]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/scsi_lib.c
[SCSI] remove scsi_wait_req
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30
31
32 #define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE 32
34
35 struct scsi_host_sg_pool {
36 size_t size;
37 char *name;
38 kmem_cache_t *slab;
39 mempool_t *pool;
40 };
41
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45
46 #define SP(x) { x, "sgpool-" #x }
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48 SP(8),
49 SP(16),
50 SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
65
66
67 /*
68 * Function: scsi_insert_special_req()
69 *
70 * Purpose: Insert pre-formed request into request queue.
71 *
72 * Arguments: sreq - request that is ready to be queued.
73 * at_head - boolean. True if we should insert at head
74 * of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns: Nothing
79 *
80 * Notes: This function is called from character device and from
81 * ioctl types of functions where the caller knows exactly
82 * what SCSI command needs to be issued. The idea is that
83 * we merely inject the command into the queue (at the head
84 * for now), and then call the queue request function to actually
85 * process it.
86 */
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88 {
89 /*
90 * Because users of this function are apt to reuse requests with no
91 * modification, we have to sanitise the request flags here
92 */
93 sreq->sr_request->flags &= ~REQ_DONTPREP;
94 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95 at_head, sreq);
96 return 0;
97 }
98
99 static void scsi_run_queue(struct request_queue *q);
100
101 /*
102 * Function: scsi_unprep_request()
103 *
104 * Purpose: Remove all preparation done for a request, including its
105 * associated scsi_cmnd, so that it can be requeued.
106 *
107 * Arguments: req - request to unprepare
108 *
109 * Lock status: Assumed that no locks are held upon entry.
110 *
111 * Returns: Nothing.
112 */
113 static void scsi_unprep_request(struct request *req)
114 {
115 struct scsi_cmnd *cmd = req->special;
116
117 req->flags &= ~REQ_DONTPREP;
118 req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
119
120 scsi_put_command(cmd);
121 }
122
123 /*
124 * Function: scsi_queue_insert()
125 *
126 * Purpose: Insert a command in the midlevel queue.
127 *
128 * Arguments: cmd - command that we are adding to queue.
129 * reason - why we are inserting command to queue.
130 *
131 * Lock status: Assumed that lock is not held upon entry.
132 *
133 * Returns: Nothing.
134 *
135 * Notes: We do this for one of two cases. Either the host is busy
136 * and it cannot accept any more commands for the time being,
137 * or the device returned QUEUE_FULL and can accept no more
138 * commands.
139 * Notes: This could be called either from an interrupt context or a
140 * normal process context.
141 */
142 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
143 {
144 struct Scsi_Host *host = cmd->device->host;
145 struct scsi_device *device = cmd->device;
146 struct request_queue *q = device->request_queue;
147 unsigned long flags;
148
149 SCSI_LOG_MLQUEUE(1,
150 printk("Inserting command %p into mlqueue\n", cmd));
151
152 /*
153 * Set the appropriate busy bit for the device/host.
154 *
155 * If the host/device isn't busy, assume that something actually
156 * completed, and that we should be able to queue a command now.
157 *
158 * Note that the prior mid-layer assumption that any host could
159 * always queue at least one command is now broken. The mid-layer
160 * will implement a user specifiable stall (see
161 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
162 * if a command is requeued with no other commands outstanding
163 * either for the device or for the host.
164 */
165 if (reason == SCSI_MLQUEUE_HOST_BUSY)
166 host->host_blocked = host->max_host_blocked;
167 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
168 device->device_blocked = device->max_device_blocked;
169
170 /*
171 * Decrement the counters, since these commands are no longer
172 * active on the host/device.
173 */
174 scsi_device_unbusy(device);
175
176 /*
177 * Requeue this command. It will go before all other commands
178 * that are already in the queue.
179 *
180 * NOTE: there is magic here about the way the queue is plugged if
181 * we have no outstanding commands.
182 *
183 * Although we *don't* plug the queue, we call the request
184 * function. The SCSI request function detects the blocked condition
185 * and plugs the queue appropriately.
186 */
187 spin_lock_irqsave(q->queue_lock, flags);
188 blk_requeue_request(q, cmd->request);
189 spin_unlock_irqrestore(q->queue_lock, flags);
190
191 scsi_run_queue(q);
192
193 return 0;
194 }
195
196 /*
197 * Function: scsi_do_req
198 *
199 * Purpose: Queue a SCSI request
200 *
201 * Arguments: sreq - command descriptor.
202 * cmnd - actual SCSI command to be performed.
