]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge remote-tracking branches 'asoc/topic/tlv320aic3x', 'asoc/topic/width', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76 #define SCSI_QUEUE_DELAY 3
77
78 /**
79 * __scsi_queue_insert - private queue insertion
80 * @cmd: The SCSI command being requeued
81 * @reason: The reason for the requeue
82 * @unbusy: Whether the queue should be unbusied
83 *
84 * This is a private queue insertion. The public interface
85 * scsi_queue_insert() always assumes the queue should be unbusied
86 * because it's always called before the completion. This function is
87 * for a requeue after completion, which should only occur in this
88 * file.
89 */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92 struct Scsi_Host *host = cmd->device->host;
93 struct scsi_device *device = cmd->device;
94 struct scsi_target *starget = scsi_target(device);
95 struct request_queue *q = device->request_queue;
96 unsigned long flags;
97
98 SCSI_LOG_MLQUEUE(1,
99 printk("Inserting command %p into mlqueue\n", cmd));
100
101 /*
102 * Set the appropriate busy bit for the device/host.
103 *
104 * If the host/device isn't busy, assume that something actually
105 * completed, and that we should be able to queue a command now.
106 *
107 * Note that the prior mid-layer assumption that any host could
108 * always queue at least one command is now broken. The mid-layer
109 * will implement a user specifiable stall (see
110 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111 * if a command is requeued with no other commands outstanding
112 * either for the device or for the host.
113 */
114 switch (reason) {
115 case SCSI_MLQUEUE_HOST_BUSY:
116 host->host_blocked = host->max_host_blocked;
117 break;
118 case SCSI_MLQUEUE_DEVICE_BUSY:
119 case SCSI_MLQUEUE_EH_RETRY:
120 device->device_blocked = device->max_device_blocked;
121 break;
122 case SCSI_MLQUEUE_TARGET_BUSY:
123 starget->target_blocked = starget->max_target_blocked;
124 break;
125 }
126
127 /*
128 * Decrement the counters, since these commands are no longer
129 * active on the host/device.
130 */
131 if (unbusy)
132 scsi_device_unbusy(device);
133
134 /*
135 * Requeue this command. It will go before all other commands
136 * that are already in the queue. Schedule requeue work under
137 * lock such that the kblockd_schedule_work() call happens
138 * before blk_cleanup_queue() finishes.
139 */
140 cmd->result = 0;
141 spin_lock_irqsave(q->queue_lock, flags);
142 blk_requeue_request(q, cmd->request);
143 kblockd_schedule_work(&device->requeue_work);
144 spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146
147 /*
148 * Function: scsi_queue_insert()
149 *
150 * Purpose: Insert a command in the midlevel queue.
151 *
152 * Arguments: cmd - command that we are adding to queue.
153 * reason - why we are inserting command to queue.
154 *
155 * Lock status: Assumed that lock is not held upon entry.
156 *
157 * Returns: Nothing.
158 *
159 * Notes: We do this for one of two cases. Either the host is busy
160 * and it cannot accept any more commands for the time being,
161 * or the device returned QUEUE_FULL and can accept no more
162 * commands.
163 * Notes: This could be called either from an interrupt context or a
164 * normal process context.
165 */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168 __scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171 * scsi_execute - insert request and wait for the result
172 * @sdev: scsi device
173 * @cmd: scsi command
174 * @data_direction: data direction
175 * @buffer: data buffer
176 * @bufflen: len of buffer
177 * @sense: optional sense buffer
178 * @timeout: request timeout in seconds
179 * @retries: number of times to retry request
180 * @flags: or into request flags;
181 * @resid: optional residual length
182 *
183 * returns the req->errors value which is the scsi_cmnd result
184 * field.
185 */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187 int data_direction, void *buffer, unsigned bufflen,
188 unsigned char *sense, int timeout, int retries, u64 flags,
189 int *resid)
190 {
191 struct request *req;
192 int write = (data_direction == DMA_TO_DEVICE);
193 int ret = DRIVER_ERROR << 24;
194
195 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196 if (!req)
197 return ret;
198 blk_rq_set_block_pc(req);
199
200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
201 buffer, bufflen, __GFP_WAIT))
202 goto out;
203
204 req->cmd_len = COMMAND_SIZE(cmd[0]);
205 memcpy(req->cmd, cmd, req->cmd_len);
206 req->sense = sense;
207 req->sense_len = 0;
208 req->retries = retries;
209 req->timeout = timeout;
210 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211
212 /*
213 * head injection *required* here otherwise quiesce won't work
214 */
215 blk_execute_rq(req->q, NULL, req, 1);
216
217 /*
218 * Some devices (USB mass-storage in particular) may transfer
219 * garbage data together with a residue indicating that the data
220 * is invalid. Prevent the garbage from being misinterpreted
221 * and prevent security leaks by zeroing out the excess data.
222 */
223 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225
226 if (resid)
227 *resid = req->resid_len;
228 ret = req->errors;
229 out:
230 blk_put_request(req);
231
232 return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 struct scsi_sense_hdr *sshdr, int timeout, int retries,
239 int *resid, u64 flags)
240 {
241 char *sense = NULL;
242 int result;
243
244 if (sshdr) {
245 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246 if (!sense)
247 return DRIVER_ERROR << 24;
248 }
249 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250 sense, timeout, retries, flags, resid);
251 if (sshdr)
252 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253
254 kfree(sense);
255 return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258
259 /*
260 * Function: scsi_init_cmd_errh()
261 *
262 * Purpose: Initialize cmd fields related to error handling.
263 *
264 * Arguments: cmd - command that is ready to be queued.
265 *
266 * Notes: This function has the job of initializing a number of
267 * fields related to error handling. Typically this will
268 * be called once for each command, as required.
269 */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272 cmd->serial_number = 0;
273 scsi_set_resid(cmd, 0);
274 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275 if (cmd->cmd_len == 0)
276 cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281 struct Scsi_Host *shost = sdev->host;
282 struct scsi_target *starget = scsi_target(sdev);
283 unsigned long flags;
284
285 spin_lock_irqsave(shost->host_lock, flags);
286 shost->host_busy--;
287 starget->target_busy--;
288 if (unlikely(scsi_host_in_recovery(shost) &&
289 (shost->host_failed || shost->host_eh_scheduled)))
290 scsi_eh_wakeup(shost);
291 spin_unlock(shost->host_lock);
292 spin_lock(sdev->request_queue->queue_lock);
293 sdev->device_busy--;
294 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296
297 /*
298 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299 * and call blk_run_queue for all the scsi_devices on the target -
300 * including current_sdev first.
301 *
302 * Called with *no* scsi locks held.
303 */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306 struct Scsi_Host *shost = current_sdev->host;
307 struct scsi_device *sdev, *tmp;
308 struct scsi_target *starget = scsi_target(current_sdev);
309 unsigned long flags;
310
311 spin_lock_irqsave(shost->host_lock, flags);
312 starget->starget_sdev_user = NULL;
313 spin_unlock_irqrestore(shost->host_lock, flags);
314
315 /*
316 * Call blk_run_queue for all LUNs on the target, starting with
317 * current_sdev. We race with others (to set starget_sdev_user),
318 * but in most cases, we will be first. Ideally, each LU on the
319 * target would get some limited time or requests on the target.
320 */
321 blk_run_queue(current_sdev->request_queue);
322
323 spin_lock_irqsave(shost->host_lock, flags);
324 if (starget->starget_sdev_user)
325 goto out;
326 list_for_each_entry_safe(sdev, tmp, &starget->devices,
327 same_target_siblings) {
328 if (sdev == current_sdev)
329 continue;
330 if (scsi_device_get(sdev))
331 continue;
332
333 spin_unlock_irqrestore(shost->host_lock, flags);
334 blk_run_queue(sdev->request_queue);
335 spin_lock_irqsave(shost->host_lock, flags);
336
337 scsi_device_put(sdev);
338 }
339 out:
340 spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346 return 1;
347
348 return 0;
349 }
350
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353 return ((starget->can_queue > 0 &&
354 starget->target_busy >= starget->can_queue) ||
355 starget->target_blocked);
356 }
357
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361 shost->host_blocked || shost->host_self_blocked)
362 return 1;
363
364 return 0;
365 }
366
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369 LIST_HEAD(starved_list);
370 struct scsi_device *sdev;
371 unsigned long flags;
372
373 spin_lock_irqsave(shost->host_lock, flags);
374 list_splice_init(&shost->starved_list, &starved_list);
375
376 while (!list_empty(&starved_list)) {
377 struct request_queue *slq;
378
379 /*
380 * As long as shost is accepting commands and we have
381 * starved queues, call blk_run_queue. scsi_request_fn
382 * drops the queue_lock and can add us back to the
383 * starved_list.
384 *
385 * host_lock protects the starved_list and starved_entry.
386 * scsi_request_fn must get the host_lock before checking
387 * or modifying starved_list or starved_entry.
