]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/scsi_lib.c
spi: s3c64xx: Let spi core handle validating transfer length
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76 #define SCSI_QUEUE_DELAY 3
77
78 /*
79 * Function: scsi_unprep_request()
80 *
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
83 *
84 * Arguments: req - request to unprepare
85 *
86 * Lock status: Assumed that no locks are held upon entry.
87 *
88 * Returns: Nothing.
89 */
90 static void scsi_unprep_request(struct request *req)
91 {
92 struct scsi_cmnd *cmd = req->special;
93
94 blk_unprep_request(req);
95 req->special = NULL;
96
97 scsi_put_command(cmd);
98 }
99
100 /**
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
105 *
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
111 */
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
119
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
122
123 /*
124 * Set the appropriate busy bit for the device/host.
125 *
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
128 *
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
135 */
136 switch (reason) {
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
139 break;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 if (unbusy)
154 scsi_device_unbusy(device);
155
156 /*
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue. Schedule requeue work under
159 * lock such that the kblockd_schedule_work() call happens
160 * before blk_cleanup_queue() finishes.
161 */
162 spin_lock_irqsave(q->queue_lock, flags);
163 blk_requeue_request(q, cmd->request);
164 kblockd_schedule_work(q, &device->requeue_work);
165 spin_unlock_irqrestore(q->queue_lock, flags);
166 }
167
168 /*
169 * Function: scsi_queue_insert()
170 *
171 * Purpose: Insert a command in the midlevel queue.
172 *
173 * Arguments: cmd - command that we are adding to queue.
174 * reason - why we are inserting command to queue.
175 *
176 * Lock status: Assumed that lock is not held upon entry.
177 *
178 * Returns: Nothing.
179 *
180 * Notes: We do this for one of two cases. Either the host is busy
181 * and it cannot accept any more commands for the time being,
182 * or the device returned QUEUE_FULL and can accept no more
183 * commands.
184 * Notes: This could be called either from an interrupt context or a
185 * normal process context.
186 */
187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
188 {
189 __scsi_queue_insert(cmd, reason, 1);
190 }
191 /**
192 * scsi_execute - insert request and wait for the result
193 * @sdev: scsi device
194 * @cmd: scsi command
195 * @data_direction: data direction
196 * @buffer: data buffer
197 * @bufflen: len of buffer
198 * @sense: optional sense buffer
199 * @timeout: request timeout in seconds
200 * @retries: number of times to retry request
201 * @flags: or into request flags;
202 * @resid: optional residual length
203 *
204 * returns the req->errors value which is the scsi_cmnd result
205 * field.
206 */
207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 int data_direction, void *buffer, unsigned bufflen,
209 unsigned char *sense, int timeout, int retries, int flags,
210 int *resid)
211 {
212 struct request *req;
213 int write = (data_direction == DMA_TO_DEVICE);
214 int ret = DRIVER_ERROR << 24;
215
216 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
217 if (!req)
218 return ret;
219
220 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
221 buffer, bufflen, __GFP_WAIT))
222 goto out;
223
224 req->cmd_len = COMMAND_SIZE(cmd[0]);
225 memcpy(req->cmd, cmd, req->cmd_len);
226 req->sense = sense;
227 req->sense_len = 0;
228 req->retries = retries;
229 req->timeout = timeout;
230 req->cmd_type = REQ_TYPE_BLOCK_PC;
231 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
232
233 /*
234 * head injection *required* here otherwise quiesce won't work
235 */
236 blk_execute_rq(req->q, NULL, req, 1);
237
238 /*
239 * Some devices (USB mass-storage in particular) may transfer
240 * garbage data together with a residue indicating that the data
241 * is invalid. Prevent the garbage from being misinterpreted
242 * and prevent security leaks by zeroing out the excess data.
243 */
244 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
245 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246
247 if (resid)
248 *resid = req->resid_len;
249 ret = req->errors;
250 out:
251 blk_put_request(req);
252
253 return ret;
254 }
255 EXPORT_SYMBOL(scsi_execute);
256
257 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid, int flags)
261 {
262 char *sense = NULL;
263 int result;
264
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
269 }
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, flags, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275 kfree(sense);
276 return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req_flags);
279
280 /*
281 * Function: scsi_init_cmd_errh()
282 *
283 * Purpose: Initialize cmd fields related to error handling.
284 *
285 * Arguments: cmd - command that is ready to be queued.
286 *
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
290 */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
305
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
331
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
335
336 /*
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
341 */
342 blk_run_queue(current_sdev->request_queue);
343
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
353
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
357
358 scsi_device_put(sdev);
359 }
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
368
369 return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
384
385 return 0;
386 }
387
388 /*
389 * Function: scsi_run_queue()
390 *
391 * Purpose: Select a proper request queue to serve next
392 *
393 * Arguments: q - last request's queue
394 *
395 * Returns: Nothing
396 *
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
399 */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
406
407 shost = sdev->host;
408 if (scsi_target(sdev)->single_lun)
409 scsi_single_lun_run(sdev);
410
411 spin_lock_irqsave(shost->host_lock, flags);
412 list_splice_init(&shost->starved_list, &starved_list);
413
414 while (!list_empty(&starved_list)) {
415 struct request_queue *slq;
416
417 /*
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
422 *
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
426 */
427 if (scsi_host_is_busy(shost))
428 break;
429
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
437 }
438
439 /*
440 * Once we drop the host lock, a racing scsi_remove_device()
441 * call may remove the sdev from the starved list and destroy
442 * it and the queue. Mitigate by taking a reference to the
443 * queue and never touching the sdev again after we drop the
444 * host lock. Note: if __scsi_remove_device() invokes
445 * blk_cleanup_queue() before the queue is run from this
446 * function then blk_run_queue() will return immediately since
447 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
448 */
449 slq = sdev->request_queue;
450 if (!blk_get_queue(slq))
451 continue;
452 spin_unlock_irqrestore(shost->host_lock, flags);
453
454 blk_run_queue(slq);
455 blk_put_queue(slq);
456
457 spin_lock_irqsave(shost->host_lock, flags);
458 }
459 /* put any unprocessed entries back */
460 list_splice(&starved_list, &shost->starved_list);
461 spin_unlock_irqrestore(shost->host_lock, flags);
462
463 blk_run_queue(q);
464 }
465
466 void scsi_requeue_run_queue(struct work_struct *work)
467 {
468 struct scsi_device *sdev;
469 struct request_queue *q;
470
471 sdev = container_of(work, struct scsi_device, requeue_work);
472 q = sdev->request_queue;
473 scsi_run_queue(q);
474 }
475
476 /*
477 * Function: scsi_requeue_command()
478 *
479 * Purpose: Handle post-processing of completed commands.
480 *
481 * Arguments: q - queue to operate on
482 * cmd - command that may need to be requeued.
483 *
484 * Returns: Nothing
485 *
486 * Notes: After command completion, there may be blocks left
487 * over which weren't finished by the previous command
488 * this can be for a number of reasons - the main one is
489 * I/O errors in the middle of the request, in which case
490 * we need to request the blocks that come after the bad
491 * sector.
492 * Notes: Upon return, cmd is a stale pointer.
493 */
494 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
495 {
496 struct scsi_device *sdev = cmd->device;
497 struct request *req = cmd->request;
498 unsigned long flags;
499
500 /*
501 * We need to hold a reference on the device to avoid the queue being
502 * killed after the unlock and before scsi_run_queue is invoked which
503 * may happen because scsi_unprep_request() puts the command which
504 * releases its reference on the device.
505 */
506 get_device(&sdev->sdev_gendev);
507
508 spin_lock_irqsave(q->queue_lock, flags);
509 scsi_unprep_request(req);
510 blk_requeue_request(q, req);
511 spin_unlock_irqrestore(q->queue_lock, flags);
512
513 scsi_run_queue(q);
514
515 put_device(&sdev->sdev_gendev);
516 }
517
518 void scsi_next_command(struct scsi_cmnd *cmd)
519 {
520 struct scsi_device *sdev = cmd->device;
521 struct request_queue *q = sdev->request_queue;
522
523 /* need to hold a reference on the device before we let go of the cmd */
524 get_device(&sdev->sdev_gendev);
525
526 scsi_put_command(cmd);
527 scsi_run_queue(q);
528
529 /* ok to remove device now */
530 put_device(&sdev->sdev_gendev);
531 }
532
533 void scsi_run_host_queues(struct Scsi_Host *shost)
534 {
535 struct scsi_device *sdev;
536
537 shost_for_each_device(sdev, shost)
538 scsi_run_queue(sdev->request_queue);
539 }
540
541 static void __scsi_release_buffers(struct scsi_cmnd *, int);
542
543 /*
544 * Function: scsi_end_request()
545 *
546 * Purpose: Post-processing of completed commands (usually invoked at end
547 * of upper level post-processing and scsi_io_completion).
548 *
549 * Arguments: cmd - command that is complete.
550 * error - 0 if I/O indicates success, < 0 for I/O error.
551 * bytes - number of bytes of completed I/O
552 * requeue - indicates whether we should requeue leftovers.
