]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
scsi: core: run queue if SCSI device queue isn't ready and queue is idle
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
57 {
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
64 {
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 struct kmem_cache *cache;
72 int ret = 0;
73
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 if (cache)
76 return 0;
77
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 if (!scsi_sense_cache)
91 ret = -ENOMEM;
92 }
93
94 mutex_unlock(&scsi_sense_cache_mutex);
95 return ret;
96 }
97
98 /*
99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100 * not change behaviour from the previous unplug mechanism, experimentation
101 * may prove this needs changing.
102 */
103 #define SCSI_QUEUE_DELAY 3
104
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111
112 /*
113 * Set the appropriate busy bit for the device/host.
114 *
115 * If the host/device isn't busy, assume that something actually
116 * completed, and that we should be able to queue a command now.
117 *
118 * Note that the prior mid-layer assumption that any host could
119 * always queue at least one command is now broken. The mid-layer
120 * will implement a user specifiable stall (see
121 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 * if a command is requeued with no other commands outstanding
123 * either for the device or for the host.
124 */
125 switch (reason) {
126 case SCSI_MLQUEUE_HOST_BUSY:
127 atomic_set(&host->host_blocked, host->max_host_blocked);
128 break;
129 case SCSI_MLQUEUE_DEVICE_BUSY:
130 case SCSI_MLQUEUE_EH_RETRY:
131 atomic_set(&device->device_blocked,
132 device->max_device_blocked);
133 break;
134 case SCSI_MLQUEUE_TARGET_BUSY:
135 atomic_set(&starget->target_blocked,
136 starget->max_target_blocked);
137 break;
138 }
139 }
140
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143 struct scsi_device *sdev = cmd->device;
144
145 if (cmd->request->rq_flags & RQF_DONTPREP) {
146 cmd->request->rq_flags &= ~RQF_DONTPREP;
147 scsi_mq_uninit_cmd(cmd);
148 } else {
149 WARN_ON_ONCE(true);
150 }
151 blk_mq_requeue_request(cmd->request, true);
152 put_device(&sdev->sdev_gendev);
153 }
154
155 /**
156 * __scsi_queue_insert - private queue insertion
157 * @cmd: The SCSI command being requeued
158 * @reason: The reason for the requeue
159 * @unbusy: Whether the queue should be unbusied
160 *
161 * This is a private queue insertion. The public interface
162 * scsi_queue_insert() always assumes the queue should be unbusied
163 * because it's always called before the completion. This function is
164 * for a requeue after completion, which should only occur in this
165 * file.
166 */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
168 {
169 struct scsi_device *device = cmd->device;
170 struct request_queue *q = device->request_queue;
171 unsigned long flags;
172
173 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 "Inserting command %p into mlqueue\n", cmd));
175
176 scsi_set_blocked(cmd, reason);
177
178 /*
179 * Decrement the counters, since these commands are no longer
180 * active on the host/device.
181 */
182 if (unbusy)
183 scsi_device_unbusy(device);
184
185 /*
186 * Requeue this command. It will go before all other commands
187 * that are already in the queue. Schedule requeue work under
188 * lock such that the kblockd_schedule_work() call happens
189 * before blk_cleanup_queue() finishes.
190 */
191 cmd->result = 0;
192 if (q->mq_ops) {
193 scsi_mq_requeue_cmd(cmd);
194 return;
195 }
196 spin_lock_irqsave(q->queue_lock, flags);
197 blk_requeue_request(q, cmd->request);
198 kblockd_schedule_work(&device->requeue_work);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201
202 /*
203 * Function: scsi_queue_insert()
204 *
205 * Purpose: Insert a command in the midlevel queue.
206 *
207 * Arguments: cmd - command that we are adding to queue.
208 * reason - why we are inserting command to queue.
209 *
210 * Lock status: Assumed that lock is not held upon entry.
211 *
212 * Returns: Nothing.
213 *
214 * Notes: We do this for one of two cases. Either the host is busy
215 * and it cannot accept any more commands for the time being,
216 * or the device returned QUEUE_FULL and can accept no more
217 * commands.
218 * Notes: This could be called either from an interrupt context or a
219 * normal process context.
220 */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223 __scsi_queue_insert(cmd, reason, 1);
224 }
225
226
227 /**
228 * scsi_execute - insert request and wait for the result
229 * @sdev: scsi device
230 * @cmd: scsi command
231 * @data_direction: data direction
232 * @buffer: data buffer
233 * @bufflen: len of buffer
234 * @sense: optional sense buffer
235 * @sshdr: optional decoded sense header
236 * @timeout: request timeout in seconds
237 * @retries: number of times to retry request
238 * @flags: flags for ->cmd_flags
239 * @rq_flags: flags for ->rq_flags
240 * @resid: optional residual length
241 *
242 * Returns the scsi_cmnd result field if a command was executed, or a negative
243 * Linux error code if we didn't get that far.
244 */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 int *resid)
250 {
251 struct request *req;
252 struct scsi_request *rq;
253 int ret = DRIVER_ERROR << 24;
254
255 req = blk_get_request_flags(sdev->request_queue,
256 data_direction == DMA_TO_DEVICE ?
257 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
258 if (IS_ERR(req))
259 return ret;
260 rq = scsi_req(req);
261
262 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
263 buffer, bufflen, __GFP_RECLAIM))
264 goto out;
265
266 rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 memcpy(rq->cmd, cmd, rq->cmd_len);
268 rq->retries = retries;
269 req->timeout = timeout;
270 req->cmd_flags |= flags;
271 req->rq_flags |= rq_flags | RQF_QUIET;
272
273 /*
274 * head injection *required* here otherwise quiesce won't work
275 */
276 blk_execute_rq(req->q, NULL, req, 1);
277
278 /*
279 * Some devices (USB mass-storage in particular) may transfer
280 * garbage data together with a residue indicating that the data
281 * is invalid. Prevent the garbage from being misinterpreted
282 * and prevent security leaks by zeroing out the excess data.
283 */
284 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286
287 if (resid)
288 *resid = rq->resid_len;
289 if (sense && rq->sense_len)
290 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 if (sshdr)
292 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 ret = rq->result;
294 out:
295 blk_put_request(req);
296
297 return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300
301 /*
302 * Function: scsi_init_cmd_errh()
303 *
304 * Purpose: Initialize cmd fields related to error handling.
305 *
306 * Arguments: cmd - command that is ready to be queued.
307 *
308 * Notes: This function has the job of initializing a number of
309 * fields related to error handling. Typically this will
310 * be called once for each command, as required.
311 */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314 cmd->serial_number = 0;
315 scsi_set_resid(cmd, 0);
316 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 if (cmd->cmd_len == 0)
318 cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320
321 void scsi_device_unbusy(struct scsi_device *sdev)
322 {
323 struct Scsi_Host *shost = sdev->host;
324 struct scsi_target *starget = scsi_target(sdev);
325 unsigned long flags;
326
327 atomic_dec(&shost->host_busy);
328 if (starget->can_queue > 0)
329 atomic_dec(&starget->target_busy);
330
331 if (unlikely(scsi_host_in_recovery(shost) &&
332 (shost->host_failed || shost->host_eh_scheduled))) {
333 spin_lock_irqsave(shost->host_lock, flags);
334 scsi_eh_wakeup(shost);
335 spin_unlock_irqrestore(shost->host_lock, flags);
336 }
337
338 atomic_dec(&sdev->device_busy);
339 }
340
341 static void scsi_kick_queue(struct request_queue *q)
342 {
343 if (q->mq_ops)
344 blk_mq_start_hw_queues(q);
345 else
346 blk_run_queue(q);
347 }
348
349 /*
350 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
351 * and call blk_run_queue for all the scsi_devices on the target -
352 * including current_sdev first.
353 *
354 * Called with *no* scsi locks held.
355 */
356 static void scsi_single_lun_run(struct scsi_device *current_sdev)
357 {
358 struct Scsi_Host *shost = current_sdev->host;
359 struct scsi_device *sdev, *tmp;
360 struct scsi_target *starget = scsi_target(current_sdev);
361 unsigned long flags;
362
363 spin_lock_irqsave(shost->host_lock, flags);
364 starget->starget_sdev_user = NULL;
365 spin_unlock_irqrestore(shost->host_lock, flags);
366
367 /*
368 * Call blk_run_queue for all LUNs on the target, starting with
369 * current_sdev. We race with others (to set starget_sdev_user),
370 * but in most cases, we will be first. Ideally, each LU on the
371 * target would get some limited time or requests on the target.
372 */
373 scsi_kick_queue(current_sdev->request_queue);
374
375 spin_lock_irqsave(shost->host_lock, flags);
376 if (starget->starget_sdev_user)
377 goto out;
378 list_for_each_entry_safe(sdev, tmp, &starget->devices,
379 same_target_siblings) {
380 if (sdev == current_sdev)
381 continue;
382 if (scsi_device_get(sdev))
383 continue;
384
385 spin_unlock_irqrestore(shost->host_lock, flags);
386 scsi_kick_queue(sdev->request_queue);
387 spin_lock_irqsave(shost->host_lock, flags);
388
389 scsi_device_put(sdev);
390 }
391 out:
392 spin_unlock_irqrestore(shost->host_lock, flags);
393 }
394
395 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
396 {
397 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
398 return true;
399 if (atomic_read(&sdev->device_blocked) > 0)
400 return true;
401 return false;
402 }
403
404 static inline bool scsi_target_is_busy(struct scsi_target *starget)
405 {
406 if (starget->can_queue > 0) {
407 if (atomic_read(&starget->target_busy) >= starget->can_queue)
408 return true;
409 if (atomic_read(&starget->target_blocked) > 0)
410 return true;
411 }
412 return false;
413 }
414
415 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
416 {
417 if (shost->can_queue > 0 &&
418 atomic_read(&shost->host_busy) >= shost->can_queue)
419 return true;
420 if (atomic_read(&shost->host_blocked) > 0)
421 return true;
422 if (shost->host_self_blocked)
423 return true;
424 return false;
425 }
426
427 static void scsi_starved_list_run(struct Scsi_Host *shost)
428 {
429 LIST_HEAD(starved_list);
430 struct scsi_device *sdev;
431 unsigned long flags;
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 list_splice_init(&shost->starved_list, &starved_list);
435
436 while (!list_empty(&starved_list)) {
437 struct request_queue *slq;
438
439 /*
440 * As long as shost is accepting commands and we have
441 * starved queues, call blk_run_queue. scsi_request_fn
442 * drops the queue_lock and can add us back to the
443 * starved_list.
444 *
445 * host_lock protects the starved_list and starved_entry.
446 * scsi_request_fn must get the host_lock before checking
447 * or modifying starved_list or starved_entry.
448 */
449 if (scsi_host_is_busy(shost))
450 break;
451
452 sdev = list_entry(starved_list.next,
453 struct scsi_device, starved_entry);
454 list_del_init(&sdev->starved_entry);
455 if (scsi_target_is_busy(scsi_target(sdev))) {
456 list_move_tail(&sdev->starved_entry,
457 &shost->starved_list);
458 continue;
459 }
460
461 /*
462 * Once we drop the host lock, a racing scsi_remove_device()
463 * call may remove the sdev from the starved list and destroy
464 * it and the queue. Mitigate by taking a reference to the
465 * queue and never touching the sdev again after we drop the
466 * host lock. Note: if __scsi_remove_device() invokes
467 * blk_cleanup_queue() before the queue is run from this
468 * function then blk_run_queue() will return immediately since
469 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 */
471 slq = sdev->request_queue;
472 if (!blk_get_queue(slq))
473 continue;
474 spin_unlock_irqrestore(shost->host_lock, flags);
475
476 scsi_kick_queue(slq);
477 blk_put_queue(slq);
478
479 spin_lock_irqsave(shost->host_lock, flags);
480 }
481 /* put any unprocessed entries back */
482 list_splice(&starved_list, &shost->starved_list);
483 spin_unlock_irqrestore(shost->host_lock, flags);
484 }
485
486 /*
487 * Function: scsi_run_queue()
488 *
489 * Purpose: Select a proper request queue to serve next
490 *
491 * Arguments: q - last request's queue
492 *
493 * Returns: Nothing
494 *
495 * Notes: The previous command was completely finished, start
496 * a new one if possible.
497 */
498 static void scsi_run_queue(struct request_queue *q)
499 {
500 struct scsi_device *sdev = q->queuedata;
501
502 if (scsi_target(sdev)->single_lun)
503 scsi_single_lun_run(sdev);
504 if (!list_empty(&sdev->host->starved_list))
505 scsi_starved_list_run(sdev->host);
506
507 if (q->mq_ops)
508 blk_mq_run_hw_queues(q, false);
509 else
510 blk_run_queue(q);
511 }
512
513 void scsi_requeue_run_queue(struct work_struct *work)
514 {
515 struct scsi_device *sdev;
516 struct request_queue *q;
517
518 sdev = container_of(work, struct scsi_device, requeue_work);
519 q = sdev->request_queue;
520 scsi_run_queue(q);
521 }
522
523 /*
524 * Function: scsi_requeue_command()
525 *
526 * Purpose: Handle post-processing of completed commands.
