]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
block: unify request timeout handling
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /*
95 * Function: scsi_queue_insert()
96 *
97 * Purpose: Insert a command in the midlevel queue.
98 *
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns: Nothing.
105 *
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
112 */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
119
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
122
123 /*
124 * Set the appropriate busy bit for the device/host.
125 *
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
128 *
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
135 */
136 if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 host->host_blocked = host->max_host_blocked;
138 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 device->device_blocked = device->max_device_blocked;
140
141 /*
142 * Decrement the counters, since these commands are no longer
143 * active on the host/device.
144 */
145 scsi_device_unbusy(device);
146
147 /*
148 * Requeue this command. It will go before all other commands
149 * that are already in the queue.
150 *
151 * NOTE: there is magic here about the way the queue is plugged if
152 * we have no outstanding commands.
153 *
154 * Although we *don't* plug the queue, we call the request
155 * function. The SCSI request function detects the blocked condition
156 * and plugs the queue appropriately.
157 */
158 spin_lock_irqsave(q->queue_lock, flags);
159 blk_requeue_request(q, cmd->request);
160 spin_unlock_irqrestore(q->queue_lock, flags);
161
162 scsi_run_queue(q);
163
164 return 0;
165 }
166
167 /**
168 * scsi_execute - insert request and wait for the result
169 * @sdev: scsi device
170 * @cmd: scsi command
171 * @data_direction: data direction
172 * @buffer: data buffer
173 * @bufflen: len of buffer
174 * @sense: optional sense buffer
175 * @timeout: request timeout in seconds
176 * @retries: number of times to retry request
177 * @flags: or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 struct request *req;
187 int write = (data_direction == DMA_TO_DEVICE);
188 int ret = DRIVER_ERROR << 24;
189
190 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
193 buffer, bufflen, __GFP_WAIT))
194 goto out;
195
196 req->cmd_len = COMMAND_SIZE(cmd[0]);
197 memcpy(req->cmd, cmd, req->cmd_len);
198 req->sense = sense;
199 req->sense_len = 0;
200 req->retries = retries;
201 req->timeout = timeout;
202 req->cmd_type = REQ_TYPE_BLOCK_PC;
203 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205 /*
206 * head injection *required* here otherwise quiesce won't work
207 */
208 blk_execute_rq(req->q, NULL, req, 1);
209
210 /*
211 * Some devices (USB mass-storage in particular) may transfer
212 * garbage data together with a residue indicating that the data
213 * is invalid. Prevent the garbage from being misinterpreted
214 * and prevent security leaks by zeroing out the excess data.
215 */
216 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
217 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
218
219 ret = req->errors;
220 out:
221 blk_put_request(req);
222
223 return ret;
224 }
225 EXPORT_SYMBOL(scsi_execute);
226
227
228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
229 int data_direction, void *buffer, unsigned bufflen,
230 struct scsi_sense_hdr *sshdr, int timeout, int retries)
231 {
232 char *sense = NULL;
233 int result;
234
235 if (sshdr) {
236 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
237 if (!sense)
238 return DRIVER_ERROR << 24;
239 }
240 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
241 sense, timeout, retries, 0);
242 if (sshdr)
243 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
244
245 kfree(sense);
246 return result;
247 }
248 EXPORT_SYMBOL(scsi_execute_req);
249
250 struct scsi_io_context {
251 void *data;
252 void (*done)(void *data, char *sense, int result, int resid);
253 char sense[SCSI_SENSE_BUFFERSIZE];
254 };
255
256 static struct kmem_cache *scsi_io_context_cache;
257
258 static void scsi_end_async(struct request *req, int uptodate)
259 {
260 struct scsi_io_context *sioc = req->end_io_data;
261
262 if (sioc->done)
263 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
264
265 kmem_cache_free(scsi_io_context_cache, sioc);
266 __blk_put_request(req->q, req);
267 }
268
269 static int scsi_merge_bio(struct request *rq, struct bio *bio)
270 {
271 struct request_queue *q = rq->q;
272
273 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
274 if (rq_data_dir(rq) == WRITE)
275 bio->bi_rw |= (1 << BIO_RW);
276 blk_queue_bounce(q, &bio);
277
278 return blk_rq_append_bio(q, rq, bio);
279 }
280
281 static void scsi_bi_endio(struct bio *bio, int error)
282 {
283 bio_put(bio);
284 }
285
286 /**
287 * scsi_req_map_sg - map a scatterlist into a request
288 * @rq: request to fill
289 * @sgl: scatterlist
290 * @nsegs: number of elements
291 * @bufflen: len of buffer
292 * @gfp: memory allocation flags
293 *
294 * scsi_req_map_sg maps a scatterlist into a request so that the
295 * request can be sent to the block layer. We do not trust the scatterlist
296 * sent to use, as some ULDs use that struct to only organize the pages.
297 */
298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
299 int nsegs, unsigned bufflen, gfp_t gfp)
300 {
301 struct request_queue *q = rq->q;
302 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
303 unsigned int data_len = bufflen, len, bytes, off;
304 struct scatterlist *sg;
305 struct page *page;
306 struct bio *bio = NULL;
307 int i, err, nr_vecs = 0;
308
309 for_each_sg(sgl, sg, nsegs, i) {
310 page = sg_page(sg);
311 off = sg->offset;
312 len = sg->length;
313
314 while (len > 0 && data_len > 0) {
315 /*
316 * sg sends a scatterlist that is larger than
317 * the data_len it wants transferred for certain
318 * IO sizes
319 */
320 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 bytes = min(bytes, data_len);
322
323 if (!bio) {
324 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325 nr_pages -= nr_vecs;
326
327 bio = bio_alloc(gfp, nr_vecs);
328 if (!bio) {
329 err = -ENOMEM;
330 goto free_bios;
331 }
332 bio->bi_end_io = scsi_bi_endio;
333 }
334
335 if (bio_add_pc_page(q, bio, page, bytes, off) !=
336 bytes) {
337 bio_put(bio);
338 err = -EINVAL;
339 goto free_bios;
340 }
341
342 if (bio->bi_vcnt >= nr_vecs) {
343 err = scsi_merge_bio(rq, bio);
344 if (err) {
345 bio_endio(bio, 0);
346 goto free_bios;
347 }
348 bio = NULL;
349 }
350
351 page++;
352 len -= bytes;
353 data_len -=bytes;
354 off = 0;
355 }
356 }
357
358 rq->buffer = rq->data = NULL;
359 rq->data_len = bufflen;
360 return 0;
361
362 free_bios:
363 while ((bio = rq->bio) != NULL) {
364 rq->bio = bio->bi_next;
365 /*
366 * call endio instead of bio_put incase it was bounced
367 */
368 bio_endio(bio, 0);
369 }
370
371 return err;
372 }
373
374 /**
375 * scsi_execute_async - insert request
376 * @sdev: scsi device
377 * @cmd: scsi command
378 * @cmd_len: length of scsi cdb
379 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
380 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
381 * @bufflen: len of buffer
382 * @use_sg: if buffer is a scatterlist this is the number of elements
383 * @timeout: request timeout in seconds
384 * @retries: number of times to retry request
385 * @privdata: data passed to done()
386 * @done: callback function when done
387 * @gfp: memory allocation flags
388 */
389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
390 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
391 int use_sg, int timeout, int retries, void *privdata,
392 void (*done)(void *, char *, int, int), gfp_t gfp)
393 {
394 struct request *req;
395 struct scsi_io_context *sioc;
396 int err = 0;
397 int write = (data_direction == DMA_TO_DEVICE);
398
399 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
400 if (!sioc)
401 return DRIVER_ERROR << 24;
402
403 req = blk_get_request(sdev->request_queue, write, gfp);
404 if (!req)
405 goto free_sense;
406 req->cmd_type = REQ_TYPE_BLOCK_PC;
407 req->cmd_flags |= REQ_QUIET;
408
409 if (use_sg)
410 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
411 else if (bufflen)
412 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
413
414 if (err)
415 goto free_req;
416
417 req->cmd_len = cmd_len;
418 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
419 memcpy(req->cmd, cmd, req->cmd_len);
420 req->sense = sioc->sense;
421 req->sense_len = 0;
422 req->timeout = timeout;
423 req->retries = retries;
424 req->end_io_data = sioc;
425
426 sioc->data = privdata;
427 sioc->done = done;
428
429 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
430 return 0;
431
432 free_req:
433 blk_put_request(req);
434 free_sense:
435 kmem_cache_free(scsi_io_context_cache, sioc);
436 return DRIVER_ERROR << 24;
437 }
438 EXPORT_SYMBOL_GPL(scsi_execute_async);
439
440 /*
441 * Function: scsi_init_cmd_errh()
442 *
443 * Purpose: Initialize cmd fields related to error handling.
444 *
445 * Arguments: cmd - command that is ready to be queued.
446 *
447 * Notes: This function has the job of initializing a number of
448 * fields related to error handling. Typically this will
449 * be called once for each command, as required.