553 *
554 * Lock status: Assumed that lock is not held upon entry.
555 *
556 * Returns: cmd if requeue required, NULL otherwise.
557 *
558 * Notes: This is called for block device requests in order to
559 * mark some number of sectors as complete.
560 *
561 * We are guaranteeing that the request queue will be goosed
562 * at some point during this call.
563 * Notes: If cmd was requeued, upon return it will be a stale pointer.
564 */
565 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
566 int bytes, int requeue)
567 {
568 struct request_queue *q = cmd->device->request_queue;
569 struct request *req = cmd->request;
570
571 /*
572 * If there are blocks left over at the end, set up the command
573 * to queue the remainder of them.
574 */
575 if (blk_end_request(req, error, bytes)) {
576 /* kill remainder if no retrys */
577 if (error && scsi_noretry_cmd(cmd))
578 blk_end_request_all(req, error);
579 else {
580 if (requeue) {
581 /*
582 * Bleah. Leftovers again. Stick the
583 * leftovers in the front of the
584 * queue, and goose the queue again.
585 */
586 scsi_release_buffers(cmd);
587 scsi_requeue_command(q, cmd);
588 cmd = NULL;
589 }
590 return cmd;
591 }
592 }
593
594 /*
595 * This will goose the queue request function at the end, so we don't
596 * need to worry about launching another command.
597 */
598 __scsi_release_buffers(cmd, 0);
599 scsi_next_command(cmd);
600 return NULL;
601 }
602
603 static inline unsigned int scsi_sgtable_index(unsigned short nents)
604 {
605 unsigned int index;
606
607 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
608
609 if (nents <= 8)
610 index = 0;
611 else
612 index = get_count_order(nents) - 3;
613
614 return index;
615 }
616
617 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
618 {
619 struct scsi_host_sg_pool *sgp;
620
621 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
622 mempool_free(sgl, sgp->pool);
623 }
624
625 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
626 {
627 struct scsi_host_sg_pool *sgp;
628
629 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
630 return mempool_alloc(sgp->pool, gfp_mask);
631 }
632
633 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
634 gfp_t gfp_mask)
635 {
636 int ret;
637
638 BUG_ON(!nents);
639
640 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
641 gfp_mask, scsi_sg_alloc);
642 if (unlikely(ret))
643 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
644 scsi_sg_free);
645
646 return ret;
647 }
648
649 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
650 {
651 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
652 }
653
654 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
655 {
656
657 if (cmd->sdb.table.nents)
658 scsi_free_sgtable(&cmd->sdb);
659
660 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
661
662 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
663 struct scsi_data_buffer *bidi_sdb =
664 cmd->request->next_rq->special;
665 scsi_free_sgtable(bidi_sdb);
666 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
667 cmd->request->next_rq->special = NULL;
668 }
669
670 if (scsi_prot_sg_count(cmd))
671 scsi_free_sgtable(cmd->prot_sdb);
672 }
673
674 /*
675 * Function: scsi_release_buffers()
676 *
677 * Purpose: Completion processing for block device I/O requests.
678 *
679 * Arguments: cmd - command that we are bailing.
680 *
681 * Lock status: Assumed that no lock is held upon entry.
682 *
683 * Returns: Nothing
684 *
685 * Notes: In the event that an upper level driver rejects a
686 * command, we must release resources allocated during
687 * the __init_io() function. Primarily this would involve
688 * the scatter-gather table, and potentially any bounce
689 * buffers.
690 */
691 void scsi_release_buffers(struct scsi_cmnd *cmd)
692 {
693 __scsi_release_buffers(cmd, 1);
694 }
695 EXPORT_SYMBOL(scsi_release_buffers);
696
697 /**
698 * __scsi_error_from_host_byte - translate SCSI error code into errno
699 * @cmd: SCSI command (unused)
700 * @result: scsi error code
701 *
702 * Translate SCSI error code into standard UNIX errno.
703 * Return values:
704 * -ENOLINK temporary transport failure
705 * -EREMOTEIO permanent target failure, do not retry
706 * -EBADE permanent nexus failure, retry on other path
707 * -ENOSPC No write space available
708 * -ENODATA Medium error
709 * -EIO unspecified I/O error
710 */
711 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
712 {
713 int error = 0;
714
715 switch(host_byte(result)) {
716 case DID_TRANSPORT_FAILFAST:
717 error = -ENOLINK;
718 break;
719 case DID_TARGET_FAILURE:
720 set_host_byte(cmd, DID_OK);
721 error = -EREMOTEIO;
722 break;
723 case DID_NEXUS_FAILURE:
724 set_host_byte(cmd, DID_OK);
725 error = -EBADE;
726 break;
727 case DID_ALLOC_FAILURE:
728 set_host_byte(cmd, DID_OK);
729 error = -ENOSPC;
730 break;
731 case DID_MEDIUM_ERROR:
732 set_host_byte(cmd, DID_OK);
733 error = -ENODATA;
734 break;
735 default:
736 error = -EIO;
737 break;
738 }
739
740 return error;
741 }
742
743 /*
744 * Function: scsi_io_completion()
745 *
746 * Purpose: Completion processing for block device I/O requests.
747 *
748 * Arguments: cmd - command that is finished.
749 *
750 * Lock status: Assumed that no lock is held upon entry.
751 *
752 * Returns: Nothing
753 *
754 * Notes: This function is matched in terms of capabilities to
755 * the function that created the scatter-gather list.
756 * In other words, if there are no bounce buffers
757 * (the normal case for most drivers), we don't need
758 * the logic to deal with cleaning up afterwards.
759 *
760 * We must call scsi_end_request(). This will finish off
761 * the specified number of sectors. If we are done, the
762 * command block will be released and the queue function
763 * will be goosed. If we are not done then we have to
764 * figure out what to do next:
765 *
766 * a) We can call scsi_requeue_command(). The request
767 * will be unprepared and put back on the queue. Then
768 * a new command will be created for it. This should
769 * be used if we made forward progress, or if we want
770 * to switch from READ(10) to READ(6) for example.
771 *
772 * b) We can call scsi_queue_insert(). The request will
773 * be put back on the queue and retried using the same
774 * command as before, possibly after a delay.
775 *
776 * c) We can call blk_end_request() with -EIO to fail
777 * the remainder of the request.
778 */
779 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
780 {
781 int result = cmd->result;
782 struct request_queue *q = cmd->device->request_queue;
783 struct request *req = cmd->request;
784 int error = 0;
785 struct scsi_sense_hdr sshdr;
786 int sense_valid = 0;
787 int sense_deferred = 0;
788 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
789 ACTION_DELAYED_RETRY} action;
790 char *description = NULL;
791
792 if (result) {
793 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
794 if (sense_valid)
795 sense_deferred = scsi_sense_is_deferred(&sshdr);
796 }
797
798 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
799 if (result) {
800 if (sense_valid && req->sense) {
801 /*
802 * SG_IO wants current and deferred errors
803 */
804 int len = 8 + cmd->sense_buffer[7];
805
806 if (len > SCSI_SENSE_BUFFERSIZE)
807 len = SCSI_SENSE_BUFFERSIZE;
808 memcpy(req->sense, cmd->sense_buffer, len);
809 req->sense_len = len;
810 }
811 if (!sense_deferred)
812 error = __scsi_error_from_host_byte(cmd, result);
813 }
814 /*
815 * __scsi_error_from_host_byte may have reset the host_byte
816 */
817 req->errors = cmd->result;
818
819 req->resid_len = scsi_get_resid(cmd);
820
821 if (scsi_bidi_cmnd(cmd)) {
822 /*
823 * Bidi commands Must be complete as a whole,
824 * both sides at once.
825 */
826 req->next_rq->resid_len = scsi_in(cmd)->resid;
827
828 scsi_release_buffers(cmd);
829 blk_end_request_all(req, 0);
830
831 scsi_next_command(cmd);
832 return;
833 }
834 }
835
836 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
837 BUG_ON(blk_bidi_rq(req));
838
839 /*
840 * Next deal with any sectors which we were able to correctly
841 * handle.
842 */
843 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
844 "%d bytes done.\n",
845 blk_rq_sectors(req), good_bytes));
846
847 /*
848 * Recovered errors need reporting, but they're always treated
849 * as success, so fiddle the result code here. For BLOCK_PC
850 * we already took a copy of the original into rq->errors which
851 * is what gets returned to the user
852 */
853 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
854 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
855 * print since caller wants ATA registers. Only occurs on
856 * SCSI ATA PASS_THROUGH commands when CK_COND=1
857 */
858 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
859 ;
860 else if (!(req->cmd_flags & REQ_QUIET))
861 scsi_print_sense("", cmd);
862 result = 0;
863 /* BLOCK_PC may have set error */
864 error = 0;
865 }
866
867 /*
868 * A number of bytes were successfully read. If there
869 * are leftovers and there is some kind of error
870 * (result != 0), retry the rest.
871 */
872 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
873 return;
874
875 error = __scsi_error_from_host_byte(cmd, result);
876
877 if (host_byte(result) == DID_RESET) {
878 /* Third party bus reset or reset for error recovery
879 * reasons. Just retry the command and see what
880 * happens.
