]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
scsi: simplify scsi_log_(send|completion)
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE 2
42
43 struct scsi_host_sg_pool {
44 size_t size;
45 char *name;
46 struct kmem_cache *slab;
47 mempool_t *pool;
48 };
49
50 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55 SP(8),
56 SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62 SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69 SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77 * not change behaviour from the previous unplug mechanism, experimentation
78 * may prove this needs changing.
79 */
80 #define SCSI_QUEUE_DELAY 3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85 struct Scsi_Host *host = cmd->device->host;
86 struct scsi_device *device = cmd->device;
87 struct scsi_target *starget = scsi_target(device);
88
89 /*
90 * Set the appropriate busy bit for the device/host.
91 *
92 * If the host/device isn't busy, assume that something actually
93 * completed, and that we should be able to queue a command now.
94 *
95 * Note that the prior mid-layer assumption that any host could
96 * always queue at least one command is now broken. The mid-layer
97 * will implement a user specifiable stall (see
98 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99 * if a command is requeued with no other commands outstanding
100 * either for the device or for the host.
101 */
102 switch (reason) {
103 case SCSI_MLQUEUE_HOST_BUSY:
104 atomic_set(&host->host_blocked, host->max_host_blocked);
105 break;
106 case SCSI_MLQUEUE_DEVICE_BUSY:
107 case SCSI_MLQUEUE_EH_RETRY:
108 atomic_set(&device->device_blocked,
109 device->max_device_blocked);
110 break;
111 case SCSI_MLQUEUE_TARGET_BUSY:
112 atomic_set(&starget->target_blocked,
113 starget->max_target_blocked);
114 break;
115 }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120 struct scsi_device *sdev = cmd->device;
121 struct request_queue *q = cmd->request->q;
122
123 blk_mq_requeue_request(cmd->request);
124 blk_mq_kick_requeue_list(q);
125 put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129 * __scsi_queue_insert - private queue insertion
130 * @cmd: The SCSI command being requeued
131 * @reason: The reason for the requeue
132 * @unbusy: Whether the queue should be unbusied
133 *
134 * This is a private queue insertion. The public interface
135 * scsi_queue_insert() always assumes the queue should be unbusied
136 * because it's always called before the completion. This function is
137 * for a requeue after completion, which should only occur in this
138 * file.
139 */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142 struct scsi_device *device = cmd->device;
143 struct request_queue *q = device->request_queue;
144 unsigned long flags;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_cleanup_queue() finishes.
163 */
164 cmd->result = 0;
165 if (q->mq_ops) {
166 scsi_mq_requeue_cmd(cmd);
167 return;
168 }
169 spin_lock_irqsave(q->queue_lock, flags);
170 blk_requeue_request(q, cmd->request);
171 kblockd_schedule_work(&device->requeue_work);
172 spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176 * Function: scsi_queue_insert()
177 *
178 * Purpose: Insert a command in the midlevel queue.
179 *
180 * Arguments: cmd - command that we are adding to queue.
181 * reason - why we are inserting command to queue.
182 *
183 * Lock status: Assumed that lock is not held upon entry.
184 *
185 * Returns: Nothing.
186 *
187 * Notes: We do this for one of two cases. Either the host is busy
188 * and it cannot accept any more commands for the time being,
189 * or the device returned QUEUE_FULL and can accept no more
190 * commands.
191 * Notes: This could be called either from an interrupt context or a
192 * normal process context.
193 */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196 __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199 * scsi_execute - insert request and wait for the result
200 * @sdev: scsi device
201 * @cmd: scsi command
202 * @data_direction: data direction
203 * @buffer: data buffer
204 * @bufflen: len of buffer
205 * @sense: optional sense buffer
206 * @timeout: request timeout in seconds
207 * @retries: number of times to retry request
208 * @flags: or into request flags;
209 * @resid: optional residual length
210 *
211 * returns the req->errors value which is the scsi_cmnd result
212 * field.
213 */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215 int data_direction, void *buffer, unsigned bufflen,
216 unsigned char *sense, int timeout, int retries, u64 flags,
217 int *resid)
218 {
219 struct request *req;
220 int write = (data_direction == DMA_TO_DEVICE);
221 int ret = DRIVER_ERROR << 24;
222
223 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224 if (IS_ERR(req))
225 return ret;
226 blk_rq_set_block_pc(req);
227
228 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
229 buffer, bufflen, __GFP_WAIT))
230 goto out;
231
232 req->cmd_len = COMMAND_SIZE(cmd[0]);
233 memcpy(req->cmd, cmd, req->cmd_len);
234 req->sense = sense;
235 req->sense_len = 0;
236 req->retries = retries;
237 req->timeout = timeout;
238 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240 /*
241 * head injection *required* here otherwise quiesce won't work
242 */
243 blk_execute_rq(req->q, NULL, req, 1);
244
245 /*
246 * Some devices (USB mass-storage in particular) may transfer
247 * garbage data together with a residue indicating that the data
248 * is invalid. Prevent the garbage from being misinterpreted
249 * and prevent security leaks by zeroing out the excess data.
250 */
251 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254 if (resid)
255 *resid = req->resid_len;
256 ret = req->errors;
257 out:
258 blk_put_request(req);
259
260 return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265 int data_direction, void *buffer, unsigned bufflen,
266 struct scsi_sense_hdr *sshdr, int timeout, int retries,
267 int *resid, u64 flags)
268 {
269 char *sense = NULL;
270 int result;
271
272 if (sshdr) {
273 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274 if (!sense)
275 return DRIVER_ERROR << 24;
276 }
277 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278 sense, timeout, retries, flags, resid);
279 if (sshdr)
280 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282 kfree(sense);
283 return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288 * Function: scsi_init_cmd_errh()
289 *
290 * Purpose: Initialize cmd fields related to error handling.
291 *
292 * Arguments: cmd - command that is ready to be queued.
293 *
294 * Notes: This function has the job of initializing a number of
295 * fields related to error handling. Typically this will
296 * be called once for each command, as required.
297 */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300 cmd->serial_number = 0;
301 scsi_set_resid(cmd, 0);
302 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303 if (cmd->cmd_len == 0)
304 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309 struct Scsi_Host *shost = sdev->host;
310 struct scsi_target *starget = scsi_target(sdev);
311 unsigned long flags;
312
313 atomic_dec(&shost->host_busy);
314 if (starget->can_queue > 0)
315 atomic_dec(&starget->target_busy);
316
317 if (unlikely(scsi_host_in_recovery(shost) &&
318 (shost->host_failed || shost->host_eh_scheduled))) {
319 spin_lock_irqsave(shost->host_lock, flags);
320 scsi_eh_wakeup(shost);
321 spin_unlock_irqrestore(shost->host_lock, flags);
322 }
323
324 atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329 if (q->mq_ops)
330 blk_mq_start_hw_queues(q);
331 else
332 blk_run_queue(q);
333 }
334
335 /*
336 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337 * and call blk_run_queue for all the scsi_devices on the target -
338 * including current_sdev first.
339 *
340 * Called with *no* scsi locks held.
341 */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344 struct Scsi_Host *shost = current_sdev->host;
345 struct scsi_device *sdev, *tmp;
346 struct scsi_target *starget = scsi_target(current_sdev);
347 unsigned long flags;
348
349 spin_lock_irqsave(shost->host_lock, flags);
350 starget->starget_sdev_user = NULL;
351 spin_unlock_irqrestore(shost->host_lock, flags);
352
353 /*
354 * Call blk_run_queue for all LUNs on the target, starting with
355 * current_sdev. We race with others (to set starget_sdev_user),
356 * but in most cases, we will be first. Ideally, each LU on the
357 * target would get some limited time or requests on the target.
358 */
359 scsi_kick_queue(current_sdev->request_queue);
360
361 spin_lock_irqsave(shost->host_lock, flags);
362 if (starget->starget_sdev_user)
363 goto out;
364 list_for_each_entry_safe(sdev, tmp, &starget->devices,
365 same_target_siblings) {
366 if (sdev == current_sdev)
367 continue;
368 if (scsi_device_get(sdev))
369 continue;
370
371 spin_unlock_irqrestore(shost->host_lock, flags);
372 scsi_kick_queue(sdev->request_queue);
373 spin_lock_irqsave(shost->host_lock, flags);
374
375 scsi_device_put(sdev);
376 }
377 out:
378 spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384 return true;
385 if (atomic_read(&sdev->device_blocked) > 0)
386 return true;
387 return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392 if (starget->can_queue > 0) {
393 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394 return true;
395 if (atomic_read(&starget->target_blocked) > 0)
396 return true;
397 }
398 return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 if (shost->can_queue > 0 &&
404 atomic_read(&shost->host_busy) >= shost->can_queue)
405 return true;
406 if (atomic_read(&shost->host_blocked) > 0)
407 return true;
408 if (shost->host_self_blocked)
409 return true;
410 return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 LIST_HEAD(starved_list);
416 struct scsi_device *sdev;
417 unsigned long flags;
418
419 spin_lock_irqsave(shost->host_lock, flags);
420 list_splice_init(&shost->starved_list, &starved_list);
421
422 while (!list_empty(&starved_list)) {
423 struct request_queue *slq;
424
425 /*
426 * As long as shost is accepting commands and we have
427 * starved queues, call blk_run_queue. scsi_request_fn
428 * drops the queue_lock and can add us back to the
429 * starved_list.
430 *
431 * host_lock protects the starved_list and starved_entry.
432 * scsi_request_fn must get the host_lock before checking
433 * or modifying starved_list or starved_entry.
434 */
435 if (scsi_host_is_busy(shost))
436 break;
437
438 sdev = list_entry(starved_list.next,
439 struct scsi_device, starved_entry);
440 list_del_init(&sdev->starved_entry);
441 if (scsi_target_is_busy(scsi_target(sdev))) {
442 list_move_tail(&sdev->starved_entry,
443 &shost->starved_list);
444 continue;
445 }
446
447 /*
448 * Once we drop the host lock, a racing scsi_remove_device()
449 * call may remove the sdev from the starved list and destroy
450 * it and the queue. Mitigate by taking a reference to the
451 * queue and never touching the sdev again after we drop the
452 * host lock. Note: if __scsi_remove_device() invokes
453 * blk_cleanup_queue() before the queue is run from this
454 * function then blk_run_queue() will return immediately since
455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 */
457 slq = sdev->request_queue;
458 if (!blk_get_queue(slq))
459 continue;
460 spin_unlock_irqrestore(shost->host_lock, flags);
461
462 scsi_kick_queue(slq);
463 blk_put_queue(slq);
464
465 spin_lock_irqsave(shost->host_lock, flags);
466 }
467 /* put any unprocessed entries back */
468 list_splice(&starved_list, &shost->starved_list);
469 spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473 * Function: scsi_run_queue()
474 *
475 * Purpose: Select a proper request queue to serve next
476 *
477 * Arguments: q - last request's queue
478 *
479 * Returns: Nothing
480 *
481 * Notes: The previous command was completely finished, start
482 * a new one if possible.
