]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/scsi_lib.c
[SCSI] untangle scsi_prep_fn
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
35
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 kmem_cache_t *slab;
40 mempool_t *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70 * Function: scsi_unprep_request()
71 *
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments: req - request to unprepare
76 *
77 * Lock status: Assumed that no locks are held upon entry.
78 *
79 * Returns: Nothing.
80 */
81 static void scsi_unprep_request(struct request *req)
82 {
83 struct scsi_cmnd *cmd = req->special;
84
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
87
88 scsi_put_command(cmd);
89 }
90
91 /*
92 * Function: scsi_queue_insert()
93 *
94 * Purpose: Insert a command in the midlevel queue.
95 *
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns: Nothing.
102 *
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
109 */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
116
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
119
120 /*
121 * Set the appropriate busy bit for the device/host.
122 *
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
125 *
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
132 */
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
137
138 /*
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
141 */
142 scsi_device_unbusy(device);
143
144 /*
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
147 *
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
150 *
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
154 */
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
158
159 scsi_run_queue(q);
160
161 return 0;
162 }
163
164 /**
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
175 *
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
178 **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
186
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
192
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202 /*
203 * head injection *required* here otherwise quiesce won't work
204 */
205 blk_execute_rq(req->q, NULL, req, 1);
206
207 ret = req->errors;
208 out:
209 blk_put_request(req);
210
211 return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 char *sense = NULL;
221 int result;
222
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
227 }
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233 kfree(sense);
234 return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static kmem_cache_t *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 struct scsi_io_context *sioc = req->end_io_data;
249
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 struct request_queue *q = rq->q;
260
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
265
266 if (!rq->bio)
267 blk_rq_bio_prep(q, rq, bio);
268 else if (!q->back_merge_fn(q, rq, bio))
269 return -EINVAL;
270 else {
271 rq->biotail->bi_next = bio;
272 rq->biotail = bio;
273 rq->hard_nr_sectors += bio_sectors(bio);
274 rq->nr_sectors = rq->hard_nr_sectors;
275 }
276
277 return 0;
278 }
279
280 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
281 {
282 if (bio->bi_size)
283 return 1;
284
285 bio_put(bio);
286 return 0;
287 }
288
289 /**
290 * scsi_req_map_sg - map a scatterlist into a request
291 * @rq: request to fill
292 * @sg: scatterlist
293 * @nsegs: number of elements
294 * @bufflen: len of buffer
295 * @gfp: memory allocation flags
296 *
297 * scsi_req_map_sg maps a scatterlist into a request so that the
298 * request can be sent to the block layer. We do not trust the scatterlist
299 * sent to use, as some ULDs use that struct to only organize the pages.
300 */
301 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302 int nsegs, unsigned bufflen, gfp_t gfp)
303 {
304 struct request_queue *q = rq->q;
305 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 unsigned int data_len = 0, len, bytes, off;
307 struct page *page;
308 struct bio *bio = NULL;
309 int i, err, nr_vecs = 0;
310
311 for (i = 0; i < nsegs; i++) {
312 page = sgl[i].page;
313 off = sgl[i].offset;
314 len = sgl[i].length;
315 data_len += len;
316
317 while (len > 0) {
318 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
319
320 if (!bio) {
321 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
322 nr_pages -= nr_vecs;
323
324 bio = bio_alloc(gfp, nr_vecs);
325 if (!bio) {
326 err = -ENOMEM;
327 goto free_bios;
328 }
329 bio->bi_end_io = scsi_bi_endio;
330 }
331
332 if (bio_add_pc_page(q, bio, page, bytes, off) !=
333 bytes) {
334 bio_put(bio);
335 err = -EINVAL;
336 goto free_bios;
337 }
338
339 if (bio->bi_vcnt >= nr_vecs) {
340 err = scsi_merge_bio(rq, bio);
341 if (err) {
342 bio_endio(bio, bio->bi_size, 0);
343 goto free_bios;
344 }
345 bio = NULL;
346 }
347
348 page++;
349 len -= bytes;
350 off = 0;
351 }
352 }
353
354 rq->buffer = rq->data = NULL;
355 rq->data_len = data_len;
356 return 0;
357
358 free_bios:
359 while ((bio = rq->bio) != NULL) {
360 rq->bio = bio->bi_next;
361 /*
362 * call endio instead of bio_put incase it was bounced
363 */
364 bio_endio(bio, bio->bi_size, 0);
365 }
366
367 return err;
368 }
369
370 /**
371 * scsi_execute_async - insert request
372 * @sdev: scsi device
373 * @cmd: scsi command
374 * @cmd_len: length of scsi cdb
375 * @data_direction: data direction
376 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
377 * @bufflen: len of buffer
378 * @use_sg: if buffer is a scatterlist this is the number of elements
379 * @timeout: request timeout in seconds
380 * @retries: number of times to retry request
381 * @flags: or into request flags
382 **/
383 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385 int use_sg, int timeout, int retries, void *privdata,
386 void (*done)(void *, char *, int, int), gfp_t gfp)
387 {
388 struct request *req;
389 struct scsi_io_context *sioc;
390 int err = 0;
391 int write = (data_direction == DMA_TO_DEVICE);
392
393 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394 if (!sioc)
395 return DRIVER_ERROR << 24;
396 memset(sioc, 0, sizeof(*sioc));
397
398 req = blk_get_request(sdev->request_queue, write, gfp);
399 if (!req)
400 goto free_sense;
401 req->cmd_type = REQ_TYPE_BLOCK_PC;
402 req->cmd_flags |= REQ_QUIET;
403
404 if (use_sg)
405 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
406 else if (bufflen)
407 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
408
409 if (err)
410 goto free_req;
411
412 req->cmd_len = cmd_len;
413 memcpy(req->cmd, cmd, req->cmd_len);
414 req->sense = sioc->sense;
415 req->sense_len = 0;
416 req->timeout = timeout;
417 req->retries = retries;
418 req->end_io_data = sioc;
419
420 sioc->data = privdata;
421 sioc->done = done;
422
423 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
424 return 0;
425
426 free_req:
427 blk_put_request(req);
428 free_sense:
429 kmem_cache_free(scsi_io_context_cache, sioc);
430 return DRIVER_ERROR << 24;
431 }
432 EXPORT_SYMBOL_GPL(scsi_execute_async);
433
434 /*
435 * Function: scsi_init_cmd_errh()
436 *
437 * Purpose: Initialize cmd fields related to error handling.
438 *
439 * Arguments: cmd - command that is ready to be queued.
440 *
441 * Notes: This function has the job of initializing a number of
442 * fields related to error handling. Typically this will
443 * be called once for each command, as required.
444 */
445 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
446 {
447 cmd->serial_number = 0;
448 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
449 if (cmd->cmd_len == 0)
450 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
451 }
452
453 void scsi_device_unbusy(struct scsi_device *sdev)
454 {
455 struct Scsi_Host *shost = sdev->host;
456 unsigned long flags;
457
458 spin_lock_irqsave(shost->host_lock, flags);
459 shost->host_busy--;
460 if (unlikely(scsi_host_in_recovery(shost) &&
461 (shost->host_failed || shost->host_eh_scheduled)))
462 scsi_eh_wakeup(shost);
463 spin_unlock(shost->host_lock);
464 spin_lock(sdev->request_queue->queue_lock);
465 sdev->device_busy--;
466 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
467 }
468
469 /*
470 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
471 * and call blk_run_queue for all the scsi_devices on the target -
472 * including current_sdev first.
473 *
474 * Called with *no* scsi locks held.
475 */
476 static void scsi_single_lun_run(struct scsi_device *current_sdev)
477 {
478 struct Scsi_Host *shost = current_sdev->host;
479 struct scsi_device *sdev, *tmp;
480 struct scsi_target *starget = scsi_target(current_sdev);
481 unsigned long flags;
482
483 spin_lock_irqsave(shost->host_lock, flags);
484 starget->starget_sdev_user = NULL;
485 spin_unlock_irqrestore(shost->host_lock, flags);
486
487 /*
488 * Call blk_run_queue for all LUNs on the target, starting with
489 * current_sdev. We race with others (to set starget_sdev_user),
490 * but in most cases, we will be first. Ideally, each LU on the
491 * target would get some limited time or requests on the target.
