]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'actions-drivers-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(struct Scsi_Host *shost)
49 {
50 return shost->unchecked_isa_dma ?
51 scsi_sense_isadma_cache : scsi_sense_cache;
52 }
53
54 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
55 unsigned char *sense_buffer)
56 {
57 kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
58 }
59
60 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
61 gfp_t gfp_mask, int numa_node)
62 {
63 return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
64 numa_node);
65 }
66
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69 struct kmem_cache *cache;
70 int ret = 0;
71
72 cache = scsi_select_sense_cache(shost);
73 if (cache)
74 return 0;
75
76 mutex_lock(&scsi_sense_cache_mutex);
77 if (shost->unchecked_isa_dma) {
78 scsi_sense_isadma_cache =
79 kmem_cache_create("scsi_sense_cache(DMA)",
80 SCSI_SENSE_BUFFERSIZE, 0,
81 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82 if (!scsi_sense_isadma_cache)
83 ret = -ENOMEM;
84 } else {
85 scsi_sense_cache =
86 kmem_cache_create("scsi_sense_cache",
87 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88 if (!scsi_sense_cache)
89 ret = -ENOMEM;
90 }
91
92 mutex_unlock(&scsi_sense_cache_mutex);
93 return ret;
94 }
95
96 /*
97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98 * not change behaviour from the previous unplug mechanism, experimentation
99 * may prove this needs changing.
100 */
101 #define SCSI_QUEUE_DELAY 3
102
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106 struct Scsi_Host *host = cmd->device->host;
107 struct scsi_device *device = cmd->device;
108 struct scsi_target *starget = scsi_target(device);
109
110 /*
111 * Set the appropriate busy bit for the device/host.
112 *
113 * If the host/device isn't busy, assume that something actually
114 * completed, and that we should be able to queue a command now.
115 *
116 * Note that the prior mid-layer assumption that any host could
117 * always queue at least one command is now broken. The mid-layer
118 * will implement a user specifiable stall (see
119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120 * if a command is requeued with no other commands outstanding
121 * either for the device or for the host.
122 */
123 switch (reason) {
124 case SCSI_MLQUEUE_HOST_BUSY:
125 atomic_set(&host->host_blocked, host->max_host_blocked);
126 break;
127 case SCSI_MLQUEUE_DEVICE_BUSY:
128 case SCSI_MLQUEUE_EH_RETRY:
129 atomic_set(&device->device_blocked,
130 device->max_device_blocked);
131 break;
132 case SCSI_MLQUEUE_TARGET_BUSY:
133 atomic_set(&starget->target_blocked,
134 starget->max_target_blocked);
135 break;
136 }
137 }
138
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141 struct scsi_device *sdev = cmd->device;
142
143 blk_mq_requeue_request(cmd->request, true);
144 put_device(&sdev->sdev_gendev);
145 }
146
147 /**
148 * __scsi_queue_insert - private queue insertion
149 * @cmd: The SCSI command being requeued
150 * @reason: The reason for the requeue
151 * @unbusy: Whether the queue should be unbusied
152 *
153 * This is a private queue insertion. The public interface
154 * scsi_queue_insert() always assumes the queue should be unbusied
155 * because it's always called before the completion. This function is
156 * for a requeue after completion, which should only occur in this
157 * file.
158 */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161 struct scsi_device *device = cmd->device;
162 struct request_queue *q = device->request_queue;
163 unsigned long flags;
164
165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166 "Inserting command %p into mlqueue\n", cmd));
167
168 scsi_set_blocked(cmd, reason);
169
170 /*
171 * Decrement the counters, since these commands are no longer
172 * active on the host/device.
173 */
174 if (unbusy)
175 scsi_device_unbusy(device);
176
177 /*
178 * Requeue this command. It will go before all other commands
179 * that are already in the queue. Schedule requeue work under
180 * lock such that the kblockd_schedule_work() call happens
181 * before blk_cleanup_queue() finishes.
182 */
183 cmd->result = 0;
184 if (q->mq_ops) {
185 scsi_mq_requeue_cmd(cmd);
186 return;
187 }
188 spin_lock_irqsave(q->queue_lock, flags);
189 blk_requeue_request(q, cmd->request);
190 kblockd_schedule_work(&device->requeue_work);
191 spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193
194 /*
195 * Function: scsi_queue_insert()
196 *
197 * Purpose: Insert a command in the midlevel queue.
198 *
199 * Arguments: cmd - command that we are adding to queue.
200 * reason - why we are inserting command to queue.
201 *
202 * Lock status: Assumed that lock is not held upon entry.
203 *
204 * Returns: Nothing.
205 *
206 * Notes: We do this for one of two cases. Either the host is busy
207 * and it cannot accept any more commands for the time being,
208 * or the device returned QUEUE_FULL and can accept no more
209 * commands.
210 * Notes: This could be called either from an interrupt context or a
211 * normal process context.
212 */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215 __scsi_queue_insert(cmd, reason, 1);
216 }
217
218
219 /**
220 * scsi_execute - insert request and wait for the result
221 * @sdev: scsi device
222 * @cmd: scsi command
223 * @data_direction: data direction
224 * @buffer: data buffer
225 * @bufflen: len of buffer
226 * @sense: optional sense buffer
227 * @sshdr: optional decoded sense header
228 * @timeout: request timeout in seconds
229 * @retries: number of times to retry request
230 * @flags: flags for ->cmd_flags
231 * @rq_flags: flags for ->rq_flags
232 * @resid: optional residual length
233 *
234 * Returns the scsi_cmnd result field if a command was executed, or a negative
235 * Linux error code if we didn't get that far.
236 */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238 int data_direction, void *buffer, unsigned bufflen,
239 unsigned char *sense, struct scsi_sense_hdr *sshdr,
240 int timeout, int retries, u64 flags, req_flags_t rq_flags,
241 int *resid)
242 {
243 struct request *req;
244 struct scsi_request *rq;
245 int ret = DRIVER_ERROR << 24;
246
247 req = blk_get_request(sdev->request_queue,
248 data_direction == DMA_TO_DEVICE ?
249 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250 if (IS_ERR(req))
251 return ret;
252 rq = scsi_req(req);
253 scsi_req_init(req);
254
255 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
256 buffer, bufflen, __GFP_RECLAIM))
257 goto out;
258
259 rq->cmd_len = COMMAND_SIZE(cmd[0]);
260 memcpy(rq->cmd, cmd, rq->cmd_len);
261 rq->retries = retries;
262 req->timeout = timeout;
263 req->cmd_flags |= flags;
264 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
265
266 /*
267 * head injection *required* here otherwise quiesce won't work
268 */
269 blk_execute_rq(req->q, NULL, req, 1);
270
271 /*
272 * Some devices (USB mass-storage in particular) may transfer
273 * garbage data together with a residue indicating that the data
274 * is invalid. Prevent the garbage from being misinterpreted
275 * and prevent security leaks by zeroing out the excess data.
276 */
277 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
278 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
279
280 if (resid)
281 *resid = rq->resid_len;
282 if (sense && rq->sense_len)
283 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
284 if (sshdr)
285 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
286 ret = rq->result;
287 out:
288 blk_put_request(req);
289
290 return ret;
291 }
292 EXPORT_SYMBOL(scsi_execute);
293
294 /*
295 * Function: scsi_init_cmd_errh()
296 *
297 * Purpose: Initialize cmd fields related to error handling.
298 *
299 * Arguments: cmd - command that is ready to be queued.
300 *
301 * Notes: This function has the job of initializing a number of
302 * fields related to error handling. Typically this will
303 * be called once for each command, as required.
304 */
305 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
306 {
307 cmd->serial_number = 0;
308 scsi_set_resid(cmd, 0);
309 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
310 if (cmd->cmd_len == 0)
311 cmd->cmd_len = scsi_command_size(cmd->cmnd);
312 }
313
314 void scsi_device_unbusy(struct scsi_device *sdev)
315 {
316 struct Scsi_Host *shost = sdev->host;
317 struct scsi_target *starget = scsi_target(sdev);
318 unsigned long flags;
319
320 atomic_dec(&shost->host_busy);
321 if (starget->can_queue > 0)
322 atomic_dec(&starget->target_busy);
323
324 if (unlikely(scsi_host_in_recovery(shost) &&
325 (shost->host_failed || shost->host_eh_scheduled))) {
326 spin_lock_irqsave(shost->host_lock, flags);
327 scsi_eh_wakeup(shost);
328 spin_unlock_irqrestore(shost->host_lock, flags);
329 }
330
331 atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 if (q->mq_ops)
337 blk_mq_start_hw_queues(q);
338 else
339 blk_run_queue(q);
340 }
341
342 /*
343 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
344 * and call blk_run_queue for all the scsi_devices on the target -
345 * including current_sdev first.
346 *
347 * Called with *no* scsi locks held.
348 */
349 static void scsi_single_lun_run(struct scsi_device *current_sdev)
350 {
351 struct Scsi_Host *shost = current_sdev->host;
352 struct scsi_device *sdev, *tmp;
353 struct scsi_target *starget = scsi_target(current_sdev);
354 unsigned long flags;
355
356 spin_lock_irqsave(shost->host_lock, flags);
357 starget->starget_sdev_user = NULL;
358 spin_unlock_irqrestore(shost->host_lock, flags);
359
360 /*
361 * Call blk_run_queue for all LUNs on the target, starting with
362 * current_sdev. We race with others (to set starget_sdev_user),
363 * but in most cases, we will be first. Ideally, each LU on the
364 * target would get some limited time or requests on the target.
365 */
366 scsi_kick_queue(current_sdev->request_queue);
367
368 spin_lock_irqsave(shost->host_lock, flags);
369 if (starget->starget_sdev_user)
370 goto out;
371 list_for_each_entry_safe(sdev, tmp, &starget->devices,
372 same_target_siblings) {
373 if (sdev == current_sdev)
374 continue;
375 if (scsi_device_get(sdev))
376 continue;
377
378 spin_unlock_irqrestore(shost->host_lock, flags);
379 scsi_kick_queue(sdev->request_queue);
380 spin_lock_irqsave(shost->host_lock, flags);
381
382 scsi_device_put(sdev);
383 }
384 out:
385 spin_unlock_irqrestore(shost->host_lock, flags);
386 }
387
388 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
389 {
390 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
391 return true;
392 if (atomic_read(&sdev->device_blocked) > 0)
393 return true;
394 return false;
395 }
396
397 static inline bool scsi_target_is_busy(struct scsi_target *starget)
398 {
399 if (starget->can_queue > 0) {
400 if (atomic_read(&starget->target_busy) >= starget->can_queue)
401 return true;
402 if (atomic_read(&starget->target_blocked) > 0)
403 return true;
404 }
405 return false;
406 }
407
408 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
409 {
410 if (shost->can_queue > 0 &&
411 atomic_read(&shost->host_busy) >= shost->can_queue)
412 return true;
413 if (atomic_read(&shost->host_blocked) > 0)
414 return true;
415 if (shost->host_self_blocked)
416 return true;
417 return false;
418 }
419
420 static void scsi_starved_list_run(struct Scsi_Host *shost)
421 {
422 LIST_HEAD(starved_list);
423 struct scsi_device *sdev;
424 unsigned long flags;
425
426 spin_lock_irqsave(shost->host_lock, flags);
427 list_splice_init(&shost->starved_list, &starved_list);
428
429 while (!list_empty(&starved_list)) {
430 struct request_queue *slq;
431
432 /*
433 * As long as shost is accepting commands and we have
434 * starved queues, call blk_run_queue. scsi_request_fn
435 * drops the queue_lock and can add us back to the
436 * starved_list.
437 *
438 * host_lock protects the starved_list and starved_entry.
439 * scsi_request_fn must get the host_lock before checking
440 * or modifying starved_list or starved_entry.
441 */
442 if (scsi_host_is_busy(shost))
443 break;
444
445 sdev = list_entry(starved_list.next,
446 struct scsi_device, starved_entry);
447 list_del_init(&sdev->starved_entry);
448 if (scsi_target_is_busy(scsi_target(sdev))) {
449 list_move_tail(&sdev->starved_entry,
450 &shost->starved_list);
451 continue;
452 }
453
454 /*
455 * Once we drop the host lock, a racing scsi_remove_device()
456 * call may remove the sdev from the starved list and destroy
457 * it and the queue. Mitigate by taking a reference to the
458 * queue and never touching the sdev again after we drop the
459 * host lock. Note: if __scsi_remove_device() invokes
460 * blk_cleanup_queue() before the queue is run from this
461 * function then blk_run_queue() will return immediately since
462 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
463 */
464 slq = sdev->request_queue;
465 if (!blk_get_queue(slq))
466 continue;
467 spin_unlock_irqrestore(shost->host_lock, flags);
468
469 scsi_kick_queue(slq);
470 blk_put_queue(slq);
471
472 spin_lock_irqsave(shost->host_lock, flags);
473 }
474 /* put any unprocessed entries back */
475 list_splice(&starved_list, &shost->starved_list);
476 spin_unlock_irqrestore(shost->host_lock, flags);
477 }
478
479 /*
480 * Function: scsi_run_queue()
481 *
482 * Purpose: Select a proper request queue to serve next
483 *
484 * Arguments: q - last request's queue
485 *
486 * Returns: Nothing
487 *
488 * Notes: The previous command was completely finished, start
489 * a new one if possible.