483 */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486 struct scsi_device *sdev = q->queuedata;
487
488 if (scsi_target(sdev)->single_lun)
489 scsi_single_lun_run(sdev);
490 if (!list_empty(&sdev->host->starved_list))
491 scsi_starved_list_run(sdev->host);
492
493 if (q->mq_ops)
494 blk_mq_start_stopped_hw_queues(q, false);
495 else
496 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501 struct scsi_device *sdev;
502 struct request_queue *q;
503
504 sdev = container_of(work, struct scsi_device, requeue_work);
505 q = sdev->request_queue;
506 scsi_run_queue(q);
507 }
508
509 /*
510 * Function: scsi_requeue_command()
511 *
512 * Purpose: Handle post-processing of completed commands.
513 *
514 * Arguments: q - queue to operate on
515 * cmd - command that may need to be requeued.
516 *
517 * Returns: Nothing
518 *
519 * Notes: After command completion, there may be blocks left
520 * over which weren't finished by the previous command
521 * this can be for a number of reasons - the main one is
522 * I/O errors in the middle of the request, in which case
523 * we need to request the blocks that come after the bad
524 * sector.
525 * Notes: Upon return, cmd is a stale pointer.
526 */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529 struct scsi_device *sdev = cmd->device;
530 struct request *req = cmd->request;
531 unsigned long flags;
532
533 spin_lock_irqsave(q->queue_lock, flags);
534 blk_unprep_request(req);
535 req->special = NULL;
536 scsi_put_command(cmd);
537 blk_requeue_request(q, req);
538 spin_unlock_irqrestore(q->queue_lock, flags);
539
540 scsi_run_queue(q);
541
542 put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547 struct scsi_device *sdev = cmd->device;
548 struct request_queue *q = sdev->request_queue;
549
550 scsi_put_command(cmd);
551 scsi_run_queue(q);
552
553 put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558 struct scsi_device *sdev;
559
560 shost_for_each_device(sdev, shost)
561 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566 unsigned int index;
567
568 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570 if (nents <= 8)
571 index = 0;
572 else
573 index = get_count_order(nents) - 3;
574
575 return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580 struct scsi_host_sg_pool *sgp;
581
582 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588 struct scsi_host_sg_pool *sgp;
589
590 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591 return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597 return;
598 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602 gfp_t gfp_mask, bool mq)
603 {
604 struct scatterlist *first_chunk = NULL;
605 int ret;
606
607 BUG_ON(!nents);
608
609 if (mq) {
610 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611 sdb->table.nents = nents;
612 sg_init_table(sdb->table.sgl, sdb->table.nents);
613 return 0;
614 }
615 first_chunk = sdb->table.sgl;
616 }
617
618 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 first_chunk, gfp_mask, scsi_sg_alloc);
620 if (unlikely(ret))
621 scsi_free_sgtable(sdb, mq);
622 return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627 if (cmd->request->cmd_type == REQ_TYPE_FS) {
628 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630 if (drv->uninit_command)
631 drv->uninit_command(cmd);
632 }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637 if (cmd->sdb.table.nents)
638 scsi_free_sgtable(&cmd->sdb, true);
639 if (cmd->request->next_rq && cmd->request->next_rq->special)
640 scsi_free_sgtable(cmd->request->next_rq->special, true);
641 if (scsi_prot_sg_count(cmd))
642 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647 struct scsi_device *sdev = cmd->device;
648 struct Scsi_Host *shost = sdev->host;
649 unsigned long flags;
650
651 scsi_mq_free_sgtables(cmd);
652 scsi_uninit_cmd(cmd);
653
654 if (shost->use_cmd_list) {
655 BUG_ON(list_empty(&cmd->list));
656 spin_lock_irqsave(&sdev->list_lock, flags);
657 list_del_init(&cmd->list);
658 spin_unlock_irqrestore(&sdev->list_lock, flags);
659 }
660 }
661
662 /*
663 * Function: scsi_release_buffers()
664 *
665 * Purpose: Free resources allocate for a scsi_command.
666 *
667 * Arguments: cmd - command that we are bailing.
668 *
669 * Lock status: Assumed that no lock is held upon entry.
670 *
671 * Returns: Nothing
672 *
673 * Notes: In the event that an upper level driver rejects a
674 * command, we must release resources allocated during
675 * the __init_io() function. Primarily this would involve
676 * the scatter-gather table.
677 */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680 if (cmd->sdb.table.nents)
681 scsi_free_sgtable(&cmd->sdb, false);
682
683 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685 if (scsi_prot_sg_count(cmd))
686 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693 scsi_free_sgtable(bidi_sdb, false);
694 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695 cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699 unsigned int bytes, unsigned int bidi_bytes)
700 {
701 struct scsi_cmnd *cmd = req->special;
702 struct scsi_device *sdev = cmd->device;
703 struct request_queue *q = sdev->request_queue;
704
705 if (blk_update_request(req, error, bytes))
706 return true;
707
708 /* Bidi request must be completed as a whole */
709 if (unlikely(bidi_bytes) &&
710 blk_update_request(req->next_rq, error, bidi_bytes))
711 return true;
712
713 if (blk_queue_add_random(q))
714 add_disk_randomness(req->rq_disk);
715
716 if (req->mq_ctx) {
717 /*
718 * In the MQ case the command gets freed by __blk_mq_end_request,
719 * so we have to do all cleanup that depends on it earlier.
720 *
721 * We also can't kick the queues from irq context, so we
722 * will have to defer it to a workqueue.
723 */
724 scsi_mq_uninit_cmd(cmd);
725
726 __blk_mq_end_request(req, error);
727
728 if (scsi_target(sdev)->single_lun ||
729 !list_empty(&sdev->host->starved_list))
730 kblockd_schedule_work(&sdev->requeue_work);
731 else
732 blk_mq_start_stopped_hw_queues(q, true);
733
734 put_device(&sdev->sdev_gendev);
735 } else {
736 unsigned long flags;
737
738 if (bidi_bytes)
739 scsi_release_bidi_buffers(cmd);
740
741 spin_lock_irqsave(q->queue_lock, flags);
742 blk_finish_request(req, error);
743 spin_unlock_irqrestore(q->queue_lock, flags);
744
745 scsi_release_buffers(cmd);
746 scsi_next_command(cmd);
747 }
748
749 return false;
750 }
751
752 /**
753 * __scsi_error_from_host_byte - translate SCSI error code into errno
754 * @cmd: SCSI command (unused)
755 * @result: scsi error code
756 *
757 * Translate SCSI error code into standard UNIX errno.
758 * Return values:
759 * -ENOLINK temporary transport failure
760 * -EREMOTEIO permanent target failure, do not retry
761 * -EBADE permanent nexus failure, retry on other path
762 * -ENOSPC No write space available
763 * -ENODATA Medium error
764 * -EIO unspecified I/O error
765 */
766 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767 {
768 int error = 0;
769
770 switch(host_byte(result)) {
771 case DID_TRANSPORT_FAILFAST:
772 error = -ENOLINK;
773 break;
774 case DID_TARGET_FAILURE:
775 set_host_byte(cmd, DID_OK);
776 error = -EREMOTEIO;
777 break;
778 case DID_NEXUS_FAILURE:
779 set_host_byte(cmd, DID_OK);
780 error = -EBADE;
781 break;
782 case DID_ALLOC_FAILURE:
783 set_host_byte(cmd, DID_OK);
784 error = -ENOSPC;
785 break;
786 case DID_MEDIUM_ERROR:
787 set_host_byte(cmd, DID_OK);
788 error = -ENODATA;
789 break;
790 default:
791 error = -EIO;
792 break;
793 }
794
795 return error;
796 }
797
798 /*
799 * Function: scsi_io_completion()
800 *
801 * Purpose: Completion processing for block device I/O requests.
802 *
803 * Arguments: cmd - command that is finished.
804 *
805 * Lock status: Assumed that no lock is held upon entry.
806 *
807 * Returns: Nothing
808 *
809 * Notes: We will finish off the specified number of sectors. If we
810 * are done, the command block will be released and the queue
811 * function will be goosed. If we are not done then we have to
812 * figure out what to do next:
813 *
814 * a) We can call scsi_requeue_command(). The request
815 * will be unprepared and put back on the queue. Then
816 * a new command will be created for it. This should
817 * be used if we made forward progress, or if we want
818 * to switch from READ(10) to READ(6) for example.
819 *
820 * b) We can call __scsi_queue_insert(). The request will
821 * be put back on the queue and retried using the same
822 * command as before, possibly after a delay.
823 *
824 * c) We can call scsi_end_request() with -EIO to fail
825 * the remainder of the request.
826 */
827 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828 {
829 int result = cmd->result;
830 struct request_queue *q = cmd->device->request_queue;
831 struct request *req = cmd->request;
832 int error = 0;
833 struct scsi_sense_hdr sshdr;
834 bool sense_valid = false;
835 int sense_deferred = 0, level = 0;
836 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837 ACTION_DELAYED_RETRY} action;
838 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839
840 if (result) {
841 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842 if (sense_valid)
843 sense_deferred = scsi_sense_is_deferred(&sshdr);
844 }
845
846 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847 if (result) {
848 if (sense_valid && req->sense) {
849 /*
850 * SG_IO wants current and deferred errors
851 */
852 int len = 8 + cmd->sense_buffer[7];
853
854 if (len > SCSI_SENSE_BUFFERSIZE)
855 len = SCSI_SENSE_BUFFERSIZE;
856 memcpy(req->sense, cmd->sense_buffer, len);
857 req->sense_len = len;
858 }
859 if (!sense_deferred)
860 error = __scsi_error_from_host_byte(cmd, result);
861 }
862 /*
863 * __scsi_error_from_host_byte may have reset the host_byte
864 */
865 req->errors = cmd->result;
866
867 req->resid_len = scsi_get_resid(cmd);
868
869 if (scsi_bidi_cmnd(cmd)) {
870 /*
871 * Bidi commands Must be complete as a whole,
872 * both sides at once.
873 */
874 req->next_rq->resid_len = scsi_in(cmd)->resid;
875 if (scsi_end_request(req, 0, blk_rq_bytes(req),
876 blk_rq_bytes(req->next_rq)))
877 BUG();
878 return;
879 }
880 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881 /*
882 * Certain non BLOCK_PC requests are commands that don't
883 * actually transfer anything (FLUSH), so cannot use
884 * good_bytes != blk_rq_bytes(req) as the signal for an error.
885 * This sets the error explicitly for the problem case.
886 */
887 error = __scsi_error_from_host_byte(cmd, result);
888 }
889
890 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891 BUG_ON(blk_bidi_rq(req));
892
893 /*
894 * Next deal with any sectors which we were able to correctly
895 * handle.