492 */
493 blk_run_queue(current_sdev->request_queue);
494
495 spin_lock_irqsave(shost->host_lock, flags);
496 if (starget->starget_sdev_user)
497 goto out;
498 list_for_each_entry_safe(sdev, tmp, &starget->devices,
499 same_target_siblings) {
500 if (sdev == current_sdev)
501 continue;
502 if (scsi_device_get(sdev))
503 continue;
504
505 spin_unlock_irqrestore(shost->host_lock, flags);
506 blk_run_queue(sdev->request_queue);
507 spin_lock_irqsave(shost->host_lock, flags);
508
509 scsi_device_put(sdev);
510 }
511 out:
512 spin_unlock_irqrestore(shost->host_lock, flags);
513 }
514
515 /*
516 * Function: scsi_run_queue()
517 *
518 * Purpose: Select a proper request queue to serve next
519 *
520 * Arguments: q - last request's queue
521 *
522 * Returns: Nothing
523 *
524 * Notes: The previous command was completely finished, start
525 * a new one if possible.
526 */
527 static void scsi_run_queue(struct request_queue *q)
528 {
529 struct scsi_device *sdev = q->queuedata;
530 struct Scsi_Host *shost = sdev->host;
531 unsigned long flags;
532
533 if (sdev->single_lun)
534 scsi_single_lun_run(sdev);
535
536 spin_lock_irqsave(shost->host_lock, flags);
537 while (!list_empty(&shost->starved_list) &&
538 !shost->host_blocked && !shost->host_self_blocked &&
539 !((shost->can_queue > 0) &&
540 (shost->host_busy >= shost->can_queue))) {
541 /*
542 * As long as shost is accepting commands and we have
543 * starved queues, call blk_run_queue. scsi_request_fn
544 * drops the queue_lock and can add us back to the
545 * starved_list.
546 *
547 * host_lock protects the starved_list and starved_entry.
548 * scsi_request_fn must get the host_lock before checking
549 * or modifying starved_list or starved_entry.
550 */
551 sdev = list_entry(shost->starved_list.next,
552 struct scsi_device, starved_entry);
553 list_del_init(&sdev->starved_entry);
554 spin_unlock_irqrestore(shost->host_lock, flags);
555
556
557 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
558 !test_and_set_bit(QUEUE_FLAG_REENTER,
559 &sdev->request_queue->queue_flags)) {
560 blk_run_queue(sdev->request_queue);
561 clear_bit(QUEUE_FLAG_REENTER,
562 &sdev->request_queue->queue_flags);
563 } else
564 blk_run_queue(sdev->request_queue);
565
566 spin_lock_irqsave(shost->host_lock, flags);
567 if (unlikely(!list_empty(&sdev->starved_entry)))
568 /*
569 * sdev lost a race, and was put back on the
570 * starved list. This is unlikely but without this
571 * in theory we could loop forever.
572 */
573 break;
574 }
575 spin_unlock_irqrestore(shost->host_lock, flags);
576
577 blk_run_queue(q);
578 }
579
580 /*
581 * Function: scsi_requeue_command()
582 *
583 * Purpose: Handle post-processing of completed commands.
584 *
585 * Arguments: q - queue to operate on
586 * cmd - command that may need to be requeued.
587 *
588 * Returns: Nothing
589 *
590 * Notes: After command completion, there may be blocks left
591 * over which weren't finished by the previous command
592 * this can be for a number of reasons - the main one is
593 * I/O errors in the middle of the request, in which case
594 * we need to request the blocks that come after the bad
595 * sector.
596 * Notes: Upon return, cmd is a stale pointer.
597 */
598 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
599 {
600 struct request *req = cmd->request;
601 unsigned long flags;
602
603 scsi_unprep_request(req);
604 spin_lock_irqsave(q->queue_lock, flags);
605 blk_requeue_request(q, req);
606 spin_unlock_irqrestore(q->queue_lock, flags);
607
608 scsi_run_queue(q);
609 }
610
611 void scsi_next_command(struct scsi_cmnd *cmd)
612 {
613 struct scsi_device *sdev = cmd->device;
614 struct request_queue *q = sdev->request_queue;
615
616 /* need to hold a reference on the device before we let go of the cmd */
617 get_device(&sdev->sdev_gendev);
618
619 scsi_put_command(cmd);
620 scsi_run_queue(q);
621
622 /* ok to remove device now */
623 put_device(&sdev->sdev_gendev);
624 }
625
626 void scsi_run_host_queues(struct Scsi_Host *shost)
627 {
628 struct scsi_device *sdev;
629
630 shost_for_each_device(sdev, shost)
631 scsi_run_queue(sdev->request_queue);
632 }
633
634 /*
635 * Function: scsi_end_request()
636 *
637 * Purpose: Post-processing of completed commands (usually invoked at end
638 * of upper level post-processing and scsi_io_completion).
639 *
640 * Arguments: cmd - command that is complete.
641 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
642 * bytes - number of bytes of completed I/O
643 * requeue - indicates whether we should requeue leftovers.
644 *
645 * Lock status: Assumed that lock is not held upon entry.
646 *
647 * Returns: cmd if requeue required, NULL otherwise.
648 *
649 * Notes: This is called for block device requests in order to
650 * mark some number of sectors as complete.
651 *
652 * We are guaranteeing that the request queue will be goosed
653 * at some point during this call.
654 * Notes: If cmd was requeued, upon return it will be a stale pointer.
655 */
656 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
657 int bytes, int requeue)
658 {
659 request_queue_t *q = cmd->device->request_queue;
660 struct request *req = cmd->request;
661 unsigned long flags;
662
663 /*
664 * If there are blocks left over at the end, set up the command
665 * to queue the remainder of them.
666 */
667 if (end_that_request_chunk(req, uptodate, bytes)) {
668 int leftover = (req->hard_nr_sectors << 9);
669
670 if (blk_pc_request(req))
671 leftover = req->data_len;
672
673 /* kill remainder if no retrys */
674 if (!uptodate && blk_noretry_request(req))
675 end_that_request_chunk(req, 0, leftover);
676 else {
677 if (requeue) {
678 /*
679 * Bleah. Leftovers again. Stick the
680 * leftovers in the front of the
681 * queue, and goose the queue again.
682 */
683 scsi_requeue_command(q, cmd);
684 cmd = NULL;
685 }
686 return cmd;
687 }
688 }
689
690 add_disk_randomness(req->rq_disk);
691
692 spin_lock_irqsave(q->queue_lock, flags);
693 if (blk_rq_tagged(req))
694 blk_queue_end_tag(q, req);
695 end_that_request_last(req, uptodate);
696 spin_unlock_irqrestore(q->queue_lock, flags);
697
698 /*
699 * This will goose the queue request function at the end, so we don't
700 * need to worry about launching another command.
701 */
702 scsi_next_command(cmd);
703 return NULL;
704 }
705
706 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
707 {
708 struct scsi_host_sg_pool *sgp;
709 struct scatterlist *sgl;
710
711 BUG_ON(!cmd->use_sg);
712
713 switch (cmd->use_sg) {
714 case 1 ... 8:
715 cmd->sglist_len = 0;
716 break;
717 case 9 ... 16:
718 cmd->sglist_len = 1;
719 break;
720 case 17 ... 32:
721 cmd->sglist_len = 2;
722 break;
723 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
724 case 33 ... 64:
725 cmd->sglist_len = 3;
726 break;
727 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
728 case 65 ... 128:
729 cmd->sglist_len = 4;
730 break;
731 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
732 case 129 ... 256:
733 cmd->sglist_len = 5;
734 break;
735 #endif
736 #endif
737 #endif
738 default:
739 return NULL;
740 }
741
742 sgp = scsi_sg_pools + cmd->sglist_len;
743 sgl = mempool_alloc(sgp->pool, gfp_mask);
744 return sgl;
745 }
746
747 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
748 {
749 struct scsi_host_sg_pool *sgp;
750
751 BUG_ON(index >= SG_MEMPOOL_NR);
752
753 sgp = scsi_sg_pools + index;
754 mempool_free(sgl, sgp->pool);
755 }
756
757 /*
758 * Function: scsi_release_buffers()
759 *
760 * Purpose: Completion processing for block device I/O requests.