450 */
451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
452 {
453 cmd->serial_number = 0;
454 scsi_set_resid(cmd, 0);
455 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
456 if (cmd->cmd_len == 0)
457 cmd->cmd_len = scsi_command_size(cmd->cmnd);
458 }
459
460 void scsi_device_unbusy(struct scsi_device *sdev)
461 {
462 struct Scsi_Host *shost = sdev->host;
463 unsigned long flags;
464
465 spin_lock_irqsave(shost->host_lock, flags);
466 shost->host_busy--;
467 if (unlikely(scsi_host_in_recovery(shost) &&
468 (shost->host_failed || shost->host_eh_scheduled)))
469 scsi_eh_wakeup(shost);
470 spin_unlock(shost->host_lock);
471 spin_lock(sdev->request_queue->queue_lock);
472 sdev->device_busy--;
473 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
474 }
475
476 /*
477 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
478 * and call blk_run_queue for all the scsi_devices on the target -
479 * including current_sdev first.
480 *
481 * Called with *no* scsi locks held.
482 */
483 static void scsi_single_lun_run(struct scsi_device *current_sdev)
484 {
485 struct Scsi_Host *shost = current_sdev->host;
486 struct scsi_device *sdev, *tmp;
487 struct scsi_target *starget = scsi_target(current_sdev);
488 unsigned long flags;
489
490 spin_lock_irqsave(shost->host_lock, flags);
491 starget->starget_sdev_user = NULL;
492 spin_unlock_irqrestore(shost->host_lock, flags);
493
494 /*
495 * Call blk_run_queue for all LUNs on the target, starting with
496 * current_sdev. We race with others (to set starget_sdev_user),
497 * but in most cases, we will be first. Ideally, each LU on the
498 * target would get some limited time or requests on the target.
499 */
500 blk_run_queue(current_sdev->request_queue);
501
502 spin_lock_irqsave(shost->host_lock, flags);
503 if (starget->starget_sdev_user)
504 goto out;
505 list_for_each_entry_safe(sdev, tmp, &starget->devices,
506 same_target_siblings) {
507 if (sdev == current_sdev)
508 continue;
509 if (scsi_device_get(sdev))
510 continue;
511
512 spin_unlock_irqrestore(shost->host_lock, flags);
513 blk_run_queue(sdev->request_queue);
514 spin_lock_irqsave(shost->host_lock, flags);
515
516 scsi_device_put(sdev);
517 }
518 out:
519 spin_unlock_irqrestore(shost->host_lock, flags);
520 }
521
522 /*
523 * Function: scsi_run_queue()
524 *
525 * Purpose: Select a proper request queue to serve next
526 *
527 * Arguments: q - last request's queue
528 *
529 * Returns: Nothing
530 *
531 * Notes: The previous command was completely finished, start
532 * a new one if possible.
533 */
534 static void scsi_run_queue(struct request_queue *q)
535 {
536 struct scsi_device *sdev = q->queuedata;
537 struct Scsi_Host *shost = sdev->host;
538 unsigned long flags;
539
540 if (scsi_target(sdev)->single_lun)
541 scsi_single_lun_run(sdev);
542
543 spin_lock_irqsave(shost->host_lock, flags);
544 while (!list_empty(&shost->starved_list) &&
545 !shost->host_blocked && !shost->host_self_blocked &&
546 !((shost->can_queue > 0) &&
547 (shost->host_busy >= shost->can_queue))) {
548
549 int flagset;
550
551 /*
552 * As long as shost is accepting commands and we have
553 * starved queues, call blk_run_queue. scsi_request_fn
554 * drops the queue_lock and can add us back to the
555 * starved_list.
556 *
557 * host_lock protects the starved_list and starved_entry.
558 * scsi_request_fn must get the host_lock before checking
559 * or modifying starved_list or starved_entry.
560 */
561 sdev = list_entry(shost->starved_list.next,
562 struct scsi_device, starved_entry);
563 list_del_init(&sdev->starved_entry);
564 spin_unlock(shost->host_lock);
565
566 spin_lock(sdev->request_queue->queue_lock);
567 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
568 !test_bit(QUEUE_FLAG_REENTER,
569 &sdev->request_queue->queue_flags);
570 if (flagset)
571 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
572 __blk_run_queue(sdev->request_queue);
573 if (flagset)
574 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
575 spin_unlock(sdev->request_queue->queue_lock);
576
577 spin_lock(shost->host_lock);
578 if (unlikely(!list_empty(&sdev->starved_entry)))
579 /*
580 * sdev lost a race, and was put back on the
581 * starved list. This is unlikely but without this
582 * in theory we could loop forever.
583 */
584 break;
585 }
586 spin_unlock_irqrestore(shost->host_lock, flags);
587
588 blk_run_queue(q);
589 }
590
591 /*
592 * Function: scsi_requeue_command()
593 *
594 * Purpose: Handle post-processing of completed commands.
595 *
596 * Arguments: q - queue to operate on
597 * cmd - command that may need to be requeued.
598 *
599 * Returns: Nothing
600 *
601 * Notes: After command completion, there may be blocks left
602 * over which weren't finished by the previous command
603 * this can be for a number of reasons - the main one is
604 * I/O errors in the middle of the request, in which case
605 * we need to request the blocks that come after the bad
606 * sector.
607 * Notes: Upon return, cmd is a stale pointer.
608 */
609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
610 {
611 struct request *req = cmd->request;
612 unsigned long flags;
613
614 scsi_unprep_request(req);
615 spin_lock_irqsave(q->queue_lock, flags);
616 blk_requeue_request(q, req);
617 spin_unlock_irqrestore(q->queue_lock, flags);
618
619 scsi_run_queue(q);
620 }
621
622 void scsi_next_command(struct scsi_cmnd *cmd)
623 {
624 struct scsi_device *sdev = cmd->device;
625 struct request_queue *q = sdev->request_queue;
626
627 /* need to hold a reference on the device before we let go of the cmd */
628 get_device(&sdev->sdev_gendev);
629
630 scsi_put_command(cmd);
631 scsi_run_queue(q);
632
633 /* ok to remove device now */
634 put_device(&sdev->sdev_gendev);
635 }
636
637 void scsi_run_host_queues(struct Scsi_Host *shost)
638 {
639 struct scsi_device *sdev;
640
641 shost_for_each_device(sdev, shost)
642 scsi_run_queue(sdev->request_queue);
643 }
644
645 /*
646 * Function: scsi_end_request()
647 *
648 * Purpose: Post-processing of completed commands (usually invoked at end
649 * of upper level post-processing and scsi_io_completion).
650 *
651 * Arguments: cmd - command that is complete.
652 * error - 0 if I/O indicates success, < 0 for I/O error.
653 * bytes - number of bytes of completed I/O
654 * requeue - indicates whether we should requeue leftovers.
655 *
656 * Lock status: Assumed that lock is not held upon entry.
657 *
658 * Returns: cmd if requeue required, NULL otherwise.
659 *
660 * Notes: This is called for block device requests in order to
661 * mark some number of sectors as complete.
662 *
663 * We are guaranteeing that the request queue will be goosed
664 * at some point during this call.
665 * Notes: If cmd was requeued, upon return it will be a stale pointer.
666 */
667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
668 int bytes, int requeue)
669 {
670 struct request_queue *q = cmd->device->request_queue;
671 struct request *req = cmd->request;
672
673 /*
674 * If there are blocks left over at the end, set up the command
675 * to queue the remainder of them.
676 */
677 if (blk_end_request(req, error, bytes)) {
678 int leftover = (req->hard_nr_sectors << 9);
679
680 if (blk_pc_request(req))
681 leftover = req->data_len;
682
683 /* kill remainder if no retrys */
684 if (error && blk_noretry_request(req))
685 blk_end_request(req, error, leftover);
686 else {
687 if (requeue) {
688 /*
689 * Bleah. Leftovers again. Stick the
690 * leftovers in the front of the
691 * queue, and goose the queue again.
692 */
693 scsi_requeue_command(q, cmd);
694 cmd = NULL;
695 }
696 return cmd;
697 }
698 }
699
700 /*
701 * This will goose the queue request function at the end, so we don't
702 * need to worry about launching another command.
703 */
704 scsi_next_command(cmd);
705 return NULL;
706 }
707
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710 unsigned int index;
711
712 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
713
714 if (nents <= 8)
715 index = 0;
716 else
717 index = get_count_order(nents) - 3;
718
719 return index;
720 }
721
722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
723 {
724 struct scsi_host_sg_pool *sgp;
725
726 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
727 mempool_free(sgl, sgp->pool);
728 }
729
730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
731 {
732 struct scsi_host_sg_pool *sgp;
733
734 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
735 return mempool_alloc(sgp->pool, gfp_mask);
736 }
737
738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
739 gfp_t gfp_mask)
740 {
741 int ret;
742
743 BUG_ON(!nents);
744
745 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
746 gfp_mask, scsi_sg_alloc);
747 if (unlikely(ret))
748 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
749 scsi_sg_free);
750
751 return ret;
752 }
753
754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
755 {
756 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
757 }
758
759 /*
760 * Function: scsi_release_buffers()
761 *
762 * Purpose: Completion processing for block device I/O requests.
763 *
764 * Arguments: cmd - command that we are bailing.
765 *
766 * Lock status: Assumed that no lock is held upon entry.