896 */
897 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898 "%u sectors total, %d bytes done.\n",
899 blk_rq_sectors(req), good_bytes));
900
901 /*
902 * Recovered errors need reporting, but they're always treated
903 * as success, so fiddle the result code here. For BLOCK_PC
904 * we already took a copy of the original into rq->errors which
905 * is what gets returned to the user
906 */
907 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909 * print since caller wants ATA registers. Only occurs on
910 * SCSI ATA PASS_THROUGH commands when CK_COND=1
911 */
912 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913 ;
914 else if (!(req->cmd_flags & REQ_QUIET))
915 scsi_print_sense(cmd);
916 result = 0;
917 /* BLOCK_PC may have set error */
918 error = 0;
919 }
920
921 /*
922 * If we finished all bytes in the request we are done now.
923 */
924 if (!scsi_end_request(req, error, good_bytes, 0))
925 return;
926
927 /*
928 * Kill remainder if no retrys.
929 */
930 if (error && scsi_noretry_cmd(cmd)) {
931 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
932 BUG();
933 return;
934 }
935
936 /*
937 * If there had been no error, but we have leftover bytes in the
938 * requeues just queue the command up again.
939 */
940 if (result == 0)
941 goto requeue;
942
943 error = __scsi_error_from_host_byte(cmd, result);
944
945 if (host_byte(result) == DID_RESET) {
946 /* Third party bus reset or reset for error recovery
947 * reasons. Just retry the command and see what
948 * happens.
949 */
950 action = ACTION_RETRY;
951 } else if (sense_valid && !sense_deferred) {
952 switch (sshdr.sense_key) {
953 case UNIT_ATTENTION:
954 if (cmd->device->removable) {
955 /* Detected disc change. Set a bit
956 * and quietly refuse further access.
957 */
958 cmd->device->changed = 1;
959 action = ACTION_FAIL;
960 } else {
961 /* Must have been a power glitch, or a
962 * bus reset. Could not have been a
963 * media change, so we just retry the
964 * command and see what happens.
965 */
966 action = ACTION_RETRY;
967 }
968 break;
969 case ILLEGAL_REQUEST:
970 /* If we had an ILLEGAL REQUEST returned, then
971 * we may have performed an unsupported
972 * command. The only thing this should be
973 * would be a ten byte read where only a six
974 * byte read was supported. Also, on a system
975 * where READ CAPACITY failed, we may have
976 * read past the end of the disk.
977 */
978 if ((cmd->device->use_10_for_rw &&
979 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
980 (cmd->cmnd[0] == READ_10 ||
981 cmd->cmnd[0] == WRITE_10)) {
982 /* This will issue a new 6-byte command. */
983 cmd->device->use_10_for_rw = 0;
984 action = ACTION_REPREP;
985 } else if (sshdr.asc == 0x10) /* DIX */ {
986 action = ACTION_FAIL;
987 error = -EILSEQ;
988 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
989 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
990 action = ACTION_FAIL;
991 error = -EREMOTEIO;
992 } else
993 action = ACTION_FAIL;
994 break;
995 case ABORTED_COMMAND:
996 action = ACTION_FAIL;
997 if (sshdr.asc == 0x10) /* DIF */
998 error = -EILSEQ;
999 break;
1000 case NOT_READY:
1001 /* If the device is in the process of becoming
1002 * ready, or has a temporary blockage, retry.
1003 */
1004 if (sshdr.asc == 0x04) {
1005 switch (sshdr.ascq) {
1006 case 0x01: /* becoming ready */
1007 case 0x04: /* format in progress */
1008 case 0x05: /* rebuild in progress */
1009 case 0x06: /* recalculation in progress */
1010 case 0x07: /* operation in progress */
1011 case 0x08: /* Long write in progress */
1012 case 0x09: /* self test in progress */
1013 case 0x14: /* space allocation in progress */
1014 action = ACTION_DELAYED_RETRY;
1015 break;
1016 default:
1017 action = ACTION_FAIL;
1018 break;
1019 }
1020 } else
1021 action = ACTION_FAIL;
1022 break;
1023 case VOLUME_OVERFLOW:
1024 /* See SSC3rXX or current. */
1025 action = ACTION_FAIL;
1026 break;
1027 default:
1028 action = ACTION_FAIL;
1029 break;
1030 }
1031 } else
1032 action = ACTION_FAIL;
1033
1034 if (action != ACTION_FAIL &&
1035 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1036 action = ACTION_FAIL;
1037
1038 switch (action) {
1039 case ACTION_FAIL:
1040 /* Give up and fail the remainder of the request */
1041 if (unlikely(scsi_logging_level))
1042 level = SCSI_LOG_LEVEL(SCSI_LOG_MLQUEUE_SHIFT,
1043 SCSI_LOG_MLQUEUE_BITS);
1044 /*
1045 * if logging is enabled the failure will be printed
1046 * in scsi_log_completion(), so avoid duplicate messages
1047 */
1048 if (!level && !(req->cmd_flags & REQ_QUIET)) {
1049 scsi_print_result(cmd, NULL, FAILED);
1050 if (driver_byte(result) & DRIVER_SENSE)
1051 scsi_print_sense(cmd);
1052 scsi_print_command(cmd);
1053 }
1054 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1055 return;
1056 /*FALLTHRU*/
1057 case ACTION_REPREP:
1058 requeue:
1059 /* Unprep the request and put it back at the head of the queue.
1060 * A new command will be prepared and issued.
1061 */
1062 if (q->mq_ops) {
1063 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1064 scsi_mq_uninit_cmd(cmd);
1065 scsi_mq_requeue_cmd(cmd);
1066 } else {
1067 scsi_release_buffers(cmd);
1068 scsi_requeue_command(q, cmd);
1069 }
1070 break;
1071 case ACTION_RETRY:
1072 /* Retry the same command immediately */
1073 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1074 break;
1075 case ACTION_DELAYED_RETRY:
1076 /* Retry the same command after a delay */
1077 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1078 break;
1079 }
1080 }
1081
1082 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1083 gfp_t gfp_mask)
1084 {
1085 int count;
1086
1087 /*
1088 * If sg table allocation fails, requeue request later.
1089 */
1090 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1091 gfp_mask, req->mq_ctx != NULL)))
1092 return BLKPREP_DEFER;
1093
1094 /*
1095 * Next, walk the list, and fill in the addresses and sizes of
1096 * each segment.
1097 */
1098 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1099 BUG_ON(count > sdb->table.nents);
1100 sdb->table.nents = count;
1101 sdb->length = blk_rq_bytes(req);
1102 return BLKPREP_OK;
1103 }
1104
1105 /*
1106 * Function: scsi_init_io()
1107 *
1108 * Purpose: SCSI I/O initialize function.
1109 *
1110 * Arguments: cmd - Command descriptor we wish to initialize
1111 *
1112 * Returns: 0 on success
1113 * BLKPREP_DEFER if the failure is retryable
1114 * BLKPREP_KILL if the failure is fatal
1115 */
1116 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1117 {
1118 struct scsi_device *sdev = cmd->device;
1119 struct request *rq = cmd->request;
1120 bool is_mq = (rq->mq_ctx != NULL);
1121 int error;
1122
1123 BUG_ON(!rq->nr_phys_segments);
1124
1125 error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1126 if (error)
1127 goto err_exit;
1128
1129 if (blk_bidi_rq(rq)) {
1130 if (!rq->q->mq_ops) {
1131 struct scsi_data_buffer *bidi_sdb =
1132 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1133 if (!bidi_sdb) {
1134 error = BLKPREP_DEFER;
1135 goto err_exit;
1136 }
1137
1138 rq->next_rq->special = bidi_sdb;
1139 }
1140
1141 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1142 GFP_ATOMIC);
1143 if (error)
1144 goto err_exit;
1145 }
1146
1147 if (blk_integrity_rq(rq)) {
1148 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1149 int ivecs, count;
1150
1151 BUG_ON(prot_sdb == NULL);
1152 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1153
1154 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1155 error = BLKPREP_DEFER;
1156 goto err_exit;
1157 }
1158
1159 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1160 prot_sdb->table.sgl);
1161 BUG_ON(unlikely(count > ivecs));
1162 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1163
1164 cmd->prot_sdb = prot_sdb;
1165 cmd->prot_sdb->table.nents = count;
1166 }
1167
1168 return BLKPREP_OK;
1169 err_exit:
1170 if (is_mq) {
1171 scsi_mq_free_sgtables(cmd);
1172 } else {
1173 scsi_release_buffers(cmd);
1174 cmd->request->special = NULL;
1175 scsi_put_command(cmd);
1176 put_device(&sdev->sdev_gendev);
1177 }
1178 return error;
1179 }
1180 EXPORT_SYMBOL(scsi_init_io);
1181
1182 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1183 struct request *req)
1184 {
1185 struct scsi_cmnd *cmd;
1186
1187 if (!req->special) {
1188 /* Bail if we can't get a reference to the device */
1189 if (!get_device(&sdev->sdev_gendev))
1190 return NULL;
1191
1192 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1193 if (unlikely(!cmd)) {
1194 put_device(&sdev->sdev_gendev);
1195 return NULL;
1196 }
1197 req->special = cmd;
1198 } else {
1199 cmd = req->special;
1200 }
1201
1202 /* pull a tag out of the request if we have one */
1203 cmd->tag = req->tag;
1204 cmd->request = req;
1205
1206 cmd->cmnd = req->cmd;
1207 cmd->prot_op = SCSI_PROT_NORMAL;
1208
1209 return cmd;
1210 }
1211
1212 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1213 {
1214 struct scsi_cmnd *cmd = req->special;
1215
1216 /*
1217 * BLOCK_PC requests may transfer data, in which case they must
1218 * a bio attached to them. Or they might contain a SCSI command
1219 * that does not transfer data, in which case they may optionally
1220 * submit a request without an attached bio.
1221 */
1222 if (req->bio) {
1223 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1224 if (unlikely(ret))
1225 return ret;
1226 } else {
1227 BUG_ON(blk_rq_bytes(req));
1228
1229 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1230 }
1231
1232 cmd->cmd_len = req->cmd_len;
1233 cmd->transfersize = blk_rq_bytes(req);
1234 cmd->allowed = req->retries;
1235 return BLKPREP_OK;
1236 }
1237
1238 /*
1239 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1240 * that still need to be translated to SCSI CDBs from the ULD.
1241 */
1242 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1243 {
1244 struct scsi_cmnd *cmd = req->special;
1245
1246 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1247 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1248 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1249 if (ret != BLKPREP_OK)
1250 return ret;
1251 }
1252
1253 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1254 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1255 }
1256
1257 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1258 {
1259 struct scsi_cmnd *cmd = req->special;
1260
1261 if (!blk_rq_bytes(req))
1262 cmd->sc_data_direction = DMA_NONE;
1263 else if (rq_data_dir(req) == WRITE)
1264 cmd->sc_data_direction = DMA_TO_DEVICE;
1265 else
1266 cmd->sc_data_direction = DMA_FROM_DEVICE;
1267
1268 switch (req->cmd_type) {
1269 case REQ_TYPE_FS:
1270 return scsi_setup_fs_cmnd(sdev, req);
1271 case REQ_TYPE_BLOCK_PC:
1272 return scsi_setup_blk_pc_cmnd(sdev, req);
1273 default:
1274 return BLKPREP_KILL;
1275 }
1276 }
1277
1278 static int
1279 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1280 {
1281 int ret = BLKPREP_OK;
1282
1283 /*
1284 * If the device is not in running state we will reject some
1285 * or all commands.