388 */
389 if (scsi_host_is_busy(shost))
390 break;
391
392 sdev = list_entry(starved_list.next,
393 struct scsi_device, starved_entry);
394 list_del_init(&sdev->starved_entry);
395 if (scsi_target_is_busy(scsi_target(sdev))) {
396 list_move_tail(&sdev->starved_entry,
397 &shost->starved_list);
398 continue;
399 }
400
401 /*
402 * Once we drop the host lock, a racing scsi_remove_device()
403 * call may remove the sdev from the starved list and destroy
404 * it and the queue. Mitigate by taking a reference to the
405 * queue and never touching the sdev again after we drop the
406 * host lock. Note: if __scsi_remove_device() invokes
407 * blk_cleanup_queue() before the queue is run from this
408 * function then blk_run_queue() will return immediately since
409 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410 */
411 slq = sdev->request_queue;
412 if (!blk_get_queue(slq))
413 continue;
414 spin_unlock_irqrestore(shost->host_lock, flags);
415
416 blk_run_queue(slq);
417 blk_put_queue(slq);
418
419 spin_lock_irqsave(shost->host_lock, flags);
420 }
421 /* put any unprocessed entries back */
422 list_splice(&starved_list, &shost->starved_list);
423 spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425
426 /*
427 * Function: scsi_run_queue()
428 *
429 * Purpose: Select a proper request queue to serve next
430 *
431 * Arguments: q - last request's queue
432 *
433 * Returns: Nothing
434 *
435 * Notes: The previous command was completely finished, start
436 * a new one if possible.
437 */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440 struct scsi_device *sdev = q->queuedata;
441
442 if (scsi_target(sdev)->single_lun)
443 scsi_single_lun_run(sdev);
444 if (!list_empty(&sdev->host->starved_list))
445 scsi_starved_list_run(sdev->host);
446
447 blk_run_queue(q);
448 }
449
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452 struct scsi_device *sdev;
453 struct request_queue *q;
454
455 sdev = container_of(work, struct scsi_device, requeue_work);
456 q = sdev->request_queue;
457 scsi_run_queue(q);
458 }
459
460 /*
461 * Function: scsi_requeue_command()
462 *
463 * Purpose: Handle post-processing of completed commands.
464 *
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
467 *
468 * Returns: Nothing
469 *
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
475 * sector.
476 * Notes: Upon return, cmd is a stale pointer.
477 */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 struct scsi_device *sdev = cmd->device;
481 struct request *req = cmd->request;
482 unsigned long flags;
483
484 spin_lock_irqsave(q->queue_lock, flags);
485 blk_unprep_request(req);
486 req->special = NULL;
487 scsi_put_command(cmd);
488 blk_requeue_request(q, req);
489 spin_unlock_irqrestore(q->queue_lock, flags);
490
491 scsi_run_queue(q);
492
493 put_device(&sdev->sdev_gendev);
494 }
495
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498 struct scsi_device *sdev = cmd->device;
499 struct request_queue *q = sdev->request_queue;
500
501 scsi_put_command(cmd);
502 scsi_run_queue(q);
503
504 put_device(&sdev->sdev_gendev);
505 }
506
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509 struct scsi_device *sdev;
510
511 shost_for_each_device(sdev, shost)
512 scsi_run_queue(sdev->request_queue);
513 }
514
515 static inline unsigned int scsi_sgtable_index(unsigned short nents)
516 {
517 unsigned int index;
518
519 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
520
521 if (nents <= 8)
522 index = 0;
523 else
524 index = get_count_order(nents) - 3;
525
526 return index;
527 }
528
529 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
530 {
531 struct scsi_host_sg_pool *sgp;
532
533 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
534 mempool_free(sgl, sgp->pool);
535 }
536
537 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
538 {
539 struct scsi_host_sg_pool *sgp;
540
541 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
542 return mempool_alloc(sgp->pool, gfp_mask);
543 }
544
545 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
546 gfp_t gfp_mask)
547 {
548 int ret;
549
550 BUG_ON(!nents);
551
552 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
553 gfp_mask, scsi_sg_alloc);
554 if (unlikely(ret))
555 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
556 scsi_sg_free);
557
558 return ret;
559 }
560
561 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
562 {
563 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
564 }
565
566 /*
567 * Function: scsi_release_buffers()
568 *
569 * Purpose: Free resources allocate for a scsi_command.
570 *
571 * Arguments: cmd - command that we are bailing.
572 *
573 * Lock status: Assumed that no lock is held upon entry.
574 *
575 * Returns: Nothing
576 *
577 * Notes: In the event that an upper level driver rejects a
578 * command, we must release resources allocated during
579 * the __init_io() function. Primarily this would involve
580 * the scatter-gather table.
581 */
582 void scsi_release_buffers(struct scsi_cmnd *cmd)
583 {
584 if (cmd->sdb.table.nents)
585 scsi_free_sgtable(&cmd->sdb);
586
587 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
588
589 if (scsi_prot_sg_count(cmd))
590 scsi_free_sgtable(cmd->prot_sdb);
591 }
592 EXPORT_SYMBOL(scsi_release_buffers);
593
594 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
595 {
596 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
597
598 scsi_free_sgtable(bidi_sdb);
599 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
600 cmd->request->next_rq->special = NULL;
601 }
602
603 /**
604 * __scsi_error_from_host_byte - translate SCSI error code into errno
605 * @cmd: SCSI command (unused)
606 * @result: scsi error code
607 *
608 * Translate SCSI error code into standard UNIX errno.
609 * Return values:
610 * -ENOLINK temporary transport failure
611 * -EREMOTEIO permanent target failure, do not retry
612 * -EBADE permanent nexus failure, retry on other path
613 * -ENOSPC No write space available
614 * -ENODATA Medium error
615 * -EIO unspecified I/O error
616 */
617 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
618 {
619 int error = 0;
620
621 switch(host_byte(result)) {
622 case DID_TRANSPORT_FAILFAST:
623 error = -ENOLINK;
624 break;
625 case DID_TARGET_FAILURE:
626 set_host_byte(cmd, DID_OK);
627 error = -EREMOTEIO;
628 break;
629 case DID_NEXUS_FAILURE:
630 set_host_byte(cmd, DID_OK);
631 error = -EBADE;
632 break;
633 case DID_ALLOC_FAILURE:
634 set_host_byte(cmd, DID_OK);
635 error = -ENOSPC;
636 break;
637 case DID_MEDIUM_ERROR:
638 set_host_byte(cmd, DID_OK);
639 error = -ENODATA;
640 break;
641 default:
642 error = -EIO;
643 break;
644 }
645
646 return error;
647 }
648
649 /*
650 * Function: scsi_io_completion()
651 *
652 * Purpose: Completion processing for block device I/O requests.
653 *
654 * Arguments: cmd - command that is finished.
655 *
656 * Lock status: Assumed that no lock is held upon entry.
657 *
658 * Returns: Nothing
659 *
660 * Notes: We will finish off the specified number of sectors. If we
661 * are done, the command block will be released and the queue
662 * function will be goosed. If we are not done then we have to
663 * figure out what to do next:
664 *
665 * a) We can call scsi_requeue_command(). The request
666 * will be unprepared and put back on the queue. Then
667 * a new command will be created for it. This should
668 * be used if we made forward progress, or if we want
669 * to switch from READ(10) to READ(6) for example.
670 *
671 * b) We can call __scsi_queue_insert(). The request will
672 * be put back on the queue and retried using the same
673 * command as before, possibly after a delay.
674 *
675 * c) We can call blk_end_request() with -EIO to fail
676 * the remainder of the request.
677 */
678 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
679 {
680 int result = cmd->result;
681 struct request_queue *q = cmd->device->request_queue;
682 struct request *req = cmd->request;
683 int error = 0;
684 struct scsi_sense_hdr sshdr;
685 int sense_valid = 0;
686 int sense_deferred = 0;
687 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
688 ACTION_DELAYED_RETRY} action;
689 char *description = NULL;
690 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
691
692 if (result) {
693 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
694 if (sense_valid)
695 sense_deferred = scsi_sense_is_deferred(&sshdr);
696 }
697
698 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
699 if (result) {
700 if (sense_valid && req->sense) {
701 /*
702 * SG_IO wants current and deferred errors
703 */
704 int len = 8 + cmd->sense_buffer[7];
705
706 if (len > SCSI_SENSE_BUFFERSIZE)
707 len = SCSI_SENSE_BUFFERSIZE;
708 memcpy(req->sense, cmd->sense_buffer, len);
709 req->sense_len = len;
710 }
711 if (!sense_deferred)
712 error = __scsi_error_from_host_byte(cmd, result);
713 }
714 /*
715 * __scsi_error_from_host_byte may have reset the host_byte
716 */
717 req->errors = cmd->result;
718
719 req->resid_len = scsi_get_resid(cmd);
720
721 if (scsi_bidi_cmnd(cmd)) {
722 /*
723 * Bidi commands Must be complete as a whole,
724 * both sides at once.
725 */
726 req->next_rq->resid_len = scsi_in(cmd)->resid;
727
728 scsi_release_buffers(cmd);
729 scsi_release_bidi_buffers(cmd);
730
731 blk_end_request_all(req, 0);
732
733 scsi_next_command(cmd);
734 return;
735 }
736 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
737 /*
738 * Certain non BLOCK_PC requests are commands that don't
739 * actually transfer anything (FLUSH), so cannot use
740 * good_bytes != blk_rq_bytes(req) as the signal for an error.
741 * This sets the error explicitly for the problem case.
742 */
743 error = __scsi_error_from_host_byte(cmd, result);
744 }
745
746 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
747 BUG_ON(blk_bidi_rq(req));
748
749 /*
750 * Next deal with any sectors which we were able to correctly
751 * handle.