527 *
528 * Arguments: q - queue to operate on
529 * cmd - command that may need to be requeued.
530 *
531 * Returns: Nothing
532 *
533 * Notes: After command completion, there may be blocks left
534 * over which weren't finished by the previous command
535 * this can be for a number of reasons - the main one is
536 * I/O errors in the middle of the request, in which case
537 * we need to request the blocks that come after the bad
538 * sector.
539 * Notes: Upon return, cmd is a stale pointer.
540 */
541 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
542 {
543 struct scsi_device *sdev = cmd->device;
544 struct request *req = cmd->request;
545 unsigned long flags;
546
547 spin_lock_irqsave(q->queue_lock, flags);
548 blk_unprep_request(req);
549 req->special = NULL;
550 scsi_put_command(cmd);
551 blk_requeue_request(q, req);
552 spin_unlock_irqrestore(q->queue_lock, flags);
553
554 scsi_run_queue(q);
555
556 put_device(&sdev->sdev_gendev);
557 }
558
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 struct scsi_device *sdev;
562
563 shost_for_each_device(sdev, shost)
564 scsi_run_queue(sdev->request_queue);
565 }
566
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 if (!blk_rq_is_passthrough(cmd->request)) {
570 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572 if (drv->uninit_command)
573 drv->uninit_command(cmd);
574 }
575 }
576
577 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 struct scsi_data_buffer *sdb;
580
581 if (cmd->sdb.table.nents)
582 sg_free_table_chained(&cmd->sdb.table, true);
583 if (cmd->request->next_rq) {
584 sdb = cmd->request->next_rq->special;
585 if (sdb)
586 sg_free_table_chained(&sdb->table, true);
587 }
588 if (scsi_prot_sg_count(cmd))
589 sg_free_table_chained(&cmd->prot_sdb->table, true);
590 }
591
592 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
593 {
594 scsi_mq_free_sgtables(cmd);
595 scsi_uninit_cmd(cmd);
596 scsi_del_cmd_from_list(cmd);
597 }
598
599 /*
600 * Function: scsi_release_buffers()
601 *
602 * Purpose: Free resources allocate for a scsi_command.
603 *
604 * Arguments: cmd - command that we are bailing.
605 *
606 * Lock status: Assumed that no lock is held upon entry.
607 *
608 * Returns: Nothing
609 *
610 * Notes: In the event that an upper level driver rejects a
611 * command, we must release resources allocated during
612 * the __init_io() function. Primarily this would involve
613 * the scatter-gather table.
614 */
615 static void scsi_release_buffers(struct scsi_cmnd *cmd)
616 {
617 if (cmd->sdb.table.nents)
618 sg_free_table_chained(&cmd->sdb.table, false);
619
620 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
621
622 if (scsi_prot_sg_count(cmd))
623 sg_free_table_chained(&cmd->prot_sdb->table, false);
624 }
625
626 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
627 {
628 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
629
630 sg_free_table_chained(&bidi_sdb->table, false);
631 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
632 cmd->request->next_rq->special = NULL;
633 }
634
635 static bool scsi_end_request(struct request *req, blk_status_t error,
636 unsigned int bytes, unsigned int bidi_bytes)
637 {
638 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
639 struct scsi_device *sdev = cmd->device;
640 struct request_queue *q = sdev->request_queue;
641
642 if (blk_update_request(req, error, bytes))
643 return true;
644
645 /* Bidi request must be completed as a whole */
646 if (unlikely(bidi_bytes) &&
647 blk_update_request(req->next_rq, error, bidi_bytes))
648 return true;
649
650 if (blk_queue_add_random(q))
651 add_disk_randomness(req->rq_disk);
652
653 if (!blk_rq_is_scsi(req)) {
654 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
655 cmd->flags &= ~SCMD_INITIALIZED;
656 }
657
658 if (req->mq_ctx) {
659 /*
660 * In the MQ case the command gets freed by __blk_mq_end_request,
661 * so we have to do all cleanup that depends on it earlier.
662 *
663 * We also can't kick the queues from irq context, so we
664 * will have to defer it to a workqueue.
665 */
666 scsi_mq_uninit_cmd(cmd);
667
668 __blk_mq_end_request(req, error);
669
670 if (scsi_target(sdev)->single_lun ||
671 !list_empty(&sdev->host->starved_list))
672 kblockd_schedule_work(&sdev->requeue_work);
673 else
674 blk_mq_run_hw_queues(q, true);
675 } else {
676 unsigned long flags;
677
678 if (bidi_bytes)
679 scsi_release_bidi_buffers(cmd);
680 scsi_release_buffers(cmd);
681 scsi_put_command(cmd);
682
683 spin_lock_irqsave(q->queue_lock, flags);
684 blk_finish_request(req, error);
685 spin_unlock_irqrestore(q->queue_lock, flags);
686
687 scsi_run_queue(q);
688 }
689
690 put_device(&sdev->sdev_gendev);
691 return false;
692 }
693
694 /**
695 * __scsi_error_from_host_byte - translate SCSI error code into errno
696 * @cmd: SCSI command (unused)
697 * @result: scsi error code
698 *
699 * Translate SCSI error code into block errors.
700 */
701 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
702 int result)
703 {
704 switch (host_byte(result)) {
705 case DID_TRANSPORT_FAILFAST:
706 return BLK_STS_TRANSPORT;
707 case DID_TARGET_FAILURE:
708 set_host_byte(cmd, DID_OK);
709 return BLK_STS_TARGET;
710 case DID_NEXUS_FAILURE:
711 return BLK_STS_NEXUS;
712 case DID_ALLOC_FAILURE:
713 set_host_byte(cmd, DID_OK);
714 return BLK_STS_NOSPC;
715 case DID_MEDIUM_ERROR:
716 set_host_byte(cmd, DID_OK);
717 return BLK_STS_MEDIUM;
718 default:
719 return BLK_STS_IOERR;
720 }
721 }
722
723 /*
724 * Function: scsi_io_completion()
725 *
726 * Purpose: Completion processing for block device I/O requests.
727 *
728 * Arguments: cmd - command that is finished.
729 *
730 * Lock status: Assumed that no lock is held upon entry.
731 *
732 * Returns: Nothing
733 *
734 * Notes: We will finish off the specified number of sectors. If we
735 * are done, the command block will be released and the queue
736 * function will be goosed. If we are not done then we have to
737 * figure out what to do next:
738 *
739 * a) We can call scsi_requeue_command(). The request
740 * will be unprepared and put back on the queue. Then
741 * a new command will be created for it. This should
742 * be used if we made forward progress, or if we want
743 * to switch from READ(10) to READ(6) for example.
744 *
745 * b) We can call __scsi_queue_insert(). The request will
746 * be put back on the queue and retried using the same
747 * command as before, possibly after a delay.
748 *
749 * c) We can call scsi_end_request() with -EIO to fail
750 * the remainder of the request.
751 */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754 int result = cmd->result;
755 struct request_queue *q = cmd->device->request_queue;
756 struct request *req = cmd->request;
757 blk_status_t error = BLK_STS_OK;
758 struct scsi_sense_hdr sshdr;
759 bool sense_valid = false;
760 int sense_deferred = 0, level = 0;
761 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 ACTION_DELAYED_RETRY} action;
763 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
764
765 if (result) {
766 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
767 if (sense_valid)
768 sense_deferred = scsi_sense_is_deferred(&sshdr);
769 }
770
771 if (blk_rq_is_passthrough(req)) {
772 if (result) {
773 if (sense_valid) {
774 /*
775 * SG_IO wants current and deferred errors
776 */
777 scsi_req(req)->sense_len =
778 min(8 + cmd->sense_buffer[7],
779 SCSI_SENSE_BUFFERSIZE);
780 }
781 if (!sense_deferred)
782 error = __scsi_error_from_host_byte(cmd, result);
783 }
784 /*
785 * __scsi_error_from_host_byte may have reset the host_byte
786 */
787 scsi_req(req)->result = cmd->result;
788 scsi_req(req)->resid_len = scsi_get_resid(cmd);
789
790 if (scsi_bidi_cmnd(cmd)) {
791 /*
792 * Bidi commands Must be complete as a whole,
793 * both sides at once.
794 */
795 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
796 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
797 blk_rq_bytes(req->next_rq)))
798 BUG();
799 return;
800 }
801 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
802 /*
803 * Flush commands do not transfers any data, and thus cannot use
804 * good_bytes != blk_rq_bytes(req) as the signal for an error.
805 * This sets the error explicitly for the problem case.
806 */
807 error = __scsi_error_from_host_byte(cmd, result);
808 }
809
810 /* no bidi support for !blk_rq_is_passthrough yet */
811 BUG_ON(blk_bidi_rq(req));
812
813 /*
814 * Next deal with any sectors which we were able to correctly
815 * handle.
816 */
817 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
818 "%u sectors total, %d bytes done.\n",
819 blk_rq_sectors(req), good_bytes));
820
821 /*
822 * Recovered errors need reporting, but they're always treated as
823 * success, so fiddle the result code here. For passthrough requests
824 * we already took a copy of the original into sreq->result which
825 * is what gets returned to the user
826 */
827 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 * print since caller wants ATA registers. Only occurs on
830 * SCSI ATA PASS_THROUGH commands when CK_COND=1
831 */
832 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833 ;
834 else if (!(req->rq_flags & RQF_QUIET))
835 scsi_print_sense(cmd);
836 result = 0;
837 /* for passthrough error may be set */
838 error = BLK_STS_OK;
839 }
840
841 /*
842 * special case: failed zero length commands always need to
843 * drop down into the retry code. Otherwise, if we finished
844 * all bytes in the request we are done now.
845 */
846 if (!(blk_rq_bytes(req) == 0 && error) &&
847 !scsi_end_request(req, error, good_bytes, 0))
848 return;
849
850 /*
851 * Kill remainder if no retrys.
852 */
853 if (error && scsi_noretry_cmd(cmd)) {
854 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
855 BUG();
856 return;
857 }
858
859 /*
860 * If there had been no error, but we have leftover bytes in the
861 * requeues just queue the command up again.
862 */
863 if (result == 0)
864 goto requeue;
865
866 error = __scsi_error_from_host_byte(cmd, result);
867
868 if (host_byte(result) == DID_RESET) {
869 /* Third party bus reset or reset for error recovery
870 * reasons. Just retry the command and see what
871 * happens.
872 */
873 action = ACTION_RETRY;
874 } else if (sense_valid && !sense_deferred) {
875 switch (sshdr.sense_key) {
876 case UNIT_ATTENTION:
877 if (cmd->device->removable) {
878 /* Detected disc change. Set a bit
879 * and quietly refuse further access.
880 */
881 cmd->device->changed = 1;
882 action = ACTION_FAIL;
883 } else {
884 /* Must have been a power glitch, or a
885 * bus reset. Could not have been a
886 * media change, so we just retry the
887 * command and see what happens.
888 */
889 action = ACTION_RETRY;
890 }
891 break;
892 case ILLEGAL_REQUEST:
893 /* If we had an ILLEGAL REQUEST returned, then
894 * we may have performed an unsupported
895 * command. The only thing this should be
896 * would be a ten byte read where only a six
897 * byte read was supported. Also, on a system
898 * where READ CAPACITY failed, we may have
899 * read past the end of the disk.
900 */
901 if ((cmd->device->use_10_for_rw &&
902 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
903 (cmd->cmnd[0] == READ_10 ||
904 cmd->cmnd[0] == WRITE_10)) {
905 /* This will issue a new 6-byte command. */
906 cmd->device->use_10_for_rw = 0;
907 action = ACTION_REPREP;
908 } else if (sshdr.asc == 0x10) /* DIX */ {
909 action = ACTION_FAIL;
910 error = BLK_STS_PROTECTION;
911 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
912 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
913 action = ACTION_FAIL;
914 error = BLK_STS_TARGET;
915 } else
916 action = ACTION_FAIL;
917 break;
918 case ABORTED_COMMAND:
919 action = ACTION_FAIL;
920 if (sshdr.asc == 0x10) /* DIF */
921 error = BLK_STS_PROTECTION;
922 break;
923 case NOT_READY:
924 /* If the device is in the process of becoming
925 * ready, or has a temporary blockage, retry.