490 */
491 static void scsi_run_queue(struct request_queue *q)
492 {
493 struct scsi_device *sdev = q->queuedata;
494
495 if (scsi_target(sdev)->single_lun)
496 scsi_single_lun_run(sdev);
497 if (!list_empty(&sdev->host->starved_list))
498 scsi_starved_list_run(sdev->host);
499
500 if (q->mq_ops)
501 blk_mq_run_hw_queues(q, false);
502 else
503 blk_run_queue(q);
504 }
505
506 void scsi_requeue_run_queue(struct work_struct *work)
507 {
508 struct scsi_device *sdev;
509 struct request_queue *q;
510
511 sdev = container_of(work, struct scsi_device, requeue_work);
512 q = sdev->request_queue;
513 scsi_run_queue(q);
514 }
515
516 /*
517 * Function: scsi_requeue_command()
518 *
519 * Purpose: Handle post-processing of completed commands.
520 *
521 * Arguments: q - queue to operate on
522 * cmd - command that may need to be requeued.
523 *
524 * Returns: Nothing
525 *
526 * Notes: After command completion, there may be blocks left
527 * over which weren't finished by the previous command
528 * this can be for a number of reasons - the main one is
529 * I/O errors in the middle of the request, in which case
530 * we need to request the blocks that come after the bad
531 * sector.
532 * Notes: Upon return, cmd is a stale pointer.
533 */
534 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
535 {
536 struct scsi_device *sdev = cmd->device;
537 struct request *req = cmd->request;
538 unsigned long flags;
539
540 spin_lock_irqsave(q->queue_lock, flags);
541 blk_unprep_request(req);
542 req->special = NULL;
543 scsi_put_command(cmd);
544 blk_requeue_request(q, req);
545 spin_unlock_irqrestore(q->queue_lock, flags);
546
547 scsi_run_queue(q);
548
549 put_device(&sdev->sdev_gendev);
550 }
551
552 void scsi_run_host_queues(struct Scsi_Host *shost)
553 {
554 struct scsi_device *sdev;
555
556 shost_for_each_device(sdev, shost)
557 scsi_run_queue(sdev->request_queue);
558 }
559
560 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
561 {
562 if (!blk_rq_is_passthrough(cmd->request)) {
563 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
564
565 if (drv->uninit_command)
566 drv->uninit_command(cmd);
567 }
568 }
569
570 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
571 {
572 struct scsi_data_buffer *sdb;
573
574 if (cmd->sdb.table.nents)
575 sg_free_table_chained(&cmd->sdb.table, true);
576 if (cmd->request->next_rq) {
577 sdb = cmd->request->next_rq->special;
578 if (sdb)
579 sg_free_table_chained(&sdb->table, true);
580 }
581 if (scsi_prot_sg_count(cmd))
582 sg_free_table_chained(&cmd->prot_sdb->table, true);
583 }
584
585 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587 struct scsi_device *sdev = cmd->device;
588 struct Scsi_Host *shost = sdev->host;
589 unsigned long flags;
590
591 scsi_mq_free_sgtables(cmd);
592 scsi_uninit_cmd(cmd);
593
594 if (shost->use_cmd_list) {
595 BUG_ON(list_empty(&cmd->list));
596 spin_lock_irqsave(&sdev->list_lock, flags);
597 list_del_init(&cmd->list);
598 spin_unlock_irqrestore(&sdev->list_lock, flags);
599 }
600 }
601
602 /*
603 * Function: scsi_release_buffers()
604 *
605 * Purpose: Free resources allocate for a scsi_command.
606 *
607 * Arguments: cmd - command that we are bailing.
608 *
609 * Lock status: Assumed that no lock is held upon entry.
610 *
611 * Returns: Nothing
612 *
613 * Notes: In the event that an upper level driver rejects a
614 * command, we must release resources allocated during
615 * the __init_io() function. Primarily this would involve
616 * the scatter-gather table.
617 */
618 static void scsi_release_buffers(struct scsi_cmnd *cmd)
619 {
620 if (cmd->sdb.table.nents)
621 sg_free_table_chained(&cmd->sdb.table, false);
622
623 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
624
625 if (scsi_prot_sg_count(cmd))
626 sg_free_table_chained(&cmd->prot_sdb->table, false);
627 }
628
629 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
630 {
631 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
632
633 sg_free_table_chained(&bidi_sdb->table, false);
634 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
635 cmd->request->next_rq->special = NULL;
636 }
637
638 static bool scsi_end_request(struct request *req, int error,
639 unsigned int bytes, unsigned int bidi_bytes)
640 {
641 struct scsi_cmnd *cmd = req->special;
642 struct scsi_device *sdev = cmd->device;
643 struct request_queue *q = sdev->request_queue;
644
645 if (blk_update_request(req, error, bytes))
646 return true;
647
648 /* Bidi request must be completed as a whole */
649 if (unlikely(bidi_bytes) &&
650 blk_update_request(req->next_rq, error, bidi_bytes))
651 return true;
652
653 if (blk_queue_add_random(q))
654 add_disk_randomness(req->rq_disk);
655
656 if (req->mq_ctx) {
657 /*
658 * In the MQ case the command gets freed by __blk_mq_end_request,
659 * so we have to do all cleanup that depends on it earlier.
660 *
661 * We also can't kick the queues from irq context, so we
662 * will have to defer it to a workqueue.
663 */
664 scsi_mq_uninit_cmd(cmd);
665
666 __blk_mq_end_request(req, error);
667
668 if (scsi_target(sdev)->single_lun ||
669 !list_empty(&sdev->host->starved_list))
670 kblockd_schedule_work(&sdev->requeue_work);
671 else
672 blk_mq_run_hw_queues(q, true);
673 } else {
674 unsigned long flags;
675
676 if (bidi_bytes)
677 scsi_release_bidi_buffers(cmd);
678 scsi_release_buffers(cmd);
679 scsi_put_command(cmd);
680
681 spin_lock_irqsave(q->queue_lock, flags);
682 blk_finish_request(req, error);
683 spin_unlock_irqrestore(q->queue_lock, flags);
684
685 scsi_run_queue(q);
686 }
687
688 put_device(&sdev->sdev_gendev);
689 return false;
690 }
691
692 /**
693 * __scsi_error_from_host_byte - translate SCSI error code into errno
694 * @cmd: SCSI command (unused)
695 * @result: scsi error code
696 *
697 * Translate SCSI error code into standard UNIX errno.
698 * Return values:
699 * -ENOLINK temporary transport failure
700 * -EREMOTEIO permanent target failure, do not retry
701 * -EBADE permanent nexus failure, retry on other path
702 * -ENOSPC No write space available
703 * -ENODATA Medium error
704 * -EIO unspecified I/O error
705 */
706 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
707 {
708 int error = 0;
709
710 switch(host_byte(result)) {
711 case DID_TRANSPORT_FAILFAST:
712 error = -ENOLINK;
713 break;
714 case DID_TARGET_FAILURE:
715 set_host_byte(cmd, DID_OK);
716 error = -EREMOTEIO;
717 break;
718 case DID_NEXUS_FAILURE:
719 set_host_byte(cmd, DID_OK);
720 error = -EBADE;
721 break;
722 case DID_ALLOC_FAILURE:
723 set_host_byte(cmd, DID_OK);
724 error = -ENOSPC;
725 break;
726 case DID_MEDIUM_ERROR:
727 set_host_byte(cmd, DID_OK);
728 error = -ENODATA;
729 break;
730 default:
731 error = -EIO;
732 break;
733 }
734
735 return error;
736 }
737
738 /*
739 * Function: scsi_io_completion()
740 *
741 * Purpose: Completion processing for block device I/O requests.
742 *
743 * Arguments: cmd - command that is finished.
744 *
745 * Lock status: Assumed that no lock is held upon entry.
746 *
747 * Returns: Nothing
748 *
749 * Notes: We will finish off the specified number of sectors. If we
750 * are done, the command block will be released and the queue
751 * function will be goosed. If we are not done then we have to
752 * figure out what to do next:
753 *
754 * a) We can call scsi_requeue_command(). The request
755 * will be unprepared and put back on the queue. Then
756 * a new command will be created for it. This should
757 * be used if we made forward progress, or if we want
758 * to switch from READ(10) to READ(6) for example.
759 *
760 * b) We can call __scsi_queue_insert(). The request will
761 * be put back on the queue and retried using the same
762 * command as before, possibly after a delay.
763 *
764 * c) We can call scsi_end_request() with -EIO to fail
765 * the remainder of the request.
766 */
767 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
768 {
769 int result = cmd->result;
770 struct request_queue *q = cmd->device->request_queue;
771 struct request *req = cmd->request;
772 int error = 0;
773 struct scsi_sense_hdr sshdr;
774 bool sense_valid = false;
775 int sense_deferred = 0, level = 0;
776 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
777 ACTION_DELAYED_RETRY} action;
778 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
779
780 if (result) {
781 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
782 if (sense_valid)
783 sense_deferred = scsi_sense_is_deferred(&sshdr);
784 }
785
786 if (blk_rq_is_passthrough(req)) {
787 if (result) {
788 if (sense_valid) {
789 /*
790 * SG_IO wants current and deferred errors
791 */
792 scsi_req(req)->sense_len =
793 min(8 + cmd->sense_buffer[7],
794 SCSI_SENSE_BUFFERSIZE);
795 }
796 if (!sense_deferred)
797 error = __scsi_error_from_host_byte(cmd, result);
798 }
799 /*
800 * __scsi_error_from_host_byte may have reset the host_byte
801 */
802 scsi_req(req)->result = cmd->result;
803 scsi_req(req)->resid_len = scsi_get_resid(cmd);
804
805 if (scsi_bidi_cmnd(cmd)) {
806 /*
807 * Bidi commands Must be complete as a whole,
808 * both sides at once.
809 */
810 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
811 if (scsi_end_request(req, 0, blk_rq_bytes(req),
812 blk_rq_bytes(req->next_rq)))
813 BUG();
814 return;
815 }
816 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
817 /*
818 * Flush commands do not transfers any data, and thus cannot use
819 * good_bytes != blk_rq_bytes(req) as the signal for an error.
820 * This sets the error explicitly for the problem case.
821 */
822 error = __scsi_error_from_host_byte(cmd, result);
823 }
824
825 /* no bidi support for !blk_rq_is_passthrough yet */
826 BUG_ON(blk_bidi_rq(req));
827
828 /*
829 * Next deal with any sectors which we were able to correctly
830 * handle.
831 */
832 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
833 "%u sectors total, %d bytes done.\n",
834 blk_rq_sectors(req), good_bytes));
835
836 /*
837 * Recovered errors need reporting, but they're always treated as
838 * success, so fiddle the result code here. For passthrough requests
839 * we already took a copy of the original into sreq->result which
840 * is what gets returned to the user
841 */
842 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
843 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
844 * print since caller wants ATA registers. Only occurs on
845 * SCSI ATA PASS_THROUGH commands when CK_COND=1
846 */
847 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
848 ;
849 else if (!(req->rq_flags & RQF_QUIET))
850 scsi_print_sense(cmd);
851 result = 0;
852 /* for passthrough error may be set */
853 error = 0;
854 }
855
856 /*
857 * special case: failed zero length commands always need to
858 * drop down into the retry code. Otherwise, if we finished
859 * all bytes in the request we are done now.
860 */
861 if (!(blk_rq_bytes(req) == 0 && error) &&
862 !scsi_end_request(req, error, good_bytes, 0))
863 return;
864
865 /*
866 * Kill remainder if no retrys.
867 */
868 if (error && scsi_noretry_cmd(cmd)) {
869 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
870 BUG();
871 return;
872 }
873
874 /*
875 * If there had been no error, but we have leftover bytes in the
876 * requeues just queue the command up again.
877 */
878 if (result == 0)
879 goto requeue;
880
881 error = __scsi_error_from_host_byte(cmd, result);
882
883 if (host_byte(result) == DID_RESET) {
884 /* Third party bus reset or reset for error recovery
885 * reasons. Just retry the command and see what
886 * happens.
