]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/scsi_lib.c
9ea95dd3e2604eea2613a5a15d074c2357fac7dd
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE 2
43
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
49 };
50
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56 SP(8),
57 SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61 SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63 SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70 SP(SCSI_MAX_SG_SEGMENTS)
71 };
72 #undef SP
73
74 struct kmem_cache *scsi_sdb_cache;
75
76 /*
77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78 * not change behaviour from the previous unplug mechanism, experimentation
79 * may prove this needs changing.
80 */
81 #define SCSI_QUEUE_DELAY 3
82
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85 {
86 struct Scsi_Host *host = cmd->device->host;
87 struct scsi_device *device = cmd->device;
88 struct scsi_target *starget = scsi_target(device);
89
90 /*
91 * Set the appropriate busy bit for the device/host.
92 *
93 * If the host/device isn't busy, assume that something actually
94 * completed, and that we should be able to queue a command now.
95 *
96 * Note that the prior mid-layer assumption that any host could
97 * always queue at least one command is now broken. The mid-layer
98 * will implement a user specifiable stall (see
99 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100 * if a command is requeued with no other commands outstanding
101 * either for the device or for the host.
102 */
103 switch (reason) {
104 case SCSI_MLQUEUE_HOST_BUSY:
105 atomic_set(&host->host_blocked, host->max_host_blocked);
106 break;
107 case SCSI_MLQUEUE_DEVICE_BUSY:
108 case SCSI_MLQUEUE_EH_RETRY:
109 atomic_set(&device->device_blocked,
110 device->max_device_blocked);
111 break;
112 case SCSI_MLQUEUE_TARGET_BUSY:
113 atomic_set(&starget->target_blocked,
114 starget->max_target_blocked);
115 break;
116 }
117 }
118
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120 {
121 struct scsi_device *sdev = cmd->device;
122 struct request_queue *q = cmd->request->q;
123
124 blk_mq_requeue_request(cmd->request);
125 blk_mq_kick_requeue_list(q);
126 put_device(&sdev->sdev_gendev);
127 }
128
129 /**
130 * __scsi_queue_insert - private queue insertion
131 * @cmd: The SCSI command being requeued
132 * @reason: The reason for the requeue
133 * @unbusy: Whether the queue should be unbusied
134 *
135 * This is a private queue insertion. The public interface
136 * scsi_queue_insert() always assumes the queue should be unbusied
137 * because it's always called before the completion. This function is
138 * for a requeue after completion, which should only occur in this
139 * file.
140 */
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142 {
143 struct scsi_device *device = cmd->device;
144 struct request_queue *q = device->request_queue;
145 unsigned long flags;
146
147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 "Inserting command %p into mlqueue\n", cmd));
149
150 scsi_set_blocked(cmd, reason);
151
152 /*
153 * Decrement the counters, since these commands are no longer
154 * active on the host/device.
155 */
156 if (unbusy)
157 scsi_device_unbusy(device);
158
159 /*
160 * Requeue this command. It will go before all other commands
161 * that are already in the queue. Schedule requeue work under
162 * lock such that the kblockd_schedule_work() call happens
163 * before blk_cleanup_queue() finishes.
164 */
165 cmd->result = 0;
166 if (q->mq_ops) {
167 scsi_mq_requeue_cmd(cmd);
168 return;
169 }
170 spin_lock_irqsave(q->queue_lock, flags);
171 blk_requeue_request(q, cmd->request);
172 kblockd_schedule_work(&device->requeue_work);
173 spin_unlock_irqrestore(q->queue_lock, flags);
174 }
175
176 /*
177 * Function: scsi_queue_insert()
178 *
179 * Purpose: Insert a command in the midlevel queue.
180 *
181 * Arguments: cmd - command that we are adding to queue.
182 * reason - why we are inserting command to queue.
183 *
184 * Lock status: Assumed that lock is not held upon entry.
185 *
186 * Returns: Nothing.
187 *
188 * Notes: We do this for one of two cases. Either the host is busy
189 * and it cannot accept any more commands for the time being,
190 * or the device returned QUEUE_FULL and can accept no more
191 * commands.
192 * Notes: This could be called either from an interrupt context or a
193 * normal process context.
194 */
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196 {
197 __scsi_queue_insert(cmd, reason, 1);
198 }
199 /**
200 * scsi_execute - insert request and wait for the result
201 * @sdev: scsi device
202 * @cmd: scsi command
203 * @data_direction: data direction
204 * @buffer: data buffer
205 * @bufflen: len of buffer
206 * @sense: optional sense buffer
207 * @timeout: request timeout in seconds
208 * @retries: number of times to retry request
209 * @flags: or into request flags;
210 * @resid: optional residual length
211 *
212 * returns the req->errors value which is the scsi_cmnd result
213 * field.
214 */
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 unsigned char *sense, int timeout, int retries, u64 flags,
218 int *resid)
219 {
220 struct request *req;
221 int write = (data_direction == DMA_TO_DEVICE);
222 int ret = DRIVER_ERROR << 24;
223
224 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225 if (IS_ERR(req))
226 return ret;
227 blk_rq_set_block_pc(req);
228
229 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
230 buffer, bufflen, __GFP_WAIT))
231 goto out;
232
233 req->cmd_len = COMMAND_SIZE(cmd[0]);
234 memcpy(req->cmd, cmd, req->cmd_len);
235 req->sense = sense;
236 req->sense_len = 0;
237 req->retries = retries;
238 req->timeout = timeout;
239 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240
241 /*
242 * head injection *required* here otherwise quiesce won't work
243 */
244 blk_execute_rq(req->q, NULL, req, 1);
245
246 /*
247 * Some devices (USB mass-storage in particular) may transfer
248 * garbage data together with a residue indicating that the data
249 * is invalid. Prevent the garbage from being misinterpreted
250 * and prevent security leaks by zeroing out the excess data.
251 */
252 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254
255 if (resid)
256 *resid = req->resid_len;
257 ret = req->errors;
258 out:
259 blk_put_request(req);
260
261 return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute);
264
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266 int data_direction, void *buffer, unsigned bufflen,
267 struct scsi_sense_hdr *sshdr, int timeout, int retries,
268 int *resid, u64 flags)
269 {
270 char *sense = NULL;
271 int result;
272
273 if (sshdr) {
274 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275 if (!sense)
276 return DRIVER_ERROR << 24;
277 }
278 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279 sense, timeout, retries, flags, resid);
280 if (sshdr)
281 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282
283 kfree(sense);
284 return result;
285 }
286 EXPORT_SYMBOL(scsi_execute_req_flags);
287
288 /*
289 * Function: scsi_init_cmd_errh()
290 *
291 * Purpose: Initialize cmd fields related to error handling.
292 *
293 * Arguments: cmd - command that is ready to be queued.
294 *
295 * Notes: This function has the job of initializing a number of
296 * fields related to error handling. Typically this will
297 * be called once for each command, as required.
298 */
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300 {
301 cmd->serial_number = 0;
302 scsi_set_resid(cmd, 0);
303 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304 if (cmd->cmd_len == 0)
305 cmd->cmd_len = scsi_command_size(cmd->cmnd);
306 }
307
308 void scsi_device_unbusy(struct scsi_device *sdev)
309 {
310 struct Scsi_Host *shost = sdev->host;
311 struct scsi_target *starget = scsi_target(sdev);
312 unsigned long flags;
313
314 atomic_dec(&shost->host_busy);
315 if (starget->can_queue > 0)
316 atomic_dec(&starget->target_busy);
317
318 if (unlikely(scsi_host_in_recovery(shost) &&
319 (shost->host_failed || shost->host_eh_scheduled))) {
320 spin_lock_irqsave(shost->host_lock, flags);
321 scsi_eh_wakeup(shost);
322 spin_unlock_irqrestore(shost->host_lock, flags);
323 }
324
325 atomic_dec(&sdev->device_busy);
326 }
327
328 static void scsi_kick_queue(struct request_queue *q)
329 {
330 if (q->mq_ops)
331 blk_mq_start_hw_queues(q);
332 else
333 blk_run_queue(q);
334 }
335
336 /*
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
340 *
341 * Called with *no* scsi locks held.
342 */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
348 unsigned long flags;
349
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
353
354 /*
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
359 */
360 scsi_kick_queue(current_sdev->request_queue);
361
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
364 goto out;
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
368 continue;
369 if (scsi_device_get(sdev))
370 continue;
371
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 scsi_kick_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
375
376 scsi_device_put(sdev);
377 }
378 out:
379 spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385 return true;
386 if (atomic_read(&sdev->device_blocked) > 0)
387 return true;
388 return false;
389 }
390
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
392 {
393 if (starget->can_queue > 0) {
394 if (atomic_read(&starget->target_busy) >= starget->can_queue)
395 return true;
396 if (atomic_read(&starget->target_blocked) > 0)
397 return true;
398 }
399 return false;
400 }
401
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404 if (shost->can_queue > 0 &&
405 atomic_read(&shost->host_busy) >= shost->can_queue)
406 return true;
407 if (atomic_read(&shost->host_blocked) > 0)
408 return true;
409 if (shost->host_self_blocked)
410 return true;
411 return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 LIST_HEAD(starved_list);
417 struct scsi_device *sdev;
418 unsigned long flags;
419
420 spin_lock_irqsave(shost->host_lock, flags);
421 list_splice_init(&shost->starved_list, &starved_list);
422
423 while (!list_empty(&starved_list)) {
424 struct request_queue *slq;
425
426 /*
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
430 * starved_list.
431 *
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
435 */
436 if (scsi_host_is_busy(shost))
437 break;
438
439 sdev = list_entry(starved_list.next,
440 struct scsi_device, starved_entry);
441 list_del_init(&sdev->starved_entry);
442 if (scsi_target_is_busy(scsi_target(sdev))) {
443 list_move_tail(&sdev->starved_entry,
444 &shost->starved_list);
445 continue;
446 }
447
448 /*
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 */
458 slq = sdev->request_queue;
459 if (!blk_get_queue(slq))
460 continue;
461 spin_unlock_irqrestore(shost->host_lock, flags);
462
463 scsi_kick_queue(slq);
464 blk_put_queue(slq);
465
466 spin_lock_irqsave(shost->host_lock, flags);
467 }
468 /* put any unprocessed entries back */
469 list_splice(&starved_list, &shost->starved_list);
470 spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /*
474 * Function: scsi_run_queue()
475 *
476 * Purpose: Select a proper request queue to serve next
477 *
478 * Arguments: q - last request's queue
479 *
480 * Returns: Nothing
481 *
482 * Notes: The previous command was completely finished, start
483 * a new one if possible.
