]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
ad3ea24f08859fb167e7297c2cacef81d646fb00
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
57 {
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
64 {
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 struct kmem_cache *cache;
72 int ret = 0;
73
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 if (cache)
76 return 0;
77
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 if (!scsi_sense_cache)
91 ret = -ENOMEM;
92 }
93
94 mutex_unlock(&scsi_sense_cache_mutex);
95 return ret;
96 }
97
98 /*
99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100 * not change behaviour from the previous unplug mechanism, experimentation
101 * may prove this needs changing.
102 */
103 #define SCSI_QUEUE_DELAY 3
104
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111
112 /*
113 * Set the appropriate busy bit for the device/host.
114 *
115 * If the host/device isn't busy, assume that something actually
116 * completed, and that we should be able to queue a command now.
117 *
118 * Note that the prior mid-layer assumption that any host could
119 * always queue at least one command is now broken. The mid-layer
120 * will implement a user specifiable stall (see
121 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 * if a command is requeued with no other commands outstanding
123 * either for the device or for the host.
124 */
125 switch (reason) {
126 case SCSI_MLQUEUE_HOST_BUSY:
127 atomic_set(&host->host_blocked, host->max_host_blocked);
128 break;
129 case SCSI_MLQUEUE_DEVICE_BUSY:
130 case SCSI_MLQUEUE_EH_RETRY:
131 atomic_set(&device->device_blocked,
132 device->max_device_blocked);
133 break;
134 case SCSI_MLQUEUE_TARGET_BUSY:
135 atomic_set(&starget->target_blocked,
136 starget->max_target_blocked);
137 break;
138 }
139 }
140
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143 struct scsi_device *sdev = cmd->device;
144
145 if (cmd->request->rq_flags & RQF_DONTPREP) {
146 cmd->request->rq_flags &= ~RQF_DONTPREP;
147 scsi_mq_uninit_cmd(cmd);
148 } else {
149 WARN_ON_ONCE(true);
150 }
151 blk_mq_requeue_request(cmd->request, true);
152 put_device(&sdev->sdev_gendev);
153 }
154
155 /**
156 * __scsi_queue_insert - private queue insertion
157 * @cmd: The SCSI command being requeued
158 * @reason: The reason for the requeue
159 * @unbusy: Whether the queue should be unbusied
160 *
161 * This is a private queue insertion. The public interface
162 * scsi_queue_insert() always assumes the queue should be unbusied
163 * because it's always called before the completion. This function is
164 * for a requeue after completion, which should only occur in this
165 * file.
166 */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
168 {
169 struct scsi_device *device = cmd->device;
170 struct request_queue *q = device->request_queue;
171 unsigned long flags;
172
173 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 "Inserting command %p into mlqueue\n", cmd));
175
176 scsi_set_blocked(cmd, reason);
177
178 /*
179 * Decrement the counters, since these commands are no longer
180 * active on the host/device.
181 */
182 if (unbusy)
183 scsi_device_unbusy(device);
184
185 /*
186 * Requeue this command. It will go before all other commands
187 * that are already in the queue. Schedule requeue work under
188 * lock such that the kblockd_schedule_work() call happens
189 * before blk_cleanup_queue() finishes.
190 */
191 cmd->result = 0;
192 if (q->mq_ops) {
193 scsi_mq_requeue_cmd(cmd);
194 return;
195 }
196 spin_lock_irqsave(q->queue_lock, flags);
197 blk_requeue_request(q, cmd->request);
198 kblockd_schedule_work(&device->requeue_work);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201
202 /*
203 * Function: scsi_queue_insert()
204 *
205 * Purpose: Insert a command in the midlevel queue.
206 *
207 * Arguments: cmd - command that we are adding to queue.
208 * reason - why we are inserting command to queue.
209 *
210 * Lock status: Assumed that lock is not held upon entry.
211 *
212 * Returns: Nothing.
213 *
214 * Notes: We do this for one of two cases. Either the host is busy
215 * and it cannot accept any more commands for the time being,
216 * or the device returned QUEUE_FULL and can accept no more
217 * commands.
218 * Notes: This could be called either from an interrupt context or a
219 * normal process context.
220 */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223 __scsi_queue_insert(cmd, reason, 1);
224 }
225
226
227 /**
228 * scsi_execute - insert request and wait for the result
229 * @sdev: scsi device
230 * @cmd: scsi command
231 * @data_direction: data direction
232 * @buffer: data buffer
233 * @bufflen: len of buffer
234 * @sense: optional sense buffer
235 * @sshdr: optional decoded sense header
236 * @timeout: request timeout in seconds
237 * @retries: number of times to retry request
238 * @flags: flags for ->cmd_flags
239 * @rq_flags: flags for ->rq_flags
240 * @resid: optional residual length
241 *
242 * Returns the scsi_cmnd result field if a command was executed, or a negative
243 * Linux error code if we didn't get that far.
244 */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 int *resid)
250 {
251 struct request *req;
252 struct scsi_request *rq;
253 int ret = DRIVER_ERROR << 24;
254
255 req = blk_get_request(sdev->request_queue,
256 data_direction == DMA_TO_DEVICE ?
257 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
258 if (IS_ERR(req))
259 return ret;
260 rq = scsi_req(req);
261
262 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
263 buffer, bufflen, __GFP_RECLAIM))
264 goto out;
265
266 rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 memcpy(rq->cmd, cmd, rq->cmd_len);
268 rq->retries = retries;
269 req->timeout = timeout;
270 req->cmd_flags |= flags;
271 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
272
273 /*
274 * head injection *required* here otherwise quiesce won't work
275 */
276 blk_execute_rq(req->q, NULL, req, 1);
277
278 /*
279 * Some devices (USB mass-storage in particular) may transfer
280 * garbage data together with a residue indicating that the data
281 * is invalid. Prevent the garbage from being misinterpreted
282 * and prevent security leaks by zeroing out the excess data.
283 */
284 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286
287 if (resid)
288 *resid = rq->resid_len;
289 if (sense && rq->sense_len)
290 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 if (sshdr)
292 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 ret = rq->result;
294 out:
295 blk_put_request(req);
296
297 return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300
301 /*
302 * Function: scsi_init_cmd_errh()
303 *
304 * Purpose: Initialize cmd fields related to error handling.
305 *
306 * Arguments: cmd - command that is ready to be queued.
307 *
308 * Notes: This function has the job of initializing a number of
309 * fields related to error handling. Typically this will
310 * be called once for each command, as required.
311 */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314 cmd->serial_number = 0;
315 scsi_set_resid(cmd, 0);
316 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 if (cmd->cmd_len == 0)
318 cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320
321 void scsi_device_unbusy(struct scsi_device *sdev)
322 {
323 struct Scsi_Host *shost = sdev->host;
324 struct scsi_target *starget = scsi_target(sdev);
325 unsigned long flags;
326
327 atomic_dec(&shost->host_busy);
328 if (starget->can_queue > 0)
329 atomic_dec(&starget->target_busy);
330
331 if (unlikely(scsi_host_in_recovery(shost) &&
332 (shost->host_failed || shost->host_eh_scheduled))) {
333 spin_lock_irqsave(shost->host_lock, flags);
334 scsi_eh_wakeup(shost);
335 spin_unlock_irqrestore(shost->host_lock, flags);
336 }
337
338 atomic_dec(&sdev->device_busy);
339 }
340
341 static void scsi_kick_queue(struct request_queue *q)
342 {
343 if (q->mq_ops)
344 blk_mq_start_hw_queues(q);
345 else
346 blk_run_queue(q);
347 }
348
349 /*
350 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
351 * and call blk_run_queue for all the scsi_devices on the target -
352 * including current_sdev first.
353 *
354 * Called with *no* scsi locks held.
355 */
356 static void scsi_single_lun_run(struct scsi_device *current_sdev)
357 {
358 struct Scsi_Host *shost = current_sdev->host;
359 struct scsi_device *sdev, *tmp;
360 struct scsi_target *starget = scsi_target(current_sdev);
361 unsigned long flags;
362
363 spin_lock_irqsave(shost->host_lock, flags);
364 starget->starget_sdev_user = NULL;
365 spin_unlock_irqrestore(shost->host_lock, flags);
366
367 /*
368 * Call blk_run_queue for all LUNs on the target, starting with
369 * current_sdev. We race with others (to set starget_sdev_user),
370 * but in most cases, we will be first. Ideally, each LU on the
371 * target would get some limited time or requests on the target.
372 */
373 scsi_kick_queue(current_sdev->request_queue);
374
375 spin_lock_irqsave(shost->host_lock, flags);
376 if (starget->starget_sdev_user)
377 goto out;
378 list_for_each_entry_safe(sdev, tmp, &starget->devices,
379 same_target_siblings) {
380 if (sdev == current_sdev)
381 continue;
382 if (scsi_device_get(sdev))
383 continue;
384
385 spin_unlock_irqrestore(shost->host_lock, flags);
386 scsi_kick_queue(sdev->request_queue);
387 spin_lock_irqsave(shost->host_lock, flags);
388
389 scsi_device_put(sdev);
390 }
391 out:
392 spin_unlock_irqrestore(shost->host_lock, flags);
393 }
394
395 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
396 {
397 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
398 return true;
399 if (atomic_read(&sdev->device_blocked) > 0)
400 return true;
401 return false;
402 }
403
404 static inline bool scsi_target_is_busy(struct scsi_target *starget)
405 {
406 if (starget->can_queue > 0) {
407 if (atomic_read(&starget->target_busy) >= starget->can_queue)
408 return true;
409 if (atomic_read(&starget->target_blocked) > 0)
410 return true;
411 }
412 return false;
413 }
414
415 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
416 {
417 if (shost->can_queue > 0 &&
418 atomic_read(&shost->host_busy) >= shost->can_queue)
419 return true;
420 if (atomic_read(&shost->host_blocked) > 0)
421 return true;
422 if (shost->host_self_blocked)
423 return true;
424 return false;
425 }
426
427 static void scsi_starved_list_run(struct Scsi_Host *shost)
428 {
429 LIST_HEAD(starved_list);
430 struct scsi_device *sdev;
431 unsigned long flags;
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 list_splice_init(&shost->starved_list, &starved_list);
435
436 while (!list_empty(&starved_list)) {
437 struct request_queue *slq;
438
439 /*
440 * As long as shost is accepting commands and we have
441 * starved queues, call blk_run_queue. scsi_request_fn
442 * drops the queue_lock and can add us back to the
443 * starved_list.
444 *
445 * host_lock protects the starved_list and starved_entry.
446 * scsi_request_fn must get the host_lock before checking
447 * or modifying starved_list or starved_entry.
448 */
449 if (scsi_host_is_busy(shost))
450 break;
451
452 sdev = list_entry(starved_list.next,
453 struct scsi_device, starved_entry);
454 list_del_init(&sdev->starved_entry);
455 if (scsi_target_is_busy(scsi_target(sdev))) {
456 list_move_tail(&sdev->starved_entry,
457 &shost->starved_list);
458 continue;
459 }
460
461 /*
462 * Once we drop the host lock, a racing scsi_remove_device()
463 * call may remove the sdev from the starved list and destroy
464 * it and the queue. Mitigate by taking a reference to the
465 * queue and never touching the sdev again after we drop the
466 * host lock. Note: if __scsi_remove_device() invokes
467 * blk_cleanup_queue() before the queue is run from this
468 * function then blk_run_queue() will return immediately since
469 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 */
471 slq = sdev->request_queue;
472 if (!blk_get_queue(slq))
473 continue;
474 spin_unlock_irqrestore(shost->host_lock, flags);
475
476 scsi_kick_queue(slq);
477 blk_put_queue(slq);
478
479 spin_lock_irqsave(shost->host_lock, flags);
480 }
481 /* put any unprocessed entries back */
482 list_splice(&starved_list, &shost->starved_list);
483 spin_unlock_irqrestore(shost->host_lock, flags);
484 }
485
486 /*
487 * Function: scsi_run_queue()
488 *
489 * Purpose: Select a proper request queue to serve next
490 *
491 * Arguments: q - last request's queue
492 *
493 * Returns: Nothing
494 *
495 * Notes: The previous command was completely finished, start
496 * a new one if possible.
497 */
498 static void scsi_run_queue(struct request_queue *q)
499 {
500 struct scsi_device *sdev = q->queuedata;
501
502 if (scsi_target(sdev)->single_lun)
503 scsi_single_lun_run(sdev);
504 if (!list_empty(&sdev->host->starved_list))
505 scsi_starved_list_run(sdev->host);
506
507 if (q->mq_ops)
508 blk_mq_run_hw_queues(q, false);
509 else
510 blk_run_queue(q);
511 }
512
513 void scsi_requeue_run_queue(struct work_struct *work)
514 {
515 struct scsi_device *sdev;
516 struct request_queue *q;
517
518 sdev = container_of(work, struct scsi_device, requeue_work);
519 q = sdev->request_queue;
520 scsi_run_queue(q);
521 }
522
523 /*
524 * Function: scsi_requeue_command()
525 *
526 * Purpose: Handle post-processing of completed commands.