881 */
882 action = ACTION_RETRY;
883 } else if (sense_valid && !sense_deferred) {
884 switch (sshdr.sense_key) {
885 case UNIT_ATTENTION:
886 if (cmd->device->removable) {
887 /* Detected disc change. Set a bit
888 * and quietly refuse further access.
889 */
890 cmd->device->changed = 1;
891 description = "Media Changed";
892 action = ACTION_FAIL;
893 } else {
894 /* Must have been a power glitch, or a
895 * bus reset. Could not have been a
896 * media change, so we just retry the
897 * command and see what happens.
898 */
899 action = ACTION_RETRY;
900 }
901 break;
902 case ILLEGAL_REQUEST:
903 /* If we had an ILLEGAL REQUEST returned, then
904 * we may have performed an unsupported
905 * command. The only thing this should be
906 * would be a ten byte read where only a six
907 * byte read was supported. Also, on a system
908 * where READ CAPACITY failed, we may have
909 * read past the end of the disk.
910 */
911 if ((cmd->device->use_10_for_rw &&
912 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
913 (cmd->cmnd[0] == READ_10 ||
914 cmd->cmnd[0] == WRITE_10)) {
915 /* This will issue a new 6-byte command. */
916 cmd->device->use_10_for_rw = 0;
917 action = ACTION_REPREP;
918 } else if (sshdr.asc == 0x10) /* DIX */ {
919 description = "Host Data Integrity Failure";
920 action = ACTION_FAIL;
921 error = -EILSEQ;
922 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
923 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
924 switch (cmd->cmnd[0]) {
925 case UNMAP:
926 description = "Discard failure";
927 break;
928 case WRITE_SAME:
929 case WRITE_SAME_16:
930 if (cmd->cmnd[1] & 0x8)
931 description = "Discard failure";
932 else
933 description =
934 "Write same failure";
935 break;
936 default:
937 description = "Invalid command failure";
938 break;
939 }
940 action = ACTION_FAIL;
941 error = -EREMOTEIO;
942 } else
943 action = ACTION_FAIL;
944 break;
945 case ABORTED_COMMAND:
946 action = ACTION_FAIL;
947 if (sshdr.asc == 0x10) { /* DIF */
948 description = "Target Data Integrity Failure";
949 error = -EILSEQ;
950 }
951 break;
952 case NOT_READY:
953 /* If the device is in the process of becoming
954 * ready, or has a temporary blockage, retry.
955 */
956 if (sshdr.asc == 0x04) {
957 switch (sshdr.ascq) {
958 case 0x01: /* becoming ready */
959 case 0x04: /* format in progress */
960 case 0x05: /* rebuild in progress */
961 case 0x06: /* recalculation in progress */
962 case 0x07: /* operation in progress */
963 case 0x08: /* Long write in progress */
964 case 0x09: /* self test in progress */
965 case 0x14: /* space allocation in progress */
966 action = ACTION_DELAYED_RETRY;
967 break;
968 default:
969 description = "Device not ready";
970 action = ACTION_FAIL;
971 break;
972 }
973 } else {
974 description = "Device not ready";
975 action = ACTION_FAIL;
976 }
977 break;
978 case VOLUME_OVERFLOW:
979 /* See SSC3rXX or current. */
980 action = ACTION_FAIL;
981 break;
982 default:
983 description = "Unhandled sense code";
984 action = ACTION_FAIL;
985 break;
986 }
987 } else {
988 description = "Unhandled error code";
989 action = ACTION_FAIL;
990 }
991
992 switch (action) {
993 case ACTION_FAIL:
994 /* Give up and fail the remainder of the request */
995 scsi_release_buffers(cmd);
996 if (!(req->cmd_flags & REQ_QUIET)) {
997 if (description)
998 scmd_printk(KERN_INFO, cmd, "%s\n",
999 description);
1000 scsi_print_result(cmd);
1001 if (driver_byte(result) & DRIVER_SENSE)
1002 scsi_print_sense("", cmd);
1003 scsi_print_command(cmd);
1004 }
1005 if (blk_end_request_err(req, error))
1006 scsi_requeue_command(q, cmd);
1007 else
1008 scsi_next_command(cmd);
1009 break;
1010 case ACTION_REPREP:
1011 /* Unprep the request and put it back at the head of the queue.
1012 * A new command will be prepared and issued.
1013 */
1014 scsi_release_buffers(cmd);
1015 scsi_requeue_command(q, cmd);
1016 break;
1017 case ACTION_RETRY:
1018 /* Retry the same command immediately */
1019 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1020 break;
1021 case ACTION_DELAYED_RETRY:
1022 /* Retry the same command after a delay */
1023 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1024 break;
1025 }
1026 }
1027
1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1029 gfp_t gfp_mask)
1030 {
1031 int count;
1032
1033 /*
1034 * If sg table allocation fails, requeue request later.
1035 */
1036 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1037 gfp_mask))) {
1038 return BLKPREP_DEFER;
1039 }
1040
1041 req->buffer = NULL;
1042
1043 /*
1044 * Next, walk the list, and fill in the addresses and sizes of
1045 * each segment.
1046 */
1047 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1048 BUG_ON(count > sdb->table.nents);
1049 sdb->table.nents = count;
1050 sdb->length = blk_rq_bytes(req);
1051 return BLKPREP_OK;
1052 }
1053
1054 /*
1055 * Function: scsi_init_io()
1056 *
1057 * Purpose: SCSI I/O initialize function.
1058 *
1059 * Arguments: cmd - Command descriptor we wish to initialize
1060 *
1061 * Returns: 0 on success
1062 * BLKPREP_DEFER if the failure is retryable
1063 * BLKPREP_KILL if the failure is fatal
1064 */
1065 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1066 {
1067 struct request *rq = cmd->request;
1068
1069 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1070 if (error)
1071 goto err_exit;
1072
1073 if (blk_bidi_rq(rq)) {
1074 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1075 scsi_sdb_cache, GFP_ATOMIC);
1076 if (!bidi_sdb) {
1077 error = BLKPREP_DEFER;
1078 goto err_exit;
1079 }
1080
1081 rq->next_rq->special = bidi_sdb;
1082 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1083 if (error)
1084 goto err_exit;
1085 }
1086
1087 if (blk_integrity_rq(rq)) {
1088 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1089 int ivecs, count;
1090
1091 BUG_ON(prot_sdb == NULL);
1092 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1093
1094 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1095 error = BLKPREP_DEFER;
1096 goto err_exit;
1097 }
1098
1099 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1100 prot_sdb->table.sgl);
1101 BUG_ON(unlikely(count > ivecs));
1102 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1103
1104 cmd->prot_sdb = prot_sdb;
1105 cmd->prot_sdb->table.nents = count;
1106 }
1107
1108 return BLKPREP_OK ;
1109
1110 err_exit:
1111 scsi_release_buffers(cmd);
1112 cmd->request->special = NULL;
1113 scsi_put_command(cmd);
1114 return error;
1115 }
1116 EXPORT_SYMBOL(scsi_init_io);
1117
1118 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1119 struct request *req)
1120 {
1121 struct scsi_cmnd *cmd;
1122
1123 if (!req->special) {
1124 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1125 if (unlikely(!cmd))
1126 return NULL;
1127 req->special = cmd;
1128 } else {
1129 cmd = req->special;
1130 }
1131
1132 /* pull a tag out of the request if we have one */
1133 cmd->tag = req->tag;
1134 cmd->request = req;
1135
1136 cmd->cmnd = req->cmd;
1137 cmd->prot_op = SCSI_PROT_NORMAL;
1138
1139 return cmd;
1140 }
1141
1142 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144 struct scsi_cmnd *cmd;
1145 int ret = scsi_prep_state_check(sdev, req);
1146
1147 if (ret != BLKPREP_OK)
1148 return ret;
1149
1150 cmd = scsi_get_cmd_from_req(sdev, req);
1151 if (unlikely(!cmd))
1152 return BLKPREP_DEFER;
1153
1154 /*
1155 * BLOCK_PC requests may transfer data, in which case they must
1156 * a bio attached to them. Or they might contain a SCSI command
1157 * that does not transfer data, in which case they may optionally
1158 * submit a request without an attached bio.
1159 */
1160 if (req->bio) {
1161 int ret;
1162
1163 BUG_ON(!req->nr_phys_segments);
1164
1165 ret = scsi_init_io(cmd, GFP_ATOMIC);
1166 if (unlikely(ret))
1167 return ret;
1168 } else {
1169 BUG_ON(blk_rq_bytes(req));
1170
1171 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1172 req->buffer = NULL;
1173 }
1174
1175 cmd->cmd_len = req->cmd_len;
1176 if (!blk_rq_bytes(req))
1177 cmd->sc_data_direction = DMA_NONE;
1178 else if (rq_data_dir(req) == WRITE)
1179 cmd->sc_data_direction = DMA_TO_DEVICE;
1180 else
1181 cmd->sc_data_direction = DMA_FROM_DEVICE;
1182
1183 cmd->transfersize = blk_rq_bytes(req);
1184 cmd->allowed = req->retries;
1185 return BLKPREP_OK;
1186 }
1187 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1188
1189 /*
1190 * Setup a REQ_TYPE_FS command. These are simple read/write request
1191 * from filesystems that still need to be translated to SCSI CDBs from
1192 * the ULD.
