]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/scsi_lib.c
Merge tag 'char-misc-3.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76 bus->bus = &scsi_bus_type;
77 return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83 unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87
88 /*
89 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90 * not change behaviour from the previous unplug mechanism, experimentation
91 * may prove this needs changing.
92 */
93 #define SCSI_QUEUE_DELAY 3
94
95 /*
96 * Function: scsi_unprep_request()
97 *
98 * Purpose: Remove all preparation done for a request, including its
99 * associated scsi_cmnd, so that it can be requeued.
100 *
101 * Arguments: req - request to unprepare
102 *
103 * Lock status: Assumed that no locks are held upon entry.
104 *
105 * Returns: Nothing.
106 */
107 static void scsi_unprep_request(struct request *req)
108 {
109 struct scsi_cmnd *cmd = req->special;
110
111 blk_unprep_request(req);
112 req->special = NULL;
113
114 scsi_put_command(cmd);
115 }
116
117 /**
118 * __scsi_queue_insert - private queue insertion
119 * @cmd: The SCSI command being requeued
120 * @reason: The reason for the requeue
121 * @unbusy: Whether the queue should be unbusied
122 *
123 * This is a private queue insertion. The public interface
124 * scsi_queue_insert() always assumes the queue should be unbusied
125 * because it's always called before the completion. This function is
126 * for a requeue after completion, which should only occur in this
127 * file.
128 */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131 struct Scsi_Host *host = cmd->device->host;
132 struct scsi_device *device = cmd->device;
133 struct scsi_target *starget = scsi_target(device);
134 struct request_queue *q = device->request_queue;
135 unsigned long flags;
136
137 SCSI_LOG_MLQUEUE(1,
138 printk("Inserting command %p into mlqueue\n", cmd));
139
140 /*
141 * Set the appropriate busy bit for the device/host.
142 *
143 * If the host/device isn't busy, assume that something actually
144 * completed, and that we should be able to queue a command now.
145 *
146 * Note that the prior mid-layer assumption that any host could
147 * always queue at least one command is now broken. The mid-layer
148 * will implement a user specifiable stall (see
149 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150 * if a command is requeued with no other commands outstanding
151 * either for the device or for the host.
152 */
153 switch (reason) {
154 case SCSI_MLQUEUE_HOST_BUSY:
155 host->host_blocked = host->max_host_blocked;
156 break;
157 case SCSI_MLQUEUE_DEVICE_BUSY:
158 case SCSI_MLQUEUE_EH_RETRY:
159 device->device_blocked = device->max_device_blocked;
160 break;
161 case SCSI_MLQUEUE_TARGET_BUSY:
162 starget->target_blocked = starget->max_target_blocked;
163 break;
164 }
165
166 /*
167 * Decrement the counters, since these commands are no longer
168 * active on the host/device.
169 */
170 if (unbusy)
171 scsi_device_unbusy(device);
172
173 /*
174 * Requeue this command. It will go before all other commands
175 * that are already in the queue. Schedule requeue work under
176 * lock such that the kblockd_schedule_work() call happens
177 * before blk_cleanup_queue() finishes.
178 */
179 spin_lock_irqsave(q->queue_lock, flags);
180 blk_requeue_request(q, cmd->request);
181 kblockd_schedule_work(q, &device->requeue_work);
182 spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184
185 /*
186 * Function: scsi_queue_insert()
187 *
188 * Purpose: Insert a command in the midlevel queue.
189 *
190 * Arguments: cmd - command that we are adding to queue.
191 * reason - why we are inserting command to queue.
192 *
193 * Lock status: Assumed that lock is not held upon entry.
194 *
195 * Returns: Nothing.
196 *
197 * Notes: We do this for one of two cases. Either the host is busy
198 * and it cannot accept any more commands for the time being,
199 * or the device returned QUEUE_FULL and can accept no more
200 * commands.
201 * Notes: This could be called either from an interrupt context or a
202 * normal process context.
203 */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206 __scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209 * scsi_execute - insert request and wait for the result
210 * @sdev: scsi device
211 * @cmd: scsi command
212 * @data_direction: data direction
213 * @buffer: data buffer
214 * @bufflen: len of buffer
215 * @sense: optional sense buffer
216 * @timeout: request timeout in seconds
217 * @retries: number of times to retry request
218 * @flags: or into request flags;
219 * @resid: optional residual length
220 *
221 * returns the req->errors value which is the scsi_cmnd result
222 * field.
223 */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225 int data_direction, void *buffer, unsigned bufflen,
226 unsigned char *sense, int timeout, int retries, int flags,
227 int *resid)
228 {
229 struct request *req;
230 int write = (data_direction == DMA_TO_DEVICE);
231 int ret = DRIVER_ERROR << 24;
232
233 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234 if (!req)
235 return ret;
236
237 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
238 buffer, bufflen, __GFP_WAIT))
239 goto out;
240
241 req->cmd_len = COMMAND_SIZE(cmd[0]);
242 memcpy(req->cmd, cmd, req->cmd_len);
243 req->sense = sense;
244 req->sense_len = 0;
245 req->retries = retries;
246 req->timeout = timeout;
247 req->cmd_type = REQ_TYPE_BLOCK_PC;
248 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249
250 /*
251 * head injection *required* here otherwise quiesce won't work
252 */
253 blk_execute_rq(req->q, NULL, req, 1);
254
255 /*
256 * Some devices (USB mass-storage in particular) may transfer
257 * garbage data together with a residue indicating that the data
258 * is invalid. Prevent the garbage from being misinterpreted
259 * and prevent security leaks by zeroing out the excess data.
260 */
261 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263
264 if (resid)
265 *resid = req->resid_len;
266 ret = req->errors;
267 out:
268 blk_put_request(req);
269
270 return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273
274
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276 int data_direction, void *buffer, unsigned bufflen,
277 struct scsi_sense_hdr *sshdr, int timeout, int retries,
278 int *resid)
279 {
280 char *sense = NULL;
281 int result;
282
283 if (sshdr) {
284 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285 if (!sense)
286 return DRIVER_ERROR << 24;
287 }
288 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289 sense, timeout, retries, 0, resid);
290 if (sshdr)
291 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292
293 kfree(sense);
294 return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297
298 /*
299 * Function: scsi_init_cmd_errh()
300 *
301 * Purpose: Initialize cmd fields related to error handling.
302 *
303 * Arguments: cmd - command that is ready to be queued.
304 *
305 * Notes: This function has the job of initializing a number of
306 * fields related to error handling. Typically this will
307 * be called once for each command, as required.
308 */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311 cmd->serial_number = 0;
312 scsi_set_resid(cmd, 0);
313 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314 if (cmd->cmd_len == 0)
315 cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320 struct Scsi_Host *shost = sdev->host;
321 struct scsi_target *starget = scsi_target(sdev);
322 unsigned long flags;
323
324 spin_lock_irqsave(shost->host_lock, flags);
325 shost->host_busy--;
326 starget->target_busy--;
327 if (unlikely(scsi_host_in_recovery(shost) &&
328 (shost->host_failed || shost->host_eh_scheduled)))
329 scsi_eh_wakeup(shost);
330 spin_unlock(shost->host_lock);
331 spin_lock(sdev->request_queue->queue_lock);
332 sdev->device_busy--;
333 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335
336 /*
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
340 *
341 * Called with *no* scsi locks held.
342 */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
348 unsigned long flags;
349
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
353
354 /*
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
359 */
360 blk_run_queue(current_sdev->request_queue);
361
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
364 goto out;
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
368 continue;
369 if (scsi_device_get(sdev))
370 continue;
371
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 blk_run_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
375
376 scsi_device_put(sdev);
377 }
378 out:
379 spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385 return 1;
386
387 return 0;
388 }
389
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392 return ((starget->can_queue > 0 &&
393 starget->target_busy >= starget->can_queue) ||
394 starget->target_blocked);
395 }
396
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400 shost->host_blocked || shost->host_self_blocked)
401 return 1;
402
403 return 0;
404 }
405
406 /*
407 * Function: scsi_run_queue()
408 *
409 * Purpose: Select a proper request queue to serve next
410 *
411 * Arguments: q - last request's queue
412 *
413 * Returns: Nothing
414 *
415 * Notes: The previous command was completely finished, start
416 * a new one if possible.
417 */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420 struct scsi_device *sdev = q->queuedata;
421 struct Scsi_Host *shost;
422 LIST_HEAD(starved_list);
423 unsigned long flags;
424
425 shost = sdev->host;
426 if (scsi_target(sdev)->single_lun)
427 scsi_single_lun_run(sdev);
428
429 spin_lock_irqsave(shost->host_lock, flags);
430 list_splice_init(&shost->starved_list, &starved_list);
431
432 while (!list_empty(&starved_list)) {
433 /*
434 * As long as shost is accepting commands and we have
435 * starved queues, call blk_run_queue. scsi_request_fn
436 * drops the queue_lock and can add us back to the
437 * starved_list.
438 *
439 * host_lock protects the starved_list and starved_entry.
440 * scsi_request_fn must get the host_lock before checking
441 * or modifying starved_list or starved_entry.