887 */
888 action = ACTION_RETRY;
889 } else if (sense_valid && !sense_deferred) {
890 switch (sshdr.sense_key) {
891 case UNIT_ATTENTION:
892 if (cmd->device->removable) {
893 /* Detected disc change. Set a bit
894 * and quietly refuse further access.
895 */
896 cmd->device->changed = 1;
897 action = ACTION_FAIL;
898 } else {
899 /* Must have been a power glitch, or a
900 * bus reset. Could not have been a
901 * media change, so we just retry the
902 * command and see what happens.
903 */
904 action = ACTION_RETRY;
905 }
906 break;
907 case ILLEGAL_REQUEST:
908 /* If we had an ILLEGAL REQUEST returned, then
909 * we may have performed an unsupported
910 * command. The only thing this should be
911 * would be a ten byte read where only a six
912 * byte read was supported. Also, on a system
913 * where READ CAPACITY failed, we may have
914 * read past the end of the disk.
915 */
916 if ((cmd->device->use_10_for_rw &&
917 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
918 (cmd->cmnd[0] == READ_10 ||
919 cmd->cmnd[0] == WRITE_10)) {
920 /* This will issue a new 6-byte command. */
921 cmd->device->use_10_for_rw = 0;
922 action = ACTION_REPREP;
923 } else if (sshdr.asc == 0x10) /* DIX */ {
924 action = ACTION_FAIL;
925 error = -EILSEQ;
926 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
927 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
928 action = ACTION_FAIL;
929 error = -EREMOTEIO;
930 } else
931 action = ACTION_FAIL;
932 break;
933 case ABORTED_COMMAND:
934 action = ACTION_FAIL;
935 if (sshdr.asc == 0x10) /* DIF */
936 error = -EILSEQ;
937 break;
938 case NOT_READY:
939 /* If the device is in the process of becoming
940 * ready, or has a temporary blockage, retry.
941 */
942 if (sshdr.asc == 0x04) {
943 switch (sshdr.ascq) {
944 case 0x01: /* becoming ready */
945 case 0x04: /* format in progress */
946 case 0x05: /* rebuild in progress */
947 case 0x06: /* recalculation in progress */
948 case 0x07: /* operation in progress */
949 case 0x08: /* Long write in progress */
950 case 0x09: /* self test in progress */
951 case 0x14: /* space allocation in progress */
952 action = ACTION_DELAYED_RETRY;
953 break;
954 default:
955 action = ACTION_FAIL;
956 break;
957 }
958 } else
959 action = ACTION_FAIL;
960 break;
961 case VOLUME_OVERFLOW:
962 /* See SSC3rXX or current. */
963 action = ACTION_FAIL;
964 break;
965 default:
966 action = ACTION_FAIL;
967 break;
968 }
969 } else
970 action = ACTION_FAIL;
971
972 if (action != ACTION_FAIL &&
973 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
974 action = ACTION_FAIL;
975
976 switch (action) {
977 case ACTION_FAIL:
978 /* Give up and fail the remainder of the request */
979 if (!(req->rq_flags & RQF_QUIET)) {
980 static DEFINE_RATELIMIT_STATE(_rs,
981 DEFAULT_RATELIMIT_INTERVAL,
982 DEFAULT_RATELIMIT_BURST);
983
984 if (unlikely(scsi_logging_level))
985 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
986 SCSI_LOG_MLCOMPLETE_BITS);
987
988 /*
989 * if logging is enabled the failure will be printed
990 * in scsi_log_completion(), so avoid duplicate messages
991 */
992 if (!level && __ratelimit(&_rs)) {
993 scsi_print_result(cmd, NULL, FAILED);
994 if (driver_byte(result) & DRIVER_SENSE)
995 scsi_print_sense(cmd);
996 scsi_print_command(cmd);
997 }
998 }
999 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1000 return;
1001 /*FALLTHRU*/
1002 case ACTION_REPREP:
1003 requeue:
1004 /* Unprep the request and put it back at the head of the queue.
1005 * A new command will be prepared and issued.
1006 */
1007 if (q->mq_ops) {
1008 cmd->request->rq_flags &= ~RQF_DONTPREP;
1009 scsi_mq_uninit_cmd(cmd);
1010 scsi_mq_requeue_cmd(cmd);
1011 } else {
1012 scsi_release_buffers(cmd);
1013 scsi_requeue_command(q, cmd);
1014 }
1015 break;
1016 case ACTION_RETRY:
1017 /* Retry the same command immediately */
1018 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1019 break;
1020 case ACTION_DELAYED_RETRY:
1021 /* Retry the same command after a delay */
1022 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1023 break;
1024 }
1025 }
1026
1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1028 {
1029 int count;
1030
1031 /*
1032 * If sg table allocation fails, requeue request later.
1033 */
1034 if (unlikely(sg_alloc_table_chained(&sdb->table,
1035 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1036 return BLKPREP_DEFER;
1037
1038 /*
1039 * Next, walk the list, and fill in the addresses and sizes of
1040 * each segment.
1041 */
1042 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043 BUG_ON(count > sdb->table.nents);
1044 sdb->table.nents = count;
1045 sdb->length = blk_rq_payload_bytes(req);
1046 return BLKPREP_OK;
1047 }
1048
1049 /*
1050 * Function: scsi_init_io()
1051 *
1052 * Purpose: SCSI I/O initialize function.
1053 *
1054 * Arguments: cmd - Command descriptor we wish to initialize
1055 *
1056 * Returns: 0 on success
1057 * BLKPREP_DEFER if the failure is retryable
1058 * BLKPREP_KILL if the failure is fatal
1059 */
1060 int scsi_init_io(struct scsi_cmnd *cmd)
1061 {
1062 struct scsi_device *sdev = cmd->device;
1063 struct request *rq = cmd->request;
1064 bool is_mq = (rq->mq_ctx != NULL);
1065 int error = BLKPREP_KILL;
1066
1067 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1068 goto err_exit;
1069
1070 error = scsi_init_sgtable(rq, &cmd->sdb);
1071 if (error)
1072 goto err_exit;
1073
1074 if (blk_bidi_rq(rq)) {
1075 if (!rq->q->mq_ops) {
1076 struct scsi_data_buffer *bidi_sdb =
1077 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1078 if (!bidi_sdb) {
1079 error = BLKPREP_DEFER;
1080 goto err_exit;
1081 }
1082
1083 rq->next_rq->special = bidi_sdb;
1084 }
1085
1086 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1087 if (error)
1088 goto err_exit;
1089 }
1090
1091 if (blk_integrity_rq(rq)) {
1092 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1093 int ivecs, count;
1094
1095 if (prot_sdb == NULL) {
1096 /*
1097 * This can happen if someone (e.g. multipath)
1098 * queues a command to a device on an adapter
1099 * that does not support DIX.
1100 */
1101 WARN_ON_ONCE(1);
1102 error = BLKPREP_KILL;
1103 goto err_exit;
1104 }
1105
1106 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1107
1108 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1109 prot_sdb->table.sgl)) {
1110 error = BLKPREP_DEFER;
1111 goto err_exit;
1112 }
1113
1114 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1115 prot_sdb->table.sgl);
1116 BUG_ON(unlikely(count > ivecs));
1117 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1118
1119 cmd->prot_sdb = prot_sdb;
1120 cmd->prot_sdb->table.nents = count;
1121 }
1122
1123 return BLKPREP_OK;
1124 err_exit:
1125 if (is_mq) {
1126 scsi_mq_free_sgtables(cmd);
1127 } else {
1128 scsi_release_buffers(cmd);
1129 cmd->request->special = NULL;
1130 scsi_put_command(cmd);
1131 put_device(&sdev->sdev_gendev);
1132 }
1133 return error;
1134 }
1135 EXPORT_SYMBOL(scsi_init_io);
1136
1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1138 {
1139 void *buf = cmd->sense_buffer;
1140 void *prot = cmd->prot_sdb;
1141 unsigned long flags;
1142
1143 /* zero out the cmd, except for the embedded scsi_request */
1144 memset((char *)cmd + sizeof(cmd->req), 0,
1145 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1146
1147 cmd->device = dev;
1148 cmd->sense_buffer = buf;
1149 cmd->prot_sdb = prot;
1150 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1151 cmd->jiffies_at_alloc = jiffies;
1152
1153 spin_lock_irqsave(&dev->list_lock, flags);
1154 list_add_tail(&cmd->list, &dev->cmd_list);
1155 spin_unlock_irqrestore(&dev->list_lock, flags);
1156 }
1157
1158 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1159 {
1160 struct scsi_cmnd *cmd = req->special;
1161
1162 /*
1163 * Passthrough requests may transfer data, in which case they must
1164 * a bio attached to them. Or they might contain a SCSI command
1165 * that does not transfer data, in which case they may optionally
1166 * submit a request without an attached bio.
1167 */
1168 if (req->bio) {
1169 int ret = scsi_init_io(cmd);
1170 if (unlikely(ret))
1171 return ret;
1172 } else {
1173 BUG_ON(blk_rq_bytes(req));
1174
1175 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1176 }
1177
1178 cmd->cmd_len = scsi_req(req)->cmd_len;
1179 cmd->cmnd = scsi_req(req)->cmd;
1180 cmd->transfersize = blk_rq_bytes(req);
1181 cmd->allowed = scsi_req(req)->retries;
1182 return BLKPREP_OK;
1183 }
1184
1185 /*
1186 * Setup a normal block command. These are simple request from filesystems
1187 * that still need to be translated to SCSI CDBs from the ULD.
1188 */
1189 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1190 {
1191 struct scsi_cmnd *cmd = req->special;
1192
1193 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1194 int ret = sdev->handler->prep_fn(sdev, req);
1195 if (ret != BLKPREP_OK)
1196 return ret;
1197 }
1198
1199 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1200 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1201 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1202 }
1203
1204 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1205 {
1206 struct scsi_cmnd *cmd = req->special;
1207
1208 if (!blk_rq_bytes(req))
1209 cmd->sc_data_direction = DMA_NONE;
1210 else if (rq_data_dir(req) == WRITE)
1211 cmd->sc_data_direction = DMA_TO_DEVICE;
1212 else
1213 cmd->sc_data_direction = DMA_FROM_DEVICE;
1214
1215 if (blk_rq_is_scsi(req))
1216 return scsi_setup_scsi_cmnd(sdev, req);
1217 else
1218 return scsi_setup_fs_cmnd(sdev, req);
1219 }
1220
1221 static int
1222 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1223 {
1224 int ret = BLKPREP_OK;
1225
1226 /*
1227 * If the device is not in running state we will reject some
1228 * or all commands.
1229 */
1230 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1231 switch (sdev->sdev_state) {
1232 case SDEV_OFFLINE:
1233 case SDEV_TRANSPORT_OFFLINE:
1234 /*
1235 * If the device is offline we refuse to process any
1236 * commands. The device must be brought online
1237 * before trying any recovery commands.
1238 */
1239 sdev_printk(KERN_ERR, sdev,
1240 "rejecting I/O to offline device\n");
1241 ret = BLKPREP_KILL;
1242 break;
1243 case SDEV_DEL:
1244 /*
1245 * If the device is fully deleted, we refuse to
1246 * process any commands as well.
1247 */
1248 sdev_printk(KERN_ERR, sdev,
1249 "rejecting I/O to dead device\n");
1250 ret = BLKPREP_KILL;
1251 break;
1252 case SDEV_BLOCK:
1253 case SDEV_CREATED_BLOCK:
1254 ret = BLKPREP_DEFER;
1255 break;
1256 case SDEV_QUIESCE:
1257 /*
1258 * If the devices is blocked we defer normal commands.
1259 */
1260 if (!(req->rq_flags & RQF_PREEMPT))
1261 ret = BLKPREP_DEFER;
1262 break;
1263 default:
1264 /*
1265 * For any other not fully online state we only allow
1266 * special commands. In particular any user initiated
1267 * command is not allowed.
1268 */
1269 if (!(req->rq_flags & RQF_PREEMPT))
1270 ret = BLKPREP_KILL;
1271 break;
1272 }
1273 }
1274 return ret;
1275 }
1276
1277 static int
1278 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1279 {
1280 struct scsi_device *sdev = q->queuedata;
1281
1282 switch (ret) {
1283 case BLKPREP_KILL:
1284 case BLKPREP_INVALID:
1285 scsi_req(req)->result = DID_NO_CONNECT << 16;
1286 /* release the command and kill it */
1287 if (req->special) {
1288 struct scsi_cmnd *cmd = req->special;
1289 scsi_release_buffers(cmd);
1290 scsi_put_command(cmd);
1291 put_device(&sdev->sdev_gendev);
1292 req->special = NULL;
1293 }
1294 break;
1295 case BLKPREP_DEFER:
1296 /*
1297 * If we defer, the blk_peek_request() returns NULL, but the
1298 * queue must be restarted, so we schedule a callback to happen
1299 * shortly.