767 *
768 * Returns: Nothing
769 *
770 * Notes: In the event that an upper level driver rejects a
771 * command, we must release resources allocated during
772 * the __init_io() function. Primarily this would involve
773 * the scatter-gather table, and potentially any bounce
774 * buffers.
775 */
776 void scsi_release_buffers(struct scsi_cmnd *cmd)
777 {
778 if (cmd->sdb.table.nents)
779 scsi_free_sgtable(&cmd->sdb);
780
781 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
782
783 if (scsi_bidi_cmnd(cmd)) {
784 struct scsi_data_buffer *bidi_sdb =
785 cmd->request->next_rq->special;
786 scsi_free_sgtable(bidi_sdb);
787 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
788 cmd->request->next_rq->special = NULL;
789 }
790
791 if (scsi_prot_sg_count(cmd))
792 scsi_free_sgtable(cmd->prot_sdb);
793 }
794 EXPORT_SYMBOL(scsi_release_buffers);
795
796 /*
797 * Bidi commands Must be complete as a whole, both sides at once.
798 * If part of the bytes were written and lld returned
799 * scsi_in()->resid and/or scsi_out()->resid this information will be left
800 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
801 * decide what to do with this information.
802 */
803 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
804 {
805 struct request *req = cmd->request;
806 unsigned int dlen = req->data_len;
807 unsigned int next_dlen = req->next_rq->data_len;
808
809 req->data_len = scsi_out(cmd)->resid;
810 req->next_rq->data_len = scsi_in(cmd)->resid;
811
812 /* The req and req->next_rq have not been completed */
813 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
814
815 scsi_release_buffers(cmd);
816
817 /*
818 * This will goose the queue request function at the end, so we don't
819 * need to worry about launching another command.
820 */
821 scsi_next_command(cmd);
822 }
823
824 /*
825 * Function: scsi_io_completion()
826 *
827 * Purpose: Completion processing for block device I/O requests.
828 *
829 * Arguments: cmd - command that is finished.
830 *
831 * Lock status: Assumed that no lock is held upon entry.
832 *
833 * Returns: Nothing
834 *
835 * Notes: This function is matched in terms of capabilities to
836 * the function that created the scatter-gather list.
837 * In other words, if there are no bounce buffers
838 * (the normal case for most drivers), we don't need
839 * the logic to deal with cleaning up afterwards.
840 *
841 * We must do one of several things here:
842 *
843 * a) Call scsi_end_request. This will finish off the
844 * specified number of sectors. If we are done, the
845 * command block will be released, and the queue
846 * function will be goosed. If we are not done, then
847 * scsi_end_request will directly goose the queue.
848 *
849 * b) We can just use scsi_requeue_command() here. This would
850 * be used if we just wanted to retry, for example.
851 */
852 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
853 {
854 int result = cmd->result;
855 int this_count;
856 struct request_queue *q = cmd->device->request_queue;
857 struct request *req = cmd->request;
858 int error = 0;
859 struct scsi_sense_hdr sshdr;
860 int sense_valid = 0;
861 int sense_deferred = 0;
862
863 if (result) {
864 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
865 if (sense_valid)
866 sense_deferred = scsi_sense_is_deferred(&sshdr);
867 }
868
869 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
870 req->errors = result;
871 if (result) {
872 if (sense_valid && req->sense) {
873 /*
874 * SG_IO wants current and deferred errors
875 */
876 int len = 8 + cmd->sense_buffer[7];
877
878 if (len > SCSI_SENSE_BUFFERSIZE)
879 len = SCSI_SENSE_BUFFERSIZE;
880 memcpy(req->sense, cmd->sense_buffer, len);
881 req->sense_len = len;
882 }
883 if (!sense_deferred)
884 error = -EIO;
885 }
886 if (scsi_bidi_cmnd(cmd)) {
887 /* will also release_buffers */
888 scsi_end_bidi_request(cmd);
889 return;
890 }
891 req->data_len = scsi_get_resid(cmd);
892 }
893
894 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
895 scsi_release_buffers(cmd);
896
897 /*
898 * Next deal with any sectors which we were able to correctly
899 * handle.
900 */
901 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
902 "%d bytes done.\n",
903 req->nr_sectors, good_bytes));
904
905 /* A number of bytes were successfully read. If there
906 * are leftovers and there is some kind of error
907 * (result != 0), retry the rest.
908 */
909 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
910 return;
911 this_count = blk_rq_bytes(req);
912
913 /* good_bytes = 0, or (inclusive) there were leftovers and
914 * result = 0, so scsi_end_request couldn't retry.
915 */
916 if (sense_valid && !sense_deferred) {
917 switch (sshdr.sense_key) {
918 case UNIT_ATTENTION:
919 if (cmd->device->removable) {
920 /* Detected disc change. Set a bit
921 * and quietly refuse further access.
922 */
923 cmd->device->changed = 1;
924 scsi_end_request(cmd, -EIO, this_count, 1);
925 return;
926 } else {
927 /* Must have been a power glitch, or a
928 * bus reset. Could not have been a
929 * media change, so we just retry the
930 * request and see what happens.
931 */
932 scsi_requeue_command(q, cmd);
933 return;
934 }
935 break;
936 case ILLEGAL_REQUEST:
937 /* If we had an ILLEGAL REQUEST returned, then
938 * we may have performed an unsupported
939 * command. The only thing this should be
940 * would be a ten byte read where only a six
941 * byte read was supported. Also, on a system
942 * where READ CAPACITY failed, we may have
943 * read past the end of the disk.
944 */
945 if ((cmd->device->use_10_for_rw &&
946 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
947 (cmd->cmnd[0] == READ_10 ||
948 cmd->cmnd[0] == WRITE_10)) {
949 cmd->device->use_10_for_rw = 0;
950 /* This will cause a retry with a
951 * 6-byte command.
952 */
953 scsi_requeue_command(q, cmd);
954 } else if (sshdr.asc == 0x10) /* DIX */
955 scsi_end_request(cmd, -EIO, this_count, 0);
956 else
957 scsi_end_request(cmd, -EIO, this_count, 1);
958 return;
959 case ABORTED_COMMAND:
960 if (sshdr.asc == 0x10) { /* DIF */
961 scsi_end_request(cmd, -EIO, this_count, 0);
962 return;
963 }
964 break;
965 case NOT_READY:
966 /* If the device is in the process of becoming
967 * ready, or has a temporary blockage, retry.
968 */
969 if (sshdr.asc == 0x04) {
970 switch (sshdr.ascq) {
971 case 0x01: /* becoming ready */
972 case 0x04: /* format in progress */
973 case 0x05: /* rebuild in progress */
974 case 0x06: /* recalculation in progress */
975 case 0x07: /* operation in progress */
976 case 0x08: /* Long write in progress */
977 case 0x09: /* self test in progress */
978 scsi_requeue_command(q, cmd);
979 return;
980 default:
981 break;
982 }
983 }
984 if (!(req->cmd_flags & REQ_QUIET))
985 scsi_cmd_print_sense_hdr(cmd,
986 "Device not ready",
987 &sshdr);
988
989 scsi_end_request(cmd, -EIO, this_count, 1);
990 return;
991 case VOLUME_OVERFLOW:
992 if (!(req->cmd_flags & REQ_QUIET)) {
993 scmd_printk(KERN_INFO, cmd,
994 "Volume overflow, CDB: ");
995 __scsi_print_command(cmd->cmnd);
996 scsi_print_sense("", cmd);
997 }
998 /* See SSC3rXX or current. */
999 scsi_end_request(cmd, -EIO, this_count, 1);
1000 return;
1001 default:
1002 break;
1003 }
1004 }
1005 if (host_byte(result) == DID_RESET) {
1006 /* Third party bus reset or reset for error recovery
1007 * reasons. Just retry the request and see what
1008 * happens.
1009 */
1010 scsi_requeue_command(q, cmd);
1011 return;
1012 }
1013 if (result) {
1014 if (!(req->cmd_flags & REQ_QUIET)) {
1015 scsi_print_result(cmd);
1016 if (driver_byte(result) & DRIVER_SENSE)
1017 scsi_print_sense("", cmd);
1018 }
1019 }
1020 scsi_end_request(cmd, -EIO, this_count, !result);
1021 }
1022
1023 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1024 gfp_t gfp_mask)
1025 {
1026 int count;
1027
1028 /*
1029 * If sg table allocation fails, requeue request later.
1030 */
1031 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1032 gfp_mask))) {
1033 return BLKPREP_DEFER;
1034 }
1035
1036 req->buffer = NULL;
1037
1038 /*
1039 * Next, walk the list, and fill in the addresses and sizes of
1040 * each segment.
1041 */
1042 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043 BUG_ON(count > sdb->table.nents);
1044 sdb->table.nents = count;
1045 if (blk_pc_request(req))
1046 sdb->length = req->data_len;
1047 else
1048 sdb->length = req->nr_sectors << 9;
1049 return BLKPREP_OK;
1050 }
1051
1052 /*
1053 * Function: scsi_init_io()
1054 *
1055 * Purpose: SCSI I/O initialize function.