484 */
485 static void scsi_run_queue(struct request_queue *q)
486 {
487 struct scsi_device *sdev = q->queuedata;
488
489 if (scsi_target(sdev)->single_lun)
490 scsi_single_lun_run(sdev);
491 if (!list_empty(&sdev->host->starved_list))
492 scsi_starved_list_run(sdev->host);
493
494 if (q->mq_ops)
495 blk_mq_start_stopped_hw_queues(q, false);
496 else
497 blk_run_queue(q);
498 }
499
500 void scsi_requeue_run_queue(struct work_struct *work)
501 {
502 struct scsi_device *sdev;
503 struct request_queue *q;
504
505 sdev = container_of(work, struct scsi_device, requeue_work);
506 q = sdev->request_queue;
507 scsi_run_queue(q);
508 }
509
510 /*
511 * Function: scsi_requeue_command()
512 *
513 * Purpose: Handle post-processing of completed commands.
514 *
515 * Arguments: q - queue to operate on
516 * cmd - command that may need to be requeued.
517 *
518 * Returns: Nothing
519 *
520 * Notes: After command completion, there may be blocks left
521 * over which weren't finished by the previous command
522 * this can be for a number of reasons - the main one is
523 * I/O errors in the middle of the request, in which case
524 * we need to request the blocks that come after the bad
525 * sector.
526 * Notes: Upon return, cmd is a stale pointer.
527 */
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529 {
530 struct scsi_device *sdev = cmd->device;
531 struct request *req = cmd->request;
532 unsigned long flags;
533
534 spin_lock_irqsave(q->queue_lock, flags);
535 blk_unprep_request(req);
536 req->special = NULL;
537 scsi_put_command(cmd);
538 blk_requeue_request(q, req);
539 spin_unlock_irqrestore(q->queue_lock, flags);
540
541 scsi_run_queue(q);
542
543 put_device(&sdev->sdev_gendev);
544 }
545
546 void scsi_run_host_queues(struct Scsi_Host *shost)
547 {
548 struct scsi_device *sdev;
549
550 shost_for_each_device(sdev, shost)
551 scsi_run_queue(sdev->request_queue);
552 }
553
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
555 {
556 unsigned int index;
557
558 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559
560 if (nents <= 8)
561 index = 0;
562 else
563 index = get_count_order(nents) - 3;
564
565 return index;
566 }
567
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569 {
570 struct scsi_host_sg_pool *sgp;
571
572 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573 mempool_free(sgl, sgp->pool);
574 }
575
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577 {
578 struct scsi_host_sg_pool *sgp;
579
580 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581 return mempool_alloc(sgp->pool, gfp_mask);
582 }
583
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585 {
586 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
587 return;
588 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589 }
590
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
592 {
593 struct scatterlist *first_chunk = NULL;
594 gfp_t gfp_mask = mq ? GFP_NOIO : GFP_ATOMIC;
595 int ret;
596
597 BUG_ON(!nents);
598
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = nents;
602 sg_init_table(sdb->table.sgl, sdb->table.nents);
603 return 0;
604 }
605 first_chunk = sdb->table.sgl;
606 }
607
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, gfp_mask, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
622 }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
640
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
643
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
649 }
650 }
651
652 /*
653 * Function: scsi_release_buffers()
654 *
655 * Purpose: Free resources allocate for a scsi_command.
656 *
657 * Arguments: cmd - command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns: Nothing
662 *
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
667 */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
672
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
690 {
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
694
695 if (blk_update_request(req, error, bytes))
696 return true;
697
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
702
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
705
706 if (req->mq_ctx) {
707 /*
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
710 *
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
713 */
714 scsi_mq_uninit_cmd(cmd);
715
716 __blk_mq_end_request(req, error);
717
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
725
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
728
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
732
733 scsi_release_buffers(cmd);
734
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
737 }
738
739 put_device(&sdev->sdev_gendev);
740 return false;
741 }
742
743 /**
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
747 *
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
756 */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 int error = 0;
760
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
784 }
785
786 return error;
787 }
788
789 /*
790 * Function: scsi_io_completion()
791 *
792 * Purpose: Completion processing for block device I/O requests.
793 *
794 * Arguments: cmd - command that is finished.
795 *
796 * Lock status: Assumed that no lock is held upon entry.
797 *
798 * Returns: Nothing
799 *
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
804 *
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
810 *
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
814 *
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
817 */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
835 }
836
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
840 /*
841 * SG_IO wants current and deferred errors
842 */
843 int len = 8 + cmd->sense_buffer[7];
844
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
849 }
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
852 }
853 /*
854 * __scsi_error_from_host_byte may have reset the host_byte
855 */
856 req->errors = cmd->result;
857
858 req->resid_len = scsi_get_resid(cmd);
859
860 if (scsi_bidi_cmnd(cmd)) {
861 /*
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
864 */
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
870 }
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 /*
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
877 */
878 error = __scsi_error_from_host_byte(cmd, result);
879 }
880
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
883
884 /*
885 * Next deal with any sectors which we were able to correctly
886 * handle.
887 */
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
891
892 /*
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
897 */
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 */
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 ;
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
910 }
911
912 /*
913 * If we finished all bytes in the request we are done now.
914 */
915 if (!scsi_end_request(req, error, good_bytes, 0))
916 return;
917
918 /*
919 * Kill remainder if no retrys.
920 */
921 if (error && scsi_noretry_cmd(cmd)) {
922 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923 BUG();
924 return;
925 }
926
927 /*
928 * If there had been no error, but we have leftover bytes in the
929 * requeues just queue the command up again.
930 */
931 if (result == 0)
932 goto requeue;
933
934 error = __scsi_error_from_host_byte(cmd, result);
935
936 if (host_byte(result) == DID_RESET) {
937 /* Third party bus reset or reset for error recovery
938 * reasons. Just retry the command and see what
939 * happens.
940 */
941 action = ACTION_RETRY;
942 } else if (sense_valid && !sense_deferred) {
943 switch (sshdr.sense_key) {
944 case UNIT_ATTENTION:
945 if (cmd->device->removable) {
946 /* Detected disc change. Set a bit
947 * and quietly refuse further access.
948 */
949 cmd->device->changed = 1;
950 action = ACTION_FAIL;
951 } else {
952 /* Must have been a power glitch, or a
953 * bus reset. Could not have been a
954 * media change, so we just retry the
955 * command and see what happens.
956 */
957 action = ACTION_RETRY;
958 }
959 break;
960 case ILLEGAL_REQUEST:
961 /* If we had an ILLEGAL REQUEST returned, then
962 * we may have performed an unsupported
963 * command. The only thing this should be
964 * would be a ten byte read where only a six
965 * byte read was supported. Also, on a system
966 * where READ CAPACITY failed, we may have
967 * read past the end of the disk.
968 */
969 if ((cmd->device->use_10_for_rw &&
970 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971 (cmd->cmnd[0] == READ_10 ||
972 cmd->cmnd[0] == WRITE_10)) {
973 /* This will issue a new 6-byte command. */
974 cmd->device->use_10_for_rw = 0;
975 action = ACTION_REPREP;
976 } else if (sshdr.asc == 0x10) /* DIX */ {
977 action = ACTION_FAIL;
978 error = -EILSEQ;
979 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981 action = ACTION_FAIL;
982 error = -EREMOTEIO;
983 } else
984 action = ACTION_FAIL;
985 break;
986 case ABORTED_COMMAND:
987 action = ACTION_FAIL;
988 if (sshdr.asc == 0x10) /* DIF */
989 error = -EILSEQ;
990 break;
991 case NOT_READY:
992 /* If the device is in the process of becoming
993 * ready, or has a temporary blockage, retry.
994 */
995 if (sshdr.asc == 0x04) {
996 switch (sshdr.ascq) {
997 case 0x01: /* becoming ready */
998 case 0x04: /* format in progress */
999 case 0x05: /* rebuild in progress */
1000 case 0x06: /* recalculation in progress */
1001 case 0x07: /* operation in progress */
1002 case 0x08: /* Long write in progress */
1003 case 0x09: /* self test in progress */
1004 case 0x14: /* space allocation in progress */
1005 action = ACTION_DELAYED_RETRY;
1006 break;
1007 default:
1008 action = ACTION_FAIL;
1009 break;
1010 }
1011 } else
1012 action = ACTION_FAIL;
1013 break;
1014 case VOLUME_OVERFLOW:
1015 /* See SSC3rXX or current. */
1016 action = ACTION_FAIL;
1017 break;
1018 default:
1019 action = ACTION_FAIL;
1020 break;
1021 }
1022 } else
1023 action = ACTION_FAIL;
1024
1025 if (action != ACTION_FAIL &&
1026 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027 action = ACTION_FAIL;
1028
1029 switch (action) {
1030 case ACTION_FAIL:
1031 /* Give up and fail the remainder of the request */
1032 if (!(req->cmd_flags & REQ_QUIET)) {
1033 static DEFINE_RATELIMIT_STATE(_rs,
1034 DEFAULT_RATELIMIT_INTERVAL,
1035 DEFAULT_RATELIMIT_BURST);
1036
1037 if (unlikely(scsi_logging_level))
1038 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039 SCSI_LOG_MLCOMPLETE_BITS);
1040
1041 /*
1042 * if logging is enabled the failure will be printed
1043 * in scsi_log_completion(), so avoid duplicate messages
1044 */
1045 if (!level && __ratelimit(&_rs)) {
1046 scsi_print_result(cmd, NULL, FAILED);
1047 if (driver_byte(result) & DRIVER_SENSE)
1048 scsi_print_sense(cmd);
1049 scsi_print_command(cmd);
1050 }
1051 }
1052 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053 return;
1054 /*FALLTHRU*/
1055 case ACTION_REPREP:
1056 requeue:
1057 /* Unprep the request and put it back at the head of the queue.
1058 * A new command will be prepared and issued.
1059 */
1060 if (q->mq_ops) {
1061 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062 scsi_mq_uninit_cmd(cmd);
1063 scsi_mq_requeue_cmd(cmd);
1064 } else {
1065 scsi_release_buffers(cmd);
1066 scsi_requeue_command(q, cmd);
1067 }
1068 break;
1069 case ACTION_RETRY:
1070 /* Retry the same command immediately */
1071 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072 break;
1073 case ACTION_DELAYED_RETRY:
1074 /* Retry the same command after a delay */
1075 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076 break;
1077 }
1078 }
1079
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1081 {
1082 int count;
1083
1084 /*
1085 * If sg table allocation fails, requeue request later.