926 */
927 if (sshdr.asc == 0x04) {
928 switch (sshdr.ascq) {
929 case 0x01: /* becoming ready */
930 case 0x04: /* format in progress */
931 case 0x05: /* rebuild in progress */
932 case 0x06: /* recalculation in progress */
933 case 0x07: /* operation in progress */
934 case 0x08: /* Long write in progress */
935 case 0x09: /* self test in progress */
936 case 0x14: /* space allocation in progress */
937 action = ACTION_DELAYED_RETRY;
938 break;
939 default:
940 action = ACTION_FAIL;
941 break;
942 }
943 } else
944 action = ACTION_FAIL;
945 break;
946 case VOLUME_OVERFLOW:
947 /* See SSC3rXX or current. */
948 action = ACTION_FAIL;
949 break;
950 default:
951 action = ACTION_FAIL;
952 break;
953 }
954 } else
955 action = ACTION_FAIL;
956
957 if (action != ACTION_FAIL &&
958 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
959 action = ACTION_FAIL;
960
961 switch (action) {
962 case ACTION_FAIL:
963 /* Give up and fail the remainder of the request */
964 if (!(req->rq_flags & RQF_QUIET)) {
965 static DEFINE_RATELIMIT_STATE(_rs,
966 DEFAULT_RATELIMIT_INTERVAL,
967 DEFAULT_RATELIMIT_BURST);
968
969 if (unlikely(scsi_logging_level))
970 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
971 SCSI_LOG_MLCOMPLETE_BITS);
972
973 /*
974 * if logging is enabled the failure will be printed
975 * in scsi_log_completion(), so avoid duplicate messages
976 */
977 if (!level && __ratelimit(&_rs)) {
978 scsi_print_result(cmd, NULL, FAILED);
979 if (driver_byte(result) & DRIVER_SENSE)
980 scsi_print_sense(cmd);
981 scsi_print_command(cmd);
982 }
983 }
984 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
985 return;
986 /*FALLTHRU*/
987 case ACTION_REPREP:
988 requeue:
989 /* Unprep the request and put it back at the head of the queue.
990 * A new command will be prepared and issued.
991 */
992 if (q->mq_ops) {
993 scsi_mq_requeue_cmd(cmd);
994 } else {
995 scsi_release_buffers(cmd);
996 scsi_requeue_command(q, cmd);
997 }
998 break;
999 case ACTION_RETRY:
1000 /* Retry the same command immediately */
1001 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1002 break;
1003 case ACTION_DELAYED_RETRY:
1004 /* Retry the same command after a delay */
1005 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1006 break;
1007 }
1008 }
1009
1010 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1011 {
1012 int count;
1013
1014 /*
1015 * If sg table allocation fails, requeue request later.
1016 */
1017 if (unlikely(sg_alloc_table_chained(&sdb->table,
1018 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1019 return BLKPREP_DEFER;
1020
1021 /*
1022 * Next, walk the list, and fill in the addresses and sizes of
1023 * each segment.
1024 */
1025 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026 BUG_ON(count > sdb->table.nents);
1027 sdb->table.nents = count;
1028 sdb->length = blk_rq_payload_bytes(req);
1029 return BLKPREP_OK;
1030 }
1031
1032 /*
1033 * Function: scsi_init_io()
1034 *
1035 * Purpose: SCSI I/O initialize function.
1036 *
1037 * Arguments: cmd - Command descriptor we wish to initialize
1038 *
1039 * Returns: 0 on success
1040 * BLKPREP_DEFER if the failure is retryable
1041 * BLKPREP_KILL if the failure is fatal
1042 */
1043 int scsi_init_io(struct scsi_cmnd *cmd)
1044 {
1045 struct scsi_device *sdev = cmd->device;
1046 struct request *rq = cmd->request;
1047 bool is_mq = (rq->mq_ctx != NULL);
1048 int error = BLKPREP_KILL;
1049
1050 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1051 goto err_exit;
1052
1053 error = scsi_init_sgtable(rq, &cmd->sdb);
1054 if (error)
1055 goto err_exit;
1056
1057 if (blk_bidi_rq(rq)) {
1058 if (!rq->q->mq_ops) {
1059 struct scsi_data_buffer *bidi_sdb =
1060 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1061 if (!bidi_sdb) {
1062 error = BLKPREP_DEFER;
1063 goto err_exit;
1064 }
1065
1066 rq->next_rq->special = bidi_sdb;
1067 }
1068
1069 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1070 if (error)
1071 goto err_exit;
1072 }
1073
1074 if (blk_integrity_rq(rq)) {
1075 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076 int ivecs, count;
1077
1078 if (prot_sdb == NULL) {
1079 /*
1080 * This can happen if someone (e.g. multipath)
1081 * queues a command to a device on an adapter
1082 * that does not support DIX.
1083 */
1084 WARN_ON_ONCE(1);
1085 error = BLKPREP_KILL;
1086 goto err_exit;
1087 }
1088
1089 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090
1091 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092 prot_sdb->table.sgl)) {
1093 error = BLKPREP_DEFER;
1094 goto err_exit;
1095 }
1096
1097 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098 prot_sdb->table.sgl);
1099 BUG_ON(unlikely(count > ivecs));
1100 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1101
1102 cmd->prot_sdb = prot_sdb;
1103 cmd->prot_sdb->table.nents = count;
1104 }
1105
1106 return BLKPREP_OK;
1107 err_exit:
1108 if (is_mq) {
1109 scsi_mq_free_sgtables(cmd);
1110 } else {
1111 scsi_release_buffers(cmd);
1112 cmd->request->special = NULL;
1113 scsi_put_command(cmd);
1114 put_device(&sdev->sdev_gendev);
1115 }
1116 return error;
1117 }
1118 EXPORT_SYMBOL(scsi_init_io);
1119
1120 /**
1121 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1122 * @rq: Request associated with the SCSI command to be initialized.
1123 *
1124 * This function initializes the members of struct scsi_cmnd that must be
1125 * initialized before request processing starts and that won't be
1126 * reinitialized if a SCSI command is requeued.
1127 *
1128 * Called from inside blk_get_request() for pass-through requests and from
1129 * inside scsi_init_command() for filesystem requests.
1130 */
1131 void scsi_initialize_rq(struct request *rq)
1132 {
1133 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1134
1135 scsi_req_init(&cmd->req);
1136 cmd->jiffies_at_alloc = jiffies;
1137 cmd->retries = 0;
1138 }
1139 EXPORT_SYMBOL(scsi_initialize_rq);
1140
1141 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1142 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1143 {
1144 struct scsi_device *sdev = cmd->device;
1145 struct Scsi_Host *shost = sdev->host;
1146 unsigned long flags;
1147
1148 if (shost->use_cmd_list) {
1149 spin_lock_irqsave(&sdev->list_lock, flags);
1150 list_add_tail(&cmd->list, &sdev->cmd_list);
1151 spin_unlock_irqrestore(&sdev->list_lock, flags);
1152 }
1153 }
1154
1155 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1156 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1157 {
1158 struct scsi_device *sdev = cmd->device;
1159 struct Scsi_Host *shost = sdev->host;
1160 unsigned long flags;
1161
1162 if (shost->use_cmd_list) {
1163 spin_lock_irqsave(&sdev->list_lock, flags);
1164 BUG_ON(list_empty(&cmd->list));
1165 list_del_init(&cmd->list);
1166 spin_unlock_irqrestore(&sdev->list_lock, flags);
1167 }
1168 }
1169
1170 /* Called after a request has been started. */
1171 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1172 {
1173 void *buf = cmd->sense_buffer;
1174 void *prot = cmd->prot_sdb;
1175 struct request *rq = blk_mq_rq_from_pdu(cmd);
1176 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1177 unsigned long jiffies_at_alloc;
1178 int retries;
1179
1180 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1181 flags |= SCMD_INITIALIZED;
1182 scsi_initialize_rq(rq);
1183 }
1184
1185 jiffies_at_alloc = cmd->jiffies_at_alloc;
1186 retries = cmd->retries;
1187 /* zero out the cmd, except for the embedded scsi_request */
1188 memset((char *)cmd + sizeof(cmd->req), 0,
1189 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1190
1191 cmd->device = dev;
1192 cmd->sense_buffer = buf;
1193 cmd->prot_sdb = prot;
1194 cmd->flags = flags;
1195 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1196 cmd->jiffies_at_alloc = jiffies_at_alloc;
1197 cmd->retries = retries;
1198
1199 scsi_add_cmd_to_list(cmd);
1200 }
1201
1202 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1203 {
1204 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205
1206 /*
1207 * Passthrough requests may transfer data, in which case they must
1208 * a bio attached to them. Or they might contain a SCSI command
1209 * that does not transfer data, in which case they may optionally
1210 * submit a request without an attached bio.
1211 */
1212 if (req->bio) {
1213 int ret = scsi_init_io(cmd);
1214 if (unlikely(ret))
1215 return ret;
1216 } else {
1217 BUG_ON(blk_rq_bytes(req));
1218
1219 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1220 }
1221
1222 cmd->cmd_len = scsi_req(req)->cmd_len;
1223 cmd->cmnd = scsi_req(req)->cmd;
1224 cmd->transfersize = blk_rq_bytes(req);
1225 cmd->allowed = scsi_req(req)->retries;
1226 return BLKPREP_OK;
1227 }
1228
1229 /*
1230 * Setup a normal block command. These are simple request from filesystems
1231 * that still need to be translated to SCSI CDBs from the ULD.
1232 */
1233 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234 {
1235 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1236
1237 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1238 int ret = sdev->handler->prep_fn(sdev, req);
1239 if (ret != BLKPREP_OK)
1240 return ret;
1241 }
1242
1243 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1244 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1246 }
1247
1248 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1251
1252 if (!blk_rq_bytes(req))
1253 cmd->sc_data_direction = DMA_NONE;
1254 else if (rq_data_dir(req) == WRITE)
1255 cmd->sc_data_direction = DMA_TO_DEVICE;
1256 else
1257 cmd->sc_data_direction = DMA_FROM_DEVICE;
1258
1259 if (blk_rq_is_scsi(req))
1260 return scsi_setup_scsi_cmnd(sdev, req);
1261 else
1262 return scsi_setup_fs_cmnd(sdev, req);
1263 }
1264
1265 static int
1266 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1267 {
1268 int ret = BLKPREP_OK;
1269
1270 /*
1271 * If the device is not in running state we will reject some
1272 * or all commands.
1273 */
1274 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1275 switch (sdev->sdev_state) {
1276 case SDEV_OFFLINE:
1277 case SDEV_TRANSPORT_OFFLINE:
1278 /*
1279 * If the device is offline we refuse to process any
1280 * commands. The device must be brought online
1281 * before trying any recovery commands.
1282 */
1283 sdev_printk(KERN_ERR, sdev,
1284 "rejecting I/O to offline device\n");
1285 ret = BLKPREP_KILL;
1286 break;
1287 case SDEV_DEL:
1288 /*
1289 * If the device is fully deleted, we refuse to
1290 * process any commands as well.
1291 */
1292 sdev_printk(KERN_ERR, sdev,
1293 "rejecting I/O to dead device\n");
1294 ret = BLKPREP_KILL;
1295 break;
1296 case SDEV_BLOCK:
1297 case SDEV_CREATED_BLOCK:
1298 ret = BLKPREP_DEFER;
1299 break;
1300 case SDEV_QUIESCE:
1301 /*
1302 * If the devices is blocked we defer normal commands.
1303 */
1304 if (req && !(req->rq_flags & RQF_PREEMPT))
1305 ret = BLKPREP_DEFER;
1306 break;
1307 default:
1308 /*
1309 * For any other not fully online state we only allow
1310 * special commands. In particular any user initiated
1311 * command is not allowed.
1312 */
1313 if (req && !(req->rq_flags & RQF_PREEMPT))
1314 ret = BLKPREP_KILL;
1315 break;
1316 }
1317 }
1318 return ret;
1319 }
1320
1321 static int
1322 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1323 {
1324 struct scsi_device *sdev = q->queuedata;
1325
1326 switch (ret) {
1327 case BLKPREP_KILL:
1328 case BLKPREP_INVALID:
1329 scsi_req(req)->result = DID_NO_CONNECT << 16;
1330 /* release the command and kill it */
1331 if (req->special) {
1332 struct scsi_cmnd *cmd = req->special;
1333 scsi_release_buffers(cmd);
1334 scsi_put_command(cmd);
1335 put_device(&sdev->sdev_gendev);
1336 req->special = NULL;
1337 }
1338 break;
1339 case BLKPREP_DEFER:
1340 /*
1341 * If we defer, the blk_peek_request() returns NULL, but the
1342 * queue must be restarted, so we schedule a callback to happen
1343 * shortly.
1344 */
1345 if (atomic_read(&sdev->device_busy) == 0)
1346 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347 break;
1348 default:
1349 req->rq_flags |= RQF_DONTPREP;
1350 }
1351
1352 return ret;
1353 }
1354
1355 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1356 {
1357 struct scsi_device *sdev = q->queuedata;
1358 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1359 int ret;
1360
1361 ret = scsi_prep_state_check(sdev, req);
1362 if (ret != BLKPREP_OK)
1363 goto out;
1364
1365 if (!req->special) {
1366 /* Bail if we can't get a reference to the device */
1367 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1368 ret = BLKPREP_DEFER;
1369 goto out;
1370 }
1371
1372 scsi_init_command(sdev, cmd);
1373 req->special = cmd;
1374 }
1375
1376 cmd->tag = req->tag;
1377 cmd->request = req;
1378 cmd->prot_op = SCSI_PROT_NORMAL;
1379
1380 ret = scsi_setup_cmnd(sdev, req);
1381 out:
1382 return scsi_prep_return(q, req, ret);
1383 }
1384
1385 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1386 {
1387 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1388 }
1389
1390 /*
1391 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1392 * return 0.