1056 *
1057 * Arguments: cmd - Command descriptor we wish to initialize
1058 *
1059 * Returns: 0 on success
1060 * BLKPREP_DEFER if the failure is retryable
1061 * BLKPREP_KILL if the failure is fatal
1062 */
1063 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1064 {
1065 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1066 if (error)
1067 goto err_exit;
1068
1069 if (blk_bidi_rq(cmd->request)) {
1070 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1071 scsi_sdb_cache, GFP_ATOMIC);
1072 if (!bidi_sdb) {
1073 error = BLKPREP_DEFER;
1074 goto err_exit;
1075 }
1076
1077 cmd->request->next_rq->special = bidi_sdb;
1078 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1079 GFP_ATOMIC);
1080 if (error)
1081 goto err_exit;
1082 }
1083
1084 if (blk_integrity_rq(cmd->request)) {
1085 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1086 int ivecs, count;
1087
1088 BUG_ON(prot_sdb == NULL);
1089 ivecs = blk_rq_count_integrity_sg(cmd->request);
1090
1091 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1092 error = BLKPREP_DEFER;
1093 goto err_exit;
1094 }
1095
1096 count = blk_rq_map_integrity_sg(cmd->request,
1097 prot_sdb->table.sgl);
1098 BUG_ON(unlikely(count > ivecs));
1099
1100 cmd->prot_sdb = prot_sdb;
1101 cmd->prot_sdb->table.nents = count;
1102 }
1103
1104 return BLKPREP_OK ;
1105
1106 err_exit:
1107 scsi_release_buffers(cmd);
1108 if (error == BLKPREP_KILL)
1109 scsi_put_command(cmd);
1110 else /* BLKPREP_DEFER */
1111 scsi_unprep_request(cmd->request);
1112
1113 return error;
1114 }
1115 EXPORT_SYMBOL(scsi_init_io);
1116
1117 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1118 struct request *req)
1119 {
1120 struct scsi_cmnd *cmd;
1121
1122 if (!req->special) {
1123 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1124 if (unlikely(!cmd))
1125 return NULL;
1126 req->special = cmd;
1127 } else {
1128 cmd = req->special;
1129 }
1130
1131 /* pull a tag out of the request if we have one */
1132 cmd->tag = req->tag;
1133 cmd->request = req;
1134
1135 cmd->cmnd = req->cmd;
1136
1137 return cmd;
1138 }
1139
1140 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1141 {
1142 struct scsi_cmnd *cmd;
1143 int ret = scsi_prep_state_check(sdev, req);
1144
1145 if (ret != BLKPREP_OK)
1146 return ret;
1147
1148 cmd = scsi_get_cmd_from_req(sdev, req);
1149 if (unlikely(!cmd))
1150 return BLKPREP_DEFER;
1151
1152 /*
1153 * BLOCK_PC requests may transfer data, in which case they must
1154 * a bio attached to them. Or they might contain a SCSI command
1155 * that does not transfer data, in which case they may optionally
1156 * submit a request without an attached bio.
1157 */
1158 if (req->bio) {
1159 int ret;
1160
1161 BUG_ON(!req->nr_phys_segments);
1162
1163 ret = scsi_init_io(cmd, GFP_ATOMIC);
1164 if (unlikely(ret))
1165 return ret;
1166 } else {
1167 BUG_ON(req->data_len);
1168 BUG_ON(req->data);
1169
1170 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1171 req->buffer = NULL;
1172 }
1173
1174 cmd->cmd_len = req->cmd_len;
1175 if (!req->data_len)
1176 cmd->sc_data_direction = DMA_NONE;
1177 else if (rq_data_dir(req) == WRITE)
1178 cmd->sc_data_direction = DMA_TO_DEVICE;
1179 else
1180 cmd->sc_data_direction = DMA_FROM_DEVICE;
1181
1182 cmd->transfersize = req->data_len;
1183 cmd->allowed = req->retries;
1184 return BLKPREP_OK;
1185 }
1186 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1187
1188 /*
1189 * Setup a REQ_TYPE_FS command. These are simple read/write request
1190 * from filesystems that still need to be translated to SCSI CDBs from
1191 * the ULD.
1192 */
1193 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1194 {
1195 struct scsi_cmnd *cmd;
1196 int ret = scsi_prep_state_check(sdev, req);
1197
1198 if (ret != BLKPREP_OK)
1199 return ret;
1200
1201 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1202 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1203 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1204 if (ret != BLKPREP_OK)
1205 return ret;
1206 }
1207
1208 /*
1209 * Filesystem requests must transfer data.
1210 */
1211 BUG_ON(!req->nr_phys_segments);
1212
1213 cmd = scsi_get_cmd_from_req(sdev, req);
1214 if (unlikely(!cmd))
1215 return BLKPREP_DEFER;
1216
1217 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1218 return scsi_init_io(cmd, GFP_ATOMIC);
1219 }
1220 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1221
1222 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1223 {
1224 int ret = BLKPREP_OK;
1225
1226 /*
1227 * If the device is not in running state we will reject some
1228 * or all commands.
1229 */
1230 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1231 switch (sdev->sdev_state) {
1232 case SDEV_OFFLINE:
1233 /*
1234 * If the device is offline we refuse to process any
1235 * commands. The device must be brought online
1236 * before trying any recovery commands.
1237 */
1238 sdev_printk(KERN_ERR, sdev,
1239 "rejecting I/O to offline device\n");
1240 ret = BLKPREP_KILL;
1241 break;
1242 case SDEV_DEL:
1243 /*
1244 * If the device is fully deleted, we refuse to
1245 * process any commands as well.
1246 */
1247 sdev_printk(KERN_ERR, sdev,
1248 "rejecting I/O to dead device\n");
1249 ret = BLKPREP_KILL;
1250 break;
1251 case SDEV_QUIESCE:
1252 case SDEV_BLOCK:
1253 /*
1254 * If the devices is blocked we defer normal commands.
1255 */
1256 if (!(req->cmd_flags & REQ_PREEMPT))
1257 ret = BLKPREP_DEFER;
1258 break;
1259 default:
1260 /*
1261 * For any other not fully online state we only allow
1262 * special commands. In particular any user initiated
1263 * command is not allowed.
1264 */
1265 if (!(req->cmd_flags & REQ_PREEMPT))
1266 ret = BLKPREP_KILL;
1267 break;
1268 }
1269 }
1270 return ret;
1271 }
1272 EXPORT_SYMBOL(scsi_prep_state_check);
1273
1274 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1275 {
1276 struct scsi_device *sdev = q->queuedata;
1277
1278 switch (ret) {
1279 case BLKPREP_KILL:
1280 req->errors = DID_NO_CONNECT << 16;
1281 /* release the command and kill it */
1282 if (req->special) {
1283 struct scsi_cmnd *cmd = req->special;
1284 scsi_release_buffers(cmd);
1285 scsi_put_command(cmd);
1286 req->special = NULL;
1287 }
1288 break;
1289 case BLKPREP_DEFER:
1290 /*
1291 * If we defer, the elv_next_request() returns NULL, but the
1292 * queue must be restarted, so we plug here if no returning
1293 * command will automatically do that.
1294 */
1295 if (sdev->device_busy == 0)
1296 blk_plug_device(q);
1297 break;
1298 default:
1299 req->cmd_flags |= REQ_DONTPREP;
1300 }
1301
1302 return ret;
1303 }
1304 EXPORT_SYMBOL(scsi_prep_return);
1305
1306 int scsi_prep_fn(struct request_queue *q, struct request *req)
1307 {
1308 struct scsi_device *sdev = q->queuedata;
1309 int ret = BLKPREP_KILL;
1310
1311 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1312 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1313 return scsi_prep_return(q, req, ret);
1314 }
1315
1316 /*
1317 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1318 * return 0.
1319 *
1320 * Called with the queue_lock held.
1321 */
1322 static inline int scsi_dev_queue_ready(struct request_queue *q,
1323 struct scsi_device *sdev)
1324 {
1325 if (sdev->device_busy >= sdev->queue_depth)
1326 return 0;
1327 if (sdev->device_busy == 0 && sdev->device_blocked) {
1328 /*
1329 * unblock after device_blocked iterates to zero
1330 */
1331 if (--sdev->device_blocked == 0) {
1332 SCSI_LOG_MLQUEUE(3,
1333 sdev_printk(KERN_INFO, sdev,
1334 "unblocking device at zero depth\n"));
1335 } else {
1336 blk_plug_device(q);
1337 return 0;
1338 }
1339 }
1340 if (sdev->device_blocked)
1341 return 0;
1342
1343 return 1;
1344 }
1345
1346 /*
1347 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1348 * return 0. We must end up running the queue again whenever 0 is
1349 * returned, else IO can hang.
1350 *
1351 * Called with host_lock held.