1086 */
1087 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1088 req->mq_ctx != NULL)))
1089 return BLKPREP_DEFER;
1090
1091 /*
1092 * Next, walk the list, and fill in the addresses and sizes of
1093 * each segment.
1094 */
1095 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1096 BUG_ON(count > sdb->table.nents);
1097 sdb->table.nents = count;
1098 sdb->length = blk_rq_bytes(req);
1099 return BLKPREP_OK;
1100 }
1101
1102 /*
1103 * Function: scsi_init_io()
1104 *
1105 * Purpose: SCSI I/O initialize function.
1106 *
1107 * Arguments: cmd - Command descriptor we wish to initialize
1108 *
1109 * Returns: 0 on success
1110 * BLKPREP_DEFER if the failure is retryable
1111 * BLKPREP_KILL if the failure is fatal
1112 */
1113 int scsi_init_io(struct scsi_cmnd *cmd)
1114 {
1115 struct scsi_device *sdev = cmd->device;
1116 struct request *rq = cmd->request;
1117 bool is_mq = (rq->mq_ctx != NULL);
1118 int error;
1119
1120 BUG_ON(!rq->nr_phys_segments);
1121
1122 error = scsi_init_sgtable(rq, &cmd->sdb);
1123 if (error)
1124 goto err_exit;
1125
1126 if (blk_bidi_rq(rq)) {
1127 if (!rq->q->mq_ops) {
1128 struct scsi_data_buffer *bidi_sdb =
1129 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1130 if (!bidi_sdb) {
1131 error = BLKPREP_DEFER;
1132 goto err_exit;
1133 }
1134
1135 rq->next_rq->special = bidi_sdb;
1136 }
1137
1138 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1139 if (error)
1140 goto err_exit;
1141 }
1142
1143 if (blk_integrity_rq(rq)) {
1144 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145 int ivecs, count;
1146
1147 BUG_ON(prot_sdb == NULL);
1148 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1149
1150 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1151 error = BLKPREP_DEFER;
1152 goto err_exit;
1153 }
1154
1155 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1156 prot_sdb->table.sgl);
1157 BUG_ON(unlikely(count > ivecs));
1158 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1159
1160 cmd->prot_sdb = prot_sdb;
1161 cmd->prot_sdb->table.nents = count;
1162 }
1163
1164 return BLKPREP_OK;
1165 err_exit:
1166 if (is_mq) {
1167 scsi_mq_free_sgtables(cmd);
1168 } else {
1169 scsi_release_buffers(cmd);
1170 cmd->request->special = NULL;
1171 scsi_put_command(cmd);
1172 put_device(&sdev->sdev_gendev);
1173 }
1174 return error;
1175 }
1176 EXPORT_SYMBOL(scsi_init_io);
1177
1178 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1179 struct request *req)
1180 {
1181 struct scsi_cmnd *cmd;
1182
1183 if (!req->special) {
1184 /* Bail if we can't get a reference to the device */
1185 if (!get_device(&sdev->sdev_gendev))
1186 return NULL;
1187
1188 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1189 if (unlikely(!cmd)) {
1190 put_device(&sdev->sdev_gendev);
1191 return NULL;
1192 }
1193 req->special = cmd;
1194 } else {
1195 cmd = req->special;
1196 }
1197
1198 /* pull a tag out of the request if we have one */
1199 cmd->tag = req->tag;
1200 cmd->request = req;
1201
1202 cmd->cmnd = req->cmd;
1203 cmd->prot_op = SCSI_PROT_NORMAL;
1204
1205 return cmd;
1206 }
1207
1208 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1209 {
1210 struct scsi_cmnd *cmd = req->special;
1211
1212 /*
1213 * BLOCK_PC requests may transfer data, in which case they must
1214 * a bio attached to them. Or they might contain a SCSI command
1215 * that does not transfer data, in which case they may optionally
1216 * submit a request without an attached bio.
1217 */
1218 if (req->bio) {
1219 int ret = scsi_init_io(cmd);
1220 if (unlikely(ret))
1221 return ret;
1222 } else {
1223 BUG_ON(blk_rq_bytes(req));
1224
1225 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226 }
1227
1228 cmd->cmd_len = req->cmd_len;
1229 cmd->transfersize = blk_rq_bytes(req);
1230 cmd->allowed = req->retries;
1231 return BLKPREP_OK;
1232 }
1233
1234 /*
1235 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1236 * that still need to be translated to SCSI CDBs from the ULD.
1237 */
1238 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1239 {
1240 struct scsi_cmnd *cmd = req->special;
1241
1242 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1243 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1244 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1245 if (ret != BLKPREP_OK)
1246 return ret;
1247 }
1248
1249 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1250 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1251 }
1252
1253 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 struct scsi_cmnd *cmd = req->special;
1256
1257 if (!blk_rq_bytes(req))
1258 cmd->sc_data_direction = DMA_NONE;
1259 else if (rq_data_dir(req) == WRITE)
1260 cmd->sc_data_direction = DMA_TO_DEVICE;
1261 else
1262 cmd->sc_data_direction = DMA_FROM_DEVICE;
1263
1264 switch (req->cmd_type) {
1265 case REQ_TYPE_FS:
1266 return scsi_setup_fs_cmnd(sdev, req);
1267 case REQ_TYPE_BLOCK_PC:
1268 return scsi_setup_blk_pc_cmnd(sdev, req);
1269 default:
1270 return BLKPREP_KILL;
1271 }
1272 }
1273
1274 static int
1275 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1276 {
1277 int ret = BLKPREP_OK;
1278
1279 /*
1280 * If the device is not in running state we will reject some
1281 * or all commands.
1282 */
1283 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1284 switch (sdev->sdev_state) {
1285 case SDEV_OFFLINE:
1286 case SDEV_TRANSPORT_OFFLINE:
1287 /*
1288 * If the device is offline we refuse to process any
1289 * commands. The device must be brought online
1290 * before trying any recovery commands.
1291 */
1292 sdev_printk(KERN_ERR, sdev,
1293 "rejecting I/O to offline device\n");
1294 ret = BLKPREP_KILL;
1295 break;
1296 case SDEV_DEL:
1297 /*
1298 * If the device is fully deleted, we refuse to
1299 * process any commands as well.
1300 */
1301 sdev_printk(KERN_ERR, sdev,
1302 "rejecting I/O to dead device\n");
1303 ret = BLKPREP_KILL;
1304 break;
1305 case SDEV_QUIESCE:
1306 case SDEV_BLOCK:
1307 case SDEV_CREATED_BLOCK:
1308 /*
1309 * If the devices is blocked we defer normal commands.
1310 */
1311 if (!(req->cmd_flags & REQ_PREEMPT))
1312 ret = BLKPREP_DEFER;
1313 break;
1314 default:
1315 /*
1316 * For any other not fully online state we only allow
1317 * special commands. In particular any user initiated
1318 * command is not allowed.
1319 */
1320 if (!(req->cmd_flags & REQ_PREEMPT))
1321 ret = BLKPREP_KILL;
1322 break;
1323 }
1324 }
1325 return ret;
1326 }
1327
1328 static int
1329 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1330 {
1331 struct scsi_device *sdev = q->queuedata;
1332
1333 switch (ret) {
1334 case BLKPREP_KILL:
1335 req->errors = DID_NO_CONNECT << 16;
1336 /* release the command and kill it */
1337 if (req->special) {
1338 struct scsi_cmnd *cmd = req->special;
1339 scsi_release_buffers(cmd);
1340 scsi_put_command(cmd);
1341 put_device(&sdev->sdev_gendev);
1342 req->special = NULL;
1343 }
1344 break;
1345 case BLKPREP_DEFER:
1346 /*
1347 * If we defer, the blk_peek_request() returns NULL, but the
1348 * queue must be restarted, so we schedule a callback to happen
1349 * shortly.
1350 */
1351 if (atomic_read(&sdev->device_busy) == 0)
1352 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1353 break;
1354 default:
1355 req->cmd_flags |= REQ_DONTPREP;
1356 }
1357
1358 return ret;
1359 }
1360
1361 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1362 {
1363 struct scsi_device *sdev = q->queuedata;
1364 struct scsi_cmnd *cmd;
1365 int ret;
1366
1367 ret = scsi_prep_state_check(sdev, req);
1368 if (ret != BLKPREP_OK)
1369 goto out;
1370
1371 cmd = scsi_get_cmd_from_req(sdev, req);
1372 if (unlikely(!cmd)) {
1373 ret = BLKPREP_DEFER;
1374 goto out;
1375 }
1376
1377 ret = scsi_setup_cmnd(sdev, req);
1378 out:
1379 return scsi_prep_return(q, req, ret);
1380 }
1381
1382 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1383 {
1384 scsi_uninit_cmd(req->special);
1385 }
1386
1387 /*
1388 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1389 * return 0.
1390 *
1391 * Called with the queue_lock held.
1392 */
1393 static inline int scsi_dev_queue_ready(struct request_queue *q,
1394 struct scsi_device *sdev)
1395 {
1396 unsigned int busy;
1397
1398 busy = atomic_inc_return(&sdev->device_busy) - 1;
1399 if (atomic_read(&sdev->device_blocked)) {
1400 if (busy)
1401 goto out_dec;
1402
1403 /*
1404 * unblock after device_blocked iterates to zero
1405 */
1406 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1407 /*
1408 * For the MQ case we take care of this in the caller.
1409 */
1410 if (!q->mq_ops)
1411 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1412 goto out_dec;
1413 }
1414 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1415 "unblocking device at zero depth\n"));
1416 }
1417
1418 if (busy >= sdev->queue_depth)
1419 goto out_dec;
1420
1421 return 1;
1422 out_dec:
1423 atomic_dec(&sdev->device_busy);
1424 return 0;
1425 }
1426
1427 /*
1428 * scsi_target_queue_ready: checks if there we can send commands to target
1429 * @sdev: scsi device on starget to check.