1300 */
1301 if (atomic_read(&sdev->device_busy) == 0)
1302 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1303 break;
1304 default:
1305 req->rq_flags |= RQF_DONTPREP;
1306 }
1307
1308 return ret;
1309 }
1310
1311 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1312 {
1313 struct scsi_device *sdev = q->queuedata;
1314 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1315 int ret;
1316
1317 ret = scsi_prep_state_check(sdev, req);
1318 if (ret != BLKPREP_OK)
1319 goto out;
1320
1321 if (!req->special) {
1322 /* Bail if we can't get a reference to the device */
1323 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1324 ret = BLKPREP_DEFER;
1325 goto out;
1326 }
1327
1328 scsi_init_command(sdev, cmd);
1329 req->special = cmd;
1330 }
1331
1332 cmd->tag = req->tag;
1333 cmd->request = req;
1334 cmd->prot_op = SCSI_PROT_NORMAL;
1335
1336 ret = scsi_setup_cmnd(sdev, req);
1337 out:
1338 return scsi_prep_return(q, req, ret);
1339 }
1340
1341 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1342 {
1343 scsi_uninit_cmd(req->special);
1344 }
1345
1346 /*
1347 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1348 * return 0.
1349 *
1350 * Called with the queue_lock held.
1351 */
1352 static inline int scsi_dev_queue_ready(struct request_queue *q,
1353 struct scsi_device *sdev)
1354 {
1355 unsigned int busy;
1356
1357 busy = atomic_inc_return(&sdev->device_busy) - 1;
1358 if (atomic_read(&sdev->device_blocked)) {
1359 if (busy)
1360 goto out_dec;
1361
1362 /*
1363 * unblock after device_blocked iterates to zero
1364 */
1365 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1366 /*
1367 * For the MQ case we take care of this in the caller.
1368 */
1369 if (!q->mq_ops)
1370 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1371 goto out_dec;
1372 }
1373 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1374 "unblocking device at zero depth\n"));
1375 }
1376
1377 if (busy >= sdev->queue_depth)
1378 goto out_dec;
1379
1380 return 1;
1381 out_dec:
1382 atomic_dec(&sdev->device_busy);
1383 return 0;
1384 }
1385
1386 /*
1387 * scsi_target_queue_ready: checks if there we can send commands to target
1388 * @sdev: scsi device on starget to check.
1389 */
1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1391 struct scsi_device *sdev)
1392 {
1393 struct scsi_target *starget = scsi_target(sdev);
1394 unsigned int busy;
1395
1396 if (starget->single_lun) {
1397 spin_lock_irq(shost->host_lock);
1398 if (starget->starget_sdev_user &&
1399 starget->starget_sdev_user != sdev) {
1400 spin_unlock_irq(shost->host_lock);
1401 return 0;
1402 }
1403 starget->starget_sdev_user = sdev;
1404 spin_unlock_irq(shost->host_lock);
1405 }
1406
1407 if (starget->can_queue <= 0)
1408 return 1;
1409
1410 busy = atomic_inc_return(&starget->target_busy) - 1;
1411 if (atomic_read(&starget->target_blocked) > 0) {
1412 if (busy)
1413 goto starved;
1414
1415 /*
1416 * unblock after target_blocked iterates to zero
1417 */
1418 if (atomic_dec_return(&starget->target_blocked) > 0)
1419 goto out_dec;
1420
1421 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1422 "unblocking target at zero depth\n"));
1423 }
1424
1425 if (busy >= starget->can_queue)
1426 goto starved;
1427
1428 return 1;
1429
1430 starved:
1431 spin_lock_irq(shost->host_lock);
1432 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1433 spin_unlock_irq(shost->host_lock);
1434 out_dec:
1435 if (starget->can_queue > 0)
1436 atomic_dec(&starget->target_busy);
1437 return 0;
1438 }
1439
1440 /*
1441 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1442 * return 0. We must end up running the queue again whenever 0 is
1443 * returned, else IO can hang.
1444 */
1445 static inline int scsi_host_queue_ready(struct request_queue *q,
1446 struct Scsi_Host *shost,
1447 struct scsi_device *sdev)
1448 {
1449 unsigned int busy;
1450
1451 if (scsi_host_in_recovery(shost))
1452 return 0;
1453
1454 busy = atomic_inc_return(&shost->host_busy) - 1;
1455 if (atomic_read(&shost->host_blocked) > 0) {
1456 if (busy)
1457 goto starved;
1458
1459 /*
1460 * unblock after host_blocked iterates to zero
1461 */
1462 if (atomic_dec_return(&shost->host_blocked) > 0)
1463 goto out_dec;
1464
1465 SCSI_LOG_MLQUEUE(3,
1466 shost_printk(KERN_INFO, shost,
1467 "unblocking host at zero depth\n"));
1468 }
1469
1470 if (shost->can_queue > 0 && busy >= shost->can_queue)
1471 goto starved;
1472 if (shost->host_self_blocked)
1473 goto starved;
1474
1475 /* We're OK to process the command, so we can't be starved */
1476 if (!list_empty(&sdev->starved_entry)) {
1477 spin_lock_irq(shost->host_lock);
1478 if (!list_empty(&sdev->starved_entry))
1479 list_del_init(&sdev->starved_entry);
1480 spin_unlock_irq(shost->host_lock);
1481 }
1482
1483 return 1;
1484
1485 starved:
1486 spin_lock_irq(shost->host_lock);
1487 if (list_empty(&sdev->starved_entry))
1488 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1489 spin_unlock_irq(shost->host_lock);
1490 out_dec:
1491 atomic_dec(&shost->host_busy);
1492 return 0;
1493 }
1494
1495 /*
1496 * Busy state exporting function for request stacking drivers.
1497 *
1498 * For efficiency, no lock is taken to check the busy state of
1499 * shost/starget/sdev, since the returned value is not guaranteed and
1500 * may be changed after request stacking drivers call the function,
1501 * regardless of taking lock or not.
1502 *
1503 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1504 * needs to return 'not busy'. Otherwise, request stacking drivers
1505 * may hold requests forever.
1506 */
1507 static int scsi_lld_busy(struct request_queue *q)
1508 {
1509 struct scsi_device *sdev = q->queuedata;
1510 struct Scsi_Host *shost;
1511
1512 if (blk_queue_dying(q))
1513 return 0;
1514
1515 shost = sdev->host;
1516
1517 /*
1518 * Ignore host/starget busy state.
1519 * Since block layer does not have a concept of fairness across
1520 * multiple queues, congestion of host/starget needs to be handled
1521 * in SCSI layer.
1522 */
1523 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1524 return 1;
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Kill a request for a dead device
1531 */
1532 static void scsi_kill_request(struct request *req, struct request_queue *q)
1533 {
1534 struct scsi_cmnd *cmd = req->special;
1535 struct scsi_device *sdev;
1536 struct scsi_target *starget;
1537 struct Scsi_Host *shost;
1538
1539 blk_start_request(req);
1540
1541 scmd_printk(KERN_INFO, cmd, "killing request\n");
1542
1543 sdev = cmd->device;
1544 starget = scsi_target(sdev);
1545 shost = sdev->host;
1546 scsi_init_cmd_errh(cmd);
1547 cmd->result = DID_NO_CONNECT << 16;
1548 atomic_inc(&cmd->device->iorequest_cnt);
1549
1550 /*
1551 * SCSI request completion path will do scsi_device_unbusy(),
1552 * bump busy counts. To bump the counters, we need to dance
1553 * with the locks as normal issue path does.
1554 */
1555 atomic_inc(&sdev->device_busy);
1556 atomic_inc(&shost->host_busy);
1557 if (starget->can_queue > 0)
1558 atomic_inc(&starget->target_busy);
1559
1560 blk_complete_request(req);
1561 }
1562
1563 static void scsi_softirq_done(struct request *rq)
1564 {
1565 struct scsi_cmnd *cmd = rq->special;
1566 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1567 int disposition;
1568
1569 INIT_LIST_HEAD(&cmd->eh_entry);
1570
1571 atomic_inc(&cmd->device->iodone_cnt);
1572 if (cmd->result)
1573 atomic_inc(&cmd->device->ioerr_cnt);
1574
1575 disposition = scsi_decide_disposition(cmd);
1576 if (disposition != SUCCESS &&
1577 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1578 sdev_printk(KERN_ERR, cmd->device,
1579 "timing out command, waited %lus\n",
1580 wait_for/HZ);
1581 disposition = SUCCESS;
1582 }
1583
1584 scsi_log_completion(cmd, disposition);
1585
1586 switch (disposition) {
1587 case SUCCESS:
1588 scsi_finish_command(cmd);
1589 break;
1590 case NEEDS_RETRY:
1591 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1592 break;
1593 case ADD_TO_MLQUEUE:
1594 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1595 break;
1596 default:
1597 scsi_eh_scmd_add(cmd);
1598 break;
1599 }
1600 }
1601
1602 /**
1603 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1604 * @cmd: command block we are dispatching.
1605 *
1606 * Return: nonzero return request was rejected and device's queue needs to be
1607 * plugged.
1608 */
1609 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1610 {
1611 struct Scsi_Host *host = cmd->device->host;
1612 int rtn = 0;
1613
1614 atomic_inc(&cmd->device->iorequest_cnt);
1615
1616 /* check if the device is still usable */
1617 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1618 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1619 * returns an immediate error upwards, and signals
1620 * that the device is no longer present */
1621 cmd->result = DID_NO_CONNECT << 16;
1622 goto done;
1623 }
1624
1625 /* Check to see if the scsi lld made this device blocked. */
1626 if (unlikely(scsi_device_blocked(cmd->device))) {
1627 /*
1628 * in blocked state, the command is just put back on
1629 * the device queue. The suspend state has already
1630 * blocked the queue so future requests should not
1631 * occur until the device transitions out of the
1632 * suspend state.
1633 */
1634 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1635 "queuecommand : device blocked\n"));
1636 return SCSI_MLQUEUE_DEVICE_BUSY;
1637 }
1638
1639 /* Store the LUN value in cmnd, if needed. */
1640 if (cmd->device->lun_in_cdb)
1641 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1642 (cmd->device->lun << 5 & 0xe0);
1643
1644 scsi_log_send(cmd);
1645
1646 /*
1647 * Before we queue this command, check if the command
1648 * length exceeds what the host adapter can handle.
1649 */
1650 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1651 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1652 "queuecommand : command too long. "
1653 "cdb_size=%d host->max_cmd_len=%d\n",
1654 cmd->cmd_len, cmd->device->host->max_cmd_len));
1655 cmd->result = (DID_ABORT << 16);
1656 goto done;
1657 }
1658
1659 if (unlikely(host->shost_state == SHOST_DEL)) {
1660 cmd->result = (DID_NO_CONNECT << 16);
1661 goto done;
1662
1663 }
1664
1665 trace_scsi_dispatch_cmd_start(cmd);
1666 rtn = host->hostt->queuecommand(host, cmd);
1667 if (rtn) {
1668 trace_scsi_dispatch_cmd_error(cmd, rtn);
1669 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1670 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1671 rtn = SCSI_MLQUEUE_HOST_BUSY;
1672
1673 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1674 "queuecommand : request rejected\n"));
1675 }
1676
1677 return rtn;
1678 done:
1679 cmd->scsi_done(cmd);
1680 return 0;
1681 }
1682
1683 /**
1684 * scsi_done - Invoke completion on finished SCSI command.
1685 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1686 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1687 *
1688 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1689 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1690 * calls blk_complete_request() for further processing.
1691 *
1692 * This function is interrupt context safe.
1693 */
1694 static void scsi_done(struct scsi_cmnd *cmd)
1695 {
1696 trace_scsi_dispatch_cmd_done(cmd);
1697 blk_complete_request(cmd->request);
1698 }
1699
1700 /*
1701 * Function: scsi_request_fn()
1702 *
1703 * Purpose: Main strategy routine for SCSI.
1704 *
1705 * Arguments: q - Pointer to actual queue.
1706 *
1707 * Returns: Nothing
1708 *
1709 * Lock status: IO request lock assumed to be held when called.
1710 */
1711 static void scsi_request_fn(struct request_queue *q)
1712 __releases(q->queue_lock)
1713 __acquires(q->queue_lock)
1714 {
1715 struct scsi_device *sdev = q->queuedata;
1716 struct Scsi_Host *shost;
1717 struct scsi_cmnd *cmd;
1718 struct request *req;
1719
1720 /*
1721 * To start with, we keep looping until the queue is empty, or until
1722 * the host is no longer able to accept any more requests.
1723 */
1724 shost = sdev->host;
1725 for (;;) {
1726 int rtn;
1727 /*
1728 * get next queueable request. We do this early to make sure
1729 * that the request is fully prepared even if we cannot
1730 * accept it.