761 *
762 * Arguments: cmd - command that we are bailing.
763 *
764 * Lock status: Assumed that no lock is held upon entry.
765 *
766 * Returns: Nothing
767 *
768 * Notes: In the event that an upper level driver rejects a
769 * command, we must release resources allocated during
770 * the __init_io() function. Primarily this would involve
771 * the scatter-gather table, and potentially any bounce
772 * buffers.
773 */
774 static void scsi_release_buffers(struct scsi_cmnd *cmd)
775 {
776 if (cmd->use_sg)
777 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
778
779 /*
780 * Zero these out. They now point to freed memory, and it is
781 * dangerous to hang onto the pointers.
782 */
783 cmd->request_buffer = NULL;
784 cmd->request_bufflen = 0;
785 }
786
787 /*
788 * Function: scsi_io_completion()
789 *
790 * Purpose: Completion processing for block device I/O requests.
791 *
792 * Arguments: cmd - command that is finished.
793 *
794 * Lock status: Assumed that no lock is held upon entry.
795 *
796 * Returns: Nothing
797 *
798 * Notes: This function is matched in terms of capabilities to
799 * the function that created the scatter-gather list.
800 * In other words, if there are no bounce buffers
801 * (the normal case for most drivers), we don't need
802 * the logic to deal with cleaning up afterwards.
803 *
804 * We must do one of several things here:
805 *
806 * a) Call scsi_end_request. This will finish off the
807 * specified number of sectors. If we are done, the
808 * command block will be released, and the queue
809 * function will be goosed. If we are not done, then
810 * scsi_end_request will directly goose the queue.
811 *
812 * b) We can just use scsi_requeue_command() here. This would
813 * be used if we just wanted to retry, for example.
814 */
815 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
816 {
817 int result = cmd->result;
818 int this_count = cmd->request_bufflen;
819 request_queue_t *q = cmd->device->request_queue;
820 struct request *req = cmd->request;
821 int clear_errors = 1;
822 struct scsi_sense_hdr sshdr;
823 int sense_valid = 0;
824 int sense_deferred = 0;
825
826 scsi_release_buffers(cmd);
827
828 if (result) {
829 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
830 if (sense_valid)
831 sense_deferred = scsi_sense_is_deferred(&sshdr);
832 }
833
834 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
835 req->errors = result;
836 if (result) {
837 clear_errors = 0;
838 if (sense_valid && req->sense) {
839 /*
840 * SG_IO wants current and deferred errors
841 */
842 int len = 8 + cmd->sense_buffer[7];
843
844 if (len > SCSI_SENSE_BUFFERSIZE)
845 len = SCSI_SENSE_BUFFERSIZE;
846 memcpy(req->sense, cmd->sense_buffer, len);
847 req->sense_len = len;
848 }
849 } else
850 req->data_len = cmd->resid;
851 }
852
853 /*
854 * Next deal with any sectors which we were able to correctly
855 * handle.
856 */
857 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
858 "%d bytes done.\n",
859 req->nr_sectors, good_bytes));
860 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
861
862 if (clear_errors)
863 req->errors = 0;
864
865 /* A number of bytes were successfully read. If there
866 * are leftovers and there is some kind of error
867 * (result != 0), retry the rest.
868 */
869 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
870 return;
871
872 /* good_bytes = 0, or (inclusive) there were leftovers and
873 * result = 0, so scsi_end_request couldn't retry.
874 */
875 if (sense_valid && !sense_deferred) {
876 switch (sshdr.sense_key) {
877 case UNIT_ATTENTION:
878 if (cmd->device->removable) {
879 /* Detected disc change. Set a bit
880 * and quietly refuse further access.
881 */
882 cmd->device->changed = 1;
883 scsi_end_request(cmd, 0, this_count, 1);
884 return;
885 } else {
886 /* Must have been a power glitch, or a
887 * bus reset. Could not have been a
888 * media change, so we just retry the
889 * request and see what happens.
890 */
891 scsi_requeue_command(q, cmd);
892 return;
893 }
894 break;
895 case ILLEGAL_REQUEST:
896 /* If we had an ILLEGAL REQUEST returned, then
897 * we may have performed an unsupported
898 * command. The only thing this should be
899 * would be a ten byte read where only a six
900 * byte read was supported. Also, on a system
901 * where READ CAPACITY failed, we may have
902 * read past the end of the disk.
903 */
904 if ((cmd->device->use_10_for_rw &&
905 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
906 (cmd->cmnd[0] == READ_10 ||
907 cmd->cmnd[0] == WRITE_10)) {
908 cmd->device->use_10_for_rw = 0;
909 /* This will cause a retry with a
910 * 6-byte command.
911 */
912 scsi_requeue_command(q, cmd);
913 return;
914 } else {
915 scsi_end_request(cmd, 0, this_count, 1);
916 return;
917 }
918 break;
919 case NOT_READY:
920 /* If the device is in the process of becoming
921 * ready, or has a temporary blockage, retry.
922 */
923 if (sshdr.asc == 0x04) {
924 switch (sshdr.ascq) {
925 case 0x01: /* becoming ready */
926 case 0x04: /* format in progress */
927 case 0x05: /* rebuild in progress */
928 case 0x06: /* recalculation in progress */
929 case 0x07: /* operation in progress */
930 case 0x08: /* Long write in progress */
931 case 0x09: /* self test in progress */
932 scsi_requeue_command(q, cmd);
933 return;
934 default:
935 break;
936 }
937 }
938 if (!(req->cmd_flags & REQ_QUIET)) {
939 scmd_printk(KERN_INFO, cmd,
940 "Device not ready: ");
941 scsi_print_sense_hdr("", &sshdr);
942 }
943 scsi_end_request(cmd, 0, this_count, 1);
944 return;
945 case VOLUME_OVERFLOW:
946 if (!(req->cmd_flags & REQ_QUIET)) {
947 scmd_printk(KERN_INFO, cmd,
948 "Volume overflow, CDB: ");
949 __scsi_print_command(cmd->cmnd);
950 scsi_print_sense("", cmd);
951 }
952 /* See SSC3rXX or current. */
953 scsi_end_request(cmd, 0, this_count, 1);
954 return;
955 default:
956 break;
957 }
958 }
959 if (host_byte(result) == DID_RESET) {
960 /* Third party bus reset or reset for error recovery
961 * reasons. Just retry the request and see what
962 * happens.
963 */
964 scsi_requeue_command(q, cmd);
965 return;
966 }
967 if (result) {
968 if (!(req->cmd_flags & REQ_QUIET)) {
969 scmd_printk(KERN_INFO, cmd,
970 "SCSI error: return code = 0x%08x\n",
971 result);
972 if (driver_byte(result) & DRIVER_SENSE)
973 scsi_print_sense("", cmd);
974 }
975 }
976 scsi_end_request(cmd, 0, this_count, !result);
977 }
978 EXPORT_SYMBOL(scsi_io_completion);
979
980 /*
981 * Function: scsi_init_io()
982 *
983 * Purpose: SCSI I/O initialize function.