752 */
753 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
754 "%d bytes done.\n",
755 blk_rq_sectors(req), good_bytes));
756
757 /*
758 * Recovered errors need reporting, but they're always treated
759 * as success, so fiddle the result code here. For BLOCK_PC
760 * we already took a copy of the original into rq->errors which
761 * is what gets returned to the user
762 */
763 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
764 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
765 * print since caller wants ATA registers. Only occurs on
766 * SCSI ATA PASS_THROUGH commands when CK_COND=1
767 */
768 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
769 ;
770 else if (!(req->cmd_flags & REQ_QUIET))
771 scsi_print_sense("", cmd);
772 result = 0;
773 /* BLOCK_PC may have set error */
774 error = 0;
775 }
776
777 /*
778 * If we finished all bytes in the request we are done now.
779 */
780 if (!blk_end_request(req, error, good_bytes))
781 goto next_command;
782
783 /*
784 * Kill remainder if no retrys.
785 */
786 if (error && scsi_noretry_cmd(cmd)) {
787 blk_end_request_all(req, error);
788 goto next_command;
789 }
790
791 /*
792 * If there had been no error, but we have leftover bytes in the
793 * requeues just queue the command up again.
794 */
795 if (result == 0)
796 goto requeue;
797
798 error = __scsi_error_from_host_byte(cmd, result);
799
800 if (host_byte(result) == DID_RESET) {
801 /* Third party bus reset or reset for error recovery
802 * reasons. Just retry the command and see what
803 * happens.
804 */
805 action = ACTION_RETRY;
806 } else if (sense_valid && !sense_deferred) {
807 switch (sshdr.sense_key) {
808 case UNIT_ATTENTION:
809 if (cmd->device->removable) {
810 /* Detected disc change. Set a bit
811 * and quietly refuse further access.
812 */
813 cmd->device->changed = 1;
814 description = "Media Changed";
815 action = ACTION_FAIL;
816 } else {
817 /* Must have been a power glitch, or a
818 * bus reset. Could not have been a
819 * media change, so we just retry the
820 * command and see what happens.
821 */
822 action = ACTION_RETRY;
823 }
824 break;
825 case ILLEGAL_REQUEST:
826 /* If we had an ILLEGAL REQUEST returned, then
827 * we may have performed an unsupported
828 * command. The only thing this should be
829 * would be a ten byte read where only a six
830 * byte read was supported. Also, on a system
831 * where READ CAPACITY failed, we may have
832 * read past the end of the disk.
833 */
834 if ((cmd->device->use_10_for_rw &&
835 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
836 (cmd->cmnd[0] == READ_10 ||
837 cmd->cmnd[0] == WRITE_10)) {
838 /* This will issue a new 6-byte command. */
839 cmd->device->use_10_for_rw = 0;
840 action = ACTION_REPREP;
841 } else if (sshdr.asc == 0x10) /* DIX */ {
842 description = "Host Data Integrity Failure";
843 action = ACTION_FAIL;
844 error = -EILSEQ;
845 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
846 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
847 switch (cmd->cmnd[0]) {
848 case UNMAP:
849 description = "Discard failure";
850 break;
851 case WRITE_SAME:
852 case WRITE_SAME_16:
853 if (cmd->cmnd[1] & 0x8)
854 description = "Discard failure";
855 else
856 description =
857 "Write same failure";
858 break;
859 default:
860 description = "Invalid command failure";
861 break;
862 }
863 action = ACTION_FAIL;
864 error = -EREMOTEIO;
865 } else
866 action = ACTION_FAIL;
867 break;
868 case ABORTED_COMMAND:
869 action = ACTION_FAIL;
870 if (sshdr.asc == 0x10) { /* DIF */
871 description = "Target Data Integrity Failure";
872 error = -EILSEQ;
873 }
874 break;
875 case NOT_READY:
876 /* If the device is in the process of becoming
877 * ready, or has a temporary blockage, retry.
878 */
879 if (sshdr.asc == 0x04) {
880 switch (sshdr.ascq) {
881 case 0x01: /* becoming ready */
882 case 0x04: /* format in progress */
883 case 0x05: /* rebuild in progress */
884 case 0x06: /* recalculation in progress */
885 case 0x07: /* operation in progress */
886 case 0x08: /* Long write in progress */
887 case 0x09: /* self test in progress */
888 case 0x14: /* space allocation in progress */
889 action = ACTION_DELAYED_RETRY;
890 break;
891 default:
892 description = "Device not ready";
893 action = ACTION_FAIL;
894 break;
895 }
896 } else {
897 description = "Device not ready";
898 action = ACTION_FAIL;
899 }
900 break;
901 case VOLUME_OVERFLOW:
902 /* See SSC3rXX or current. */
903 action = ACTION_FAIL;
904 break;
905 default:
906 description = "Unhandled sense code";
907 action = ACTION_FAIL;
908 break;
909 }
910 } else {
911 description = "Unhandled error code";
912 action = ACTION_FAIL;
913 }
914
915 if (action != ACTION_FAIL &&
916 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
917 action = ACTION_FAIL;
918 description = "Command timed out";
919 }
920
921 switch (action) {
922 case ACTION_FAIL:
923 /* Give up and fail the remainder of the request */
924 if (!(req->cmd_flags & REQ_QUIET)) {
925 if (description)
926 scmd_printk(KERN_INFO, cmd, "%s\n",
927 description);
928 scsi_print_result(cmd);
929 if (driver_byte(result) & DRIVER_SENSE)
930 scsi_print_sense("", cmd);
931 scsi_print_command(cmd);
932 }
933 if (!blk_end_request_err(req, error))
934 goto next_command;
935 /*FALLTHRU*/
936 case ACTION_REPREP:
937 requeue:
938 /* Unprep the request and put it back at the head of the queue.
939 * A new command will be prepared and issued.
940 */
941 scsi_release_buffers(cmd);
942 scsi_requeue_command(q, cmd);
943 break;
944 case ACTION_RETRY:
945 /* Retry the same command immediately */
946 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
947 break;
948 case ACTION_DELAYED_RETRY:
949 /* Retry the same command after a delay */
950 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
951 break;
952 }
953 return;
954
955 next_command:
956 scsi_release_buffers(cmd);
957 scsi_next_command(cmd);
958 }
959
960 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
961 gfp_t gfp_mask)
962 {
963 int count;
964
965 /*
966 * If sg table allocation fails, requeue request later.
967 */
968 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
969 gfp_mask))) {
970 return BLKPREP_DEFER;
971 }
972
973 /*
974 * Next, walk the list, and fill in the addresses and sizes of
975 * each segment.
976 */
977 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
978 BUG_ON(count > sdb->table.nents);
979 sdb->table.nents = count;
980 sdb->length = blk_rq_bytes(req);
981 return BLKPREP_OK;
982 }
983
984 /*
985 * Function: scsi_init_io()
986 *
987 * Purpose: SCSI I/O initialize function.
988 *
989 * Arguments: cmd - Command descriptor we wish to initialize
990 *
991 * Returns: 0 on success
992 * BLKPREP_DEFER if the failure is retryable
993 * BLKPREP_KILL if the failure is fatal
994 */
995 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
996 {
997 struct scsi_device *sdev = cmd->device;
998 struct request *rq = cmd->request;
999
1000 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1001 if (error)
1002 goto err_exit;
1003
1004 if (blk_bidi_rq(rq)) {
1005 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1006 scsi_sdb_cache, GFP_ATOMIC);
1007 if (!bidi_sdb) {
1008 error = BLKPREP_DEFER;
1009 goto err_exit;
1010 }
1011
1012 rq->next_rq->special = bidi_sdb;
1013 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1014 if (error)
1015 goto err_exit;
1016 }
1017
1018 if (blk_integrity_rq(rq)) {
1019 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1020 int ivecs, count;
1021
1022 BUG_ON(prot_sdb == NULL);
1023 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1024
1025 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1026 error = BLKPREP_DEFER;
1027 goto err_exit;
1028 }
1029
1030 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1031 prot_sdb->table.sgl);
1032 BUG_ON(unlikely(count > ivecs));
1033 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1034
1035 cmd->prot_sdb = prot_sdb;
1036 cmd->prot_sdb->table.nents = count;
1037 }
1038
1039 return BLKPREP_OK ;
1040
1041 err_exit:
1042 scsi_release_buffers(cmd);
1043 cmd->request->special = NULL;
1044 scsi_put_command(cmd);
1045 put_device(&sdev->sdev_gendev);
1046 return error;
1047 }
1048 EXPORT_SYMBOL(scsi_init_io);
1049
1050 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1051 struct request *req)
1052 {
1053 struct scsi_cmnd *cmd;
1054
1055 if (!req->special) {
1056 /* Bail if we can't get a reference to the device */
1057 if (!get_device(&sdev->sdev_gendev))
1058 return NULL;
1059
1060 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1061 if (unlikely(!cmd)) {
1062 put_device(&sdev->sdev_gendev);
1063 return NULL;
1064 }
1065 req->special = cmd;
1066 } else {
1067 cmd = req->special;
1068 }
1069
1070 /* pull a tag out of the request if we have one */
1071 cmd->tag = req->tag;
1072 cmd->request = req;
1073
1074 cmd->cmnd = req->cmd;
1075 cmd->prot_op = SCSI_PROT_NORMAL;
1076
1077 return cmd;
1078 }
1079
1080 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1081 {
1082 struct scsi_cmnd *cmd = req->special;
1083
1084 /*
1085 * BLOCK_PC requests may transfer data, in which case they must
1086 * a bio attached to them. Or they might contain a SCSI command
1087 * that does not transfer data, in which case they may optionally
1088 * submit a request without an attached bio.