442 */
443 if (scsi_host_is_busy(shost))
444 break;
445
446 sdev = list_entry(starved_list.next,
447 struct scsi_device, starved_entry);
448 list_del_init(&sdev->starved_entry);
449 if (scsi_target_is_busy(scsi_target(sdev))) {
450 list_move_tail(&sdev->starved_entry,
451 &shost->starved_list);
452 continue;
453 }
454
455 spin_unlock(shost->host_lock);
456 spin_lock(sdev->request_queue->queue_lock);
457 __blk_run_queue(sdev->request_queue);
458 spin_unlock(sdev->request_queue->queue_lock);
459 spin_lock(shost->host_lock);
460 }
461 /* put any unprocessed entries back */
462 list_splice(&starved_list, &shost->starved_list);
463 spin_unlock_irqrestore(shost->host_lock, flags);
464
465 blk_run_queue(q);
466 }
467
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470 struct scsi_device *sdev;
471 struct request_queue *q;
472
473 sdev = container_of(work, struct scsi_device, requeue_work);
474 q = sdev->request_queue;
475 scsi_run_queue(q);
476 }
477
478 /*
479 * Function: scsi_requeue_command()
480 *
481 * Purpose: Handle post-processing of completed commands.
482 *
483 * Arguments: q - queue to operate on
484 * cmd - command that may need to be requeued.
485 *
486 * Returns: Nothing
487 *
488 * Notes: After command completion, there may be blocks left
489 * over which weren't finished by the previous command
490 * this can be for a number of reasons - the main one is
491 * I/O errors in the middle of the request, in which case
492 * we need to request the blocks that come after the bad
493 * sector.
494 * Notes: Upon return, cmd is a stale pointer.
495 */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498 struct scsi_device *sdev = cmd->device;
499 struct request *req = cmd->request;
500 unsigned long flags;
501
502 /*
503 * We need to hold a reference on the device to avoid the queue being
504 * killed after the unlock and before scsi_run_queue is invoked which
505 * may happen because scsi_unprep_request() puts the command which
506 * releases its reference on the device.
507 */
508 get_device(&sdev->sdev_gendev);
509
510 spin_lock_irqsave(q->queue_lock, flags);
511 scsi_unprep_request(req);
512 blk_requeue_request(q, req);
513 spin_unlock_irqrestore(q->queue_lock, flags);
514
515 scsi_run_queue(q);
516
517 put_device(&sdev->sdev_gendev);
518 }
519
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522 struct scsi_device *sdev = cmd->device;
523 struct request_queue *q = sdev->request_queue;
524
525 /* need to hold a reference on the device before we let go of the cmd */
526 get_device(&sdev->sdev_gendev);
527
528 scsi_put_command(cmd);
529 scsi_run_queue(q);
530
531 /* ok to remove device now */
532 put_device(&sdev->sdev_gendev);
533 }
534
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537 struct scsi_device *sdev;
538
539 shost_for_each_device(sdev, shost)
540 scsi_run_queue(sdev->request_queue);
541 }
542
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544
545 /*
546 * Function: scsi_end_request()
547 *
548 * Purpose: Post-processing of completed commands (usually invoked at end
549 * of upper level post-processing and scsi_io_completion).
550 *
551 * Arguments: cmd - command that is complete.
552 * error - 0 if I/O indicates success, < 0 for I/O error.
553 * bytes - number of bytes of completed I/O
554 * requeue - indicates whether we should requeue leftovers.
555 *
556 * Lock status: Assumed that lock is not held upon entry.
557 *
558 * Returns: cmd if requeue required, NULL otherwise.
559 *
560 * Notes: This is called for block device requests in order to
561 * mark some number of sectors as complete.
562 *
563 * We are guaranteeing that the request queue will be goosed
564 * at some point during this call.
565 * Notes: If cmd was requeued, upon return it will be a stale pointer.
566 */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568 int bytes, int requeue)
569 {
570 struct request_queue *q = cmd->device->request_queue;
571 struct request *req = cmd->request;
572
573 /*
574 * If there are blocks left over at the end, set up the command
575 * to queue the remainder of them.
576 */
577 if (blk_end_request(req, error, bytes)) {
578 /* kill remainder if no retrys */
579 if (error && scsi_noretry_cmd(cmd))
580 blk_end_request_all(req, error);
581 else {
582 if (requeue) {
583 /*
584 * Bleah. Leftovers again. Stick the
585 * leftovers in the front of the
586 * queue, and goose the queue again.
587 */
588 scsi_release_buffers(cmd);
589 scsi_requeue_command(q, cmd);
590 cmd = NULL;
591 }
592 return cmd;
593 }
594 }
595
596 /*
597 * This will goose the queue request function at the end, so we don't
598 * need to worry about launching another command.
599 */
600 __scsi_release_buffers(cmd, 0);
601 scsi_next_command(cmd);
602 return NULL;
603 }
604
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607 unsigned int index;
608
609 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610
611 if (nents <= 8)
612 index = 0;
613 else
614 index = get_count_order(nents) - 3;
615
616 return index;
617 }
618
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621 struct scsi_host_sg_pool *sgp;
622
623 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624 mempool_free(sgl, sgp->pool);
625 }
626
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629 struct scsi_host_sg_pool *sgp;
630
631 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632 return mempool_alloc(sgp->pool, gfp_mask);
633 }
634
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636 gfp_t gfp_mask)
637 {
638 int ret;
639
640 BUG_ON(!nents);
641
642 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643 gfp_mask, scsi_sg_alloc);
644 if (unlikely(ret))
645 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646 scsi_sg_free);
647
648 return ret;
649 }
650
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658
659 if (cmd->sdb.table.nents)
660 scsi_free_sgtable(&cmd->sdb);
661
662 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663
664 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665 struct scsi_data_buffer *bidi_sdb =
666 cmd->request->next_rq->special;
667 scsi_free_sgtable(bidi_sdb);
668 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669 cmd->request->next_rq->special = NULL;
670 }
671
672 if (scsi_prot_sg_count(cmd))
673 scsi_free_sgtable(cmd->prot_sdb);
674 }
675
676 /*
677 * Function: scsi_release_buffers()
678 *
679 * Purpose: Completion processing for block device I/O requests.
680 *
681 * Arguments: cmd - command that we are bailing.
682 *
683 * Lock status: Assumed that no lock is held upon entry.
684 *
685 * Returns: Nothing
686 *
687 * Notes: In the event that an upper level driver rejects a
688 * command, we must release resources allocated during
689 * the __init_io() function. Primarily this would involve
690 * the scatter-gather table, and potentially any bounce
691 * buffers.
692 */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695 __scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701 int error = 0;
702
703 switch(host_byte(result)) {
704 case DID_TRANSPORT_FAILFAST:
705 error = -ENOLINK;
706 break;
707 case DID_TARGET_FAILURE:
708 set_host_byte(cmd, DID_OK);
709 error = -EREMOTEIO;
710 break;
711 case DID_NEXUS_FAILURE:
712 set_host_byte(cmd, DID_OK);
713 error = -EBADE;
714 break;
715 default:
716 error = -EIO;
717 break;
718 }
719
720 return error;
721 }
722
723 /*
724 * Function: scsi_io_completion()
725 *
726 * Purpose: Completion processing for block device I/O requests.
727 *
728 * Arguments: cmd - command that is finished.
729 *
730 * Lock status: Assumed that no lock is held upon entry.
731 *
732 * Returns: Nothing
733 *
734 * Notes: This function is matched in terms of capabilities to
735 * the function that created the scatter-gather list.
736 * In other words, if there are no bounce buffers
737 * (the normal case for most drivers), we don't need
738 * the logic to deal with cleaning up afterwards.
739 *
740 * We must call scsi_end_request(). This will finish off
741 * the specified number of sectors. If we are done, the
742 * command block will be released and the queue function
743 * will be goosed. If we are not done then we have to
744 * figure out what to do next:
745 *
746 * a) We can call scsi_requeue_command(). The request
747 * will be unprepared and put back on the queue. Then
748 * a new command will be created for it. This should
749 * be used if we made forward progress, or if we want
750 * to switch from READ(10) to READ(6) for example.
751 *
752 * b) We can call scsi_queue_insert(). The request will
753 * be put back on the queue and retried using the same
754 * command as before, possibly after a delay.
755 *
756 * c) We can call blk_end_request() with -EIO to fail
757 * the remainder of the request.
758 */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761 int result = cmd->result;
762 struct request_queue *q = cmd->device->request_queue;
763 struct request *req = cmd->request;
764 int error = 0;
765 struct scsi_sense_hdr sshdr;
766 int sense_valid = 0;
767 int sense_deferred = 0;
768 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769 ACTION_DELAYED_RETRY} action;
770 char *description = NULL;
771
772 if (result) {
773 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774 if (sense_valid)
775 sense_deferred = scsi_sense_is_deferred(&sshdr);
776 }
777
778 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779 if (result) {
780 if (sense_valid && req->sense) {
781 /*
782 * SG_IO wants current and deferred errors
783 */
784 int len = 8 + cmd->sense_buffer[7];
785
786 if (len > SCSI_SENSE_BUFFERSIZE)
787 len = SCSI_SENSE_BUFFERSIZE;
788 memcpy(req->sense, cmd->sense_buffer, len);
789 req->sense_len = len;
790 }
791 if (!sense_deferred)
792 error = __scsi_error_from_host_byte(cmd, result);
793 }
794 /*
795 * __scsi_error_from_host_byte may have reset the host_byte
796 */
797 req->errors = cmd->result;
798
799 req->resid_len = scsi_get_resid(cmd);
800
801 if (scsi_bidi_cmnd(cmd)) {
802 /*
803 * Bidi commands Must be complete as a whole,
804 * both sides at once.