1193 */
1194 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1195 {
1196 struct scsi_cmnd *cmd;
1197 int ret = scsi_prep_state_check(sdev, req);
1198
1199 if (ret != BLKPREP_OK)
1200 return ret;
1201
1202 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1203 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1204 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1205 if (ret != BLKPREP_OK)
1206 return ret;
1207 }
1208
1209 /*
1210 * Filesystem requests must transfer data.
1211 */
1212 BUG_ON(!req->nr_phys_segments);
1213
1214 cmd = scsi_get_cmd_from_req(sdev, req);
1215 if (unlikely(!cmd))
1216 return BLKPREP_DEFER;
1217
1218 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1219 return scsi_init_io(cmd, GFP_ATOMIC);
1220 }
1221 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1222
1223 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1224 {
1225 int ret = BLKPREP_OK;
1226
1227 /*
1228 * If the device is not in running state we will reject some
1229 * or all commands.
1230 */
1231 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1232 switch (sdev->sdev_state) {
1233 case SDEV_OFFLINE:
1234 case SDEV_TRANSPORT_OFFLINE:
1235 /*
1236 * If the device is offline we refuse to process any
1237 * commands. The device must be brought online
1238 * before trying any recovery commands.
1239 */
1240 sdev_printk(KERN_ERR, sdev,
1241 "rejecting I/O to offline device\n");
1242 ret = BLKPREP_KILL;
1243 break;
1244 case SDEV_DEL:
1245 /*
1246 * If the device is fully deleted, we refuse to
1247 * process any commands as well.
1248 */
1249 sdev_printk(KERN_ERR, sdev,
1250 "rejecting I/O to dead device\n");
1251 ret = BLKPREP_KILL;
1252 break;
1253 case SDEV_QUIESCE:
1254 case SDEV_BLOCK:
1255 case SDEV_CREATED_BLOCK:
1256 /*
1257 * If the devices is blocked we defer normal commands.
1258 */
1259 if (!(req->cmd_flags & REQ_PREEMPT))
1260 ret = BLKPREP_DEFER;
1261 break;
1262 default:
1263 /*
1264 * For any other not fully online state we only allow
1265 * special commands. In particular any user initiated
1266 * command is not allowed.
1267 */
1268 if (!(req->cmd_flags & REQ_PREEMPT))
1269 ret = BLKPREP_KILL;
1270 break;
1271 }
1272 }
1273 return ret;
1274 }
1275 EXPORT_SYMBOL(scsi_prep_state_check);
1276
1277 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1278 {
1279 struct scsi_device *sdev = q->queuedata;
1280
1281 switch (ret) {
1282 case BLKPREP_KILL:
1283 req->errors = DID_NO_CONNECT << 16;
1284 /* release the command and kill it */
1285 if (req->special) {
1286 struct scsi_cmnd *cmd = req->special;
1287 scsi_release_buffers(cmd);
1288 scsi_put_command(cmd);
1289 req->special = NULL;
1290 }
1291 break;
1292 case BLKPREP_DEFER:
1293 /*
1294 * If we defer, the blk_peek_request() returns NULL, but the
1295 * queue must be restarted, so we schedule a callback to happen
1296 * shortly.
1297 */
1298 if (sdev->device_busy == 0)
1299 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1300 break;
1301 default:
1302 req->cmd_flags |= REQ_DONTPREP;
1303 }
1304
1305 return ret;
1306 }
1307 EXPORT_SYMBOL(scsi_prep_return);
1308
1309 int scsi_prep_fn(struct request_queue *q, struct request *req)
1310 {
1311 struct scsi_device *sdev = q->queuedata;
1312 int ret = BLKPREP_KILL;
1313
1314 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1315 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1316 return scsi_prep_return(q, req, ret);
1317 }
1318 EXPORT_SYMBOL(scsi_prep_fn);
1319
1320 /*
1321 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1322 * return 0.
1323 *
1324 * Called with the queue_lock held.
1325 */
1326 static inline int scsi_dev_queue_ready(struct request_queue *q,
1327 struct scsi_device *sdev)
1328 {
1329 if (sdev->device_busy == 0 && sdev->device_blocked) {
1330 /*
1331 * unblock after device_blocked iterates to zero
1332 */
1333 if (--sdev->device_blocked == 0) {
1334 SCSI_LOG_MLQUEUE(3,
1335 sdev_printk(KERN_INFO, sdev,
1336 "unblocking device at zero depth\n"));
1337 } else {
1338 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1339 return 0;
1340 }
1341 }
1342 if (scsi_device_is_busy(sdev))
1343 return 0;
1344
1345 return 1;
1346 }
1347
1348
1349 /*
1350 * scsi_target_queue_ready: checks if there we can send commands to target
1351 * @sdev: scsi device on starget to check.
1352 *
1353 * Called with the host lock held.
1354 */
1355 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1356 struct scsi_device *sdev)
1357 {
1358 struct scsi_target *starget = scsi_target(sdev);
1359
1360 if (starget->single_lun) {
1361 if (starget->starget_sdev_user &&
1362 starget->starget_sdev_user != sdev)
1363 return 0;
1364 starget->starget_sdev_user = sdev;
1365 }
1366
1367 if (starget->target_busy == 0 && starget->target_blocked) {
1368 /*
1369 * unblock after target_blocked iterates to zero
1370 */
1371 if (--starget->target_blocked == 0) {
1372 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1373 "unblocking target at zero depth\n"));
1374 } else
1375 return 0;
1376 }
1377
1378 if (scsi_target_is_busy(starget)) {
1379 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1380 return 0;
1381 }
1382
1383 return 1;
1384 }
1385
1386 /*
1387 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1388 * return 0. We must end up running the queue again whenever 0 is
1389 * returned, else IO can hang.
1390 *
1391 * Called with host_lock held.
1392 */
1393 static inline int scsi_host_queue_ready(struct request_queue *q,
1394 struct Scsi_Host *shost,
1395 struct scsi_device *sdev)
1396 {
1397 if (scsi_host_in_recovery(shost))
1398 return 0;
1399 if (shost->host_busy == 0 && shost->host_blocked) {
1400 /*
1401 * unblock after host_blocked iterates to zero
1402 */
1403 if (--shost->host_blocked == 0) {
1404 SCSI_LOG_MLQUEUE(3,
1405 printk("scsi%d unblocking host at zero depth\n",
1406 shost->host_no));
1407 } else {
1408 return 0;
1409 }
1410 }
1411 if (scsi_host_is_busy(shost)) {
1412 if (list_empty(&sdev->starved_entry))
1413 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1414 return 0;
1415 }
1416
1417 /* We're OK to process the command, so we can't be starved */
1418 if (!list_empty(&sdev->starved_entry))
1419 list_del_init(&sdev->starved_entry);
1420
1421 return 1;
1422 }
1423
1424 /*
1425 * Busy state exporting function for request stacking drivers.
1426 *
1427 * For efficiency, no lock is taken to check the busy state of
1428 * shost/starget/sdev, since the returned value is not guaranteed and
1429 * may be changed after request stacking drivers call the function,
1430 * regardless of taking lock or not.
1431 *
1432 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1433 * needs to return 'not busy'. Otherwise, request stacking drivers
1434 * may hold requests forever.
1435 */
1436 static int scsi_lld_busy(struct request_queue *q)
1437 {
1438 struct scsi_device *sdev = q->queuedata;
1439 struct Scsi_Host *shost;
1440
1441 if (blk_queue_dying(q))
1442 return 0;
1443
1444 shost = sdev->host;
1445
1446 /*
1447 * Ignore host/starget busy state.
1448 * Since block layer does not have a concept of fairness across
1449 * multiple queues, congestion of host/starget needs to be handled
1450 * in SCSI layer.
1451 */
1452 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1453 return 1;
1454
1455 return 0;
1456 }
1457
1458 /*
1459 * Kill a request for a dead device
1460 */
1461 static void scsi_kill_request(struct request *req, struct request_queue *q)
1462 {
1463 struct scsi_cmnd *cmd = req->special;
1464 struct scsi_device *sdev;
1465 struct scsi_target *starget;
1466 struct Scsi_Host *shost;
1467
1468 blk_start_request(req);
1469
1470 scmd_printk(KERN_INFO, cmd, "killing request\n");
1471
1472 sdev = cmd->device;
1473 starget = scsi_target(sdev);
1474 shost = sdev->host;
1475 scsi_init_cmd_errh(cmd);
1476 cmd->result = DID_NO_CONNECT << 16;
1477 atomic_inc(&cmd->device->iorequest_cnt);
1478
1479 /*
1480 * SCSI request completion path will do scsi_device_unbusy(),
1481 * bump busy counts. To bump the counters, we need to dance
1482 * with the locks as normal issue path does.