1393 *
1394 * Called with the queue_lock held.
1395 */
1396 static inline int scsi_dev_queue_ready(struct request_queue *q,
1397 struct scsi_device *sdev)
1398 {
1399 unsigned int busy;
1400
1401 busy = atomic_inc_return(&sdev->device_busy) - 1;
1402 if (atomic_read(&sdev->device_blocked)) {
1403 if (busy)
1404 goto out_dec;
1405
1406 /*
1407 * unblock after device_blocked iterates to zero
1408 */
1409 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1410 /*
1411 * For the MQ case we take care of this in the caller.
1412 */
1413 if (!q->mq_ops)
1414 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1415 goto out_dec;
1416 }
1417 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1418 "unblocking device at zero depth\n"));
1419 }
1420
1421 if (busy >= sdev->queue_depth)
1422 goto out_dec;
1423
1424 return 1;
1425 out_dec:
1426 atomic_dec(&sdev->device_busy);
1427 return 0;
1428 }
1429
1430 /*
1431 * scsi_target_queue_ready: checks if there we can send commands to target
1432 * @sdev: scsi device on starget to check.
1433 */
1434 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1435 struct scsi_device *sdev)
1436 {
1437 struct scsi_target *starget = scsi_target(sdev);
1438 unsigned int busy;
1439
1440 if (starget->single_lun) {
1441 spin_lock_irq(shost->host_lock);
1442 if (starget->starget_sdev_user &&
1443 starget->starget_sdev_user != sdev) {
1444 spin_unlock_irq(shost->host_lock);
1445 return 0;
1446 }
1447 starget->starget_sdev_user = sdev;
1448 spin_unlock_irq(shost->host_lock);
1449 }
1450
1451 if (starget->can_queue <= 0)
1452 return 1;
1453
1454 busy = atomic_inc_return(&starget->target_busy) - 1;
1455 if (atomic_read(&starget->target_blocked) > 0) {
1456 if (busy)
1457 goto starved;
1458
1459 /*
1460 * unblock after target_blocked iterates to zero
1461 */
1462 if (atomic_dec_return(&starget->target_blocked) > 0)
1463 goto out_dec;
1464
1465 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1466 "unblocking target at zero depth\n"));
1467 }
1468
1469 if (busy >= starget->can_queue)
1470 goto starved;
1471
1472 return 1;
1473
1474 starved:
1475 spin_lock_irq(shost->host_lock);
1476 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1477 spin_unlock_irq(shost->host_lock);
1478 out_dec:
1479 if (starget->can_queue > 0)
1480 atomic_dec(&starget->target_busy);
1481 return 0;
1482 }
1483
1484 /*
1485 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1486 * return 0. We must end up running the queue again whenever 0 is
1487 * returned, else IO can hang.
1488 */
1489 static inline int scsi_host_queue_ready(struct request_queue *q,
1490 struct Scsi_Host *shost,
1491 struct scsi_device *sdev)
1492 {
1493 unsigned int busy;
1494
1495 if (scsi_host_in_recovery(shost))
1496 return 0;
1497
1498 busy = atomic_inc_return(&shost->host_busy) - 1;
1499 if (atomic_read(&shost->host_blocked) > 0) {
1500 if (busy)
1501 goto starved;
1502
1503 /*
1504 * unblock after host_blocked iterates to zero
1505 */
1506 if (atomic_dec_return(&shost->host_blocked) > 0)
1507 goto out_dec;
1508
1509 SCSI_LOG_MLQUEUE(3,
1510 shost_printk(KERN_INFO, shost,
1511 "unblocking host at zero depth\n"));
1512 }
1513
1514 if (shost->can_queue > 0 && busy >= shost->can_queue)
1515 goto starved;
1516 if (shost->host_self_blocked)
1517 goto starved;
1518
1519 /* We're OK to process the command, so we can't be starved */
1520 if (!list_empty(&sdev->starved_entry)) {
1521 spin_lock_irq(shost->host_lock);
1522 if (!list_empty(&sdev->starved_entry))
1523 list_del_init(&sdev->starved_entry);
1524 spin_unlock_irq(shost->host_lock);
1525 }
1526
1527 return 1;
1528
1529 starved:
1530 spin_lock_irq(shost->host_lock);
1531 if (list_empty(&sdev->starved_entry))
1532 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1533 spin_unlock_irq(shost->host_lock);
1534 out_dec:
1535 atomic_dec(&shost->host_busy);
1536 return 0;
1537 }
1538
1539 /*
1540 * Busy state exporting function for request stacking drivers.
1541 *
1542 * For efficiency, no lock is taken to check the busy state of
1543 * shost/starget/sdev, since the returned value is not guaranteed and
1544 * may be changed after request stacking drivers call the function,
1545 * regardless of taking lock or not.
1546 *
1547 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1548 * needs to return 'not busy'. Otherwise, request stacking drivers
1549 * may hold requests forever.
1550 */
1551 static int scsi_lld_busy(struct request_queue *q)
1552 {
1553 struct scsi_device *sdev = q->queuedata;
1554 struct Scsi_Host *shost;
1555
1556 if (blk_queue_dying(q))
1557 return 0;
1558
1559 shost = sdev->host;
1560
1561 /*
1562 * Ignore host/starget busy state.
1563 * Since block layer does not have a concept of fairness across
1564 * multiple queues, congestion of host/starget needs to be handled
1565 * in SCSI layer.
1566 */
1567 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1568 return 1;
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * Kill a request for a dead device
1575 */
1576 static void scsi_kill_request(struct request *req, struct request_queue *q)
1577 {
1578 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1579 struct scsi_device *sdev;
1580 struct scsi_target *starget;
1581 struct Scsi_Host *shost;
1582
1583 blk_start_request(req);
1584
1585 scmd_printk(KERN_INFO, cmd, "killing request\n");
1586
1587 sdev = cmd->device;
1588 starget = scsi_target(sdev);
1589 shost = sdev->host;
1590 scsi_init_cmd_errh(cmd);
1591 cmd->result = DID_NO_CONNECT << 16;
1592 atomic_inc(&cmd->device->iorequest_cnt);
1593
1594 /*
1595 * SCSI request completion path will do scsi_device_unbusy(),
1596 * bump busy counts. To bump the counters, we need to dance
1597 * with the locks as normal issue path does.
1598 */
1599 atomic_inc(&sdev->device_busy);
1600 atomic_inc(&shost->host_busy);
1601 if (starget->can_queue > 0)
1602 atomic_inc(&starget->target_busy);
1603
1604 blk_complete_request(req);
1605 }
1606
1607 static void scsi_softirq_done(struct request *rq)
1608 {
1609 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1610 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1611 int disposition;
1612
1613 INIT_LIST_HEAD(&cmd->eh_entry);
1614
1615 atomic_inc(&cmd->device->iodone_cnt);
1616 if (cmd->result)
1617 atomic_inc(&cmd->device->ioerr_cnt);
1618
1619 disposition = scsi_decide_disposition(cmd);
1620 if (disposition != SUCCESS &&
1621 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1622 sdev_printk(KERN_ERR, cmd->device,
1623 "timing out command, waited %lus\n",
1624 wait_for/HZ);
1625 disposition = SUCCESS;
1626 }
1627
1628 scsi_log_completion(cmd, disposition);
1629
1630 switch (disposition) {
1631 case SUCCESS:
1632 scsi_finish_command(cmd);
1633 break;
1634 case NEEDS_RETRY:
1635 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1636 break;
1637 case ADD_TO_MLQUEUE:
1638 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1639 break;
1640 default:
1641 scsi_eh_scmd_add(cmd);
1642 break;
1643 }
1644 }
1645
1646 /**
1647 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1648 * @cmd: command block we are dispatching.
1649 *
1650 * Return: nonzero return request was rejected and device's queue needs to be
1651 * plugged.
1652 */
1653 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1654 {
1655 struct Scsi_Host *host = cmd->device->host;
1656 int rtn = 0;
1657
1658 atomic_inc(&cmd->device->iorequest_cnt);
1659
1660 /* check if the device is still usable */
1661 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1662 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1663 * returns an immediate error upwards, and signals
1664 * that the device is no longer present */
1665 cmd->result = DID_NO_CONNECT << 16;
1666 goto done;
1667 }
1668
1669 /* Check to see if the scsi lld made this device blocked. */
1670 if (unlikely(scsi_device_blocked(cmd->device))) {
1671 /*
1672 * in blocked state, the command is just put back on
1673 * the device queue. The suspend state has already
1674 * blocked the queue so future requests should not
1675 * occur until the device transitions out of the
1676 * suspend state.
1677 */
1678 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1679 "queuecommand : device blocked\n"));
1680 return SCSI_MLQUEUE_DEVICE_BUSY;
1681 }
1682
1683 /* Store the LUN value in cmnd, if needed. */
1684 if (cmd->device->lun_in_cdb)
1685 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1686 (cmd->device->lun << 5 & 0xe0);
1687
1688 scsi_log_send(cmd);
1689
1690 /*
1691 * Before we queue this command, check if the command
1692 * length exceeds what the host adapter can handle.
1693 */
1694 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1695 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696 "queuecommand : command too long. "
1697 "cdb_size=%d host->max_cmd_len=%d\n",
1698 cmd->cmd_len, cmd->device->host->max_cmd_len));
1699 cmd->result = (DID_ABORT << 16);
1700 goto done;
1701 }
1702
1703 if (unlikely(host->shost_state == SHOST_DEL)) {
1704 cmd->result = (DID_NO_CONNECT << 16);
1705 goto done;
1706
1707 }
1708
1709 trace_scsi_dispatch_cmd_start(cmd);
1710 rtn = host->hostt->queuecommand(host, cmd);
1711 if (rtn) {
1712 trace_scsi_dispatch_cmd_error(cmd, rtn);
1713 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1714 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1715 rtn = SCSI_MLQUEUE_HOST_BUSY;
1716
1717 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718 "queuecommand : request rejected\n"));
1719 }
1720
1721 return rtn;
1722 done:
1723 cmd->scsi_done(cmd);
1724 return 0;
1725 }
1726
1727 /**
1728 * scsi_done - Invoke completion on finished SCSI command.
1729 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1730 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1731 *
1732 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1733 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1734 * calls blk_complete_request() for further processing.
1735 *
1736 * This function is interrupt context safe.
1737 */
1738 static void scsi_done(struct scsi_cmnd *cmd)
1739 {
1740 trace_scsi_dispatch_cmd_done(cmd);
1741 blk_complete_request(cmd->request);
1742 }
1743
1744 /*
1745 * Function: scsi_request_fn()
1746 *
1747 * Purpose: Main strategy routine for SCSI.
1748 *
1749 * Arguments: q - Pointer to actual queue.
1750 *
1751 * Returns: Nothing
1752 *
1753 * Lock status: request queue lock assumed to be held when called.
1754 *
1755 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1756 * protection for ZBC disks.
1757 */
1758 static void scsi_request_fn(struct request_queue *q)
1759 __releases(q->queue_lock)
1760 __acquires(q->queue_lock)
1761 {
1762 struct scsi_device *sdev = q->queuedata;
1763 struct Scsi_Host *shost;
1764 struct scsi_cmnd *cmd;
1765 struct request *req;
1766
1767 /*
1768 * To start with, we keep looping until the queue is empty, or until
1769 * the host is no longer able to accept any more requests.
1770 */
1771 shost = sdev->host;
1772 for (;;) {
1773 int rtn;
1774 /*
1775 * get next queueable request. We do this early to make sure
1776 * that the request is fully prepared even if we cannot
1777 * accept it.
1778 */
1779 req = blk_peek_request(q);
1780 if (!req)
1781 break;
1782
1783 if (unlikely(!scsi_device_online(sdev))) {
1784 sdev_printk(KERN_ERR, sdev,
1785 "rejecting I/O to offline device\n");
1786 scsi_kill_request(req, q);
1787 continue;
1788 }
1789
1790 if (!scsi_dev_queue_ready(q, sdev))
1791 break;
1792
1793 /*
1794 * Remove the request from the request list.
1795 */
1796 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1797 blk_start_request(req);
1798
1799 spin_unlock_irq(q->queue_lock);
1800 cmd = blk_mq_rq_to_pdu(req);
1801 if (cmd != req->special) {
1802 printk(KERN_CRIT "impossible request in %s.\n"
1803 "please mail a stack trace to "
1804 "linux-scsi@vger.kernel.org\n",
1805 __func__);
1806 blk_dump_rq_flags(req, "foo");
1807 BUG();
1808 }
1809
1810 /*
1811 * We hit this when the driver is using a host wide
1812 * tag map. For device level tag maps the queue_depth check
1813 * in the device ready fn would prevent us from trying
1814 * to allocate a tag. Since the map is a shared host resource
1815 * we add the dev to the starved list so it eventually gets
1816 * a run when a tag is freed.