203 * buffer - data buffer.
204 * bufflen - size of data buffer.
205 * done - completion function to be run.
206 * timeout - how long to let it run before timeout.
207 * retries - number of retries we allow.
208 *
209 * Lock status: No locks held upon entry.
210 *
211 * Returns: Nothing.
212 *
213 * Notes: This function is only used for queueing requests for things
214 * like ioctls and character device requests - this is because
215 * we essentially just inject a request into the queue for the
216 * device.
217 *
218 * In order to support the scsi_device_quiesce function, we
219 * now inject requests on the *head* of the device queue
220 * rather than the tail.
221 */
222 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
223 void *buffer, unsigned bufflen,
224 void (*done)(struct scsi_cmnd *),
225 int timeout, int retries)
226 {
227 /*
228 * If the upper level driver is reusing these things, then
229 * we should release the low-level block now. Another one will
230 * be allocated later when this request is getting queued.
231 */
232 __scsi_release_request(sreq);
233
234 /*
235 * Our own function scsi_done (which marks the host as not busy,
236 * disables the timeout counter, etc) will be called by us or by the
237 * scsi_hosts[host].queuecommand() function needs to also call
238 * the completion function for the high level driver.
239 */
240 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
241 sreq->sr_bufflen = bufflen;
242 sreq->sr_buffer = buffer;
243 sreq->sr_allowed = retries;
244 sreq->sr_done = done;
245 sreq->sr_timeout_per_command = timeout;
246
247 if (sreq->sr_cmd_len == 0)
248 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
249
250 /*
251 * head injection *required* here otherwise quiesce won't work
252 */
253 scsi_insert_special_req(sreq, 1);
254 }
255 EXPORT_SYMBOL(scsi_do_req);
256
257 /**
258 * scsi_execute - insert request and wait for the result
259 * @sdev: scsi device
260 * @cmd: scsi command
261 * @data_direction: data direction
262 * @buffer: data buffer
263 * @bufflen: len of buffer
264 * @sense: optional sense buffer
265 * @timeout: request timeout in seconds
266 * @retries: number of times to retry request
267 * @flags: or into request flags;
268 *
269 * returns the req->errors value which is the the scsi_cmnd result
270 * field.
271 **/
272 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
273 int data_direction, void *buffer, unsigned bufflen,
274 unsigned char *sense, int timeout, int retries, int flags)
275 {
276 struct request *req;
277 int write = (data_direction == DMA_TO_DEVICE);
278 int ret = DRIVER_ERROR << 24;
279
280 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
281
282 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
283 buffer, bufflen, __GFP_WAIT))
284 goto out;
285
286 req->cmd_len = COMMAND_SIZE(cmd[0]);
287 memcpy(req->cmd, cmd, req->cmd_len);
288 req->sense = sense;
289 req->sense_len = 0;
290 req->timeout = timeout;
291 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
292
293 /*
294 * head injection *required* here otherwise quiesce won't work
295 */
296 blk_execute_rq(req->q, NULL, req, 1);
297
298 ret = req->errors;
299 out:
300 blk_put_request(req);
301
302 return ret;
303 }
304 EXPORT_SYMBOL(scsi_execute);
305
306
307 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
308 int data_direction, void *buffer, unsigned bufflen,
309 struct scsi_sense_hdr *sshdr, int timeout, int retries)
310 {
311 char *sense = NULL;
312 int result;
313
314 if (sshdr) {
315 sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
316 if (!sense)
317 return DRIVER_ERROR << 24;
318 memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
319 }
320 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
321 sense, timeout, retries, 0);
322 if (sshdr)
323 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
324
325 kfree(sense);
326 return result;
327 }
328 EXPORT_SYMBOL(scsi_execute_req);
329
330 /*
331 * Function: scsi_init_cmd_errh()
332 *
333 * Purpose: Initialize cmd fields related to error handling.
334 *
335 * Arguments: cmd - command that is ready to be queued.
336 *
337 * Returns: Nothing
338 *
339 * Notes: This function has the job of initializing a number of
340 * fields related to error handling. Typically this will
341 * be called once for each command, as required.
342 */
343 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
344 {
345 cmd->serial_number = 0;
346
347 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
348
349 if (cmd->cmd_len == 0)
350 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
351
352 /*
353 * We need saved copies of a number of fields - this is because
354 * error handling may need to overwrite these with different values
355 * to run different commands, and once error handling is complete,
356 * we will need to restore these values prior to running the actual
357 * command.