805 */
806 req->next_rq->resid_len = scsi_in(cmd)->resid;
807
808 scsi_release_buffers(cmd);
809 blk_end_request_all(req, 0);
810
811 scsi_next_command(cmd);
812 return;
813 }
814 }
815
816 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817 BUG_ON(blk_bidi_rq(req));
818
819 /*
820 * Next deal with any sectors which we were able to correctly
821 * handle.
822 */
823 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
824 "%d bytes done.\n",
825 blk_rq_sectors(req), good_bytes));
826
827 /*
828 * Recovered errors need reporting, but they're always treated
829 * as success, so fiddle the result code here. For BLOCK_PC
830 * we already took a copy of the original into rq->errors which
831 * is what gets returned to the user
832 */
833 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
834 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835 * print since caller wants ATA registers. Only occurs on
836 * SCSI ATA PASS_THROUGH commands when CK_COND=1
837 */
838 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
839 ;
840 else if (!(req->cmd_flags & REQ_QUIET))
841 scsi_print_sense("", cmd);
842 result = 0;
843 /* BLOCK_PC may have set error */
844 error = 0;
845 }
846
847 /*
848 * A number of bytes were successfully read. If there
849 * are leftovers and there is some kind of error
850 * (result != 0), retry the rest.
851 */
852 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
853 return;
854
855 error = __scsi_error_from_host_byte(cmd, result);
856
857 if (host_byte(result) == DID_RESET) {
858 /* Third party bus reset or reset for error recovery
859 * reasons. Just retry the command and see what
860 * happens.
861 */
862 action = ACTION_RETRY;
863 } else if (sense_valid && !sense_deferred) {
864 switch (sshdr.sense_key) {
865 case UNIT_ATTENTION:
866 if (cmd->device->removable) {
867 /* Detected disc change. Set a bit
868 * and quietly refuse further access.
869 */
870 cmd->device->changed = 1;
871 description = "Media Changed";
872 action = ACTION_FAIL;
873 } else {
874 /* Must have been a power glitch, or a
875 * bus reset. Could not have been a
876 * media change, so we just retry the
877 * command and see what happens.
878 */
879 action = ACTION_RETRY;
880 }
881 break;
882 case ILLEGAL_REQUEST:
883 /* If we had an ILLEGAL REQUEST returned, then
884 * we may have performed an unsupported
885 * command. The only thing this should be
886 * would be a ten byte read where only a six
887 * byte read was supported. Also, on a system
888 * where READ CAPACITY failed, we may have
889 * read past the end of the disk.
890 */
891 if ((cmd->device->use_10_for_rw &&
892 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
893 (cmd->cmnd[0] == READ_10 ||
894 cmd->cmnd[0] == WRITE_10)) {
895 /* This will issue a new 6-byte command. */
896 cmd->device->use_10_for_rw = 0;
897 action = ACTION_REPREP;
898 } else if (sshdr.asc == 0x10) /* DIX */ {
899 description = "Host Data Integrity Failure";
900 action = ACTION_FAIL;
901 error = -EILSEQ;
902 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
904 switch (cmd->cmnd[0]) {
905 case UNMAP:
906 description = "Discard failure";
907 break;
908 case WRITE_SAME:
909 case WRITE_SAME_16:
910 if (cmd->cmnd[1] & 0x8)
911 description = "Discard failure";
912 else
913 description =
914 "Write same failure";
915 break;
916 default:
917 description = "Invalid command failure";
918 break;
919 }
920 action = ACTION_FAIL;
921 error = -EREMOTEIO;
922 } else
923 action = ACTION_FAIL;
924 break;
925 case ABORTED_COMMAND:
926 action = ACTION_FAIL;
927 if (sshdr.asc == 0x10) { /* DIF */
928 description = "Target Data Integrity Failure";
929 error = -EILSEQ;
930 }
931 break;
932 case NOT_READY:
933 /* If the device is in the process of becoming
934 * ready, or has a temporary blockage, retry.
935 */
936 if (sshdr.asc == 0x04) {
937 switch (sshdr.ascq) {
938 case 0x01: /* becoming ready */
939 case 0x04: /* format in progress */
940 case 0x05: /* rebuild in progress */
941 case 0x06: /* recalculation in progress */
942 case 0x07: /* operation in progress */
943 case 0x08: /* Long write in progress */
944 case 0x09: /* self test in progress */
945 case 0x14: /* space allocation in progress */
946 action = ACTION_DELAYED_RETRY;
947 break;
948 default:
949 description = "Device not ready";
950 action = ACTION_FAIL;
951 break;
952 }
953 } else {
954 description = "Device not ready";
955 action = ACTION_FAIL;
956 }
957 break;
958 case VOLUME_OVERFLOW:
959 /* See SSC3rXX or current. */
960 action = ACTION_FAIL;
961 break;
962 default:
963 description = "Unhandled sense code";
964 action = ACTION_FAIL;
965 break;
966 }
967 } else {
968 description = "Unhandled error code";
969 action = ACTION_FAIL;
970 }
971
972 switch (action) {
973 case ACTION_FAIL:
974 /* Give up and fail the remainder of the request */
975 scsi_release_buffers(cmd);
976 if (!(req->cmd_flags & REQ_QUIET)) {
977 if (description)
978 scmd_printk(KERN_INFO, cmd, "%s\n",
979 description);
980 scsi_print_result(cmd);
981 if (driver_byte(result) & DRIVER_SENSE)
982 scsi_print_sense("", cmd);
983 scsi_print_command(cmd);
984 }
985 if (blk_end_request_err(req, error))
986 scsi_requeue_command(q, cmd);
987 else
988 scsi_next_command(cmd);
989 break;
990 case ACTION_REPREP:
991 /* Unprep the request and put it back at the head of the queue.
992 * A new command will be prepared and issued.
993 */
994 scsi_release_buffers(cmd);
995 scsi_requeue_command(q, cmd);
996 break;
997 case ACTION_RETRY:
998 /* Retry the same command immediately */
999 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000 break;
1001 case ACTION_DELAYED_RETRY:
1002 /* Retry the same command after a delay */
1003 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004 break;
1005 }
1006 }
1007
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009 gfp_t gfp_mask)
1010 {
1011 int count;
1012
1013 /*
1014 * If sg table allocation fails, requeue request later.
1015 */
1016 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017 gfp_mask))) {
1018 return BLKPREP_DEFER;
1019 }
1020
1021 req->buffer = NULL;
1022
1023 /*
1024 * Next, walk the list, and fill in the addresses and sizes of
1025 * each segment.
1026 */
1027 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028 BUG_ON(count > sdb->table.nents);
1029 sdb->table.nents = count;
1030 sdb->length = blk_rq_bytes(req);
1031 return BLKPREP_OK;
1032 }
1033
1034 /*
1035 * Function: scsi_init_io()
1036 *
1037 * Purpose: SCSI I/O initialize function.
1038 *
1039 * Arguments: cmd - Command descriptor we wish to initialize
1040 *
1041 * Returns: 0 on success
1042 * BLKPREP_DEFER if the failure is retryable
1043 * BLKPREP_KILL if the failure is fatal
1044 */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047 struct request *rq = cmd->request;
1048
1049 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1050 if (error)
1051 goto err_exit;
1052
1053 if (blk_bidi_rq(rq)) {
1054 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1055 scsi_sdb_cache, GFP_ATOMIC);
1056 if (!bidi_sdb) {
1057 error = BLKPREP_DEFER;
1058 goto err_exit;
1059 }
1060
1061 rq->next_rq->special = bidi_sdb;
1062 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1063 if (error)
1064 goto err_exit;
1065 }
1066
1067 if (blk_integrity_rq(rq)) {
1068 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069 int ivecs, count;
1070
1071 BUG_ON(prot_sdb == NULL);
1072 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073
1074 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1075 error = BLKPREP_DEFER;
1076 goto err_exit;
1077 }
1078
1079 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1080 prot_sdb->table.sgl);
1081 BUG_ON(unlikely(count > ivecs));
1082 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1083
1084 cmd->prot_sdb = prot_sdb;
1085 cmd->prot_sdb->table.nents = count;
1086 }
1087
1088 return BLKPREP_OK ;
1089
1090 err_exit:
1091 scsi_release_buffers(cmd);
1092 cmd->request->special = NULL;
1093 scsi_put_command(cmd);
1094 return error;
1095 }
1096 EXPORT_SYMBOL(scsi_init_io);
1097
1098 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1099 struct request *req)
1100 {
1101 struct scsi_cmnd *cmd;
1102
1103 if (!req->special) {
1104 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1105 if (unlikely(!cmd))
1106 return NULL;
1107 req->special = cmd;
1108 } else {
1109 cmd = req->special;
1110 }
1111
1112 /* pull a tag out of the request if we have one */
1113 cmd->tag = req->tag;
1114 cmd->request = req;
1115
1116 cmd->cmnd = req->cmd;
1117 cmd->prot_op = SCSI_PROT_NORMAL;
1118
1119 return cmd;
1120 }
1121
1122 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1123 {
1124 struct scsi_cmnd *cmd;
1125 int ret = scsi_prep_state_check(sdev, req);
1126
1127 if (ret != BLKPREP_OK)
1128 return ret;
1129
1130 cmd = scsi_get_cmd_from_req(sdev, req);
1131 if (unlikely(!cmd))
1132 return BLKPREP_DEFER;
1133
1134 /*
1135 * BLOCK_PC requests may transfer data, in which case they must
1136 * a bio attached to them. Or they might contain a SCSI command
1137 * that does not transfer data, in which case they may optionally
1138 * submit a request without an attached bio.