984 *
985 * Arguments: cmd - Command descriptor we wish to initialize
986 *
987 * Returns: 0 on success
988 * BLKPREP_DEFER if the failure is retryable
989 * BLKPREP_KILL if the failure is fatal
990 */
991 static int scsi_init_io(struct scsi_cmnd *cmd)
992 {
993 struct request *req = cmd->request;
994 struct scatterlist *sgpnt;
995 int count;
996
997 /*
998 * We used to not use scatter-gather for single segment request,
999 * but now we do (it makes highmem I/O easier to support without
1000 * kmapping pages)
1001 */
1002 cmd->use_sg = req->nr_phys_segments;
1003
1004 /*
1005 * If sg table allocation fails, requeue request later.
1006 */
1007 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1008 if (unlikely(!sgpnt)) {
1009 scsi_unprep_request(req);
1010 return BLKPREP_DEFER;
1011 }
1012
1013 req->buffer = NULL;
1014 cmd->request_buffer = (char *) sgpnt;
1015 if (blk_pc_request(req))
1016 cmd->request_bufflen = req->data_len;
1017 else
1018 cmd->request_bufflen = req->nr_sectors << 9;
1019
1020 /*
1021 * Next, walk the list, and fill in the addresses and sizes of
1022 * each segment.
1023 */
1024 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1025 if (likely(count <= cmd->use_sg)) {
1026 cmd->use_sg = count;
1027 return BLKPREP_OK;
1028 }
1029
1030 printk(KERN_ERR "Incorrect number of segments after building list\n");
1031 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1032 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1033 req->current_nr_sectors);
1034
1035 /* release the command and kill it */
1036 scsi_release_buffers(cmd);
1037 scsi_put_command(cmd);
1038 return BLKPREP_KILL;
1039 }
1040
1041 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1042 sector_t *error_sector)
1043 {
1044 struct scsi_device *sdev = q->queuedata;
1045 struct scsi_driver *drv;
1046
1047 if (sdev->sdev_state != SDEV_RUNNING)
1048 return -ENXIO;
1049
1050 drv = *(struct scsi_driver **) disk->private_data;
1051 if (drv->issue_flush)
1052 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1053
1054 return -EOPNOTSUPP;
1055 }
1056
1057 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1058 struct request *req)
1059 {
1060 struct scsi_cmnd *cmd;
1061
1062 if (!req->special) {
1063 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1064 if (unlikely(!cmd))
1065 return NULL;
1066 req->special = cmd;
1067 } else {
1068 cmd = req->special;
1069 }
1070
1071 /* pull a tag out of the request if we have one */
1072 cmd->tag = req->tag;
1073 cmd->request = req;
1074
1075 return cmd;
1076 }
1077
1078 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1079 {
1080 BUG_ON(!blk_pc_request(cmd->request));
1081 /*
1082 * This will complete the whole command with uptodate=1 so
1083 * as far as the block layer is concerned the command completed
1084 * successfully. Since this is a REQ_BLOCK_PC command the
1085 * caller should check the request's errors value
1086 */
1087 scsi_io_completion(cmd, cmd->request_bufflen);
1088 }
1089
1090 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1091 {
1092 struct scsi_cmnd *cmd;
1093
1094 cmd = scsi_get_cmd_from_req(sdev, req);
1095 if (unlikely(!cmd))
1096 return BLKPREP_DEFER;
1097
1098 /*
1099 * BLOCK_PC requests may transfer data, in which case they must
1100 * a bio attached to them. Or they might contain a SCSI command
1101 * that does not transfer data, in which case they may optionally
1102 * submit a request without an attached bio.
1103 */
1104 if (req->bio) {
1105 int ret;
1106
1107 BUG_ON(!req->nr_phys_segments);
1108
1109 ret = scsi_init_io(cmd);
1110 if (unlikely(ret))
1111 return ret;
1112 } else {
1113 BUG_ON(req->data_len);
1114 BUG_ON(req->data);
1115
1116 cmd->request_bufflen = 0;
1117 cmd->request_buffer = NULL;
1118 cmd->use_sg = 0;
1119 req->buffer = NULL;
1120 }
1121
1122 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1123 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1124 cmd->cmd_len = req->cmd_len;
1125 if (!req->data_len)
1126 cmd->sc_data_direction = DMA_NONE;
1127 else if (rq_data_dir(req) == WRITE)
1128 cmd->sc_data_direction = DMA_TO_DEVICE;
1129 else
1130 cmd->sc_data_direction = DMA_FROM_DEVICE;
1131
1132 cmd->transfersize = req->data_len;
1133 cmd->allowed = req->retries;
1134 cmd->timeout_per_command = req->timeout;
1135 cmd->done = scsi_blk_pc_done;
1136 return BLKPREP_OK;
1137 }
1138
1139 /*
1140 * Setup a REQ_TYPE_FS command. These are simple read/write request
1141 * from filesystems that still need to be translated to SCSI CDBs from
1142 * the ULD.
1143 */
1144 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1145 {
1146 struct scsi_cmnd *cmd;
1147 struct scsi_driver *drv;
1148 int ret;
1149
1150 /*
1151 * Filesystem requests must transfer data.
1152 */
1153 BUG_ON(!req->nr_phys_segments);
1154
1155 cmd = scsi_get_cmd_from_req(sdev, req);
1156 if (unlikely(!cmd))
1157 return BLKPREP_DEFER;
1158
1159 ret = scsi_init_io(cmd);
1160 if (unlikely(ret))
1161 return ret;
1162
1163 /*
1164 * Initialize the actual SCSI command for this request.
1165 */
1166 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1167 if (unlikely(!drv->init_command(cmd))) {
1168 scsi_release_buffers(cmd);
1169 scsi_put_command(cmd);
1170 return BLKPREP_KILL;
1171 }
1172
1173 return BLKPREP_OK;
1174 }
1175
1176 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1177 {
1178 struct scsi_device *sdev = q->queuedata;
1179 int ret = BLKPREP_OK;
1180
1181 /*
1182 * If the device is not in running state we will reject some
1183 * or all commands.
1184 */
1185 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1186 switch (sdev->sdev_state) {
1187 case SDEV_OFFLINE:
1188 /*
1189 * If the device is offline we refuse to process any
1190 * commands. The device must be brought online
1191 * before trying any recovery commands.
1192 */
1193 sdev_printk(KERN_ERR, sdev,
1194 "rejecting I/O to offline device\n");
1195 ret = BLKPREP_KILL;
1196 break;
1197 case SDEV_DEL:
1198 /*
1199 * If the device is fully deleted, we refuse to
1200 * process any commands as well.
1201 */
1202 sdev_printk(KERN_ERR, sdev,
1203 "rejecting I/O to dead device\n");
1204 ret = BLKPREP_KILL;
1205 break;
1206 case SDEV_QUIESCE:
1207 case SDEV_BLOCK:
1208 /*
1209 * If the devices is blocked we defer normal commands.
1210 */
1211 if (!(req->cmd_flags & REQ_PREEMPT))
1212 ret = BLKPREP_DEFER;
1213 break;
1214 default:
1215 /*
1216 * For any other not fully online state we only allow
1217 * special commands. In particular any user initiated
1218 * command is not allowed.
1219 */
1220 if (!(req->cmd_flags & REQ_PREEMPT))
1221 ret = BLKPREP_KILL;
1222 break;
1223 }
1224
1225 if (ret != BLKPREP_OK)
1226 goto out;
1227 }
1228
1229 switch (req->cmd_type) {
1230 case REQ_TYPE_BLOCK_PC:
1231 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1232 break;
1233 case REQ_TYPE_FS:
1234 ret = scsi_setup_fs_cmnd(sdev, req);
1235 break;
1236 default:
1237 /*
1238 * All other command types are not supported.
1239 *
1240 * Note that these days the SCSI subsystem does not use
1241 * REQ_TYPE_SPECIAL requests anymore. These are only used
1242 * (directly or via blk_insert_request) by non-SCSI drivers.