358 */
359 cmd->old_use_sg = cmd->use_sg;
360 cmd->old_cmd_len = cmd->cmd_len;
361 cmd->sc_old_data_direction = cmd->sc_data_direction;
362 cmd->old_underflow = cmd->underflow;
363 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
364 cmd->buffer = cmd->request_buffer;
365 cmd->bufflen = cmd->request_bufflen;
366
367 return 1;
368 }
369
370 /*
371 * Function: scsi_setup_cmd_retry()
372 *
373 * Purpose: Restore the command state for a retry
374 *
375 * Arguments: cmd - command to be restored
376 *
377 * Returns: Nothing
378 *
379 * Notes: Immediately prior to retrying a command, we need
380 * to restore certain fields that we saved above.
381 */
382 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
383 {
384 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
385 cmd->request_buffer = cmd->buffer;
386 cmd->request_bufflen = cmd->bufflen;
387 cmd->use_sg = cmd->old_use_sg;
388 cmd->cmd_len = cmd->old_cmd_len;
389 cmd->sc_data_direction = cmd->sc_old_data_direction;
390 cmd->underflow = cmd->old_underflow;
391 }
392
393 void scsi_device_unbusy(struct scsi_device *sdev)
394 {
395 struct Scsi_Host *shost = sdev->host;
396 unsigned long flags;
397
398 spin_lock_irqsave(shost->host_lock, flags);
399 shost->host_busy--;
400 if (unlikely(scsi_host_in_recovery(shost) &&
401 shost->host_failed))
402 scsi_eh_wakeup(shost);
403 spin_unlock(shost->host_lock);
404 spin_lock(sdev->request_queue->queue_lock);
405 sdev->device_busy--;
406 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
407 }
408
409 /*
410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411 * and call blk_run_queue for all the scsi_devices on the target -
412 * including current_sdev first.
413 *
414 * Called with *no* scsi locks held.
415 */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418 struct Scsi_Host *shost = current_sdev->host;
419 struct scsi_device *sdev, *tmp;
420 struct scsi_target *starget = scsi_target(current_sdev);
421 unsigned long flags;
422
423 spin_lock_irqsave(shost->host_lock, flags);
424 starget->starget_sdev_user = NULL;
425 spin_unlock_irqrestore(shost->host_lock, flags);
426
427 /*
428 * Call blk_run_queue for all LUNs on the target, starting with
429 * current_sdev. We race with others (to set starget_sdev_user),
430 * but in most cases, we will be first. Ideally, each LU on the
431 * target would get some limited time or requests on the target.
432 */
433 blk_run_queue(current_sdev->request_queue);
434
435 spin_lock_irqsave(shost->host_lock, flags);
436 if (starget->starget_sdev_user)
437 goto out;
438 list_for_each_entry_safe(sdev, tmp, &starget->devices,
439 same_target_siblings) {
440 if (sdev == current_sdev)
441 continue;
442 if (scsi_device_get(sdev))
443 continue;
444
445 spin_unlock_irqrestore(shost->host_lock, flags);
446 blk_run_queue(sdev->request_queue);
447 spin_lock_irqsave(shost->host_lock, flags);
448
449 scsi_device_put(sdev);
450 }
451 out:
452 spin_unlock_irqrestore(shost->host_lock, flags);
453 }
454
455 /*
456 * Function: scsi_run_queue()
457 *
458 * Purpose: Select a proper request queue to serve next
459 *
460 * Arguments: q - last request's queue
461 *
462 * Returns: Nothing
463 *
464 * Notes: The previous command was completely finished, start
465 * a new one if possible.
466 */
467 static void scsi_run_queue(struct request_queue *q)
468 {
469 struct scsi_device *sdev = q->queuedata;
470 struct Scsi_Host *shost = sdev->host;
471 unsigned long flags;
472
473 if (sdev->single_lun)
474 scsi_single_lun_run(sdev);
475
476 spin_lock_irqsave(shost->host_lock, flags);
477 while (!list_empty(&shost->starved_list) &&
478 !shost->host_blocked && !shost->host_self_blocked &&
479 !((shost->can_queue > 0) &&
480 (shost->host_busy >= shost->can_queue))) {
481 /*
482 * As long as shost is accepting commands and we have
483 * starved queues, call blk_run_queue. scsi_request_fn
484 * drops the queue_lock and can add us back to the
485 * starved_list.
486 *
487 * host_lock protects the starved_list and starved_entry.
488 * scsi_request_fn must get the host_lock before checking
489 * or modifying starved_list or starved_entry.