1089 */
1090 if (req->bio) {
1091 int ret;
1092
1093 BUG_ON(!req->nr_phys_segments);
1094
1095 ret = scsi_init_io(cmd, GFP_ATOMIC);
1096 if (unlikely(ret))
1097 return ret;
1098 } else {
1099 BUG_ON(blk_rq_bytes(req));
1100
1101 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1102 }
1103
1104 cmd->cmd_len = req->cmd_len;
1105 if (!blk_rq_bytes(req))
1106 cmd->sc_data_direction = DMA_NONE;
1107 else if (rq_data_dir(req) == WRITE)
1108 cmd->sc_data_direction = DMA_TO_DEVICE;
1109 else
1110 cmd->sc_data_direction = DMA_FROM_DEVICE;
1111
1112 cmd->transfersize = blk_rq_bytes(req);
1113 cmd->allowed = req->retries;
1114 return BLKPREP_OK;
1115 }
1116 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1117
1118 /*
1119 * Setup a REQ_TYPE_FS command. These are simple read/write request
1120 * from filesystems that still need to be translated to SCSI CDBs from
1121 * the ULD.
1122 */
1123 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1124 {
1125 struct scsi_cmnd *cmd = req->special;
1126
1127 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1128 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1129 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1130 if (ret != BLKPREP_OK)
1131 return ret;
1132 }
1133
1134 /*
1135 * Filesystem requests must transfer data.
1136 */
1137 BUG_ON(!req->nr_phys_segments);
1138
1139 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1140 return scsi_init_io(cmd, GFP_ATOMIC);
1141 }
1142 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1143
1144 static int
1145 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1146 {
1147 int ret = BLKPREP_OK;
1148
1149 /*
1150 * If the device is not in running state we will reject some
1151 * or all commands.
1152 */
1153 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1154 switch (sdev->sdev_state) {
1155 case SDEV_OFFLINE:
1156 case SDEV_TRANSPORT_OFFLINE:
1157 /*
1158 * If the device is offline we refuse to process any
1159 * commands. The device must be brought online
1160 * before trying any recovery commands.
1161 */
1162 sdev_printk(KERN_ERR, sdev,
1163 "rejecting I/O to offline device\n");
1164 ret = BLKPREP_KILL;
1165 break;
1166 case SDEV_DEL:
1167 /*
1168 * If the device is fully deleted, we refuse to
1169 * process any commands as well.
1170 */
1171 sdev_printk(KERN_ERR, sdev,
1172 "rejecting I/O to dead device\n");
1173 ret = BLKPREP_KILL;
1174 break;
1175 case SDEV_QUIESCE:
1176 case SDEV_BLOCK:
1177 case SDEV_CREATED_BLOCK:
1178 /*
1179 * If the devices is blocked we defer normal commands.
1180 */
1181 if (!(req->cmd_flags & REQ_PREEMPT))
1182 ret = BLKPREP_DEFER;
1183 break;
1184 default:
1185 /*
1186 * For any other not fully online state we only allow
1187 * special commands. In particular any user initiated
1188 * command is not allowed.
1189 */
1190 if (!(req->cmd_flags & REQ_PREEMPT))
1191 ret = BLKPREP_KILL;
1192 break;
1193 }
1194 }
1195 return ret;
1196 }
1197
1198 static int
1199 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1200 {
1201 struct scsi_device *sdev = q->queuedata;
1202
1203 switch (ret) {
1204 case BLKPREP_KILL:
1205 req->errors = DID_NO_CONNECT << 16;
1206 /* release the command and kill it */
1207 if (req->special) {
1208 struct scsi_cmnd *cmd = req->special;
1209 scsi_release_buffers(cmd);
1210 scsi_put_command(cmd);
1211 put_device(&sdev->sdev_gendev);
1212 req->special = NULL;
1213 }
1214 break;
1215 case BLKPREP_DEFER:
1216 /*
1217 * If we defer, the blk_peek_request() returns NULL, but the
1218 * queue must be restarted, so we schedule a callback to happen
1219 * shortly.
1220 */
1221 if (sdev->device_busy == 0)
1222 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1223 break;
1224 default:
1225 req->cmd_flags |= REQ_DONTPREP;
1226 }
1227
1228 return ret;
1229 }
1230
1231 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1232 {
1233 struct scsi_device *sdev = q->queuedata;
1234 struct scsi_cmnd *cmd;
1235 int ret;
1236
1237 ret = scsi_prep_state_check(sdev, req);
1238 if (ret != BLKPREP_OK)
1239 goto out;
1240
1241 cmd = scsi_get_cmd_from_req(sdev, req);
1242 if (unlikely(!cmd)) {
1243 ret = BLKPREP_DEFER;
1244 goto out;
1245 }
1246
1247 if (req->cmd_type == REQ_TYPE_FS)
1248 ret = scsi_cmd_to_driver(cmd)->init_command(cmd);
1249 else if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1250 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1251 else
1252 ret = BLKPREP_KILL;
1253
1254 out:
1255 return scsi_prep_return(q, req, ret);
1256 }
1257
1258 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1259 {
1260 if (req->cmd_type == REQ_TYPE_FS) {
1261 struct scsi_cmnd *cmd = req->special;
1262 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
1263
1264 if (drv->uninit_command)
1265 drv->uninit_command(cmd);
1266 }
1267 }
1268
1269 /*
1270 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1271 * return 0.
1272 *
1273 * Called with the queue_lock held.
1274 */
1275 static inline int scsi_dev_queue_ready(struct request_queue *q,
1276 struct scsi_device *sdev)
1277 {
1278 if (sdev->device_busy == 0 && sdev->device_blocked) {
1279 /*
1280 * unblock after device_blocked iterates to zero
1281 */
1282 if (--sdev->device_blocked == 0) {
1283 SCSI_LOG_MLQUEUE(3,
1284 sdev_printk(KERN_INFO, sdev,
1285 "unblocking device at zero depth\n"));
1286 } else {
1287 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1288 return 0;
1289 }
1290 }
1291 if (scsi_device_is_busy(sdev))
1292 return 0;
1293
1294 return 1;
1295 }
1296
1297
1298 /*
1299 * scsi_target_queue_ready: checks if there we can send commands to target
1300 * @sdev: scsi device on starget to check.
1301 *
1302 * Called with the host lock held.
1303 */
1304 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1305 struct scsi_device *sdev)
1306 {
1307 struct scsi_target *starget = scsi_target(sdev);
1308
1309 if (starget->single_lun) {
1310 if (starget->starget_sdev_user &&
1311 starget->starget_sdev_user != sdev)
1312 return 0;
1313 starget->starget_sdev_user = sdev;
1314 }
1315
1316 if (starget->target_busy == 0 && starget->target_blocked) {
1317 /*
1318 * unblock after target_blocked iterates to zero
1319 */
1320 if (--starget->target_blocked == 0) {
1321 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1322 "unblocking target at zero depth\n"));
1323 } else
1324 return 0;
1325 }
1326
1327 if (scsi_target_is_busy(starget)) {
1328 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1329 return 0;
1330 }
1331
1332 return 1;
1333 }
1334
1335 /*
1336 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1337 * return 0. We must end up running the queue again whenever 0 is
1338 * returned, else IO can hang.
1339 *
1340 * Called with host_lock held.
1341 */
1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343 struct Scsi_Host *shost,
1344 struct scsi_device *sdev)
1345 {
1346 if (scsi_host_in_recovery(shost))
1347 return 0;
1348 if (shost->host_busy == 0 && shost->host_blocked) {
1349 /*
1350 * unblock after host_blocked iterates to zero
1351 */
1352 if (--shost->host_blocked == 0) {
1353 SCSI_LOG_MLQUEUE(3,
1354 printk("scsi%d unblocking host at zero depth\n",
1355 shost->host_no));
1356 } else {
1357 return 0;
1358 }
1359 }
1360 if (scsi_host_is_busy(shost)) {
1361 if (list_empty(&sdev->starved_entry))
1362 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1363 return 0;
1364 }
1365
1366 /* We're OK to process the command, so we can't be starved */
1367 if (!list_empty(&sdev->starved_entry))
1368 list_del_init(&sdev->starved_entry);
1369
1370 return 1;
1371 }
1372
1373 /*
1374 * Busy state exporting function for request stacking drivers.
1375 *
1376 * For efficiency, no lock is taken to check the busy state of
1377 * shost/starget/sdev, since the returned value is not guaranteed and
1378 * may be changed after request stacking drivers call the function,
1379 * regardless of taking lock or not.
1380 *
1381 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1382 * needs to return 'not busy'. Otherwise, request stacking drivers
1383 * may hold requests forever.
1384 */
1385 static int scsi_lld_busy(struct request_queue *q)
1386 {
1387 struct scsi_device *sdev = q->queuedata;
1388 struct Scsi_Host *shost;
1389
1390 if (blk_queue_dying(q))
1391 return 0;
1392
1393 shost = sdev->host;
1394
1395 /*
1396 * Ignore host/starget busy state.