1243 */
1244 blk_dump_rq_flags(req, "SCSI bad req");
1245 ret = BLKPREP_KILL;
1246 break;
1247 }
1248
1249 out:
1250 switch (ret) {
1251 case BLKPREP_KILL:
1252 req->errors = DID_NO_CONNECT << 16;
1253 break;
1254 case BLKPREP_DEFER:
1255 /*
1256 * If we defer, the elv_next_request() returns NULL, but the
1257 * queue must be restarted, so we plug here if no returning
1258 * command will automatically do that.
1259 */
1260 if (sdev->device_busy == 0)
1261 blk_plug_device(q);
1262 break;
1263 default:
1264 req->cmd_flags |= REQ_DONTPREP;
1265 }
1266
1267 return ret;
1268 }
1269
1270 /*
1271 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1272 * return 0.
1273 *
1274 * Called with the queue_lock held.
1275 */
1276 static inline int scsi_dev_queue_ready(struct request_queue *q,
1277 struct scsi_device *sdev)
1278 {
1279 if (sdev->device_busy >= sdev->queue_depth)
1280 return 0;
1281 if (sdev->device_busy == 0 && sdev->device_blocked) {
1282 /*
1283 * unblock after device_blocked iterates to zero
1284 */
1285 if (--sdev->device_blocked == 0) {
1286 SCSI_LOG_MLQUEUE(3,
1287 sdev_printk(KERN_INFO, sdev,
1288 "unblocking device at zero depth\n"));
1289 } else {
1290 blk_plug_device(q);
1291 return 0;
1292 }
1293 }
1294 if (sdev->device_blocked)
1295 return 0;
1296
1297 return 1;
1298 }
1299
1300 /*
1301 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1302 * return 0. We must end up running the queue again whenever 0 is
1303 * returned, else IO can hang.
1304 *
1305 * Called with host_lock held.
1306 */
1307 static inline int scsi_host_queue_ready(struct request_queue *q,
1308 struct Scsi_Host *shost,
1309 struct scsi_device *sdev)
1310 {
1311 if (scsi_host_in_recovery(shost))
1312 return 0;
1313 if (shost->host_busy == 0 && shost->host_blocked) {
1314 /*
1315 * unblock after host_blocked iterates to zero
1316 */
1317 if (--shost->host_blocked == 0) {
1318 SCSI_LOG_MLQUEUE(3,
1319 printk("scsi%d unblocking host at zero depth\n",
1320 shost->host_no));
1321 } else {
1322 blk_plug_device(q);
1323 return 0;
1324 }
1325 }
1326 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1327 shost->host_blocked || shost->host_self_blocked) {
1328 if (list_empty(&sdev->starved_entry))
1329 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1330 return 0;
1331 }
1332
1333 /* We're OK to process the command, so we can't be starved */
1334 if (!list_empty(&sdev->starved_entry))
1335 list_del_init(&sdev->starved_entry);
1336
1337 return 1;
1338 }
1339
1340 /*
1341 * Kill a request for a dead device
1342 */
1343 static void scsi_kill_request(struct request *req, request_queue_t *q)
1344 {
1345 struct scsi_cmnd *cmd = req->special;
1346 struct scsi_device *sdev = cmd->device;
1347 struct Scsi_Host *shost = sdev->host;
1348
1349 blkdev_dequeue_request(req);
1350
1351 if (unlikely(cmd == NULL)) {
1352 printk(KERN_CRIT "impossible request in %s.\n",
1353 __FUNCTION__);
1354 BUG();
1355 }
1356
1357 scsi_init_cmd_errh(cmd);
1358 cmd->result = DID_NO_CONNECT << 16;
1359 atomic_inc(&cmd->device->iorequest_cnt);
1360
1361 /*
1362 * SCSI request completion path will do scsi_device_unbusy(),
1363 * bump busy counts. To bump the counters, we need to dance
1364 * with the locks as normal issue path does.
1365 */
1366 sdev->device_busy++;
1367 spin_unlock(sdev->request_queue->queue_lock);
1368 spin_lock(shost->host_lock);
1369 shost->host_busy++;
1370 spin_unlock(shost->host_lock);
1371 spin_lock(sdev->request_queue->queue_lock);
1372
1373 __scsi_done(cmd);
1374 }
1375
1376 static void scsi_softirq_done(struct request *rq)
1377 {
1378 struct scsi_cmnd *cmd = rq->completion_data;
1379 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1380 int disposition;
1381
1382 INIT_LIST_HEAD(&cmd->eh_entry);
1383
1384 disposition = scsi_decide_disposition(cmd);
1385 if (disposition != SUCCESS &&
1386 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1387 sdev_printk(KERN_ERR, cmd->device,
1388 "timing out command, waited %lus\n",
1389 wait_for/HZ);
1390 disposition = SUCCESS;
1391 }
1392
1393 scsi_log_completion(cmd, disposition);
1394
1395 switch (disposition) {
1396 case SUCCESS:
1397 scsi_finish_command(cmd);
1398 break;
1399 case NEEDS_RETRY:
1400 scsi_retry_command(cmd);
1401 break;
1402 case ADD_TO_MLQUEUE:
1403 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1404 break;
1405 default:
1406 if (!scsi_eh_scmd_add(cmd, 0))
1407 scsi_finish_command(cmd);
1408 }
1409 }
1410
1411 /*
1412 * Function: scsi_request_fn()
1413 *
1414 * Purpose: Main strategy routine for SCSI.
1415 *
1416 * Arguments: q - Pointer to actual queue.
1417 *
1418 * Returns: Nothing
1419 *
1420 * Lock status: IO request lock assumed to be held when called.
1421 */
1422 static void scsi_request_fn(struct request_queue *q)
1423 {
1424 struct scsi_device *sdev = q->queuedata;
1425 struct Scsi_Host *shost;
1426 struct scsi_cmnd *cmd;
1427 struct request *req;
1428
1429 if (!sdev) {
1430 printk("scsi: killing requests for dead queue\n");
1431 while ((req = elv_next_request(q)) != NULL)
1432 scsi_kill_request(req, q);
1433 return;
1434 }
1435
1436 if(!get_device(&sdev->sdev_gendev))
1437 /* We must be tearing the block queue down already */
1438 return;
1439
1440 /*
1441 * To start with, we keep looping until the queue is empty, or until
1442 * the host is no longer able to accept any more requests.
1443 */
1444 shost = sdev->host;
1445 while (!blk_queue_plugged(q)) {
1446 int rtn;
1447 /*
1448 * get next queueable request. We do this early to make sure
1449 * that the request is fully prepared even if we cannot
1450 * accept it.
1451 */
1452 req = elv_next_request(q);
1453 if (!req || !scsi_dev_queue_ready(q, sdev))
1454 break;
1455
1456 if (unlikely(!scsi_device_online(sdev))) {
1457 sdev_printk(KERN_ERR, sdev,
1458 "rejecting I/O to offline device\n");
1459 scsi_kill_request(req, q);
1460 continue;
1461 }
1462
1463
1464 /*
1465 * Remove the request from the request list.
1466 */
1467 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1468 blkdev_dequeue_request(req);
1469 sdev->device_busy++;
1470
1471 spin_unlock(q->queue_lock);
1472 cmd = req->special;
1473 if (unlikely(cmd == NULL)) {
1474 printk(KERN_CRIT "impossible request in %s.\n"
1475 "please mail a stack trace to "
1476 "linux-scsi@vger.kernel.org\n",
1477 __FUNCTION__);
1478 blk_dump_rq_flags(req, "foo");
1479 BUG();
1480 }
1481 spin_lock(shost->host_lock);
1482
1483 if (!scsi_host_queue_ready(q, shost, sdev))
1484 goto not_ready;
1485 if (sdev->single_lun) {
1486 if (scsi_target(sdev)->starget_sdev_user &&
1487 scsi_target(sdev)->starget_sdev_user != sdev)
1488 goto not_ready;
1489 scsi_target(sdev)->starget_sdev_user = sdev;
1490 }
1491 shost->host_busy++;
1492
1493 /*
1494 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1495 * take the lock again.