1817 */
1818 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1819 spin_lock_irq(shost->host_lock);
1820 if (list_empty(&sdev->starved_entry))
1821 list_add_tail(&sdev->starved_entry,
1822 &shost->starved_list);
1823 spin_unlock_irq(shost->host_lock);
1824 goto not_ready;
1825 }
1826
1827 if (!scsi_target_queue_ready(shost, sdev))
1828 goto not_ready;
1829
1830 if (!scsi_host_queue_ready(q, shost, sdev))
1831 goto host_not_ready;
1832
1833 if (sdev->simple_tags)
1834 cmd->flags |= SCMD_TAGGED;
1835 else
1836 cmd->flags &= ~SCMD_TAGGED;
1837
1838 /*
1839 * Finally, initialize any error handling parameters, and set up
1840 * the timers for timeouts.
1841 */
1842 scsi_init_cmd_errh(cmd);
1843
1844 /*
1845 * Dispatch the command to the low-level driver.
1846 */
1847 cmd->scsi_done = scsi_done;
1848 rtn = scsi_dispatch_cmd(cmd);
1849 if (rtn) {
1850 scsi_queue_insert(cmd, rtn);
1851 spin_lock_irq(q->queue_lock);
1852 goto out_delay;
1853 }
1854 spin_lock_irq(q->queue_lock);
1855 }
1856
1857 return;
1858
1859 host_not_ready:
1860 if (scsi_target(sdev)->can_queue > 0)
1861 atomic_dec(&scsi_target(sdev)->target_busy);
1862 not_ready:
1863 /*
1864 * lock q, handle tag, requeue req, and decrement device_busy. We
1865 * must return with queue_lock held.
1866 *
1867 * Decrementing device_busy without checking it is OK, as all such
1868 * cases (host limits or settings) should run the queue at some
1869 * later time.
1870 */
1871 spin_lock_irq(q->queue_lock);
1872 blk_requeue_request(q, req);
1873 atomic_dec(&sdev->device_busy);
1874 out_delay:
1875 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1876 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1877 }
1878
1879 static inline blk_status_t prep_to_mq(int ret)
1880 {
1881 switch (ret) {
1882 case BLKPREP_OK:
1883 return BLK_STS_OK;
1884 case BLKPREP_DEFER:
1885 return BLK_STS_RESOURCE;
1886 default:
1887 return BLK_STS_IOERR;
1888 }
1889 }
1890
1891 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1892 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1893 {
1894 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1895 sizeof(struct scatterlist);
1896 }
1897
1898 static int scsi_mq_prep_fn(struct request *req)
1899 {
1900 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901 struct scsi_device *sdev = req->q->queuedata;
1902 struct Scsi_Host *shost = sdev->host;
1903 struct scatterlist *sg;
1904
1905 scsi_init_command(sdev, cmd);
1906
1907 req->special = cmd;
1908
1909 cmd->request = req;
1910
1911 cmd->tag = req->tag;
1912 cmd->prot_op = SCSI_PROT_NORMAL;
1913
1914 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1915 cmd->sdb.table.sgl = sg;
1916
1917 if (scsi_host_get_prot(shost)) {
1918 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1919
1920 cmd->prot_sdb->table.sgl =
1921 (struct scatterlist *)(cmd->prot_sdb + 1);
1922 }
1923
1924 if (blk_bidi_rq(req)) {
1925 struct request *next_rq = req->next_rq;
1926 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1927
1928 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1929 bidi_sdb->table.sgl =
1930 (struct scatterlist *)(bidi_sdb + 1);
1931
1932 next_rq->special = bidi_sdb;
1933 }
1934
1935 blk_mq_start_request(req);
1936
1937 return scsi_setup_cmnd(sdev, req);
1938 }
1939
1940 static void scsi_mq_done(struct scsi_cmnd *cmd)
1941 {
1942 trace_scsi_dispatch_cmd_done(cmd);
1943 blk_mq_complete_request(cmd->request);
1944 }
1945
1946 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1947 {
1948 struct request_queue *q = hctx->queue;
1949 struct scsi_device *sdev = q->queuedata;
1950
1951 atomic_dec(&sdev->device_busy);
1952 put_device(&sdev->sdev_gendev);
1953 }
1954
1955 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1956 {
1957 struct request_queue *q = hctx->queue;
1958 struct scsi_device *sdev = q->queuedata;
1959
1960 if (!get_device(&sdev->sdev_gendev))
1961 goto out;
1962 if (!scsi_dev_queue_ready(q, sdev))
1963 goto out_put_device;
1964
1965 return true;
1966
1967 out_put_device:
1968 put_device(&sdev->sdev_gendev);
1969 out:
1970 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1971 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1972 return false;
1973 }
1974
1975 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1976 const struct blk_mq_queue_data *bd)
1977 {
1978 struct request *req = bd->rq;
1979 struct request_queue *q = req->q;
1980 struct scsi_device *sdev = q->queuedata;
1981 struct Scsi_Host *shost = sdev->host;
1982 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1983 blk_status_t ret;
1984 int reason;
1985
1986 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1987 if (ret != BLK_STS_OK)
1988 goto out_put_budget;
1989
1990 ret = BLK_STS_RESOURCE;
1991 if (!scsi_target_queue_ready(shost, sdev))
1992 goto out_put_budget;
1993 if (!scsi_host_queue_ready(q, shost, sdev))
1994 goto out_dec_target_busy;
1995
1996 if (!(req->rq_flags & RQF_DONTPREP)) {
1997 ret = prep_to_mq(scsi_mq_prep_fn(req));
1998 if (ret != BLK_STS_OK)
1999 goto out_dec_host_busy;
2000 req->rq_flags |= RQF_DONTPREP;
2001 } else {
2002 blk_mq_start_request(req);
2003 }
2004
2005 if (sdev->simple_tags)
2006 cmd->flags |= SCMD_TAGGED;
2007 else
2008 cmd->flags &= ~SCMD_TAGGED;
2009
2010 scsi_init_cmd_errh(cmd);
2011 cmd->scsi_done = scsi_mq_done;
2012
2013 reason = scsi_dispatch_cmd(cmd);
2014 if (reason) {
2015 scsi_set_blocked(cmd, reason);
2016 ret = BLK_STS_RESOURCE;
2017 goto out_dec_host_busy;
2018 }
2019
2020 return BLK_STS_OK;
2021
2022 out_dec_host_busy:
2023 atomic_dec(&shost->host_busy);
2024 out_dec_target_busy:
2025 if (scsi_target(sdev)->can_queue > 0)
2026 atomic_dec(&scsi_target(sdev)->target_busy);
2027 out_put_budget:
2028 scsi_mq_put_budget(hctx);
2029 switch (ret) {
2030 case BLK_STS_OK:
2031 break;
2032 case BLK_STS_RESOURCE:
2033 if (atomic_read(&sdev->device_busy) == 0 &&
2034 !scsi_device_blocked(sdev))
2035 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2036 break;
2037 default:
2038 /*
2039 * Make sure to release all allocated ressources when
2040 * we hit an error, as we will never see this command
2041 * again.
2042 */
2043 if (req->rq_flags & RQF_DONTPREP)
2044 scsi_mq_uninit_cmd(cmd);
2045 break;
2046 }
2047 return ret;
2048 }
2049
2050 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2051 bool reserved)
2052 {
2053 if (reserved)
2054 return BLK_EH_RESET_TIMER;
2055 return scsi_times_out(req);
2056 }
2057
2058 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2059 unsigned int hctx_idx, unsigned int numa_node)
2060 {
2061 struct Scsi_Host *shost = set->driver_data;
2062 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2063 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2064 struct scatterlist *sg;
2065
2066 if (unchecked_isa_dma)
2067 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2068 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2069 GFP_KERNEL, numa_node);
2070 if (!cmd->sense_buffer)
2071 return -ENOMEM;
2072 cmd->req.sense = cmd->sense_buffer;
2073
2074 if (scsi_host_get_prot(shost)) {
2075 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2076 shost->hostt->cmd_size;
2077 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2078 }
2079
2080 return 0;
2081 }
2082
2083 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2084 unsigned int hctx_idx)
2085 {
2086 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2087
2088 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2089 cmd->sense_buffer);
2090 }
2091
2092 static int scsi_map_queues(struct blk_mq_tag_set *set)
2093 {
2094 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2095
2096 if (shost->hostt->map_queues)
2097 return shost->hostt->map_queues(shost);
2098 return blk_mq_map_queues(set);
2099 }
2100
2101 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2102 {
2103 struct device *host_dev;
2104 u64 bounce_limit = 0xffffffff;
2105
2106 if (shost->unchecked_isa_dma)
2107 return BLK_BOUNCE_ISA;
2108 /*
2109 * Platforms with virtual-DMA translation
2110 * hardware have no practical limit.
2111 */
2112 if (!PCI_DMA_BUS_IS_PHYS)
2113 return BLK_BOUNCE_ANY;
2114
2115 host_dev = scsi_get_device(shost);
2116 if (host_dev && host_dev->dma_mask)
2117 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2118
2119 return bounce_limit;
2120 }
2121
2122 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2123 {
2124 struct device *dev = shost->dma_dev;
2125
2126 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2127
2128 /*
2129 * this limit is imposed by hardware restrictions
2130 */
2131 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2132 SG_MAX_SEGMENTS));
2133
2134 if (scsi_host_prot_dma(shost)) {
2135 shost->sg_prot_tablesize =
2136 min_not_zero(shost->sg_prot_tablesize,
2137 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2138 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2139 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2140 }
2141
2142 blk_queue_max_hw_sectors(q, shost->max_sectors);
2143 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2144 blk_queue_segment_boundary(q, shost->dma_boundary);
2145 dma_set_seg_boundary(dev, shost->dma_boundary);
2146
2147 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2148
2149 if (!shost->use_clustering)
2150 q->limits.cluster = 0;
2151
2152 /*
2153 * Set a reasonable default alignment: The larger of 32-byte (dword),
2154 * which is a common minimum for HBAs, and the minimum DMA alignment,
2155 * which is set by the platform.
2156 *
2157 * Devices that require a bigger alignment can increase it later.
2158 */
2159 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2160 }
2161 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2162
2163 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2164 gfp_t gfp)
2165 {
2166 struct Scsi_Host *shost = q->rq_alloc_data;
2167 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2168 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2169
2170 memset(cmd, 0, sizeof(*cmd));
2171
2172 if (unchecked_isa_dma)
2173 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2174 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2175 NUMA_NO_NODE);
2176 if (!cmd->sense_buffer)
2177 goto fail;
2178 cmd->req.sense = cmd->sense_buffer;
2179
2180 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2181 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2182 if (!cmd->prot_sdb)
2183 goto fail_free_sense;
2184 }
2185
2186 return 0;
2187
2188 fail_free_sense:
2189 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2190 fail:
2191 return -ENOMEM;
2192 }
2193
2194 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2195 {
2196 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2197
2198 if (cmd->prot_sdb)
2199 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2200 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2201 cmd->sense_buffer);
2202 }
2203
2204 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2205 {
2206 struct Scsi_Host *shost = sdev->host;
2207 struct request_queue *q;
2208
2209 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2210 if (!q)
2211 return NULL;
2212 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2213 q->rq_alloc_data = shost;
2214 q->request_fn = scsi_request_fn;
2215 q->init_rq_fn = scsi_old_init_rq;
2216 q->exit_rq_fn = scsi_old_exit_rq;
2217 q->initialize_rq_fn = scsi_initialize_rq;
2218
2219 if (blk_init_allocated_queue(q) < 0) {
2220 blk_cleanup_queue(q);
2221 return NULL;
2222 }
2223
2224 __scsi_init_queue(shost, q);
2225 blk_queue_prep_rq(q, scsi_prep_fn);
2226 blk_queue_unprep_rq(q, scsi_unprep_fn);
2227 blk_queue_softirq_done(q, scsi_softirq_done);
2228 blk_queue_rq_timed_out(q, scsi_times_out);
2229 blk_queue_lld_busy(q, scsi_lld_busy);
2230 return q;
2231 }
2232
2233 static const struct blk_mq_ops scsi_mq_ops = {
2234 .get_budget = scsi_mq_get_budget,
2235 .put_budget = scsi_mq_put_budget,
2236 .queue_rq = scsi_queue_rq,
2237 .complete = scsi_softirq_done,
2238 .timeout = scsi_timeout,
2239 #ifdef CONFIG_BLK_DEBUG_FS
2240 .show_rq = scsi_show_rq,
2241 #endif
2242 .init_request = scsi_mq_init_request,
2243 .exit_request = scsi_mq_exit_request,
2244 .initialize_rq_fn = scsi_initialize_rq,
2245 .map_queues = scsi_map_queues,
2246 };
2247
2248 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2249 {
2250 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2251 if (IS_ERR(sdev->request_queue))
2252 return NULL;
2253
2254 sdev->request_queue->queuedata = sdev;
2255 __scsi_init_queue(sdev->host, sdev->request_queue);
2256 return sdev->request_queue;
2257 }
2258
2259 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2260 {
2261 unsigned int cmd_size, sgl_size;
2262
2263 sgl_size = scsi_mq_sgl_size(shost);
2264 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2265 if (scsi_host_get_prot(shost))
2266 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2267
2268 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2269 shost->tag_set.ops = &scsi_mq_ops;
2270 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2271 shost->tag_set.queue_depth = shost->can_queue;
2272 shost->tag_set.cmd_size = cmd_size;
2273 shost->tag_set.numa_node = NUMA_NO_NODE;
2274 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2275 shost->tag_set.flags |=
2276 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2277 shost->tag_set.driver_data = shost;
2278
2279 return blk_mq_alloc_tag_set(&shost->tag_set);
2280 }
2281
2282 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2283 {
2284 blk_mq_free_tag_set(&shost->tag_set);
2285 }
2286
2287 /**
2288 * scsi_device_from_queue - return sdev associated with a request_queue
2289 * @q: The request queue to return the sdev from
2290 *
2291 * Return the sdev associated with a request queue or NULL if the
2292 * request_queue does not reference a SCSI device.