527 *
528 * Arguments: q - queue to operate on
529 * cmd - command that may need to be requeued.
530 *
531 * Returns: Nothing
532 *
533 * Notes: After command completion, there may be blocks left
534 * over which weren't finished by the previous command
535 * this can be for a number of reasons - the main one is
536 * I/O errors in the middle of the request, in which case
537 * we need to request the blocks that come after the bad
538 * sector.
539 * Notes: Upon return, cmd is a stale pointer.
540 */
541 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
542 {
543 struct scsi_device *sdev = cmd->device;
544 struct request *req = cmd->request;
545 unsigned long flags;
546
547 spin_lock_irqsave(q->queue_lock, flags);
548 blk_unprep_request(req);
549 req->special = NULL;
550 scsi_put_command(cmd);
551 blk_requeue_request(q, req);
552 spin_unlock_irqrestore(q->queue_lock, flags);
553
554 scsi_run_queue(q);
555
556 put_device(&sdev->sdev_gendev);
557 }
558
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 struct scsi_device *sdev;
562
563 shost_for_each_device(sdev, shost)
564 scsi_run_queue(sdev->request_queue);
565 }
566
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 if (!blk_rq_is_passthrough(cmd->request)) {
570 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572 if (drv->uninit_command)
573 drv->uninit_command(cmd);
574 }
575 }
576
577 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 struct scsi_data_buffer *sdb;
580
581 if (cmd->sdb.table.nents)
582 sg_free_table_chained(&cmd->sdb.table, true);
583 if (cmd->request->next_rq) {
584 sdb = cmd->request->next_rq->special;
585 if (sdb)
586 sg_free_table_chained(&sdb->table, true);
587 }
588 if (scsi_prot_sg_count(cmd))
589 sg_free_table_chained(&cmd->prot_sdb->table, true);
590 }
591
592 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
593 {
594 scsi_mq_free_sgtables(cmd);
595 scsi_uninit_cmd(cmd);
596 scsi_del_cmd_from_list(cmd);
597 }
598
599 /*
600 * Function: scsi_release_buffers()
601 *
602 * Purpose: Free resources allocate for a scsi_command.
603 *
604 * Arguments: cmd - command that we are bailing.
605 *
606 * Lock status: Assumed that no lock is held upon entry.
607 *
608 * Returns: Nothing
609 *
610 * Notes: In the event that an upper level driver rejects a
611 * command, we must release resources allocated during
612 * the __init_io() function. Primarily this would involve
613 * the scatter-gather table.
614 */
615 static void scsi_release_buffers(struct scsi_cmnd *cmd)
616 {
617 if (cmd->sdb.table.nents)
618 sg_free_table_chained(&cmd->sdb.table, false);
619
620 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
621
622 if (scsi_prot_sg_count(cmd))
623 sg_free_table_chained(&cmd->prot_sdb->table, false);
624 }
625
626 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
627 {
628 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
629
630 sg_free_table_chained(&bidi_sdb->table, false);
631 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
632 cmd->request->next_rq->special = NULL;
633 }
634
635 static bool scsi_end_request(struct request *req, blk_status_t error,
636 unsigned int bytes, unsigned int bidi_bytes)
637 {
638 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
639 struct scsi_device *sdev = cmd->device;
640 struct request_queue *q = sdev->request_queue;
641
642 if (blk_update_request(req, error, bytes))
643 return true;
644
645 /* Bidi request must be completed as a whole */
646 if (unlikely(bidi_bytes) &&
647 blk_update_request(req->next_rq, error, bidi_bytes))
648 return true;
649
650 if (blk_queue_add_random(q))
651 add_disk_randomness(req->rq_disk);
652
653 if (!blk_rq_is_scsi(req)) {
654 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
655 cmd->flags &= ~SCMD_INITIALIZED;
656 }
657
658 if (req->mq_ctx) {
659 /*
660 * In the MQ case the command gets freed by __blk_mq_end_request,
661 * so we have to do all cleanup that depends on it earlier.
662 *
663 * We also can't kick the queues from irq context, so we
664 * will have to defer it to a workqueue.
665 */
666 scsi_mq_uninit_cmd(cmd);
667
668 __blk_mq_end_request(req, error);
669
670 if (scsi_target(sdev)->single_lun ||
671 !list_empty(&sdev->host->starved_list))
672 kblockd_schedule_work(&sdev->requeue_work);
673 else
674 blk_mq_run_hw_queues(q, true);
675 } else {
676 unsigned long flags;
677
678 if (bidi_bytes)
679 scsi_release_bidi_buffers(cmd);
680 scsi_release_buffers(cmd);
681 scsi_put_command(cmd);
682
683 spin_lock_irqsave(q->queue_lock, flags);
684 blk_finish_request(req, error);
685 spin_unlock_irqrestore(q->queue_lock, flags);
686
687 scsi_run_queue(q);
688 }
689
690 put_device(&sdev->sdev_gendev);
691 return false;
692 }
693
694 /**
695 * __scsi_error_from_host_byte - translate SCSI error code into errno
696 * @cmd: SCSI command (unused)
697 * @result: scsi error code
698 *
699 * Translate SCSI error code into block errors.
700 */
701 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
702 int result)
703 {
704 switch (host_byte(result)) {
705 case DID_TRANSPORT_FAILFAST:
706 return BLK_STS_TRANSPORT;
707 case DID_TARGET_FAILURE:
708 set_host_byte(cmd, DID_OK);
709 return BLK_STS_TARGET;
710 case DID_NEXUS_FAILURE:
711 return BLK_STS_NEXUS;
712 case DID_ALLOC_FAILURE:
713 set_host_byte(cmd, DID_OK);
714 return BLK_STS_NOSPC;
715 case DID_MEDIUM_ERROR:
716 set_host_byte(cmd, DID_OK);
717 return BLK_STS_MEDIUM;
718 default:
719 return BLK_STS_IOERR;
720 }
721 }
722
723 /*
724 * Function: scsi_io_completion()
725 *
726 * Purpose: Completion processing for block device I/O requests.
727 *
728 * Arguments: cmd - command that is finished.
729 *
730 * Lock status: Assumed that no lock is held upon entry.
731 *
732 * Returns: Nothing
733 *
734 * Notes: We will finish off the specified number of sectors. If we
735 * are done, the command block will be released and the queue
736 * function will be goosed. If we are not done then we have to
737 * figure out what to do next:
738 *
739 * a) We can call scsi_requeue_command(). The request
740 * will be unprepared and put back on the queue. Then
741 * a new command will be created for it. This should
742 * be used if we made forward progress, or if we want
743 * to switch from READ(10) to READ(6) for example.
744 *
745 * b) We can call __scsi_queue_insert(). The request will
746 * be put back on the queue and retried using the same
747 * command as before, possibly after a delay.
748 *
749 * c) We can call scsi_end_request() with -EIO to fail
750 * the remainder of the request.
751 */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754 int result = cmd->result;
755 struct request_queue *q = cmd->device->request_queue;
756 struct request *req = cmd->request;
757 blk_status_t error = BLK_STS_OK;
758 struct scsi_sense_hdr sshdr;
759 bool sense_valid = false;
760 int sense_deferred = 0, level = 0;
761 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 ACTION_DELAYED_RETRY} action;
763 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
764
765 if (result) {
766 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
767 if (sense_valid)
768 sense_deferred = scsi_sense_is_deferred(&sshdr);
769 }
770
771 if (blk_rq_is_passthrough(req)) {
772 if (result) {
773 if (sense_valid) {
774 /*
775 * SG_IO wants current and deferred errors
776 */
777 scsi_req(req)->sense_len =
778 min(8 + cmd->sense_buffer[7],
779 SCSI_SENSE_BUFFERSIZE);
780 }
781 if (!sense_deferred)
782 error = __scsi_error_from_host_byte(cmd, result);
783 }
784 /*
785 * __scsi_error_from_host_byte may have reset the host_byte
786 */
787 scsi_req(req)->result = cmd->result;
788 scsi_req(req)->resid_len = scsi_get_resid(cmd);
789
790 if (scsi_bidi_cmnd(cmd)) {
791 /*
792 * Bidi commands Must be complete as a whole,
793 * both sides at once.
794 */
795 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
796 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
797 blk_rq_bytes(req->next_rq)))
798 BUG();
799 return;
800 }
801 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
802 /*
803 * Flush commands do not transfers any data, and thus cannot use
804 * good_bytes != blk_rq_bytes(req) as the signal for an error.
805 * This sets the error explicitly for the problem case.
806 */
807 error = __scsi_error_from_host_byte(cmd, result);
808 }
809
810 /* no bidi support for !blk_rq_is_passthrough yet */
811 BUG_ON(blk_bidi_rq(req));
812
813 /*
814 * Next deal with any sectors which we were able to correctly
815 * handle.
816 */
817 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
818 "%u sectors total, %d bytes done.\n",
819 blk_rq_sectors(req), good_bytes));
820
821 /*
822 * Recovered errors need reporting, but they're always treated as
823 * success, so fiddle the result code here. For passthrough requests
824 * we already took a copy of the original into sreq->result which
825 * is what gets returned to the user
826 */
827 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 * print since caller wants ATA registers. Only occurs on
830 * SCSI ATA PASS_THROUGH commands when CK_COND=1
831 */
832 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833 ;
834 else if (!(req->rq_flags & RQF_QUIET))
835 scsi_print_sense(cmd);
836 result = 0;
837 /* for passthrough error may be set */
838 error = BLK_STS_OK;
839 }
840
841 /*
842 * special case: failed zero length commands always need to
843 * drop down into the retry code. Otherwise, if we finished
844 * all bytes in the request we are done now.
845 */
846 if (!(blk_rq_bytes(req) == 0 && error) &&
847 !scsi_end_request(req, error, good_bytes, 0))
848 return;
849
850 /*
851 * Kill remainder if no retrys.
852 */
853 if (error && scsi_noretry_cmd(cmd)) {
854 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
855 BUG();
856 return;
857 }
858
859 /*
860 * If there had been no error, but we have leftover bytes in the
861 * requeues just queue the command up again.
862 */
863 if (result == 0)
864 goto requeue;
865
866 error = __scsi_error_from_host_byte(cmd, result);
867
868 if (host_byte(result) == DID_RESET) {
869 /* Third party bus reset or reset for error recovery
870 * reasons. Just retry the command and see what
871 * happens.
872 */
873 action = ACTION_RETRY;
874 } else if (sense_valid && !sense_deferred) {
875 switch (sshdr.sense_key) {
876 case UNIT_ATTENTION:
877 if (cmd->device->removable) {
878 /* Detected disc change. Set a bit
879 * and quietly refuse further access.
880 */
881 cmd->device->changed = 1;
882 action = ACTION_FAIL;
883 } else {
884 /* Must have been a power glitch, or a
885 * bus reset. Could not have been a
886 * media change, so we just retry the
887 * command and see what happens.
888 */
889 action = ACTION_RETRY;
890 }
891 break;
892 case ILLEGAL_REQUEST:
893 /* If we had an ILLEGAL REQUEST returned, then
894 * we may have performed an unsupported
895 * command. The only thing this should be
896 * would be a ten byte read where only a six
897 * byte read was supported. Also, on a system
898 * where READ CAPACITY failed, we may have
899 * read past the end of the disk.
900 */
901 if ((cmd->device->use_10_for_rw &&
902 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
903 (cmd->cmnd[0] == READ_10 ||
904 cmd->cmnd[0] == WRITE_10)) {
905 /* This will issue a new 6-byte command. */
906 cmd->device->use_10_for_rw = 0;
907 action = ACTION_REPREP;
908 } else if (sshdr.asc == 0x10) /* DIX */ {
909 action = ACTION_FAIL;
910 error = BLK_STS_PROTECTION;
911 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
912 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
913 action = ACTION_FAIL;
914 error = BLK_STS_TARGET;
915 } else
916 action = ACTION_FAIL;
917 break;
918 case ABORTED_COMMAND:
919 action = ACTION_FAIL;
920 if (sshdr.asc == 0x10) /* DIF */
921 error = BLK_STS_PROTECTION;
922 break;
923 case NOT_READY:
924 /* If the device is in the process of becoming
925 * ready, or has a temporary blockage, retry.