1286 */
1287 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1288 switch (sdev->sdev_state) {
1289 case SDEV_OFFLINE:
1290 case SDEV_TRANSPORT_OFFLINE:
1291 /*
1292 * If the device is offline we refuse to process any
1293 * commands. The device must be brought online
1294 * before trying any recovery commands.
1295 */
1296 sdev_printk(KERN_ERR, sdev,
1297 "rejecting I/O to offline device\n");
1298 ret = BLKPREP_KILL;
1299 break;
1300 case SDEV_DEL:
1301 /*
1302 * If the device is fully deleted, we refuse to
1303 * process any commands as well.
1304 */
1305 sdev_printk(KERN_ERR, sdev,
1306 "rejecting I/O to dead device\n");
1307 ret = BLKPREP_KILL;
1308 break;
1309 case SDEV_QUIESCE:
1310 case SDEV_BLOCK:
1311 case SDEV_CREATED_BLOCK:
1312 /*
1313 * If the devices is blocked we defer normal commands.
1314 */
1315 if (!(req->cmd_flags & REQ_PREEMPT))
1316 ret = BLKPREP_DEFER;
1317 break;
1318 default:
1319 /*
1320 * For any other not fully online state we only allow
1321 * special commands. In particular any user initiated
1322 * command is not allowed.
1323 */
1324 if (!(req->cmd_flags & REQ_PREEMPT))
1325 ret = BLKPREP_KILL;
1326 break;
1327 }
1328 }
1329 return ret;
1330 }
1331
1332 static int
1333 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1334 {
1335 struct scsi_device *sdev = q->queuedata;
1336
1337 switch (ret) {
1338 case BLKPREP_KILL:
1339 req->errors = DID_NO_CONNECT << 16;
1340 /* release the command and kill it */
1341 if (req->special) {
1342 struct scsi_cmnd *cmd = req->special;
1343 scsi_release_buffers(cmd);
1344 scsi_put_command(cmd);
1345 put_device(&sdev->sdev_gendev);
1346 req->special = NULL;
1347 }
1348 break;
1349 case BLKPREP_DEFER:
1350 /*
1351 * If we defer, the blk_peek_request() returns NULL, but the
1352 * queue must be restarted, so we schedule a callback to happen
1353 * shortly.
1354 */
1355 if (atomic_read(&sdev->device_busy) == 0)
1356 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1357 break;
1358 default:
1359 req->cmd_flags |= REQ_DONTPREP;
1360 }
1361
1362 return ret;
1363 }
1364
1365 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1366 {
1367 struct scsi_device *sdev = q->queuedata;
1368 struct scsi_cmnd *cmd;
1369 int ret;
1370
1371 ret = scsi_prep_state_check(sdev, req);
1372 if (ret != BLKPREP_OK)
1373 goto out;
1374
1375 cmd = scsi_get_cmd_from_req(sdev, req);
1376 if (unlikely(!cmd)) {
1377 ret = BLKPREP_DEFER;
1378 goto out;
1379 }
1380
1381 ret = scsi_setup_cmnd(sdev, req);
1382 out:
1383 return scsi_prep_return(q, req, ret);
1384 }
1385
1386 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1387 {
1388 scsi_uninit_cmd(req->special);
1389 }
1390
1391 /*
1392 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1393 * return 0.
1394 *
1395 * Called with the queue_lock held.
1396 */
1397 static inline int scsi_dev_queue_ready(struct request_queue *q,
1398 struct scsi_device *sdev)
1399 {
1400 unsigned int busy;
1401
1402 busy = atomic_inc_return(&sdev->device_busy) - 1;
1403 if (atomic_read(&sdev->device_blocked)) {
1404 if (busy)
1405 goto out_dec;
1406
1407 /*
1408 * unblock after device_blocked iterates to zero
1409 */
1410 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1411 /*
1412 * For the MQ case we take care of this in the caller.
1413 */
1414 if (!q->mq_ops)
1415 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1416 goto out_dec;
1417 }
1418 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1419 "unblocking device at zero depth\n"));
1420 }
1421
1422 if (busy >= sdev->queue_depth)
1423 goto out_dec;
1424
1425 return 1;
1426 out_dec:
1427 atomic_dec(&sdev->device_busy);
1428 return 0;
1429 }
1430
1431 /*
1432 * scsi_target_queue_ready: checks if there we can send commands to target
1433 * @sdev: scsi device on starget to check.
1434 */
1435 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1436 struct scsi_device *sdev)
1437 {
1438 struct scsi_target *starget = scsi_target(sdev);
1439 unsigned int busy;
1440
1441 if (starget->single_lun) {
1442 spin_lock_irq(shost->host_lock);
1443 if (starget->starget_sdev_user &&
1444 starget->starget_sdev_user != sdev) {
1445 spin_unlock_irq(shost->host_lock);
1446 return 0;
1447 }
1448 starget->starget_sdev_user = sdev;
1449 spin_unlock_irq(shost->host_lock);
1450 }
1451
1452 if (starget->can_queue <= 0)
1453 return 1;
1454
1455 busy = atomic_inc_return(&starget->target_busy) - 1;
1456 if (atomic_read(&starget->target_blocked) > 0) {
1457 if (busy)
1458 goto starved;
1459
1460 /*
1461 * unblock after target_blocked iterates to zero
1462 */
1463 if (atomic_dec_return(&starget->target_blocked) > 0)
1464 goto out_dec;
1465
1466 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1467 "unblocking target at zero depth\n"));
1468 }
1469
1470 if (busy >= starget->can_queue)
1471 goto starved;
1472
1473 return 1;
1474
1475 starved:
1476 spin_lock_irq(shost->host_lock);
1477 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1478 spin_unlock_irq(shost->host_lock);
1479 out_dec:
1480 if (starget->can_queue > 0)
1481 atomic_dec(&starget->target_busy);
1482 return 0;
1483 }
1484
1485 /*
1486 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1487 * return 0. We must end up running the queue again whenever 0 is
1488 * returned, else IO can hang.
1489 */
1490 static inline int scsi_host_queue_ready(struct request_queue *q,
1491 struct Scsi_Host *shost,
1492 struct scsi_device *sdev)
1493 {
1494 unsigned int busy;
1495
1496 if (scsi_host_in_recovery(shost))
1497 return 0;
1498
1499 busy = atomic_inc_return(&shost->host_busy) - 1;
1500 if (atomic_read(&shost->host_blocked) > 0) {
1501 if (busy)
1502 goto starved;
1503
1504 /*
1505 * unblock after host_blocked iterates to zero
1506 */
1507 if (atomic_dec_return(&shost->host_blocked) > 0)
1508 goto out_dec;
1509
1510 SCSI_LOG_MLQUEUE(3,
1511 shost_printk(KERN_INFO, shost,
1512 "unblocking host at zero depth\n"));
1513 }
1514
1515 if (shost->can_queue > 0 && busy >= shost->can_queue)
1516 goto starved;
1517 if (shost->host_self_blocked)
1518 goto starved;
1519
1520 /* We're OK to process the command, so we can't be starved */
1521 if (!list_empty(&sdev->starved_entry)) {
1522 spin_lock_irq(shost->host_lock);
1523 if (!list_empty(&sdev->starved_entry))
1524 list_del_init(&sdev->starved_entry);
1525 spin_unlock_irq(shost->host_lock);
1526 }
1527
1528 return 1;
1529
1530 starved:
1531 spin_lock_irq(shost->host_lock);
1532 if (list_empty(&sdev->starved_entry))
1533 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1534 spin_unlock_irq(shost->host_lock);
1535 out_dec:
1536 atomic_dec(&shost->host_busy);
1537 return 0;
1538 }
1539
1540 /*
1541 * Busy state exporting function for request stacking drivers.
1542 *
1543 * For efficiency, no lock is taken to check the busy state of
1544 * shost/starget/sdev, since the returned value is not guaranteed and
1545 * may be changed after request stacking drivers call the function,
1546 * regardless of taking lock or not.
1547 *
1548 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1549 * needs to return 'not busy'. Otherwise, request stacking drivers
1550 * may hold requests forever.
1551 */
1552 static int scsi_lld_busy(struct request_queue *q)
1553 {
1554 struct scsi_device *sdev = q->queuedata;
1555 struct Scsi_Host *shost;
1556
1557 if (blk_queue_dying(q))
1558 return 0;
1559
1560 shost = sdev->host;
1561
1562 /*
1563 * Ignore host/starget busy state.
1564 * Since block layer does not have a concept of fairness across
1565 * multiple queues, congestion of host/starget needs to be handled
1566 * in SCSI layer.
1567 */
1568 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1569 return 1;
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Kill a request for a dead device
1576 */
1577 static void scsi_kill_request(struct request *req, struct request_queue *q)
1578 {
1579 struct scsi_cmnd *cmd = req->special;
1580 struct scsi_device *sdev;
1581 struct scsi_target *starget;
1582 struct Scsi_Host *shost;
1583
1584 blk_start_request(req);
1585
1586 scmd_printk(KERN_INFO, cmd, "killing request\n");
1587
1588 sdev = cmd->device;
1589 starget = scsi_target(sdev);
1590 shost = sdev->host;
1591 scsi_init_cmd_errh(cmd);
1592 cmd->result = DID_NO_CONNECT << 16;
1593 atomic_inc(&cmd->device->iorequest_cnt);
1594
1595 /*
1596 * SCSI request completion path will do scsi_device_unbusy(),
1597 * bump busy counts. To bump the counters, we need to dance
1598 * with the locks as normal issue path does.
1599 */
1600 atomic_inc(&sdev->device_busy);
1601 atomic_inc(&shost->host_busy);
1602 if (starget->can_queue > 0)
1603 atomic_inc(&starget->target_busy);
1604
1605 blk_complete_request(req);
1606 }
1607
1608 static void scsi_softirq_done(struct request *rq)
1609 {
1610 struct scsi_cmnd *cmd = rq->special;
1611 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1612 int disposition;
1613
1614 INIT_LIST_HEAD(&cmd->eh_entry);
1615
1616 atomic_inc(&cmd->device->iodone_cnt);
1617 if (cmd->result)
1618 atomic_inc(&cmd->device->ioerr_cnt);
1619
1620 disposition = scsi_decide_disposition(cmd);
1621 if (disposition != SUCCESS &&
1622 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1623 sdev_printk(KERN_ERR, cmd->device,
1624 "timing out command, waited %lus\n",
1625 wait_for/HZ);
1626 disposition = SUCCESS;
1627 }
1628
1629 scsi_log_completion(cmd, disposition);
1630
1631 switch (disposition) {
1632 case SUCCESS:
1633 scsi_finish_command(cmd);
1634 break;
1635 case NEEDS_RETRY:
1636 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1637 break;
1638 case ADD_TO_MLQUEUE:
1639 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1640 break;
1641 default:
1642 if (!scsi_eh_scmd_add(cmd, 0))
1643 scsi_finish_command(cmd);
1644 }
1645 }
1646
1647 /**
1648 * scsi_done - Invoke completion on finished SCSI command.