2293 */
2294 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2295 {
2296 struct scsi_device *sdev = NULL;
2297
2298 if (q->mq_ops) {
2299 if (q->mq_ops == &scsi_mq_ops)
2300 sdev = q->queuedata;
2301 } else if (q->request_fn == scsi_request_fn)
2302 sdev = q->queuedata;
2303 if (!sdev || !get_device(&sdev->sdev_gendev))
2304 sdev = NULL;
2305
2306 return sdev;
2307 }
2308 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2309
2310 /*
2311 * Function: scsi_block_requests()
2312 *
2313 * Purpose: Utility function used by low-level drivers to prevent further
2314 * commands from being queued to the device.
2315 *
2316 * Arguments: shost - Host in question
2317 *
2318 * Returns: Nothing
2319 *
2320 * Lock status: No locks are assumed held.
2321 *
2322 * Notes: There is no timer nor any other means by which the requests
2323 * get unblocked other than the low-level driver calling
2324 * scsi_unblock_requests().
2325 */
2326 void scsi_block_requests(struct Scsi_Host *shost)
2327 {
2328 shost->host_self_blocked = 1;
2329 }
2330 EXPORT_SYMBOL(scsi_block_requests);
2331
2332 /*
2333 * Function: scsi_unblock_requests()
2334 *
2335 * Purpose: Utility function used by low-level drivers to allow further
2336 * commands from being queued to the device.
2337 *
2338 * Arguments: shost - Host in question
2339 *
2340 * Returns: Nothing
2341 *
2342 * Lock status: No locks are assumed held.
2343 *
2344 * Notes: There is no timer nor any other means by which the requests
2345 * get unblocked other than the low-level driver calling
2346 * scsi_unblock_requests().
2347 *
2348 * This is done as an API function so that changes to the
2349 * internals of the scsi mid-layer won't require wholesale
2350 * changes to drivers that use this feature.
2351 */
2352 void scsi_unblock_requests(struct Scsi_Host *shost)
2353 {
2354 shost->host_self_blocked = 0;
2355 scsi_run_host_queues(shost);
2356 }
2357 EXPORT_SYMBOL(scsi_unblock_requests);
2358
2359 int __init scsi_init_queue(void)
2360 {
2361 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2362 sizeof(struct scsi_data_buffer),
2363 0, 0, NULL);
2364 if (!scsi_sdb_cache) {
2365 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2366 return -ENOMEM;
2367 }
2368
2369 return 0;
2370 }
2371
2372 void scsi_exit_queue(void)
2373 {
2374 kmem_cache_destroy(scsi_sense_cache);
2375 kmem_cache_destroy(scsi_sense_isadma_cache);
2376 kmem_cache_destroy(scsi_sdb_cache);
2377 }
2378
2379 /**
2380 * scsi_mode_select - issue a mode select
2381 * @sdev: SCSI device to be queried
2382 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2383 * @sp: Save page bit (0 == don't save, 1 == save)
2384 * @modepage: mode page being requested
2385 * @buffer: request buffer (may not be smaller than eight bytes)
2386 * @len: length of request buffer.
2387 * @timeout: command timeout
2388 * @retries: number of retries before failing
2389 * @data: returns a structure abstracting the mode header data
2390 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2391 * must be SCSI_SENSE_BUFFERSIZE big.
2392 *
2393 * Returns zero if successful; negative error number or scsi
2394 * status on error
2395 *
2396 */
2397 int
2398 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2399 unsigned char *buffer, int len, int timeout, int retries,
2400 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2401 {
2402 unsigned char cmd[10];
2403 unsigned char *real_buffer;
2404 int ret;
2405
2406 memset(cmd, 0, sizeof(cmd));
2407 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2408
2409 if (sdev->use_10_for_ms) {
2410 if (len > 65535)
2411 return -EINVAL;
2412 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2413 if (!real_buffer)
2414 return -ENOMEM;
2415 memcpy(real_buffer + 8, buffer, len);
2416 len += 8;
2417 real_buffer[0] = 0;
2418 real_buffer[1] = 0;
2419 real_buffer[2] = data->medium_type;
2420 real_buffer[3] = data->device_specific;
2421 real_buffer[4] = data->longlba ? 0x01 : 0;
2422 real_buffer[5] = 0;
2423 real_buffer[6] = data->block_descriptor_length >> 8;
2424 real_buffer[7] = data->block_descriptor_length;
2425
2426 cmd[0] = MODE_SELECT_10;
2427 cmd[7] = len >> 8;
2428 cmd[8] = len;
2429 } else {
2430 if (len > 255 || data->block_descriptor_length > 255 ||
2431 data->longlba)
2432 return -EINVAL;
2433
2434 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2435 if (!real_buffer)
2436 return -ENOMEM;
2437 memcpy(real_buffer + 4, buffer, len);
2438 len += 4;
2439 real_buffer[0] = 0;
2440 real_buffer[1] = data->medium_type;
2441 real_buffer[2] = data->device_specific;
2442 real_buffer[3] = data->block_descriptor_length;
2443
2444
2445 cmd[0] = MODE_SELECT;
2446 cmd[4] = len;
2447 }
2448
2449 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2450 sshdr, timeout, retries, NULL);
2451 kfree(real_buffer);
2452 return ret;
2453 }
2454 EXPORT_SYMBOL_GPL(scsi_mode_select);
2455
2456 /**
2457 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2458 * @sdev: SCSI device to be queried
2459 * @dbd: set if mode sense will allow block descriptors to be returned
2460 * @modepage: mode page being requested
2461 * @buffer: request buffer (may not be smaller than eight bytes)
2462 * @len: length of request buffer.
2463 * @timeout: command timeout
2464 * @retries: number of retries before failing
2465 * @data: returns a structure abstracting the mode header data
2466 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2467 * must be SCSI_SENSE_BUFFERSIZE big.
2468 *
2469 * Returns zero if unsuccessful, or the header offset (either 4
2470 * or 8 depending on whether a six or ten byte command was
2471 * issued) if successful.
2472 */
2473 int
2474 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2475 unsigned char *buffer, int len, int timeout, int retries,
2476 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2477 {
2478 unsigned char cmd[12];
2479 int use_10_for_ms;
2480 int header_length;
2481 int result, retry_count = retries;
2482 struct scsi_sense_hdr my_sshdr;
2483
2484 memset(data, 0, sizeof(*data));
2485 memset(&cmd[0], 0, 12);
2486 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2487 cmd[2] = modepage;
2488
2489 /* caller might not be interested in sense, but we need it */
2490 if (!sshdr)
2491 sshdr = &my_sshdr;
2492
2493 retry:
2494 use_10_for_ms = sdev->use_10_for_ms;
2495
2496 if (use_10_for_ms) {
2497 if (len < 8)
2498 len = 8;
2499
2500 cmd[0] = MODE_SENSE_10;
2501 cmd[8] = len;
2502 header_length = 8;
2503 } else {
2504 if (len < 4)
2505 len = 4;
2506
2507 cmd[0] = MODE_SENSE;
2508 cmd[4] = len;
2509 header_length = 4;
2510 }
2511
2512 memset(buffer, 0, len);
2513
2514 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2515 sshdr, timeout, retries, NULL);
2516
2517 /* This code looks awful: what it's doing is making sure an
2518 * ILLEGAL REQUEST sense return identifies the actual command
2519 * byte as the problem. MODE_SENSE commands can return
2520 * ILLEGAL REQUEST if the code page isn't supported */
2521
2522 if (use_10_for_ms && !scsi_status_is_good(result) &&
2523 (driver_byte(result) & DRIVER_SENSE)) {
2524 if (scsi_sense_valid(sshdr)) {
2525 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2526 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2527 /*
2528 * Invalid command operation code
2529 */
2530 sdev->use_10_for_ms = 0;
2531 goto retry;
2532 }
2533 }
2534 }
2535
2536 if(scsi_status_is_good(result)) {
2537 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2538 (modepage == 6 || modepage == 8))) {
2539 /* Initio breakage? */
2540 header_length = 0;
2541 data->length = 13;
2542 data->medium_type = 0;
2543 data->device_specific = 0;
2544 data->longlba = 0;
2545 data->block_descriptor_length = 0;
2546 } else if(use_10_for_ms) {
2547 data->length = buffer[0]*256 + buffer[1] + 2;
2548 data->medium_type = buffer[2];
2549 data->device_specific = buffer[3];
2550 data->longlba = buffer[4] & 0x01;
2551 data->block_descriptor_length = buffer[6]*256
2552 + buffer[7];
2553 } else {
2554 data->length = buffer[0] + 1;
2555 data->medium_type = buffer[1];
2556 data->device_specific = buffer[2];
2557 data->block_descriptor_length = buffer[3];
2558 }
2559 data->header_length = header_length;
2560 } else if ((status_byte(result) == CHECK_CONDITION) &&
2561 scsi_sense_valid(sshdr) &&
2562 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2563 retry_count--;
2564 goto retry;
2565 }
2566
2567 return result;
2568 }
2569 EXPORT_SYMBOL(scsi_mode_sense);
2570
2571 /**
2572 * scsi_test_unit_ready - test if unit is ready
2573 * @sdev: scsi device to change the state of.
2574 * @timeout: command timeout
2575 * @retries: number of retries before failing
2576 * @sshdr: outpout pointer for decoded sense information.
2577 *
2578 * Returns zero if unsuccessful or an error if TUR failed. For
2579 * removable media, UNIT_ATTENTION sets ->changed flag.
2580 **/
2581 int
2582 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2583 struct scsi_sense_hdr *sshdr)
2584 {
2585 char cmd[] = {
2586 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2587 };
2588 int result;
2589
2590 /* try to eat the UNIT_ATTENTION if there are enough retries */
2591 do {
2592 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2593 timeout, retries, NULL);
2594 if (sdev->removable && scsi_sense_valid(sshdr) &&
2595 sshdr->sense_key == UNIT_ATTENTION)
2596 sdev->changed = 1;
2597 } while (scsi_sense_valid(sshdr) &&
2598 sshdr->sense_key == UNIT_ATTENTION && --retries);
2599
2600 return result;
2601 }
2602 EXPORT_SYMBOL(scsi_test_unit_ready);
2603
2604 /**
2605 * scsi_device_set_state - Take the given device through the device state model.
2606 * @sdev: scsi device to change the state of.
2607 * @state: state to change to.
2608 *
2609 * Returns zero if successful or an error if the requested
2610 * transition is illegal.