926 */
927 if (sshdr.asc == 0x04) {
928 switch (sshdr.ascq) {
929 case 0x01: /* becoming ready */
930 case 0x04: /* format in progress */
931 case 0x05: /* rebuild in progress */
932 case 0x06: /* recalculation in progress */
933 case 0x07: /* operation in progress */
934 case 0x08: /* Long write in progress */
935 case 0x09: /* self test in progress */
936 case 0x14: /* space allocation in progress */
937 action = ACTION_DELAYED_RETRY;
938 break;
939 default:
940 action = ACTION_FAIL;
941 break;
942 }
943 } else
944 action = ACTION_FAIL;
945 break;
946 case VOLUME_OVERFLOW:
947 /* See SSC3rXX or current. */
948 action = ACTION_FAIL;
949 break;
950 default:
951 action = ACTION_FAIL;
952 break;
953 }
954 } else
955 action = ACTION_FAIL;
956
957 if (action != ACTION_FAIL &&
958 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
959 action = ACTION_FAIL;
960
961 switch (action) {
962 case ACTION_FAIL:
963 /* Give up and fail the remainder of the request */
964 if (!(req->rq_flags & RQF_QUIET)) {
965 static DEFINE_RATELIMIT_STATE(_rs,
966 DEFAULT_RATELIMIT_INTERVAL,
967 DEFAULT_RATELIMIT_BURST);
968
969 if (unlikely(scsi_logging_level))
970 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
971 SCSI_LOG_MLCOMPLETE_BITS);
972
973 /*
974 * if logging is enabled the failure will be printed
975 * in scsi_log_completion(), so avoid duplicate messages
976 */
977 if (!level && __ratelimit(&_rs)) {
978 scsi_print_result(cmd, NULL, FAILED);
979 if (driver_byte(result) & DRIVER_SENSE)
980 scsi_print_sense(cmd);
981 scsi_print_command(cmd);
982 }
983 }
984 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
985 return;
986 /*FALLTHRU*/
987 case ACTION_REPREP:
988 requeue:
989 /* Unprep the request and put it back at the head of the queue.
990 * A new command will be prepared and issued.
991 */
992 if (q->mq_ops) {
993 scsi_mq_requeue_cmd(cmd);
994 } else {
995 scsi_release_buffers(cmd);
996 scsi_requeue_command(q, cmd);
997 }
998 break;
999 case ACTION_RETRY:
1000 /* Retry the same command immediately */
1001 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1002 break;
1003 case ACTION_DELAYED_RETRY:
1004 /* Retry the same command after a delay */
1005 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1006 break;
1007 }
1008 }
1009
1010 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1011 {
1012 int count;
1013
1014 /*
1015 * If sg table allocation fails, requeue request later.
1016 */
1017 if (unlikely(sg_alloc_table_chained(&sdb->table,
1018 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1019 return BLKPREP_DEFER;
1020
1021 /*
1022 * Next, walk the list, and fill in the addresses and sizes of
1023 * each segment.
1024 */
1025 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026 BUG_ON(count > sdb->table.nents);
1027 sdb->table.nents = count;
1028 sdb->length = blk_rq_payload_bytes(req);
1029 return BLKPREP_OK;
1030 }
1031
1032 /*
1033 * Function: scsi_init_io()
1034 *
1035 * Purpose: SCSI I/O initialize function.
1036 *
1037 * Arguments: cmd - Command descriptor we wish to initialize
1038 *
1039 * Returns: 0 on success
1040 * BLKPREP_DEFER if the failure is retryable
1041 * BLKPREP_KILL if the failure is fatal
1042 */
1043 int scsi_init_io(struct scsi_cmnd *cmd)
1044 {
1045 struct scsi_device *sdev = cmd->device;
1046 struct request *rq = cmd->request;
1047 bool is_mq = (rq->mq_ctx != NULL);
1048 int error = BLKPREP_KILL;
1049
1050 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1051 goto err_exit;
1052
1053 error = scsi_init_sgtable(rq, &cmd->sdb);
1054 if (error)
1055 goto err_exit;
1056
1057 if (blk_bidi_rq(rq)) {
1058 if (!rq->q->mq_ops) {
1059 struct scsi_data_buffer *bidi_sdb =
1060 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1061 if (!bidi_sdb) {
1062 error = BLKPREP_DEFER;
1063 goto err_exit;
1064 }
1065
1066 rq->next_rq->special = bidi_sdb;
1067 }
1068
1069 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1070 if (error)
1071 goto err_exit;
1072 }
1073
1074 if (blk_integrity_rq(rq)) {
1075 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076 int ivecs, count;
1077
1078 if (prot_sdb == NULL) {
1079 /*
1080 * This can happen if someone (e.g. multipath)
1081 * queues a command to a device on an adapter
1082 * that does not support DIX.
1083 */
1084 WARN_ON_ONCE(1);
1085 error = BLKPREP_KILL;
1086 goto err_exit;
1087 }
1088
1089 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090
1091 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092 prot_sdb->table.sgl)) {
1093 error = BLKPREP_DEFER;
1094 goto err_exit;
1095 }
1096
1097 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098 prot_sdb->table.sgl);
1099 BUG_ON(unlikely(count > ivecs));
1100 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1101
1102 cmd->prot_sdb = prot_sdb;
1103 cmd->prot_sdb->table.nents = count;
1104 }
1105
1106 return BLKPREP_OK;
1107 err_exit:
1108 if (is_mq) {
1109 scsi_mq_free_sgtables(cmd);
1110 } else {
1111 scsi_release_buffers(cmd);
1112 cmd->request->special = NULL;
1113 scsi_put_command(cmd);
1114 put_device(&sdev->sdev_gendev);
1115 }
1116 return error;
1117 }
1118 EXPORT_SYMBOL(scsi_init_io);
1119
1120 /**
1121 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1122 * @rq: Request associated with the SCSI command to be initialized.
1123 *
1124 * This function initializes the members of struct scsi_cmnd that must be
1125 * initialized before request processing starts and that won't be
1126 * reinitialized if a SCSI command is requeued.
1127 *
1128 * Called from inside blk_get_request() for pass-through requests and from
1129 * inside scsi_init_command() for filesystem requests.
1130 */
1131 void scsi_initialize_rq(struct request *rq)
1132 {
1133 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1134
1135 scsi_req_init(&cmd->req);
1136 cmd->jiffies_at_alloc = jiffies;
1137 cmd->retries = 0;
1138 }
1139 EXPORT_SYMBOL(scsi_initialize_rq);
1140
1141 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1142 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1143 {
1144 struct scsi_device *sdev = cmd->device;
1145 struct Scsi_Host *shost = sdev->host;
1146 unsigned long flags;
1147
1148 if (shost->use_cmd_list) {
1149 spin_lock_irqsave(&sdev->list_lock, flags);
1150 list_add_tail(&cmd->list, &sdev->cmd_list);
1151 spin_unlock_irqrestore(&sdev->list_lock, flags);
1152 }
1153 }
1154
1155 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1156 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1157 {
1158 struct scsi_device *sdev = cmd->device;
1159 struct Scsi_Host *shost = sdev->host;
1160 unsigned long flags;
1161
1162 if (shost->use_cmd_list) {
1163 spin_lock_irqsave(&sdev->list_lock, flags);
1164 BUG_ON(list_empty(&cmd->list));
1165 list_del_init(&cmd->list);
1166 spin_unlock_irqrestore(&sdev->list_lock, flags);
1167 }
1168 }
1169
1170 /* Called after a request has been started. */
1171 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1172 {
1173 void *buf = cmd->sense_buffer;
1174 void *prot = cmd->prot_sdb;
1175 struct request *rq = blk_mq_rq_from_pdu(cmd);
1176 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1177 unsigned long jiffies_at_alloc;
1178 int retries;
1179
1180 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1181 flags |= SCMD_INITIALIZED;
1182 scsi_initialize_rq(rq);
1183 }
1184
1185 jiffies_at_alloc = cmd->jiffies_at_alloc;
1186 retries = cmd->retries;
1187 /* zero out the cmd, except for the embedded scsi_request */
1188 memset((char *)cmd + sizeof(cmd->req), 0,
1189 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1190
1191 cmd->device = dev;
1192 cmd->sense_buffer = buf;
1193 cmd->prot_sdb = prot;
1194 cmd->flags = flags;
1195 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1196 cmd->jiffies_at_alloc = jiffies_at_alloc;
1197 cmd->retries = retries;
1198
1199 scsi_add_cmd_to_list(cmd);
1200 }
1201
1202 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1203 {
1204 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205
1206 /*
1207 * Passthrough requests may transfer data, in which case they must
1208 * a bio attached to them. Or they might contain a SCSI command
1209 * that does not transfer data, in which case they may optionally
1210 * submit a request without an attached bio.
1211 */
1212 if (req->bio) {
1213 int ret = scsi_init_io(cmd);
1214 if (unlikely(ret))
1215 return ret;
1216 } else {
1217 BUG_ON(blk_rq_bytes(req));
1218
1219 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1220 }
1221
1222 cmd->cmd_len = scsi_req(req)->cmd_len;
1223 cmd->cmnd = scsi_req(req)->cmd;
1224 cmd->transfersize = blk_rq_bytes(req);
1225 cmd->allowed = scsi_req(req)->retries;
1226 return BLKPREP_OK;
1227 }
1228
1229 /*
1230 * Setup a normal block command. These are simple request from filesystems
1231 * that still need to be translated to SCSI CDBs from the ULD.
1232 */
1233 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234 {
1235 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1236
1237 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1238 int ret = sdev->handler->prep_fn(sdev, req);
1239 if (ret != BLKPREP_OK)
1240 return ret;
1241 }
1242
1243 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1244 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1246 }
1247
1248 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1251
1252 if (!blk_rq_bytes(req))
1253 cmd->sc_data_direction = DMA_NONE;
1254 else if (rq_data_dir(req) == WRITE)
1255 cmd->sc_data_direction = DMA_TO_DEVICE;
1256 else
1257 cmd->sc_data_direction = DMA_FROM_DEVICE;
1258
1259 if (blk_rq_is_scsi(req))
1260 return scsi_setup_scsi_cmnd(sdev, req);
1261 else
1262 return scsi_setup_fs_cmnd(sdev, req);
1263 }
1264
1265 static int
1266 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1267 {
1268 int ret = BLKPREP_OK;
1269
1270 /*
1271 * If the device is not in running state we will reject some
1272 * or all commands.
1273 */
1274 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1275 switch (sdev->sdev_state) {
1276 case SDEV_OFFLINE:
1277 case SDEV_TRANSPORT_OFFLINE:
1278 /*
1279 * If the device is offline we refuse to process any
1280 * commands. The device must be brought online
1281 * before trying any recovery commands.
1282 */
1283 sdev_printk(KERN_ERR, sdev,
1284 "rejecting I/O to offline device\n");
1285 ret = BLKPREP_KILL;
1286 break;
1287 case SDEV_DEL:
1288 /*
1289 * If the device is fully deleted, we refuse to
1290 * process any commands as well.
1291 */
1292 sdev_printk(KERN_ERR, sdev,
1293 "rejecting I/O to dead device\n");
1294 ret = BLKPREP_KILL;
1295 break;
1296 case SDEV_BLOCK:
1297 case SDEV_CREATED_BLOCK:
1298 ret = BLKPREP_DEFER;
1299 break;
1300 case SDEV_QUIESCE:
1301 /*
1302 * If the devices is blocked we defer normal commands.
1303 */
1304 if (!(req->rq_flags & RQF_PREEMPT))
1305 ret = BLKPREP_DEFER;
1306 break;
1307 default:
1308 /*
1309 * For any other not fully online state we only allow
1310 * special commands. In particular any user initiated
1311 * command is not allowed.
1312 */
1313 if (!(req->rq_flags & RQF_PREEMPT))
1314 ret = BLKPREP_KILL;
1315 break;
1316 }
1317 }
1318 return ret;
1319 }
1320
1321 static int
1322 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1323 {
1324 struct scsi_device *sdev = q->queuedata;
1325
1326 switch (ret) {
1327 case BLKPREP_KILL:
1328 case BLKPREP_INVALID:
1329 scsi_req(req)->result = DID_NO_CONNECT << 16;
1330 /* release the command and kill it */
1331 if (req->special) {
1332 struct scsi_cmnd *cmd = req->special;
1333 scsi_release_buffers(cmd);
1334 scsi_put_command(cmd);
1335 put_device(&sdev->sdev_gendev);
1336 req->special = NULL;
1337 }
1338 break;
1339 case BLKPREP_DEFER:
1340 /*
1341 * If we defer, the blk_peek_request() returns NULL, but the
1342 * queue must be restarted, so we schedule a callback to happen
1343 * shortly.