1352 */
1353 static inline int scsi_host_queue_ready(struct request_queue *q,
1354 struct Scsi_Host *shost,
1355 struct scsi_device *sdev)
1356 {
1357 if (scsi_host_in_recovery(shost))
1358 return 0;
1359 if (shost->host_busy == 0 && shost->host_blocked) {
1360 /*
1361 * unblock after host_blocked iterates to zero
1362 */
1363 if (--shost->host_blocked == 0) {
1364 SCSI_LOG_MLQUEUE(3,
1365 printk("scsi%d unblocking host at zero depth\n",
1366 shost->host_no));
1367 } else {
1368 return 0;
1369 }
1370 }
1371 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1372 shost->host_blocked || shost->host_self_blocked) {
1373 if (list_empty(&sdev->starved_entry))
1374 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375 return 0;
1376 }
1377
1378 /* We're OK to process the command, so we can't be starved */
1379 if (!list_empty(&sdev->starved_entry))
1380 list_del_init(&sdev->starved_entry);
1381
1382 return 1;
1383 }
1384
1385 /*
1386 * Kill a request for a dead device
1387 */
1388 static void scsi_kill_request(struct request *req, struct request_queue *q)
1389 {
1390 struct scsi_cmnd *cmd = req->special;
1391 struct scsi_device *sdev = cmd->device;
1392 struct Scsi_Host *shost = sdev->host;
1393
1394 blkdev_dequeue_request(req);
1395
1396 if (unlikely(cmd == NULL)) {
1397 printk(KERN_CRIT "impossible request in %s.\n",
1398 __func__);
1399 BUG();
1400 }
1401
1402 scsi_init_cmd_errh(cmd);
1403 cmd->result = DID_NO_CONNECT << 16;
1404 atomic_inc(&cmd->device->iorequest_cnt);
1405
1406 /*
1407 * SCSI request completion path will do scsi_device_unbusy(),
1408 * bump busy counts. To bump the counters, we need to dance
1409 * with the locks as normal issue path does.
1410 */
1411 sdev->device_busy++;
1412 spin_unlock(sdev->request_queue->queue_lock);
1413 spin_lock(shost->host_lock);
1414 shost->host_busy++;
1415 spin_unlock(shost->host_lock);
1416 spin_lock(sdev->request_queue->queue_lock);
1417
1418 blk_complete_request(req);
1419 }
1420
1421 static void scsi_softirq_done(struct request *rq)
1422 {
1423 struct scsi_cmnd *cmd = rq->special;
1424 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1425 int disposition;
1426
1427 INIT_LIST_HEAD(&cmd->eh_entry);
1428
1429 /*
1430 * Set the serial numbers back to zero
1431 */
1432 cmd->serial_number = 0;
1433
1434 atomic_inc(&cmd->device->iodone_cnt);
1435 if (cmd->result)
1436 atomic_inc(&cmd->device->ioerr_cnt);
1437
1438 disposition = scsi_decide_disposition(cmd);
1439 if (disposition != SUCCESS &&
1440 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1441 sdev_printk(KERN_ERR, cmd->device,
1442 "timing out command, waited %lus\n",
1443 wait_for/HZ);
1444 disposition = SUCCESS;
1445 }
1446
1447 scsi_log_completion(cmd, disposition);
1448
1449 switch (disposition) {
1450 case SUCCESS:
1451 scsi_finish_command(cmd);
1452 break;
1453 case NEEDS_RETRY:
1454 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1455 break;
1456 case ADD_TO_MLQUEUE:
1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1458 break;
1459 default:
1460 if (!scsi_eh_scmd_add(cmd, 0))
1461 scsi_finish_command(cmd);
1462 }
1463 }
1464
1465 /*
1466 * Function: scsi_request_fn()
1467 *
1468 * Purpose: Main strategy routine for SCSI.
1469 *
1470 * Arguments: q - Pointer to actual queue.
1471 *
1472 * Returns: Nothing
1473 *
1474 * Lock status: IO request lock assumed to be held when called.
1475 */
1476 static void scsi_request_fn(struct request_queue *q)
1477 {
1478 struct scsi_device *sdev = q->queuedata;
1479 struct Scsi_Host *shost;
1480 struct scsi_cmnd *cmd;
1481 struct request *req;
1482
1483 if (!sdev) {
1484 printk("scsi: killing requests for dead queue\n");
1485 while ((req = elv_next_request(q)) != NULL)
1486 scsi_kill_request(req, q);
1487 return;
1488 }
1489
1490 if(!get_device(&sdev->sdev_gendev))
1491 /* We must be tearing the block queue down already */
1492 return;
1493
1494 /*
1495 * To start with, we keep looping until the queue is empty, or until
1496 * the host is no longer able to accept any more requests.
1497 */
1498 shost = sdev->host;
1499 while (!blk_queue_plugged(q)) {
1500 int rtn;
1501 /*
1502 * get next queueable request. We do this early to make sure
1503 * that the request is fully prepared even if we cannot
1504 * accept it.
1505 */
1506 req = elv_next_request(q);
1507 if (!req || !scsi_dev_queue_ready(q, sdev))
1508 break;
1509
1510 if (unlikely(!scsi_device_online(sdev))) {
1511 sdev_printk(KERN_ERR, sdev,
1512 "rejecting I/O to offline device\n");
1513 scsi_kill_request(req, q);
1514 continue;
1515 }
1516
1517
1518 /*
1519 * Remove the request from the request list.
1520 */
1521 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1522 blkdev_dequeue_request(req);
1523 sdev->device_busy++;
1524
1525 spin_unlock(q->queue_lock);
1526 cmd = req->special;
1527 if (unlikely(cmd == NULL)) {
1528 printk(KERN_CRIT "impossible request in %s.\n"
1529 "please mail a stack trace to "
1530 "linux-scsi@vger.kernel.org\n",
1531 __func__);
1532 blk_dump_rq_flags(req, "foo");
1533 BUG();
1534 }
1535 spin_lock(shost->host_lock);
1536
1537 /*
1538 * We hit this when the driver is using a host wide
1539 * tag map. For device level tag maps the queue_depth check
1540 * in the device ready fn would prevent us from trying
1541 * to allocate a tag. Since the map is a shared host resource
1542 * we add the dev to the starved list so it eventually gets
1543 * a run when a tag is freed.
1544 */
1545 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1546 if (list_empty(&sdev->starved_entry))
1547 list_add_tail(&sdev->starved_entry,
1548 &shost->starved_list);
1549 goto not_ready;
1550 }
1551
1552 if (!scsi_host_queue_ready(q, shost, sdev))
1553 goto not_ready;
1554 if (scsi_target(sdev)->single_lun) {
1555 if (scsi_target(sdev)->starget_sdev_user &&
1556 scsi_target(sdev)->starget_sdev_user != sdev)
1557 goto not_ready;
1558 scsi_target(sdev)->starget_sdev_user = sdev;
1559 }
1560 shost->host_busy++;
1561
1562 /*
1563 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1564 * take the lock again.
1565 */
1566 spin_unlock_irq(shost->host_lock);
1567
1568 /*
1569 * Finally, initialize any error handling parameters, and set up
1570 * the timers for timeouts.
1571 */
1572 scsi_init_cmd_errh(cmd);
1573
1574 /*
1575 * Dispatch the command to the low-level driver.
1576 */
1577 rtn = scsi_dispatch_cmd(cmd);
1578 spin_lock_irq(q->queue_lock);
1579 if(rtn) {
1580 /* we're refusing the command; because of
1581 * the way locks get dropped, we need to
1582 * check here if plugging is required */
1583 if(sdev->device_busy == 0)
1584 blk_plug_device(q);
1585
1586 break;
1587 }
1588 }
1589
1590 goto out;
1591
1592 not_ready:
1593 spin_unlock_irq(shost->host_lock);
1594
1595 /*
1596 * lock q, handle tag, requeue req, and decrement device_busy. We
1597 * must return with queue_lock held.
1598 *
1599 * Decrementing device_busy without checking it is OK, as all such
1600 * cases (host limits or settings) should run the queue at some
1601 * later time.
1602 */
1603 spin_lock_irq(q->queue_lock);
1604 blk_requeue_request(q, req);
1605 sdev->device_busy--;
1606 if(sdev->device_busy == 0)
1607 blk_plug_device(q);
1608 out:
1609 /* must be careful here...if we trigger the ->remove() function
1610 * we cannot be holding the q lock */
1611 spin_unlock_irq(q->queue_lock);
1612 put_device(&sdev->sdev_gendev);
1613 spin_lock_irq(q->queue_lock);
1614 }
1615
1616 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1617 {
1618 struct device *host_dev;
1619 u64 bounce_limit = 0xffffffff;
1620
1621 if (shost->unchecked_isa_dma)
1622 return BLK_BOUNCE_ISA;
1623 /*
1624 * Platforms with virtual-DMA translation
1625 * hardware have no practical limit.
1626 */
1627 if (!PCI_DMA_BUS_IS_PHYS)
1628 return BLK_BOUNCE_ANY;
1629
1630 host_dev = scsi_get_device(shost);
1631 if (host_dev && host_dev->dma_mask)
1632 bounce_limit = *host_dev->dma_mask;
1633
1634 return bounce_limit;
1635 }
1636 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1637
1638 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1639 request_fn_proc *request_fn)
1640 {
1641 struct request_queue *q;
1642 struct device *dev = shost->shost_gendev.parent;
1643
1644 q = blk_init_queue(request_fn, NULL);
1645 if (!q)
1646 return NULL;
1647
1648 /*
1649 * this limit is imposed by hardware restrictions
1650 */
1651 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1652 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1653
1654 blk_queue_max_sectors(q, shost->max_sectors);
1655 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1656 blk_queue_segment_boundary(q, shost->dma_boundary);
1657 dma_set_seg_boundary(dev, shost->dma_boundary);
1658
1659 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1660
1661 /* New queue, no concurrency on queue_flags */
1662 if (!shost->use_clustering)
1663 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1664
1665 /*
1666 * set a reasonable default alignment on word boundaries: the
1667 * host and device may alter it using
1668 * blk_queue_update_dma_alignment() later.