1430 */
1431 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1432 struct scsi_device *sdev)
1433 {
1434 struct scsi_target *starget = scsi_target(sdev);
1435 unsigned int busy;
1436
1437 if (starget->single_lun) {
1438 spin_lock_irq(shost->host_lock);
1439 if (starget->starget_sdev_user &&
1440 starget->starget_sdev_user != sdev) {
1441 spin_unlock_irq(shost->host_lock);
1442 return 0;
1443 }
1444 starget->starget_sdev_user = sdev;
1445 spin_unlock_irq(shost->host_lock);
1446 }
1447
1448 if (starget->can_queue <= 0)
1449 return 1;
1450
1451 busy = atomic_inc_return(&starget->target_busy) - 1;
1452 if (atomic_read(&starget->target_blocked) > 0) {
1453 if (busy)
1454 goto starved;
1455
1456 /*
1457 * unblock after target_blocked iterates to zero
1458 */
1459 if (atomic_dec_return(&starget->target_blocked) > 0)
1460 goto out_dec;
1461
1462 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1463 "unblocking target at zero depth\n"));
1464 }
1465
1466 if (busy >= starget->can_queue)
1467 goto starved;
1468
1469 return 1;
1470
1471 starved:
1472 spin_lock_irq(shost->host_lock);
1473 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1474 spin_unlock_irq(shost->host_lock);
1475 out_dec:
1476 if (starget->can_queue > 0)
1477 atomic_dec(&starget->target_busy);
1478 return 0;
1479 }
1480
1481 /*
1482 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1483 * return 0. We must end up running the queue again whenever 0 is
1484 * returned, else IO can hang.
1485 */
1486 static inline int scsi_host_queue_ready(struct request_queue *q,
1487 struct Scsi_Host *shost,
1488 struct scsi_device *sdev)
1489 {
1490 unsigned int busy;
1491
1492 if (scsi_host_in_recovery(shost))
1493 return 0;
1494
1495 busy = atomic_inc_return(&shost->host_busy) - 1;
1496 if (atomic_read(&shost->host_blocked) > 0) {
1497 if (busy)
1498 goto starved;
1499
1500 /*
1501 * unblock after host_blocked iterates to zero
1502 */
1503 if (atomic_dec_return(&shost->host_blocked) > 0)
1504 goto out_dec;
1505
1506 SCSI_LOG_MLQUEUE(3,
1507 shost_printk(KERN_INFO, shost,
1508 "unblocking host at zero depth\n"));
1509 }
1510
1511 if (shost->can_queue > 0 && busy >= shost->can_queue)
1512 goto starved;
1513 if (shost->host_self_blocked)
1514 goto starved;
1515
1516 /* We're OK to process the command, so we can't be starved */
1517 if (!list_empty(&sdev->starved_entry)) {
1518 spin_lock_irq(shost->host_lock);
1519 if (!list_empty(&sdev->starved_entry))
1520 list_del_init(&sdev->starved_entry);
1521 spin_unlock_irq(shost->host_lock);
1522 }
1523
1524 return 1;
1525
1526 starved:
1527 spin_lock_irq(shost->host_lock);
1528 if (list_empty(&sdev->starved_entry))
1529 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1530 spin_unlock_irq(shost->host_lock);
1531 out_dec:
1532 atomic_dec(&shost->host_busy);
1533 return 0;
1534 }
1535
1536 /*
1537 * Busy state exporting function for request stacking drivers.
1538 *
1539 * For efficiency, no lock is taken to check the busy state of
1540 * shost/starget/sdev, since the returned value is not guaranteed and
1541 * may be changed after request stacking drivers call the function,
1542 * regardless of taking lock or not.
1543 *
1544 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1545 * needs to return 'not busy'. Otherwise, request stacking drivers
1546 * may hold requests forever.
1547 */
1548 static int scsi_lld_busy(struct request_queue *q)
1549 {
1550 struct scsi_device *sdev = q->queuedata;
1551 struct Scsi_Host *shost;
1552
1553 if (blk_queue_dying(q))
1554 return 0;
1555
1556 shost = sdev->host;
1557
1558 /*
1559 * Ignore host/starget busy state.
1560 * Since block layer does not have a concept of fairness across
1561 * multiple queues, congestion of host/starget needs to be handled
1562 * in SCSI layer.
1563 */
1564 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1565 return 1;
1566
1567 return 0;
1568 }
1569
1570 /*
1571 * Kill a request for a dead device
1572 */
1573 static void scsi_kill_request(struct request *req, struct request_queue *q)
1574 {
1575 struct scsi_cmnd *cmd = req->special;
1576 struct scsi_device *sdev;
1577 struct scsi_target *starget;
1578 struct Scsi_Host *shost;
1579
1580 blk_start_request(req);
1581
1582 scmd_printk(KERN_INFO, cmd, "killing request\n");
1583
1584 sdev = cmd->device;
1585 starget = scsi_target(sdev);
1586 shost = sdev->host;
1587 scsi_init_cmd_errh(cmd);
1588 cmd->result = DID_NO_CONNECT << 16;
1589 atomic_inc(&cmd->device->iorequest_cnt);
1590
1591 /*
1592 * SCSI request completion path will do scsi_device_unbusy(),
1593 * bump busy counts. To bump the counters, we need to dance
1594 * with the locks as normal issue path does.
1595 */
1596 atomic_inc(&sdev->device_busy);
1597 atomic_inc(&shost->host_busy);
1598 if (starget->can_queue > 0)
1599 atomic_inc(&starget->target_busy);
1600
1601 blk_complete_request(req);
1602 }
1603
1604 static void scsi_softirq_done(struct request *rq)
1605 {
1606 struct scsi_cmnd *cmd = rq->special;
1607 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1608 int disposition;
1609
1610 INIT_LIST_HEAD(&cmd->eh_entry);
1611
1612 atomic_inc(&cmd->device->iodone_cnt);
1613 if (cmd->result)
1614 atomic_inc(&cmd->device->ioerr_cnt);
1615
1616 disposition = scsi_decide_disposition(cmd);
1617 if (disposition != SUCCESS &&
1618 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1619 sdev_printk(KERN_ERR, cmd->device,
1620 "timing out command, waited %lus\n",
1621 wait_for/HZ);
1622 disposition = SUCCESS;
1623 }
1624
1625 scsi_log_completion(cmd, disposition);
1626
1627 switch (disposition) {
1628 case SUCCESS:
1629 scsi_finish_command(cmd);
1630 break;
1631 case NEEDS_RETRY:
1632 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1633 break;
1634 case ADD_TO_MLQUEUE:
1635 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1636 break;
1637 default:
1638 if (!scsi_eh_scmd_add(cmd, 0))
1639 scsi_finish_command(cmd);
1640 }
1641 }
1642
1643 /**
1644 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1645 * @cmd: command block we are dispatching.
1646 *
1647 * Return: nonzero return request was rejected and device's queue needs to be
1648 * plugged.
1649 */
1650 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1651 {
1652 struct Scsi_Host *host = cmd->device->host;
1653 int rtn = 0;
1654
1655 atomic_inc(&cmd->device->iorequest_cnt);
1656
1657 /* check if the device is still usable */
1658 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1659 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1660 * returns an immediate error upwards, and signals
1661 * that the device is no longer present */
1662 cmd->result = DID_NO_CONNECT << 16;
1663 goto done;
1664 }
1665
1666 /* Check to see if the scsi lld made this device blocked. */
1667 if (unlikely(scsi_device_blocked(cmd->device))) {
1668 /*
1669 * in blocked state, the command is just put back on
1670 * the device queue. The suspend state has already
1671 * blocked the queue so future requests should not
1672 * occur until the device transitions out of the
1673 * suspend state.
1674 */
1675 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1676 "queuecommand : device blocked\n"));
1677 return SCSI_MLQUEUE_DEVICE_BUSY;
1678 }
1679
1680 /* Store the LUN value in cmnd, if needed. */
1681 if (cmd->device->lun_in_cdb)
1682 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1683 (cmd->device->lun << 5 & 0xe0);
1684
1685 scsi_log_send(cmd);
1686
1687 /*
1688 * Before we queue this command, check if the command
1689 * length exceeds what the host adapter can handle.
1690 */
1691 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1692 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1693 "queuecommand : command too long. "
1694 "cdb_size=%d host->max_cmd_len=%d\n",
1695 cmd->cmd_len, cmd->device->host->max_cmd_len));
1696 cmd->result = (DID_ABORT << 16);
1697 goto done;
1698 }
1699
1700 if (unlikely(host->shost_state == SHOST_DEL)) {
1701 cmd->result = (DID_NO_CONNECT << 16);
1702 goto done;
1703
1704 }
1705
1706 trace_scsi_dispatch_cmd_start(cmd);
1707 rtn = host->hostt->queuecommand(host, cmd);
1708 if (rtn) {
1709 trace_scsi_dispatch_cmd_error(cmd, rtn);
1710 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1711 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1712 rtn = SCSI_MLQUEUE_HOST_BUSY;
1713
1714 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1715 "queuecommand : request rejected\n"));
1716 }
1717
1718 return rtn;
1719 done:
1720 cmd->scsi_done(cmd);
1721 return 0;
1722 }
1723
1724 /**
1725 * scsi_done - Invoke completion on finished SCSI command.
1726 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1727 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1728 *
1729 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1730 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1731 * calls blk_complete_request() for further processing.
1732 *
1733 * This function is interrupt context safe.
1734 */
1735 static void scsi_done(struct scsi_cmnd *cmd)
1736 {
1737 trace_scsi_dispatch_cmd_done(cmd);
1738 blk_complete_request(cmd->request);
1739 }
1740
1741 /*
1742 * Function: scsi_request_fn()
1743 *
1744 * Purpose: Main strategy routine for SCSI.
1745 *
1746 * Arguments: q - Pointer to actual queue.
1747 *
1748 * Returns: Nothing
1749 *
1750 * Lock status: IO request lock assumed to be held when called.
1751 */
1752 static void scsi_request_fn(struct request_queue *q)
1753 __releases(q->queue_lock)
1754 __acquires(q->queue_lock)
1755 {
1756 struct scsi_device *sdev = q->queuedata;
1757 struct Scsi_Host *shost;
1758 struct scsi_cmnd *cmd;
1759 struct request *req;
1760
1761 /*
1762 * To start with, we keep looping until the queue is empty, or until
1763 * the host is no longer able to accept any more requests.
1764 */
1765 shost = sdev->host;
1766 for (;;) {
1767 int rtn;
1768 /*
1769 * get next queueable request. We do this early to make sure
1770 * that the request is fully prepared even if we cannot
1771 * accept it.