1496 */
1497 spin_unlock_irq(shost->host_lock);
1498
1499 /*
1500 * Finally, initialize any error handling parameters, and set up
1501 * the timers for timeouts.
1502 */
1503 scsi_init_cmd_errh(cmd);
1504
1505 /*
1506 * Dispatch the command to the low-level driver.
1507 */
1508 rtn = scsi_dispatch_cmd(cmd);
1509 spin_lock_irq(q->queue_lock);
1510 if(rtn) {
1511 /* we're refusing the command; because of
1512 * the way locks get dropped, we need to
1513 * check here if plugging is required */
1514 if(sdev->device_busy == 0)
1515 blk_plug_device(q);
1516
1517 break;
1518 }
1519 }
1520
1521 goto out;
1522
1523 not_ready:
1524 spin_unlock_irq(shost->host_lock);
1525
1526 /*
1527 * lock q, handle tag, requeue req, and decrement device_busy. We
1528 * must return with queue_lock held.
1529 *
1530 * Decrementing device_busy without checking it is OK, as all such
1531 * cases (host limits or settings) should run the queue at some
1532 * later time.
1533 */
1534 spin_lock_irq(q->queue_lock);
1535 blk_requeue_request(q, req);
1536 sdev->device_busy--;
1537 if(sdev->device_busy == 0)
1538 blk_plug_device(q);
1539 out:
1540 /* must be careful here...if we trigger the ->remove() function
1541 * we cannot be holding the q lock */
1542 spin_unlock_irq(q->queue_lock);
1543 put_device(&sdev->sdev_gendev);
1544 spin_lock_irq(q->queue_lock);
1545 }
1546
1547 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1548 {
1549 struct device *host_dev;
1550 u64 bounce_limit = 0xffffffff;
1551
1552 if (shost->unchecked_isa_dma)
1553 return BLK_BOUNCE_ISA;
1554 /*
1555 * Platforms with virtual-DMA translation
1556 * hardware have no practical limit.
1557 */
1558 if (!PCI_DMA_BUS_IS_PHYS)
1559 return BLK_BOUNCE_ANY;
1560
1561 host_dev = scsi_get_device(shost);
1562 if (host_dev && host_dev->dma_mask)
1563 bounce_limit = *host_dev->dma_mask;
1564
1565 return bounce_limit;
1566 }
1567 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1568
1569 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1570 {
1571 struct Scsi_Host *shost = sdev->host;
1572 struct request_queue *q;
1573
1574 q = blk_init_queue(scsi_request_fn, NULL);
1575 if (!q)
1576 return NULL;
1577
1578 blk_queue_prep_rq(q, scsi_prep_fn);
1579
1580 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1581 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1582 blk_queue_max_sectors(q, shost->max_sectors);
1583 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1584 blk_queue_segment_boundary(q, shost->dma_boundary);
1585 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1586 blk_queue_softirq_done(q, scsi_softirq_done);
1587
1588 if (!shost->use_clustering)
1589 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1590 return q;
1591 }
1592
1593 void scsi_free_queue(struct request_queue *q)
1594 {
1595 blk_cleanup_queue(q);
1596 }
1597
1598 /*
1599 * Function: scsi_block_requests()
1600 *
1601 * Purpose: Utility function used by low-level drivers to prevent further
1602 * commands from being queued to the device.
1603 *
1604 * Arguments: shost - Host in question
1605 *
1606 * Returns: Nothing
1607 *
1608 * Lock status: No locks are assumed held.
1609 *
1610 * Notes: There is no timer nor any other means by which the requests
1611 * get unblocked other than the low-level driver calling
1612 * scsi_unblock_requests().
1613 */
1614 void scsi_block_requests(struct Scsi_Host *shost)
1615 {
1616 shost->host_self_blocked = 1;
1617 }
1618 EXPORT_SYMBOL(scsi_block_requests);
1619
1620 /*
1621 * Function: scsi_unblock_requests()
1622 *
1623 * Purpose: Utility function used by low-level drivers to allow further
1624 * commands from being queued to the device.
1625 *
1626 * Arguments: shost - Host in question
1627 *
1628 * Returns: Nothing
1629 *
1630 * Lock status: No locks are assumed held.
1631 *
1632 * Notes: There is no timer nor any other means by which the requests
1633 * get unblocked other than the low-level driver calling
1634 * scsi_unblock_requests().
1635 *
1636 * This is done as an API function so that changes to the
1637 * internals of the scsi mid-layer won't require wholesale
1638 * changes to drivers that use this feature.
1639 */
1640 void scsi_unblock_requests(struct Scsi_Host *shost)
1641 {
1642 shost->host_self_blocked = 0;
1643 scsi_run_host_queues(shost);
1644 }
1645 EXPORT_SYMBOL(scsi_unblock_requests);
1646
1647 int __init scsi_init_queue(void)
1648 {
1649 int i;
1650
1651 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1652 sizeof(struct scsi_io_context),
1653 0, 0, NULL, NULL);
1654 if (!scsi_io_context_cache) {
1655 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1656 return -ENOMEM;
1657 }
1658
1659 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1660 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1661 int size = sgp->size * sizeof(struct scatterlist);
1662
1663 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1664 SLAB_HWCACHE_ALIGN, NULL, NULL);
1665 if (!sgp->slab) {
1666 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1667 sgp->name);
1668 }
1669
1670 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1671 sgp->slab);
1672 if (!sgp->pool) {
1673 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1674 sgp->name);
1675 }
1676 }
1677
1678 return 0;
1679 }
1680
1681 void scsi_exit_queue(void)
1682 {
1683 int i;
1684
1685 kmem_cache_destroy(scsi_io_context_cache);
1686
1687 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1688 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1689 mempool_destroy(sgp->pool);
1690 kmem_cache_destroy(sgp->slab);
1691 }
1692 }
1693
1694 /**
1695 * scsi_mode_select - issue a mode select
1696 * @sdev: SCSI device to be queried
1697 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1698 * @sp: Save page bit (0 == don't save, 1 == save)
1699 * @modepage: mode page being requested
1700 * @buffer: request buffer (may not be smaller than eight bytes)
1701 * @len: length of request buffer.
1702 * @timeout: command timeout
1703 * @retries: number of retries before failing
1704 * @data: returns a structure abstracting the mode header data
1705 * @sense: place to put sense data (or NULL if no sense to be collected).
1706 * must be SCSI_SENSE_BUFFERSIZE big.
1707 *
1708 * Returns zero if successful; negative error number or scsi
1709 * status on error
1710 *
1711 */
1712 int
1713 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1714 unsigned char *buffer, int len, int timeout, int retries,
1715 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1716 {
1717 unsigned char cmd[10];
1718 unsigned char *real_buffer;
1719 int ret;
1720
1721 memset(cmd, 0, sizeof(cmd));
1722 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1723
1724 if (sdev->use_10_for_ms) {
1725 if (len > 65535)
1726 return -EINVAL;
1727 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1728 if (!real_buffer)
1729 return -ENOMEM;
1730 memcpy(real_buffer + 8, buffer, len);
1731 len += 8;
1732 real_buffer[0] = 0;
1733 real_buffer[1] = 0;
1734 real_buffer[2] = data->medium_type;
1735 real_buffer[3] = data->device_specific;
1736 real_buffer[4] = data->longlba ? 0x01 : 0;
1737 real_buffer[5] = 0;
1738 real_buffer[6] = data->block_descriptor_length >> 8;
1739 real_buffer[7] = data->block_descriptor_length;
1740
1741 cmd[0] = MODE_SELECT_10;
1742 cmd[7] = len >> 8;
1743 cmd[8] = len;
1744 } else {
1745 if (len > 255 || data->block_descriptor_length > 255 ||
1746 data->longlba)
1747 return -EINVAL;
1748
1749 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1750 if (!real_buffer)
1751 return -ENOMEM;
1752 memcpy(real_buffer + 4, buffer, len);
1753 len += 4;
1754 real_buffer[0] = 0;
1755 real_buffer[1] = data->medium_type;
1756 real_buffer[2] = data->device_specific;
1757 real_buffer[3] = data->block_descriptor_length;
1758
1759
1760 cmd[0] = MODE_SELECT;
1761 cmd[4] = len;
1762 }
1763
1764 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1765 sshdr, timeout, retries);
1766 kfree(real_buffer);
1767 return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(scsi_mode_select);
1770
1771 /**
1772 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1773 * six bytes if necessary.