1731 */
1732 req = blk_peek_request(q);
1733 if (!req)
1734 break;
1735
1736 if (unlikely(!scsi_device_online(sdev))) {
1737 sdev_printk(KERN_ERR, sdev,
1738 "rejecting I/O to offline device\n");
1739 scsi_kill_request(req, q);
1740 continue;
1741 }
1742
1743 if (!scsi_dev_queue_ready(q, sdev))
1744 break;
1745
1746 /*
1747 * Remove the request from the request list.
1748 */
1749 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1750 blk_start_request(req);
1751
1752 spin_unlock_irq(q->queue_lock);
1753 cmd = req->special;
1754 if (unlikely(cmd == NULL)) {
1755 printk(KERN_CRIT "impossible request in %s.\n"
1756 "please mail a stack trace to "
1757 "linux-scsi@vger.kernel.org\n",
1758 __func__);
1759 blk_dump_rq_flags(req, "foo");
1760 BUG();
1761 }
1762
1763 /*
1764 * We hit this when the driver is using a host wide
1765 * tag map. For device level tag maps the queue_depth check
1766 * in the device ready fn would prevent us from trying
1767 * to allocate a tag. Since the map is a shared host resource
1768 * we add the dev to the starved list so it eventually gets
1769 * a run when a tag is freed.
1770 */
1771 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1772 spin_lock_irq(shost->host_lock);
1773 if (list_empty(&sdev->starved_entry))
1774 list_add_tail(&sdev->starved_entry,
1775 &shost->starved_list);
1776 spin_unlock_irq(shost->host_lock);
1777 goto not_ready;
1778 }
1779
1780 if (!scsi_target_queue_ready(shost, sdev))
1781 goto not_ready;
1782
1783 if (!scsi_host_queue_ready(q, shost, sdev))
1784 goto host_not_ready;
1785
1786 if (sdev->simple_tags)
1787 cmd->flags |= SCMD_TAGGED;
1788 else
1789 cmd->flags &= ~SCMD_TAGGED;
1790
1791 /*
1792 * Finally, initialize any error handling parameters, and set up
1793 * the timers for timeouts.
1794 */
1795 scsi_init_cmd_errh(cmd);
1796
1797 /*
1798 * Dispatch the command to the low-level driver.
1799 */
1800 cmd->scsi_done = scsi_done;
1801 rtn = scsi_dispatch_cmd(cmd);
1802 if (rtn) {
1803 scsi_queue_insert(cmd, rtn);
1804 spin_lock_irq(q->queue_lock);
1805 goto out_delay;
1806 }
1807 spin_lock_irq(q->queue_lock);
1808 }
1809
1810 return;
1811
1812 host_not_ready:
1813 if (scsi_target(sdev)->can_queue > 0)
1814 atomic_dec(&scsi_target(sdev)->target_busy);
1815 not_ready:
1816 /*
1817 * lock q, handle tag, requeue req, and decrement device_busy. We
1818 * must return with queue_lock held.
1819 *
1820 * Decrementing device_busy without checking it is OK, as all such
1821 * cases (host limits or settings) should run the queue at some
1822 * later time.
1823 */
1824 spin_lock_irq(q->queue_lock);
1825 blk_requeue_request(q, req);
1826 atomic_dec(&sdev->device_busy);
1827 out_delay:
1828 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1829 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1830 }
1831
1832 static inline int prep_to_mq(int ret)
1833 {
1834 switch (ret) {
1835 case BLKPREP_OK:
1836 return BLK_MQ_RQ_QUEUE_OK;
1837 case BLKPREP_DEFER:
1838 return BLK_MQ_RQ_QUEUE_BUSY;
1839 default:
1840 return BLK_MQ_RQ_QUEUE_ERROR;
1841 }
1842 }
1843
1844 static int scsi_mq_prep_fn(struct request *req)
1845 {
1846 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1847 struct scsi_device *sdev = req->q->queuedata;
1848 struct Scsi_Host *shost = sdev->host;
1849 unsigned char *sense_buf = cmd->sense_buffer;
1850 struct scatterlist *sg;
1851
1852 /* zero out the cmd, except for the embedded scsi_request */
1853 memset((char *)cmd + sizeof(cmd->req), 0,
1854 sizeof(*cmd) - sizeof(cmd->req) + shost->hostt->cmd_size);
1855
1856 req->special = cmd;
1857
1858 cmd->request = req;
1859 cmd->device = sdev;
1860 cmd->sense_buffer = sense_buf;
1861
1862 cmd->tag = req->tag;
1863
1864 cmd->prot_op = SCSI_PROT_NORMAL;
1865
1866 INIT_LIST_HEAD(&cmd->list);
1867 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1868 cmd->jiffies_at_alloc = jiffies;
1869
1870 if (shost->use_cmd_list) {
1871 spin_lock_irq(&sdev->list_lock);
1872 list_add_tail(&cmd->list, &sdev->cmd_list);
1873 spin_unlock_irq(&sdev->list_lock);
1874 }
1875
1876 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1877 cmd->sdb.table.sgl = sg;
1878
1879 if (scsi_host_get_prot(shost)) {
1880 cmd->prot_sdb = (void *)sg +
1881 min_t(unsigned int,
1882 shost->sg_tablesize, SG_CHUNK_SIZE) *
1883 sizeof(struct scatterlist);
1884 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1885
1886 cmd->prot_sdb->table.sgl =
1887 (struct scatterlist *)(cmd->prot_sdb + 1);
1888 }
1889
1890 if (blk_bidi_rq(req)) {
1891 struct request *next_rq = req->next_rq;
1892 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1893
1894 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1895 bidi_sdb->table.sgl =
1896 (struct scatterlist *)(bidi_sdb + 1);
1897
1898 next_rq->special = bidi_sdb;
1899 }
1900
1901 blk_mq_start_request(req);
1902
1903 return scsi_setup_cmnd(sdev, req);
1904 }
1905
1906 static void scsi_mq_done(struct scsi_cmnd *cmd)
1907 {
1908 trace_scsi_dispatch_cmd_done(cmd);
1909 blk_mq_complete_request(cmd->request);
1910 }
1911
1912 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1913 const struct blk_mq_queue_data *bd)
1914 {
1915 struct request *req = bd->rq;
1916 struct request_queue *q = req->q;
1917 struct scsi_device *sdev = q->queuedata;
1918 struct Scsi_Host *shost = sdev->host;
1919 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1920 int ret;
1921 int reason;
1922
1923 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1924 if (ret != BLK_MQ_RQ_QUEUE_OK)
1925 goto out;
1926
1927 ret = BLK_MQ_RQ_QUEUE_BUSY;
1928 if (!get_device(&sdev->sdev_gendev))
1929 goto out;
1930
1931 if (!scsi_dev_queue_ready(q, sdev))
1932 goto out_put_device;
1933 if (!scsi_target_queue_ready(shost, sdev))
1934 goto out_dec_device_busy;
1935 if (!scsi_host_queue_ready(q, shost, sdev))
1936 goto out_dec_target_busy;
1937
1938 if (!(req->rq_flags & RQF_DONTPREP)) {
1939 ret = prep_to_mq(scsi_mq_prep_fn(req));
1940 if (ret != BLK_MQ_RQ_QUEUE_OK)
1941 goto out_dec_host_busy;
1942 req->rq_flags |= RQF_DONTPREP;
1943 } else {
1944 blk_mq_start_request(req);
1945 }
1946
1947 if (sdev->simple_tags)
1948 cmd->flags |= SCMD_TAGGED;
1949 else
1950 cmd->flags &= ~SCMD_TAGGED;
1951
1952 scsi_init_cmd_errh(cmd);
1953 cmd->scsi_done = scsi_mq_done;
1954
1955 reason = scsi_dispatch_cmd(cmd);
1956 if (reason) {
1957 scsi_set_blocked(cmd, reason);
1958 ret = BLK_MQ_RQ_QUEUE_BUSY;
1959 goto out_dec_host_busy;
1960 }
1961
1962 return BLK_MQ_RQ_QUEUE_OK;
1963
1964 out_dec_host_busy:
1965 atomic_dec(&shost->host_busy);
1966 out_dec_target_busy:
1967 if (scsi_target(sdev)->can_queue > 0)
1968 atomic_dec(&scsi_target(sdev)->target_busy);
1969 out_dec_device_busy:
1970 atomic_dec(&sdev->device_busy);
1971 out_put_device:
1972 put_device(&sdev->sdev_gendev);
1973 out:
1974 switch (ret) {
1975 case BLK_MQ_RQ_QUEUE_BUSY:
1976 if (atomic_read(&sdev->device_busy) == 0 &&
1977 !scsi_device_blocked(sdev))
1978 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1979 break;
1980 case BLK_MQ_RQ_QUEUE_ERROR:
1981 /*
1982 * Make sure to release all allocated ressources when
1983 * we hit an error, as we will never see this command
1984 * again.
1985 */
1986 if (req->rq_flags & RQF_DONTPREP)
1987 scsi_mq_uninit_cmd(cmd);
1988 break;
1989 default:
1990 break;
1991 }
1992 return ret;
1993 }
1994
1995 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1996 bool reserved)
1997 {
1998 if (reserved)
1999 return BLK_EH_RESET_TIMER;
2000 return scsi_times_out(req);
2001 }
2002
2003 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2004 unsigned int hctx_idx, unsigned int numa_node)
2005 {
2006 struct Scsi_Host *shost = set->driver_data;
2007 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2008
2009 cmd->sense_buffer =
2010 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2011 if (!cmd->sense_buffer)
2012 return -ENOMEM;
2013 cmd->req.sense = cmd->sense_buffer;
2014 return 0;
2015 }
2016
2017 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2018 unsigned int hctx_idx)
2019 {
2020 struct Scsi_Host *shost = set->driver_data;
2021 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2022
2023 scsi_free_sense_buffer(shost, cmd->sense_buffer);
2024 }
2025
2026 static int scsi_map_queues(struct blk_mq_tag_set *set)
2027 {
2028 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2029
2030 if (shost->hostt->map_queues)
2031 return shost->hostt->map_queues(shost);
2032 return blk_mq_map_queues(set);
2033 }
2034
2035 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2036 {
2037 struct device *host_dev;
2038 u64 bounce_limit = 0xffffffff;
2039
2040 if (shost->unchecked_isa_dma)
2041 return BLK_BOUNCE_ISA;
2042 /*
2043 * Platforms with virtual-DMA translation
2044 * hardware have no practical limit.
2045 */
2046 if (!PCI_DMA_BUS_IS_PHYS)
2047 return BLK_BOUNCE_ANY;
2048
2049 host_dev = scsi_get_device(shost);
2050 if (host_dev && host_dev->dma_mask)
2051 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2052
2053 return bounce_limit;
2054 }
2055
2056 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2057 {
2058 struct device *dev = shost->dma_dev;
2059
2060 /*
2061 * this limit is imposed by hardware restrictions
2062 */
2063 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2064 SG_MAX_SEGMENTS));
2065
2066 if (scsi_host_prot_dma(shost)) {
2067 shost->sg_prot_tablesize =
2068 min_not_zero(shost->sg_prot_tablesize,
2069 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2070 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2071 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2072 }
2073
2074 blk_queue_max_hw_sectors(q, shost->max_sectors);
2075 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2076 blk_queue_segment_boundary(q, shost->dma_boundary);
2077 dma_set_seg_boundary(dev, shost->dma_boundary);
2078
2079 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2080
2081 if (!shost->use_clustering)
2082 q->limits.cluster = 0;
2083
2084 /*
2085 * set a reasonable default alignment on word boundaries: the
2086 * host and device may alter it using
2087 * blk_queue_update_dma_alignment() later.