1649 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1650 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1651 *
1652 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1653 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1654 * calls blk_complete_request() for further processing.
1655 *
1656 * This function is interrupt context safe.
1657 */
1658 static void scsi_done(struct scsi_cmnd *cmd)
1659 {
1660 trace_scsi_dispatch_cmd_done(cmd);
1661 blk_complete_request(cmd->request);
1662 }
1663
1664 /*
1665 * Function: scsi_request_fn()
1666 *
1667 * Purpose: Main strategy routine for SCSI.
1668 *
1669 * Arguments: q - Pointer to actual queue.
1670 *
1671 * Returns: Nothing
1672 *
1673 * Lock status: IO request lock assumed to be held when called.
1674 */
1675 static void scsi_request_fn(struct request_queue *q)
1676 __releases(q->queue_lock)
1677 __acquires(q->queue_lock)
1678 {
1679 struct scsi_device *sdev = q->queuedata;
1680 struct Scsi_Host *shost;
1681 struct scsi_cmnd *cmd;
1682 struct request *req;
1683
1684 /*
1685 * To start with, we keep looping until the queue is empty, or until
1686 * the host is no longer able to accept any more requests.
1687 */
1688 shost = sdev->host;
1689 for (;;) {
1690 int rtn;
1691 /*
1692 * get next queueable request. We do this early to make sure
1693 * that the request is fully prepared even if we cannot
1694 * accept it.
1695 */
1696 req = blk_peek_request(q);
1697 if (!req)
1698 break;
1699
1700 if (unlikely(!scsi_device_online(sdev))) {
1701 sdev_printk(KERN_ERR, sdev,
1702 "rejecting I/O to offline device\n");
1703 scsi_kill_request(req, q);
1704 continue;
1705 }
1706
1707 if (!scsi_dev_queue_ready(q, sdev))
1708 break;
1709
1710 /*
1711 * Remove the request from the request list.
1712 */
1713 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1714 blk_start_request(req);
1715
1716 spin_unlock_irq(q->queue_lock);
1717 cmd = req->special;
1718 if (unlikely(cmd == NULL)) {
1719 printk(KERN_CRIT "impossible request in %s.\n"
1720 "please mail a stack trace to "
1721 "linux-scsi@vger.kernel.org\n",
1722 __func__);
1723 blk_dump_rq_flags(req, "foo");
1724 BUG();
1725 }
1726
1727 /*
1728 * We hit this when the driver is using a host wide
1729 * tag map. For device level tag maps the queue_depth check
1730 * in the device ready fn would prevent us from trying
1731 * to allocate a tag. Since the map is a shared host resource
1732 * we add the dev to the starved list so it eventually gets
1733 * a run when a tag is freed.
1734 */
1735 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1736 spin_lock_irq(shost->host_lock);
1737 if (list_empty(&sdev->starved_entry))
1738 list_add_tail(&sdev->starved_entry,
1739 &shost->starved_list);
1740 spin_unlock_irq(shost->host_lock);
1741 goto not_ready;
1742 }
1743
1744 if (!scsi_target_queue_ready(shost, sdev))
1745 goto not_ready;
1746
1747 if (!scsi_host_queue_ready(q, shost, sdev))
1748 goto host_not_ready;
1749
1750 /*
1751 * Finally, initialize any error handling parameters, and set up
1752 * the timers for timeouts.
1753 */
1754 scsi_init_cmd_errh(cmd);
1755
1756 /*
1757 * Dispatch the command to the low-level driver.
1758 */
1759 cmd->scsi_done = scsi_done;
1760 rtn = scsi_dispatch_cmd(cmd);
1761 if (rtn) {
1762 scsi_queue_insert(cmd, rtn);
1763 spin_lock_irq(q->queue_lock);
1764 goto out_delay;
1765 }
1766 spin_lock_irq(q->queue_lock);
1767 }
1768
1769 return;
1770
1771 host_not_ready:
1772 if (scsi_target(sdev)->can_queue > 0)
1773 atomic_dec(&scsi_target(sdev)->target_busy);
1774 not_ready:
1775 /*
1776 * lock q, handle tag, requeue req, and decrement device_busy. We
1777 * must return with queue_lock held.
1778 *
1779 * Decrementing device_busy without checking it is OK, as all such
1780 * cases (host limits or settings) should run the queue at some
1781 * later time.
1782 */
1783 spin_lock_irq(q->queue_lock);
1784 blk_requeue_request(q, req);
1785 atomic_dec(&sdev->device_busy);
1786 out_delay:
1787 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1788 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1789 }
1790
1791 static inline int prep_to_mq(int ret)
1792 {
1793 switch (ret) {
1794 case BLKPREP_OK:
1795 return 0;
1796 case BLKPREP_DEFER:
1797 return BLK_MQ_RQ_QUEUE_BUSY;
1798 default:
1799 return BLK_MQ_RQ_QUEUE_ERROR;
1800 }
1801 }
1802
1803 static int scsi_mq_prep_fn(struct request *req)
1804 {
1805 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1806 struct scsi_device *sdev = req->q->queuedata;
1807 struct Scsi_Host *shost = sdev->host;
1808 unsigned char *sense_buf = cmd->sense_buffer;
1809 struct scatterlist *sg;
1810
1811 memset(cmd, 0, sizeof(struct scsi_cmnd));
1812
1813 req->special = cmd;
1814
1815 cmd->request = req;
1816 cmd->device = sdev;
1817 cmd->sense_buffer = sense_buf;
1818
1819 cmd->tag = req->tag;
1820
1821 cmd->cmnd = req->cmd;
1822 cmd->prot_op = SCSI_PROT_NORMAL;
1823
1824 INIT_LIST_HEAD(&cmd->list);
1825 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1826 cmd->jiffies_at_alloc = jiffies;
1827
1828 if (shost->use_cmd_list) {
1829 spin_lock_irq(&sdev->list_lock);
1830 list_add_tail(&cmd->list, &sdev->cmd_list);
1831 spin_unlock_irq(&sdev->list_lock);
1832 }
1833
1834 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1835 cmd->sdb.table.sgl = sg;
1836
1837 if (scsi_host_get_prot(shost)) {
1838 cmd->prot_sdb = (void *)sg +
1839 shost->sg_tablesize * sizeof(struct scatterlist);
1840 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1841
1842 cmd->prot_sdb->table.sgl =
1843 (struct scatterlist *)(cmd->prot_sdb + 1);
1844 }
1845
1846 if (blk_bidi_rq(req)) {
1847 struct request *next_rq = req->next_rq;
1848 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1849
1850 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1851 bidi_sdb->table.sgl =
1852 (struct scatterlist *)(bidi_sdb + 1);
1853
1854 next_rq->special = bidi_sdb;
1855 }
1856
1857 blk_mq_start_request(req);
1858
1859 return scsi_setup_cmnd(sdev, req);
1860 }
1861
1862 static void scsi_mq_done(struct scsi_cmnd *cmd)
1863 {
1864 trace_scsi_dispatch_cmd_done(cmd);
1865 blk_mq_complete_request(cmd->request);
1866 }
1867
1868 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1869 bool last)
1870 {
1871 struct request_queue *q = req->q;
1872 struct scsi_device *sdev = q->queuedata;
1873 struct Scsi_Host *shost = sdev->host;
1874 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1875 int ret;
1876 int reason;
1877
1878 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1879 if (ret)
1880 goto out;
1881
1882 ret = BLK_MQ_RQ_QUEUE_BUSY;
1883 if (!get_device(&sdev->sdev_gendev))
1884 goto out;
1885
1886 if (!scsi_dev_queue_ready(q, sdev))
1887 goto out_put_device;
1888 if (!scsi_target_queue_ready(shost, sdev))
1889 goto out_dec_device_busy;
1890 if (!scsi_host_queue_ready(q, shost, sdev))
1891 goto out_dec_target_busy;
1892
1893
1894 if (!(req->cmd_flags & REQ_DONTPREP)) {
1895 ret = prep_to_mq(scsi_mq_prep_fn(req));
1896 if (ret)
1897 goto out_dec_host_busy;
1898 req->cmd_flags |= REQ_DONTPREP;
1899 } else {
1900 blk_mq_start_request(req);
1901 }
1902
1903 if (blk_queue_tagged(q))
1904 req->cmd_flags |= REQ_QUEUED;
1905 else
1906 req->cmd_flags &= ~REQ_QUEUED;
1907
1908 scsi_init_cmd_errh(cmd);
1909 cmd->scsi_done = scsi_mq_done;
1910
1911 reason = scsi_dispatch_cmd(cmd);
1912 if (reason) {
1913 scsi_set_blocked(cmd, reason);
1914 ret = BLK_MQ_RQ_QUEUE_BUSY;
1915 goto out_dec_host_busy;
1916 }
1917
1918 return BLK_MQ_RQ_QUEUE_OK;
1919
1920 out_dec_host_busy:
1921 atomic_dec(&shost->host_busy);
1922 out_dec_target_busy:
1923 if (scsi_target(sdev)->can_queue > 0)
1924 atomic_dec(&scsi_target(sdev)->target_busy);
1925 out_dec_device_busy:
1926 atomic_dec(&sdev->device_busy);
1927 out_put_device:
1928 put_device(&sdev->sdev_gendev);
1929 out:
1930 switch (ret) {
1931 case BLK_MQ_RQ_QUEUE_BUSY:
1932 blk_mq_stop_hw_queue(hctx);
1933 if (atomic_read(&sdev->device_busy) == 0 &&
1934 !scsi_device_blocked(sdev))
1935 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1936 break;
1937 case BLK_MQ_RQ_QUEUE_ERROR:
1938 /*
1939 * Make sure to release all allocated ressources when
1940 * we hit an error, as we will never see this command
1941 * again.