1139 */
1140 if (req->bio) {
1141 int ret;
1142
1143 BUG_ON(!req->nr_phys_segments);
1144
1145 ret = scsi_init_io(cmd, GFP_ATOMIC);
1146 if (unlikely(ret))
1147 return ret;
1148 } else {
1149 BUG_ON(blk_rq_bytes(req));
1150
1151 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152 req->buffer = NULL;
1153 }
1154
1155 cmd->cmd_len = req->cmd_len;
1156 if (!blk_rq_bytes(req))
1157 cmd->sc_data_direction = DMA_NONE;
1158 else if (rq_data_dir(req) == WRITE)
1159 cmd->sc_data_direction = DMA_TO_DEVICE;
1160 else
1161 cmd->sc_data_direction = DMA_FROM_DEVICE;
1162
1163 cmd->transfersize = blk_rq_bytes(req);
1164 cmd->allowed = req->retries;
1165 return BLKPREP_OK;
1166 }
1167 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1168
1169 /*
1170 * Setup a REQ_TYPE_FS command. These are simple read/write request
1171 * from filesystems that still need to be translated to SCSI CDBs from
1172 * the ULD.
1173 */
1174 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1175 {
1176 struct scsi_cmnd *cmd;
1177 int ret = scsi_prep_state_check(sdev, req);
1178
1179 if (ret != BLKPREP_OK)
1180 return ret;
1181
1182 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1183 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1184 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1185 if (ret != BLKPREP_OK)
1186 return ret;
1187 }
1188
1189 /*
1190 * Filesystem requests must transfer data.
1191 */
1192 BUG_ON(!req->nr_phys_segments);
1193
1194 cmd = scsi_get_cmd_from_req(sdev, req);
1195 if (unlikely(!cmd))
1196 return BLKPREP_DEFER;
1197
1198 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1199 return scsi_init_io(cmd, GFP_ATOMIC);
1200 }
1201 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1202
1203 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 int ret = BLKPREP_OK;
1206
1207 /*
1208 * If the device is not in running state we will reject some
1209 * or all commands.
1210 */
1211 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1212 switch (sdev->sdev_state) {
1213 case SDEV_OFFLINE:
1214 case SDEV_TRANSPORT_OFFLINE:
1215 /*
1216 * If the device is offline we refuse to process any
1217 * commands. The device must be brought online
1218 * before trying any recovery commands.
1219 */
1220 sdev_printk(KERN_ERR, sdev,
1221 "rejecting I/O to offline device\n");
1222 ret = BLKPREP_KILL;
1223 break;
1224 case SDEV_DEL:
1225 /*
1226 * If the device is fully deleted, we refuse to
1227 * process any commands as well.
1228 */
1229 sdev_printk(KERN_ERR, sdev,
1230 "rejecting I/O to dead device\n");
1231 ret = BLKPREP_KILL;
1232 break;
1233 case SDEV_QUIESCE:
1234 case SDEV_BLOCK:
1235 case SDEV_CREATED_BLOCK:
1236 /*
1237 * If the devices is blocked we defer normal commands.
1238 */
1239 if (!(req->cmd_flags & REQ_PREEMPT))
1240 ret = BLKPREP_DEFER;
1241 break;
1242 default:
1243 /*
1244 * For any other not fully online state we only allow
1245 * special commands. In particular any user initiated
1246 * command is not allowed.
1247 */
1248 if (!(req->cmd_flags & REQ_PREEMPT))
1249 ret = BLKPREP_KILL;
1250 break;
1251 }
1252 }
1253 return ret;
1254 }
1255 EXPORT_SYMBOL(scsi_prep_state_check);
1256
1257 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1258 {
1259 struct scsi_device *sdev = q->queuedata;
1260
1261 switch (ret) {
1262 case BLKPREP_KILL:
1263 req->errors = DID_NO_CONNECT << 16;
1264 /* release the command and kill it */
1265 if (req->special) {
1266 struct scsi_cmnd *cmd = req->special;
1267 scsi_release_buffers(cmd);
1268 scsi_put_command(cmd);
1269 req->special = NULL;
1270 }
1271 break;
1272 case BLKPREP_DEFER:
1273 /*
1274 * If we defer, the blk_peek_request() returns NULL, but the
1275 * queue must be restarted, so we schedule a callback to happen
1276 * shortly.
1277 */
1278 if (sdev->device_busy == 0)
1279 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280 break;
1281 default:
1282 req->cmd_flags |= REQ_DONTPREP;
1283 }
1284
1285 return ret;
1286 }
1287 EXPORT_SYMBOL(scsi_prep_return);
1288
1289 int scsi_prep_fn(struct request_queue *q, struct request *req)
1290 {
1291 struct scsi_device *sdev = q->queuedata;
1292 int ret = BLKPREP_KILL;
1293
1294 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1295 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1296 return scsi_prep_return(q, req, ret);
1297 }
1298 EXPORT_SYMBOL(scsi_prep_fn);
1299
1300 /*
1301 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1302 * return 0.
1303 *
1304 * Called with the queue_lock held.
1305 */
1306 static inline int scsi_dev_queue_ready(struct request_queue *q,
1307 struct scsi_device *sdev)
1308 {
1309 if (sdev->device_busy == 0 && sdev->device_blocked) {
1310 /*
1311 * unblock after device_blocked iterates to zero
1312 */
1313 if (--sdev->device_blocked == 0) {
1314 SCSI_LOG_MLQUEUE(3,
1315 sdev_printk(KERN_INFO, sdev,
1316 "unblocking device at zero depth\n"));
1317 } else {
1318 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1319 return 0;
1320 }
1321 }
1322 if (scsi_device_is_busy(sdev))
1323 return 0;
1324
1325 return 1;
1326 }
1327
1328
1329 /*
1330 * scsi_target_queue_ready: checks if there we can send commands to target
1331 * @sdev: scsi device on starget to check.
1332 *
1333 * Called with the host lock held.
1334 */
1335 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1336 struct scsi_device *sdev)
1337 {
1338 struct scsi_target *starget = scsi_target(sdev);
1339
1340 if (starget->single_lun) {
1341 if (starget->starget_sdev_user &&
1342 starget->starget_sdev_user != sdev)
1343 return 0;
1344 starget->starget_sdev_user = sdev;
1345 }
1346
1347 if (starget->target_busy == 0 && starget->target_blocked) {
1348 /*
1349 * unblock after target_blocked iterates to zero
1350 */
1351 if (--starget->target_blocked == 0) {
1352 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1353 "unblocking target at zero depth\n"));
1354 } else
1355 return 0;
1356 }
1357
1358 if (scsi_target_is_busy(starget)) {
1359 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1360 return 0;
1361 }
1362
1363 return 1;
1364 }
1365
1366 /*
1367 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1368 * return 0. We must end up running the queue again whenever 0 is
1369 * returned, else IO can hang.
1370 *
1371 * Called with host_lock held.
1372 */
1373 static inline int scsi_host_queue_ready(struct request_queue *q,
1374 struct Scsi_Host *shost,
1375 struct scsi_device *sdev)
1376 {
1377 if (scsi_host_in_recovery(shost))
1378 return 0;
1379 if (shost->host_busy == 0 && shost->host_blocked) {
1380 /*
1381 * unblock after host_blocked iterates to zero
1382 */
1383 if (--shost->host_blocked == 0) {
1384 SCSI_LOG_MLQUEUE(3,
1385 printk("scsi%d unblocking host at zero depth\n",
1386 shost->host_no));
1387 } else {
1388 return 0;
1389 }
1390 }
1391 if (scsi_host_is_busy(shost)) {
1392 if (list_empty(&sdev->starved_entry))
1393 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1394 return 0;
1395 }
1396
1397 /* We're OK to process the command, so we can't be starved */
1398 if (!list_empty(&sdev->starved_entry))
1399 list_del_init(&sdev->starved_entry);
1400
1401 return 1;
1402 }
1403
1404 /*
1405 * Busy state exporting function for request stacking drivers.
1406 *
1407 * For efficiency, no lock is taken to check the busy state of
1408 * shost/starget/sdev, since the returned value is not guaranteed and
1409 * may be changed after request stacking drivers call the function,
1410 * regardless of taking lock or not.
1411 *
1412 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1413 * needs to return 'not busy'. Otherwise, request stacking drivers
1414 * may hold requests forever.