1669 */
1670 blk_queue_dma_alignment(q, 0x03);
1671
1672 return q;
1673 }
1674 EXPORT_SYMBOL(__scsi_alloc_queue);
1675
1676 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1677 {
1678 struct request_queue *q;
1679
1680 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1681 if (!q)
1682 return NULL;
1683
1684 blk_queue_prep_rq(q, scsi_prep_fn);
1685 blk_queue_softirq_done(q, scsi_softirq_done);
1686 blk_queue_rq_timed_out(q, scsi_times_out);
1687 return q;
1688 }
1689
1690 void scsi_free_queue(struct request_queue *q)
1691 {
1692 blk_cleanup_queue(q);
1693 }
1694
1695 /*
1696 * Function: scsi_block_requests()
1697 *
1698 * Purpose: Utility function used by low-level drivers to prevent further
1699 * commands from being queued to the device.
1700 *
1701 * Arguments: shost - Host in question
1702 *
1703 * Returns: Nothing
1704 *
1705 * Lock status: No locks are assumed held.
1706 *
1707 * Notes: There is no timer nor any other means by which the requests
1708 * get unblocked other than the low-level driver calling
1709 * scsi_unblock_requests().
1710 */
1711 void scsi_block_requests(struct Scsi_Host *shost)
1712 {
1713 shost->host_self_blocked = 1;
1714 }
1715 EXPORT_SYMBOL(scsi_block_requests);
1716
1717 /*
1718 * Function: scsi_unblock_requests()
1719 *
1720 * Purpose: Utility function used by low-level drivers to allow further
1721 * commands from being queued to the device.
1722 *
1723 * Arguments: shost - Host in question
1724 *
1725 * Returns: Nothing
1726 *
1727 * Lock status: No locks are assumed held.
1728 *
1729 * Notes: There is no timer nor any other means by which the requests
1730 * get unblocked other than the low-level driver calling
1731 * scsi_unblock_requests().
1732 *
1733 * This is done as an API function so that changes to the
1734 * internals of the scsi mid-layer won't require wholesale
1735 * changes to drivers that use this feature.
1736 */
1737 void scsi_unblock_requests(struct Scsi_Host *shost)
1738 {
1739 shost->host_self_blocked = 0;
1740 scsi_run_host_queues(shost);
1741 }
1742 EXPORT_SYMBOL(scsi_unblock_requests);
1743
1744 int __init scsi_init_queue(void)
1745 {
1746 int i;
1747
1748 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1749 sizeof(struct scsi_io_context),
1750 0, 0, NULL);
1751 if (!scsi_io_context_cache) {
1752 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1753 return -ENOMEM;
1754 }
1755
1756 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1757 sizeof(struct scsi_data_buffer),
1758 0, 0, NULL);
1759 if (!scsi_sdb_cache) {
1760 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1761 goto cleanup_io_context;
1762 }
1763
1764 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1765 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1766 int size = sgp->size * sizeof(struct scatterlist);
1767
1768 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1769 SLAB_HWCACHE_ALIGN, NULL);
1770 if (!sgp->slab) {
1771 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1772 sgp->name);
1773 goto cleanup_sdb;
1774 }
1775
1776 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1777 sgp->slab);
1778 if (!sgp->pool) {
1779 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1780 sgp->name);
1781 goto cleanup_sdb;
1782 }
1783 }
1784
1785 return 0;
1786
1787 cleanup_sdb:
1788 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1789 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1790 if (sgp->pool)
1791 mempool_destroy(sgp->pool);
1792 if (sgp->slab)
1793 kmem_cache_destroy(sgp->slab);
1794 }
1795 kmem_cache_destroy(scsi_sdb_cache);
1796 cleanup_io_context:
1797 kmem_cache_destroy(scsi_io_context_cache);
1798
1799 return -ENOMEM;
1800 }
1801
1802 void scsi_exit_queue(void)
1803 {
1804 int i;
1805
1806 kmem_cache_destroy(scsi_io_context_cache);
1807 kmem_cache_destroy(scsi_sdb_cache);
1808
1809 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1810 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1811 mempool_destroy(sgp->pool);
1812 kmem_cache_destroy(sgp->slab);
1813 }
1814 }
1815
1816 /**
1817 * scsi_mode_select - issue a mode select
1818 * @sdev: SCSI device to be queried
1819 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1820 * @sp: Save page bit (0 == don't save, 1 == save)
1821 * @modepage: mode page being requested
1822 * @buffer: request buffer (may not be smaller than eight bytes)
1823 * @len: length of request buffer.
1824 * @timeout: command timeout
1825 * @retries: number of retries before failing
1826 * @data: returns a structure abstracting the mode header data
1827 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1828 * must be SCSI_SENSE_BUFFERSIZE big.
1829 *
1830 * Returns zero if successful; negative error number or scsi
1831 * status on error
1832 *
1833 */
1834 int
1835 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1836 unsigned char *buffer, int len, int timeout, int retries,
1837 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1838 {
1839 unsigned char cmd[10];
1840 unsigned char *real_buffer;
1841 int ret;
1842
1843 memset(cmd, 0, sizeof(cmd));
1844 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1845
1846 if (sdev->use_10_for_ms) {
1847 if (len > 65535)
1848 return -EINVAL;
1849 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1850 if (!real_buffer)
1851 return -ENOMEM;
1852 memcpy(real_buffer + 8, buffer, len);
1853 len += 8;
1854 real_buffer[0] = 0;
1855 real_buffer[1] = 0;
1856 real_buffer[2] = data->medium_type;
1857 real_buffer[3] = data->device_specific;
1858 real_buffer[4] = data->longlba ? 0x01 : 0;
1859 real_buffer[5] = 0;
1860 real_buffer[6] = data->block_descriptor_length >> 8;
1861 real_buffer[7] = data->block_descriptor_length;
1862
1863 cmd[0] = MODE_SELECT_10;
1864 cmd[7] = len >> 8;
1865 cmd[8] = len;
1866 } else {
1867 if (len > 255 || data->block_descriptor_length > 255 ||
1868 data->longlba)
1869 return -EINVAL;
1870
1871 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1872 if (!real_buffer)
1873 return -ENOMEM;
1874 memcpy(real_buffer + 4, buffer, len);
1875 len += 4;
1876 real_buffer[0] = 0;
1877 real_buffer[1] = data->medium_type;
1878 real_buffer[2] = data->device_specific;
1879 real_buffer[3] = data->block_descriptor_length;
1880
1881
1882 cmd[0] = MODE_SELECT;
1883 cmd[4] = len;
1884 }
1885
1886 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1887 sshdr, timeout, retries);
1888 kfree(real_buffer);
1889 return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(scsi_mode_select);
1892
1893 /**
1894 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1895 * @sdev: SCSI device to be queried
1896 * @dbd: set if mode sense will allow block descriptors to be returned
1897 * @modepage: mode page being requested
1898 * @buffer: request buffer (may not be smaller than eight bytes)
1899 * @len: length of request buffer.
1900 * @timeout: command timeout
1901 * @retries: number of retries before failing
1902 * @data: returns a structure abstracting the mode header data
1903 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1904 * must be SCSI_SENSE_BUFFERSIZE big.
1905 *
1906 * Returns zero if unsuccessful, or the header offset (either 4
1907 * or 8 depending on whether a six or ten byte command was
1908 * issued) if successful.