1942 */
1943 if (req->cmd_flags & REQ_DONTPREP)
1944 scsi_mq_uninit_cmd(cmd);
1945 break;
1946 default:
1947 break;
1948 }
1949 return ret;
1950 }
1951
1952 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1953 bool reserved)
1954 {
1955 if (reserved)
1956 return BLK_EH_RESET_TIMER;
1957 return scsi_times_out(req);
1958 }
1959
1960 static int scsi_init_request(void *data, struct request *rq,
1961 unsigned int hctx_idx, unsigned int request_idx,
1962 unsigned int numa_node)
1963 {
1964 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1965
1966 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1967 numa_node);
1968 if (!cmd->sense_buffer)
1969 return -ENOMEM;
1970 return 0;
1971 }
1972
1973 static void scsi_exit_request(void *data, struct request *rq,
1974 unsigned int hctx_idx, unsigned int request_idx)
1975 {
1976 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1977
1978 kfree(cmd->sense_buffer);
1979 }
1980
1981 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1982 {
1983 struct device *host_dev;
1984 u64 bounce_limit = 0xffffffff;
1985
1986 if (shost->unchecked_isa_dma)
1987 return BLK_BOUNCE_ISA;
1988 /*
1989 * Platforms with virtual-DMA translation
1990 * hardware have no practical limit.
1991 */
1992 if (!PCI_DMA_BUS_IS_PHYS)
1993 return BLK_BOUNCE_ANY;
1994
1995 host_dev = scsi_get_device(shost);
1996 if (host_dev && host_dev->dma_mask)
1997 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1998
1999 return bounce_limit;
2000 }
2001
2002 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2003 {
2004 struct device *dev = shost->dma_dev;
2005
2006 /*
2007 * this limit is imposed by hardware restrictions
2008 */
2009 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2010 SCSI_MAX_SG_CHAIN_SEGMENTS));
2011
2012 if (scsi_host_prot_dma(shost)) {
2013 shost->sg_prot_tablesize =
2014 min_not_zero(shost->sg_prot_tablesize,
2015 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2016 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2017 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2018 }
2019
2020 blk_queue_max_hw_sectors(q, shost->max_sectors);
2021 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2022 blk_queue_segment_boundary(q, shost->dma_boundary);
2023 dma_set_seg_boundary(dev, shost->dma_boundary);
2024
2025 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2026
2027 if (!shost->use_clustering)
2028 q->limits.cluster = 0;
2029
2030 /*
2031 * set a reasonable default alignment on word boundaries: the
2032 * host and device may alter it using
2033 * blk_queue_update_dma_alignment() later.
2034 */
2035 blk_queue_dma_alignment(q, 0x03);
2036 }
2037
2038 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2039 request_fn_proc *request_fn)
2040 {
2041 struct request_queue *q;
2042
2043 q = blk_init_queue(request_fn, NULL);
2044 if (!q)
2045 return NULL;
2046 __scsi_init_queue(shost, q);
2047 return q;
2048 }
2049 EXPORT_SYMBOL(__scsi_alloc_queue);
2050
2051 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2052 {
2053 struct request_queue *q;
2054
2055 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2056 if (!q)
2057 return NULL;
2058
2059 blk_queue_prep_rq(q, scsi_prep_fn);
2060 blk_queue_unprep_rq(q, scsi_unprep_fn);
2061 blk_queue_softirq_done(q, scsi_softirq_done);
2062 blk_queue_rq_timed_out(q, scsi_times_out);
2063 blk_queue_lld_busy(q, scsi_lld_busy);
2064 return q;
2065 }
2066
2067 static struct blk_mq_ops scsi_mq_ops = {
2068 .map_queue = blk_mq_map_queue,
2069 .queue_rq = scsi_queue_rq,
2070 .complete = scsi_softirq_done,
2071 .timeout = scsi_timeout,
2072 .init_request = scsi_init_request,
2073 .exit_request = scsi_exit_request,
2074 };
2075
2076 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2077 {
2078 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2079 if (IS_ERR(sdev->request_queue))
2080 return NULL;
2081
2082 sdev->request_queue->queuedata = sdev;
2083 __scsi_init_queue(sdev->host, sdev->request_queue);
2084 return sdev->request_queue;
2085 }
2086
2087 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2088 {
2089 unsigned int cmd_size, sgl_size, tbl_size;
2090
2091 tbl_size = shost->sg_tablesize;
2092 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2093 tbl_size = SCSI_MAX_SG_SEGMENTS;
2094 sgl_size = tbl_size * sizeof(struct scatterlist);
2095 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2096 if (scsi_host_get_prot(shost))
2097 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2098
2099 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2100 shost->tag_set.ops = &scsi_mq_ops;
2101 shost->tag_set.nr_hw_queues = 1;
2102 shost->tag_set.queue_depth = shost->can_queue;
2103 shost->tag_set.cmd_size = cmd_size;
2104 shost->tag_set.numa_node = NUMA_NO_NODE;
2105 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2106 shost->tag_set.driver_data = shost;
2107
2108 return blk_mq_alloc_tag_set(&shost->tag_set);
2109 }
2110
2111 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2112 {
2113 blk_mq_free_tag_set(&shost->tag_set);
2114 }
2115
2116 /*
2117 * Function: scsi_block_requests()
2118 *
2119 * Purpose: Utility function used by low-level drivers to prevent further
2120 * commands from being queued to the device.
2121 *
2122 * Arguments: shost - Host in question
2123 *
2124 * Returns: Nothing
2125 *
2126 * Lock status: No locks are assumed held.
2127 *
2128 * Notes: There is no timer nor any other means by which the requests
2129 * get unblocked other than the low-level driver calling
2130 * scsi_unblock_requests().
2131 */
2132 void scsi_block_requests(struct Scsi_Host *shost)
2133 {
2134 shost->host_self_blocked = 1;
2135 }
2136 EXPORT_SYMBOL(scsi_block_requests);
2137
2138 /*
2139 * Function: scsi_unblock_requests()
2140 *
2141 * Purpose: Utility function used by low-level drivers to allow further
2142 * commands from being queued to the device.
2143 *
2144 * Arguments: shost - Host in question
2145 *
2146 * Returns: Nothing
2147 *
2148 * Lock status: No locks are assumed held.
2149 *
2150 * Notes: There is no timer nor any other means by which the requests
2151 * get unblocked other than the low-level driver calling
2152 * scsi_unblock_requests().
2153 *
2154 * This is done as an API function so that changes to the
2155 * internals of the scsi mid-layer won't require wholesale
2156 * changes to drivers that use this feature.
2157 */
2158 void scsi_unblock_requests(struct Scsi_Host *shost)
2159 {
2160 shost->host_self_blocked = 0;
2161 scsi_run_host_queues(shost);
2162 }
2163 EXPORT_SYMBOL(scsi_unblock_requests);
2164
2165 int __init scsi_init_queue(void)
2166 {
2167 int i;
2168
2169 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2170 sizeof(struct scsi_data_buffer),
2171 0, 0, NULL);
2172 if (!scsi_sdb_cache) {
2173 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2174 return -ENOMEM;
2175 }
2176
2177 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2178 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2179 int size = sgp->size * sizeof(struct scatterlist);
2180
2181 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2182 SLAB_HWCACHE_ALIGN, NULL);
2183 if (!sgp->slab) {
2184 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2185 sgp->name);
2186 goto cleanup_sdb;
2187 }
2188
2189 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2190 sgp->slab);
2191 if (!sgp->pool) {
2192 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2193 sgp->name);
2194 goto cleanup_sdb;
2195 }
2196 }
2197
2198 return 0;
2199
2200 cleanup_sdb:
2201 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2202 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2203 if (sgp->pool)
2204 mempool_destroy(sgp->pool);
2205 if (sgp->slab)
2206 kmem_cache_destroy(sgp->slab);
2207 }
2208 kmem_cache_destroy(scsi_sdb_cache);
2209
2210 return -ENOMEM;
2211 }
2212
2213 void scsi_exit_queue(void)
2214 {
2215 int i;
2216
2217 kmem_cache_destroy(scsi_sdb_cache);
2218
2219 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2220 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2221 mempool_destroy(sgp->pool);
2222 kmem_cache_destroy(sgp->slab);
2223 }
2224 }
2225
2226 /**
2227 * scsi_mode_select - issue a mode select
2228 * @sdev: SCSI device to be queried
2229 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2230 * @sp: Save page bit (0 == don't save, 1 == save)
2231 * @modepage: mode page being requested
2232 * @buffer: request buffer (may not be smaller than eight bytes)
2233 * @len: length of request buffer.
2234 * @timeout: command timeout
2235 * @retries: number of retries before failing
2236 * @data: returns a structure abstracting the mode header data
2237 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2238 * must be SCSI_SENSE_BUFFERSIZE big.
2239 *
2240 * Returns zero if successful; negative error number or scsi
2241 * status on error
2242 *
2243 */
2244 int
2245 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2246 unsigned char *buffer, int len, int timeout, int retries,
2247 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2248 {
2249 unsigned char cmd[10];
2250 unsigned char *real_buffer;
2251 int ret;
2252
2253 memset(cmd, 0, sizeof(cmd));
2254 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2255
2256 if (sdev->use_10_for_ms) {
2257 if (len > 65535)
2258 return -EINVAL;
2259 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2260 if (!real_buffer)
2261 return -ENOMEM;
2262 memcpy(real_buffer + 8, buffer, len);
2263 len += 8;
2264 real_buffer[0] = 0;
2265 real_buffer[1] = 0;
2266 real_buffer[2] = data->medium_type;
2267 real_buffer[3] = data->device_specific;
2268 real_buffer[4] = data->longlba ? 0x01 : 0;
2269 real_buffer[5] = 0;
2270 real_buffer[6] = data->block_descriptor_length >> 8;
2271 real_buffer[7] = data->block_descriptor_length;
2272
2273 cmd[0] = MODE_SELECT_10;
2274 cmd[7] = len >> 8;
2275 cmd[8] = len;
2276 } else {
2277 if (len > 255 || data->block_descriptor_length > 255 ||
2278 data->longlba)
2279 return -EINVAL;
2280
2281 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2282 if (!real_buffer)
2283 return -ENOMEM;
2284 memcpy(real_buffer + 4, buffer, len);
2285 len += 4;
2286 real_buffer[0] = 0;
2287 real_buffer[1] = data->medium_type;
2288 real_buffer[2] = data->device_specific;
2289 real_buffer[3] = data->block_descriptor_length;
2290
2291
2292 cmd[0] = MODE_SELECT;
2293 cmd[4] = len;
2294 }
2295
2296 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2297 sshdr, timeout, retries, NULL);
2298 kfree(real_buffer);
2299 return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(scsi_mode_select);
2302
2303 /**
2304 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2305 * @sdev: SCSI device to be queried
2306 * @dbd: set if mode sense will allow block descriptors to be returned
2307 * @modepage: mode page being requested
2308 * @buffer: request buffer (may not be smaller than eight bytes)
2309 * @len: length of request buffer.
2310 * @timeout: command timeout
2311 * @retries: number of retries before failing
2312 * @data: returns a structure abstracting the mode header data
2313 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2314 * must be SCSI_SENSE_BUFFERSIZE big.
2315 *
2316 * Returns zero if unsuccessful, or the header offset (either 4
2317 * or 8 depending on whether a six or ten byte command was
2318 * issued) if successful.