1397 * Since block layer does not have a concept of fairness across
1398 * multiple queues, congestion of host/starget needs to be handled
1399 * in SCSI layer.
1400 */
1401 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1402 return 1;
1403
1404 return 0;
1405 }
1406
1407 /*
1408 * Kill a request for a dead device
1409 */
1410 static void scsi_kill_request(struct request *req, struct request_queue *q)
1411 {
1412 struct scsi_cmnd *cmd = req->special;
1413 struct scsi_device *sdev;
1414 struct scsi_target *starget;
1415 struct Scsi_Host *shost;
1416
1417 blk_start_request(req);
1418
1419 scmd_printk(KERN_INFO, cmd, "killing request\n");
1420
1421 sdev = cmd->device;
1422 starget = scsi_target(sdev);
1423 shost = sdev->host;
1424 scsi_init_cmd_errh(cmd);
1425 cmd->result = DID_NO_CONNECT << 16;
1426 atomic_inc(&cmd->device->iorequest_cnt);
1427
1428 /*
1429 * SCSI request completion path will do scsi_device_unbusy(),
1430 * bump busy counts. To bump the counters, we need to dance
1431 * with the locks as normal issue path does.
1432 */
1433 sdev->device_busy++;
1434 spin_unlock(sdev->request_queue->queue_lock);
1435 spin_lock(shost->host_lock);
1436 shost->host_busy++;
1437 starget->target_busy++;
1438 spin_unlock(shost->host_lock);
1439 spin_lock(sdev->request_queue->queue_lock);
1440
1441 blk_complete_request(req);
1442 }
1443
1444 static void scsi_softirq_done(struct request *rq)
1445 {
1446 struct scsi_cmnd *cmd = rq->special;
1447 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1448 int disposition;
1449
1450 INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452 atomic_inc(&cmd->device->iodone_cnt);
1453 if (cmd->result)
1454 atomic_inc(&cmd->device->ioerr_cnt);
1455
1456 disposition = scsi_decide_disposition(cmd);
1457 if (disposition != SUCCESS &&
1458 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1459 sdev_printk(KERN_ERR, cmd->device,
1460 "timing out command, waited %lus\n",
1461 wait_for/HZ);
1462 disposition = SUCCESS;
1463 }
1464
1465 scsi_log_completion(cmd, disposition);
1466
1467 switch (disposition) {
1468 case SUCCESS:
1469 scsi_finish_command(cmd);
1470 break;
1471 case NEEDS_RETRY:
1472 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1473 break;
1474 case ADD_TO_MLQUEUE:
1475 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1476 break;
1477 default:
1478 if (!scsi_eh_scmd_add(cmd, 0))
1479 scsi_finish_command(cmd);
1480 }
1481 }
1482
1483 /*
1484 * Function: scsi_request_fn()
1485 *
1486 * Purpose: Main strategy routine for SCSI.
1487 *
1488 * Arguments: q - Pointer to actual queue.
1489 *
1490 * Returns: Nothing
1491 *
1492 * Lock status: IO request lock assumed to be held when called.
1493 */
1494 static void scsi_request_fn(struct request_queue *q)
1495 __releases(q->queue_lock)
1496 __acquires(q->queue_lock)
1497 {
1498 struct scsi_device *sdev = q->queuedata;
1499 struct Scsi_Host *shost;
1500 struct scsi_cmnd *cmd;
1501 struct request *req;
1502
1503 /*
1504 * To start with, we keep looping until the queue is empty, or until
1505 * the host is no longer able to accept any more requests.
1506 */
1507 shost = sdev->host;
1508 for (;;) {
1509 int rtn;
1510 /*
1511 * get next queueable request. We do this early to make sure
1512 * that the request is fully prepared even if we cannot
1513 * accept it.
1514 */
1515 req = blk_peek_request(q);
1516 if (!req || !scsi_dev_queue_ready(q, sdev))
1517 break;
1518
1519 if (unlikely(!scsi_device_online(sdev))) {
1520 sdev_printk(KERN_ERR, sdev,
1521 "rejecting I/O to offline device\n");
1522 scsi_kill_request(req, q);
1523 continue;
1524 }
1525
1526
1527 /*
1528 * Remove the request from the request list.
1529 */
1530 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1531 blk_start_request(req);
1532 sdev->device_busy++;
1533
1534 spin_unlock(q->queue_lock);
1535 cmd = req->special;
1536 if (unlikely(cmd == NULL)) {
1537 printk(KERN_CRIT "impossible request in %s.\n"
1538 "please mail a stack trace to "
1539 "linux-scsi@vger.kernel.org\n",
1540 __func__);
1541 blk_dump_rq_flags(req, "foo");
1542 BUG();
1543 }
1544 spin_lock(shost->host_lock);
1545
1546 /*
1547 * We hit this when the driver is using a host wide
1548 * tag map. For device level tag maps the queue_depth check
1549 * in the device ready fn would prevent us from trying
1550 * to allocate a tag. Since the map is a shared host resource
1551 * we add the dev to the starved list so it eventually gets
1552 * a run when a tag is freed.
1553 */
1554 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1555 if (list_empty(&sdev->starved_entry))
1556 list_add_tail(&sdev->starved_entry,
1557 &shost->starved_list);
1558 goto not_ready;
1559 }
1560
1561 if (!scsi_target_queue_ready(shost, sdev))
1562 goto not_ready;
1563
1564 if (!scsi_host_queue_ready(q, shost, sdev))
1565 goto not_ready;
1566
1567 scsi_target(sdev)->target_busy++;
1568 shost->host_busy++;
1569
1570 /*
1571 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1572 * take the lock again.
1573 */
1574 spin_unlock_irq(shost->host_lock);
1575
1576 /*
1577 * Finally, initialize any error handling parameters, and set up
1578 * the timers for timeouts.
1579 */
1580 scsi_init_cmd_errh(cmd);
1581
1582 /*
1583 * Dispatch the command to the low-level driver.
1584 */
1585 rtn = scsi_dispatch_cmd(cmd);
1586 spin_lock_irq(q->queue_lock);
1587 if (rtn)
1588 goto out_delay;
1589 }
1590
1591 return;
1592
1593 not_ready:
1594 spin_unlock_irq(shost->host_lock);
1595
1596 /*
1597 * lock q, handle tag, requeue req, and decrement device_busy. We
1598 * must return with queue_lock held.
1599 *
1600 * Decrementing device_busy without checking it is OK, as all such
1601 * cases (host limits or settings) should run the queue at some
1602 * later time.
1603 */
1604 spin_lock_irq(q->queue_lock);
1605 blk_requeue_request(q, req);
1606 sdev->device_busy--;
1607 out_delay:
1608 if (sdev->device_busy == 0)
1609 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1610 }
1611
1612 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1613 {
1614 struct device *host_dev;
1615 u64 bounce_limit = 0xffffffff;
1616
1617 if (shost->unchecked_isa_dma)
1618 return BLK_BOUNCE_ISA;
1619 /*
1620 * Platforms with virtual-DMA translation
1621 * hardware have no practical limit.
1622 */
1623 if (!PCI_DMA_BUS_IS_PHYS)
1624 return BLK_BOUNCE_ANY;
1625
1626 host_dev = scsi_get_device(shost);
1627 if (host_dev && host_dev->dma_mask)
1628 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1629
1630 return bounce_limit;
1631 }
1632 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1633
1634 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1635 request_fn_proc *request_fn)
1636 {
1637 struct request_queue *q;
1638 struct device *dev = shost->dma_dev;
1639
1640 q = blk_init_queue(request_fn, NULL);
1641 if (!q)
1642 return NULL;
1643
1644 /*
1645 * this limit is imposed by hardware restrictions
1646 */
1647 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1648 SCSI_MAX_SG_CHAIN_SEGMENTS));
1649
1650 if (scsi_host_prot_dma(shost)) {
1651 shost->sg_prot_tablesize =
1652 min_not_zero(shost->sg_prot_tablesize,
1653 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1654 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1655 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1656 }
1657
1658 blk_queue_max_hw_sectors(q, shost->max_sectors);
1659 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1660 blk_queue_segment_boundary(q, shost->dma_boundary);
1661 dma_set_seg_boundary(dev, shost->dma_boundary);
1662
1663 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1664
1665 if (!shost->use_clustering)
1666 q->limits.cluster = 0;
1667
1668 /*
1669 * set a reasonable default alignment on word boundaries: the
1670 * host and device may alter it using
1671 * blk_queue_update_dma_alignment() later.
1672 */
1673 blk_queue_dma_alignment(q, 0x03);
1674
1675 return q;
1676 }
1677 EXPORT_SYMBOL(__scsi_alloc_queue);
1678
1679 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1680 {
1681 struct request_queue *q;
1682
1683 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1684 if (!q)
1685 return NULL;
1686
1687 blk_queue_prep_rq(q, scsi_prep_fn);
1688 blk_queue_unprep_rq(q, scsi_unprep_fn);
1689 blk_queue_softirq_done(q, scsi_softirq_done);
1690 blk_queue_rq_timed_out(q, scsi_times_out);
1691 blk_queue_lld_busy(q, scsi_lld_busy);
1692 return q;
1693 }
1694
1695 /*
1696 * Function: scsi_block_requests()
1697 *
1698 * Purpose: Utility function used by low-level drivers to prevent further
1699 * commands from being queued to the device.