2611 */
2612 int
2613 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2614 {
2615 enum scsi_device_state oldstate = sdev->sdev_state;
2616
2617 if (state == oldstate)
2618 return 0;
2619
2620 switch (state) {
2621 case SDEV_CREATED:
2622 switch (oldstate) {
2623 case SDEV_CREATED_BLOCK:
2624 break;
2625 default:
2626 goto illegal;
2627 }
2628 break;
2629
2630 case SDEV_RUNNING:
2631 switch (oldstate) {
2632 case SDEV_CREATED:
2633 case SDEV_OFFLINE:
2634 case SDEV_TRANSPORT_OFFLINE:
2635 case SDEV_QUIESCE:
2636 case SDEV_BLOCK:
2637 break;
2638 default:
2639 goto illegal;
2640 }
2641 break;
2642
2643 case SDEV_QUIESCE:
2644 switch (oldstate) {
2645 case SDEV_RUNNING:
2646 case SDEV_OFFLINE:
2647 case SDEV_TRANSPORT_OFFLINE:
2648 break;
2649 default:
2650 goto illegal;
2651 }
2652 break;
2653
2654 case SDEV_OFFLINE:
2655 case SDEV_TRANSPORT_OFFLINE:
2656 switch (oldstate) {
2657 case SDEV_CREATED:
2658 case SDEV_RUNNING:
2659 case SDEV_QUIESCE:
2660 case SDEV_BLOCK:
2661 break;
2662 default:
2663 goto illegal;
2664 }
2665 break;
2666
2667 case SDEV_BLOCK:
2668 switch (oldstate) {
2669 case SDEV_RUNNING:
2670 case SDEV_CREATED_BLOCK:
2671 break;
2672 default:
2673 goto illegal;
2674 }
2675 break;
2676
2677 case SDEV_CREATED_BLOCK:
2678 switch (oldstate) {
2679 case SDEV_CREATED:
2680 break;
2681 default:
2682 goto illegal;
2683 }
2684 break;
2685
2686 case SDEV_CANCEL:
2687 switch (oldstate) {
2688 case SDEV_CREATED:
2689 case SDEV_RUNNING:
2690 case SDEV_QUIESCE:
2691 case SDEV_OFFLINE:
2692 case SDEV_TRANSPORT_OFFLINE:
2693 break;
2694 default:
2695 goto illegal;
2696 }
2697 break;
2698
2699 case SDEV_DEL:
2700 switch (oldstate) {
2701 case SDEV_CREATED:
2702 case SDEV_RUNNING:
2703 case SDEV_OFFLINE:
2704 case SDEV_TRANSPORT_OFFLINE:
2705 case SDEV_CANCEL:
2706 case SDEV_BLOCK:
2707 case SDEV_CREATED_BLOCK:
2708 break;
2709 default:
2710 goto illegal;
2711 }
2712 break;
2713
2714 }
2715 sdev->sdev_state = state;
2716 return 0;
2717
2718 illegal:
2719 SCSI_LOG_ERROR_RECOVERY(1,
2720 sdev_printk(KERN_ERR, sdev,
2721 "Illegal state transition %s->%s",
2722 scsi_device_state_name(oldstate),
2723 scsi_device_state_name(state))
2724 );
2725 return -EINVAL;
2726 }
2727 EXPORT_SYMBOL(scsi_device_set_state);
2728
2729 /**
2730 * sdev_evt_emit - emit a single SCSI device uevent
2731 * @sdev: associated SCSI device
2732 * @evt: event to emit
2733 *
2734 * Send a single uevent (scsi_event) to the associated scsi_device.
2735 */
2736 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2737 {
2738 int idx = 0;
2739 char *envp[3];
2740
2741 switch (evt->evt_type) {
2742 case SDEV_EVT_MEDIA_CHANGE:
2743 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2744 break;
2745 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2746 scsi_rescan_device(&sdev->sdev_gendev);
2747 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2748 break;
2749 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2750 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2751 break;
2752 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2753 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2754 break;
2755 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2756 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2757 break;
2758 case SDEV_EVT_LUN_CHANGE_REPORTED:
2759 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2760 break;
2761 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2762 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2763 break;
2764 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2765 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2766 break;
2767 default:
2768 /* do nothing */
2769 break;
2770 }
2771
2772 envp[idx++] = NULL;
2773
2774 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2775 }
2776
2777 /**
2778 * sdev_evt_thread - send a uevent for each scsi event
2779 * @work: work struct for scsi_device
2780 *
2781 * Dispatch queued events to their associated scsi_device kobjects
2782 * as uevents.
2783 */
2784 void scsi_evt_thread(struct work_struct *work)
2785 {
2786 struct scsi_device *sdev;
2787 enum scsi_device_event evt_type;
2788 LIST_HEAD(event_list);
2789
2790 sdev = container_of(work, struct scsi_device, event_work);
2791
2792 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2793 if (test_and_clear_bit(evt_type, sdev->pending_events))
2794 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2795
2796 while (1) {
2797 struct scsi_event *evt;
2798 struct list_head *this, *tmp;
2799 unsigned long flags;
2800
2801 spin_lock_irqsave(&sdev->list_lock, flags);
2802 list_splice_init(&sdev->event_list, &event_list);
2803 spin_unlock_irqrestore(&sdev->list_lock, flags);
2804
2805 if (list_empty(&event_list))
2806 break;
2807
2808 list_for_each_safe(this, tmp, &event_list) {
2809 evt = list_entry(this, struct scsi_event, node);
2810 list_del(&evt->node);
2811 scsi_evt_emit(sdev, evt);
2812 kfree(evt);
2813 }
2814 }
2815 }
2816
2817 /**
2818 * sdev_evt_send - send asserted event to uevent thread
2819 * @sdev: scsi_device event occurred on
2820 * @evt: event to send
2821 *
2822 * Assert scsi device event asynchronously.
2823 */
2824 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2825 {
2826 unsigned long flags;
2827
2828 #if 0
2829 /* FIXME: currently this check eliminates all media change events
2830 * for polled devices. Need to update to discriminate between AN
2831 * and polled events */
2832 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2833 kfree(evt);
2834 return;
2835 }
2836 #endif
2837
2838 spin_lock_irqsave(&sdev->list_lock, flags);
2839 list_add_tail(&evt->node, &sdev->event_list);
2840 schedule_work(&sdev->event_work);
2841 spin_unlock_irqrestore(&sdev->list_lock, flags);
2842 }
2843 EXPORT_SYMBOL_GPL(sdev_evt_send);
2844
2845 /**
2846 * sdev_evt_alloc - allocate a new scsi event
2847 * @evt_type: type of event to allocate
2848 * @gfpflags: GFP flags for allocation
2849 *
2850 * Allocates and returns a new scsi_event.
2851 */
2852 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2853 gfp_t gfpflags)
2854 {
2855 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2856 if (!evt)
2857 return NULL;
2858
2859 evt->evt_type = evt_type;
2860 INIT_LIST_HEAD(&evt->node);
2861
2862 /* evt_type-specific initialization, if any */
2863 switch (evt_type) {
2864 case SDEV_EVT_MEDIA_CHANGE:
2865 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2866 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2867 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2868 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2869 case SDEV_EVT_LUN_CHANGE_REPORTED:
2870 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2871 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2872 default:
2873 /* do nothing */
2874 break;
2875 }
2876
2877 return evt;
2878 }
2879 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2880
2881 /**
2882 * sdev_evt_send_simple - send asserted event to uevent thread
2883 * @sdev: scsi_device event occurred on
2884 * @evt_type: type of event to send
2885 * @gfpflags: GFP flags for allocation
2886 *
2887 * Assert scsi device event asynchronously, given an event type.
2888 */
2889 void sdev_evt_send_simple(struct scsi_device *sdev,
2890 enum scsi_device_event evt_type, gfp_t gfpflags)
2891 {
2892 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2893 if (!evt) {
2894 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2895 evt_type);
2896 return;
2897 }
2898
2899 sdev_evt_send(sdev, evt);
2900 }
2901 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2902
2903 /**
2904 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2905 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2906 */
2907 static int scsi_request_fn_active(struct scsi_device *sdev)
2908 {
2909 struct request_queue *q = sdev->request_queue;
2910 int request_fn_active;
2911
2912 WARN_ON_ONCE(sdev->host->use_blk_mq);
2913
2914 spin_lock_irq(q->queue_lock);
2915 request_fn_active = q->request_fn_active;
2916 spin_unlock_irq(q->queue_lock);
2917
2918 return request_fn_active;
2919 }
2920
2921 /**
2922 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2923 * @sdev: SCSI device pointer.
2924 *
2925 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2926 * invoked from scsi_request_fn() have finished.
2927 */
2928 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2929 {
2930 WARN_ON_ONCE(sdev->host->use_blk_mq);
2931
2932 while (scsi_request_fn_active(sdev))
2933 msleep(20);
2934 }
2935
2936 /**
2937 * scsi_device_quiesce - Block user issued commands.
2938 * @sdev: scsi device to quiesce.
2939 *
2940 * This works by trying to transition to the SDEV_QUIESCE state
2941 * (which must be a legal transition). When the device is in this
2942 * state, only special requests will be accepted, all others will
2943 * be deferred. Since special requests may also be requeued requests,
2944 * a successful return doesn't guarantee the device will be
2945 * totally quiescent.
2946 *
2947 * Must be called with user context, may sleep.
2948 *
2949 * Returns zero if unsuccessful or an error if not.
2950 */
2951 int
2952 scsi_device_quiesce(struct scsi_device *sdev)
2953 {
2954 struct request_queue *q = sdev->request_queue;
2955 int err;
2956
2957 /*
2958 * It is allowed to call scsi_device_quiesce() multiple times from
2959 * the same context but concurrent scsi_device_quiesce() calls are
2960 * not allowed.
2961 */
2962 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2963
2964 blk_set_preempt_only(q);
2965
2966 blk_mq_freeze_queue(q);
2967 /*
2968 * Ensure that the effect of blk_set_preempt_only() will be visible
2969 * for percpu_ref_tryget() callers that occur after the queue
2970 * unfreeze even if the queue was already frozen before this function
2971 * was called. See also https://lwn.net/Articles/573497/.
2972 */
2973 synchronize_rcu();
2974 blk_mq_unfreeze_queue(q);
2975
2976 mutex_lock(&sdev->state_mutex);
2977 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2978 if (err == 0)
2979 sdev->quiesced_by = current;
2980 else
2981 blk_clear_preempt_only(q);
2982 mutex_unlock(&sdev->state_mutex);
2983
2984 return err;
2985 }
2986 EXPORT_SYMBOL(scsi_device_quiesce);
2987
2988 /**
2989 * scsi_device_resume - Restart user issued commands to a quiesced device.
2990 * @sdev: scsi device to resume.
2991 *
2992 * Moves the device from quiesced back to running and restarts the
2993 * queues.
2994 *
2995 * Must be called with user context, may sleep.
2996 */
2997 void scsi_device_resume(struct scsi_device *sdev)
2998 {
2999 /* check if the device state was mutated prior to resume, and if
3000 * so assume the state is being managed elsewhere (for example
3001 * device deleted during suspend)
3002 */
3003 mutex_lock(&sdev->state_mutex);
3004 WARN_ON_ONCE(!sdev->quiesced_by);
3005 sdev->quiesced_by = NULL;
3006 blk_clear_preempt_only(sdev->request_queue);
3007 if (sdev->sdev_state == SDEV_QUIESCE)
3008 scsi_device_set_state(sdev, SDEV_RUNNING);
3009 mutex_unlock(&sdev->state_mutex);
3010 }
3011 EXPORT_SYMBOL(scsi_device_resume);
3012
3013 static void
3014 device_quiesce_fn(struct scsi_device *sdev, void *data)
3015 {
3016 scsi_device_quiesce(sdev);
3017 }
3018
3019 void
3020 scsi_target_quiesce(struct scsi_target *starget)
3021 {
3022 starget_for_each_device(starget, NULL, device_quiesce_fn);
3023 }
3024 EXPORT_SYMBOL(scsi_target_quiesce);
3025
3026 static void
3027 device_resume_fn(struct scsi_device *sdev, void *data)
3028 {
3029 scsi_device_resume(sdev);
3030 }
3031
3032 void
3033 scsi_target_resume(struct scsi_target *starget)
3034 {
3035 starget_for_each_device(starget, NULL, device_resume_fn);
3036 }
3037 EXPORT_SYMBOL(scsi_target_resume);
3038
3039 /**
3040 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3041 * @sdev: device to block
3042 *
3043 * Pause SCSI command processing on the specified device. Does not sleep.
3044 *
3045 * Returns zero if successful or a negative error code upon failure.
3046 *
3047 * Notes:
3048 * This routine transitions the device to the SDEV_BLOCK state (which must be
3049 * a legal transition). When the device is in this state, command processing
3050 * is paused until the device leaves the SDEV_BLOCK state. See also
3051 * scsi_internal_device_unblock_nowait().
3052 */
3053 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3054 {
3055 struct request_queue *q = sdev->request_queue;
3056 unsigned long flags;
3057 int err = 0;
3058
3059 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3060 if (err) {
3061 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3062
3063 if (err)
3064 return err;
3065 }
3066
3067 /*
3068 * The device has transitioned to SDEV_BLOCK. Stop the
3069 * block layer from calling the midlayer with this device's
3070 * request queue.
3071 */
3072 if (q->mq_ops) {
3073 blk_mq_quiesce_queue_nowait(q);
3074 } else {
3075 spin_lock_irqsave(q->queue_lock, flags);
3076 blk_stop_queue(q);
3077 spin_unlock_irqrestore(q->queue_lock, flags);
3078 }
3079
3080 return 0;
3081 }
3082 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3083
3084 /**
3085 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3086 * @sdev: device to block
3087 *
3088 * Pause SCSI command processing on the specified device and wait until all
3089 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3090 *
3091 * Returns zero if successful or a negative error code upon failure.
3092 *
3093 * Note:
3094 * This routine transitions the device to the SDEV_BLOCK state (which must be
3095 * a legal transition). When the device is in this state, command processing
3096 * is paused until the device leaves the SDEV_BLOCK state. See also
3097 * scsi_internal_device_unblock().