2319 */
2320 int
2321 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2322 unsigned char *buffer, int len, int timeout, int retries,
2323 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2324 {
2325 unsigned char cmd[12];
2326 int use_10_for_ms;
2327 int header_length;
2328 int result;
2329 struct scsi_sense_hdr my_sshdr;
2330
2331 memset(data, 0, sizeof(*data));
2332 memset(&cmd[0], 0, 12);
2333 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2334 cmd[2] = modepage;
2335
2336 /* caller might not be interested in sense, but we need it */
2337 if (!sshdr)
2338 sshdr = &my_sshdr;
2339
2340 retry:
2341 use_10_for_ms = sdev->use_10_for_ms;
2342
2343 if (use_10_for_ms) {
2344 if (len < 8)
2345 len = 8;
2346
2347 cmd[0] = MODE_SENSE_10;
2348 cmd[8] = len;
2349 header_length = 8;
2350 } else {
2351 if (len < 4)
2352 len = 4;
2353
2354 cmd[0] = MODE_SENSE;
2355 cmd[4] = len;
2356 header_length = 4;
2357 }
2358
2359 memset(buffer, 0, len);
2360
2361 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2362 sshdr, timeout, retries, NULL);
2363
2364 /* This code looks awful: what it's doing is making sure an
2365 * ILLEGAL REQUEST sense return identifies the actual command
2366 * byte as the problem. MODE_SENSE commands can return
2367 * ILLEGAL REQUEST if the code page isn't supported */
2368
2369 if (use_10_for_ms && !scsi_status_is_good(result) &&
2370 (driver_byte(result) & DRIVER_SENSE)) {
2371 if (scsi_sense_valid(sshdr)) {
2372 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2373 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2374 /*
2375 * Invalid command operation code
2376 */
2377 sdev->use_10_for_ms = 0;
2378 goto retry;
2379 }
2380 }
2381 }
2382
2383 if(scsi_status_is_good(result)) {
2384 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2385 (modepage == 6 || modepage == 8))) {
2386 /* Initio breakage? */
2387 header_length = 0;
2388 data->length = 13;
2389 data->medium_type = 0;
2390 data->device_specific = 0;
2391 data->longlba = 0;
2392 data->block_descriptor_length = 0;
2393 } else if(use_10_for_ms) {
2394 data->length = buffer[0]*256 + buffer[1] + 2;
2395 data->medium_type = buffer[2];
2396 data->device_specific = buffer[3];
2397 data->longlba = buffer[4] & 0x01;
2398 data->block_descriptor_length = buffer[6]*256
2399 + buffer[7];
2400 } else {
2401 data->length = buffer[0] + 1;
2402 data->medium_type = buffer[1];
2403 data->device_specific = buffer[2];
2404 data->block_descriptor_length = buffer[3];
2405 }
2406 data->header_length = header_length;
2407 }
2408
2409 return result;
2410 }
2411 EXPORT_SYMBOL(scsi_mode_sense);
2412
2413 /**
2414 * scsi_test_unit_ready - test if unit is ready
2415 * @sdev: scsi device to change the state of.
2416 * @timeout: command timeout
2417 * @retries: number of retries before failing
2418 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2419 * returning sense. Make sure that this is cleared before passing
2420 * in.
2421 *
2422 * Returns zero if unsuccessful or an error if TUR failed. For
2423 * removable media, UNIT_ATTENTION sets ->changed flag.
2424 **/
2425 int
2426 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2427 struct scsi_sense_hdr *sshdr_external)
2428 {
2429 char cmd[] = {
2430 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2431 };
2432 struct scsi_sense_hdr *sshdr;
2433 int result;
2434
2435 if (!sshdr_external)
2436 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2437 else
2438 sshdr = sshdr_external;
2439
2440 /* try to eat the UNIT_ATTENTION if there are enough retries */
2441 do {
2442 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2443 timeout, retries, NULL);
2444 if (sdev->removable && scsi_sense_valid(sshdr) &&
2445 sshdr->sense_key == UNIT_ATTENTION)
2446 sdev->changed = 1;
2447 } while (scsi_sense_valid(sshdr) &&
2448 sshdr->sense_key == UNIT_ATTENTION && --retries);
2449
2450 if (!sshdr_external)
2451 kfree(sshdr);
2452 return result;
2453 }
2454 EXPORT_SYMBOL(scsi_test_unit_ready);
2455
2456 /**
2457 * scsi_device_set_state - Take the given device through the device state model.
2458 * @sdev: scsi device to change the state of.
2459 * @state: state to change to.
2460 *
2461 * Returns zero if unsuccessful or an error if the requested
2462 * transition is illegal.
2463 */
2464 int
2465 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2466 {
2467 enum scsi_device_state oldstate = sdev->sdev_state;
2468
2469 if (state == oldstate)
2470 return 0;
2471
2472 switch (state) {
2473 case SDEV_CREATED:
2474 switch (oldstate) {
2475 case SDEV_CREATED_BLOCK:
2476 break;
2477 default:
2478 goto illegal;
2479 }
2480 break;
2481
2482 case SDEV_RUNNING:
2483 switch (oldstate) {
2484 case SDEV_CREATED:
2485 case SDEV_OFFLINE:
2486 case SDEV_TRANSPORT_OFFLINE:
2487 case SDEV_QUIESCE:
2488 case SDEV_BLOCK:
2489 break;
2490 default:
2491 goto illegal;
2492 }
2493 break;
2494
2495 case SDEV_QUIESCE:
2496 switch (oldstate) {
2497 case SDEV_RUNNING:
2498 case SDEV_OFFLINE:
2499 case SDEV_TRANSPORT_OFFLINE:
2500 break;
2501 default:
2502 goto illegal;
2503 }
2504 break;
2505
2506 case SDEV_OFFLINE:
2507 case SDEV_TRANSPORT_OFFLINE:
2508 switch (oldstate) {
2509 case SDEV_CREATED:
2510 case SDEV_RUNNING:
2511 case SDEV_QUIESCE:
2512 case SDEV_BLOCK:
2513 break;
2514 default:
2515 goto illegal;
2516 }
2517 break;
2518
2519 case SDEV_BLOCK:
2520 switch (oldstate) {
2521 case SDEV_RUNNING:
2522 case SDEV_CREATED_BLOCK:
2523 break;
2524 default:
2525 goto illegal;
2526 }
2527 break;
2528
2529 case SDEV_CREATED_BLOCK:
2530 switch (oldstate) {
2531 case SDEV_CREATED:
2532 break;
2533 default:
2534 goto illegal;
2535 }
2536 break;
2537
2538 case SDEV_CANCEL:
2539 switch (oldstate) {
2540 case SDEV_CREATED:
2541 case SDEV_RUNNING:
2542 case SDEV_QUIESCE:
2543 case SDEV_OFFLINE:
2544 case SDEV_TRANSPORT_OFFLINE:
2545 case SDEV_BLOCK:
2546 break;
2547 default:
2548 goto illegal;
2549 }
2550 break;
2551
2552 case SDEV_DEL:
2553 switch (oldstate) {
2554 case SDEV_CREATED:
2555 case SDEV_RUNNING:
2556 case SDEV_OFFLINE:
2557 case SDEV_TRANSPORT_OFFLINE:
2558 case SDEV_CANCEL:
2559 case SDEV_CREATED_BLOCK:
2560 break;
2561 default:
2562 goto illegal;
2563 }
2564 break;
2565
2566 }
2567 sdev->sdev_state = state;
2568 return 0;
2569
2570 illegal:
2571 SCSI_LOG_ERROR_RECOVERY(1,
2572 sdev_printk(KERN_ERR, sdev,
2573 "Illegal state transition %s->%s",
2574 scsi_device_state_name(oldstate),
2575 scsi_device_state_name(state))
2576 );
2577 return -EINVAL;
2578 }
2579 EXPORT_SYMBOL(scsi_device_set_state);
2580
2581 /**
2582 * sdev_evt_emit - emit a single SCSI device uevent
2583 * @sdev: associated SCSI device
2584 * @evt: event to emit
2585 *
2586 * Send a single uevent (scsi_event) to the associated scsi_device.
2587 */
2588 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2589 {
2590 int idx = 0;
2591 char *envp[3];
2592
2593 switch (evt->evt_type) {
2594 case SDEV_EVT_MEDIA_CHANGE:
2595 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2596 break;
2597 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2598 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2599 break;
2600 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2601 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2602 break;
2603 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2604 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2605 break;
2606 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2607 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2608 break;
2609 case SDEV_EVT_LUN_CHANGE_REPORTED:
2610 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2611 break;
2612 default:
2613 /* do nothing */
2614 break;
2615 }
2616
2617 envp[idx++] = NULL;
2618
2619 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2620 }
2621
2622 /**
2623 * sdev_evt_thread - send a uevent for each scsi event
2624 * @work: work struct for scsi_device
2625 *
2626 * Dispatch queued events to their associated scsi_device kobjects
2627 * as uevents.
2628 */
2629 void scsi_evt_thread(struct work_struct *work)
2630 {
2631 struct scsi_device *sdev;
2632 enum scsi_device_event evt_type;
2633 LIST_HEAD(event_list);
2634
2635 sdev = container_of(work, struct scsi_device, event_work);
2636
2637 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2638 if (test_and_clear_bit(evt_type, sdev->pending_events))
2639 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2640
2641 while (1) {
2642 struct scsi_event *evt;
2643 struct list_head *this, *tmp;
2644 unsigned long flags;
2645
2646 spin_lock_irqsave(&sdev->list_lock, flags);
2647 list_splice_init(&sdev->event_list, &event_list);
2648 spin_unlock_irqrestore(&sdev->list_lock, flags);
2649
2650 if (list_empty(&event_list))
2651 break;
2652
2653 list_for_each_safe(this, tmp, &event_list) {
2654 evt = list_entry(this, struct scsi_event, node);
2655 list_del(&evt->node);
2656 scsi_evt_emit(sdev, evt);
2657 kfree(evt);
2658 }
2659 }
2660 }
2661
2662 /**
2663 * sdev_evt_send - send asserted event to uevent thread
2664 * @sdev: scsi_device event occurred on
2665 * @evt: event to send
2666 *
2667 * Assert scsi device event asynchronously.
2668 */
2669 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2670 {
2671 unsigned long flags;
2672
2673 #if 0
2674 /* FIXME: currently this check eliminates all media change events
2675 * for polled devices. Need to update to discriminate between AN
2676 * and polled events */
2677 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2678 kfree(evt);
2679 return;
2680 }
2681 #endif
2682
2683 spin_lock_irqsave(&sdev->list_lock, flags);
2684 list_add_tail(&evt->node, &sdev->event_list);
2685 schedule_work(&sdev->event_work);
2686 spin_unlock_irqrestore(&sdev->list_lock, flags);
2687 }
2688 EXPORT_SYMBOL_GPL(sdev_evt_send);
2689
2690 /**
2691 * sdev_evt_alloc - allocate a new scsi event
2692 * @evt_type: type of event to allocate
2693 * @gfpflags: GFP flags for allocation
2694 *
2695 * Allocates and returns a new scsi_event.