1700 *
1701 * Arguments: shost - Host in question
1702 *
1703 * Returns: Nothing
1704 *
1705 * Lock status: No locks are assumed held.
1706 *
1707 * Notes: There is no timer nor any other means by which the requests
1708 * get unblocked other than the low-level driver calling
1709 * scsi_unblock_requests().
1710 */
1711 void scsi_block_requests(struct Scsi_Host *shost)
1712 {
1713 shost->host_self_blocked = 1;
1714 }
1715 EXPORT_SYMBOL(scsi_block_requests);
1716
1717 /*
1718 * Function: scsi_unblock_requests()
1719 *
1720 * Purpose: Utility function used by low-level drivers to allow further
1721 * commands from being queued to the device.
1722 *
1723 * Arguments: shost - Host in question
1724 *
1725 * Returns: Nothing
1726 *
1727 * Lock status: No locks are assumed held.
1728 *
1729 * Notes: There is no timer nor any other means by which the requests
1730 * get unblocked other than the low-level driver calling
1731 * scsi_unblock_requests().
1732 *
1733 * This is done as an API function so that changes to the
1734 * internals of the scsi mid-layer won't require wholesale
1735 * changes to drivers that use this feature.
1736 */
1737 void scsi_unblock_requests(struct Scsi_Host *shost)
1738 {
1739 shost->host_self_blocked = 0;
1740 scsi_run_host_queues(shost);
1741 }
1742 EXPORT_SYMBOL(scsi_unblock_requests);
1743
1744 int __init scsi_init_queue(void)
1745 {
1746 int i;
1747
1748 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1749 sizeof(struct scsi_data_buffer),
1750 0, 0, NULL);
1751 if (!scsi_sdb_cache) {
1752 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1753 return -ENOMEM;
1754 }
1755
1756 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1757 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1758 int size = sgp->size * sizeof(struct scatterlist);
1759
1760 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1761 SLAB_HWCACHE_ALIGN, NULL);
1762 if (!sgp->slab) {
1763 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1764 sgp->name);
1765 goto cleanup_sdb;
1766 }
1767
1768 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1769 sgp->slab);
1770 if (!sgp->pool) {
1771 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1772 sgp->name);
1773 goto cleanup_sdb;
1774 }
1775 }
1776
1777 return 0;
1778
1779 cleanup_sdb:
1780 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1781 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1782 if (sgp->pool)
1783 mempool_destroy(sgp->pool);
1784 if (sgp->slab)
1785 kmem_cache_destroy(sgp->slab);
1786 }
1787 kmem_cache_destroy(scsi_sdb_cache);
1788
1789 return -ENOMEM;
1790 }
1791
1792 void scsi_exit_queue(void)
1793 {
1794 int i;
1795
1796 kmem_cache_destroy(scsi_sdb_cache);
1797
1798 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1799 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1800 mempool_destroy(sgp->pool);
1801 kmem_cache_destroy(sgp->slab);
1802 }
1803 }
1804
1805 /**
1806 * scsi_mode_select - issue a mode select
1807 * @sdev: SCSI device to be queried
1808 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1809 * @sp: Save page bit (0 == don't save, 1 == save)
1810 * @modepage: mode page being requested
1811 * @buffer: request buffer (may not be smaller than eight bytes)
1812 * @len: length of request buffer.
1813 * @timeout: command timeout
1814 * @retries: number of retries before failing
1815 * @data: returns a structure abstracting the mode header data
1816 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1817 * must be SCSI_SENSE_BUFFERSIZE big.
1818 *
1819 * Returns zero if successful; negative error number or scsi
1820 * status on error
1821 *
1822 */
1823 int
1824 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1825 unsigned char *buffer, int len, int timeout, int retries,
1826 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1827 {
1828 unsigned char cmd[10];
1829 unsigned char *real_buffer;
1830 int ret;
1831
1832 memset(cmd, 0, sizeof(cmd));
1833 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1834
1835 if (sdev->use_10_for_ms) {
1836 if (len > 65535)
1837 return -EINVAL;
1838 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1839 if (!real_buffer)
1840 return -ENOMEM;
1841 memcpy(real_buffer + 8, buffer, len);
1842 len += 8;
1843 real_buffer[0] = 0;
1844 real_buffer[1] = 0;
1845 real_buffer[2] = data->medium_type;
1846 real_buffer[3] = data->device_specific;
1847 real_buffer[4] = data->longlba ? 0x01 : 0;
1848 real_buffer[5] = 0;
1849 real_buffer[6] = data->block_descriptor_length >> 8;
1850 real_buffer[7] = data->block_descriptor_length;
1851
1852 cmd[0] = MODE_SELECT_10;
1853 cmd[7] = len >> 8;
1854 cmd[8] = len;
1855 } else {
1856 if (len > 255 || data->block_descriptor_length > 255 ||
1857 data->longlba)
1858 return -EINVAL;
1859
1860 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1861 if (!real_buffer)
1862 return -ENOMEM;
1863 memcpy(real_buffer + 4, buffer, len);
1864 len += 4;
1865 real_buffer[0] = 0;
1866 real_buffer[1] = data->medium_type;
1867 real_buffer[2] = data->device_specific;
1868 real_buffer[3] = data->block_descriptor_length;
1869
1870
1871 cmd[0] = MODE_SELECT;
1872 cmd[4] = len;
1873 }
1874
1875 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1876 sshdr, timeout, retries, NULL);
1877 kfree(real_buffer);
1878 return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(scsi_mode_select);
1881
1882 /**
1883 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1884 * @sdev: SCSI device to be queried
1885 * @dbd: set if mode sense will allow block descriptors to be returned
1886 * @modepage: mode page being requested
1887 * @buffer: request buffer (may not be smaller than eight bytes)
1888 * @len: length of request buffer.
1889 * @timeout: command timeout
1890 * @retries: number of retries before failing
1891 * @data: returns a structure abstracting the mode header data
1892 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1893 * must be SCSI_SENSE_BUFFERSIZE big.
1894 *
1895 * Returns zero if unsuccessful, or the header offset (either 4
1896 * or 8 depending on whether a six or ten byte command was
1897 * issued) if successful.
1898 */
1899 int
1900 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1901 unsigned char *buffer, int len, int timeout, int retries,
1902 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1903 {
1904 unsigned char cmd[12];
1905 int use_10_for_ms;
1906 int header_length;
1907 int result;
1908 struct scsi_sense_hdr my_sshdr;
1909
1910 memset(data, 0, sizeof(*data));
1911 memset(&cmd[0], 0, 12);
1912 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1913 cmd[2] = modepage;
1914
1915 /* caller might not be interested in sense, but we need it */
1916 if (!sshdr)
1917 sshdr = &my_sshdr;
1918
1919 retry:
1920 use_10_for_ms = sdev->use_10_for_ms;
1921
1922 if (use_10_for_ms) {
1923 if (len < 8)
1924 len = 8;
1925
1926 cmd[0] = MODE_SENSE_10;
1927 cmd[8] = len;
1928 header_length = 8;
1929 } else {
1930 if (len < 4)
1931 len = 4;
1932
1933 cmd[0] = MODE_SENSE;
1934 cmd[4] = len;
1935 header_length = 4;
1936 }
1937
1938 memset(buffer, 0, len);
1939
1940 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1941 sshdr, timeout, retries, NULL);
1942
1943 /* This code looks awful: what it's doing is making sure an
1944 * ILLEGAL REQUEST sense return identifies the actual command
1945 * byte as the problem. MODE_SENSE commands can return
1946 * ILLEGAL REQUEST if the code page isn't supported */
1947
1948 if (use_10_for_ms && !scsi_status_is_good(result) &&
1949 (driver_byte(result) & DRIVER_SENSE)) {
1950 if (scsi_sense_valid(sshdr)) {
1951 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1952 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1953 /*
1954 * Invalid command operation code
1955 */
1956 sdev->use_10_for_ms = 0;
1957 goto retry;
1958 }
1959 }
1960 }
1961
1962 if(scsi_status_is_good(result)) {
1963 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1964 (modepage == 6 || modepage == 8))) {
1965 /* Initio breakage? */
1966 header_length = 0;
1967 data->length = 13;
1968 data->medium_type = 0;
1969 data->device_specific = 0;
1970 data->longlba = 0;
1971 data->block_descriptor_length = 0;
1972 } else if(use_10_for_ms) {
1973 data->length = buffer[0]*256 + buffer[1] + 2;
1974 data->medium_type = buffer[2];
1975 data->device_specific = buffer[3];
1976 data->longlba = buffer[4] & 0x01;
1977 data->block_descriptor_length = buffer[6]*256
1978 + buffer[7];
1979 } else {
1980 data->length = buffer[0] + 1;
1981 data->medium_type = buffer[1];
1982 data->device_specific = buffer[2];
1983 data->block_descriptor_length = buffer[3];
1984 }
1985 data->header_length = header_length;
1986 }
1987
1988 return result;
1989 }
1990 EXPORT_SYMBOL(scsi_mode_sense);
1991
1992 /**
1993 * scsi_test_unit_ready - test if unit is ready
1994 * @sdev: scsi device to change the state of.