1772 */
1773 req = blk_peek_request(q);
1774 if (!req)
1775 break;
1776
1777 if (unlikely(!scsi_device_online(sdev))) {
1778 sdev_printk(KERN_ERR, sdev,
1779 "rejecting I/O to offline device\n");
1780 scsi_kill_request(req, q);
1781 continue;
1782 }
1783
1784 if (!scsi_dev_queue_ready(q, sdev))
1785 break;
1786
1787 /*
1788 * Remove the request from the request list.
1789 */
1790 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1791 blk_start_request(req);
1792
1793 spin_unlock_irq(q->queue_lock);
1794 cmd = req->special;
1795 if (unlikely(cmd == NULL)) {
1796 printk(KERN_CRIT "impossible request in %s.\n"
1797 "please mail a stack trace to "
1798 "linux-scsi@vger.kernel.org\n",
1799 __func__);
1800 blk_dump_rq_flags(req, "foo");
1801 BUG();
1802 }
1803
1804 /*
1805 * We hit this when the driver is using a host wide
1806 * tag map. For device level tag maps the queue_depth check
1807 * in the device ready fn would prevent us from trying
1808 * to allocate a tag. Since the map is a shared host resource
1809 * we add the dev to the starved list so it eventually gets
1810 * a run when a tag is freed.
1811 */
1812 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1813 spin_lock_irq(shost->host_lock);
1814 if (list_empty(&sdev->starved_entry))
1815 list_add_tail(&sdev->starved_entry,
1816 &shost->starved_list);
1817 spin_unlock_irq(shost->host_lock);
1818 goto not_ready;
1819 }
1820
1821 if (!scsi_target_queue_ready(shost, sdev))
1822 goto not_ready;
1823
1824 if (!scsi_host_queue_ready(q, shost, sdev))
1825 goto host_not_ready;
1826
1827 if (sdev->simple_tags)
1828 cmd->flags |= SCMD_TAGGED;
1829 else
1830 cmd->flags &= ~SCMD_TAGGED;
1831
1832 /*
1833 * Finally, initialize any error handling parameters, and set up
1834 * the timers for timeouts.
1835 */
1836 scsi_init_cmd_errh(cmd);
1837
1838 /*
1839 * Dispatch the command to the low-level driver.
1840 */
1841 cmd->scsi_done = scsi_done;
1842 rtn = scsi_dispatch_cmd(cmd);
1843 if (rtn) {
1844 scsi_queue_insert(cmd, rtn);
1845 spin_lock_irq(q->queue_lock);
1846 goto out_delay;
1847 }
1848 spin_lock_irq(q->queue_lock);
1849 }
1850
1851 return;
1852
1853 host_not_ready:
1854 if (scsi_target(sdev)->can_queue > 0)
1855 atomic_dec(&scsi_target(sdev)->target_busy);
1856 not_ready:
1857 /*
1858 * lock q, handle tag, requeue req, and decrement device_busy. We
1859 * must return with queue_lock held.
1860 *
1861 * Decrementing device_busy without checking it is OK, as all such
1862 * cases (host limits or settings) should run the queue at some
1863 * later time.
1864 */
1865 spin_lock_irq(q->queue_lock);
1866 blk_requeue_request(q, req);
1867 atomic_dec(&sdev->device_busy);
1868 out_delay:
1869 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1870 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1871 }
1872
1873 static inline int prep_to_mq(int ret)
1874 {
1875 switch (ret) {
1876 case BLKPREP_OK:
1877 return 0;
1878 case BLKPREP_DEFER:
1879 return BLK_MQ_RQ_QUEUE_BUSY;
1880 default:
1881 return BLK_MQ_RQ_QUEUE_ERROR;
1882 }
1883 }
1884
1885 static int scsi_mq_prep_fn(struct request *req)
1886 {
1887 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1888 struct scsi_device *sdev = req->q->queuedata;
1889 struct Scsi_Host *shost = sdev->host;
1890 unsigned char *sense_buf = cmd->sense_buffer;
1891 struct scatterlist *sg;
1892
1893 memset(cmd, 0, sizeof(struct scsi_cmnd));
1894
1895 req->special = cmd;
1896
1897 cmd->request = req;
1898 cmd->device = sdev;
1899 cmd->sense_buffer = sense_buf;
1900
1901 cmd->tag = req->tag;
1902
1903 cmd->cmnd = req->cmd;
1904 cmd->prot_op = SCSI_PROT_NORMAL;
1905
1906 INIT_LIST_HEAD(&cmd->list);
1907 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1908 cmd->jiffies_at_alloc = jiffies;
1909
1910 if (shost->use_cmd_list) {
1911 spin_lock_irq(&sdev->list_lock);
1912 list_add_tail(&cmd->list, &sdev->cmd_list);
1913 spin_unlock_irq(&sdev->list_lock);
1914 }
1915
1916 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1917 cmd->sdb.table.sgl = sg;
1918
1919 if (scsi_host_get_prot(shost)) {
1920 cmd->prot_sdb = (void *)sg +
1921 min_t(unsigned int,
1922 shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1923 sizeof(struct scatterlist);
1924 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1925
1926 cmd->prot_sdb->table.sgl =
1927 (struct scatterlist *)(cmd->prot_sdb + 1);
1928 }
1929
1930 if (blk_bidi_rq(req)) {
1931 struct request *next_rq = req->next_rq;
1932 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1933
1934 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1935 bidi_sdb->table.sgl =
1936 (struct scatterlist *)(bidi_sdb + 1);
1937
1938 next_rq->special = bidi_sdb;
1939 }
1940
1941 blk_mq_start_request(req);
1942
1943 return scsi_setup_cmnd(sdev, req);
1944 }
1945
1946 static void scsi_mq_done(struct scsi_cmnd *cmd)
1947 {
1948 trace_scsi_dispatch_cmd_done(cmd);
1949 blk_mq_complete_request(cmd->request);
1950 }
1951
1952 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1953 const struct blk_mq_queue_data *bd)
1954 {
1955 struct request *req = bd->rq;
1956 struct request_queue *q = req->q;
1957 struct scsi_device *sdev = q->queuedata;
1958 struct Scsi_Host *shost = sdev->host;
1959 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1960 int ret;
1961 int reason;
1962
1963 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1964 if (ret)
1965 goto out;
1966
1967 ret = BLK_MQ_RQ_QUEUE_BUSY;
1968 if (!get_device(&sdev->sdev_gendev))
1969 goto out;
1970
1971 if (!scsi_dev_queue_ready(q, sdev))
1972 goto out_put_device;
1973 if (!scsi_target_queue_ready(shost, sdev))
1974 goto out_dec_device_busy;
1975 if (!scsi_host_queue_ready(q, shost, sdev))
1976 goto out_dec_target_busy;
1977
1978
1979 if (!(req->cmd_flags & REQ_DONTPREP)) {
1980 ret = prep_to_mq(scsi_mq_prep_fn(req));
1981 if (ret)
1982 goto out_dec_host_busy;
1983 req->cmd_flags |= REQ_DONTPREP;
1984 } else {
1985 blk_mq_start_request(req);
1986 }
1987
1988 if (sdev->simple_tags)
1989 cmd->flags |= SCMD_TAGGED;
1990 else
1991 cmd->flags &= ~SCMD_TAGGED;
1992
1993 scsi_init_cmd_errh(cmd);
1994 cmd->scsi_done = scsi_mq_done;
1995
1996 reason = scsi_dispatch_cmd(cmd);
1997 if (reason) {
1998 scsi_set_blocked(cmd, reason);
1999 ret = BLK_MQ_RQ_QUEUE_BUSY;
2000 goto out_dec_host_busy;
2001 }
2002
2003 return BLK_MQ_RQ_QUEUE_OK;
2004
2005 out_dec_host_busy:
2006 atomic_dec(&shost->host_busy);
2007 out_dec_target_busy:
2008 if (scsi_target(sdev)->can_queue > 0)
2009 atomic_dec(&scsi_target(sdev)->target_busy);
2010 out_dec_device_busy:
2011 atomic_dec(&sdev->device_busy);
2012 out_put_device:
2013 put_device(&sdev->sdev_gendev);
2014 out:
2015 switch (ret) {
2016 case BLK_MQ_RQ_QUEUE_BUSY:
2017 blk_mq_stop_hw_queue(hctx);
2018 if (atomic_read(&sdev->device_busy) == 0 &&
2019 !scsi_device_blocked(sdev))
2020 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2021 break;
2022 case BLK_MQ_RQ_QUEUE_ERROR:
2023 /*
2024 * Make sure to release all allocated ressources when
2025 * we hit an error, as we will never see this command
2026 * again.
2027 */
2028 if (req->cmd_flags & REQ_DONTPREP)
2029 scsi_mq_uninit_cmd(cmd);
2030 break;
2031 default:
2032 break;
2033 }
2034 return ret;
2035 }
2036
2037 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2038 bool reserved)
2039 {
2040 if (reserved)
2041 return BLK_EH_RESET_TIMER;
2042 return scsi_times_out(req);
2043 }
2044
2045 static int scsi_init_request(void *data, struct request *rq,
2046 unsigned int hctx_idx, unsigned int request_idx,
2047 unsigned int numa_node)
2048 {
2049 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2050
2051 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2052 numa_node);
2053 if (!cmd->sense_buffer)
2054 return -ENOMEM;
2055 return 0;
2056 }
2057
2058 static void scsi_exit_request(void *data, struct request *rq,
2059 unsigned int hctx_idx, unsigned int request_idx)
2060 {
2061 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2062
2063 kfree(cmd->sense_buffer);
2064 }
2065
2066 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2067 {
2068 struct device *host_dev;
2069 u64 bounce_limit = 0xffffffff;
2070
2071 if (shost->unchecked_isa_dma)
2072 return BLK_BOUNCE_ISA;
2073 /*
2074 * Platforms with virtual-DMA translation
2075 * hardware have no practical limit.
2076 */
2077 if (!PCI_DMA_BUS_IS_PHYS)
2078 return BLK_BOUNCE_ANY;
2079
2080 host_dev = scsi_get_device(shost);
2081 if (host_dev && host_dev->dma_mask)
2082 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2083
2084 return bounce_limit;
2085 }
2086
2087 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2088 {
2089 struct device *dev = shost->dma_dev;
2090
2091 /*
2092 * this limit is imposed by hardware restrictions
2093 */
2094 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2095 SCSI_MAX_SG_CHAIN_SEGMENTS));
2096
2097 if (scsi_host_prot_dma(shost)) {
2098 shost->sg_prot_tablesize =
2099 min_not_zero(shost->sg_prot_tablesize,
2100 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2101 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2102 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2103 }
2104
2105 blk_queue_max_hw_sectors(q, shost->max_sectors);
2106 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2107 blk_queue_segment_boundary(q, shost->dma_boundary);
2108 dma_set_seg_boundary(dev, shost->dma_boundary);
2109
2110 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2111
2112 if (!shost->use_clustering)
2113 q->limits.cluster = 0;
2114
2115 /*
2116 * set a reasonable default alignment on word boundaries: the
2117 * host and device may alter it using
2118 * blk_queue_update_dma_alignment() later.