1483 */
1484 sdev->device_busy++;
1485 spin_unlock(sdev->request_queue->queue_lock);
1486 spin_lock(shost->host_lock);
1487 shost->host_busy++;
1488 starget->target_busy++;
1489 spin_unlock(shost->host_lock);
1490 spin_lock(sdev->request_queue->queue_lock);
1491
1492 blk_complete_request(req);
1493 }
1494
1495 static void scsi_softirq_done(struct request *rq)
1496 {
1497 struct scsi_cmnd *cmd = rq->special;
1498 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1499 int disposition;
1500
1501 INIT_LIST_HEAD(&cmd->eh_entry);
1502
1503 atomic_inc(&cmd->device->iodone_cnt);
1504 if (cmd->result)
1505 atomic_inc(&cmd->device->ioerr_cnt);
1506
1507 disposition = scsi_decide_disposition(cmd);
1508 if (disposition != SUCCESS &&
1509 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1510 sdev_printk(KERN_ERR, cmd->device,
1511 "timing out command, waited %lus\n",
1512 wait_for/HZ);
1513 disposition = SUCCESS;
1514 }
1515
1516 scsi_log_completion(cmd, disposition);
1517
1518 switch (disposition) {
1519 case SUCCESS:
1520 scsi_finish_command(cmd);
1521 break;
1522 case NEEDS_RETRY:
1523 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1524 break;
1525 case ADD_TO_MLQUEUE:
1526 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1527 break;
1528 default:
1529 if (!scsi_eh_scmd_add(cmd, 0))
1530 scsi_finish_command(cmd);
1531 }
1532 }
1533
1534 /*
1535 * Function: scsi_request_fn()
1536 *
1537 * Purpose: Main strategy routine for SCSI.
1538 *
1539 * Arguments: q - Pointer to actual queue.
1540 *
1541 * Returns: Nothing
1542 *
1543 * Lock status: IO request lock assumed to be held when called.
1544 */
1545 static void scsi_request_fn(struct request_queue *q)
1546 {
1547 struct scsi_device *sdev = q->queuedata;
1548 struct Scsi_Host *shost;
1549 struct scsi_cmnd *cmd;
1550 struct request *req;
1551
1552 if(!get_device(&sdev->sdev_gendev))
1553 /* We must be tearing the block queue down already */
1554 return;
1555
1556 /*
1557 * To start with, we keep looping until the queue is empty, or until
1558 * the host is no longer able to accept any more requests.
1559 */
1560 shost = sdev->host;
1561 for (;;) {
1562 int rtn;
1563 /*
1564 * get next queueable request. We do this early to make sure
1565 * that the request is fully prepared even if we cannot
1566 * accept it.
1567 */
1568 req = blk_peek_request(q);
1569 if (!req || !scsi_dev_queue_ready(q, sdev))
1570 break;
1571
1572 if (unlikely(!scsi_device_online(sdev))) {
1573 sdev_printk(KERN_ERR, sdev,
1574 "rejecting I/O to offline device\n");
1575 scsi_kill_request(req, q);
1576 continue;
1577 }
1578
1579
1580 /*
1581 * Remove the request from the request list.
1582 */
1583 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1584 blk_start_request(req);
1585 sdev->device_busy++;
1586
1587 spin_unlock(q->queue_lock);
1588 cmd = req->special;
1589 if (unlikely(cmd == NULL)) {
1590 printk(KERN_CRIT "impossible request in %s.\n"
1591 "please mail a stack trace to "
1592 "linux-scsi@vger.kernel.org\n",
1593 __func__);
1594 blk_dump_rq_flags(req, "foo");
1595 BUG();
1596 }
1597 spin_lock(shost->host_lock);
1598
1599 /*
1600 * We hit this when the driver is using a host wide
1601 * tag map. For device level tag maps the queue_depth check
1602 * in the device ready fn would prevent us from trying
1603 * to allocate a tag. Since the map is a shared host resource
1604 * we add the dev to the starved list so it eventually gets
1605 * a run when a tag is freed.
1606 */
1607 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1608 if (list_empty(&sdev->starved_entry))
1609 list_add_tail(&sdev->starved_entry,
1610 &shost->starved_list);
1611 goto not_ready;
1612 }
1613
1614 if (!scsi_target_queue_ready(shost, sdev))
1615 goto not_ready;
1616
1617 if (!scsi_host_queue_ready(q, shost, sdev))
1618 goto not_ready;
1619
1620 scsi_target(sdev)->target_busy++;
1621 shost->host_busy++;
1622
1623 /*
1624 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1625 * take the lock again.
1626 */
1627 spin_unlock_irq(shost->host_lock);
1628
1629 /*
1630 * Finally, initialize any error handling parameters, and set up
1631 * the timers for timeouts.
1632 */
1633 scsi_init_cmd_errh(cmd);
1634
1635 /*
1636 * Dispatch the command to the low-level driver.
1637 */
1638 rtn = scsi_dispatch_cmd(cmd);
1639 spin_lock_irq(q->queue_lock);
1640 if (rtn)
1641 goto out_delay;
1642 }
1643
1644 goto out;
1645
1646 not_ready:
1647 spin_unlock_irq(shost->host_lock);
1648
1649 /*
1650 * lock q, handle tag, requeue req, and decrement device_busy. We
1651 * must return with queue_lock held.
1652 *
1653 * Decrementing device_busy without checking it is OK, as all such
1654 * cases (host limits or settings) should run the queue at some
1655 * later time.
1656 */
1657 spin_lock_irq(q->queue_lock);
1658 blk_requeue_request(q, req);
1659 sdev->device_busy--;
1660 out_delay:
1661 if (sdev->device_busy == 0)
1662 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1663 out:
1664 /* must be careful here...if we trigger the ->remove() function
1665 * we cannot be holding the q lock */
1666 spin_unlock_irq(q->queue_lock);
1667 put_device(&sdev->sdev_gendev);
1668 spin_lock_irq(q->queue_lock);
1669 }
1670
1671 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1672 {
1673 struct device *host_dev;
1674 u64 bounce_limit = 0xffffffff;
1675
1676 if (shost->unchecked_isa_dma)
1677 return BLK_BOUNCE_ISA;
1678 /*
1679 * Platforms with virtual-DMA translation
1680 * hardware have no practical limit.
1681 */
1682 if (!PCI_DMA_BUS_IS_PHYS)
1683 return BLK_BOUNCE_ANY;
1684
1685 host_dev = scsi_get_device(shost);
1686 if (host_dev && host_dev->dma_mask)
1687 bounce_limit = dma_max_pfn(host_dev) << PAGE_SHIFT;
1688
1689 return bounce_limit;
1690 }
1691 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1692
1693 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1694 request_fn_proc *request_fn)
1695 {
1696 struct request_queue *q;
1697 struct device *dev = shost->dma_dev;
1698
1699 q = blk_init_queue(request_fn, NULL);
1700 if (!q)
1701 return NULL;
1702
1703 /*
1704 * this limit is imposed by hardware restrictions
1705 */
1706 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1707 SCSI_MAX_SG_CHAIN_SEGMENTS));
1708
1709 if (scsi_host_prot_dma(shost)) {
1710 shost->sg_prot_tablesize =
1711 min_not_zero(shost->sg_prot_tablesize,
1712 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1713 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1714 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1715 }
1716
1717 blk_queue_max_hw_sectors(q, shost->max_sectors);
1718 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1719 blk_queue_segment_boundary(q, shost->dma_boundary);
1720 dma_set_seg_boundary(dev, shost->dma_boundary);
1721
1722 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1723
1724 if (!shost->use_clustering)
1725 q->limits.cluster = 0;
1726
1727 /*
1728 * set a reasonable default alignment on word boundaries: the
1729 * host and device may alter it using
1730 * blk_queue_update_dma_alignment() later.
1731 */
1732 blk_queue_dma_alignment(q, 0x03);
1733
1734 return q;
1735 }
1736 EXPORT_SYMBOL(__scsi_alloc_queue);
1737
1738 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1739 {
1740 struct request_queue *q;
1741
1742 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1743 if (!q)
1744 return NULL;
1745
1746 blk_queue_prep_rq(q, scsi_prep_fn);
1747 blk_queue_softirq_done(q, scsi_softirq_done);
1748 blk_queue_rq_timed_out(q, scsi_times_out);
1749 blk_queue_lld_busy(q, scsi_lld_busy);
1750 return q;
1751 }
1752
1753 /*
1754 * Function: scsi_block_requests()
1755 *
1756 * Purpose: Utility function used by low-level drivers to prevent further
1757 * commands from being queued to the device.
1758 *
1759 * Arguments: shost - Host in question
1760 *
1761 * Returns: Nothing
1762 *
1763 * Lock status: No locks are assumed held.
1764 *
1765 * Notes: There is no timer nor any other means by which the requests
1766 * get unblocked other than the low-level driver calling
1767 * scsi_unblock_requests().
1768 */
1769 void scsi_block_requests(struct Scsi_Host *shost)
1770 {
1771 shost->host_self_blocked = 1;
1772 }
1773 EXPORT_SYMBOL(scsi_block_requests);
1774
1775 /*
1776 * Function: scsi_unblock_requests()
1777 *
1778 * Purpose: Utility function used by low-level drivers to allow further
1779 * commands from being queued to the device.