1415 */
1416 static int scsi_lld_busy(struct request_queue *q)
1417 {
1418 struct scsi_device *sdev = q->queuedata;
1419 struct Scsi_Host *shost;
1420
1421 if (blk_queue_dead(q))
1422 return 0;
1423
1424 shost = sdev->host;
1425
1426 /*
1427 * Ignore host/starget busy state.
1428 * Since block layer does not have a concept of fairness across
1429 * multiple queues, congestion of host/starget needs to be handled
1430 * in SCSI layer.
1431 */
1432 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1433 return 1;
1434
1435 return 0;
1436 }
1437
1438 /*
1439 * Kill a request for a dead device
1440 */
1441 static void scsi_kill_request(struct request *req, struct request_queue *q)
1442 {
1443 struct scsi_cmnd *cmd = req->special;
1444 struct scsi_device *sdev;
1445 struct scsi_target *starget;
1446 struct Scsi_Host *shost;
1447
1448 blk_start_request(req);
1449
1450 scmd_printk(KERN_INFO, cmd, "killing request\n");
1451
1452 sdev = cmd->device;
1453 starget = scsi_target(sdev);
1454 shost = sdev->host;
1455 scsi_init_cmd_errh(cmd);
1456 cmd->result = DID_NO_CONNECT << 16;
1457 atomic_inc(&cmd->device->iorequest_cnt);
1458
1459 /*
1460 * SCSI request completion path will do scsi_device_unbusy(),
1461 * bump busy counts. To bump the counters, we need to dance
1462 * with the locks as normal issue path does.
1463 */
1464 sdev->device_busy++;
1465 spin_unlock(sdev->request_queue->queue_lock);
1466 spin_lock(shost->host_lock);
1467 shost->host_busy++;
1468 starget->target_busy++;
1469 spin_unlock(shost->host_lock);
1470 spin_lock(sdev->request_queue->queue_lock);
1471
1472 blk_complete_request(req);
1473 }
1474
1475 static void scsi_softirq_done(struct request *rq)
1476 {
1477 struct scsi_cmnd *cmd = rq->special;
1478 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1479 int disposition;
1480
1481 INIT_LIST_HEAD(&cmd->eh_entry);
1482
1483 atomic_inc(&cmd->device->iodone_cnt);
1484 if (cmd->result)
1485 atomic_inc(&cmd->device->ioerr_cnt);
1486
1487 disposition = scsi_decide_disposition(cmd);
1488 if (disposition != SUCCESS &&
1489 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1490 sdev_printk(KERN_ERR, cmd->device,
1491 "timing out command, waited %lus\n",
1492 wait_for/HZ);
1493 disposition = SUCCESS;
1494 }
1495
1496 scsi_log_completion(cmd, disposition);
1497
1498 switch (disposition) {
1499 case SUCCESS:
1500 scsi_finish_command(cmd);
1501 break;
1502 case NEEDS_RETRY:
1503 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1504 break;
1505 case ADD_TO_MLQUEUE:
1506 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1507 break;
1508 default:
1509 if (!scsi_eh_scmd_add(cmd, 0))
1510 scsi_finish_command(cmd);
1511 }
1512 }
1513
1514 /*
1515 * Function: scsi_request_fn()
1516 *
1517 * Purpose: Main strategy routine for SCSI.
1518 *
1519 * Arguments: q - Pointer to actual queue.
1520 *
1521 * Returns: Nothing
1522 *
1523 * Lock status: IO request lock assumed to be held when called.
1524 */
1525 static void scsi_request_fn(struct request_queue *q)
1526 {
1527 struct scsi_device *sdev = q->queuedata;
1528 struct Scsi_Host *shost;
1529 struct scsi_cmnd *cmd;
1530 struct request *req;
1531
1532 if(!get_device(&sdev->sdev_gendev))
1533 /* We must be tearing the block queue down already */
1534 return;
1535
1536 /*
1537 * To start with, we keep looping until the queue is empty, or until
1538 * the host is no longer able to accept any more requests.
1539 */
1540 shost = sdev->host;
1541 for (;;) {
1542 int rtn;
1543 /*
1544 * get next queueable request. We do this early to make sure
1545 * that the request is fully prepared even if we cannot
1546 * accept it.
1547 */
1548 req = blk_peek_request(q);
1549 if (!req || !scsi_dev_queue_ready(q, sdev))
1550 break;
1551
1552 if (unlikely(!scsi_device_online(sdev))) {
1553 sdev_printk(KERN_ERR, sdev,
1554 "rejecting I/O to offline device\n");
1555 scsi_kill_request(req, q);
1556 continue;
1557 }
1558
1559
1560 /*
1561 * Remove the request from the request list.
1562 */
1563 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1564 blk_start_request(req);
1565 sdev->device_busy++;
1566
1567 spin_unlock(q->queue_lock);
1568 cmd = req->special;
1569 if (unlikely(cmd == NULL)) {
1570 printk(KERN_CRIT "impossible request in %s.\n"
1571 "please mail a stack trace to "
1572 "linux-scsi@vger.kernel.org\n",
1573 __func__);
1574 blk_dump_rq_flags(req, "foo");
1575 BUG();
1576 }
1577 spin_lock(shost->host_lock);
1578
1579 /*
1580 * We hit this when the driver is using a host wide
1581 * tag map. For device level tag maps the queue_depth check
1582 * in the device ready fn would prevent us from trying
1583 * to allocate a tag. Since the map is a shared host resource
1584 * we add the dev to the starved list so it eventually gets
1585 * a run when a tag is freed.
1586 */
1587 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1588 if (list_empty(&sdev->starved_entry))
1589 list_add_tail(&sdev->starved_entry,
1590 &shost->starved_list);
1591 goto not_ready;
1592 }
1593
1594 if (!scsi_target_queue_ready(shost, sdev))
1595 goto not_ready;
1596
1597 if (!scsi_host_queue_ready(q, shost, sdev))
1598 goto not_ready;
1599
1600 scsi_target(sdev)->target_busy++;
1601 shost->host_busy++;
1602
1603 /*
1604 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1605 * take the lock again.
1606 */
1607 spin_unlock_irq(shost->host_lock);
1608
1609 /*
1610 * Finally, initialize any error handling parameters, and set up
1611 * the timers for timeouts.
1612 */
1613 scsi_init_cmd_errh(cmd);
1614
1615 /*
1616 * Dispatch the command to the low-level driver.
1617 */
1618 rtn = scsi_dispatch_cmd(cmd);
1619 spin_lock_irq(q->queue_lock);
1620 if (rtn)
1621 goto out_delay;
1622 }
1623
1624 goto out;
1625
1626 not_ready:
1627 spin_unlock_irq(shost->host_lock);
1628
1629 /*
1630 * lock q, handle tag, requeue req, and decrement device_busy. We
1631 * must return with queue_lock held.
1632 *
1633 * Decrementing device_busy without checking it is OK, as all such
1634 * cases (host limits or settings) should run the queue at some
1635 * later time.
1636 */
1637 spin_lock_irq(q->queue_lock);
1638 blk_requeue_request(q, req);
1639 sdev->device_busy--;
1640 out_delay:
1641 if (sdev->device_busy == 0)
1642 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1643 out:
1644 /* must be careful here...if we trigger the ->remove() function
1645 * we cannot be holding the q lock */
1646 spin_unlock_irq(q->queue_lock);
1647 put_device(&sdev->sdev_gendev);
1648 spin_lock_irq(q->queue_lock);
1649 }
1650
1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1652 {
1653 struct device *host_dev;
1654 u64 bounce_limit = 0xffffffff;
1655
1656 if (shost->unchecked_isa_dma)
1657 return BLK_BOUNCE_ISA;
1658 /*
1659 * Platforms with virtual-DMA translation
1660 * hardware have no practical limit.
1661 */
1662 if (!PCI_DMA_BUS_IS_PHYS)
1663 return BLK_BOUNCE_ANY;
1664
1665 host_dev = scsi_get_device(shost);
1666 if (host_dev && host_dev->dma_mask)
1667 bounce_limit = *host_dev->dma_mask;
1668
1669 return bounce_limit;
1670 }
1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1672
1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1674 request_fn_proc *request_fn)
1675 {
1676 struct request_queue *q;
1677 struct device *dev = shost->dma_dev;
1678
1679 q = blk_init_queue(request_fn, NULL);
1680 if (!q)
1681 return NULL;
1682
1683 /*
1684 * this limit is imposed by hardware restrictions
1685 */
1686 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1687 SCSI_MAX_SG_CHAIN_SEGMENTS));
1688
1689 if (scsi_host_prot_dma(shost)) {
1690 shost->sg_prot_tablesize =
1691 min_not_zero(shost->sg_prot_tablesize,
1692 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1693 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1694 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1695 }
1696
1697 blk_queue_max_hw_sectors(q, shost->max_sectors);
1698 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1699 blk_queue_segment_boundary(q, shost->dma_boundary);
1700 dma_set_seg_boundary(dev, shost->dma_boundary);
1701
1702 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1703
1704 if (!shost->use_clustering)
1705 q->limits.cluster = 0;
1706
1707 /*
1708 * set a reasonable default alignment on word boundaries: the
1709 * host and device may alter it using
1710 * blk_queue_update_dma_alignment() later.