2119 */
2120 blk_queue_dma_alignment(q, 0x03);
2121 }
2122
2123 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2124 request_fn_proc *request_fn)
2125 {
2126 struct request_queue *q;
2127
2128 q = blk_init_queue(request_fn, NULL);
2129 if (!q)
2130 return NULL;
2131 __scsi_init_queue(shost, q);
2132 return q;
2133 }
2134 EXPORT_SYMBOL(__scsi_alloc_queue);
2135
2136 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2137 {
2138 struct request_queue *q;
2139
2140 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2141 if (!q)
2142 return NULL;
2143
2144 blk_queue_prep_rq(q, scsi_prep_fn);
2145 blk_queue_unprep_rq(q, scsi_unprep_fn);
2146 blk_queue_softirq_done(q, scsi_softirq_done);
2147 blk_queue_rq_timed_out(q, scsi_times_out);
2148 blk_queue_lld_busy(q, scsi_lld_busy);
2149 return q;
2150 }
2151
2152 static struct blk_mq_ops scsi_mq_ops = {
2153 .map_queue = blk_mq_map_queue,
2154 .queue_rq = scsi_queue_rq,
2155 .complete = scsi_softirq_done,
2156 .timeout = scsi_timeout,
2157 .init_request = scsi_init_request,
2158 .exit_request = scsi_exit_request,
2159 };
2160
2161 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2162 {
2163 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2164 if (IS_ERR(sdev->request_queue))
2165 return NULL;
2166
2167 sdev->request_queue->queuedata = sdev;
2168 __scsi_init_queue(sdev->host, sdev->request_queue);
2169 return sdev->request_queue;
2170 }
2171
2172 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2173 {
2174 unsigned int cmd_size, sgl_size, tbl_size;
2175
2176 tbl_size = shost->sg_tablesize;
2177 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2178 tbl_size = SCSI_MAX_SG_SEGMENTS;
2179 sgl_size = tbl_size * sizeof(struct scatterlist);
2180 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2181 if (scsi_host_get_prot(shost))
2182 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2183
2184 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2185 shost->tag_set.ops = &scsi_mq_ops;
2186 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2187 shost->tag_set.queue_depth = shost->can_queue;
2188 shost->tag_set.cmd_size = cmd_size;
2189 shost->tag_set.numa_node = NUMA_NO_NODE;
2190 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2191 shost->tag_set.driver_data = shost;
2192
2193 return blk_mq_alloc_tag_set(&shost->tag_set);
2194 }
2195
2196 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2197 {
2198 blk_mq_free_tag_set(&shost->tag_set);
2199 }
2200
2201 /*
2202 * Function: scsi_block_requests()
2203 *
2204 * Purpose: Utility function used by low-level drivers to prevent further
2205 * commands from being queued to the device.
2206 *
2207 * Arguments: shost - Host in question
2208 *
2209 * Returns: Nothing
2210 *
2211 * Lock status: No locks are assumed held.
2212 *
2213 * Notes: There is no timer nor any other means by which the requests
2214 * get unblocked other than the low-level driver calling
2215 * scsi_unblock_requests().
2216 */
2217 void scsi_block_requests(struct Scsi_Host *shost)
2218 {
2219 shost->host_self_blocked = 1;
2220 }
2221 EXPORT_SYMBOL(scsi_block_requests);
2222
2223 /*
2224 * Function: scsi_unblock_requests()
2225 *
2226 * Purpose: Utility function used by low-level drivers to allow further
2227 * commands from being queued to the device.
2228 *
2229 * Arguments: shost - Host in question
2230 *
2231 * Returns: Nothing
2232 *
2233 * Lock status: No locks are assumed held.
2234 *
2235 * Notes: There is no timer nor any other means by which the requests
2236 * get unblocked other than the low-level driver calling
2237 * scsi_unblock_requests().
2238 *
2239 * This is done as an API function so that changes to the
2240 * internals of the scsi mid-layer won't require wholesale
2241 * changes to drivers that use this feature.
2242 */
2243 void scsi_unblock_requests(struct Scsi_Host *shost)
2244 {
2245 shost->host_self_blocked = 0;
2246 scsi_run_host_queues(shost);
2247 }
2248 EXPORT_SYMBOL(scsi_unblock_requests);
2249
2250 int __init scsi_init_queue(void)
2251 {
2252 int i;
2253
2254 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2255 sizeof(struct scsi_data_buffer),
2256 0, 0, NULL);
2257 if (!scsi_sdb_cache) {
2258 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2259 return -ENOMEM;
2260 }
2261
2262 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2263 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2264 int size = sgp->size * sizeof(struct scatterlist);
2265
2266 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2267 SLAB_HWCACHE_ALIGN, NULL);
2268 if (!sgp->slab) {
2269 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2270 sgp->name);
2271 goto cleanup_sdb;
2272 }
2273
2274 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2275 sgp->slab);
2276 if (!sgp->pool) {
2277 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2278 sgp->name);
2279 goto cleanup_sdb;
2280 }
2281 }
2282
2283 return 0;
2284
2285 cleanup_sdb:
2286 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2287 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2288 if (sgp->pool)
2289 mempool_destroy(sgp->pool);
2290 if (sgp->slab)
2291 kmem_cache_destroy(sgp->slab);
2292 }
2293 kmem_cache_destroy(scsi_sdb_cache);
2294
2295 return -ENOMEM;
2296 }
2297
2298 void scsi_exit_queue(void)
2299 {
2300 int i;
2301
2302 kmem_cache_destroy(scsi_sdb_cache);
2303
2304 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2305 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2306 mempool_destroy(sgp->pool);
2307 kmem_cache_destroy(sgp->slab);
2308 }
2309 }
2310
2311 /**
2312 * scsi_mode_select - issue a mode select
2313 * @sdev: SCSI device to be queried
2314 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2315 * @sp: Save page bit (0 == don't save, 1 == save)
2316 * @modepage: mode page being requested
2317 * @buffer: request buffer (may not be smaller than eight bytes)
2318 * @len: length of request buffer.
2319 * @timeout: command timeout
2320 * @retries: number of retries before failing
2321 * @data: returns a structure abstracting the mode header data
2322 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2323 * must be SCSI_SENSE_BUFFERSIZE big.
2324 *
2325 * Returns zero if successful; negative error number or scsi
2326 * status on error
2327 *
2328 */
2329 int
2330 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2331 unsigned char *buffer, int len, int timeout, int retries,
2332 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2333 {
2334 unsigned char cmd[10];
2335 unsigned char *real_buffer;
2336 int ret;
2337
2338 memset(cmd, 0, sizeof(cmd));
2339 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2340
2341 if (sdev->use_10_for_ms) {
2342 if (len > 65535)
2343 return -EINVAL;
2344 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2345 if (!real_buffer)
2346 return -ENOMEM;
2347 memcpy(real_buffer + 8, buffer, len);
2348 len += 8;
2349 real_buffer[0] = 0;
2350 real_buffer[1] = 0;
2351 real_buffer[2] = data->medium_type;
2352 real_buffer[3] = data->device_specific;
2353 real_buffer[4] = data->longlba ? 0x01 : 0;
2354 real_buffer[5] = 0;
2355 real_buffer[6] = data->block_descriptor_length >> 8;
2356 real_buffer[7] = data->block_descriptor_length;
2357
2358 cmd[0] = MODE_SELECT_10;
2359 cmd[7] = len >> 8;
2360 cmd[8] = len;
2361 } else {
2362 if (len > 255 || data->block_descriptor_length > 255 ||
2363 data->longlba)
2364 return -EINVAL;
2365
2366 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2367 if (!real_buffer)
2368 return -ENOMEM;
2369 memcpy(real_buffer + 4, buffer, len);
2370 len += 4;
2371 real_buffer[0] = 0;
2372 real_buffer[1] = data->medium_type;
2373 real_buffer[2] = data->device_specific;
2374 real_buffer[3] = data->block_descriptor_length;
2375
2376
2377 cmd[0] = MODE_SELECT;
2378 cmd[4] = len;
2379 }
2380
2381 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2382 sshdr, timeout, retries, NULL);
2383 kfree(real_buffer);
2384 return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(scsi_mode_select);
2387
2388 /**
2389 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2390 * @sdev: SCSI device to be queried
2391 * @dbd: set if mode sense will allow block descriptors to be returned
2392 * @modepage: mode page being requested
2393 * @buffer: request buffer (may not be smaller than eight bytes)
2394 * @len: length of request buffer.
2395 * @timeout: command timeout
2396 * @retries: number of retries before failing
2397 * @data: returns a structure abstracting the mode header data
2398 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2399 * must be SCSI_SENSE_BUFFERSIZE big.
2400 *
2401 * Returns zero if unsuccessful, or the header offset (either 4
2402 * or 8 depending on whether a six or ten byte command was
2403 * issued) if successful.