1909 */
1910 int
1911 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1912 unsigned char *buffer, int len, int timeout, int retries,
1913 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1914 {
1915 unsigned char cmd[12];
1916 int use_10_for_ms;
1917 int header_length;
1918 int result;
1919 struct scsi_sense_hdr my_sshdr;
1920
1921 memset(data, 0, sizeof(*data));
1922 memset(&cmd[0], 0, 12);
1923 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1924 cmd[2] = modepage;
1925
1926 /* caller might not be interested in sense, but we need it */
1927 if (!sshdr)
1928 sshdr = &my_sshdr;
1929
1930 retry:
1931 use_10_for_ms = sdev->use_10_for_ms;
1932
1933 if (use_10_for_ms) {
1934 if (len < 8)
1935 len = 8;
1936
1937 cmd[0] = MODE_SENSE_10;
1938 cmd[8] = len;
1939 header_length = 8;
1940 } else {
1941 if (len < 4)
1942 len = 4;
1943
1944 cmd[0] = MODE_SENSE;
1945 cmd[4] = len;
1946 header_length = 4;
1947 }
1948
1949 memset(buffer, 0, len);
1950
1951 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1952 sshdr, timeout, retries);
1953
1954 /* This code looks awful: what it's doing is making sure an
1955 * ILLEGAL REQUEST sense return identifies the actual command
1956 * byte as the problem. MODE_SENSE commands can return
1957 * ILLEGAL REQUEST if the code page isn't supported */
1958
1959 if (use_10_for_ms && !scsi_status_is_good(result) &&
1960 (driver_byte(result) & DRIVER_SENSE)) {
1961 if (scsi_sense_valid(sshdr)) {
1962 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1963 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1964 /*
1965 * Invalid command operation code
1966 */
1967 sdev->use_10_for_ms = 0;
1968 goto retry;
1969 }
1970 }
1971 }
1972
1973 if(scsi_status_is_good(result)) {
1974 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1975 (modepage == 6 || modepage == 8))) {
1976 /* Initio breakage? */
1977 header_length = 0;
1978 data->length = 13;
1979 data->medium_type = 0;
1980 data->device_specific = 0;
1981 data->longlba = 0;
1982 data->block_descriptor_length = 0;
1983 } else if(use_10_for_ms) {
1984 data->length = buffer[0]*256 + buffer[1] + 2;
1985 data->medium_type = buffer[2];
1986 data->device_specific = buffer[3];
1987 data->longlba = buffer[4] & 0x01;
1988 data->block_descriptor_length = buffer[6]*256
1989 + buffer[7];
1990 } else {
1991 data->length = buffer[0] + 1;
1992 data->medium_type = buffer[1];
1993 data->device_specific = buffer[2];
1994 data->block_descriptor_length = buffer[3];
1995 }
1996 data->header_length = header_length;
1997 }
1998
1999 return result;
2000 }
2001 EXPORT_SYMBOL(scsi_mode_sense);
2002
2003 /**
2004 * scsi_test_unit_ready - test if unit is ready
2005 * @sdev: scsi device to change the state of.
2006 * @timeout: command timeout
2007 * @retries: number of retries before failing
2008 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2009 * returning sense. Make sure that this is cleared before passing
2010 * in.
2011 *
2012 * Returns zero if unsuccessful or an error if TUR failed. For
2013 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2014 * translated to success, with the ->changed flag updated.
2015 **/
2016 int
2017 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2018 struct scsi_sense_hdr *sshdr_external)
2019 {
2020 char cmd[] = {
2021 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2022 };
2023 struct scsi_sense_hdr *sshdr;
2024 int result;
2025
2026 if (!sshdr_external)
2027 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2028 else
2029 sshdr = sshdr_external;
2030
2031 /* try to eat the UNIT_ATTENTION if there are enough retries */
2032 do {
2033 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2034 timeout, retries);
2035 } while ((driver_byte(result) & DRIVER_SENSE) &&
2036 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2037 --retries);
2038
2039 if (!sshdr)
2040 /* could not allocate sense buffer, so can't process it */
2041 return result;
2042
2043 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2044
2045 if ((scsi_sense_valid(sshdr)) &&
2046 ((sshdr->sense_key == UNIT_ATTENTION) ||
2047 (sshdr->sense_key == NOT_READY))) {
2048 sdev->changed = 1;
2049 result = 0;
2050 }
2051 }
2052 if (!sshdr_external)
2053 kfree(sshdr);
2054 return result;
2055 }
2056 EXPORT_SYMBOL(scsi_test_unit_ready);
2057
2058 /**
2059 * scsi_device_set_state - Take the given device through the device state model.
2060 * @sdev: scsi device to change the state of.
2061 * @state: state to change to.
2062 *
2063 * Returns zero if unsuccessful or an error if the requested
2064 * transition is illegal.
2065 */
2066 int
2067 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2068 {
2069 enum scsi_device_state oldstate = sdev->sdev_state;
2070
2071 if (state == oldstate)
2072 return 0;
2073
2074 switch (state) {
2075 case SDEV_CREATED:
2076 /* There are no legal states that come back to
2077 * created. This is the manually initialised start
2078 * state */
2079 goto illegal;
2080
2081 case SDEV_RUNNING:
2082 switch (oldstate) {
2083 case SDEV_CREATED:
2084 case SDEV_OFFLINE:
2085 case SDEV_QUIESCE:
2086 case SDEV_BLOCK:
2087 break;
2088 default:
2089 goto illegal;
2090 }
2091 break;
2092
2093 case SDEV_QUIESCE:
2094 switch (oldstate) {
2095 case SDEV_RUNNING:
2096 case SDEV_OFFLINE:
2097 break;
2098 default:
2099 goto illegal;
2100 }
2101 break;
2102
2103 case SDEV_OFFLINE:
2104 switch (oldstate) {
2105 case SDEV_CREATED:
2106 case SDEV_RUNNING:
2107 case SDEV_QUIESCE:
2108 case SDEV_BLOCK:
2109 break;
2110 default:
2111 goto illegal;
2112 }
2113 break;
2114
2115 case SDEV_BLOCK:
2116 switch (oldstate) {
2117 case SDEV_CREATED:
2118 case SDEV_RUNNING:
2119 break;
2120 default:
2121 goto illegal;
2122 }
2123 break;
2124
2125 case SDEV_CANCEL:
2126 switch (oldstate) {
2127 case SDEV_CREATED:
2128 case SDEV_RUNNING:
2129 case SDEV_QUIESCE:
2130 case SDEV_OFFLINE:
2131 case SDEV_BLOCK:
2132 break;
2133 default:
2134 goto illegal;
2135 }
2136 break;
2137
2138 case SDEV_DEL:
2139 switch (oldstate) {
2140 case SDEV_CREATED:
2141 case SDEV_RUNNING:
2142 case SDEV_OFFLINE:
2143 case SDEV_CANCEL:
2144 break;
2145 default:
2146 goto illegal;
2147 }
2148 break;
2149
2150 }
2151 sdev->sdev_state = state;
2152 return 0;
2153
2154 illegal:
2155 SCSI_LOG_ERROR_RECOVERY(1,
2156 sdev_printk(KERN_ERR, sdev,
2157 "Illegal state transition %s->%s\n",
2158 scsi_device_state_name(oldstate),
2159 scsi_device_state_name(state))
2160 );
2161 return -EINVAL;
2162 }
2163 EXPORT_SYMBOL(scsi_device_set_state);
2164
2165 /**
2166 * sdev_evt_emit - emit a single SCSI device uevent
2167 * @sdev: associated SCSI device
2168 * @evt: event to emit
2169 *
2170 * Send a single uevent (scsi_event) to the associated scsi_device.
2171 */
2172 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2173 {
2174 int idx = 0;
2175 char *envp[3];
2176
2177 switch (evt->evt_type) {
2178 case SDEV_EVT_MEDIA_CHANGE:
2179 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2180 break;
2181
2182 default:
2183 /* do nothing */
2184 break;
2185 }
2186
2187 envp[idx++] = NULL;
2188
2189 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2190 }
2191
2192 /**
2193 * sdev_evt_thread - send a uevent for each scsi event
2194 * @work: work struct for scsi_device
2195 *
2196 * Dispatch queued events to their associated scsi_device kobjects
2197 * as uevents.
2198 */
2199 void scsi_evt_thread(struct work_struct *work)
2200 {
2201 struct scsi_device *sdev;
2202 LIST_HEAD(event_list);
2203
2204 sdev = container_of(work, struct scsi_device, event_work);
2205
2206 while (1) {
2207 struct scsi_event *evt;
2208 struct list_head *this, *tmp;
2209 unsigned long flags;
2210
2211 spin_lock_irqsave(&sdev->list_lock, flags);
2212 list_splice_init(&sdev->event_list, &event_list);
2213 spin_unlock_irqrestore(&sdev->list_lock, flags);
2214
2215 if (list_empty(&event_list))
2216 break;
2217
2218 list_for_each_safe(this, tmp, &event_list) {
2219 evt = list_entry(this, struct scsi_event, node);
2220 list_del(&evt->node);
2221 scsi_evt_emit(sdev, evt);
2222 kfree(evt);
2223 }
2224 }
2225 }
2226
2227 /**
2228 * sdev_evt_send - send asserted event to uevent thread
2229 * @sdev: scsi_device event occurred on
2230 * @evt: event to send
2231 *
2232 * Assert scsi device event asynchronously.
2233 */
2234 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2235 {
2236 unsigned long flags;
2237
2238 #if 0
2239 /* FIXME: currently this check eliminates all media change events
2240 * for polled devices. Need to update to discriminate between AN
2241 * and polled events */
2242 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2243 kfree(evt);
2244 return;
2245 }
2246 #endif
2247
2248 spin_lock_irqsave(&sdev->list_lock, flags);
2249 list_add_tail(&evt->node, &sdev->event_list);
2250 schedule_work(&sdev->event_work);
2251 spin_unlock_irqrestore(&sdev->list_lock, flags);
2252 }
2253 EXPORT_SYMBOL_GPL(sdev_evt_send);
2254
2255 /**
2256 * sdev_evt_alloc - allocate a new scsi event
2257 * @evt_type: type of event to allocate
2258 * @gfpflags: GFP flags for allocation
2259 *
2260 * Allocates and returns a new scsi_event.