1344 */
1345 if (atomic_read(&sdev->device_busy) == 0)
1346 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347 break;
1348 default:
1349 req->rq_flags |= RQF_DONTPREP;
1350 }
1351
1352 return ret;
1353 }
1354
1355 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1356 {
1357 struct scsi_device *sdev = q->queuedata;
1358 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1359 int ret;
1360
1361 ret = scsi_prep_state_check(sdev, req);
1362 if (ret != BLKPREP_OK)
1363 goto out;
1364
1365 if (!req->special) {
1366 /* Bail if we can't get a reference to the device */
1367 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1368 ret = BLKPREP_DEFER;
1369 goto out;
1370 }
1371
1372 scsi_init_command(sdev, cmd);
1373 req->special = cmd;
1374 }
1375
1376 cmd->tag = req->tag;
1377 cmd->request = req;
1378 cmd->prot_op = SCSI_PROT_NORMAL;
1379
1380 ret = scsi_setup_cmnd(sdev, req);
1381 out:
1382 return scsi_prep_return(q, req, ret);
1383 }
1384
1385 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1386 {
1387 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1388 }
1389
1390 /*
1391 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1392 * return 0.
1393 *
1394 * Called with the queue_lock held.
1395 */
1396 static inline int scsi_dev_queue_ready(struct request_queue *q,
1397 struct scsi_device *sdev)
1398 {
1399 unsigned int busy;
1400
1401 busy = atomic_inc_return(&sdev->device_busy) - 1;
1402 if (atomic_read(&sdev->device_blocked)) {
1403 if (busy)
1404 goto out_dec;
1405
1406 /*
1407 * unblock after device_blocked iterates to zero
1408 */
1409 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1410 /*
1411 * For the MQ case we take care of this in the caller.
1412 */
1413 if (!q->mq_ops)
1414 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1415 goto out_dec;
1416 }
1417 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1418 "unblocking device at zero depth\n"));
1419 }
1420
1421 if (busy >= sdev->queue_depth)
1422 goto out_dec;
1423
1424 return 1;
1425 out_dec:
1426 atomic_dec(&sdev->device_busy);
1427 return 0;
1428 }
1429
1430 /*
1431 * scsi_target_queue_ready: checks if there we can send commands to target
1432 * @sdev: scsi device on starget to check.
1433 */
1434 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1435 struct scsi_device *sdev)
1436 {
1437 struct scsi_target *starget = scsi_target(sdev);
1438 unsigned int busy;
1439
1440 if (starget->single_lun) {
1441 spin_lock_irq(shost->host_lock);
1442 if (starget->starget_sdev_user &&
1443 starget->starget_sdev_user != sdev) {
1444 spin_unlock_irq(shost->host_lock);
1445 return 0;
1446 }
1447 starget->starget_sdev_user = sdev;
1448 spin_unlock_irq(shost->host_lock);
1449 }
1450
1451 if (starget->can_queue <= 0)
1452 return 1;
1453
1454 busy = atomic_inc_return(&starget->target_busy) - 1;
1455 if (atomic_read(&starget->target_blocked) > 0) {
1456 if (busy)
1457 goto starved;
1458
1459 /*
1460 * unblock after target_blocked iterates to zero
1461 */
1462 if (atomic_dec_return(&starget->target_blocked) > 0)
1463 goto out_dec;
1464
1465 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1466 "unblocking target at zero depth\n"));
1467 }
1468
1469 if (busy >= starget->can_queue)
1470 goto starved;
1471
1472 return 1;
1473
1474 starved:
1475 spin_lock_irq(shost->host_lock);
1476 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1477 spin_unlock_irq(shost->host_lock);
1478 out_dec:
1479 if (starget->can_queue > 0)
1480 atomic_dec(&starget->target_busy);
1481 return 0;
1482 }
1483
1484 /*
1485 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1486 * return 0. We must end up running the queue again whenever 0 is
1487 * returned, else IO can hang.
1488 */
1489 static inline int scsi_host_queue_ready(struct request_queue *q,
1490 struct Scsi_Host *shost,
1491 struct scsi_device *sdev)
1492 {
1493 unsigned int busy;
1494
1495 if (scsi_host_in_recovery(shost))
1496 return 0;
1497
1498 busy = atomic_inc_return(&shost->host_busy) - 1;
1499 if (atomic_read(&shost->host_blocked) > 0) {
1500 if (busy)
1501 goto starved;
1502
1503 /*
1504 * unblock after host_blocked iterates to zero
1505 */
1506 if (atomic_dec_return(&shost->host_blocked) > 0)
1507 goto out_dec;
1508
1509 SCSI_LOG_MLQUEUE(3,
1510 shost_printk(KERN_INFO, shost,
1511 "unblocking host at zero depth\n"));
1512 }
1513
1514 if (shost->can_queue > 0 && busy >= shost->can_queue)
1515 goto starved;
1516 if (shost->host_self_blocked)
1517 goto starved;
1518
1519 /* We're OK to process the command, so we can't be starved */
1520 if (!list_empty(&sdev->starved_entry)) {
1521 spin_lock_irq(shost->host_lock);
1522 if (!list_empty(&sdev->starved_entry))
1523 list_del_init(&sdev->starved_entry);
1524 spin_unlock_irq(shost->host_lock);
1525 }
1526
1527 return 1;
1528
1529 starved:
1530 spin_lock_irq(shost->host_lock);
1531 if (list_empty(&sdev->starved_entry))
1532 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1533 spin_unlock_irq(shost->host_lock);
1534 out_dec:
1535 atomic_dec(&shost->host_busy);
1536 return 0;
1537 }
1538
1539 /*
1540 * Busy state exporting function for request stacking drivers.
1541 *
1542 * For efficiency, no lock is taken to check the busy state of
1543 * shost/starget/sdev, since the returned value is not guaranteed and
1544 * may be changed after request stacking drivers call the function,
1545 * regardless of taking lock or not.
1546 *
1547 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1548 * needs to return 'not busy'. Otherwise, request stacking drivers
1549 * may hold requests forever.
1550 */
1551 static int scsi_lld_busy(struct request_queue *q)
1552 {
1553 struct scsi_device *sdev = q->queuedata;
1554 struct Scsi_Host *shost;
1555
1556 if (blk_queue_dying(q))
1557 return 0;
1558
1559 shost = sdev->host;
1560
1561 /*
1562 * Ignore host/starget busy state.
1563 * Since block layer does not have a concept of fairness across
1564 * multiple queues, congestion of host/starget needs to be handled
1565 * in SCSI layer.
1566 */
1567 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1568 return 1;
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * Kill a request for a dead device
1575 */
1576 static void scsi_kill_request(struct request *req, struct request_queue *q)
1577 {
1578 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1579 struct scsi_device *sdev;
1580 struct scsi_target *starget;
1581 struct Scsi_Host *shost;
1582
1583 blk_start_request(req);
1584
1585 scmd_printk(KERN_INFO, cmd, "killing request\n");
1586
1587 sdev = cmd->device;
1588 starget = scsi_target(sdev);
1589 shost = sdev->host;
1590 scsi_init_cmd_errh(cmd);
1591 cmd->result = DID_NO_CONNECT << 16;
1592 atomic_inc(&cmd->device->iorequest_cnt);
1593
1594 /*
1595 * SCSI request completion path will do scsi_device_unbusy(),
1596 * bump busy counts. To bump the counters, we need to dance
1597 * with the locks as normal issue path does.
1598 */
1599 atomic_inc(&sdev->device_busy);
1600 atomic_inc(&shost->host_busy);
1601 if (starget->can_queue > 0)
1602 atomic_inc(&starget->target_busy);
1603
1604 blk_complete_request(req);
1605 }
1606
1607 static void scsi_softirq_done(struct request *rq)
1608 {
1609 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1610 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1611 int disposition;
1612
1613 INIT_LIST_HEAD(&cmd->eh_entry);
1614
1615 atomic_inc(&cmd->device->iodone_cnt);
1616 if (cmd->result)
1617 atomic_inc(&cmd->device->ioerr_cnt);
1618
1619 disposition = scsi_decide_disposition(cmd);
1620 if (disposition != SUCCESS &&
1621 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1622 sdev_printk(KERN_ERR, cmd->device,
1623 "timing out command, waited %lus\n",
1624 wait_for/HZ);
1625 disposition = SUCCESS;
1626 }
1627
1628 scsi_log_completion(cmd, disposition);
1629
1630 switch (disposition) {
1631 case SUCCESS:
1632 scsi_finish_command(cmd);
1633 break;
1634 case NEEDS_RETRY:
1635 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1636 break;
1637 case ADD_TO_MLQUEUE:
1638 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1639 break;
1640 default:
1641 scsi_eh_scmd_add(cmd);
1642 break;
1643 }
1644 }
1645
1646 /**
1647 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1648 * @cmd: command block we are dispatching.
1649 *
1650 * Return: nonzero return request was rejected and device's queue needs to be
1651 * plugged.
1652 */
1653 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1654 {
1655 struct Scsi_Host *host = cmd->device->host;
1656 int rtn = 0;
1657
1658 atomic_inc(&cmd->device->iorequest_cnt);
1659
1660 /* check if the device is still usable */
1661 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1662 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1663 * returns an immediate error upwards, and signals
1664 * that the device is no longer present */
1665 cmd->result = DID_NO_CONNECT << 16;
1666 goto done;
1667 }
1668
1669 /* Check to see if the scsi lld made this device blocked. */
1670 if (unlikely(scsi_device_blocked(cmd->device))) {
1671 /*
1672 * in blocked state, the command is just put back on
1673 * the device queue. The suspend state has already
1674 * blocked the queue so future requests should not
1675 * occur until the device transitions out of the
1676 * suspend state.
1677 */
1678 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1679 "queuecommand : device blocked\n"));
1680 return SCSI_MLQUEUE_DEVICE_BUSY;
1681 }
1682
1683 /* Store the LUN value in cmnd, if needed. */
1684 if (cmd->device->lun_in_cdb)
1685 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1686 (cmd->device->lun << 5 & 0xe0);
1687
1688 scsi_log_send(cmd);
1689
1690 /*
1691 * Before we queue this command, check if the command
1692 * length exceeds what the host adapter can handle.
1693 */
1694 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1695 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696 "queuecommand : command too long. "
1697 "cdb_size=%d host->max_cmd_len=%d\n",
1698 cmd->cmd_len, cmd->device->host->max_cmd_len));
1699 cmd->result = (DID_ABORT << 16);
1700 goto done;
1701 }
1702
1703 if (unlikely(host->shost_state == SHOST_DEL)) {
1704 cmd->result = (DID_NO_CONNECT << 16);
1705 goto done;
1706
1707 }
1708
1709 trace_scsi_dispatch_cmd_start(cmd);
1710 rtn = host->hostt->queuecommand(host, cmd);
1711 if (rtn) {
1712 trace_scsi_dispatch_cmd_error(cmd, rtn);
1713 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1714 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1715 rtn = SCSI_MLQUEUE_HOST_BUSY;
1716
1717 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718 "queuecommand : request rejected\n"));
1719 }
1720
1721 return rtn;
1722 done:
1723 cmd->scsi_done(cmd);
1724 return 0;
1725 }
1726
1727 /**
1728 * scsi_done - Invoke completion on finished SCSI command.
1729 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1730 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1731 *
1732 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1733 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1734 * calls blk_complete_request() for further processing.
1735 *
1736 * This function is interrupt context safe.
1737 */
1738 static void scsi_done(struct scsi_cmnd *cmd)
1739 {
1740 trace_scsi_dispatch_cmd_done(cmd);
1741 blk_complete_request(cmd->request);
1742 }
1743
1744 /*
1745 * Function: scsi_request_fn()
1746 *
1747 * Purpose: Main strategy routine for SCSI.
1748 *
1749 * Arguments: q - Pointer to actual queue.
1750 *
1751 * Returns: Nothing
1752 *
1753 * Lock status: IO request lock assumed to be held when called.
1754 */
1755 static void scsi_request_fn(struct request_queue *q)
1756 __releases(q->queue_lock)
1757 __acquires(q->queue_lock)
1758 {
1759 struct scsi_device *sdev = q->queuedata;
1760 struct Scsi_Host *shost;
1761 struct scsi_cmnd *cmd;
1762 struct request *req;
1763
1764 /*
1765 * To start with, we keep looping until the queue is empty, or until
1766 * the host is no longer able to accept any more requests.
1767 */
1768 shost = sdev->host;
1769 for (;;) {
1770 int rtn;
1771 /*
1772 * get next queueable request. We do this early to make sure
1773 * that the request is fully prepared even if we cannot
1774 * accept it.
1775 */
1776 req = blk_peek_request(q);
1777 if (!req)
1778 break;
1779
1780 if (unlikely(!scsi_device_online(sdev))) {
1781 sdev_printk(KERN_ERR, sdev,
1782 "rejecting I/O to offline device\n");
1783 scsi_kill_request(req, q);
1784 continue;
1785 }
1786
1787 if (!scsi_dev_queue_ready(q, sdev))
1788 break;
1789
1790 /*
1791 * Remove the request from the request list.