2404 */
2405 int
2406 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2407 unsigned char *buffer, int len, int timeout, int retries,
2408 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2409 {
2410 unsigned char cmd[12];
2411 int use_10_for_ms;
2412 int header_length;
2413 int result;
2414 struct scsi_sense_hdr my_sshdr;
2415
2416 memset(data, 0, sizeof(*data));
2417 memset(&cmd[0], 0, 12);
2418 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2419 cmd[2] = modepage;
2420
2421 /* caller might not be interested in sense, but we need it */
2422 if (!sshdr)
2423 sshdr = &my_sshdr;
2424
2425 retry:
2426 use_10_for_ms = sdev->use_10_for_ms;
2427
2428 if (use_10_for_ms) {
2429 if (len < 8)
2430 len = 8;
2431
2432 cmd[0] = MODE_SENSE_10;
2433 cmd[8] = len;
2434 header_length = 8;
2435 } else {
2436 if (len < 4)
2437 len = 4;
2438
2439 cmd[0] = MODE_SENSE;
2440 cmd[4] = len;
2441 header_length = 4;
2442 }
2443
2444 memset(buffer, 0, len);
2445
2446 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2447 sshdr, timeout, retries, NULL);
2448
2449 /* This code looks awful: what it's doing is making sure an
2450 * ILLEGAL REQUEST sense return identifies the actual command
2451 * byte as the problem. MODE_SENSE commands can return
2452 * ILLEGAL REQUEST if the code page isn't supported */
2453
2454 if (use_10_for_ms && !scsi_status_is_good(result) &&
2455 (driver_byte(result) & DRIVER_SENSE)) {
2456 if (scsi_sense_valid(sshdr)) {
2457 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2458 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2459 /*
2460 * Invalid command operation code
2461 */
2462 sdev->use_10_for_ms = 0;
2463 goto retry;
2464 }
2465 }
2466 }
2467
2468 if(scsi_status_is_good(result)) {
2469 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2470 (modepage == 6 || modepage == 8))) {
2471 /* Initio breakage? */
2472 header_length = 0;
2473 data->length = 13;
2474 data->medium_type = 0;
2475 data->device_specific = 0;
2476 data->longlba = 0;
2477 data->block_descriptor_length = 0;
2478 } else if(use_10_for_ms) {
2479 data->length = buffer[0]*256 + buffer[1] + 2;
2480 data->medium_type = buffer[2];
2481 data->device_specific = buffer[3];
2482 data->longlba = buffer[4] & 0x01;
2483 data->block_descriptor_length = buffer[6]*256
2484 + buffer[7];
2485 } else {
2486 data->length = buffer[0] + 1;
2487 data->medium_type = buffer[1];
2488 data->device_specific = buffer[2];
2489 data->block_descriptor_length = buffer[3];
2490 }
2491 data->header_length = header_length;
2492 }
2493
2494 return result;
2495 }
2496 EXPORT_SYMBOL(scsi_mode_sense);
2497
2498 /**
2499 * scsi_test_unit_ready - test if unit is ready
2500 * @sdev: scsi device to change the state of.
2501 * @timeout: command timeout
2502 * @retries: number of retries before failing
2503 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2504 * returning sense. Make sure that this is cleared before passing
2505 * in.
2506 *
2507 * Returns zero if unsuccessful or an error if TUR failed. For
2508 * removable media, UNIT_ATTENTION sets ->changed flag.
2509 **/
2510 int
2511 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2512 struct scsi_sense_hdr *sshdr_external)
2513 {
2514 char cmd[] = {
2515 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2516 };
2517 struct scsi_sense_hdr *sshdr;
2518 int result;
2519
2520 if (!sshdr_external)
2521 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2522 else
2523 sshdr = sshdr_external;
2524
2525 /* try to eat the UNIT_ATTENTION if there are enough retries */
2526 do {
2527 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2528 timeout, retries, NULL);
2529 if (sdev->removable && scsi_sense_valid(sshdr) &&
2530 sshdr->sense_key == UNIT_ATTENTION)
2531 sdev->changed = 1;
2532 } while (scsi_sense_valid(sshdr) &&
2533 sshdr->sense_key == UNIT_ATTENTION && --retries);
2534
2535 if (!sshdr_external)
2536 kfree(sshdr);
2537 return result;
2538 }
2539 EXPORT_SYMBOL(scsi_test_unit_ready);
2540
2541 /**
2542 * scsi_device_set_state - Take the given device through the device state model.
2543 * @sdev: scsi device to change the state of.
2544 * @state: state to change to.
2545 *
2546 * Returns zero if unsuccessful or an error if the requested
2547 * transition is illegal.
2548 */
2549 int
2550 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2551 {
2552 enum scsi_device_state oldstate = sdev->sdev_state;
2553
2554 if (state == oldstate)
2555 return 0;
2556
2557 switch (state) {
2558 case SDEV_CREATED:
2559 switch (oldstate) {
2560 case SDEV_CREATED_BLOCK:
2561 break;
2562 default:
2563 goto illegal;
2564 }
2565 break;
2566
2567 case SDEV_RUNNING:
2568 switch (oldstate) {
2569 case SDEV_CREATED:
2570 case SDEV_OFFLINE:
2571 case SDEV_TRANSPORT_OFFLINE:
2572 case SDEV_QUIESCE:
2573 case SDEV_BLOCK:
2574 break;
2575 default:
2576 goto illegal;
2577 }
2578 break;
2579
2580 case SDEV_QUIESCE:
2581 switch (oldstate) {
2582 case SDEV_RUNNING:
2583 case SDEV_OFFLINE:
2584 case SDEV_TRANSPORT_OFFLINE:
2585 break;
2586 default:
2587 goto illegal;
2588 }
2589 break;
2590
2591 case SDEV_OFFLINE:
2592 case SDEV_TRANSPORT_OFFLINE:
2593 switch (oldstate) {
2594 case SDEV_CREATED:
2595 case SDEV_RUNNING:
2596 case SDEV_QUIESCE:
2597 case SDEV_BLOCK:
2598 break;
2599 default:
2600 goto illegal;
2601 }
2602 break;
2603
2604 case SDEV_BLOCK:
2605 switch (oldstate) {
2606 case SDEV_RUNNING:
2607 case SDEV_CREATED_BLOCK:
2608 break;
2609 default:
2610 goto illegal;
2611 }
2612 break;
2613
2614 case SDEV_CREATED_BLOCK:
2615 switch (oldstate) {
2616 case SDEV_CREATED:
2617 break;
2618 default:
2619 goto illegal;
2620 }
2621 break;
2622
2623 case SDEV_CANCEL:
2624 switch (oldstate) {
2625 case SDEV_CREATED:
2626 case SDEV_RUNNING:
2627 case SDEV_QUIESCE:
2628 case SDEV_OFFLINE:
2629 case SDEV_TRANSPORT_OFFLINE:
2630 case SDEV_BLOCK:
2631 break;
2632 default:
2633 goto illegal;
2634 }
2635 break;
2636
2637 case SDEV_DEL:
2638 switch (oldstate) {
2639 case SDEV_CREATED:
2640 case SDEV_RUNNING:
2641 case SDEV_OFFLINE:
2642 case SDEV_TRANSPORT_OFFLINE:
2643 case SDEV_CANCEL:
2644 case SDEV_CREATED_BLOCK:
2645 break;
2646 default:
2647 goto illegal;
2648 }
2649 break;
2650
2651 }
2652 sdev->sdev_state = state;
2653 return 0;
2654
2655 illegal:
2656 SCSI_LOG_ERROR_RECOVERY(1,
2657 sdev_printk(KERN_ERR, sdev,
2658 "Illegal state transition %s->%s",
2659 scsi_device_state_name(oldstate),
2660 scsi_device_state_name(state))
2661 );
2662 return -EINVAL;
2663 }
2664 EXPORT_SYMBOL(scsi_device_set_state);
2665
2666 /**
2667 * sdev_evt_emit - emit a single SCSI device uevent
2668 * @sdev: associated SCSI device
2669 * @evt: event to emit
2670 *
2671 * Send a single uevent (scsi_event) to the associated scsi_device.
2672 */
2673 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2674 {
2675 int idx = 0;
2676 char *envp[3];
2677
2678 switch (evt->evt_type) {
2679 case SDEV_EVT_MEDIA_CHANGE:
2680 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2681 break;
2682 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2683 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2684 break;
2685 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2686 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2687 break;
2688 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2689 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2690 break;
2691 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2692 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2693 break;
2694 case SDEV_EVT_LUN_CHANGE_REPORTED:
2695 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2696 break;
2697 default:
2698 /* do nothing */
2699 break;
2700 }
2701
2702 envp[idx++] = NULL;
2703
2704 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2705 }
2706
2707 /**
2708 * sdev_evt_thread - send a uevent for each scsi event
2709 * @work: work struct for scsi_device
2710 *
2711 * Dispatch queued events to their associated scsi_device kobjects
2712 * as uevents.
2713 */
2714 void scsi_evt_thread(struct work_struct *work)
2715 {
2716 struct scsi_device *sdev;
2717 enum scsi_device_event evt_type;
2718 LIST_HEAD(event_list);
2719
2720 sdev = container_of(work, struct scsi_device, event_work);
2721
2722 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2723 if (test_and_clear_bit(evt_type, sdev->pending_events))
2724 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2725
2726 while (1) {
2727 struct scsi_event *evt;
2728 struct list_head *this, *tmp;
2729 unsigned long flags;
2730
2731 spin_lock_irqsave(&sdev->list_lock, flags);
2732 list_splice_init(&sdev->event_list, &event_list);
2733 spin_unlock_irqrestore(&sdev->list_lock, flags);
2734
2735 if (list_empty(&event_list))
2736 break;
2737
2738 list_for_each_safe(this, tmp, &event_list) {
2739 evt = list_entry(this, struct scsi_event, node);
2740 list_del(&evt->node);
2741 scsi_evt_emit(sdev, evt);
2742 kfree(evt);
2743 }
2744 }
2745 }
2746
2747 /**
2748 * sdev_evt_send - send asserted event to uevent thread
2749 * @sdev: scsi_device event occurred on
2750 * @evt: event to send
2751 *
2752 * Assert scsi device event asynchronously.
2753 */
2754 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2755 {
2756 unsigned long flags;
2757
2758 #if 0
2759 /* FIXME: currently this check eliminates all media change events
2760 * for polled devices. Need to update to discriminate between AN
2761 * and polled events */
2762 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2763 kfree(evt);
2764 return;
2765 }
2766 #endif
2767
2768 spin_lock_irqsave(&sdev->list_lock, flags);
2769 list_add_tail(&evt->node, &sdev->event_list);
2770 schedule_work(&sdev->event_work);
2771 spin_unlock_irqrestore(&sdev->list_lock, flags);
2772 }
2773 EXPORT_SYMBOL_GPL(sdev_evt_send);
2774
2775 /**
2776 * sdev_evt_alloc - allocate a new scsi event
2777 * @evt_type: type of event to allocate
2778 * @gfpflags: GFP flags for allocation
2779 *
2780 * Allocates and returns a new scsi_event.