1995 * @timeout: command timeout
1996 * @retries: number of retries before failing
1997 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1998 * returning sense. Make sure that this is cleared before passing
1999 * in.
2000 *
2001 * Returns zero if unsuccessful or an error if TUR failed. For
2002 * removable media, UNIT_ATTENTION sets ->changed flag.
2003 **/
2004 int
2005 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2006 struct scsi_sense_hdr *sshdr_external)
2007 {
2008 char cmd[] = {
2009 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2010 };
2011 struct scsi_sense_hdr *sshdr;
2012 int result;
2013
2014 if (!sshdr_external)
2015 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2016 else
2017 sshdr = sshdr_external;
2018
2019 /* try to eat the UNIT_ATTENTION if there are enough retries */
2020 do {
2021 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2022 timeout, retries, NULL);
2023 if (sdev->removable && scsi_sense_valid(sshdr) &&
2024 sshdr->sense_key == UNIT_ATTENTION)
2025 sdev->changed = 1;
2026 } while (scsi_sense_valid(sshdr) &&
2027 sshdr->sense_key == UNIT_ATTENTION && --retries);
2028
2029 if (!sshdr_external)
2030 kfree(sshdr);
2031 return result;
2032 }
2033 EXPORT_SYMBOL(scsi_test_unit_ready);
2034
2035 /**
2036 * scsi_device_set_state - Take the given device through the device state model.
2037 * @sdev: scsi device to change the state of.
2038 * @state: state to change to.
2039 *
2040 * Returns zero if unsuccessful or an error if the requested
2041 * transition is illegal.
2042 */
2043 int
2044 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2045 {
2046 enum scsi_device_state oldstate = sdev->sdev_state;
2047
2048 if (state == oldstate)
2049 return 0;
2050
2051 switch (state) {
2052 case SDEV_CREATED:
2053 switch (oldstate) {
2054 case SDEV_CREATED_BLOCK:
2055 break;
2056 default:
2057 goto illegal;
2058 }
2059 break;
2060
2061 case SDEV_RUNNING:
2062 switch (oldstate) {
2063 case SDEV_CREATED:
2064 case SDEV_OFFLINE:
2065 case SDEV_TRANSPORT_OFFLINE:
2066 case SDEV_QUIESCE:
2067 case SDEV_BLOCK:
2068 break;
2069 default:
2070 goto illegal;
2071 }
2072 break;
2073
2074 case SDEV_QUIESCE:
2075 switch (oldstate) {
2076 case SDEV_RUNNING:
2077 case SDEV_OFFLINE:
2078 case SDEV_TRANSPORT_OFFLINE:
2079 break;
2080 default:
2081 goto illegal;
2082 }
2083 break;
2084
2085 case SDEV_OFFLINE:
2086 case SDEV_TRANSPORT_OFFLINE:
2087 switch (oldstate) {
2088 case SDEV_CREATED:
2089 case SDEV_RUNNING:
2090 case SDEV_QUIESCE:
2091 case SDEV_BLOCK:
2092 break;
2093 default:
2094 goto illegal;
2095 }
2096 break;
2097
2098 case SDEV_BLOCK:
2099 switch (oldstate) {
2100 case SDEV_RUNNING:
2101 case SDEV_CREATED_BLOCK:
2102 break;
2103 default:
2104 goto illegal;
2105 }
2106 break;
2107
2108 case SDEV_CREATED_BLOCK:
2109 switch (oldstate) {
2110 case SDEV_CREATED:
2111 break;
2112 default:
2113 goto illegal;
2114 }
2115 break;
2116
2117 case SDEV_CANCEL:
2118 switch (oldstate) {
2119 case SDEV_CREATED:
2120 case SDEV_RUNNING:
2121 case SDEV_QUIESCE:
2122 case SDEV_OFFLINE:
2123 case SDEV_TRANSPORT_OFFLINE:
2124 case SDEV_BLOCK:
2125 break;
2126 default:
2127 goto illegal;
2128 }
2129 break;
2130
2131 case SDEV_DEL:
2132 switch (oldstate) {
2133 case SDEV_CREATED:
2134 case SDEV_RUNNING:
2135 case SDEV_OFFLINE:
2136 case SDEV_TRANSPORT_OFFLINE:
2137 case SDEV_CANCEL:
2138 case SDEV_CREATED_BLOCK:
2139 break;
2140 default:
2141 goto illegal;
2142 }
2143 break;
2144
2145 }
2146 sdev->sdev_state = state;
2147 return 0;
2148
2149 illegal:
2150 SCSI_LOG_ERROR_RECOVERY(1,
2151 sdev_printk(KERN_ERR, sdev,
2152 "Illegal state transition %s->%s\n",
2153 scsi_device_state_name(oldstate),
2154 scsi_device_state_name(state))
2155 );
2156 return -EINVAL;
2157 }
2158 EXPORT_SYMBOL(scsi_device_set_state);
2159
2160 /**
2161 * sdev_evt_emit - emit a single SCSI device uevent
2162 * @sdev: associated SCSI device
2163 * @evt: event to emit
2164 *
2165 * Send a single uevent (scsi_event) to the associated scsi_device.
2166 */
2167 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2168 {
2169 int idx = 0;
2170 char *envp[3];
2171
2172 switch (evt->evt_type) {
2173 case SDEV_EVT_MEDIA_CHANGE:
2174 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2175 break;
2176 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2177 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2178 break;
2179 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2180 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2181 break;
2182 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2183 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2184 break;
2185 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2186 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2187 break;
2188 case SDEV_EVT_LUN_CHANGE_REPORTED:
2189 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2190 break;
2191 default:
2192 /* do nothing */
2193 break;
2194 }
2195
2196 envp[idx++] = NULL;
2197
2198 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2199 }
2200
2201 /**
2202 * sdev_evt_thread - send a uevent for each scsi event
2203 * @work: work struct for scsi_device
2204 *
2205 * Dispatch queued events to their associated scsi_device kobjects
2206 * as uevents.
2207 */
2208 void scsi_evt_thread(struct work_struct *work)
2209 {
2210 struct scsi_device *sdev;
2211 enum scsi_device_event evt_type;
2212 LIST_HEAD(event_list);
2213
2214 sdev = container_of(work, struct scsi_device, event_work);
2215
2216 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2217 if (test_and_clear_bit(evt_type, sdev->pending_events))
2218 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2219
2220 while (1) {
2221 struct scsi_event *evt;
2222 struct list_head *this, *tmp;
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&sdev->list_lock, flags);
2226 list_splice_init(&sdev->event_list, &event_list);
2227 spin_unlock_irqrestore(&sdev->list_lock, flags);
2228
2229 if (list_empty(&event_list))
2230 break;
2231
2232 list_for_each_safe(this, tmp, &event_list) {
2233 evt = list_entry(this, struct scsi_event, node);
2234 list_del(&evt->node);
2235 scsi_evt_emit(sdev, evt);
2236 kfree(evt);
2237 }
2238 }
2239 }
2240
2241 /**
2242 * sdev_evt_send - send asserted event to uevent thread
2243 * @sdev: scsi_device event occurred on
2244 * @evt: event to send
2245 *
2246 * Assert scsi device event asynchronously.
2247 */
2248 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2249 {
2250 unsigned long flags;
2251
2252 #if 0
2253 /* FIXME: currently this check eliminates all media change events
2254 * for polled devices. Need to update to discriminate between AN
2255 * and polled events */
2256 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2257 kfree(evt);
2258 return;
2259 }
2260 #endif
2261
2262 spin_lock_irqsave(&sdev->list_lock, flags);
2263 list_add_tail(&evt->node, &sdev->event_list);
2264 schedule_work(&sdev->event_work);
2265 spin_unlock_irqrestore(&sdev->list_lock, flags);
2266 }
2267 EXPORT_SYMBOL_GPL(sdev_evt_send);
2268
2269 /**
2270 * sdev_evt_alloc - allocate a new scsi event
2271 * @evt_type: type of event to allocate
2272 * @gfpflags: GFP flags for allocation
2273 *
2274 * Allocates and returns a new scsi_event.
2275 */
2276 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2277 gfp_t gfpflags)
2278 {
2279 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2280 if (!evt)
2281 return NULL;
2282
2283 evt->evt_type = evt_type;
2284 INIT_LIST_HEAD(&evt->node);
2285
2286 /* evt_type-specific initialization, if any */
2287 switch (evt_type) {
2288 case SDEV_EVT_MEDIA_CHANGE:
2289 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2290 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2291 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2292 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2293 case SDEV_EVT_LUN_CHANGE_REPORTED:
2294 default:
2295 /* do nothing */
2296 break;
2297 }
2298
2299 return evt;
2300 }
2301 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2302
2303 /**
2304 * sdev_evt_send_simple - send asserted event to uevent thread
2305 * @sdev: scsi_device event occurred on
2306 * @evt_type: type of event to send
2307 * @gfpflags: GFP flags for allocation
2308 *
2309 * Assert scsi device event asynchronously, given an event type.
2310 */
2311 void sdev_evt_send_simple(struct scsi_device *sdev,
2312 enum scsi_device_event evt_type, gfp_t gfpflags)
2313 {
2314 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2315 if (!evt) {
2316 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2317 evt_type);
2318 return;
2319 }
2320
2321 sdev_evt_send(sdev, evt);
2322 }
2323 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2324
2325 /**
2326 * scsi_device_quiesce - Block user issued commands.