1792 */
1793 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1794 blk_start_request(req);
1795
1796 spin_unlock_irq(q->queue_lock);
1797 cmd = blk_mq_rq_to_pdu(req);
1798 if (cmd != req->special) {
1799 printk(KERN_CRIT "impossible request in %s.\n"
1800 "please mail a stack trace to "
1801 "linux-scsi@vger.kernel.org\n",
1802 __func__);
1803 blk_dump_rq_flags(req, "foo");
1804 BUG();
1805 }
1806
1807 /*
1808 * We hit this when the driver is using a host wide
1809 * tag map. For device level tag maps the queue_depth check
1810 * in the device ready fn would prevent us from trying
1811 * to allocate a tag. Since the map is a shared host resource
1812 * we add the dev to the starved list so it eventually gets
1813 * a run when a tag is freed.
1814 */
1815 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1816 spin_lock_irq(shost->host_lock);
1817 if (list_empty(&sdev->starved_entry))
1818 list_add_tail(&sdev->starved_entry,
1819 &shost->starved_list);
1820 spin_unlock_irq(shost->host_lock);
1821 goto not_ready;
1822 }
1823
1824 if (!scsi_target_queue_ready(shost, sdev))
1825 goto not_ready;
1826
1827 if (!scsi_host_queue_ready(q, shost, sdev))
1828 goto host_not_ready;
1829
1830 if (sdev->simple_tags)
1831 cmd->flags |= SCMD_TAGGED;
1832 else
1833 cmd->flags &= ~SCMD_TAGGED;
1834
1835 /*
1836 * Finally, initialize any error handling parameters, and set up
1837 * the timers for timeouts.
1838 */
1839 scsi_init_cmd_errh(cmd);
1840
1841 /*
1842 * Dispatch the command to the low-level driver.
1843 */
1844 cmd->scsi_done = scsi_done;
1845 rtn = scsi_dispatch_cmd(cmd);
1846 if (rtn) {
1847 scsi_queue_insert(cmd, rtn);
1848 spin_lock_irq(q->queue_lock);
1849 goto out_delay;
1850 }
1851 spin_lock_irq(q->queue_lock);
1852 }
1853
1854 return;
1855
1856 host_not_ready:
1857 if (scsi_target(sdev)->can_queue > 0)
1858 atomic_dec(&scsi_target(sdev)->target_busy);
1859 not_ready:
1860 /*
1861 * lock q, handle tag, requeue req, and decrement device_busy. We
1862 * must return with queue_lock held.
1863 *
1864 * Decrementing device_busy without checking it is OK, as all such
1865 * cases (host limits or settings) should run the queue at some
1866 * later time.
1867 */
1868 spin_lock_irq(q->queue_lock);
1869 blk_requeue_request(q, req);
1870 atomic_dec(&sdev->device_busy);
1871 out_delay:
1872 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1873 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1874 }
1875
1876 static inline blk_status_t prep_to_mq(int ret)
1877 {
1878 switch (ret) {
1879 case BLKPREP_OK:
1880 return BLK_STS_OK;
1881 case BLKPREP_DEFER:
1882 return BLK_STS_RESOURCE;
1883 default:
1884 return BLK_STS_IOERR;
1885 }
1886 }
1887
1888 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1889 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1890 {
1891 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1892 sizeof(struct scatterlist);
1893 }
1894
1895 static int scsi_mq_prep_fn(struct request *req)
1896 {
1897 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1898 struct scsi_device *sdev = req->q->queuedata;
1899 struct Scsi_Host *shost = sdev->host;
1900 struct scatterlist *sg;
1901
1902 scsi_init_command(sdev, cmd);
1903
1904 req->special = cmd;
1905
1906 cmd->request = req;
1907
1908 cmd->tag = req->tag;
1909 cmd->prot_op = SCSI_PROT_NORMAL;
1910
1911 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1912 cmd->sdb.table.sgl = sg;
1913
1914 if (scsi_host_get_prot(shost)) {
1915 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1916
1917 cmd->prot_sdb->table.sgl =
1918 (struct scatterlist *)(cmd->prot_sdb + 1);
1919 }
1920
1921 if (blk_bidi_rq(req)) {
1922 struct request *next_rq = req->next_rq;
1923 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1924
1925 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1926 bidi_sdb->table.sgl =
1927 (struct scatterlist *)(bidi_sdb + 1);
1928
1929 next_rq->special = bidi_sdb;
1930 }
1931
1932 blk_mq_start_request(req);
1933
1934 return scsi_setup_cmnd(sdev, req);
1935 }
1936
1937 static void scsi_mq_done(struct scsi_cmnd *cmd)
1938 {
1939 trace_scsi_dispatch_cmd_done(cmd);
1940 blk_mq_complete_request(cmd->request);
1941 }
1942
1943 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1944 const struct blk_mq_queue_data *bd)
1945 {
1946 struct request *req = bd->rq;
1947 struct request_queue *q = req->q;
1948 struct scsi_device *sdev = q->queuedata;
1949 struct Scsi_Host *shost = sdev->host;
1950 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1951 blk_status_t ret;
1952 int reason;
1953
1954 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1955 if (ret != BLK_STS_OK)
1956 goto out;
1957
1958 ret = BLK_STS_RESOURCE;
1959 if (!get_device(&sdev->sdev_gendev))
1960 goto out;
1961
1962 if (!scsi_dev_queue_ready(q, sdev))
1963 goto out_put_device;
1964 if (!scsi_target_queue_ready(shost, sdev))
1965 goto out_dec_device_busy;
1966 if (!scsi_host_queue_ready(q, shost, sdev))
1967 goto out_dec_target_busy;
1968
1969 if (!(req->rq_flags & RQF_DONTPREP)) {
1970 ret = prep_to_mq(scsi_mq_prep_fn(req));
1971 if (ret != BLK_STS_OK)
1972 goto out_dec_host_busy;
1973 req->rq_flags |= RQF_DONTPREP;
1974 } else {
1975 blk_mq_start_request(req);
1976 }
1977
1978 if (sdev->simple_tags)
1979 cmd->flags |= SCMD_TAGGED;
1980 else
1981 cmd->flags &= ~SCMD_TAGGED;
1982
1983 scsi_init_cmd_errh(cmd);
1984 cmd->scsi_done = scsi_mq_done;
1985
1986 reason = scsi_dispatch_cmd(cmd);
1987 if (reason) {
1988 scsi_set_blocked(cmd, reason);
1989 ret = BLK_STS_RESOURCE;
1990 goto out_dec_host_busy;
1991 }
1992
1993 return BLK_STS_OK;
1994
1995 out_dec_host_busy:
1996 atomic_dec(&shost->host_busy);
1997 out_dec_target_busy:
1998 if (scsi_target(sdev)->can_queue > 0)
1999 atomic_dec(&scsi_target(sdev)->target_busy);
2000 out_dec_device_busy:
2001 atomic_dec(&sdev->device_busy);
2002 out_put_device:
2003 put_device(&sdev->sdev_gendev);
2004 out:
2005 switch (ret) {
2006 case BLK_STS_OK:
2007 break;
2008 case BLK_STS_RESOURCE:
2009 if (atomic_read(&sdev->device_busy) == 0 &&
2010 !scsi_device_blocked(sdev))
2011 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2012 break;
2013 default:
2014 /*
2015 * Make sure to release all allocated ressources when
2016 * we hit an error, as we will never see this command
2017 * again.
2018 */
2019 if (req->rq_flags & RQF_DONTPREP)
2020 scsi_mq_uninit_cmd(cmd);
2021 break;
2022 }
2023 return ret;
2024 }
2025
2026 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2027 bool reserved)
2028 {
2029 if (reserved)
2030 return BLK_EH_RESET_TIMER;
2031 return scsi_times_out(req);
2032 }
2033
2034 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2035 unsigned int hctx_idx, unsigned int numa_node)
2036 {
2037 struct Scsi_Host *shost = set->driver_data;
2038 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2039 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2040 struct scatterlist *sg;
2041
2042 if (unchecked_isa_dma)
2043 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2044 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2045 GFP_KERNEL, numa_node);
2046 if (!cmd->sense_buffer)
2047 return -ENOMEM;
2048 cmd->req.sense = cmd->sense_buffer;
2049
2050 if (scsi_host_get_prot(shost)) {
2051 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2052 shost->hostt->cmd_size;
2053 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2054 }
2055
2056 return 0;
2057 }
2058
2059 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2060 unsigned int hctx_idx)
2061 {
2062 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2063
2064 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2065 cmd->sense_buffer);
2066 }
2067
2068 static int scsi_map_queues(struct blk_mq_tag_set *set)
2069 {
2070 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2071
2072 if (shost->hostt->map_queues)
2073 return shost->hostt->map_queues(shost);
2074 return blk_mq_map_queues(set);
2075 }
2076
2077 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2078 {
2079 struct device *host_dev;
2080 u64 bounce_limit = 0xffffffff;
2081
2082 if (shost->unchecked_isa_dma)
2083 return BLK_BOUNCE_ISA;
2084 /*
2085 * Platforms with virtual-DMA translation
2086 * hardware have no practical limit.
2087 */
2088 if (!PCI_DMA_BUS_IS_PHYS)
2089 return BLK_BOUNCE_ANY;
2090
2091 host_dev = scsi_get_device(shost);
2092 if (host_dev && host_dev->dma_mask)
2093 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2094
2095 return bounce_limit;
2096 }
2097
2098 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2099 {
2100 struct device *dev = shost->dma_dev;
2101
2102 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2103
2104 /*
2105 * this limit is imposed by hardware restrictions
2106 */
2107 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2108 SG_MAX_SEGMENTS));
2109
2110 if (scsi_host_prot_dma(shost)) {
2111 shost->sg_prot_tablesize =
2112 min_not_zero(shost->sg_prot_tablesize,
2113 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2114 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2115 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2116 }
2117
2118 blk_queue_max_hw_sectors(q, shost->max_sectors);
2119 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2120 blk_queue_segment_boundary(q, shost->dma_boundary);
2121 dma_set_seg_boundary(dev, shost->dma_boundary);
2122
2123 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2124
2125 if (!shost->use_clustering)
2126 q->limits.cluster = 0;
2127
2128 /*
2129 * set a reasonable default alignment on word boundaries: the
2130 * host and device may alter it using
2131 * blk_queue_update_dma_alignment() later.
2132 */
2133 blk_queue_dma_alignment(q, 0x03);
2134 }
2135 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2136
2137 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2138 gfp_t gfp)
2139 {
2140 struct Scsi_Host *shost = q->rq_alloc_data;
2141 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2142 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2143
2144 memset(cmd, 0, sizeof(*cmd));
2145
2146 if (unchecked_isa_dma)
2147 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2148 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2149 NUMA_NO_NODE);
2150 if (!cmd->sense_buffer)
2151 goto fail;
2152 cmd->req.sense = cmd->sense_buffer;
2153
2154 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2155 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2156 if (!cmd->prot_sdb)
2157 goto fail_free_sense;
2158 }
2159
2160 return 0;
2161
2162 fail_free_sense:
2163 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2164 fail:
2165 return -ENOMEM;
2166 }
2167
2168 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2169 {
2170 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2171
2172 if (cmd->prot_sdb)
2173 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2174 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2175 cmd->sense_buffer);
2176 }
2177
2178 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2179 {
2180 struct Scsi_Host *shost = sdev->host;
2181 struct request_queue *q;
2182
2183 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2184 if (!q)
2185 return NULL;
2186 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2187 q->rq_alloc_data = shost;
2188 q->request_fn = scsi_request_fn;
2189 q->init_rq_fn = scsi_old_init_rq;
2190 q->exit_rq_fn = scsi_old_exit_rq;
2191 q->initialize_rq_fn = scsi_initialize_rq;
2192
2193 if (blk_init_allocated_queue(q) < 0) {
2194 blk_cleanup_queue(q);
2195 return NULL;
2196 }
2197
2198 __scsi_init_queue(shost, q);
2199 blk_queue_prep_rq(q, scsi_prep_fn);
2200 blk_queue_unprep_rq(q, scsi_unprep_fn);
2201 blk_queue_softirq_done(q, scsi_softirq_done);
2202 blk_queue_rq_timed_out(q, scsi_times_out);
2203 blk_queue_lld_busy(q, scsi_lld_busy);
2204 return q;
2205 }
2206
2207 static const struct blk_mq_ops scsi_mq_ops = {
2208 .queue_rq = scsi_queue_rq,
2209 .complete = scsi_softirq_done,
2210 .timeout = scsi_timeout,
2211 #ifdef CONFIG_BLK_DEBUG_FS
2212 .show_rq = scsi_show_rq,
2213 #endif
2214 .init_request = scsi_mq_init_request,
2215 .exit_request = scsi_mq_exit_request,
2216 .initialize_rq_fn = scsi_initialize_rq,
2217 .map_queues = scsi_map_queues,
2218 };
2219
2220 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2221 {
2222 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2223 if (IS_ERR(sdev->request_queue))
2224 return NULL;
2225
2226 sdev->request_queue->queuedata = sdev;
2227 __scsi_init_queue(sdev->host, sdev->request_queue);
2228 return sdev->request_queue;
2229 }
2230
2231 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2232 {
2233 unsigned int cmd_size, sgl_size;
2234
2235 sgl_size = scsi_mq_sgl_size(shost);
2236 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2237 if (scsi_host_get_prot(shost))
2238 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2239
2240 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2241 shost->tag_set.ops = &scsi_mq_ops;
2242 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2243 shost->tag_set.queue_depth = shost->can_queue;
2244 shost->tag_set.cmd_size = cmd_size;
2245 shost->tag_set.numa_node = NUMA_NO_NODE;
2246 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2247 shost->tag_set.flags |=
2248 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2249 shost->tag_set.driver_data = shost;
2250
2251 return blk_mq_alloc_tag_set(&shost->tag_set);
2252 }
2253
2254 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2255 {
2256 blk_mq_free_tag_set(&shost->tag_set);
2257 }
2258
2259 /**
2260 * scsi_device_from_queue - return sdev associated with a request_queue
2261 * @q: The request queue to return the sdev from
2262 *
2263 * Return the sdev associated with a request queue or NULL if the
2264 * request_queue does not reference a SCSI device.