2781 */
2782 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2783 gfp_t gfpflags)
2784 {
2785 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2786 if (!evt)
2787 return NULL;
2788
2789 evt->evt_type = evt_type;
2790 INIT_LIST_HEAD(&evt->node);
2791
2792 /* evt_type-specific initialization, if any */
2793 switch (evt_type) {
2794 case SDEV_EVT_MEDIA_CHANGE:
2795 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2796 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2797 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2798 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2799 case SDEV_EVT_LUN_CHANGE_REPORTED:
2800 default:
2801 /* do nothing */
2802 break;
2803 }
2804
2805 return evt;
2806 }
2807 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2808
2809 /**
2810 * sdev_evt_send_simple - send asserted event to uevent thread
2811 * @sdev: scsi_device event occurred on
2812 * @evt_type: type of event to send
2813 * @gfpflags: GFP flags for allocation
2814 *
2815 * Assert scsi device event asynchronously, given an event type.
2816 */
2817 void sdev_evt_send_simple(struct scsi_device *sdev,
2818 enum scsi_device_event evt_type, gfp_t gfpflags)
2819 {
2820 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2821 if (!evt) {
2822 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2823 evt_type);
2824 return;
2825 }
2826
2827 sdev_evt_send(sdev, evt);
2828 }
2829 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2830
2831 /**
2832 * scsi_device_quiesce - Block user issued commands.
2833 * @sdev: scsi device to quiesce.
2834 *
2835 * This works by trying to transition to the SDEV_QUIESCE state
2836 * (which must be a legal transition). When the device is in this
2837 * state, only special requests will be accepted, all others will
2838 * be deferred. Since special requests may also be requeued requests,
2839 * a successful return doesn't guarantee the device will be
2840 * totally quiescent.
2841 *
2842 * Must be called with user context, may sleep.
2843 *
2844 * Returns zero if unsuccessful or an error if not.
2845 */
2846 int
2847 scsi_device_quiesce(struct scsi_device *sdev)
2848 {
2849 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2850 if (err)
2851 return err;
2852
2853 scsi_run_queue(sdev->request_queue);
2854 while (atomic_read(&sdev->device_busy)) {
2855 msleep_interruptible(200);
2856 scsi_run_queue(sdev->request_queue);
2857 }
2858 return 0;
2859 }
2860 EXPORT_SYMBOL(scsi_device_quiesce);
2861
2862 /**
2863 * scsi_device_resume - Restart user issued commands to a quiesced device.
2864 * @sdev: scsi device to resume.
2865 *
2866 * Moves the device from quiesced back to running and restarts the
2867 * queues.
2868 *
2869 * Must be called with user context, may sleep.
2870 */
2871 void scsi_device_resume(struct scsi_device *sdev)
2872 {
2873 /* check if the device state was mutated prior to resume, and if
2874 * so assume the state is being managed elsewhere (for example
2875 * device deleted during suspend)
2876 */
2877 if (sdev->sdev_state != SDEV_QUIESCE ||
2878 scsi_device_set_state(sdev, SDEV_RUNNING))
2879 return;
2880 scsi_run_queue(sdev->request_queue);
2881 }
2882 EXPORT_SYMBOL(scsi_device_resume);
2883
2884 static void
2885 device_quiesce_fn(struct scsi_device *sdev, void *data)
2886 {
2887 scsi_device_quiesce(sdev);
2888 }
2889
2890 void
2891 scsi_target_quiesce(struct scsi_target *starget)
2892 {
2893 starget_for_each_device(starget, NULL, device_quiesce_fn);
2894 }
2895 EXPORT_SYMBOL(scsi_target_quiesce);
2896
2897 static void
2898 device_resume_fn(struct scsi_device *sdev, void *data)
2899 {
2900 scsi_device_resume(sdev);
2901 }
2902
2903 void
2904 scsi_target_resume(struct scsi_target *starget)
2905 {
2906 starget_for_each_device(starget, NULL, device_resume_fn);
2907 }
2908 EXPORT_SYMBOL(scsi_target_resume);
2909
2910 /**
2911 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2912 * @sdev: device to block
2913 *
2914 * Block request made by scsi lld's to temporarily stop all
2915 * scsi commands on the specified device. Called from interrupt
2916 * or normal process context.
2917 *
2918 * Returns zero if successful or error if not
2919 *
2920 * Notes:
2921 * This routine transitions the device to the SDEV_BLOCK state
2922 * (which must be a legal transition). When the device is in this
2923 * state, all commands are deferred until the scsi lld reenables
2924 * the device with scsi_device_unblock or device_block_tmo fires.
2925 */
2926 int
2927 scsi_internal_device_block(struct scsi_device *sdev)
2928 {
2929 struct request_queue *q = sdev->request_queue;
2930 unsigned long flags;
2931 int err = 0;
2932
2933 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2934 if (err) {
2935 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2936
2937 if (err)
2938 return err;
2939 }
2940
2941 /*
2942 * The device has transitioned to SDEV_BLOCK. Stop the
2943 * block layer from calling the midlayer with this device's
2944 * request queue.
2945 */
2946 if (q->mq_ops) {
2947 blk_mq_stop_hw_queues(q);
2948 } else {
2949 spin_lock_irqsave(q->queue_lock, flags);
2950 blk_stop_queue(q);
2951 spin_unlock_irqrestore(q->queue_lock, flags);
2952 }
2953
2954 return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2957
2958 /**
2959 * scsi_internal_device_unblock - resume a device after a block request
2960 * @sdev: device to resume
2961 * @new_state: state to set devices to after unblocking
2962 *
2963 * Called by scsi lld's or the midlayer to restart the device queue
2964 * for the previously suspended scsi device. Called from interrupt or
2965 * normal process context.
2966 *
2967 * Returns zero if successful or error if not.
2968 *
2969 * Notes:
2970 * This routine transitions the device to the SDEV_RUNNING state
2971 * or to one of the offline states (which must be a legal transition)
2972 * allowing the midlayer to goose the queue for this device.
2973 */
2974 int
2975 scsi_internal_device_unblock(struct scsi_device *sdev,
2976 enum scsi_device_state new_state)
2977 {
2978 struct request_queue *q = sdev->request_queue;
2979 unsigned long flags;
2980
2981 /*
2982 * Try to transition the scsi device to SDEV_RUNNING or one of the
2983 * offlined states and goose the device queue if successful.
2984 */
2985 if ((sdev->sdev_state == SDEV_BLOCK) ||
2986 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2987 sdev->sdev_state = new_state;
2988 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2989 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2990 new_state == SDEV_OFFLINE)
2991 sdev->sdev_state = new_state;
2992 else
2993 sdev->sdev_state = SDEV_CREATED;
2994 } else if (sdev->sdev_state != SDEV_CANCEL &&
2995 sdev->sdev_state != SDEV_OFFLINE)
2996 return -EINVAL;
2997
2998 if (q->mq_ops) {
2999 blk_mq_start_stopped_hw_queues(q, false);
3000 } else {
3001 spin_lock_irqsave(q->queue_lock, flags);
3002 blk_start_queue(q);
3003 spin_unlock_irqrestore(q->queue_lock, flags);
3004 }
3005
3006 return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3009
3010 static void
3011 device_block(struct scsi_device *sdev, void *data)
3012 {
3013 scsi_internal_device_block(sdev);
3014 }
3015
3016 static int
3017 target_block(struct device *dev, void *data)
3018 {
3019 if (scsi_is_target_device(dev))
3020 starget_for_each_device(to_scsi_target(dev), NULL,
3021 device_block);
3022 return 0;
3023 }
3024
3025 void
3026 scsi_target_block(struct device *dev)
3027 {
3028 if (scsi_is_target_device(dev))
3029 starget_for_each_device(to_scsi_target(dev), NULL,
3030 device_block);
3031 else
3032 device_for_each_child(dev, NULL, target_block);
3033 }
3034 EXPORT_SYMBOL_GPL(scsi_target_block);
3035
3036 static void
3037 device_unblock(struct scsi_device *sdev, void *data)
3038 {
3039 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3040 }
3041
3042 static int
3043 target_unblock(struct device *dev, void *data)
3044 {
3045 if (scsi_is_target_device(dev))
3046 starget_for_each_device(to_scsi_target(dev), data,
3047 device_unblock);
3048 return 0;
3049 }
3050
3051 void
3052 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3053 {
3054 if (scsi_is_target_device(dev))
3055 starget_for_each_device(to_scsi_target(dev), &new_state,
3056 device_unblock);
3057 else
3058 device_for_each_child(dev, &new_state, target_unblock);
3059 }
3060 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3061
3062 /**
3063 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3064 * @sgl: scatter-gather list
3065 * @sg_count: number of segments in sg
3066 * @offset: offset in bytes into sg, on return offset into the mapped area
3067 * @len: bytes to map, on return number of bytes mapped
3068 *
3069 * Returns virtual address of the start of the mapped page
3070 */
3071 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3072 size_t *offset, size_t *len)
3073 {
3074 int i;
3075 size_t sg_len = 0, len_complete = 0;
3076 struct scatterlist *sg;
3077 struct page *page;
3078
3079 WARN_ON(!irqs_disabled());
3080
3081 for_each_sg(sgl, sg, sg_count, i) {
3082 len_complete = sg_len; /* Complete sg-entries */
3083 sg_len += sg->length;
3084 if (sg_len > *offset)
3085 break;
3086 }
3087
3088 if (unlikely(i == sg_count)) {
3089 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3090 "elements %d\n",
3091 __func__, sg_len, *offset, sg_count);
3092 WARN_ON(1);
3093 return NULL;
3094 }
3095
3096 /* Offset starting from the beginning of first page in this sg-entry */
3097 *offset = *offset - len_complete + sg->offset;
3098
3099 /* Assumption: contiguous pages can be accessed as "page + i" */
3100 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3101 *offset &= ~PAGE_MASK;
3102
3103 /* Bytes in this sg-entry from *offset to the end of the page */
3104 sg_len = PAGE_SIZE - *offset;
3105 if (*len > sg_len)
3106 *len = sg_len;
3107
3108 return kmap_atomic(page);
3109 }
3110 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3111
3112 /**
3113 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3114 * @virt: virtual address to be unmapped
3115 */
3116 void scsi_kunmap_atomic_sg(void *virt)
3117 {
3118 kunmap_atomic(virt);
3119 }
3120 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3121
3122 void sdev_disable_disk_events(struct scsi_device *sdev)
3123 {
3124 atomic_inc(&sdev->disk_events_disable_depth);
3125 }
3126 EXPORT_SYMBOL(sdev_disable_disk_events);
3127
3128 void sdev_enable_disk_events(struct scsi_device *sdev)
3129 {
3130 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3131 return;
3132 atomic_dec(&sdev->disk_events_disable_depth);
3133 }
3134 EXPORT_SYMBOL(sdev_enable_disk_events);