1774 * @sdev: SCSI device to be queried
1775 * @dbd: set if mode sense will allow block descriptors to be returned
1776 * @modepage: mode page being requested
1777 * @buffer: request buffer (may not be smaller than eight bytes)
1778 * @len: length of request buffer.
1779 * @timeout: command timeout
1780 * @retries: number of retries before failing
1781 * @data: returns a structure abstracting the mode header data
1782 * @sense: place to put sense data (or NULL if no sense to be collected).
1783 * must be SCSI_SENSE_BUFFERSIZE big.
1784 *
1785 * Returns zero if unsuccessful, or the header offset (either 4
1786 * or 8 depending on whether a six or ten byte command was
1787 * issued) if successful.
1788 **/
1789 int
1790 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1791 unsigned char *buffer, int len, int timeout, int retries,
1792 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1793 {
1794 unsigned char cmd[12];
1795 int use_10_for_ms;
1796 int header_length;
1797 int result;
1798 struct scsi_sense_hdr my_sshdr;
1799
1800 memset(data, 0, sizeof(*data));
1801 memset(&cmd[0], 0, 12);
1802 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1803 cmd[2] = modepage;
1804
1805 /* caller might not be interested in sense, but we need it */
1806 if (!sshdr)
1807 sshdr = &my_sshdr;
1808
1809 retry:
1810 use_10_for_ms = sdev->use_10_for_ms;
1811
1812 if (use_10_for_ms) {
1813 if (len < 8)
1814 len = 8;
1815
1816 cmd[0] = MODE_SENSE_10;
1817 cmd[8] = len;
1818 header_length = 8;
1819 } else {
1820 if (len < 4)
1821 len = 4;
1822
1823 cmd[0] = MODE_SENSE;
1824 cmd[4] = len;
1825 header_length = 4;
1826 }
1827
1828 memset(buffer, 0, len);
1829
1830 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1831 sshdr, timeout, retries);
1832
1833 /* This code looks awful: what it's doing is making sure an
1834 * ILLEGAL REQUEST sense return identifies the actual command
1835 * byte as the problem. MODE_SENSE commands can return
1836 * ILLEGAL REQUEST if the code page isn't supported */
1837
1838 if (use_10_for_ms && !scsi_status_is_good(result) &&
1839 (driver_byte(result) & DRIVER_SENSE)) {
1840 if (scsi_sense_valid(sshdr)) {
1841 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1842 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1843 /*
1844 * Invalid command operation code
1845 */
1846 sdev->use_10_for_ms = 0;
1847 goto retry;
1848 }
1849 }
1850 }
1851
1852 if(scsi_status_is_good(result)) {
1853 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1854 (modepage == 6 || modepage == 8))) {
1855 /* Initio breakage? */
1856 header_length = 0;
1857 data->length = 13;
1858 data->medium_type = 0;
1859 data->device_specific = 0;
1860 data->longlba = 0;
1861 data->block_descriptor_length = 0;
1862 } else if(use_10_for_ms) {
1863 data->length = buffer[0]*256 + buffer[1] + 2;
1864 data->medium_type = buffer[2];
1865 data->device_specific = buffer[3];
1866 data->longlba = buffer[4] & 0x01;
1867 data->block_descriptor_length = buffer[6]*256
1868 + buffer[7];
1869 } else {
1870 data->length = buffer[0] + 1;
1871 data->medium_type = buffer[1];
1872 data->device_specific = buffer[2];
1873 data->block_descriptor_length = buffer[3];
1874 }
1875 data->header_length = header_length;
1876 }
1877
1878 return result;
1879 }
1880 EXPORT_SYMBOL(scsi_mode_sense);
1881
1882 int
1883 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1884 {
1885 char cmd[] = {
1886 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1887 };
1888 struct scsi_sense_hdr sshdr;
1889 int result;
1890
1891 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1892 timeout, retries);
1893
1894 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1895
1896 if ((scsi_sense_valid(&sshdr)) &&
1897 ((sshdr.sense_key == UNIT_ATTENTION) ||
1898 (sshdr.sense_key == NOT_READY))) {
1899 sdev->changed = 1;
1900 result = 0;
1901 }
1902 }
1903 return result;
1904 }
1905 EXPORT_SYMBOL(scsi_test_unit_ready);
1906
1907 /**
1908 * scsi_device_set_state - Take the given device through the device
1909 * state model.
1910 * @sdev: scsi device to change the state of.
1911 * @state: state to change to.
1912 *
1913 * Returns zero if unsuccessful or an error if the requested
1914 * transition is illegal.
1915 **/
1916 int
1917 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1918 {
1919 enum scsi_device_state oldstate = sdev->sdev_state;
1920
1921 if (state == oldstate)
1922 return 0;
1923
1924 switch (state) {
1925 case SDEV_CREATED:
1926 /* There are no legal states that come back to
1927 * created. This is the manually initialised start
1928 * state */
1929 goto illegal;
1930
1931 case SDEV_RUNNING:
1932 switch (oldstate) {
1933 case SDEV_CREATED:
1934 case SDEV_OFFLINE:
1935 case SDEV_QUIESCE:
1936 case SDEV_BLOCK:
1937 break;
1938 default:
1939 goto illegal;
1940 }
1941 break;
1942
1943 case SDEV_QUIESCE:
1944 switch (oldstate) {
1945 case SDEV_RUNNING:
1946 case SDEV_OFFLINE:
1947 break;
1948 default:
1949 goto illegal;
1950 }
1951 break;
1952
1953 case SDEV_OFFLINE:
1954 switch (oldstate) {
1955 case SDEV_CREATED:
1956 case SDEV_RUNNING:
1957 case SDEV_QUIESCE:
1958 case SDEV_BLOCK:
1959 break;
1960 default:
1961 goto illegal;
1962 }
1963 break;
1964
1965 case SDEV_BLOCK:
1966 switch (oldstate) {
1967 case SDEV_CREATED:
1968 case SDEV_RUNNING:
1969 break;
1970 default:
1971 goto illegal;
1972 }
1973 break;
1974
1975 case SDEV_CANCEL:
1976 switch (oldstate) {
1977 case SDEV_CREATED:
1978 case SDEV_RUNNING:
1979 case SDEV_QUIESCE:
1980 case SDEV_OFFLINE:
1981 case SDEV_BLOCK:
1982 break;
1983 default:
1984 goto illegal;
1985 }
1986 break;
1987
1988 case SDEV_DEL:
1989 switch (oldstate) {
1990 case SDEV_CREATED:
1991 case SDEV_RUNNING:
1992 case SDEV_OFFLINE:
1993 case SDEV_CANCEL:
1994 break;
1995 default:
1996 goto illegal;
1997 }
1998 break;
1999
2000 }
2001 sdev->sdev_state = state;
2002 return 0;
2003
2004 illegal:
2005 SCSI_LOG_ERROR_RECOVERY(1,
2006 sdev_printk(KERN_ERR, sdev,
2007 "Illegal state transition %s->%s\n",
2008 scsi_device_state_name(oldstate),
2009 scsi_device_state_name(state))
2010 );
2011 return -EINVAL;
2012 }
2013 EXPORT_SYMBOL(scsi_device_set_state);
2014
2015 /**
2016 * scsi_device_quiesce - Block user issued commands.
2017 * @sdev: scsi device to quiesce.
2018 *
2019 * This works by trying to transition to the SDEV_QUIESCE state
2020 * (which must be a legal transition). When the device is in this
2021 * state, only special requests will be accepted, all others will
2022 * be deferred. Since special requests may also be requeued requests,
2023 * a successful return doesn't guarantee the device will be
2024 * totally quiescent.