2261 */
2262 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2263 gfp_t gfpflags)
2264 {
2265 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2266 if (!evt)
2267 return NULL;
2268
2269 evt->evt_type = evt_type;
2270 INIT_LIST_HEAD(&evt->node);
2271
2272 /* evt_type-specific initialization, if any */
2273 switch (evt_type) {
2274 case SDEV_EVT_MEDIA_CHANGE:
2275 default:
2276 /* do nothing */
2277 break;
2278 }
2279
2280 return evt;
2281 }
2282 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2283
2284 /**
2285 * sdev_evt_send_simple - send asserted event to uevent thread
2286 * @sdev: scsi_device event occurred on
2287 * @evt_type: type of event to send
2288 * @gfpflags: GFP flags for allocation
2289 *
2290 * Assert scsi device event asynchronously, given an event type.
2291 */
2292 void sdev_evt_send_simple(struct scsi_device *sdev,
2293 enum scsi_device_event evt_type, gfp_t gfpflags)
2294 {
2295 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2296 if (!evt) {
2297 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2298 evt_type);
2299 return;
2300 }
2301
2302 sdev_evt_send(sdev, evt);
2303 }
2304 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2305
2306 /**
2307 * scsi_device_quiesce - Block user issued commands.
2308 * @sdev: scsi device to quiesce.
2309 *
2310 * This works by trying to transition to the SDEV_QUIESCE state
2311 * (which must be a legal transition). When the device is in this
2312 * state, only special requests will be accepted, all others will
2313 * be deferred. Since special requests may also be requeued requests,
2314 * a successful return doesn't guarantee the device will be
2315 * totally quiescent.
2316 *
2317 * Must be called with user context, may sleep.
2318 *
2319 * Returns zero if unsuccessful or an error if not.
2320 */
2321 int
2322 scsi_device_quiesce(struct scsi_device *sdev)
2323 {
2324 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2325 if (err)
2326 return err;
2327
2328 scsi_run_queue(sdev->request_queue);
2329 while (sdev->device_busy) {
2330 msleep_interruptible(200);
2331 scsi_run_queue(sdev->request_queue);
2332 }
2333 return 0;
2334 }
2335 EXPORT_SYMBOL(scsi_device_quiesce);
2336
2337 /**
2338 * scsi_device_resume - Restart user issued commands to a quiesced device.
2339 * @sdev: scsi device to resume.
2340 *
2341 * Moves the device from quiesced back to running and restarts the
2342 * queues.
2343 *
2344 * Must be called with user context, may sleep.
2345 */
2346 void
2347 scsi_device_resume(struct scsi_device *sdev)
2348 {
2349 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2350 return;
2351 scsi_run_queue(sdev->request_queue);
2352 }
2353 EXPORT_SYMBOL(scsi_device_resume);
2354
2355 static void
2356 device_quiesce_fn(struct scsi_device *sdev, void *data)
2357 {
2358 scsi_device_quiesce(sdev);
2359 }
2360
2361 void
2362 scsi_target_quiesce(struct scsi_target *starget)
2363 {
2364 starget_for_each_device(starget, NULL, device_quiesce_fn);
2365 }
2366 EXPORT_SYMBOL(scsi_target_quiesce);
2367
2368 static void
2369 device_resume_fn(struct scsi_device *sdev, void *data)
2370 {
2371 scsi_device_resume(sdev);
2372 }
2373
2374 void
2375 scsi_target_resume(struct scsi_target *starget)
2376 {
2377 starget_for_each_device(starget, NULL, device_resume_fn);
2378 }
2379 EXPORT_SYMBOL(scsi_target_resume);
2380
2381 /**
2382 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2383 * @sdev: device to block
2384 *
2385 * Block request made by scsi lld's to temporarily stop all
2386 * scsi commands on the specified device. Called from interrupt
2387 * or normal process context.
2388 *
2389 * Returns zero if successful or error if not
2390 *
2391 * Notes:
2392 * This routine transitions the device to the SDEV_BLOCK state
2393 * (which must be a legal transition). When the device is in this
2394 * state, all commands are deferred until the scsi lld reenables
2395 * the device with scsi_device_unblock or device_block_tmo fires.
2396 * This routine assumes the host_lock is held on entry.
2397 */
2398 int
2399 scsi_internal_device_block(struct scsi_device *sdev)
2400 {
2401 struct request_queue *q = sdev->request_queue;
2402 unsigned long flags;
2403 int err = 0;
2404
2405 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2406 if (err)
2407 return err;
2408
2409 /*
2410 * The device has transitioned to SDEV_BLOCK. Stop the
2411 * block layer from calling the midlayer with this device's
2412 * request queue.
2413 */
2414 spin_lock_irqsave(q->queue_lock, flags);
2415 blk_stop_queue(q);
2416 spin_unlock_irqrestore(q->queue_lock, flags);
2417
2418 return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2421
2422 /**
2423 * scsi_internal_device_unblock - resume a device after a block request
2424 * @sdev: device to resume
2425 *
2426 * Called by scsi lld's or the midlayer to restart the device queue
2427 * for the previously suspended scsi device. Called from interrupt or
2428 * normal process context.
2429 *
2430 * Returns zero if successful or error if not.
2431 *
2432 * Notes:
2433 * This routine transitions the device to the SDEV_RUNNING state
2434 * (which must be a legal transition) allowing the midlayer to
2435 * goose the queue for this device. This routine assumes the
2436 * host_lock is held upon entry.
2437 */
2438 int
2439 scsi_internal_device_unblock(struct scsi_device *sdev)
2440 {
2441 struct request_queue *q = sdev->request_queue;
2442 int err;
2443 unsigned long flags;
2444
2445 /*
2446 * Try to transition the scsi device to SDEV_RUNNING
2447 * and goose the device queue if successful.
2448 */
2449 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2450 if (err)
2451 return err;
2452
2453 spin_lock_irqsave(q->queue_lock, flags);
2454 blk_start_queue(q);
2455 spin_unlock_irqrestore(q->queue_lock, flags);
2456
2457 return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2460
2461 static void
2462 device_block(struct scsi_device *sdev, void *data)
2463 {
2464 scsi_internal_device_block(sdev);
2465 }
2466
2467 static int
2468 target_block(struct device *dev, void *data)
2469 {
2470 if (scsi_is_target_device(dev))
2471 starget_for_each_device(to_scsi_target(dev), NULL,
2472 device_block);
2473 return 0;
2474 }
2475
2476 void
2477 scsi_target_block(struct device *dev)
2478 {
2479 if (scsi_is_target_device(dev))
2480 starget_for_each_device(to_scsi_target(dev), NULL,
2481 device_block);
2482 else
2483 device_for_each_child(dev, NULL, target_block);
2484 }
2485 EXPORT_SYMBOL_GPL(scsi_target_block);
2486
2487 static void
2488 device_unblock(struct scsi_device *sdev, void *data)
2489 {
2490 scsi_internal_device_unblock(sdev);
2491 }
2492
2493 static int
2494 target_unblock(struct device *dev, void *data)
2495 {
2496 if (scsi_is_target_device(dev))
2497 starget_for_each_device(to_scsi_target(dev), NULL,
2498 device_unblock);
2499 return 0;
2500 }
2501
2502 void
2503 scsi_target_unblock(struct device *dev)
2504 {
2505 if (scsi_is_target_device(dev))
2506 starget_for_each_device(to_scsi_target(dev), NULL,
2507 device_unblock);
2508 else
2509 device_for_each_child(dev, NULL, target_unblock);
2510 }
2511 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2512
2513 /**
2514 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2515 * @sgl: scatter-gather list
2516 * @sg_count: number of segments in sg
2517 * @offset: offset in bytes into sg, on return offset into the mapped area
2518 * @len: bytes to map, on return number of bytes mapped
2519 *
2520 * Returns virtual address of the start of the mapped page
2521 */
2522 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2523 size_t *offset, size_t *len)
2524 {
2525 int i;
2526 size_t sg_len = 0, len_complete = 0;
2527 struct scatterlist *sg;
2528 struct page *page;
2529
2530 WARN_ON(!irqs_disabled());
2531
2532 for_each_sg(sgl, sg, sg_count, i) {
2533 len_complete = sg_len; /* Complete sg-entries */
2534 sg_len += sg->length;
2535 if (sg_len > *offset)
2536 break;
2537 }
2538
2539 if (unlikely(i == sg_count)) {
2540 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2541 "elements %d\n",
2542 __func__, sg_len, *offset, sg_count);
2543 WARN_ON(1);
2544 return NULL;
2545 }
2546
2547 /* Offset starting from the beginning of first page in this sg-entry */
2548 *offset = *offset - len_complete + sg->offset;
2549
2550 /* Assumption: contiguous pages can be accessed as "page + i" */
2551 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2552 *offset &= ~PAGE_MASK;
2553
2554 /* Bytes in this sg-entry from *offset to the end of the page */
2555 sg_len = PAGE_SIZE - *offset;
2556 if (*len > sg_len)
2557 *len = sg_len;
2558
2559 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2560 }
2561 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2562
2563 /**
2564 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2565 * @virt: virtual address to be unmapped
2566 */
2567 void scsi_kunmap_atomic_sg(void *virt)
2568 {
2569 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2570 }
2571 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);