490 */
491 sdev = list_entry(shost->starved_list.next,
492 struct scsi_device, starved_entry);
493 list_del_init(&sdev->starved_entry);
494 spin_unlock_irqrestore(shost->host_lock, flags);
495
496 blk_run_queue(sdev->request_queue);
497
498 spin_lock_irqsave(shost->host_lock, flags);
499 if (unlikely(!list_empty(&sdev->starved_entry)))
500 /*
501 * sdev lost a race, and was put back on the
502 * starved list. This is unlikely but without this
503 * in theory we could loop forever.
504 */
505 break;
506 }
507 spin_unlock_irqrestore(shost->host_lock, flags);
508
509 blk_run_queue(q);
510 }
511
512 /*
513 * Function: scsi_requeue_command()
514 *
515 * Purpose: Handle post-processing of completed commands.
516 *
517 * Arguments: q - queue to operate on
518 * cmd - command that may need to be requeued.
519 *
520 * Returns: Nothing
521 *
522 * Notes: After command completion, there may be blocks left
523 * over which weren't finished by the previous command
524 * this can be for a number of reasons - the main one is
525 * I/O errors in the middle of the request, in which case
526 * we need to request the blocks that come after the bad
527 * sector.
528 * Notes: Upon return, cmd is a stale pointer.
529 */
530 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
531 {
532 struct request *req = cmd->request;
533 unsigned long flags;
534
535 scsi_unprep_request(req);
536 spin_lock_irqsave(q->queue_lock, flags);
537 blk_requeue_request(q, req);
538 spin_unlock_irqrestore(q->queue_lock, flags);
539
540 scsi_run_queue(q);
541 }
542
543 void scsi_next_command(struct scsi_cmnd *cmd)
544 {
545 struct request_queue *q = cmd->device->request_queue;
546
547 scsi_put_command(cmd);
548 scsi_run_queue(q);
549 }
550
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 struct scsi_device *sdev;
554
555 shost_for_each_device(sdev, shost)
556 scsi_run_queue(sdev->request_queue);
557 }
558
559 /*
560 * Function: scsi_end_request()
561 *
562 * Purpose: Post-processing of completed commands (usually invoked at end
563 * of upper level post-processing and scsi_io_completion).
564 *
565 * Arguments: cmd - command that is complete.
566 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
567 * bytes - number of bytes of completed I/O
568 * requeue - indicates whether we should requeue leftovers.
569 *
570 * Lock status: Assumed that lock is not held upon entry.
571 *
572 * Returns: cmd if requeue required, NULL otherwise.
573 *
574 * Notes: This is called for block device requests in order to
575 * mark some number of sectors as complete.
576 *
577 * We are guaranteeing that the request queue will be goosed
578 * at some point during this call.
579 * Notes: If cmd was requeued, upon return it will be a stale pointer.
580 */
581 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
582 int bytes, int requeue)
583 {
584 request_queue_t *q = cmd->device->request_queue;
585 struct request *req = cmd->request;
586 unsigned long flags;
587
588 /*
589 * If there are blocks left over at the end, set up the command
590 * to queue the remainder of them.
591 */
592 if (end_that_request_chunk(req, uptodate, bytes)) {
593 int leftover = (req->hard_nr_sectors << 9);
594
595 if (blk_pc_request(req))
596 leftover = req->data_len;
597
598 /* kill remainder if no retrys */
599 if (!uptodate && blk_noretry_request(req))
600 end_that_request_chunk(req, 0, leftover);
601 else {
602 if (requeue) {
603 /*
604 * Bleah. Leftovers again. Stick the
605 * leftovers in the front of the
606 * queue, and goose the queue again.
607 */
608 scsi_requeue_command(q, cmd);
609 cmd = NULL;
610 }
611 return cmd;
612 }
613 }
614
615 add_disk_randomness(req->rq_disk);
616
617 spin_lock_irqsave(q->queue_lock, flags);
618 if (blk_rq_tagged(req))
619 blk_queue_end_tag(q, req);
620 end_that_request_last(req);
621 spin_unlock_irqrestore(q->queue_lock, flags);
622
623 /*
624 * This will goose the queue request function at the end, so we don't
625 * need to worry about launching another command.