1711 */
1712 blk_queue_dma_alignment(q, 0x03);
1713
1714 return q;
1715 }
1716 EXPORT_SYMBOL(__scsi_alloc_queue);
1717
1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1719 {
1720 struct request_queue *q;
1721
1722 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1723 if (!q)
1724 return NULL;
1725
1726 blk_queue_prep_rq(q, scsi_prep_fn);
1727 blk_queue_softirq_done(q, scsi_softirq_done);
1728 blk_queue_rq_timed_out(q, scsi_times_out);
1729 blk_queue_lld_busy(q, scsi_lld_busy);
1730 return q;
1731 }
1732
1733 /*
1734 * Function: scsi_block_requests()
1735 *
1736 * Purpose: Utility function used by low-level drivers to prevent further
1737 * commands from being queued to the device.
1738 *
1739 * Arguments: shost - Host in question
1740 *
1741 * Returns: Nothing
1742 *
1743 * Lock status: No locks are assumed held.
1744 *
1745 * Notes: There is no timer nor any other means by which the requests
1746 * get unblocked other than the low-level driver calling
1747 * scsi_unblock_requests().
1748 */
1749 void scsi_block_requests(struct Scsi_Host *shost)
1750 {
1751 shost->host_self_blocked = 1;
1752 }
1753 EXPORT_SYMBOL(scsi_block_requests);
1754
1755 /*
1756 * Function: scsi_unblock_requests()
1757 *
1758 * Purpose: Utility function used by low-level drivers to allow further
1759 * commands from being queued to the device.
1760 *
1761 * Arguments: shost - Host in question
1762 *
1763 * Returns: Nothing
1764 *
1765 * Lock status: No locks are assumed held.
1766 *
1767 * Notes: There is no timer nor any other means by which the requests
1768 * get unblocked other than the low-level driver calling
1769 * scsi_unblock_requests().
1770 *
1771 * This is done as an API function so that changes to the
1772 * internals of the scsi mid-layer won't require wholesale
1773 * changes to drivers that use this feature.
1774 */
1775 void scsi_unblock_requests(struct Scsi_Host *shost)
1776 {
1777 shost->host_self_blocked = 0;
1778 scsi_run_host_queues(shost);
1779 }
1780 EXPORT_SYMBOL(scsi_unblock_requests);
1781
1782 int __init scsi_init_queue(void)
1783 {
1784 int i;
1785
1786 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1787 sizeof(struct scsi_data_buffer),
1788 0, 0, NULL);
1789 if (!scsi_sdb_cache) {
1790 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1791 return -ENOMEM;
1792 }
1793
1794 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796 int size = sgp->size * sizeof(struct scatterlist);
1797
1798 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1799 SLAB_HWCACHE_ALIGN, NULL);
1800 if (!sgp->slab) {
1801 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1802 sgp->name);
1803 goto cleanup_sdb;
1804 }
1805
1806 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1807 sgp->slab);
1808 if (!sgp->pool) {
1809 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1810 sgp->name);
1811 goto cleanup_sdb;
1812 }
1813 }
1814
1815 return 0;
1816
1817 cleanup_sdb:
1818 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1819 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1820 if (sgp->pool)
1821 mempool_destroy(sgp->pool);
1822 if (sgp->slab)
1823 kmem_cache_destroy(sgp->slab);
1824 }
1825 kmem_cache_destroy(scsi_sdb_cache);
1826
1827 return -ENOMEM;
1828 }
1829
1830 void scsi_exit_queue(void)
1831 {
1832 int i;
1833
1834 kmem_cache_destroy(scsi_sdb_cache);
1835
1836 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838 mempool_destroy(sgp->pool);
1839 kmem_cache_destroy(sgp->slab);
1840 }
1841 }
1842
1843 /**
1844 * scsi_mode_select - issue a mode select
1845 * @sdev: SCSI device to be queried
1846 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1847 * @sp: Save page bit (0 == don't save, 1 == save)
1848 * @modepage: mode page being requested
1849 * @buffer: request buffer (may not be smaller than eight bytes)
1850 * @len: length of request buffer.
1851 * @timeout: command timeout
1852 * @retries: number of retries before failing
1853 * @data: returns a structure abstracting the mode header data
1854 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1855 * must be SCSI_SENSE_BUFFERSIZE big.
1856 *
1857 * Returns zero if successful; negative error number or scsi
1858 * status on error
1859 *
1860 */
1861 int
1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1863 unsigned char *buffer, int len, int timeout, int retries,
1864 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1865 {
1866 unsigned char cmd[10];
1867 unsigned char *real_buffer;
1868 int ret;
1869
1870 memset(cmd, 0, sizeof(cmd));
1871 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1872
1873 if (sdev->use_10_for_ms) {
1874 if (len > 65535)
1875 return -EINVAL;
1876 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1877 if (!real_buffer)
1878 return -ENOMEM;
1879 memcpy(real_buffer + 8, buffer, len);
1880 len += 8;
1881 real_buffer[0] = 0;
1882 real_buffer[1] = 0;
1883 real_buffer[2] = data->medium_type;
1884 real_buffer[3] = data->device_specific;
1885 real_buffer[4] = data->longlba ? 0x01 : 0;
1886 real_buffer[5] = 0;
1887 real_buffer[6] = data->block_descriptor_length >> 8;
1888 real_buffer[7] = data->block_descriptor_length;
1889
1890 cmd[0] = MODE_SELECT_10;
1891 cmd[7] = len >> 8;
1892 cmd[8] = len;
1893 } else {
1894 if (len > 255 || data->block_descriptor_length > 255 ||
1895 data->longlba)
1896 return -EINVAL;
1897
1898 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1899 if (!real_buffer)
1900 return -ENOMEM;
1901 memcpy(real_buffer + 4, buffer, len);
1902 len += 4;
1903 real_buffer[0] = 0;
1904 real_buffer[1] = data->medium_type;
1905 real_buffer[2] = data->device_specific;
1906 real_buffer[3] = data->block_descriptor_length;
1907
1908
1909 cmd[0] = MODE_SELECT;
1910 cmd[4] = len;
1911 }
1912
1913 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1914 sshdr, timeout, retries, NULL);
1915 kfree(real_buffer);
1916 return ret;
1917 }
1918 EXPORT_SYMBOL_GPL(scsi_mode_select);
1919
1920 /**
1921 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1922 * @sdev: SCSI device to be queried
1923 * @dbd: set if mode sense will allow block descriptors to be returned
1924 * @modepage: mode page being requested
1925 * @buffer: request buffer (may not be smaller than eight bytes)
1926 * @len: length of request buffer.
1927 * @timeout: command timeout
1928 * @retries: number of retries before failing
1929 * @data: returns a structure abstracting the mode header data
1930 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1931 * must be SCSI_SENSE_BUFFERSIZE big.
1932 *
1933 * Returns zero if unsuccessful, or the header offset (either 4
1934 * or 8 depending on whether a six or ten byte command was
1935 * issued) if successful.
1936 */
1937 int
1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1939 unsigned char *buffer, int len, int timeout, int retries,
1940 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1941 {
1942 unsigned char cmd[12];
1943 int use_10_for_ms;
1944 int header_length;
1945 int result;
1946 struct scsi_sense_hdr my_sshdr;
1947
1948 memset(data, 0, sizeof(*data));
1949 memset(&cmd[0], 0, 12);
1950 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1951 cmd[2] = modepage;
1952
1953 /* caller might not be interested in sense, but we need it */
1954 if (!sshdr)
1955 sshdr = &my_sshdr;
1956
1957 retry:
1958 use_10_for_ms = sdev->use_10_for_ms;
1959
1960 if (use_10_for_ms) {
1961 if (len < 8)
1962 len = 8;
1963
1964 cmd[0] = MODE_SENSE_10;
1965 cmd[8] = len;
1966 header_length = 8;
1967 } else {
1968 if (len < 4)
1969 len = 4;
1970
1971 cmd[0] = MODE_SENSE;
1972 cmd[4] = len;
1973 header_length = 4;
1974 }
1975
1976 memset(buffer, 0, len);
1977
1978 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1979 sshdr, timeout, retries, NULL);
1980
1981 /* This code looks awful: what it's doing is making sure an
1982 * ILLEGAL REQUEST sense return identifies the actual command
1983 * byte as the problem. MODE_SENSE commands can return
1984 * ILLEGAL REQUEST if the code page isn't supported */
1985
1986 if (use_10_for_ms && !scsi_status_is_good(result) &&
1987 (driver_byte(result) & DRIVER_SENSE)) {
1988 if (scsi_sense_valid(sshdr)) {
1989 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1990 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1991 /*
1992 * Invalid command operation code
1993 */
1994 sdev->use_10_for_ms = 0;
1995 goto retry;
1996 }
1997 }
1998 }
1999
2000 if(scsi_status_is_good(result)) {
2001 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2002 (modepage == 6 || modepage == 8))) {
2003 /* Initio breakage? */
2004 header_length = 0;
2005 data->length = 13;
2006 data->medium_type = 0;
2007 data->device_specific = 0;
2008 data->longlba = 0;
2009 data->block_descriptor_length = 0;
2010 } else if(use_10_for_ms) {
2011 data->length = buffer[0]*256 + buffer[1] + 2;
2012 data->medium_type = buffer[2];
2013 data->device_specific = buffer[3];
2014 data->longlba = buffer[4] & 0x01;
2015 data->block_descriptor_length = buffer[6]*256
2016 + buffer[7];
2017 } else {
2018 data->length = buffer[0] + 1;
2019 data->medium_type = buffer[1];
2020 data->device_specific = buffer[2];
2021 data->block_descriptor_length = buffer[3];
2022 }
2023 data->header_length = header_length;
2024 }
2025
2026 return result;
2027 }
2028 EXPORT_SYMBOL(scsi_mode_sense);
2029
2030 /**
2031 * scsi_test_unit_ready - test if unit is ready
2032 * @sdev: scsi device to change the state of.