2265 */
2266 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2267 {
2268 struct scsi_device *sdev = NULL;
2269
2270 if (q->mq_ops) {
2271 if (q->mq_ops == &scsi_mq_ops)
2272 sdev = q->queuedata;
2273 } else if (q->request_fn == scsi_request_fn)
2274 sdev = q->queuedata;
2275 if (!sdev || !get_device(&sdev->sdev_gendev))
2276 sdev = NULL;
2277
2278 return sdev;
2279 }
2280 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2281
2282 /*
2283 * Function: scsi_block_requests()
2284 *
2285 * Purpose: Utility function used by low-level drivers to prevent further
2286 * commands from being queued to the device.
2287 *
2288 * Arguments: shost - Host in question
2289 *
2290 * Returns: Nothing
2291 *
2292 * Lock status: No locks are assumed held.
2293 *
2294 * Notes: There is no timer nor any other means by which the requests
2295 * get unblocked other than the low-level driver calling
2296 * scsi_unblock_requests().
2297 */
2298 void scsi_block_requests(struct Scsi_Host *shost)
2299 {
2300 shost->host_self_blocked = 1;
2301 }
2302 EXPORT_SYMBOL(scsi_block_requests);
2303
2304 /*
2305 * Function: scsi_unblock_requests()
2306 *
2307 * Purpose: Utility function used by low-level drivers to allow further
2308 * commands from being queued to the device.
2309 *
2310 * Arguments: shost - Host in question
2311 *
2312 * Returns: Nothing
2313 *
2314 * Lock status: No locks are assumed held.
2315 *
2316 * Notes: There is no timer nor any other means by which the requests
2317 * get unblocked other than the low-level driver calling
2318 * scsi_unblock_requests().
2319 *
2320 * This is done as an API function so that changes to the
2321 * internals of the scsi mid-layer won't require wholesale
2322 * changes to drivers that use this feature.
2323 */
2324 void scsi_unblock_requests(struct Scsi_Host *shost)
2325 {
2326 shost->host_self_blocked = 0;
2327 scsi_run_host_queues(shost);
2328 }
2329 EXPORT_SYMBOL(scsi_unblock_requests);
2330
2331 int __init scsi_init_queue(void)
2332 {
2333 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2334 sizeof(struct scsi_data_buffer),
2335 0, 0, NULL);
2336 if (!scsi_sdb_cache) {
2337 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2338 return -ENOMEM;
2339 }
2340
2341 return 0;
2342 }
2343
2344 void scsi_exit_queue(void)
2345 {
2346 kmem_cache_destroy(scsi_sense_cache);
2347 kmem_cache_destroy(scsi_sense_isadma_cache);
2348 kmem_cache_destroy(scsi_sdb_cache);
2349 }
2350
2351 /**
2352 * scsi_mode_select - issue a mode select
2353 * @sdev: SCSI device to be queried
2354 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2355 * @sp: Save page bit (0 == don't save, 1 == save)
2356 * @modepage: mode page being requested
2357 * @buffer: request buffer (may not be smaller than eight bytes)
2358 * @len: length of request buffer.
2359 * @timeout: command timeout
2360 * @retries: number of retries before failing
2361 * @data: returns a structure abstracting the mode header data
2362 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2363 * must be SCSI_SENSE_BUFFERSIZE big.
2364 *
2365 * Returns zero if successful; negative error number or scsi
2366 * status on error
2367 *
2368 */
2369 int
2370 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2371 unsigned char *buffer, int len, int timeout, int retries,
2372 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2373 {
2374 unsigned char cmd[10];
2375 unsigned char *real_buffer;
2376 int ret;
2377
2378 memset(cmd, 0, sizeof(cmd));
2379 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2380
2381 if (sdev->use_10_for_ms) {
2382 if (len > 65535)
2383 return -EINVAL;
2384 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2385 if (!real_buffer)
2386 return -ENOMEM;
2387 memcpy(real_buffer + 8, buffer, len);
2388 len += 8;
2389 real_buffer[0] = 0;
2390 real_buffer[1] = 0;
2391 real_buffer[2] = data->medium_type;
2392 real_buffer[3] = data->device_specific;
2393 real_buffer[4] = data->longlba ? 0x01 : 0;
2394 real_buffer[5] = 0;
2395 real_buffer[6] = data->block_descriptor_length >> 8;
2396 real_buffer[7] = data->block_descriptor_length;
2397
2398 cmd[0] = MODE_SELECT_10;
2399 cmd[7] = len >> 8;
2400 cmd[8] = len;
2401 } else {
2402 if (len > 255 || data->block_descriptor_length > 255 ||
2403 data->longlba)
2404 return -EINVAL;
2405
2406 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2407 if (!real_buffer)
2408 return -ENOMEM;
2409 memcpy(real_buffer + 4, buffer, len);
2410 len += 4;
2411 real_buffer[0] = 0;
2412 real_buffer[1] = data->medium_type;
2413 real_buffer[2] = data->device_specific;
2414 real_buffer[3] = data->block_descriptor_length;
2415
2416
2417 cmd[0] = MODE_SELECT;
2418 cmd[4] = len;
2419 }
2420
2421 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2422 sshdr, timeout, retries, NULL);
2423 kfree(real_buffer);
2424 return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(scsi_mode_select);
2427
2428 /**
2429 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2430 * @sdev: SCSI device to be queried
2431 * @dbd: set if mode sense will allow block descriptors to be returned
2432 * @modepage: mode page being requested
2433 * @buffer: request buffer (may not be smaller than eight bytes)
2434 * @len: length of request buffer.
2435 * @timeout: command timeout
2436 * @retries: number of retries before failing
2437 * @data: returns a structure abstracting the mode header data
2438 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2439 * must be SCSI_SENSE_BUFFERSIZE big.
2440 *
2441 * Returns zero if unsuccessful, or the header offset (either 4
2442 * or 8 depending on whether a six or ten byte command was
2443 * issued) if successful.
2444 */
2445 int
2446 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2447 unsigned char *buffer, int len, int timeout, int retries,
2448 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2449 {
2450 unsigned char cmd[12];
2451 int use_10_for_ms;
2452 int header_length;
2453 int result, retry_count = retries;
2454 struct scsi_sense_hdr my_sshdr;
2455
2456 memset(data, 0, sizeof(*data));
2457 memset(&cmd[0], 0, 12);
2458 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2459 cmd[2] = modepage;
2460
2461 /* caller might not be interested in sense, but we need it */
2462 if (!sshdr)
2463 sshdr = &my_sshdr;
2464
2465 retry:
2466 use_10_for_ms = sdev->use_10_for_ms;
2467
2468 if (use_10_for_ms) {
2469 if (len < 8)
2470 len = 8;
2471
2472 cmd[0] = MODE_SENSE_10;
2473 cmd[8] = len;
2474 header_length = 8;
2475 } else {
2476 if (len < 4)
2477 len = 4;
2478
2479 cmd[0] = MODE_SENSE;
2480 cmd[4] = len;
2481 header_length = 4;
2482 }
2483
2484 memset(buffer, 0, len);
2485
2486 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2487 sshdr, timeout, retries, NULL);
2488
2489 /* This code looks awful: what it's doing is making sure an
2490 * ILLEGAL REQUEST sense return identifies the actual command
2491 * byte as the problem. MODE_SENSE commands can return
2492 * ILLEGAL REQUEST if the code page isn't supported */
2493
2494 if (use_10_for_ms && !scsi_status_is_good(result) &&
2495 (driver_byte(result) & DRIVER_SENSE)) {
2496 if (scsi_sense_valid(sshdr)) {
2497 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2498 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2499 /*
2500 * Invalid command operation code
2501 */
2502 sdev->use_10_for_ms = 0;
2503 goto retry;
2504 }
2505 }
2506 }
2507
2508 if(scsi_status_is_good(result)) {
2509 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2510 (modepage == 6 || modepage == 8))) {
2511 /* Initio breakage? */
2512 header_length = 0;
2513 data->length = 13;
2514 data->medium_type = 0;
2515 data->device_specific = 0;
2516 data->longlba = 0;
2517 data->block_descriptor_length = 0;
2518 } else if(use_10_for_ms) {
2519 data->length = buffer[0]*256 + buffer[1] + 2;
2520 data->medium_type = buffer[2];
2521 data->device_specific = buffer[3];
2522 data->longlba = buffer[4] & 0x01;
2523 data->block_descriptor_length = buffer[6]*256
2524 + buffer[7];
2525 } else {
2526 data->length = buffer[0] + 1;
2527 data->medium_type = buffer[1];
2528 data->device_specific = buffer[2];
2529 data->block_descriptor_length = buffer[3];
2530 }
2531 data->header_length = header_length;
2532 } else if ((status_byte(result) == CHECK_CONDITION) &&
2533 scsi_sense_valid(sshdr) &&
2534 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2535 retry_count--;
2536 goto retry;
2537 }
2538
2539 return result;
2540 }
2541 EXPORT_SYMBOL(scsi_mode_sense);
2542
2543 /**
2544 * scsi_test_unit_ready - test if unit is ready
2545 * @sdev: scsi device to change the state of.
2546 * @timeout: command timeout
2547 * @retries: number of retries before failing
2548 * @sshdr: outpout pointer for decoded sense information.
2549 *
2550 * Returns zero if unsuccessful or an error if TUR failed. For
2551 * removable media, UNIT_ATTENTION sets ->changed flag.
2552 **/
2553 int
2554 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2555 struct scsi_sense_hdr *sshdr)
2556 {
2557 char cmd[] = {
2558 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2559 };
2560 int result;
2561
2562 /* try to eat the UNIT_ATTENTION if there are enough retries */
2563 do {
2564 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2565 timeout, retries, NULL);
2566 if (sdev->removable && scsi_sense_valid(sshdr) &&
2567 sshdr->sense_key == UNIT_ATTENTION)
2568 sdev->changed = 1;
2569 } while (scsi_sense_valid(sshdr) &&
2570 sshdr->sense_key == UNIT_ATTENTION && --retries);
2571
2572 return result;
2573 }
2574 EXPORT_SYMBOL(scsi_test_unit_ready);
2575
2576 /**
2577 * scsi_device_set_state - Take the given device through the device state model.
2578 * @sdev: scsi device to change the state of.
2579 * @state: state to change to.
2580 *
2581 * Returns zero if successful or an error if the requested
2582 * transition is illegal.