2327 * @sdev: scsi device to quiesce.
2328 *
2329 * This works by trying to transition to the SDEV_QUIESCE state
2330 * (which must be a legal transition). When the device is in this
2331 * state, only special requests will be accepted, all others will
2332 * be deferred. Since special requests may also be requeued requests,
2333 * a successful return doesn't guarantee the device will be
2334 * totally quiescent.
2335 *
2336 * Must be called with user context, may sleep.
2337 *
2338 * Returns zero if unsuccessful or an error if not.
2339 */
2340 int
2341 scsi_device_quiesce(struct scsi_device *sdev)
2342 {
2343 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2344 if (err)
2345 return err;
2346
2347 scsi_run_queue(sdev->request_queue);
2348 while (sdev->device_busy) {
2349 msleep_interruptible(200);
2350 scsi_run_queue(sdev->request_queue);
2351 }
2352 return 0;
2353 }
2354 EXPORT_SYMBOL(scsi_device_quiesce);
2355
2356 /**
2357 * scsi_device_resume - Restart user issued commands to a quiesced device.
2358 * @sdev: scsi device to resume.
2359 *
2360 * Moves the device from quiesced back to running and restarts the
2361 * queues.
2362 *
2363 * Must be called with user context, may sleep.
2364 */
2365 void scsi_device_resume(struct scsi_device *sdev)
2366 {
2367 /* check if the device state was mutated prior to resume, and if
2368 * so assume the state is being managed elsewhere (for example
2369 * device deleted during suspend)
2370 */
2371 if (sdev->sdev_state != SDEV_QUIESCE ||
2372 scsi_device_set_state(sdev, SDEV_RUNNING))
2373 return;
2374 scsi_run_queue(sdev->request_queue);
2375 }
2376 EXPORT_SYMBOL(scsi_device_resume);
2377
2378 static void
2379 device_quiesce_fn(struct scsi_device *sdev, void *data)
2380 {
2381 scsi_device_quiesce(sdev);
2382 }
2383
2384 void
2385 scsi_target_quiesce(struct scsi_target *starget)
2386 {
2387 starget_for_each_device(starget, NULL, device_quiesce_fn);
2388 }
2389 EXPORT_SYMBOL(scsi_target_quiesce);
2390
2391 static void
2392 device_resume_fn(struct scsi_device *sdev, void *data)
2393 {
2394 scsi_device_resume(sdev);
2395 }
2396
2397 void
2398 scsi_target_resume(struct scsi_target *starget)
2399 {
2400 starget_for_each_device(starget, NULL, device_resume_fn);
2401 }
2402 EXPORT_SYMBOL(scsi_target_resume);
2403
2404 /**
2405 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2406 * @sdev: device to block
2407 *
2408 * Block request made by scsi lld's to temporarily stop all
2409 * scsi commands on the specified device. Called from interrupt
2410 * or normal process context.
2411 *
2412 * Returns zero if successful or error if not
2413 *
2414 * Notes:
2415 * This routine transitions the device to the SDEV_BLOCK state
2416 * (which must be a legal transition). When the device is in this
2417 * state, all commands are deferred until the scsi lld reenables
2418 * the device with scsi_device_unblock or device_block_tmo fires.
2419 */
2420 int
2421 scsi_internal_device_block(struct scsi_device *sdev)
2422 {
2423 struct request_queue *q = sdev->request_queue;
2424 unsigned long flags;
2425 int err = 0;
2426
2427 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2428 if (err) {
2429 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2430
2431 if (err)
2432 return err;
2433 }
2434
2435 /*
2436 * The device has transitioned to SDEV_BLOCK. Stop the
2437 * block layer from calling the midlayer with this device's
2438 * request queue.
2439 */
2440 spin_lock_irqsave(q->queue_lock, flags);
2441 blk_stop_queue(q);
2442 spin_unlock_irqrestore(q->queue_lock, flags);
2443
2444 return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2447
2448 /**
2449 * scsi_internal_device_unblock - resume a device after a block request
2450 * @sdev: device to resume
2451 * @new_state: state to set devices to after unblocking
2452 *
2453 * Called by scsi lld's or the midlayer to restart the device queue
2454 * for the previously suspended scsi device. Called from interrupt or
2455 * normal process context.
2456 *
2457 * Returns zero if successful or error if not.
2458 *
2459 * Notes:
2460 * This routine transitions the device to the SDEV_RUNNING state
2461 * or to one of the offline states (which must be a legal transition)
2462 * allowing the midlayer to goose the queue for this device.
2463 */
2464 int
2465 scsi_internal_device_unblock(struct scsi_device *sdev,
2466 enum scsi_device_state new_state)
2467 {
2468 struct request_queue *q = sdev->request_queue;
2469 unsigned long flags;
2470
2471 /*
2472 * Try to transition the scsi device to SDEV_RUNNING or one of the
2473 * offlined states and goose the device queue if successful.
2474 */
2475 if ((sdev->sdev_state == SDEV_BLOCK) ||
2476 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2477 sdev->sdev_state = new_state;
2478 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2479 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2480 new_state == SDEV_OFFLINE)
2481 sdev->sdev_state = new_state;
2482 else
2483 sdev->sdev_state = SDEV_CREATED;
2484 } else if (sdev->sdev_state != SDEV_CANCEL &&
2485 sdev->sdev_state != SDEV_OFFLINE)
2486 return -EINVAL;
2487
2488 spin_lock_irqsave(q->queue_lock, flags);
2489 blk_start_queue(q);
2490 spin_unlock_irqrestore(q->queue_lock, flags);
2491
2492 return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2495
2496 static void
2497 device_block(struct scsi_device *sdev, void *data)
2498 {
2499 scsi_internal_device_block(sdev);
2500 }
2501
2502 static int
2503 target_block(struct device *dev, void *data)
2504 {
2505 if (scsi_is_target_device(dev))
2506 starget_for_each_device(to_scsi_target(dev), NULL,
2507 device_block);
2508 return 0;
2509 }
2510
2511 void
2512 scsi_target_block(struct device *dev)
2513 {
2514 if (scsi_is_target_device(dev))
2515 starget_for_each_device(to_scsi_target(dev), NULL,
2516 device_block);
2517 else
2518 device_for_each_child(dev, NULL, target_block);
2519 }
2520 EXPORT_SYMBOL_GPL(scsi_target_block);
2521
2522 static void
2523 device_unblock(struct scsi_device *sdev, void *data)
2524 {
2525 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2526 }
2527
2528 static int
2529 target_unblock(struct device *dev, void *data)
2530 {
2531 if (scsi_is_target_device(dev))
2532 starget_for_each_device(to_scsi_target(dev), data,
2533 device_unblock);
2534 return 0;
2535 }
2536
2537 void
2538 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2539 {
2540 if (scsi_is_target_device(dev))
2541 starget_for_each_device(to_scsi_target(dev), &new_state,
2542 device_unblock);
2543 else
2544 device_for_each_child(dev, &new_state, target_unblock);
2545 }
2546 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2547
2548 /**
2549 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2550 * @sgl: scatter-gather list
2551 * @sg_count: number of segments in sg
2552 * @offset: offset in bytes into sg, on return offset into the mapped area
2553 * @len: bytes to map, on return number of bytes mapped
2554 *
2555 * Returns virtual address of the start of the mapped page
2556 */
2557 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2558 size_t *offset, size_t *len)
2559 {
2560 int i;
2561 size_t sg_len = 0, len_complete = 0;
2562 struct scatterlist *sg;
2563 struct page *page;
2564
2565 WARN_ON(!irqs_disabled());
2566
2567 for_each_sg(sgl, sg, sg_count, i) {
2568 len_complete = sg_len; /* Complete sg-entries */
2569 sg_len += sg->length;
2570 if (sg_len > *offset)
2571 break;
2572 }
2573
2574 if (unlikely(i == sg_count)) {
2575 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2576 "elements %d\n",
2577 __func__, sg_len, *offset, sg_count);
2578 WARN_ON(1);
2579 return NULL;
2580 }
2581
2582 /* Offset starting from the beginning of first page in this sg-entry */
2583 *offset = *offset - len_complete + sg->offset;
2584
2585 /* Assumption: contiguous pages can be accessed as "page + i" */
2586 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2587 *offset &= ~PAGE_MASK;
2588
2589 /* Bytes in this sg-entry from *offset to the end of the page */
2590 sg_len = PAGE_SIZE - *offset;
2591 if (*len > sg_len)
2592 *len = sg_len;
2593
2594 return kmap_atomic(page);
2595 }
2596 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2597
2598 /**
2599 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2600 * @virt: virtual address to be unmapped
2601 */
2602 void scsi_kunmap_atomic_sg(void *virt)
2603 {
2604 kunmap_atomic(virt);
2605 }
2606 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2607
2608 void sdev_disable_disk_events(struct scsi_device *sdev)
2609 {
2610 atomic_inc(&sdev->disk_events_disable_depth);
2611 }
2612 EXPORT_SYMBOL(sdev_disable_disk_events);
2613
2614 void sdev_enable_disk_events(struct scsi_device *sdev)
2615 {
2616 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2617 return;
2618 atomic_dec(&sdev->disk_events_disable_depth);
2619 }
2620 EXPORT_SYMBOL(sdev_enable_disk_events);