2033 * @timeout: command timeout
2034 * @retries: number of retries before failing
2035 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2036 * returning sense. Make sure that this is cleared before passing
2037 * in.
2038 *
2039 * Returns zero if unsuccessful or an error if TUR failed. For
2040 * removable media, UNIT_ATTENTION sets ->changed flag.
2041 **/
2042 int
2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2044 struct scsi_sense_hdr *sshdr_external)
2045 {
2046 char cmd[] = {
2047 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2048 };
2049 struct scsi_sense_hdr *sshdr;
2050 int result;
2051
2052 if (!sshdr_external)
2053 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2054 else
2055 sshdr = sshdr_external;
2056
2057 /* try to eat the UNIT_ATTENTION if there are enough retries */
2058 do {
2059 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2060 timeout, retries, NULL);
2061 if (sdev->removable && scsi_sense_valid(sshdr) &&
2062 sshdr->sense_key == UNIT_ATTENTION)
2063 sdev->changed = 1;
2064 } while (scsi_sense_valid(sshdr) &&
2065 sshdr->sense_key == UNIT_ATTENTION && --retries);
2066
2067 if (!sshdr_external)
2068 kfree(sshdr);
2069 return result;
2070 }
2071 EXPORT_SYMBOL(scsi_test_unit_ready);
2072
2073 /**
2074 * scsi_device_set_state - Take the given device through the device state model.
2075 * @sdev: scsi device to change the state of.
2076 * @state: state to change to.
2077 *
2078 * Returns zero if unsuccessful or an error if the requested
2079 * transition is illegal.
2080 */
2081 int
2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2083 {
2084 enum scsi_device_state oldstate = sdev->sdev_state;
2085
2086 if (state == oldstate)
2087 return 0;
2088
2089 switch (state) {
2090 case SDEV_CREATED:
2091 switch (oldstate) {
2092 case SDEV_CREATED_BLOCK:
2093 break;
2094 default:
2095 goto illegal;
2096 }
2097 break;
2098
2099 case SDEV_RUNNING:
2100 switch (oldstate) {
2101 case SDEV_CREATED:
2102 case SDEV_OFFLINE:
2103 case SDEV_TRANSPORT_OFFLINE:
2104 case SDEV_QUIESCE:
2105 case SDEV_BLOCK:
2106 break;
2107 default:
2108 goto illegal;
2109 }
2110 break;
2111
2112 case SDEV_QUIESCE:
2113 switch (oldstate) {
2114 case SDEV_RUNNING:
2115 case SDEV_OFFLINE:
2116 case SDEV_TRANSPORT_OFFLINE:
2117 break;
2118 default:
2119 goto illegal;
2120 }
2121 break;
2122
2123 case SDEV_OFFLINE:
2124 case SDEV_TRANSPORT_OFFLINE:
2125 switch (oldstate) {
2126 case SDEV_CREATED:
2127 case SDEV_RUNNING:
2128 case SDEV_QUIESCE:
2129 case SDEV_BLOCK:
2130 break;
2131 default:
2132 goto illegal;
2133 }
2134 break;
2135
2136 case SDEV_BLOCK:
2137 switch (oldstate) {
2138 case SDEV_RUNNING:
2139 case SDEV_CREATED_BLOCK:
2140 break;
2141 default:
2142 goto illegal;
2143 }
2144 break;
2145
2146 case SDEV_CREATED_BLOCK:
2147 switch (oldstate) {
2148 case SDEV_CREATED:
2149 break;
2150 default:
2151 goto illegal;
2152 }
2153 break;
2154
2155 case SDEV_CANCEL:
2156 switch (oldstate) {
2157 case SDEV_CREATED:
2158 case SDEV_RUNNING:
2159 case SDEV_QUIESCE:
2160 case SDEV_OFFLINE:
2161 case SDEV_TRANSPORT_OFFLINE:
2162 case SDEV_BLOCK:
2163 break;
2164 default:
2165 goto illegal;
2166 }
2167 break;
2168
2169 case SDEV_DEL:
2170 switch (oldstate) {
2171 case SDEV_CREATED:
2172 case SDEV_RUNNING:
2173 case SDEV_OFFLINE:
2174 case SDEV_TRANSPORT_OFFLINE:
2175 case SDEV_CANCEL:
2176 break;
2177 default:
2178 goto illegal;
2179 }
2180 break;
2181
2182 }
2183 sdev->sdev_state = state;
2184 return 0;
2185
2186 illegal:
2187 SCSI_LOG_ERROR_RECOVERY(1,
2188 sdev_printk(KERN_ERR, sdev,
2189 "Illegal state transition %s->%s\n",
2190 scsi_device_state_name(oldstate),
2191 scsi_device_state_name(state))
2192 );
2193 return -EINVAL;
2194 }
2195 EXPORT_SYMBOL(scsi_device_set_state);
2196
2197 /**
2198 * sdev_evt_emit - emit a single SCSI device uevent
2199 * @sdev: associated SCSI device
2200 * @evt: event to emit
2201 *
2202 * Send a single uevent (scsi_event) to the associated scsi_device.
2203 */
2204 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2205 {
2206 int idx = 0;
2207 char *envp[3];
2208
2209 switch (evt->evt_type) {
2210 case SDEV_EVT_MEDIA_CHANGE:
2211 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2212 break;
2213
2214 default:
2215 /* do nothing */
2216 break;
2217 }
2218
2219 envp[idx++] = NULL;
2220
2221 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2222 }
2223
2224 /**
2225 * sdev_evt_thread - send a uevent for each scsi event
2226 * @work: work struct for scsi_device
2227 *
2228 * Dispatch queued events to their associated scsi_device kobjects
2229 * as uevents.
2230 */
2231 void scsi_evt_thread(struct work_struct *work)
2232 {
2233 struct scsi_device *sdev;
2234 LIST_HEAD(event_list);
2235
2236 sdev = container_of(work, struct scsi_device, event_work);
2237
2238 while (1) {
2239 struct scsi_event *evt;
2240 struct list_head *this, *tmp;
2241 unsigned long flags;
2242
2243 spin_lock_irqsave(&sdev->list_lock, flags);
2244 list_splice_init(&sdev->event_list, &event_list);
2245 spin_unlock_irqrestore(&sdev->list_lock, flags);
2246
2247 if (list_empty(&event_list))
2248 break;
2249
2250 list_for_each_safe(this, tmp, &event_list) {
2251 evt = list_entry(this, struct scsi_event, node);
2252 list_del(&evt->node);
2253 scsi_evt_emit(sdev, evt);
2254 kfree(evt);
2255 }
2256 }
2257 }
2258
2259 /**
2260 * sdev_evt_send - send asserted event to uevent thread
2261 * @sdev: scsi_device event occurred on
2262 * @evt: event to send
2263 *
2264 * Assert scsi device event asynchronously.
2265 */
2266 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2267 {
2268 unsigned long flags;
2269
2270 #if 0
2271 /* FIXME: currently this check eliminates all media change events
2272 * for polled devices. Need to update to discriminate between AN
2273 * and polled events */
2274 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2275 kfree(evt);
2276 return;
2277 }
2278 #endif
2279
2280 spin_lock_irqsave(&sdev->list_lock, flags);
2281 list_add_tail(&evt->node, &sdev->event_list);
2282 schedule_work(&sdev->event_work);
2283 spin_unlock_irqrestore(&sdev->list_lock, flags);
2284 }
2285 EXPORT_SYMBOL_GPL(sdev_evt_send);
2286
2287 /**
2288 * sdev_evt_alloc - allocate a new scsi event
2289 * @evt_type: type of event to allocate
2290 * @gfpflags: GFP flags for allocation
2291 *
2292 * Allocates and returns a new scsi_event.
2293 */
2294 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2295 gfp_t gfpflags)
2296 {
2297 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2298 if (!evt)
2299 return NULL;
2300
2301 evt->evt_type = evt_type;
2302 INIT_LIST_HEAD(&evt->node);
2303
2304 /* evt_type-specific initialization, if any */
2305 switch (evt_type) {
2306 case SDEV_EVT_MEDIA_CHANGE:
2307 default:
2308 /* do nothing */
2309 break;
2310 }
2311
2312 return evt;
2313 }
2314 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2315
2316 /**
2317 * sdev_evt_send_simple - send asserted event to uevent thread
2318 * @sdev: scsi_device event occurred on
2319 * @evt_type: type of event to send
2320 * @gfpflags: GFP flags for allocation
2321 *
2322 * Assert scsi device event asynchronously, given an event type.