2088 */
2089 blk_queue_dma_alignment(q, 0x03);
2090 }
2091 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2092
2093 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2094 {
2095 struct Scsi_Host *shost = q->rq_alloc_data;
2096 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2097
2098 memset(cmd, 0, sizeof(*cmd));
2099
2100 cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2101 if (!cmd->sense_buffer)
2102 goto fail;
2103 cmd->req.sense = cmd->sense_buffer;
2104
2105 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2106 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2107 if (!cmd->prot_sdb)
2108 goto fail_free_sense;
2109 }
2110
2111 return 0;
2112
2113 fail_free_sense:
2114 scsi_free_sense_buffer(shost, cmd->sense_buffer);
2115 fail:
2116 return -ENOMEM;
2117 }
2118
2119 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2120 {
2121 struct Scsi_Host *shost = q->rq_alloc_data;
2122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2123
2124 if (cmd->prot_sdb)
2125 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2126 scsi_free_sense_buffer(shost, cmd->sense_buffer);
2127 }
2128
2129 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2130 {
2131 struct Scsi_Host *shost = sdev->host;
2132 struct request_queue *q;
2133
2134 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2135 if (!q)
2136 return NULL;
2137 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2138 q->rq_alloc_data = shost;
2139 q->request_fn = scsi_request_fn;
2140 q->init_rq_fn = scsi_init_rq;
2141 q->exit_rq_fn = scsi_exit_rq;
2142
2143 if (blk_init_allocated_queue(q) < 0) {
2144 blk_cleanup_queue(q);
2145 return NULL;
2146 }
2147
2148 __scsi_init_queue(shost, q);
2149 blk_queue_prep_rq(q, scsi_prep_fn);
2150 blk_queue_unprep_rq(q, scsi_unprep_fn);
2151 blk_queue_softirq_done(q, scsi_softirq_done);
2152 blk_queue_rq_timed_out(q, scsi_times_out);
2153 blk_queue_lld_busy(q, scsi_lld_busy);
2154 return q;
2155 }
2156
2157 static const struct blk_mq_ops scsi_mq_ops = {
2158 .queue_rq = scsi_queue_rq,
2159 .complete = scsi_softirq_done,
2160 .timeout = scsi_timeout,
2161 #ifdef CONFIG_BLK_DEBUG_FS
2162 .show_rq = scsi_show_rq,
2163 #endif
2164 .init_request = scsi_init_request,
2165 .exit_request = scsi_exit_request,
2166 .map_queues = scsi_map_queues,
2167 };
2168
2169 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2170 {
2171 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2172 if (IS_ERR(sdev->request_queue))
2173 return NULL;
2174
2175 sdev->request_queue->queuedata = sdev;
2176 __scsi_init_queue(sdev->host, sdev->request_queue);
2177 return sdev->request_queue;
2178 }
2179
2180 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2181 {
2182 unsigned int cmd_size, sgl_size, tbl_size;
2183
2184 tbl_size = shost->sg_tablesize;
2185 if (tbl_size > SG_CHUNK_SIZE)
2186 tbl_size = SG_CHUNK_SIZE;
2187 sgl_size = tbl_size * sizeof(struct scatterlist);
2188 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2189 if (scsi_host_get_prot(shost))
2190 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2191
2192 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2193 shost->tag_set.ops = &scsi_mq_ops;
2194 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2195 shost->tag_set.queue_depth = shost->can_queue;
2196 shost->tag_set.cmd_size = cmd_size;
2197 shost->tag_set.numa_node = NUMA_NO_NODE;
2198 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2199 shost->tag_set.flags |=
2200 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2201 shost->tag_set.driver_data = shost;
2202
2203 return blk_mq_alloc_tag_set(&shost->tag_set);
2204 }
2205
2206 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2207 {
2208 blk_mq_free_tag_set(&shost->tag_set);
2209 }
2210
2211 /**
2212 * scsi_device_from_queue - return sdev associated with a request_queue
2213 * @q: The request queue to return the sdev from
2214 *
2215 * Return the sdev associated with a request queue or NULL if the
2216 * request_queue does not reference a SCSI device.
2217 */
2218 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2219 {
2220 struct scsi_device *sdev = NULL;
2221
2222 if (q->mq_ops) {
2223 if (q->mq_ops == &scsi_mq_ops)
2224 sdev = q->queuedata;
2225 } else if (q->request_fn == scsi_request_fn)
2226 sdev = q->queuedata;
2227 if (!sdev || !get_device(&sdev->sdev_gendev))
2228 sdev = NULL;
2229
2230 return sdev;
2231 }
2232 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2233
2234 /*
2235 * Function: scsi_block_requests()
2236 *
2237 * Purpose: Utility function used by low-level drivers to prevent further
2238 * commands from being queued to the device.
2239 *
2240 * Arguments: shost - Host in question
2241 *
2242 * Returns: Nothing
2243 *
2244 * Lock status: No locks are assumed held.
2245 *
2246 * Notes: There is no timer nor any other means by which the requests
2247 * get unblocked other than the low-level driver calling
2248 * scsi_unblock_requests().
2249 */
2250 void scsi_block_requests(struct Scsi_Host *shost)
2251 {
2252 shost->host_self_blocked = 1;
2253 }
2254 EXPORT_SYMBOL(scsi_block_requests);
2255
2256 /*
2257 * Function: scsi_unblock_requests()
2258 *
2259 * Purpose: Utility function used by low-level drivers to allow further
2260 * commands from being queued to the device.
2261 *
2262 * Arguments: shost - Host in question
2263 *
2264 * Returns: Nothing
2265 *
2266 * Lock status: No locks are assumed held.
2267 *
2268 * Notes: There is no timer nor any other means by which the requests
2269 * get unblocked other than the low-level driver calling
2270 * scsi_unblock_requests().
2271 *
2272 * This is done as an API function so that changes to the
2273 * internals of the scsi mid-layer won't require wholesale
2274 * changes to drivers that use this feature.
2275 */
2276 void scsi_unblock_requests(struct Scsi_Host *shost)
2277 {
2278 shost->host_self_blocked = 0;
2279 scsi_run_host_queues(shost);
2280 }
2281 EXPORT_SYMBOL(scsi_unblock_requests);
2282
2283 int __init scsi_init_queue(void)
2284 {
2285 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2286 sizeof(struct scsi_data_buffer),
2287 0, 0, NULL);
2288 if (!scsi_sdb_cache) {
2289 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2290 return -ENOMEM;
2291 }
2292
2293 return 0;
2294 }
2295
2296 void scsi_exit_queue(void)
2297 {
2298 kmem_cache_destroy(scsi_sense_cache);
2299 kmem_cache_destroy(scsi_sense_isadma_cache);
2300 kmem_cache_destroy(scsi_sdb_cache);
2301 }
2302
2303 /**
2304 * scsi_mode_select - issue a mode select
2305 * @sdev: SCSI device to be queried
2306 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2307 * @sp: Save page bit (0 == don't save, 1 == save)
2308 * @modepage: mode page being requested
2309 * @buffer: request buffer (may not be smaller than eight bytes)
2310 * @len: length of request buffer.
2311 * @timeout: command timeout
2312 * @retries: number of retries before failing
2313 * @data: returns a structure abstracting the mode header data
2314 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2315 * must be SCSI_SENSE_BUFFERSIZE big.
2316 *
2317 * Returns zero if successful; negative error number or scsi
2318 * status on error
2319 *
2320 */
2321 int
2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2323 unsigned char *buffer, int len, int timeout, int retries,
2324 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2325 {
2326 unsigned char cmd[10];
2327 unsigned char *real_buffer;
2328 int ret;
2329
2330 memset(cmd, 0, sizeof(cmd));
2331 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2332
2333 if (sdev->use_10_for_ms) {
2334 if (len > 65535)
2335 return -EINVAL;
2336 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2337 if (!real_buffer)
2338 return -ENOMEM;
2339 memcpy(real_buffer + 8, buffer, len);
2340 len += 8;
2341 real_buffer[0] = 0;
2342 real_buffer[1] = 0;
2343 real_buffer[2] = data->medium_type;
2344 real_buffer[3] = data->device_specific;
2345 real_buffer[4] = data->longlba ? 0x01 : 0;
2346 real_buffer[5] = 0;
2347 real_buffer[6] = data->block_descriptor_length >> 8;
2348 real_buffer[7] = data->block_descriptor_length;
2349
2350 cmd[0] = MODE_SELECT_10;
2351 cmd[7] = len >> 8;
2352 cmd[8] = len;
2353 } else {
2354 if (len > 255 || data->block_descriptor_length > 255 ||
2355 data->longlba)
2356 return -EINVAL;
2357
2358 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2359 if (!real_buffer)
2360 return -ENOMEM;
2361 memcpy(real_buffer + 4, buffer, len);
2362 len += 4;
2363 real_buffer[0] = 0;
2364 real_buffer[1] = data->medium_type;
2365 real_buffer[2] = data->device_specific;
2366 real_buffer[3] = data->block_descriptor_length;
2367
2368
2369 cmd[0] = MODE_SELECT;
2370 cmd[4] = len;
2371 }
2372
2373 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2374 sshdr, timeout, retries, NULL);
2375 kfree(real_buffer);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(scsi_mode_select);
2379
2380 /**
2381 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2382 * @sdev: SCSI device to be queried
2383 * @dbd: set if mode sense will allow block descriptors to be returned
2384 * @modepage: mode page being requested
2385 * @buffer: request buffer (may not be smaller than eight bytes)
2386 * @len: length of request buffer.
2387 * @timeout: command timeout
2388 * @retries: number of retries before failing
2389 * @data: returns a structure abstracting the mode header data
2390 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2391 * must be SCSI_SENSE_BUFFERSIZE big.
2392 *
2393 * Returns zero if unsuccessful, or the header offset (either 4
2394 * or 8 depending on whether a six or ten byte command was
2395 * issued) if successful.
2396 */
2397 int
2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2399 unsigned char *buffer, int len, int timeout, int retries,
2400 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2401 {
2402 unsigned char cmd[12];
2403 int use_10_for_ms;
2404 int header_length;
2405 int result, retry_count = retries;
2406 struct scsi_sense_hdr my_sshdr;
2407
2408 memset(data, 0, sizeof(*data));
2409 memset(&cmd[0], 0, 12);
2410 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2411 cmd[2] = modepage;
2412
2413 /* caller might not be interested in sense, but we need it */
2414 if (!sshdr)
2415 sshdr = &my_sshdr;
2416
2417 retry:
2418 use_10_for_ms = sdev->use_10_for_ms;
2419
2420 if (use_10_for_ms) {
2421 if (len < 8)
2422 len = 8;
2423
2424 cmd[0] = MODE_SENSE_10;
2425 cmd[8] = len;
2426 header_length = 8;
2427 } else {
2428 if (len < 4)
2429 len = 4;
2430
2431 cmd[0] = MODE_SENSE;
2432 cmd[4] = len;
2433 header_length = 4;
2434 }
2435
2436 memset(buffer, 0, len);
2437
2438 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2439 sshdr, timeout, retries, NULL);
2440
2441 /* This code looks awful: what it's doing is making sure an
2442 * ILLEGAL REQUEST sense return identifies the actual command
2443 * byte as the problem. MODE_SENSE commands can return
2444 * ILLEGAL REQUEST if the code page isn't supported */
2445
2446 if (use_10_for_ms && !scsi_status_is_good(result) &&
2447 (driver_byte(result) & DRIVER_SENSE)) {
2448 if (scsi_sense_valid(sshdr)) {
2449 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2450 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2451 /*
2452 * Invalid command operation code
2453 */
2454 sdev->use_10_for_ms = 0;
2455 goto retry;
2456 }
2457 }
2458 }
2459
2460 if(scsi_status_is_good(result)) {
2461 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2462 (modepage == 6 || modepage == 8))) {
2463 /* Initio breakage? */
2464 header_length = 0;
2465 data->length = 13;
2466 data->medium_type = 0;
2467 data->device_specific = 0;
2468 data->longlba = 0;
2469 data->block_descriptor_length = 0;
2470 } else if(use_10_for_ms) {
2471 data->length = buffer[0]*256 + buffer[1] + 2;
2472 data->medium_type = buffer[2];
2473 data->device_specific = buffer[3];
2474 data->longlba = buffer[4] & 0x01;
2475 data->block_descriptor_length = buffer[6]*256
2476 + buffer[7];
2477 } else {
2478 data->length = buffer[0] + 1;
2479 data->medium_type = buffer[1];
2480 data->device_specific = buffer[2];
2481 data->block_descriptor_length = buffer[3];
2482 }
2483 data->header_length = header_length;
2484 } else if ((status_byte(result) == CHECK_CONDITION) &&
2485 scsi_sense_valid(sshdr) &&
2486 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2487 retry_count--;
2488 goto retry;
2489 }
2490
2491 return result;
2492 }
2493 EXPORT_SYMBOL(scsi_mode_sense);
2494
2495 /**
2496 * scsi_test_unit_ready - test if unit is ready
2497 * @sdev: scsi device to change the state of.
2498 * @timeout: command timeout
2499 * @retries: number of retries before failing
2500 * @sshdr: outpout pointer for decoded sense information.
2501 *
2502 * Returns zero if unsuccessful or an error if TUR failed. For
2503 * removable media, UNIT_ATTENTION sets ->changed flag.
2504 **/
2505 int
2506 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2507 struct scsi_sense_hdr *sshdr)
2508 {
2509 char cmd[] = {
2510 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2511 };
2512 int result;
2513
2514 /* try to eat the UNIT_ATTENTION if there are enough retries */
2515 do {
2516 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2517 timeout, retries, NULL);
2518 if (sdev->removable && scsi_sense_valid(sshdr) &&
2519 sshdr->sense_key == UNIT_ATTENTION)
2520 sdev->changed = 1;
2521 } while (scsi_sense_valid(sshdr) &&
2522 sshdr->sense_key == UNIT_ATTENTION && --retries);
2523
2524 return result;
2525 }
2526 EXPORT_SYMBOL(scsi_test_unit_ready);
2527
2528 /**
2529 * scsi_device_set_state - Take the given device through the device state model.