2583 */
2584 int
2585 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2586 {
2587 enum scsi_device_state oldstate = sdev->sdev_state;
2588
2589 if (state == oldstate)
2590 return 0;
2591
2592 switch (state) {
2593 case SDEV_CREATED:
2594 switch (oldstate) {
2595 case SDEV_CREATED_BLOCK:
2596 break;
2597 default:
2598 goto illegal;
2599 }
2600 break;
2601
2602 case SDEV_RUNNING:
2603 switch (oldstate) {
2604 case SDEV_CREATED:
2605 case SDEV_OFFLINE:
2606 case SDEV_TRANSPORT_OFFLINE:
2607 case SDEV_QUIESCE:
2608 case SDEV_BLOCK:
2609 break;
2610 default:
2611 goto illegal;
2612 }
2613 break;
2614
2615 case SDEV_QUIESCE:
2616 switch (oldstate) {
2617 case SDEV_RUNNING:
2618 case SDEV_OFFLINE:
2619 case SDEV_TRANSPORT_OFFLINE:
2620 break;
2621 default:
2622 goto illegal;
2623 }
2624 break;
2625
2626 case SDEV_OFFLINE:
2627 case SDEV_TRANSPORT_OFFLINE:
2628 switch (oldstate) {
2629 case SDEV_CREATED:
2630 case SDEV_RUNNING:
2631 case SDEV_QUIESCE:
2632 case SDEV_BLOCK:
2633 break;
2634 default:
2635 goto illegal;
2636 }
2637 break;
2638
2639 case SDEV_BLOCK:
2640 switch (oldstate) {
2641 case SDEV_RUNNING:
2642 case SDEV_CREATED_BLOCK:
2643 break;
2644 default:
2645 goto illegal;
2646 }
2647 break;
2648
2649 case SDEV_CREATED_BLOCK:
2650 switch (oldstate) {
2651 case SDEV_CREATED:
2652 break;
2653 default:
2654 goto illegal;
2655 }
2656 break;
2657
2658 case SDEV_CANCEL:
2659 switch (oldstate) {
2660 case SDEV_CREATED:
2661 case SDEV_RUNNING:
2662 case SDEV_QUIESCE:
2663 case SDEV_OFFLINE:
2664 case SDEV_TRANSPORT_OFFLINE:
2665 break;
2666 default:
2667 goto illegal;
2668 }
2669 break;
2670
2671 case SDEV_DEL:
2672 switch (oldstate) {
2673 case SDEV_CREATED:
2674 case SDEV_RUNNING:
2675 case SDEV_OFFLINE:
2676 case SDEV_TRANSPORT_OFFLINE:
2677 case SDEV_CANCEL:
2678 case SDEV_BLOCK:
2679 case SDEV_CREATED_BLOCK:
2680 break;
2681 default:
2682 goto illegal;
2683 }
2684 break;
2685
2686 }
2687 sdev->sdev_state = state;
2688 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
2689 return 0;
2690
2691 illegal:
2692 SCSI_LOG_ERROR_RECOVERY(1,
2693 sdev_printk(KERN_ERR, sdev,
2694 "Illegal state transition %s->%s",
2695 scsi_device_state_name(oldstate),
2696 scsi_device_state_name(state))
2697 );
2698 return -EINVAL;
2699 }
2700 EXPORT_SYMBOL(scsi_device_set_state);
2701
2702 /**
2703 * sdev_evt_emit - emit a single SCSI device uevent
2704 * @sdev: associated SCSI device
2705 * @evt: event to emit
2706 *
2707 * Send a single uevent (scsi_event) to the associated scsi_device.
2708 */
2709 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2710 {
2711 int idx = 0;
2712 char *envp[3];
2713
2714 switch (evt->evt_type) {
2715 case SDEV_EVT_MEDIA_CHANGE:
2716 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2717 break;
2718 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2719 scsi_rescan_device(&sdev->sdev_gendev);
2720 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2721 break;
2722 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2723 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2724 break;
2725 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2726 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2727 break;
2728 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2729 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2730 break;
2731 case SDEV_EVT_LUN_CHANGE_REPORTED:
2732 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2733 break;
2734 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2735 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2736 break;
2737 default:
2738 /* do nothing */
2739 break;
2740 }
2741
2742 envp[idx++] = NULL;
2743
2744 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2745 }
2746
2747 /**
2748 * sdev_evt_thread - send a uevent for each scsi event
2749 * @work: work struct for scsi_device
2750 *
2751 * Dispatch queued events to their associated scsi_device kobjects
2752 * as uevents.
2753 */
2754 void scsi_evt_thread(struct work_struct *work)
2755 {
2756 struct scsi_device *sdev;
2757 enum scsi_device_event evt_type;
2758 LIST_HEAD(event_list);
2759
2760 sdev = container_of(work, struct scsi_device, event_work);
2761
2762 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2763 if (test_and_clear_bit(evt_type, sdev->pending_events))
2764 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2765
2766 while (1) {
2767 struct scsi_event *evt;
2768 struct list_head *this, *tmp;
2769 unsigned long flags;
2770
2771 spin_lock_irqsave(&sdev->list_lock, flags);
2772 list_splice_init(&sdev->event_list, &event_list);
2773 spin_unlock_irqrestore(&sdev->list_lock, flags);
2774
2775 if (list_empty(&event_list))
2776 break;
2777
2778 list_for_each_safe(this, tmp, &event_list) {
2779 evt = list_entry(this, struct scsi_event, node);
2780 list_del(&evt->node);
2781 scsi_evt_emit(sdev, evt);
2782 kfree(evt);
2783 }
2784 }
2785 }
2786
2787 /**
2788 * sdev_evt_send - send asserted event to uevent thread
2789 * @sdev: scsi_device event occurred on
2790 * @evt: event to send
2791 *
2792 * Assert scsi device event asynchronously.
2793 */
2794 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2795 {
2796 unsigned long flags;
2797
2798 #if 0
2799 /* FIXME: currently this check eliminates all media change events
2800 * for polled devices. Need to update to discriminate between AN
2801 * and polled events */
2802 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2803 kfree(evt);
2804 return;
2805 }
2806 #endif
2807
2808 spin_lock_irqsave(&sdev->list_lock, flags);
2809 list_add_tail(&evt->node, &sdev->event_list);
2810 schedule_work(&sdev->event_work);
2811 spin_unlock_irqrestore(&sdev->list_lock, flags);
2812 }
2813 EXPORT_SYMBOL_GPL(sdev_evt_send);
2814
2815 /**
2816 * sdev_evt_alloc - allocate a new scsi event
2817 * @evt_type: type of event to allocate
2818 * @gfpflags: GFP flags for allocation
2819 *
2820 * Allocates and returns a new scsi_event.
2821 */
2822 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2823 gfp_t gfpflags)
2824 {
2825 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2826 if (!evt)
2827 return NULL;
2828
2829 evt->evt_type = evt_type;
2830 INIT_LIST_HEAD(&evt->node);
2831
2832 /* evt_type-specific initialization, if any */
2833 switch (evt_type) {
2834 case SDEV_EVT_MEDIA_CHANGE:
2835 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2836 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2837 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2838 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2839 case SDEV_EVT_LUN_CHANGE_REPORTED:
2840 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2841 default:
2842 /* do nothing */
2843 break;
2844 }
2845
2846 return evt;
2847 }
2848 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2849
2850 /**
2851 * sdev_evt_send_simple - send asserted event to uevent thread
2852 * @sdev: scsi_device event occurred on
2853 * @evt_type: type of event to send
2854 * @gfpflags: GFP flags for allocation
2855 *
2856 * Assert scsi device event asynchronously, given an event type.
2857 */
2858 void sdev_evt_send_simple(struct scsi_device *sdev,
2859 enum scsi_device_event evt_type, gfp_t gfpflags)
2860 {
2861 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2862 if (!evt) {
2863 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2864 evt_type);
2865 return;
2866 }
2867
2868 sdev_evt_send(sdev, evt);
2869 }
2870 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2871
2872 /**
2873 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2874 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2875 */
2876 static int scsi_request_fn_active(struct scsi_device *sdev)
2877 {
2878 struct request_queue *q = sdev->request_queue;
2879 int request_fn_active;
2880
2881 WARN_ON_ONCE(sdev->host->use_blk_mq);
2882
2883 spin_lock_irq(q->queue_lock);
2884 request_fn_active = q->request_fn_active;
2885 spin_unlock_irq(q->queue_lock);
2886
2887 return request_fn_active;
2888 }
2889
2890 /**
2891 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2892 * @sdev: SCSI device pointer.
2893 *
2894 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2895 * invoked from scsi_request_fn() have finished.
2896 */
2897 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2898 {
2899 WARN_ON_ONCE(sdev->host->use_blk_mq);
2900
2901 while (scsi_request_fn_active(sdev))
2902 msleep(20);
2903 }
2904
2905 /**
2906 * scsi_device_quiesce - Block user issued commands.
2907 * @sdev: scsi device to quiesce.
2908 *
2909 * This works by trying to transition to the SDEV_QUIESCE state
2910 * (which must be a legal transition). When the device is in this
2911 * state, only special requests will be accepted, all others will
2912 * be deferred. Since special requests may also be requeued requests,
2913 * a successful return doesn't guarantee the device will be
2914 * totally quiescent.
2915 *
2916 * Must be called with user context, may sleep.
2917 *
2918 * Returns zero if unsuccessful or an error if not.
2919 */
2920 int
2921 scsi_device_quiesce(struct scsi_device *sdev)
2922 {
2923 int err;
2924
2925 mutex_lock(&sdev->state_mutex);
2926 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2927 mutex_unlock(&sdev->state_mutex);
2928
2929 if (err)
2930 return err;
2931
2932 scsi_run_queue(sdev->request_queue);
2933 while (atomic_read(&sdev->device_busy)) {
2934 msleep_interruptible(200);
2935 scsi_run_queue(sdev->request_queue);
2936 }
2937 return 0;
2938 }
2939 EXPORT_SYMBOL(scsi_device_quiesce);
2940
2941 /**
2942 * scsi_device_resume - Restart user issued commands to a quiesced device.
2943 * @sdev: scsi device to resume.
2944 *
2945 * Moves the device from quiesced back to running and restarts the
2946 * queues.
2947 *
2948 * Must be called with user context, may sleep.
2949 */
2950 void scsi_device_resume(struct scsi_device *sdev)
2951 {
2952 /* check if the device state was mutated prior to resume, and if
2953 * so assume the state is being managed elsewhere (for example
2954 * device deleted during suspend)
2955 */
2956 mutex_lock(&sdev->state_mutex);
2957 if (sdev->sdev_state == SDEV_QUIESCE &&
2958 scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2959 scsi_run_queue(sdev->request_queue);
2960 mutex_unlock(&sdev->state_mutex);
2961 }
2962 EXPORT_SYMBOL(scsi_device_resume);
2963
2964 static void
2965 device_quiesce_fn(struct scsi_device *sdev, void *data)
2966 {
2967 scsi_device_quiesce(sdev);
2968 }
2969
2970 void
2971 scsi_target_quiesce(struct scsi_target *starget)
2972 {
2973 starget_for_each_device(starget, NULL, device_quiesce_fn);
2974 }
2975 EXPORT_SYMBOL(scsi_target_quiesce);
2976
2977 static void
2978 device_resume_fn(struct scsi_device *sdev, void *data)
2979 {
2980 scsi_device_resume(sdev);
2981 }
2982
2983 void
2984 scsi_target_resume(struct scsi_target *starget)
2985 {
2986 starget_for_each_device(starget, NULL, device_resume_fn);
2987 }
2988 EXPORT_SYMBOL(scsi_target_resume);
2989
2990 /**
2991 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2992 * @sdev: device to block
2993 *
2994 * Pause SCSI command processing on the specified device. Does not sleep.
2995 *
2996 * Returns zero if successful or a negative error code upon failure.
2997 *
2998 * Notes:
2999 * This routine transitions the device to the SDEV_BLOCK state (which must be
3000 * a legal transition). When the device is in this state, command processing
3001 * is paused until the device leaves the SDEV_BLOCK state. See also
3002 * scsi_internal_device_unblock_nowait().
3003 */
3004 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3005 {
3006 struct request_queue *q = sdev->request_queue;
3007 unsigned long flags;
3008 int err = 0;
3009
3010 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3011 if (err) {
3012 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3013
3014 if (err)
3015 return err;
3016 }
3017
3018 /*
3019 * The device has transitioned to SDEV_BLOCK. Stop the
3020 * block layer from calling the midlayer with this device's
3021 * request queue.
3022 */
3023 if (q->mq_ops) {
3024 blk_mq_quiesce_queue_nowait(q);
3025 } else {
3026 spin_lock_irqsave(q->queue_lock, flags);
3027 blk_stop_queue(q);
3028 spin_unlock_irqrestore(q->queue_lock, flags);
3029 }
3030
3031 return 0;
3032 }
3033 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3034
3035 /**
3036 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3037 * @sdev: device to block
3038 *
3039 * Pause SCSI command processing on the specified device and wait until all
3040 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3041 *
3042 * Returns zero if successful or a negative error code upon failure.
3043 *
3044 * Note:
3045 * This routine transitions the device to the SDEV_BLOCK state (which must be
3046 * a legal transition). When the device is in this state, command processing
3047 * is paused until the device leaves the SDEV_BLOCK state. See also
3048 * scsi_internal_device_unblock().
3049 *
3050 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3051 * scsi_internal_device_block() has blocked a SCSI device and also
3052 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3053 */
3054 static int scsi_internal_device_block(struct scsi_device *sdev)
3055 {
3056 struct request_queue *q = sdev->request_queue;
3057 int err;
3058
3059 mutex_lock(&sdev->state_mutex);
3060 err = scsi_internal_device_block_nowait(sdev);
3061 if (err == 0) {
3062 if (q->mq_ops)
3063 blk_mq_quiesce_queue(q);
3064 else
3065 scsi_wait_for_queuecommand(sdev);
3066 }
3067 mutex_unlock(&sdev->state_mutex);
3068
3069 return err;
3070 }
3071
3072 void scsi_start_queue(struct scsi_device *sdev)
3073 {
3074 struct request_queue *q = sdev->request_queue;
3075 unsigned long flags;
3076
3077 if (q->mq_ops) {
3078 blk_mq_unquiesce_queue(q);
3079 } else {
3080 spin_lock_irqsave(q->queue_lock, flags);
3081 blk_start_queue(q);
3082 spin_unlock_irqrestore(q->queue_lock, flags);
3083 }
3084 }
3085
3086 /**
3087 * scsi_internal_device_unblock_nowait - resume a device after a block request
3088 * @sdev: device to resume
3089 * @new_state: state to set the device to after unblocking
3090 *
3091 * Restart the device queue for a previously suspended SCSI device. Does not
3092 * sleep.