2323 */
2324 void sdev_evt_send_simple(struct scsi_device *sdev,
2325 enum scsi_device_event evt_type, gfp_t gfpflags)
2326 {
2327 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2328 if (!evt) {
2329 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2330 evt_type);
2331 return;
2332 }
2333
2334 sdev_evt_send(sdev, evt);
2335 }
2336 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2337
2338 /**
2339 * scsi_device_quiesce - Block user issued commands.
2340 * @sdev: scsi device to quiesce.
2341 *
2342 * This works by trying to transition to the SDEV_QUIESCE state
2343 * (which must be a legal transition). When the device is in this
2344 * state, only special requests will be accepted, all others will
2345 * be deferred. Since special requests may also be requeued requests,
2346 * a successful return doesn't guarantee the device will be
2347 * totally quiescent.
2348 *
2349 * Must be called with user context, may sleep.
2350 *
2351 * Returns zero if unsuccessful or an error if not.
2352 */
2353 int
2354 scsi_device_quiesce(struct scsi_device *sdev)
2355 {
2356 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2357 if (err)
2358 return err;
2359
2360 scsi_run_queue(sdev->request_queue);
2361 while (sdev->device_busy) {
2362 msleep_interruptible(200);
2363 scsi_run_queue(sdev->request_queue);
2364 }
2365 return 0;
2366 }
2367 EXPORT_SYMBOL(scsi_device_quiesce);
2368
2369 /**
2370 * scsi_device_resume - Restart user issued commands to a quiesced device.
2371 * @sdev: scsi device to resume.
2372 *
2373 * Moves the device from quiesced back to running and restarts the
2374 * queues.
2375 *
2376 * Must be called with user context, may sleep.
2377 */
2378 void scsi_device_resume(struct scsi_device *sdev)
2379 {
2380 /* check if the device state was mutated prior to resume, and if
2381 * so assume the state is being managed elsewhere (for example
2382 * device deleted during suspend)
2383 */
2384 if (sdev->sdev_state != SDEV_QUIESCE ||
2385 scsi_device_set_state(sdev, SDEV_RUNNING))
2386 return;
2387 scsi_run_queue(sdev->request_queue);
2388 }
2389 EXPORT_SYMBOL(scsi_device_resume);
2390
2391 static void
2392 device_quiesce_fn(struct scsi_device *sdev, void *data)
2393 {
2394 scsi_device_quiesce(sdev);
2395 }
2396
2397 void
2398 scsi_target_quiesce(struct scsi_target *starget)
2399 {
2400 starget_for_each_device(starget, NULL, device_quiesce_fn);
2401 }
2402 EXPORT_SYMBOL(scsi_target_quiesce);
2403
2404 static void
2405 device_resume_fn(struct scsi_device *sdev, void *data)
2406 {
2407 scsi_device_resume(sdev);
2408 }
2409
2410 void
2411 scsi_target_resume(struct scsi_target *starget)
2412 {
2413 starget_for_each_device(starget, NULL, device_resume_fn);
2414 }
2415 EXPORT_SYMBOL(scsi_target_resume);
2416
2417 /**
2418 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2419 * @sdev: device to block
2420 *
2421 * Block request made by scsi lld's to temporarily stop all
2422 * scsi commands on the specified device. Called from interrupt
2423 * or normal process context.
2424 *
2425 * Returns zero if successful or error if not
2426 *
2427 * Notes:
2428 * This routine transitions the device to the SDEV_BLOCK state
2429 * (which must be a legal transition). When the device is in this
2430 * state, all commands are deferred until the scsi lld reenables
2431 * the device with scsi_device_unblock or device_block_tmo fires.
2432 */
2433 int
2434 scsi_internal_device_block(struct scsi_device *sdev)
2435 {
2436 struct request_queue *q = sdev->request_queue;
2437 unsigned long flags;
2438 int err = 0;
2439
2440 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2441 if (err) {
2442 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2443
2444 if (err)
2445 return err;
2446 }
2447
2448 /*
2449 * The device has transitioned to SDEV_BLOCK. Stop the
2450 * block layer from calling the midlayer with this device's
2451 * request queue.
2452 */
2453 spin_lock_irqsave(q->queue_lock, flags);
2454 blk_stop_queue(q);
2455 spin_unlock_irqrestore(q->queue_lock, flags);
2456
2457 return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2460
2461 /**
2462 * scsi_internal_device_unblock - resume a device after a block request
2463 * @sdev: device to resume
2464 * @new_state: state to set devices to after unblocking
2465 *
2466 * Called by scsi lld's or the midlayer to restart the device queue
2467 * for the previously suspended scsi device. Called from interrupt or
2468 * normal process context.
2469 *
2470 * Returns zero if successful or error if not.
2471 *
2472 * Notes:
2473 * This routine transitions the device to the SDEV_RUNNING state
2474 * or to one of the offline states (which must be a legal transition)
2475 * allowing the midlayer to goose the queue for this device.
2476 */
2477 int
2478 scsi_internal_device_unblock(struct scsi_device *sdev,
2479 enum scsi_device_state new_state)
2480 {
2481 struct request_queue *q = sdev->request_queue;
2482 unsigned long flags;
2483
2484 /*
2485 * Try to transition the scsi device to SDEV_RUNNING or one of the
2486 * offlined states and goose the device queue if successful.
2487 */
2488 if ((sdev->sdev_state == SDEV_BLOCK) ||
2489 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2490 sdev->sdev_state = new_state;
2491 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2492 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2493 new_state == SDEV_OFFLINE)
2494 sdev->sdev_state = new_state;
2495 else
2496 sdev->sdev_state = SDEV_CREATED;
2497 } else if (sdev->sdev_state != SDEV_CANCEL &&
2498 sdev->sdev_state != SDEV_OFFLINE)
2499 return -EINVAL;
2500
2501 spin_lock_irqsave(q->queue_lock, flags);
2502 blk_start_queue(q);
2503 spin_unlock_irqrestore(q->queue_lock, flags);
2504
2505 return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2508
2509 static void
2510 device_block(struct scsi_device *sdev, void *data)
2511 {
2512 scsi_internal_device_block(sdev);
2513 }
2514
2515 static int
2516 target_block(struct device *dev, void *data)
2517 {
2518 if (scsi_is_target_device(dev))
2519 starget_for_each_device(to_scsi_target(dev), NULL,
2520 device_block);
2521 return 0;
2522 }
2523
2524 void
2525 scsi_target_block(struct device *dev)
2526 {
2527 if (scsi_is_target_device(dev))
2528 starget_for_each_device(to_scsi_target(dev), NULL,
2529 device_block);
2530 else
2531 device_for_each_child(dev, NULL, target_block);
2532 }
2533 EXPORT_SYMBOL_GPL(scsi_target_block);
2534
2535 static void
2536 device_unblock(struct scsi_device *sdev, void *data)
2537 {
2538 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2539 }
2540
2541 static int
2542 target_unblock(struct device *dev, void *data)
2543 {
2544 if (scsi_is_target_device(dev))
2545 starget_for_each_device(to_scsi_target(dev), data,
2546 device_unblock);
2547 return 0;
2548 }
2549
2550 void
2551 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2552 {
2553 if (scsi_is_target_device(dev))
2554 starget_for_each_device(to_scsi_target(dev), &new_state,
2555 device_unblock);
2556 else
2557 device_for_each_child(dev, &new_state, target_unblock);
2558 }
2559 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2560
2561 /**
2562 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2563 * @sgl: scatter-gather list
2564 * @sg_count: number of segments in sg
2565 * @offset: offset in bytes into sg, on return offset into the mapped area
2566 * @len: bytes to map, on return number of bytes mapped
2567 *
2568 * Returns virtual address of the start of the mapped page
2569 */
2570 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2571 size_t *offset, size_t *len)
2572 {
2573 int i;
2574 size_t sg_len = 0, len_complete = 0;
2575 struct scatterlist *sg;
2576 struct page *page;
2577
2578 WARN_ON(!irqs_disabled());
2579
2580 for_each_sg(sgl, sg, sg_count, i) {
2581 len_complete = sg_len; /* Complete sg-entries */
2582 sg_len += sg->length;
2583 if (sg_len > *offset)
2584 break;
2585 }
2586
2587 if (unlikely(i == sg_count)) {
2588 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2589 "elements %d\n",
2590 __func__, sg_len, *offset, sg_count);
2591 WARN_ON(1);
2592 return NULL;
2593 }
2594
2595 /* Offset starting from the beginning of first page in this sg-entry */
2596 *offset = *offset - len_complete + sg->offset;
2597
2598 /* Assumption: contiguous pages can be accessed as "page + i" */
2599 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2600 *offset &= ~PAGE_MASK;
2601
2602 /* Bytes in this sg-entry from *offset to the end of the page */
2603 sg_len = PAGE_SIZE - *offset;
2604 if (*len > sg_len)
2605 *len = sg_len;
2606
2607 return kmap_atomic(page);
2608 }
2609 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2610
2611 /**
2612 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2613 * @virt: virtual address to be unmapped
2614 */
2615 void scsi_kunmap_atomic_sg(void *virt)
2616 {
2617 kunmap_atomic(virt);
2618 }
2619 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);