2530 * @sdev: scsi device to change the state of.
2531 * @state: state to change to.
2532 *
2533 * Returns zero if unsuccessful or an error if the requested
2534 * transition is illegal.
2535 */
2536 int
2537 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2538 {
2539 enum scsi_device_state oldstate = sdev->sdev_state;
2540
2541 if (state == oldstate)
2542 return 0;
2543
2544 switch (state) {
2545 case SDEV_CREATED:
2546 switch (oldstate) {
2547 case SDEV_CREATED_BLOCK:
2548 break;
2549 default:
2550 goto illegal;
2551 }
2552 break;
2553
2554 case SDEV_RUNNING:
2555 switch (oldstate) {
2556 case SDEV_CREATED:
2557 case SDEV_OFFLINE:
2558 case SDEV_TRANSPORT_OFFLINE:
2559 case SDEV_QUIESCE:
2560 case SDEV_BLOCK:
2561 break;
2562 default:
2563 goto illegal;
2564 }
2565 break;
2566
2567 case SDEV_QUIESCE:
2568 switch (oldstate) {
2569 case SDEV_RUNNING:
2570 case SDEV_OFFLINE:
2571 case SDEV_TRANSPORT_OFFLINE:
2572 break;
2573 default:
2574 goto illegal;
2575 }
2576 break;
2577
2578 case SDEV_OFFLINE:
2579 case SDEV_TRANSPORT_OFFLINE:
2580 switch (oldstate) {
2581 case SDEV_CREATED:
2582 case SDEV_RUNNING:
2583 case SDEV_QUIESCE:
2584 case SDEV_BLOCK:
2585 break;
2586 default:
2587 goto illegal;
2588 }
2589 break;
2590
2591 case SDEV_BLOCK:
2592 switch (oldstate) {
2593 case SDEV_RUNNING:
2594 case SDEV_CREATED_BLOCK:
2595 break;
2596 default:
2597 goto illegal;
2598 }
2599 break;
2600
2601 case SDEV_CREATED_BLOCK:
2602 switch (oldstate) {
2603 case SDEV_CREATED:
2604 break;
2605 default:
2606 goto illegal;
2607 }
2608 break;
2609
2610 case SDEV_CANCEL:
2611 switch (oldstate) {
2612 case SDEV_CREATED:
2613 case SDEV_RUNNING:
2614 case SDEV_QUIESCE:
2615 case SDEV_OFFLINE:
2616 case SDEV_TRANSPORT_OFFLINE:
2617 case SDEV_BLOCK:
2618 break;
2619 default:
2620 goto illegal;
2621 }
2622 break;
2623
2624 case SDEV_DEL:
2625 switch (oldstate) {
2626 case SDEV_CREATED:
2627 case SDEV_RUNNING:
2628 case SDEV_OFFLINE:
2629 case SDEV_TRANSPORT_OFFLINE:
2630 case SDEV_CANCEL:
2631 case SDEV_CREATED_BLOCK:
2632 break;
2633 default:
2634 goto illegal;
2635 }
2636 break;
2637
2638 }
2639 sdev->sdev_state = state;
2640 return 0;
2641
2642 illegal:
2643 SCSI_LOG_ERROR_RECOVERY(1,
2644 sdev_printk(KERN_ERR, sdev,
2645 "Illegal state transition %s->%s",
2646 scsi_device_state_name(oldstate),
2647 scsi_device_state_name(state))
2648 );
2649 return -EINVAL;
2650 }
2651 EXPORT_SYMBOL(scsi_device_set_state);
2652
2653 /**
2654 * sdev_evt_emit - emit a single SCSI device uevent
2655 * @sdev: associated SCSI device
2656 * @evt: event to emit
2657 *
2658 * Send a single uevent (scsi_event) to the associated scsi_device.
2659 */
2660 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2661 {
2662 int idx = 0;
2663 char *envp[3];
2664
2665 switch (evt->evt_type) {
2666 case SDEV_EVT_MEDIA_CHANGE:
2667 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2668 break;
2669 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2670 scsi_rescan_device(&sdev->sdev_gendev);
2671 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2672 break;
2673 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2674 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2675 break;
2676 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2677 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2678 break;
2679 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2681 break;
2682 case SDEV_EVT_LUN_CHANGE_REPORTED:
2683 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2684 break;
2685 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2686 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2687 break;
2688 default:
2689 /* do nothing */
2690 break;
2691 }
2692
2693 envp[idx++] = NULL;
2694
2695 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2696 }
2697
2698 /**
2699 * sdev_evt_thread - send a uevent for each scsi event
2700 * @work: work struct for scsi_device
2701 *
2702 * Dispatch queued events to their associated scsi_device kobjects
2703 * as uevents.
2704 */
2705 void scsi_evt_thread(struct work_struct *work)
2706 {
2707 struct scsi_device *sdev;
2708 enum scsi_device_event evt_type;
2709 LIST_HEAD(event_list);
2710
2711 sdev = container_of(work, struct scsi_device, event_work);
2712
2713 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2714 if (test_and_clear_bit(evt_type, sdev->pending_events))
2715 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2716
2717 while (1) {
2718 struct scsi_event *evt;
2719 struct list_head *this, *tmp;
2720 unsigned long flags;
2721
2722 spin_lock_irqsave(&sdev->list_lock, flags);
2723 list_splice_init(&sdev->event_list, &event_list);
2724 spin_unlock_irqrestore(&sdev->list_lock, flags);
2725
2726 if (list_empty(&event_list))
2727 break;
2728
2729 list_for_each_safe(this, tmp, &event_list) {
2730 evt = list_entry(this, struct scsi_event, node);
2731 list_del(&evt->node);
2732 scsi_evt_emit(sdev, evt);
2733 kfree(evt);
2734 }
2735 }
2736 }
2737
2738 /**
2739 * sdev_evt_send - send asserted event to uevent thread
2740 * @sdev: scsi_device event occurred on
2741 * @evt: event to send
2742 *
2743 * Assert scsi device event asynchronously.
2744 */
2745 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2746 {
2747 unsigned long flags;
2748
2749 #if 0
2750 /* FIXME: currently this check eliminates all media change events
2751 * for polled devices. Need to update to discriminate between AN
2752 * and polled events */
2753 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2754 kfree(evt);
2755 return;
2756 }
2757 #endif
2758
2759 spin_lock_irqsave(&sdev->list_lock, flags);
2760 list_add_tail(&evt->node, &sdev->event_list);
2761 schedule_work(&sdev->event_work);
2762 spin_unlock_irqrestore(&sdev->list_lock, flags);
2763 }
2764 EXPORT_SYMBOL_GPL(sdev_evt_send);
2765
2766 /**
2767 * sdev_evt_alloc - allocate a new scsi event
2768 * @evt_type: type of event to allocate
2769 * @gfpflags: GFP flags for allocation
2770 *
2771 * Allocates and returns a new scsi_event.
2772 */
2773 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2774 gfp_t gfpflags)
2775 {
2776 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2777 if (!evt)
2778 return NULL;
2779
2780 evt->evt_type = evt_type;
2781 INIT_LIST_HEAD(&evt->node);
2782
2783 /* evt_type-specific initialization, if any */
2784 switch (evt_type) {
2785 case SDEV_EVT_MEDIA_CHANGE:
2786 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2787 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2788 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2789 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2790 case SDEV_EVT_LUN_CHANGE_REPORTED:
2791 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2792 default:
2793 /* do nothing */
2794 break;
2795 }
2796
2797 return evt;
2798 }
2799 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2800
2801 /**
2802 * sdev_evt_send_simple - send asserted event to uevent thread
2803 * @sdev: scsi_device event occurred on
2804 * @evt_type: type of event to send
2805 * @gfpflags: GFP flags for allocation
2806 *
2807 * Assert scsi device event asynchronously, given an event type.
2808 */
2809 void sdev_evt_send_simple(struct scsi_device *sdev,
2810 enum scsi_device_event evt_type, gfp_t gfpflags)
2811 {
2812 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2813 if (!evt) {
2814 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2815 evt_type);
2816 return;
2817 }
2818
2819 sdev_evt_send(sdev, evt);
2820 }
2821 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2822
2823 /**
2824 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2825 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2826 */
2827 static int scsi_request_fn_active(struct scsi_device *sdev)
2828 {
2829 struct request_queue *q = sdev->request_queue;
2830 int request_fn_active;
2831
2832 WARN_ON_ONCE(sdev->host->use_blk_mq);
2833
2834 spin_lock_irq(q->queue_lock);
2835 request_fn_active = q->request_fn_active;
2836 spin_unlock_irq(q->queue_lock);
2837
2838 return request_fn_active;
2839 }
2840
2841 /**
2842 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2843 * @sdev: SCSI device pointer.
2844 *
2845 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2846 * invoked from scsi_request_fn() have finished.
2847 */
2848 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2849 {
2850 WARN_ON_ONCE(sdev->host->use_blk_mq);
2851
2852 while (scsi_request_fn_active(sdev))
2853 msleep(20);
2854 }
2855
2856 /**
2857 * scsi_device_quiesce - Block user issued commands.
2858 * @sdev: scsi device to quiesce.
2859 *
2860 * This works by trying to transition to the SDEV_QUIESCE state
2861 * (which must be a legal transition). When the device is in this
2862 * state, only special requests will be accepted, all others will
2863 * be deferred. Since special requests may also be requeued requests,
2864 * a successful return doesn't guarantee the device will be
2865 * totally quiescent.
2866 *
2867 * Must be called with user context, may sleep.
2868 *
2869 * Returns zero if unsuccessful or an error if not.
2870 */
2871 int
2872 scsi_device_quiesce(struct scsi_device *sdev)
2873 {
2874 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2875 if (err)
2876 return err;
2877
2878 scsi_run_queue(sdev->request_queue);
2879 while (atomic_read(&sdev->device_busy)) {
2880 msleep_interruptible(200);
2881 scsi_run_queue(sdev->request_queue);
2882 }
2883 return 0;
2884 }
2885 EXPORT_SYMBOL(scsi_device_quiesce);
2886
2887 /**
2888 * scsi_device_resume - Restart user issued commands to a quiesced device.
2889 * @sdev: scsi device to resume.
2890 *
2891 * Moves the device from quiesced back to running and restarts the
2892 * queues.
2893 *
2894 * Must be called with user context, may sleep.
2895 */
2896 void scsi_device_resume(struct scsi_device *sdev)
2897 {
2898 /* check if the device state was mutated prior to resume, and if
2899 * so assume the state is being managed elsewhere (for example
2900 * device deleted during suspend)
2901 */
2902 if (sdev->sdev_state != SDEV_QUIESCE ||
2903 scsi_device_set_state(sdev, SDEV_RUNNING))
2904 return;
2905 scsi_run_queue(sdev->request_queue);
2906 }
2907 EXPORT_SYMBOL(scsi_device_resume);
2908
2909 static void
2910 device_quiesce_fn(struct scsi_device *sdev, void *data)
2911 {
2912 scsi_device_quiesce(sdev);
2913 }
2914
2915 void
2916 scsi_target_quiesce(struct scsi_target *starget)
2917 {
2918 starget_for_each_device(starget, NULL, device_quiesce_fn);
2919 }
2920 EXPORT_SYMBOL(scsi_target_quiesce);
2921
2922 static void
2923 device_resume_fn(struct scsi_device *sdev, void *data)
2924 {
2925 scsi_device_resume(sdev);
2926 }
2927
2928 void
2929 scsi_target_resume(struct scsi_target *starget)
2930 {
2931 starget_for_each_device(starget, NULL, device_resume_fn);
2932 }
2933 EXPORT_SYMBOL(scsi_target_resume);
2934
2935 /**
2936 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2937 * @sdev: device to block
2938 * @wait: Whether or not to wait until ongoing .queuecommand() /
2939 * .queue_rq() calls have finished.
2940 *
2941 * Block request made by scsi lld's to temporarily stop all
2942 * scsi commands on the specified device. May sleep.
2943 *
2944 * Returns zero if successful or error if not
2945 *
2946 * Notes:
2947 * This routine transitions the device to the SDEV_BLOCK state
2948 * (which must be a legal transition). When the device is in this
2949 * state, all commands are deferred until the scsi lld reenables
2950 * the device with scsi_device_unblock or device_block_tmo fires.
2951 *
2952 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2953 * scsi_internal_device_block() has blocked a SCSI device and also
2954 * remove the rport mutex lock and unlock calls from srp_queuecommand().