3098 *
3099 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3100 * scsi_internal_device_block() has blocked a SCSI device and also
3101 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3102 */
3103 static int scsi_internal_device_block(struct scsi_device *sdev)
3104 {
3105 struct request_queue *q = sdev->request_queue;
3106 int err;
3107
3108 mutex_lock(&sdev->state_mutex);
3109 err = scsi_internal_device_block_nowait(sdev);
3110 if (err == 0) {
3111 if (q->mq_ops)
3112 blk_mq_quiesce_queue(q);
3113 else
3114 scsi_wait_for_queuecommand(sdev);
3115 }
3116 mutex_unlock(&sdev->state_mutex);
3117
3118 return err;
3119 }
3120
3121 void scsi_start_queue(struct scsi_device *sdev)
3122 {
3123 struct request_queue *q = sdev->request_queue;
3124 unsigned long flags;
3125
3126 if (q->mq_ops) {
3127 blk_mq_unquiesce_queue(q);
3128 } else {
3129 spin_lock_irqsave(q->queue_lock, flags);
3130 blk_start_queue(q);
3131 spin_unlock_irqrestore(q->queue_lock, flags);
3132 }
3133 }
3134
3135 /**
3136 * scsi_internal_device_unblock_nowait - resume a device after a block request
3137 * @sdev: device to resume
3138 * @new_state: state to set the device to after unblocking
3139 *
3140 * Restart the device queue for a previously suspended SCSI device. Does not
3141 * sleep.
3142 *
3143 * Returns zero if successful or a negative error code upon failure.
3144 *
3145 * Notes:
3146 * This routine transitions the device to the SDEV_RUNNING state or to one of
3147 * the offline states (which must be a legal transition) allowing the midlayer
3148 * to goose the queue for this device.
3149 */
3150 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3151 enum scsi_device_state new_state)
3152 {
3153 /*
3154 * Try to transition the scsi device to SDEV_RUNNING or one of the
3155 * offlined states and goose the device queue if successful.
3156 */
3157 switch (sdev->sdev_state) {
3158 case SDEV_BLOCK:
3159 case SDEV_TRANSPORT_OFFLINE:
3160 sdev->sdev_state = new_state;
3161 break;
3162 case SDEV_CREATED_BLOCK:
3163 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3164 new_state == SDEV_OFFLINE)
3165 sdev->sdev_state = new_state;
3166 else
3167 sdev->sdev_state = SDEV_CREATED;
3168 break;
3169 case SDEV_CANCEL:
3170 case SDEV_OFFLINE:
3171 break;
3172 default:
3173 return -EINVAL;
3174 }
3175 scsi_start_queue(sdev);
3176
3177 return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3180
3181 /**
3182 * scsi_internal_device_unblock - resume a device after a block request
3183 * @sdev: device to resume
3184 * @new_state: state to set the device to after unblocking
3185 *
3186 * Restart the device queue for a previously suspended SCSI device. May sleep.
3187 *
3188 * Returns zero if successful or a negative error code upon failure.
3189 *
3190 * Notes:
3191 * This routine transitions the device to the SDEV_RUNNING state or to one of
3192 * the offline states (which must be a legal transition) allowing the midlayer
3193 * to goose the queue for this device.
3194 */
3195 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3196 enum scsi_device_state new_state)
3197 {
3198 int ret;
3199
3200 mutex_lock(&sdev->state_mutex);
3201 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3202 mutex_unlock(&sdev->state_mutex);
3203
3204 return ret;
3205 }
3206
3207 static void
3208 device_block(struct scsi_device *sdev, void *data)
3209 {
3210 scsi_internal_device_block(sdev);
3211 }
3212
3213 static int
3214 target_block(struct device *dev, void *data)
3215 {
3216 if (scsi_is_target_device(dev))
3217 starget_for_each_device(to_scsi_target(dev), NULL,
3218 device_block);
3219 return 0;
3220 }
3221
3222 void
3223 scsi_target_block(struct device *dev)
3224 {
3225 if (scsi_is_target_device(dev))
3226 starget_for_each_device(to_scsi_target(dev), NULL,
3227 device_block);
3228 else
3229 device_for_each_child(dev, NULL, target_block);
3230 }
3231 EXPORT_SYMBOL_GPL(scsi_target_block);
3232
3233 static void
3234 device_unblock(struct scsi_device *sdev, void *data)
3235 {
3236 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3237 }
3238
3239 static int
3240 target_unblock(struct device *dev, void *data)
3241 {
3242 if (scsi_is_target_device(dev))
3243 starget_for_each_device(to_scsi_target(dev), data,
3244 device_unblock);
3245 return 0;
3246 }
3247
3248 void
3249 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3250 {
3251 if (scsi_is_target_device(dev))
3252 starget_for_each_device(to_scsi_target(dev), &new_state,
3253 device_unblock);
3254 else
3255 device_for_each_child(dev, &new_state, target_unblock);
3256 }
3257 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3258
3259 /**
3260 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3261 * @sgl: scatter-gather list
3262 * @sg_count: number of segments in sg
3263 * @offset: offset in bytes into sg, on return offset into the mapped area
3264 * @len: bytes to map, on return number of bytes mapped
3265 *
3266 * Returns virtual address of the start of the mapped page
3267 */
3268 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3269 size_t *offset, size_t *len)
3270 {
3271 int i;
3272 size_t sg_len = 0, len_complete = 0;
3273 struct scatterlist *sg;
3274 struct page *page;
3275
3276 WARN_ON(!irqs_disabled());
3277
3278 for_each_sg(sgl, sg, sg_count, i) {
3279 len_complete = sg_len; /* Complete sg-entries */
3280 sg_len += sg->length;
3281 if (sg_len > *offset)
3282 break;
3283 }
3284
3285 if (unlikely(i == sg_count)) {
3286 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3287 "elements %d\n",
3288 __func__, sg_len, *offset, sg_count);
3289 WARN_ON(1);
3290 return NULL;
3291 }
3292
3293 /* Offset starting from the beginning of first page in this sg-entry */
3294 *offset = *offset - len_complete + sg->offset;
3295
3296 /* Assumption: contiguous pages can be accessed as "page + i" */
3297 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3298 *offset &= ~PAGE_MASK;
3299
3300 /* Bytes in this sg-entry from *offset to the end of the page */
3301 sg_len = PAGE_SIZE - *offset;
3302 if (*len > sg_len)
3303 *len = sg_len;
3304
3305 return kmap_atomic(page);
3306 }
3307 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3308
3309 /**
3310 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3311 * @virt: virtual address to be unmapped
3312 */
3313 void scsi_kunmap_atomic_sg(void *virt)
3314 {
3315 kunmap_atomic(virt);
3316 }
3317 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3318
3319 void sdev_disable_disk_events(struct scsi_device *sdev)
3320 {
3321 atomic_inc(&sdev->disk_events_disable_depth);
3322 }
3323 EXPORT_SYMBOL(sdev_disable_disk_events);
3324
3325 void sdev_enable_disk_events(struct scsi_device *sdev)
3326 {
3327 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3328 return;
3329 atomic_dec(&sdev->disk_events_disable_depth);
3330 }
3331 EXPORT_SYMBOL(sdev_enable_disk_events);
3332
3333 /**
3334 * scsi_vpd_lun_id - return a unique device identification
3335 * @sdev: SCSI device
3336 * @id: buffer for the identification
3337 * @id_len: length of the buffer
3338 *
3339 * Copies a unique device identification into @id based
3340 * on the information in the VPD page 0x83 of the device.
3341 * The string will be formatted as a SCSI name string.
3342 *
3343 * Returns the length of the identification or error on failure.
3344 * If the identifier is longer than the supplied buffer the actual
3345 * identifier length is returned and the buffer is not zero-padded.
3346 */
3347 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3348 {
3349 u8 cur_id_type = 0xff;
3350 u8 cur_id_size = 0;
3351 const unsigned char *d, *cur_id_str;
3352 const struct scsi_vpd *vpd_pg83;
3353 int id_size = -EINVAL;
3354
3355 rcu_read_lock();
3356 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3357 if (!vpd_pg83) {
3358 rcu_read_unlock();
3359 return -ENXIO;
3360 }
3361
3362 /*
3363 * Look for the correct descriptor.
3364 * Order of preference for lun descriptor:
3365 * - SCSI name string
3366 * - NAA IEEE Registered Extended
3367 * - EUI-64 based 16-byte
3368 * - EUI-64 based 12-byte
3369 * - NAA IEEE Registered
3370 * - NAA IEEE Extended
3371 * - T10 Vendor ID
3372 * as longer descriptors reduce the likelyhood
3373 * of identification clashes.
3374 */
3375
3376 /* The id string must be at least 20 bytes + terminating NULL byte */
3377 if (id_len < 21) {
3378 rcu_read_unlock();
3379 return -EINVAL;
3380 }
3381
3382 memset(id, 0, id_len);
3383 d = vpd_pg83->data + 4;
3384 while (d < vpd_pg83->data + vpd_pg83->len) {
3385 /* Skip designators not referring to the LUN */
3386 if ((d[1] & 0x30) != 0x00)
3387 goto next_desig;
3388
3389 switch (d[1] & 0xf) {
3390 case 0x1:
3391 /* T10 Vendor ID */
3392 if (cur_id_size > d[3])
3393 break;
3394 /* Prefer anything */
3395 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3396 break;
3397 cur_id_size = d[3];
3398 if (cur_id_size + 4 > id_len)
3399 cur_id_size = id_len - 4;
3400 cur_id_str = d + 4;
3401 cur_id_type = d[1] & 0xf;
3402 id_size = snprintf(id, id_len, "t10.%*pE",
3403 cur_id_size, cur_id_str);
3404 break;
3405 case 0x2:
3406 /* EUI-64 */
3407 if (cur_id_size > d[3])
3408 break;
3409 /* Prefer NAA IEEE Registered Extended */
3410 if (cur_id_type == 0x3 &&
3411 cur_id_size == d[3])
3412 break;
3413 cur_id_size = d[3];
3414 cur_id_str = d + 4;
3415 cur_id_type = d[1] & 0xf;
3416 switch (cur_id_size) {
3417 case 8:
3418 id_size = snprintf(id, id_len,
3419 "eui.%8phN",
3420 cur_id_str);
3421 break;
3422 case 12:
3423 id_size = snprintf(id, id_len,
3424 "eui.%12phN",
3425 cur_id_str);
3426 break;
3427 case 16:
3428 id_size = snprintf(id, id_len,
3429 "eui.%16phN",
3430 cur_id_str);
3431 break;
3432 default:
3433 cur_id_size = 0;
3434 break;
3435 }
3436 break;
3437 case 0x3:
3438 /* NAA */
3439 if (cur_id_size > d[3])
3440 break;
3441 cur_id_size = d[3];
3442 cur_id_str = d + 4;
3443 cur_id_type = d[1] & 0xf;
3444 switch (cur_id_size) {
3445 case 8:
3446 id_size = snprintf(id, id_len,
3447 "naa.%8phN",
3448 cur_id_str);
3449 break;
3450 case 16:
3451 id_size = snprintf(id, id_len,
3452 "naa.%16phN",
3453 cur_id_str);
3454 break;
3455 default:
3456 cur_id_size = 0;
3457 break;
3458 }
3459 break;
3460 case 0x8:
3461 /* SCSI name string */
3462 if (cur_id_size + 4 > d[3])
3463 break;
3464 /* Prefer others for truncated descriptor */
3465 if (cur_id_size && d[3] > id_len)
3466 break;
3467 cur_id_size = id_size = d[3];
3468 cur_id_str = d + 4;
3469 cur_id_type = d[1] & 0xf;
3470 if (cur_id_size >= id_len)
3471 cur_id_size = id_len - 1;
3472 memcpy(id, cur_id_str, cur_id_size);
3473 /* Decrease priority for truncated descriptor */
3474 if (cur_id_size != id_size)
3475 cur_id_size = 6;
3476 break;
3477 default:
3478 break;
3479 }
3480 next_desig:
3481 d += d[3] + 4;
3482 }
3483 rcu_read_unlock();
3484
3485 return id_size;
3486 }
3487 EXPORT_SYMBOL(scsi_vpd_lun_id);
3488
3489 /*
3490 * scsi_vpd_tpg_id - return a target port group identifier
3491 * @sdev: SCSI device
3492 *
3493 * Returns the Target Port Group identifier from the information
3494 * froom VPD page 0x83 of the device.
3495 *
3496 * Returns the identifier or error on failure.
3497 */
3498 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3499 {
3500 const unsigned char *d;
3501 const struct scsi_vpd *vpd_pg83;
3502 int group_id = -EAGAIN, rel_port = -1;
3503
3504 rcu_read_lock();
3505 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3506 if (!vpd_pg83) {
3507 rcu_read_unlock();
3508 return -ENXIO;
3509 }
3510
3511 d = vpd_pg83->data + 4;
3512 while (d < vpd_pg83->data + vpd_pg83->len) {
3513 switch (d[1] & 0xf) {
3514 case 0x4:
3515 /* Relative target port */
3516 rel_port = get_unaligned_be16(&d[6]);
3517 break;
3518 case 0x5:
3519 /* Target port group */
3520 group_id = get_unaligned_be16(&d[6]);
3521 break;
3522 default:
3523 break;
3524 }
3525 d += d[3] + 4;
3526 }
3527 rcu_read_unlock();
3528
3529 if (group_id >= 0 && rel_id && rel_port != -1)
3530 *rel_id = rel_port;
3531
3532 return group_id;
3533 }
3534 EXPORT_SYMBOL(scsi_vpd_tpg_id);