns virtual address of the start of the mapped page
2988 */
2989 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2990 size_t *offset, size_t *len)
2991 {
2992 int i;
2993 size_t sg_len = 0, len_complete = 0;
2994 struct scatterlist *sg;
2995 struct page *page;
2996
2997 WARN_ON(!irqs_disabled());
2998
2999 for_each_sg(sgl, sg, sg_count, i) {
3000 len_complete = sg_len; /* Complete sg-entries */
3001 sg_len += sg->length;
3002 if (sg_len > *offset)
3003 break;
3004 }
3005
3006 if (unlikely(i == sg_count)) {
3007 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3008 "elements %d\n",
3009 __func__, sg_len, *offset, sg_count);
3010 WARN_ON(1);
3011 return NULL;
3012 }
3013
3014 /* Offset starting from the beginning of first page in this sg-entry */
3015 *offset = *offset - len_complete + sg->offset;
3016
3017 /* Assumption: contiguous pages can be accessed as "page + i" */
3018 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3019 *offset &= ~PAGE_MASK;
3020
3021 /* Bytes in this sg-entry from *offset to the end of the page */
3022 sg_len = PAGE_SIZE - *offset;
3023 if (*len > sg_len)
3024 *len = sg_len;
3025
3026 return kmap_atomic(page);
3027 }
3028 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3029
3030 /**
3031 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3032 * @virt: virtual address to be unmapped
3033 */
3034 void scsi_kunmap_atomic_sg(void *virt)
3035 {
3036 kunmap_atomic(virt);
3037 }
3038 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3039
3040 void sdev_disable_disk_events(struct scsi_device *sdev)
3041 {
3042 atomic_inc(&sdev->disk_events_disable_depth);
3043 }
3044 EXPORT_SYMBOL(sdev_disable_disk_events);
3045
3046 void sdev_enable_disk_events(struct scsi_device *sdev)
3047 {
3048 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3049 return;
3050 atomic_dec(&sdev->disk_events_disable_depth);
3051 }
3052 EXPORT_SYMBOL(sdev_enable_disk_events);