3093 *
3094 * Returns zero if successful or a negative error code upon failure.
3095 *
3096 * Notes:
3097 * This routine transitions the device to the SDEV_RUNNING state or to one of
3098 * the offline states (which must be a legal transition) allowing the midlayer
3099 * to goose the queue for this device.
3100 */
3101 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3102 enum scsi_device_state new_state)
3103 {
3104 /*
3105 * Try to transition the scsi device to SDEV_RUNNING or one of the
3106 * offlined states and goose the device queue if successful.
3107 */
3108 switch (sdev->sdev_state) {
3109 case SDEV_BLOCK:
3110 case SDEV_TRANSPORT_OFFLINE:
3111 sdev->sdev_state = new_state;
3112 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3113 break;
3114 case SDEV_CREATED_BLOCK:
3115 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3116 new_state == SDEV_OFFLINE)
3117 sdev->sdev_state = new_state;
3118 else
3119 sdev->sdev_state = SDEV_CREATED;
3120 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3121 break;
3122 case SDEV_CANCEL:
3123 case SDEV_OFFLINE:
3124 break;
3125 default:
3126 return -EINVAL;
3127 }
3128 scsi_start_queue(sdev);
3129
3130 return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3133
3134 /**
3135 * scsi_internal_device_unblock - resume a device after a block request
3136 * @sdev: device to resume
3137 * @new_state: state to set the device to after unblocking
3138 *
3139 * Restart the device queue for a previously suspended SCSI device. May sleep.
3140 *
3141 * Returns zero if successful or a negative error code upon failure.
3142 *
3143 * Notes:
3144 * This routine transitions the device to the SDEV_RUNNING state or to one of
3145 * the offline states (which must be a legal transition) allowing the midlayer
3146 * to goose the queue for this device.
3147 */
3148 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3149 enum scsi_device_state new_state)
3150 {
3151 int ret;
3152
3153 mutex_lock(&sdev->state_mutex);
3154 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3155 mutex_unlock(&sdev->state_mutex);
3156
3157 return ret;
3158 }
3159
3160 static void
3161 device_block(struct scsi_device *sdev, void *data)
3162 {
3163 scsi_internal_device_block(sdev);
3164 }
3165
3166 static int
3167 target_block(struct device *dev, void *data)
3168 {
3169 if (scsi_is_target_device(dev))
3170 starget_for_each_device(to_scsi_target(dev), NULL,
3171 device_block);
3172 return 0;
3173 }
3174
3175 void
3176 scsi_target_block(struct device *dev)
3177 {
3178 if (scsi_is_target_device(dev))
3179 starget_for_each_device(to_scsi_target(dev), NULL,
3180 device_block);
3181 else
3182 device_for_each_child(dev, NULL, target_block);
3183 }
3184 EXPORT_SYMBOL_GPL(scsi_target_block);
3185
3186 static void
3187 device_unblock(struct scsi_device *sdev, void *data)
3188 {
3189 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3190 }
3191
3192 static int
3193 target_unblock(struct device *dev, void *data)
3194 {
3195 if (scsi_is_target_device(dev))
3196 starget_for_each_device(to_scsi_target(dev), data,
3197 device_unblock);
3198 return 0;
3199 }
3200
3201 void
3202 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3203 {
3204 if (scsi_is_target_device(dev))
3205 starget_for_each_device(to_scsi_target(dev), &new_state,
3206 device_unblock);
3207 else
3208 device_for_each_child(dev, &new_state, target_unblock);
3209 }
3210 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3211
3212 /**
3213 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3214 * @sgl: scatter-gather list
3215 * @sg_count: number of segments in sg
3216 * @offset: offset in bytes into sg, on return offset into the mapped area
3217 * @len: bytes to map, on return number of bytes mapped
3218 *
3219 * Returns virtual address of the start of the mapped page
3220 */
3221 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3222 size_t *offset, size_t *len)
3223 {
3224 int i;
3225 size_t sg_len = 0, len_complete = 0;
3226 struct scatterlist *sg;
3227 struct page *page;
3228
3229 WARN_ON(!irqs_disabled());
3230
3231 for_each_sg(sgl, sg, sg_count, i) {
3232 len_complete = sg_len; /* Complete sg-entries */
3233 sg_len += sg->length;
3234 if (sg_len > *offset)
3235 break;
3236 }
3237
3238 if (unlikely(i == sg_count)) {
3239 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3240 "elements %d\n",
3241 __func__, sg_len, *offset, sg_count);
3242 WARN_ON(1);
3243 return NULL;
3244 }
3245
3246 /* Offset starting from the beginning of first page in this sg-entry */
3247 *offset = *offset - len_complete + sg->offset;
3248
3249 /* Assumption: contiguous pages can be accessed as "page + i" */
3250 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3251 *offset &= ~PAGE_MASK;
3252
3253 /* Bytes in this sg-entry from *offset to the end of the page */
3254 sg_len = PAGE_SIZE - *offset;
3255 if (*len > sg_len)
3256 *len = sg_len;
3257
3258 return kmap_atomic(page);
3259 }
3260 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3261
3262 /**
3263 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3264 * @virt: virtual address to be unmapped
3265 */
3266 void scsi_kunmap_atomic_sg(void *virt)
3267 {
3268 kunmap_atomic(virt);
3269 }
3270 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3271
3272 void sdev_disable_disk_events(struct scsi_device *sdev)
3273 {
3274 atomic_inc(&sdev->disk_events_disable_depth);
3275 }
3276 EXPORT_SYMBOL(sdev_disable_disk_events);
3277
3278 void sdev_enable_disk_events(struct scsi_device *sdev)
3279 {
3280 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3281 return;
3282 atomic_dec(&sdev->disk_events_disable_depth);
3283 }
3284 EXPORT_SYMBOL(sdev_enable_disk_events);
3285
3286 /**
3287 * scsi_vpd_lun_id - return a unique device identification
3288 * @sdev: SCSI device
3289 * @id: buffer for the identification
3290 * @id_len: length of the buffer
3291 *
3292 * Copies a unique device identification into @id based
3293 * on the information in the VPD page 0x83 of the device.
3294 * The string will be formatted as a SCSI name string.
3295 *
3296 * Returns the length of the identification or error on failure.
3297 * If the identifier is longer than the supplied buffer the actual
3298 * identifier length is returned and the buffer is not zero-padded.
3299 */
3300 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3301 {
3302 u8 cur_id_type = 0xff;
3303 u8 cur_id_size = 0;
3304 const unsigned char *d, *cur_id_str;
3305 const struct scsi_vpd *vpd_pg83;
3306 int id_size = -EINVAL;
3307
3308 rcu_read_lock();
3309 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3310 if (!vpd_pg83) {
3311 rcu_read_unlock();
3312 return -ENXIO;
3313 }
3314
3315 /*
3316 * Look for the correct descriptor.
3317 * Order of preference for lun descriptor:
3318 * - SCSI name string
3319 * - NAA IEEE Registered Extended
3320 * - EUI-64 based 16-byte
3321 * - EUI-64 based 12-byte
3322 * - NAA IEEE Registered
3323 * - NAA IEEE Extended
3324 * - T10 Vendor ID
3325 * as longer descriptors reduce the likelyhood
3326 * of identification clashes.
3327 */
3328
3329 /* The id string must be at least 20 bytes + terminating NULL byte */
3330 if (id_len < 21) {
3331 rcu_read_unlock();
3332 return -EINVAL;
3333 }
3334
3335 memset(id, 0, id_len);
3336 d = vpd_pg83->data + 4;
3337 while (d < vpd_pg83->data + vpd_pg83->len) {
3338 /* Skip designators not referring to the LUN */
3339 if ((d[1] & 0x30) != 0x00)
3340 goto next_desig;
3341
3342 switch (d[1] & 0xf) {
3343 case 0x1:
3344 /* T10 Vendor ID */
3345 if (cur_id_size > d[3])
3346 break;
3347 /* Prefer anything */
3348 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3349 break;
3350 cur_id_size = d[3];
3351 if (cur_id_size + 4 > id_len)
3352 cur_id_size = id_len - 4;
3353 cur_id_str = d + 4;
3354 cur_id_type = d[1] & 0xf;
3355 id_size = snprintf(id, id_len, "t10.%*pE",
3356 cur_id_size, cur_id_str);
3357 break;
3358 case 0x2:
3359 /* EUI-64 */
3360 if (cur_id_size > d[3])
3361 break;
3362 /* Prefer NAA IEEE Registered Extended */
3363 if (cur_id_type == 0x3 &&
3364 cur_id_size == d[3])
3365 break;
3366 cur_id_size = d[3];
3367 cur_id_str = d + 4;
3368 cur_id_type = d[1] & 0xf;
3369 switch (cur_id_size) {
3370 case 8:
3371 id_size = snprintf(id, id_len,
3372 "eui.%8phN",
3373 cur_id_str);
3374 break;
3375 case 12:
3376 id_size = snprintf(id, id_len,
3377 "eui.%12phN",
3378 cur_id_str);
3379 break;
3380 case 16:
3381 id_size = snprintf(id, id_len,
3382 "eui.%16phN",
3383 cur_id_str);
3384 break;
3385 default:
3386 cur_id_size = 0;
3387 break;
3388 }
3389 break;
3390 case 0x3:
3391 /* NAA */
3392 if (cur_id_size > d[3])
3393 break;
3394 cur_id_size = d[3];
3395 cur_id_str = d + 4;
3396 cur_id_type = d[1] & 0xf;
3397 switch (cur_id_size) {
3398 case 8:
3399 id_size = snprintf(id, id_len,
3400 "naa.%8phN",
3401 cur_id_str);
3402 break;
3403 case 16:
3404 id_size = snprintf(id, id_len,
3405 "naa.%16phN",
3406 cur_id_str);
3407 break;
3408 default:
3409 cur_id_size = 0;
3410 break;
3411 }
3412 break;
3413 case 0x8:
3414 /* SCSI name string */
3415 if (cur_id_size + 4 > d[3])
3416 break;
3417 /* Prefer others for truncated descriptor */
3418 if (cur_id_size && d[3] > id_len)
3419 break;
3420 cur_id_size = id_size = d[3];
3421 cur_id_str = d + 4;
3422 cur_id_type = d[1] & 0xf;
3423 if (cur_id_size >= id_len)
3424 cur_id_size = id_len - 1;
3425 memcpy(id, cur_id_str, cur_id_size);
3426 /* Decrease priority for truncated descriptor */
3427 if (cur_id_size != id_size)
3428 cur_id_size = 6;
3429 break;
3430 default:
3431 break;
3432 }
3433 next_desig:
3434 d += d[3] + 4;
3435 }
3436 rcu_read_unlock();
3437
3438 return id_size;
3439 }
3440 EXPORT_SYMBOL(scsi_vpd_lun_id);
3441
3442 /*
3443 * scsi_vpd_tpg_id - return a target port group identifier
3444 * @sdev: SCSI device
3445 *
3446 * Returns the Target Port Group identifier from the information
3447 * froom VPD page 0x83 of the device.
3448 *
3449 * Returns the identifier or error on failure.
3450 */
3451 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3452 {
3453 const unsigned char *d;
3454 const struct scsi_vpd *vpd_pg83;
3455 int group_id = -EAGAIN, rel_port = -1;
3456
3457 rcu_read_lock();
3458 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3459 if (!vpd_pg83) {
3460 rcu_read_unlock();
3461 return -ENXIO;
3462 }
3463
3464 d = vpd_pg83->data + 4;
3465 while (d < vpd_pg83->data + vpd_pg83->len) {
3466 switch (d[1] & 0xf) {
3467 case 0x4:
3468 /* Relative target port */
3469 rel_port = get_unaligned_be16(&d[6]);
3470 break;
3471 case 0x5:
3472 /* Target port group */
3473 group_id = get_unaligned_be16(&d[6]);
3474 break;
3475 default:
3476 break;
3477 }
3478 d += d[3] + 4;
3479 }
3480 rcu_read_unlock();
3481
3482 if (group_id >= 0 && rel_id && rel_port != -1)
3483 *rel_id = rel_port;
3484
3485 return group_id;
3486 }
3487 EXPORT_SYMBOL(scsi_vpd_tpg_id);