2955 */
2956 int
2957 scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2958 {
2959 struct request_queue *q = sdev->request_queue;
2960 unsigned long flags;
2961 int err = 0;
2962
2963 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2964 if (err) {
2965 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2966
2967 if (err)
2968 return err;
2969 }
2970
2971 /*
2972 * The device has transitioned to SDEV_BLOCK. Stop the
2973 * block layer from calling the midlayer with this device's
2974 * request queue.
2975 */
2976 if (q->mq_ops) {
2977 if (wait)
2978 blk_mq_quiesce_queue(q);
2979 else
2980 blk_mq_stop_hw_queues(q);
2981 } else {
2982 spin_lock_irqsave(q->queue_lock, flags);
2983 blk_stop_queue(q);
2984 spin_unlock_irqrestore(q->queue_lock, flags);
2985 if (wait)
2986 scsi_wait_for_queuecommand(sdev);
2987 }
2988
2989 return 0;
2990 }
2991 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2992
2993 /**
2994 * scsi_internal_device_unblock - resume a device after a block request
2995 * @sdev: device to resume
2996 * @new_state: state to set devices to after unblocking
2997 *
2998 * Called by scsi lld's or the midlayer to restart the device queue
2999 * for the previously suspended scsi device. Called from interrupt or
3000 * normal process context.
3001 *
3002 * Returns zero if successful or error if not.
3003 *
3004 * Notes:
3005 * This routine transitions the device to the SDEV_RUNNING state
3006 * or to one of the offline states (which must be a legal transition)
3007 * allowing the midlayer to goose the queue for this device.
3008 */
3009 int
3010 scsi_internal_device_unblock(struct scsi_device *sdev,
3011 enum scsi_device_state new_state)
3012 {
3013 struct request_queue *q = sdev->request_queue;
3014 unsigned long flags;
3015
3016 /*
3017 * Try to transition the scsi device to SDEV_RUNNING or one of the
3018 * offlined states and goose the device queue if successful.
3019 */
3020 if ((sdev->sdev_state == SDEV_BLOCK) ||
3021 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3022 sdev->sdev_state = new_state;
3023 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3024 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3025 new_state == SDEV_OFFLINE)
3026 sdev->sdev_state = new_state;
3027 else
3028 sdev->sdev_state = SDEV_CREATED;
3029 } else if (sdev->sdev_state != SDEV_CANCEL &&
3030 sdev->sdev_state != SDEV_OFFLINE)
3031 return -EINVAL;
3032
3033 if (q->mq_ops) {
3034 blk_mq_start_stopped_hw_queues(q, false);
3035 } else {
3036 spin_lock_irqsave(q->queue_lock, flags);
3037 blk_start_queue(q);
3038 spin_unlock_irqrestore(q->queue_lock, flags);
3039 }
3040
3041 return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3044
3045 static void
3046 device_block(struct scsi_device *sdev, void *data)
3047 {
3048 scsi_internal_device_block(sdev, true);
3049 }
3050
3051 static int
3052 target_block(struct device *dev, void *data)
3053 {
3054 if (scsi_is_target_device(dev))
3055 starget_for_each_device(to_scsi_target(dev), NULL,
3056 device_block);
3057 return 0;
3058 }
3059
3060 void
3061 scsi_target_block(struct device *dev)
3062 {
3063 if (scsi_is_target_device(dev))
3064 starget_for_each_device(to_scsi_target(dev), NULL,
3065 device_block);
3066 else
3067 device_for_each_child(dev, NULL, target_block);
3068 }
3069 EXPORT_SYMBOL_GPL(scsi_target_block);
3070
3071 static void
3072 device_unblock(struct scsi_device *sdev, void *data)
3073 {
3074 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3075 }
3076
3077 static int
3078 target_unblock(struct device *dev, void *data)
3079 {
3080 if (scsi_is_target_device(dev))
3081 starget_for_each_device(to_scsi_target(dev), data,
3082 device_unblock);
3083 return 0;
3084 }
3085
3086 void
3087 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3088 {
3089 if (scsi_is_target_device(dev))
3090 starget_for_each_device(to_scsi_target(dev), &new_state,
3091 device_unblock);
3092 else
3093 device_for_each_child(dev, &new_state, target_unblock);
3094 }
3095 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3096
3097 /**
3098 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3099 * @sgl: scatter-gather list
3100 * @sg_count: number of segments in sg
3101 * @offset: offset in bytes into sg, on return offset into the mapped area
3102 * @len: bytes to map, on return number of bytes mapped
3103 *
3104 * Returns virtual address of the start of the mapped page
3105 */
3106 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3107 size_t *offset, size_t *len)
3108 {
3109 int i;
3110 size_t sg_len = 0, len_complete = 0;
3111 struct scatterlist *sg;
3112 struct page *page;
3113
3114 WARN_ON(!irqs_disabled());
3115
3116 for_each_sg(sgl, sg, sg_count, i) {
3117 len_complete = sg_len; /* Complete sg-entries */
3118 sg_len += sg->length;
3119 if (sg_len > *offset)
3120 break;
3121 }
3122
3123 if (unlikely(i == sg_count)) {
3124 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3125 "elements %d\n",
3126 __func__, sg_len, *offset, sg_count);
3127 WARN_ON(1);
3128 return NULL;
3129 }
3130
3131 /* Offset starting from the beginning of first page in this sg-entry */
3132 *offset = *offset - len_complete + sg->offset;
3133
3134 /* Assumption: contiguous pages can be accessed as "page + i" */
3135 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3136 *offset &= ~PAGE_MASK;
3137
3138 /* Bytes in this sg-entry from *offset to the end of the page */
3139 sg_len = PAGE_SIZE - *offset;
3140 if (*len > sg_len)
3141 *len = sg_len;
3142
3143 return kmap_atomic(page);
3144 }
3145 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3146
3147 /**
3148 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3149 * @virt: virtual address to be unmapped
3150 */
3151 void scsi_kunmap_atomic_sg(void *virt)
3152 {
3153 kunmap_atomic(virt);
3154 }
3155 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3156
3157 void sdev_disable_disk_events(struct scsi_device *sdev)
3158 {
3159 atomic_inc(&sdev->disk_events_disable_depth);
3160 }
3161 EXPORT_SYMBOL(sdev_disable_disk_events);
3162
3163 void sdev_enable_disk_events(struct scsi_device *sdev)
3164 {
3165 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3166 return;
3167 atomic_dec(&sdev->disk_events_disable_depth);
3168 }
3169 EXPORT_SYMBOL(sdev_enable_disk_events);
3170
3171 /**
3172 * scsi_vpd_lun_id - return a unique device identification
3173 * @sdev: SCSI device
3174 * @id: buffer for the identification
3175 * @id_len: length of the buffer
3176 *
3177 * Copies a unique device identification into @id based
3178 * on the information in the VPD page 0x83 of the device.
3179 * The string will be formatted as a SCSI name string.
3180 *
3181 * Returns the length of the identification or error on failure.
3182 * If the identifier is longer than the supplied buffer the actual
3183 * identifier length is returned and the buffer is not zero-padded.
3184 */
3185 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3186 {
3187 u8 cur_id_type = 0xff;
3188 u8 cur_id_size = 0;
3189 unsigned char *d, *cur_id_str;
3190 unsigned char __rcu *vpd_pg83;
3191 int id_size = -EINVAL;
3192
3193 rcu_read_lock();
3194 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3195 if (!vpd_pg83) {
3196 rcu_read_unlock();
3197 return -ENXIO;
3198 }
3199
3200 /*
3201 * Look for the correct descriptor.
3202 * Order of preference for lun descriptor:
3203 * - SCSI name string
3204 * - NAA IEEE Registered Extended
3205 * - EUI-64 based 16-byte
3206 * - EUI-64 based 12-byte
3207 * - NAA IEEE Registered
3208 * - NAA IEEE Extended
3209 * - T10 Vendor ID
3210 * as longer descriptors reduce the likelyhood
3211 * of identification clashes.
3212 */
3213
3214 /* The id string must be at least 20 bytes + terminating NULL byte */
3215 if (id_len < 21) {
3216 rcu_read_unlock();
3217 return -EINVAL;
3218 }
3219
3220 memset(id, 0, id_len);
3221 d = vpd_pg83 + 4;
3222 while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3223 /* Skip designators not referring to the LUN */
3224 if ((d[1] & 0x30) != 0x00)
3225 goto next_desig;
3226
3227 switch (d[1] & 0xf) {
3228 case 0x1:
3229 /* T10 Vendor ID */
3230 if (cur_id_size > d[3])
3231 break;
3232 /* Prefer anything */
3233 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3234 break;
3235 cur_id_size = d[3];
3236 if (cur_id_size + 4 > id_len)
3237 cur_id_size = id_len - 4;
3238 cur_id_str = d + 4;
3239 cur_id_type = d[1] & 0xf;
3240 id_size = snprintf(id, id_len, "t10.%*pE",
3241 cur_id_size, cur_id_str);
3242 break;
3243 case 0x2:
3244 /* EUI-64 */
3245 if (cur_id_size > d[3])
3246 break;
3247 /* Prefer NAA IEEE Registered Extended */
3248 if (cur_id_type == 0x3 &&
3249 cur_id_size == d[3])
3250 break;
3251 cur_id_size = d[3];
3252 cur_id_str = d + 4;
3253 cur_id_type = d[1] & 0xf;
3254 switch (cur_id_size) {
3255 case 8:
3256 id_size = snprintf(id, id_len,
3257 "eui.%8phN",
3258 cur_id_str);
3259 break;
3260 case 12:
3261 id_size = snprintf(id, id_len,
3262 "eui.%12phN",
3263 cur_id_str);
3264 break;
3265 case 16:
3266 id_size = snprintf(id, id_len,
3267 "eui.%16phN",
3268 cur_id_str);
3269 break;
3270 default:
3271 cur_id_size = 0;
3272 break;
3273 }
3274 break;
3275 case 0x3:
3276 /* NAA */
3277 if (cur_id_size > d[3])
3278 break;
3279 cur_id_size = d[3];
3280 cur_id_str = d + 4;
3281 cur_id_type = d[1] & 0xf;
3282 switch (cur_id_size) {
3283 case 8:
3284 id_size = snprintf(id, id_len,
3285 "naa.%8phN",
3286 cur_id_str);
3287 break;
3288 case 16:
3289 id_size = snprintf(id, id_len,
3290 "naa.%16phN",
3291 cur_id_str);
3292 break;
3293 default:
3294 cur_id_size = 0;
3295 break;
3296 }
3297 break;
3298 case 0x8:
3299 /* SCSI name string */
3300 if (cur_id_size + 4 > d[3])
3301 break;
3302 /* Prefer others for truncated descriptor */
3303 if (cur_id_size && d[3] > id_len)
3304 break;
3305 cur_id_size = id_size = d[3];
3306 cur_id_str = d + 4;
3307 cur_id_type = d[1] & 0xf;
3308 if (cur_id_size >= id_len)
3309 cur_id_size = id_len - 1;
3310 memcpy(id, cur_id_str, cur_id_size);
3311 /* Decrease priority for truncated descriptor */
3312 if (cur_id_size != id_size)
3313 cur_id_size = 6;
3314 break;
3315 default:
3316 break;
3317 }
3318 next_desig:
3319 d += d[3] + 4;
3320 }
3321 rcu_read_unlock();
3322
3323 return id_size;
3324 }
3325 EXPORT_SYMBOL(scsi_vpd_lun_id);
3326
3327 /*
3328 * scsi_vpd_tpg_id - return a target port group identifier
3329 * @sdev: SCSI device
3330 *
3331 * Returns the Target Port Group identifier from the information
3332 * froom VPD page 0x83 of the device.
3333 *
3334 * Returns the identifier or error on failure.
3335 */
3336 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3337 {
3338 unsigned char *d;
3339 unsigned char __rcu *vpd_pg83;
3340 int group_id = -EAGAIN, rel_port = -1;
3341
3342 rcu_read_lock();
3343 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3344 if (!vpd_pg83) {
3345 rcu_read_unlock();
3346 return -ENXIO;
3347 }
3348
3349 d = sdev->vpd_pg83 + 4;
3350 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3351 switch (d[1] & 0xf) {
3352 case 0x4:
3353 /* Relative target port */
3354 rel_port = get_unaligned_be16(&d[6]);
3355 break;
3356 case 0x5:
3357 /* Target port group */
3358 group_id = get_unaligned_be16(&d[6]);
3359 break;
3360 default:
3361 break;
3362 }
3363 d += d[3] + 4;
3364 }
3365 rcu_read_unlock();
3366
3367 if (group_id >= 0 && rel_id && rel_port != -1)
3368 *rel_id = rel_port;
3369
3370 return group_id;
3371 }
3372 EXPORT_SYMBOL(scsi_vpd_tpg_id);