2025 *
2026 * Must be called with user context, may sleep.
2027 *
2028 * Returns zero if unsuccessful or an error if not.
2029 **/
2030 int
2031 scsi_device_quiesce(struct scsi_device *sdev)
2032 {
2033 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2034 if (err)
2035 return err;
2036
2037 scsi_run_queue(sdev->request_queue);
2038 while (sdev->device_busy) {
2039 msleep_interruptible(200);
2040 scsi_run_queue(sdev->request_queue);
2041 }
2042 return 0;
2043 }
2044 EXPORT_SYMBOL(scsi_device_quiesce);
2045
2046 /**
2047 * scsi_device_resume - Restart user issued commands to a quiesced device.
2048 * @sdev: scsi device to resume.
2049 *
2050 * Moves the device from quiesced back to running and restarts the
2051 * queues.
2052 *
2053 * Must be called with user context, may sleep.
2054 **/
2055 void
2056 scsi_device_resume(struct scsi_device *sdev)
2057 {
2058 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2059 return;
2060 scsi_run_queue(sdev->request_queue);
2061 }
2062 EXPORT_SYMBOL(scsi_device_resume);
2063
2064 static void
2065 device_quiesce_fn(struct scsi_device *sdev, void *data)
2066 {
2067 scsi_device_quiesce(sdev);
2068 }
2069
2070 void
2071 scsi_target_quiesce(struct scsi_target *starget)
2072 {
2073 starget_for_each_device(starget, NULL, device_quiesce_fn);
2074 }
2075 EXPORT_SYMBOL(scsi_target_quiesce);
2076
2077 static void
2078 device_resume_fn(struct scsi_device *sdev, void *data)
2079 {
2080 scsi_device_resume(sdev);
2081 }
2082
2083 void
2084 scsi_target_resume(struct scsi_target *starget)
2085 {
2086 starget_for_each_device(starget, NULL, device_resume_fn);
2087 }
2088 EXPORT_SYMBOL(scsi_target_resume);
2089
2090 /**
2091 * scsi_internal_device_block - internal function to put a device
2092 * temporarily into the SDEV_BLOCK state
2093 * @sdev: device to block
2094 *
2095 * Block request made by scsi lld's to temporarily stop all
2096 * scsi commands on the specified device. Called from interrupt
2097 * or normal process context.
2098 *
2099 * Returns zero if successful or error if not
2100 *
2101 * Notes:
2102 * This routine transitions the device to the SDEV_BLOCK state
2103 * (which must be a legal transition). When the device is in this
2104 * state, all commands are deferred until the scsi lld reenables
2105 * the device with scsi_device_unblock or device_block_tmo fires.
2106 * This routine assumes the host_lock is held on entry.
2107 **/
2108 int
2109 scsi_internal_device_block(struct scsi_device *sdev)
2110 {
2111 request_queue_t *q = sdev->request_queue;
2112 unsigned long flags;
2113 int err = 0;
2114
2115 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2116 if (err)
2117 return err;
2118
2119 /*
2120 * The device has transitioned to SDEV_BLOCK. Stop the
2121 * block layer from calling the midlayer with this device's
2122 * request queue.
2123 */
2124 spin_lock_irqsave(q->queue_lock, flags);
2125 blk_stop_queue(q);
2126 spin_unlock_irqrestore(q->queue_lock, flags);
2127
2128 return 0;
2129 }
2130 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2131
2132 /**
2133 * scsi_internal_device_unblock - resume a device after a block request
2134 * @sdev: device to resume
2135 *
2136 * Called by scsi lld's or the midlayer to restart the device queue
2137 * for the previously suspended scsi device. Called from interrupt or
2138 * normal process context.
2139 *
2140 * Returns zero if successful or error if not.
2141 *
2142 * Notes:
2143 * This routine transitions the device to the SDEV_RUNNING state
2144 * (which must be a legal transition) allowing the midlayer to
2145 * goose the queue for this device. This routine assumes the
2146 * host_lock is held upon entry.
2147 **/
2148 int
2149 scsi_internal_device_unblock(struct scsi_device *sdev)
2150 {
2151 request_queue_t *q = sdev->request_queue;
2152 int err;
2153 unsigned long flags;
2154
2155 /*
2156 * Try to transition the scsi device to SDEV_RUNNING
2157 * and goose the device queue if successful.
2158 */
2159 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2160 if (err)
2161 return err;
2162
2163 spin_lock_irqsave(q->queue_lock, flags);
2164 blk_start_queue(q);
2165 spin_unlock_irqrestore(q->queue_lock, flags);
2166
2167 return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2170
2171 static void
2172 device_block(struct scsi_device *sdev, void *data)
2173 {
2174 scsi_internal_device_block(sdev);
2175 }
2176
2177 static int
2178 target_block(struct device *dev, void *data)
2179 {
2180 if (scsi_is_target_device(dev))
2181 starget_for_each_device(to_scsi_target(dev), NULL,
2182 device_block);
2183 return 0;
2184 }
2185
2186 void
2187 scsi_target_block(struct device *dev)
2188 {
2189 if (scsi_is_target_device(dev))
2190 starget_for_each_device(to_scsi_target(dev), NULL,
2191 device_block);
2192 else
2193 device_for_each_child(dev, NULL, target_block);
2194 }
2195 EXPORT_SYMBOL_GPL(scsi_target_block);
2196
2197 static void
2198 device_unblock(struct scsi_device *sdev, void *data)
2199 {
2200 scsi_internal_device_unblock(sdev);
2201 }
2202
2203 static int
2204 target_unblock(struct device *dev, void *data)
2205 {
2206 if (scsi_is_target_device(dev))
2207 starget_for_each_device(to_scsi_target(dev), NULL,
2208 device_unblock);
2209 return 0;
2210 }
2211
2212 void
2213 scsi_target_unblock(struct device *dev)
2214 {
2215 if (scsi_is_target_device(dev))
2216 starget_for_each_device(to_scsi_target(dev), NULL,
2217 device_unblock);
2218 else
2219 device_for_each_child(dev, NULL, target_unblock);
2220 }
2221 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2222
2223 /**
2224 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2225 * @sg: scatter-gather list
2226 * @sg_count: number of segments in sg
2227 * @offset: offset in bytes into sg, on return offset into the mapped area
2228 * @len: bytes to map, on return number of bytes mapped
2229 *
2230 * Returns virtual address of the start of the mapped page
2231 */
2232 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2233 size_t *offset, size_t *len)
2234 {
2235 int i;
2236 size_t sg_len = 0, len_complete = 0;
2237 struct page *page;
2238
2239 for (i = 0; i < sg_count; i++) {
2240 len_complete = sg_len; /* Complete sg-entries */
2241 sg_len += sg[i].length;
2242 if (sg_len > *offset)
2243 break;
2244 }
2245
2246 if (unlikely(i == sg_count)) {
2247 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2248 "elements %d\n",
2249 __FUNCTION__, sg_len, *offset, sg_count);
2250 WARN_ON(1);
2251 return NULL;
2252 }
2253
2254 /* Offset starting from the beginning of first page in this sg-entry */
2255 *offset = *offset - len_complete + sg[i].offset;
2256
2257 /* Assumption: contiguous pages can be accessed as "page + i" */
2258 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2259 *offset &= ~PAGE_MASK;
2260
2261 /* Bytes in this sg-entry from *offset to the end of the page */
2262 sg_len = PAGE_SIZE - *offset;
2263 if (*len > sg_len)
2264 *len = sg_len;
2265
2266 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2267 }
2268 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2269
2270 /**
2271 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2272 * mapped with scsi_kmap_atomic_sg
2273 * @virt: virtual address to be unmapped
2274 */
2275 void scsi_kunmap_atomic_sg(void *virt)
2276 {
2277 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2278 }
2279 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);