626 */
627 scsi_next_command(cmd);
628 return NULL;
629 }
630
631 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
632 {
633 struct scsi_host_sg_pool *sgp;
634 struct scatterlist *sgl;
635
636 BUG_ON(!cmd->use_sg);
637
638 switch (cmd->use_sg) {
639 case 1 ... 8:
640 cmd->sglist_len = 0;
641 break;
642 case 9 ... 16:
643 cmd->sglist_len = 1;
644 break;
645 case 17 ... 32:
646 cmd->sglist_len = 2;
647 break;
648 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
649 case 33 ... 64:
650 cmd->sglist_len = 3;
651 break;
652 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
653 case 65 ... 128:
654 cmd->sglist_len = 4;
655 break;
656 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
657 case 129 ... 256:
658 cmd->sglist_len = 5;
659 break;
660 #endif
661 #endif
662 #endif
663 default:
664 return NULL;
665 }
666
667 sgp = scsi_sg_pools + cmd->sglist_len;
668 sgl = mempool_alloc(sgp->pool, gfp_mask);
669 return sgl;
670 }
671
672 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
673 {
674 struct scsi_host_sg_pool *sgp;
675
676 BUG_ON(index >= SG_MEMPOOL_NR);
677
678 sgp = scsi_sg_pools + index;
679 mempool_free(sgl, sgp->pool);
680 }
681
682 /*
683 * Function: scsi_release_buffers()
684 *
685 * Purpose: Completion processing for block device I/O requests.
686 *
687 * Arguments: cmd - command that we are bailing.
688 *
689 * Lock status: Assumed that no lock is held upon entry.
690 *
691 * Returns: Nothing
692 *
693 * Notes: In the event that an upper level driver rejects a
694 * command, we must release resources allocated during
695 * the __init_io() function. Primarily this would involve
696 * the scatter-gather table, and potentially any bounce
697 * buffers.
698 */
699 static void scsi_release_buffers(struct scsi_cmnd *cmd)
700 {
701 struct request *req = cmd->request;
702
703 /*
704 * Free up any indirection buffers we allocated for DMA purposes.
705 */
706 if (cmd->use_sg)
707 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
708 else if (cmd->request_buffer != req->buffer)
709 kfree(cmd->request_buffer);
710
711 /*
712 * Zero these out. They now point to freed memory, and it is
713 * dangerous to hang onto the pointers.
714 */
715 cmd->buffer = NULL;
716 cmd->bufflen = 0;
717 cmd->request_buffer = NULL;
718 cmd->request_bufflen = 0;
719 }
720
721 /*
722 * Function: scsi_io_completion()
723 *
724 * Purpose: Completion processing for block device I/O requests.
725 *
726 * Arguments: cmd - command that is finished.
727 *
728 * Lock status: Assumed that no lock is held upon entry.
729 *
730 * Returns: Nothing
731 *
732 * Notes: This function is matched in terms of capabilities to
733 * the function that created the scatter-gather list.
734 * In other words, if there are no bounce buffers
735 * (the normal case for most drivers), we don't need
736 * the logic to deal with cleaning up afterwards.
737 *
738 * We must do one of several things here:
739 *
740 * a) Call scsi_end_request. This will finish off the
741 * specified number of sectors. If we are done, the
742 * command block will be released, and the queue
743 * function will be goosed. If we are not done, then
744 * scsi_end_request will directly goose the queue.
745 *
746 * b) We can just use scsi_requeue_command() here. This would
747 * be used if we just wanted to retry, for example.
748 */
749 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
750 unsigned int block_bytes)
751 {
752 int result = cmd->result;
753 int this_count = cmd->bufflen;
754 request_queue_t *q = cmd->device->request_queue;
755 struct request *req = cmd->request;
756 int clear_errors = 1;
757 struct scsi_sense_hdr sshdr;
758 int sense_valid = 0;
759 int sense_deferred = 0;
760
761 if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
762 return;
763
764 /*
765 * Free up any indirection buffers we allocated for DMA purposes.
766 * For the case of a READ, we need to copy the data out of the
767 * bounce buffer and into the real buffer.
768 */
769 if (cmd->use_sg)
770 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
771 else if (cmd->buffer != req->buffer) {
772 if (rq_data_dir(req) == READ) {
773 unsigned long flags;
774 char *to = bio_kmap_irq(req->bio, &flags);
775 memcpy(to, cmd->buffer, cmd->bufflen);
776 bio_kunmap_irq(to, &flags);
777 }
778 kfree(cmd->buffer);
779 }
780
781 if (result) {
782 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
783 if (sense_valid)
784 sense_deferred = scsi_sense_is_deferred(&sshdr);
785 }
786 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
787 req->errors = result;
788 if (result) {
789 clear_errors = 0;
790 if (sense_valid && req->sense) {
791 /*
792 * SG_IO wants current and deferred errors
793 */
794 int len = 8 + cmd->sense_buffer[7];
795
796 if (len > SCSI_SENSE_BUFFERSIZE)
797 len = SCSI_SENSE_BUFFERSIZE;
798 memcpy(req->sense, cmd->sense_buffer, len);
799 req->sense_len = len;
800 }
801 } else
802 req->data_len = cmd->resid;
803 }
804
805 /*
806 * Zero these out. They now point to freed memory, and it is
807 * dangerous to hang onto the pointers.