1780 *
1781 * Arguments: shost - Host in question
1782 *
1783 * Returns: Nothing
1784 *
1785 * Lock status: No locks are assumed held.
1786 *
1787 * Notes: There is no timer nor any other means by which the requests
1788 * get unblocked other than the low-level driver calling
1789 * scsi_unblock_requests().
1790 *
1791 * This is done as an API function so that changes to the
1792 * internals of the scsi mid-layer won't require wholesale
1793 * changes to drivers that use this feature.
1794 */
1795 void scsi_unblock_requests(struct Scsi_Host *shost)
1796 {
1797 shost->host_self_blocked = 0;
1798 scsi_run_host_queues(shost);
1799 }
1800 EXPORT_SYMBOL(scsi_unblock_requests);
1801
1802 int __init scsi_init_queue(void)
1803 {
1804 int i;
1805
1806 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1807 sizeof(struct scsi_data_buffer),
1808 0, 0, NULL);
1809 if (!scsi_sdb_cache) {
1810 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1811 return -ENOMEM;
1812 }
1813
1814 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1815 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1816 int size = sgp->size * sizeof(struct scatterlist);
1817
1818 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1819 SLAB_HWCACHE_ALIGN, NULL);
1820 if (!sgp->slab) {
1821 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1822 sgp->name);
1823 goto cleanup_sdb;
1824 }
1825
1826 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1827 sgp->slab);
1828 if (!sgp->pool) {
1829 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1830 sgp->name);
1831 goto cleanup_sdb;
1832 }
1833 }
1834
1835 return 0;
1836
1837 cleanup_sdb:
1838 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840 if (sgp->pool)
1841 mempool_destroy(sgp->pool);
1842 if (sgp->slab)
1843 kmem_cache_destroy(sgp->slab);
1844 }
1845 kmem_cache_destroy(scsi_sdb_cache);
1846
1847 return -ENOMEM;
1848 }
1849
1850 void scsi_exit_queue(void)
1851 {
1852 int i;
1853
1854 kmem_cache_destroy(scsi_sdb_cache);
1855
1856 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1857 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1858 mempool_destroy(sgp->pool);
1859 kmem_cache_destroy(sgp->slab);
1860 }
1861 }
1862
1863 /**
1864 * scsi_mode_select - issue a mode select
1865 * @sdev: SCSI device to be queried
1866 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1867 * @sp: Save page bit (0 == don't save, 1 == save)
1868 * @modepage: mode page being requested
1869 * @buffer: request buffer (may not be smaller than eight bytes)
1870 * @len: length of request buffer.
1871 * @timeout: command timeout
1872 * @retries: number of retries before failing
1873 * @data: returns a structure abstracting the mode header data
1874 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1875 * must be SCSI_SENSE_BUFFERSIZE big.
1876 *
1877 * Returns zero if successful; negative error number or scsi
1878 * status on error
1879 *
1880 */
1881 int
1882 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1883 unsigned char *buffer, int len, int timeout, int retries,
1884 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1885 {
1886 unsigned char cmd[10];
1887 unsigned char *real_buffer;
1888 int ret;
1889
1890 memset(cmd, 0, sizeof(cmd));
1891 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1892
1893 if (sdev->use_10_for_ms) {
1894 if (len > 65535)
1895 return -EINVAL;
1896 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1897 if (!real_buffer)
1898 return -ENOMEM;
1899 memcpy(real_buffer + 8, buffer, len);
1900 len += 8;
1901 real_buffer[0] = 0;
1902 real_buffer[1] = 0;
1903 real_buffer[2] = data->medium_type;
1904 real_buffer[3] = data->device_specific;
1905 real_buffer[4] = data->longlba ? 0x01 : 0;
1906 real_buffer[5] = 0;
1907 real_buffer[6] = data->block_descriptor_length >> 8;
1908 real_buffer[7] = data->block_descriptor_length;
1909
1910 cmd[0] = MODE_SELECT_10;
1911 cmd[7] = len >> 8;
1912 cmd[8] = len;
1913 } else {
1914 if (len > 255 || data->block_descriptor_length > 255 ||
1915 data->longlba)
1916 return -EINVAL;
1917
1918 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1919 if (!real_buffer)
1920 return -ENOMEM;
1921 memcpy(real_buffer + 4, buffer, len);
1922 len += 4;
1923 real_buffer[0] = 0;
1924 real_buffer[1] = data->medium_type;
1925 real_buffer[2] = data->device_specific;
1926 real_buffer[3] = data->block_descriptor_length;
1927
1928
1929 cmd[0] = MODE_SELECT;
1930 cmd[4] = len;
1931 }
1932
1933 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1934 sshdr, timeout, retries, NULL);
1935 kfree(real_buffer);
1936 return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(scsi_mode_select);
1939
1940 /**
1941 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1942 * @sdev: SCSI device to be queried
1943 * @dbd: set if mode sense will allow block descriptors to be returned
1944 * @modepage: mode page being requested
1945 * @buffer: request buffer (may not be smaller than eight bytes)
1946 * @len: length of request buffer.
1947 * @timeout: command timeout
1948 * @retries: number of retries before failing
1949 * @data: returns a structure abstracting the mode header data
1950 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1951 * must be SCSI_SENSE_BUFFERSIZE big.
1952 *
1953 * Returns zero if unsuccessful, or the header offset (either 4
1954 * or 8 depending on whether a six or ten byte command was
1955 * issued) if successful.
1956 */
1957 int
1958 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1959 unsigned char *buffer, int len, int timeout, int retries,
1960 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1961 {
1962 unsigned char cmd[12];
1963 int use_10_for_ms;
1964 int header_length;
1965 int result;
1966 struct scsi_sense_hdr my_sshdr;
1967
1968 memset(data, 0, sizeof(*data));
1969 memset(&cmd[0], 0, 12);
1970 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1971 cmd[2] = modepage;
1972
1973 /* caller might not be interested in sense, but we need it */
1974 if (!sshdr)
1975 sshdr = &my_sshdr;
1976
1977 retry:
1978 use_10_for_ms = sdev->use_10_for_ms;
1979
1980 if (use_10_for_ms) {
1981 if (len < 8)
1982 len = 8;
1983
1984 cmd[0] = MODE_SENSE_10;
1985 cmd[8] = len;
1986 header_length = 8;
1987 } else {
1988 if (len < 4)
1989 len = 4;
1990
1991 cmd[0] = MODE_SENSE;
1992 cmd[4] = len;
1993 header_length = 4;
1994 }
1995
1996 memset(buffer, 0, len);
1997
1998 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1999 sshdr, timeout, retries, NULL);
2000
2001 /* This code looks awful: what it's doing is making sure an
2002 * ILLEGAL REQUEST sense return identifies the actual command
2003 * byte as the problem. MODE_SENSE commands can return
2004 * ILLEGAL REQUEST if the code page isn't supported */
2005
2006 if (use_10_for_ms && !scsi_status_is_good(result) &&
2007 (driver_byte(result) & DRIVER_SENSE)) {
2008 if (scsi_sense_valid(sshdr)) {
2009 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2010 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2011 /*
2012 * Invalid command operation code
2013 */
2014 sdev->use_10_for_ms = 0;
2015 goto retry;
2016 }
2017 }
2018 }
2019
2020 if(scsi_status_is_good(result)) {
2021 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2022 (modepage == 6 || modepage == 8))) {
2023 /* Initio breakage? */
2024 header_length = 0;
2025 data->length = 13;
2026 data->medium_type = 0;
2027 data->device_specific = 0;
2028 data->longlba = 0;
2029 data->block_descriptor_length = 0;
2030 } else if(use_10_for_ms) {
2031 data->length = buffer[0]*256 + buffer[1] + 2;
2032 data->medium_type = buffer[2];
2033 data->device_specific = buffer[3];
2034 data->longlba = buffer[4] & 0x01;
2035 data->block_descriptor_length = buffer[6]*256
2036 + buffer[7];
2037 } else {
2038 data->length = buffer[0] + 1;
2039 data->medium_type = buffer[1];
2040 data->device_specific = buffer[2];
2041 data->block_descriptor_length = buffer[3];
2042 }
2043 data->header_length = header_length;
2044 }
2045
2046 return result;
2047 }
2048 EXPORT_SYMBOL(scsi_mode_sense);
2049
2050 /**
2051 * scsi_test_unit_ready - test if unit is ready
2052 * @sdev: scsi device to change the state of.
2053 * @timeout: command timeout
2054 * @retries: number of retries before failing
2055 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2056 * returning sense. Make sure that this is cleared before passing
2057 * in.
2058 *
2059 * Returns zero if unsuccessful or an error if TUR failed. For
2060 * removable media, UNIT_ATTENTION sets ->changed flag.