2696 */
2697 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2698 gfp_t gfpflags)
2699 {
2700 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2701 if (!evt)
2702 return NULL;
2703
2704 evt->evt_type = evt_type;
2705 INIT_LIST_HEAD(&evt->node);
2706
2707 /* evt_type-specific initialization, if any */
2708 switch (evt_type) {
2709 case SDEV_EVT_MEDIA_CHANGE:
2710 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2711 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2712 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2713 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2714 case SDEV_EVT_LUN_CHANGE_REPORTED:
2715 default:
2716 /* do nothing */
2717 break;
2718 }
2719
2720 return evt;
2721 }
2722 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2723
2724 /**
2725 * sdev_evt_send_simple - send asserted event to uevent thread
2726 * @sdev: scsi_device event occurred on
2727 * @evt_type: type of event to send
2728 * @gfpflags: GFP flags for allocation
2729 *
2730 * Assert scsi device event asynchronously, given an event type.
2731 */
2732 void sdev_evt_send_simple(struct scsi_device *sdev,
2733 enum scsi_device_event evt_type, gfp_t gfpflags)
2734 {
2735 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2736 if (!evt) {
2737 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2738 evt_type);
2739 return;
2740 }
2741
2742 sdev_evt_send(sdev, evt);
2743 }
2744 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2745
2746 /**
2747 * scsi_device_quiesce - Block user issued commands.
2748 * @sdev: scsi device to quiesce.
2749 *
2750 * This works by trying to transition to the SDEV_QUIESCE state
2751 * (which must be a legal transition). When the device is in this
2752 * state, only special requests will be accepted, all others will
2753 * be deferred. Since special requests may also be requeued requests,
2754 * a successful return doesn't guarantee the device will be
2755 * totally quiescent.
2756 *
2757 * Must be called with user context, may sleep.
2758 *
2759 * Returns zero if unsuccessful or an error if not.
2760 */
2761 int
2762 scsi_device_quiesce(struct scsi_device *sdev)
2763 {
2764 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2765 if (err)
2766 return err;
2767
2768 scsi_run_queue(sdev->request_queue);
2769 while (atomic_read(&sdev->device_busy)) {
2770 msleep_interruptible(200);
2771 scsi_run_queue(sdev->request_queue);
2772 }
2773 return 0;
2774 }
2775 EXPORT_SYMBOL(scsi_device_quiesce);
2776
2777 /**
2778 * scsi_device_resume - Restart user issued commands to a quiesced device.
2779 * @sdev: scsi device to resume.
2780 *
2781 * Moves the device from quiesced back to running and restarts the
2782 * queues.
2783 *
2784 * Must be called with user context, may sleep.
2785 */
2786 void scsi_device_resume(struct scsi_device *sdev)
2787 {
2788 /* check if the device state was mutated prior to resume, and if
2789 * so assume the state is being managed elsewhere (for example
2790 * device deleted during suspend)
2791 */
2792 if (sdev->sdev_state != SDEV_QUIESCE ||
2793 scsi_device_set_state(sdev, SDEV_RUNNING))
2794 return;
2795 scsi_run_queue(sdev->request_queue);
2796 }
2797 EXPORT_SYMBOL(scsi_device_resume);
2798
2799 static void
2800 device_quiesce_fn(struct scsi_device *sdev, void *data)
2801 {
2802 scsi_device_quiesce(sdev);
2803 }
2804
2805 void
2806 scsi_target_quiesce(struct scsi_target *starget)
2807 {
2808 starget_for_each_device(starget, NULL, device_quiesce_fn);
2809 }
2810 EXPORT_SYMBOL(scsi_target_quiesce);
2811
2812 static void
2813 device_resume_fn(struct scsi_device *sdev, void *data)
2814 {
2815 scsi_device_resume(sdev);
2816 }
2817
2818 void
2819 scsi_target_resume(struct scsi_target *starget)
2820 {
2821 starget_for_each_device(starget, NULL, device_resume_fn);
2822 }
2823 EXPORT_SYMBOL(scsi_target_resume);
2824
2825 /**
2826 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2827 * @sdev: device to block
2828 *
2829 * Block request made by scsi lld's to temporarily stop all
2830 * scsi commands on the specified device. Called from interrupt
2831 * or normal process context.
2832 *
2833 * Returns zero if successful or error if not
2834 *
2835 * Notes:
2836 * This routine transitions the device to the SDEV_BLOCK state
2837 * (which must be a legal transition). When the device is in this
2838 * state, all commands are deferred until the scsi lld reenables
2839 * the device with scsi_device_unblock or device_block_tmo fires.
2840 */
2841 int
2842 scsi_internal_device_block(struct scsi_device *sdev)
2843 {
2844 struct request_queue *q = sdev->request_queue;
2845 unsigned long flags;
2846 int err = 0;
2847
2848 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2849 if (err) {
2850 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2851
2852 if (err)
2853 return err;
2854 }
2855
2856 /*
2857 * The device has transitioned to SDEV_BLOCK. Stop the
2858 * block layer from calling the midlayer with this device's
2859 * request queue.
2860 */
2861 if (q->mq_ops) {
2862 blk_mq_stop_hw_queues(q);
2863 } else {
2864 spin_lock_irqsave(q->queue_lock, flags);
2865 blk_stop_queue(q);
2866 spin_unlock_irqrestore(q->queue_lock, flags);
2867 }
2868
2869 return 0;
2870 }
2871 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2872
2873 /**
2874 * scsi_internal_device_unblock - resume a device after a block request
2875 * @sdev: device to resume
2876 * @new_state: state to set devices to after unblocking
2877 *
2878 * Called by scsi lld's or the midlayer to restart the device queue
2879 * for the previously suspended scsi device. Called from interrupt or
2880 * normal process context.
2881 *
2882 * Returns zero if successful or error if not.
2883 *
2884 * Notes:
2885 * This routine transitions the device to the SDEV_RUNNING state
2886 * or to one of the offline states (which must be a legal transition)
2887 * allowing the midlayer to goose the queue for this device.
2888 */
2889 int
2890 scsi_internal_device_unblock(struct scsi_device *sdev,
2891 enum scsi_device_state new_state)
2892 {
2893 struct request_queue *q = sdev->request_queue;
2894 unsigned long flags;
2895
2896 /*
2897 * Try to transition the scsi device to SDEV_RUNNING or one of the
2898 * offlined states and goose the device queue if successful.
2899 */
2900 if ((sdev->sdev_state == SDEV_BLOCK) ||
2901 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2902 sdev->sdev_state = new_state;
2903 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2904 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2905 new_state == SDEV_OFFLINE)
2906 sdev->sdev_state = new_state;
2907 else
2908 sdev->sdev_state = SDEV_CREATED;
2909 } else if (sdev->sdev_state != SDEV_CANCEL &&
2910 sdev->sdev_state != SDEV_OFFLINE)
2911 return -EINVAL;
2912
2913 if (q->mq_ops) {
2914 blk_mq_start_stopped_hw_queues(q, false);
2915 } else {
2916 spin_lock_irqsave(q->queue_lock, flags);
2917 blk_start_queue(q);
2918 spin_unlock_irqrestore(q->queue_lock, flags);
2919 }
2920
2921 return 0;
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2924
2925 static void
2926 device_block(struct scsi_device *sdev, void *data)
2927 {
2928 scsi_internal_device_block(sdev);
2929 }
2930
2931 static int
2932 target_block(struct device *dev, void *data)
2933 {
2934 if (scsi_is_target_device(dev))
2935 starget_for_each_device(to_scsi_target(dev), NULL,
2936 device_block);
2937 return 0;
2938 }
2939
2940 void
2941 scsi_target_block(struct device *dev)
2942 {
2943 if (scsi_is_target_device(dev))
2944 starget_for_each_device(to_scsi_target(dev), NULL,
2945 device_block);
2946 else
2947 device_for_each_child(dev, NULL, target_block);
2948 }
2949 EXPORT_SYMBOL_GPL(scsi_target_block);
2950
2951 static void
2952 device_unblock(struct scsi_device *sdev, void *data)
2953 {
2954 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2955 }
2956
2957 static int
2958 target_unblock(struct device *dev, void *data)
2959 {
2960 if (scsi_is_target_device(dev))
2961 starget_for_each_device(to_scsi_target(dev), data,
2962 device_unblock);
2963 return 0;
2964 }
2965
2966 void
2967 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2968 {
2969 if (scsi_is_target_device(dev))
2970 starget_for_each_device(to_scsi_target(dev), &new_state,
2971 device_unblock);
2972 else
2973 device_for_each_child(dev, &new_state, target_unblock);
2974 }
2975 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2976
2977 /**
2978 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2979 * @sgl: scatter-gather list
2980 * @sg_count: number of segments in sg
2981 * @offset: offset in bytes into sg, on return offset into the mapped area
2982 * @len: bytes to map, on return number of bytes mapped
2983 *
2984 * Returns virtual address of the start of the mapped page
2985 */
2986 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2987 size_t *offset, size_t *len)
2988 {
2989 int i;
2990 size_t sg_len = 0, len_complete = 0;
2991 struct scatterlist *sg;
2992 struct page *page;
2993
2994 WARN_ON(!irqs_disabled());
2995
2996 for_each_sg(sgl, sg, sg_count, i) {
2997 len_complete = sg_len; /* Complete sg-entries */
2998 sg_len += sg->length;
2999 if (sg_len > *offset)
3000 break;
3001 }
3002
3003 if (unlikely(i == sg_count)) {
3004 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3005 "elements %d\n",
3006 __func__, sg_len, *offset, sg_count);
3007 WARN_ON(1);
3008 return NULL;
3009 }
3010
3011 /* Offset starting from the beginning of first page in this sg-entry */
3012 *offset = *offset - len_complete + sg->offset;
3013
3014 /* Assumption: contiguous pages can be accessed as "page + i" */
3015 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3016 *offset &= ~PAGE_MASK;
3017
3018 /* Bytes in this sg-entry from *offset to the end of the page */
3019 sg_len = PAGE_SIZE - *offset;
3020 if (*len > sg_len)
3021 *len = sg_len;
3022
3023 return kmap_atomic(page);
3024 }
3025 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3026
3027 /**
3028 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3029 * @virt: virtual address to be unmapped
3030 */
3031 void scsi_kunmap_atomic_sg(void *virt)
3032 {
3033 kunmap_atomic(virt);
3034 }
3035 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3036
3037 void sdev_disable_disk_events(struct scsi_device *sdev)
3038 {
3039 atomic_inc(&sdev->disk_events_disable_depth);
3040 }
3041 EXPORT_SYMBOL(sdev_disable_disk_events);
3042
3043 void sdev_enable_disk_events(struct scsi_device *sdev)
3044 {
3045 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3046 return;
3047 atomic_dec(&sdev->disk_events_disable_depth);
3048 }
3049 EXPORT_SYMBOL(sdev_enable_disk_events);