2061 **/
2062 int
2063 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2064 struct scsi_sense_hdr *sshdr_external)
2065 {
2066 char cmd[] = {
2067 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2068 };
2069 struct scsi_sense_hdr *sshdr;
2070 int result;
2071
2072 if (!sshdr_external)
2073 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2074 else
2075 sshdr = sshdr_external;
2076
2077 /* try to eat the UNIT_ATTENTION if there are enough retries */
2078 do {
2079 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2080 timeout, retries, NULL);
2081 if (sdev->removable && scsi_sense_valid(sshdr) &&
2082 sshdr->sense_key == UNIT_ATTENTION)
2083 sdev->changed = 1;
2084 } while (scsi_sense_valid(sshdr) &&
2085 sshdr->sense_key == UNIT_ATTENTION && --retries);
2086
2087 if (!sshdr_external)
2088 kfree(sshdr);
2089 return result;
2090 }
2091 EXPORT_SYMBOL(scsi_test_unit_ready);
2092
2093 /**
2094 * scsi_device_set_state - Take the given device through the device state model.
2095 * @sdev: scsi device to change the state of.
2096 * @state: state to change to.
2097 *
2098 * Returns zero if unsuccessful or an error if the requested
2099 * transition is illegal.
2100 */
2101 int
2102 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2103 {
2104 enum scsi_device_state oldstate = sdev->sdev_state;
2105
2106 if (state == oldstate)
2107 return 0;
2108
2109 switch (state) {
2110 case SDEV_CREATED:
2111 switch (oldstate) {
2112 case SDEV_CREATED_BLOCK:
2113 break;
2114 default:
2115 goto illegal;
2116 }
2117 break;
2118
2119 case SDEV_RUNNING:
2120 switch (oldstate) {
2121 case SDEV_CREATED:
2122 case SDEV_OFFLINE:
2123 case SDEV_TRANSPORT_OFFLINE:
2124 case SDEV_QUIESCE:
2125 case SDEV_BLOCK:
2126 break;
2127 default:
2128 goto illegal;
2129 }
2130 break;
2131
2132 case SDEV_QUIESCE:
2133 switch (oldstate) {
2134 case SDEV_RUNNING:
2135 case SDEV_OFFLINE:
2136 case SDEV_TRANSPORT_OFFLINE:
2137 break;
2138 default:
2139 goto illegal;
2140 }
2141 break;
2142
2143 case SDEV_OFFLINE:
2144 case SDEV_TRANSPORT_OFFLINE:
2145 switch (oldstate) {
2146 case SDEV_CREATED:
2147 case SDEV_RUNNING:
2148 case SDEV_QUIESCE:
2149 case SDEV_BLOCK:
2150 break;
2151 default:
2152 goto illegal;
2153 }
2154 break;
2155
2156 case SDEV_BLOCK:
2157 switch (oldstate) {
2158 case SDEV_RUNNING:
2159 case SDEV_CREATED_BLOCK:
2160 break;
2161 default:
2162 goto illegal;
2163 }
2164 break;
2165
2166 case SDEV_CREATED_BLOCK:
2167 switch (oldstate) {
2168 case SDEV_CREATED:
2169 break;
2170 default:
2171 goto illegal;
2172 }
2173 break;
2174
2175 case SDEV_CANCEL:
2176 switch (oldstate) {
2177 case SDEV_CREATED:
2178 case SDEV_RUNNING:
2179 case SDEV_QUIESCE:
2180 case SDEV_OFFLINE:
2181 case SDEV_TRANSPORT_OFFLINE:
2182 case SDEV_BLOCK:
2183 break;
2184 default:
2185 goto illegal;
2186 }
2187 break;
2188
2189 case SDEV_DEL:
2190 switch (oldstate) {
2191 case SDEV_CREATED:
2192 case SDEV_RUNNING:
2193 case SDEV_OFFLINE:
2194 case SDEV_TRANSPORT_OFFLINE:
2195 case SDEV_CANCEL:
2196 case SDEV_CREATED_BLOCK:
2197 break;
2198 default:
2199 goto illegal;
2200 }
2201 break;
2202
2203 }
2204 sdev->sdev_state = state;
2205 return 0;
2206
2207 illegal:
2208 SCSI_LOG_ERROR_RECOVERY(1,
2209 sdev_printk(KERN_ERR, sdev,
2210 "Illegal state transition %s->%s\n",
2211 scsi_device_state_name(oldstate),
2212 scsi_device_state_name(state))
2213 );
2214 return -EINVAL;
2215 }
2216 EXPORT_SYMBOL(scsi_device_set_state);
2217
2218 /**
2219 * sdev_evt_emit - emit a single SCSI device uevent
2220 * @sdev: associated SCSI device
2221 * @evt: event to emit
2222 *
2223 * Send a single uevent (scsi_event) to the associated scsi_device.
2224 */
2225 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2226 {
2227 int idx = 0;
2228 char *envp[3];
2229
2230 switch (evt->evt_type) {
2231 case SDEV_EVT_MEDIA_CHANGE:
2232 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2233 break;
2234 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2235 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2236 break;
2237 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2238 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2239 break;
2240 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2241 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2242 break;
2243 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2244 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2245 break;
2246 case SDEV_EVT_LUN_CHANGE_REPORTED:
2247 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2248 break;
2249 default:
2250 /* do nothing */
2251 break;
2252 }
2253
2254 envp[idx++] = NULL;
2255
2256 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2257 }
2258
2259 /**
2260 * sdev_evt_thread - send a uevent for each scsi event
2261 * @work: work struct for scsi_device
2262 *
2263 * Dispatch queued events to their associated scsi_device kobjects
2264 * as uevents.
2265 */
2266 void scsi_evt_thread(struct work_struct *work)
2267 {
2268 struct scsi_device *sdev;
2269 enum scsi_device_event evt_type;
2270 LIST_HEAD(event_list);
2271
2272 sdev = container_of(work, struct scsi_device, event_work);
2273
2274 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2275 if (test_and_clear_bit(evt_type, sdev->pending_events))
2276 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2277
2278 while (1) {
2279 struct scsi_event *evt;
2280 struct list_head *this, *tmp;
2281 unsigned long flags;
2282
2283 spin_lock_irqsave(&sdev->list_lock, flags);
2284 list_splice_init(&sdev->event_list, &event_list);
2285 spin_unlock_irqrestore(&sdev->list_lock, flags);
2286
2287 if (list_empty(&event_list))
2288 break;
2289
2290 list_for_each_safe(this, tmp, &event_list) {
2291 evt = list_entry(this, struct scsi_event, node);
2292 list_del(&evt->node);
2293 scsi_evt_emit(sdev, evt);
2294 kfree(evt);
2295 }
2296 }
2297 }
2298
2299 /**
2300 * sdev_evt_send - send asserted event to uevent thread
2301 * @sdev: scsi_device event occurred on
2302 * @evt: event to send
2303 *
2304 * Assert scsi device event asynchronously.
2305 */
2306 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2307 {
2308 unsigned long flags;
2309
2310 #if 0
2311 /* FIXME: currently this check eliminates all media change events
2312 * for polled devices. Need to update to discriminate between AN
2313 * and polled events */
2314 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2315 kfree(evt);
2316 return;
2317 }
2318 #endif
2319
2320 spin_lock_irqsave(&sdev->list_lock, flags);
2321 list_add_tail(&evt->node, &sdev->event_list);
2322 schedule_work(&sdev->event_work);
2323 spin_unlock_irqrestore(&sdev->list_lock, flags);
2324 }
2325 EXPORT_SYMBOL_GPL(sdev_evt_send);
2326
2327 /**
2328 * sdev_evt_alloc - allocate a new scsi event
2329 * @evt_type: type of event to allocate
2330 * @gfpflags: GFP flags for allocation
2331 *
2332 * Allocates and returns a new scsi_event.
2333 */
2334 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2335 gfp_t gfpflags)
2336 {
2337 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2338 if (!evt)
2339 return NULL;
2340
2341 evt->evt_type = evt_type;
2342 INIT_LIST_HEAD(&evt->node);
2343
2344 /* evt_type-specific initialization, if any */
2345 switch (evt_type) {
2346 case SDEV_EVT_MEDIA_CHANGE:
2347 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2348 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2349 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2350 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2351 case SDEV_EVT_LUN_CHANGE_REPORTED:
2352 default:
2353 /* do nothing */
2354 break;
2355 }
2356
2357 return evt;
2358 }
2359 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2360
2361 /**
2362 * sdev_evt_send_simple - send asserted event to uevent thread
2363 * @sdev: scsi_device event occurred on
2364 * @evt_type: type of event to send
2365 * @gfpflags: GFP flags for allocation
2366 *
2367 * Assert scsi device event asynchronously, given an event type.
2368 */
2369 void sdev_evt_send_simple(struct scsi_device *sdev,
2370 enum scsi_device_event evt_type, gfp_t gfpflags)
2371 {
2372 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2373 if (!evt) {
2374 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2375 evt_type);
2376 return;
2377 }
2378
2379 sdev_evt_send(sdev, evt);
2380 }
2381 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2382
2383 /**
2384 * scsi_device_quiesce - Block user issued commands.
2385 * @sdev: scsi device to quiesce.
2386 *
2387 * This works by trying to transition to the SDEV_QUIESCE state
2388 * (which must be a legal transition). When the device is in this
2389 * state, only special requests will be accepted, all others will
2390 * be deferred. Since special requests may also be requeued requests,
2391 * a successful return doesn't guarantee the device will be
2392 * totally quiescent.
2393 *
2394 * Must be called with user context, may sleep.
2395 *
2396 * Returns zero if unsuccessful or an error if not.
2397 */
2398 int
2399 scsi_device_quiesce(struct scsi_device *sdev)
2400 {
2401 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2402 if (err)
2403 return err;
2404
2405 scsi_run_queue(sdev->request_queue);
2406 while (sdev->device_busy) {
2407 msleep_interruptible(200);
2408 scsi_run_queue(sdev->request_queue);
2409 }
2410 return 0;
2411 }
2412 EXPORT_SYMBOL(scsi_device_quiesce);
2413
2414 /**
2415 * scsi_device_resume - Restart user issued commands to a quiesced device.
2416 * @sdev: scsi device to resume.
2417 *
2418 * Moves the device from quiesced back to running and restarts the
2419 * queues.
2420 *
2421 * Must be called with user context, may sleep.
2422 */
2423 void scsi_device_resume(struct scsi_device *sdev)
2424 {
2425 /* check if the device state was mutated prior to resume, and if
2426 * so assume the state is being managed elsewhere (for example
2427 * device deleted during suspend)
2428 */
2429 if (sdev->sdev_state != SDEV_QUIESCE ||
2430 scsi_device_set_state(sdev, SDEV_RUNNING))
2431 return;
2432 scsi_run_queue(sdev->request_queue);
2433 }
2434 EXPORT_SYMBOL(scsi_device_resume);
2435
2436 static void
2437 device_quiesce_fn(struct scsi_device *sdev, void *data)
2438 {
2439 scsi_device_quiesce(sdev);
2440 }
2441
2442 void
2443 scsi_target_quiesce(struct scsi_target *starget)
2444 {
2445 starget_for_each_device(starget, NULL, device_quiesce_fn);
2446 }
2447 EXPORT_SYMBOL(scsi_target_quiesce);
2448
2449 static void
2450 device_resume_fn(struct scsi_device *sdev, void *data)
2451 {
2452 scsi_device_resume(sdev);
2453 }
2454
2455 void
2456 scsi_target_resume(struct scsi_target *starget)
2457 {
2458 starget_for_each_device(starget, NULL, device_resume_fn);
2459 }
2460 EXPORT_SYMBOL(scsi_target_resume);
2461
2462 /**
2463 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2464 * @sdev: device to block
2465 *
2466 * Block request made by scsi lld's to temporarily stop all
2467 * scsi commands on the specified device. Called from interrupt
2468 * or normal process context.
2469 *
2470 * Returns zero if successful or error if not
2471 *
2472 * Notes:
2473 * This routine transitions the device to the SDEV_BLOCK state
2474 * (which must be a legal transition). When the device is in this
2475 * state, all commands are deferred until the scsi lld reenables
2476 * the device with scsi_device_unblock or device_block_tmo fires.
2477 */
2478 int
2479 scsi_internal_device_block(struct scsi_device *sdev)
2480 {
2481 struct request_queue *q = sdev->request_queue;
2482 unsigned long flags;
2483 int err = 0;
2484
2485 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2486 if (err) {
2487 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2488
2489 if (err)
2490 return err;
2491 }
2492
2493 /*
2494 * The device has transitioned to SDEV_BLOCK. Stop the
2495 * block layer from calling the midlayer with this device's
2496 * request queue.
2497 */
2498 spin_lock_irqsave(q->queue_lock, flags);
2499 blk_stop_queue(q);
2500 spin_unlock_irqrestore(q->queue_lock, flags);
2501
2502 return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2505
2506 /**
2507 * scsi_internal_device_unblock - resume a device after a block request
2508 * @sdev: device to resume
2509 * @new_state: state to set devices to after unblocking
2510 *
2511 * Called by scsi lld's or the midlayer to restart the device queue
2512 * for the previously suspended scsi device. Called from interrupt or
2513 * normal process context.
2514 *
2515 * Returns zero if successful or error if not.
2516 *
2517 * Notes:
2518 * This routine transitions the device to the SDEV_RUNNING state
2519 * or to one of the offline states (which must be a legal transition)
2520 * allowing the midlayer to goose the queue for this device.
2521 */
2522 int
2523 scsi_internal_device_unblock(struct scsi_device *sdev,
2524 enum scsi_device_state new_state)
2525 {
2526 struct request_queue *q = sdev->request_queue;
2527 unsigned long flags;
2528
2529 /*
2530 * Try to transition the scsi device to SDEV_RUNNING or one of the
2531 * offlined states and goose the device queue if successful.
2532 */
2533 if ((sdev->sdev_state == SDEV_BLOCK) ||
2534 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2535 sdev->sdev_state = new_state;
2536 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2537 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2538 new_state == SDEV_OFFLINE)
2539 sdev->sdev_state = new_state;
2540 else
2541 sdev->sdev_state = SDEV_CREATED;
2542 } else if (sdev->sdev_state != SDEV_CANCEL &&
2543 sdev->sdev_state != SDEV_OFFLINE)
2544 return -EINVAL;
2545
2546 spin_lock_irqsave(q->queue_lock, flags);
2547 blk_start_queue(q);
2548 spin_unlock_irqrestore(q->queue_lock, flags);
2549
2550 return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2553
2554 static void
2555 device_block(struct scsi_device *sdev, void *data)
2556 {
2557 scsi_internal_device_block(sdev);
2558 }
2559
2560 static int
2561 target_block(struct device *dev, void *data)
2562 {
2563 if (scsi_is_target_device(dev))
2564 starget_for_each_device(to_scsi_target(dev), NULL,
2565 device_block);
2566 return 0;
2567 }
2568
2569 void
2570 scsi_target_block(struct device *dev)
2571 {
2572 if (scsi_is_target_device(dev))
2573 starget_for_each_device(to_scsi_target(dev), NULL,
2574 device_block);
2575 else
2576 device_for_each_child(dev, NULL, target_block);
2577 }
2578 EXPORT_SYMBOL_GPL(scsi_target_block);
2579
2580 static void
2581 device_unblock(struct scsi_device *sdev, void *data)
2582 {
2583 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2584 }
2585
2586 static int
2587 target_unblock(struct device *dev, void *data)
2588 {
2589 if (scsi_is_target_device(dev))
2590 starget_for_each_device(to_scsi_target(dev), data,
2591 device_unblock);
2592 return 0;
2593 }
2594
2595 void
2596 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2597 {
2598 if (scsi_is_target_device(dev))
2599 starget_for_each_device(to_scsi_target(dev), &new_state,
2600 device_unblock);
2601 else
2602 device_for_each_child(dev, &new_state, target_unblock);
2603 }
2604 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2605
2606 /**
2607 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2608 * @sgl: scatter-gather list
2609 * @sg_count: number of segments in sg
2610 * @offset: offset in bytes into sg, on return offset into the mapped area
2611 * @len: bytes to map, on return number of bytes mapped
2612 *
2613 * Returns virtual address of the start of the mapped page
2614 */
2615 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2616 size_t *offset, size_t *len)
2617 {
2618 int i;
2619 size_t sg_len = 0, len_complete = 0;
2620 struct scatterlist *sg;
2621 struct page *page;
2622
2623 WARN_ON(!irqs_disabled());
2624
2625 for_each_sg(sgl, sg, sg_count, i) {
2626 len_complete = sg_len; /* Complete sg-entries */
2627 sg_len += sg->length;
2628 if (sg_len > *offset)
2629 break;
2630 }
2631
2632 if (unlikely(i == sg_count)) {
2633 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2634 "elements %d\n",
2635 __func__, sg_len, *offset, sg_count);
2636 WARN_ON(1);
2637 return NULL;
2638 }
2639
2640 /* Offset starting from the beginning of first page in this sg-entry */
2641 *offset = *offset - len_complete + sg->offset;
2642
2643 /* Assumption: contiguous pages can be accessed as "page + i" */
2644 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2645 *offset &= ~PAGE_MASK;
2646
2647 /* Bytes in this sg-entry from *offset to the end of the page */
2648 sg_len = PAGE_SIZE - *offset;
2649 if (*len > sg_len)
2650 *len = sg_len;
2651
2652 return kmap_atomic(page);
2653 }
2654 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2655
2656 /**
2657 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2658 * @virt: virtual address to be unmapped
2659 */
2660 void scsi_kunmap_atomic_sg(void *virt)
2661 {
2662 kunmap_atomic(virt);
2663 }
2664 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2665
2666 void sdev_disable_disk_events(struct scsi_device *sdev)
2667 {
2668 atomic_inc(&sdev->disk_events_disable_depth);
2669 }
2670 EXPORT_SYMBOL(sdev_disable_disk_events);
2671
2672 void sdev_enable_disk_events(struct scsi_device *sdev)
2673 {
2674 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2675 return;
2676 atomic_dec(&sdev->disk_events_disable_depth);
2677 }
2678 EXPORT_SYMBOL(sdev_enable_disk_events);