808 */
809 cmd->buffer = NULL;
810 cmd->bufflen = 0;
811 cmd->request_buffer = NULL;
812 cmd->request_bufflen = 0;
813
814 /*
815 * Next deal with any sectors which we were able to correctly
816 * handle.
817 */
818 if (good_bytes >= 0) {
819 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
820 req->nr_sectors, good_bytes));
821 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
822
823 if (clear_errors)
824 req->errors = 0;
825 /*
826 * If multiple sectors are requested in one buffer, then
827 * they will have been finished off by the first command.
828 * If not, then we have a multi-buffer command.
829 *
830 * If block_bytes != 0, it means we had a medium error
831 * of some sort, and that we want to mark some number of
832 * sectors as not uptodate. Thus we want to inhibit
833 * requeueing right here - we will requeue down below
834 * when we handle the bad sectors.
835 */
836
837 /*
838 * If the command completed without error, then either
839 * finish off the rest of the command, or start a new one.
840 */
841 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
842 return;
843 }
844 /*
845 * Now, if we were good little boys and girls, Santa left us a request
846 * sense buffer. We can extract information from this, so we
847 * can choose a block to remap, etc.
848 */
849 if (sense_valid && !sense_deferred) {
850 switch (sshdr.sense_key) {
851 case UNIT_ATTENTION:
852 if (cmd->device->removable) {
853 /* detected disc change. set a bit
854 * and quietly refuse further access.
855 */
856 cmd->device->changed = 1;
857 scsi_end_request(cmd, 0,
858 this_count, 1);
859 return;
860 } else {
861 /*
862 * Must have been a power glitch, or a
863 * bus reset. Could not have been a
864 * media change, so we just retry the
865 * request and see what happens.
866 */
867 scsi_requeue_command(q, cmd);
868 return;
869 }
870 break;
871 case ILLEGAL_REQUEST:
872 /*
873 * If we had an ILLEGAL REQUEST returned, then we may
874 * have performed an unsupported command. The only
875 * thing this should be would be a ten byte read where
876 * only a six byte read was supported. Also, on a
877 * system where READ CAPACITY failed, we may have read
878 * past the end of the disk.
879 */
880 if (cmd->device->use_10_for_rw &&
881 (cmd->cmnd[0] == READ_10 ||
882 cmd->cmnd[0] == WRITE_10)) {
883 cmd->device->use_10_for_rw = 0;
884 /*
885 * This will cause a retry with a 6-byte
886 * command.
887 */
888 scsi_requeue_command(q, cmd);
889 result = 0;
890 } else {
891 scsi_end_request(cmd, 0, this_count, 1);
892 return;
893 }
894 break;
895 case NOT_READY:
896 /*
897 * If the device is in the process of becoming ready,
898 * retry.
899 */
900 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
901 scsi_requeue_command(q, cmd);
902 return;
903 }
904 if (!(req->flags & REQ_QUIET))
905 scmd_printk(KERN_INFO, cmd,
906 "Device not ready.\n");
907 scsi_end_request(cmd, 0, this_count, 1);
908 return;
909 case VOLUME_OVERFLOW:
910 if (!(req->flags & REQ_QUIET)) {
911 scmd_printk(KERN_INFO, cmd,
912 "Volume overflow, CDB: ");
913 __scsi_print_command(cmd->data_cmnd);
914 scsi_print_sense("", cmd);
915 }
916 scsi_end_request(cmd, 0, block_bytes, 1);
917 return;
918 default:
919 break;
920 }
921 } /* driver byte != 0 */
922 if (host_byte(result) == DID_RESET) {
923 /*
924 * Third party bus reset or reset for error
925 * recovery reasons. Just retry the request
926 * and see what happens.
927 */
928 scsi_requeue_command(q, cmd);
929 return;
930 }
931 if (result) {
932 if (!(req->flags & REQ_QUIET)) {
933 scmd_printk(KERN_INFO, cmd,
934 "SCSI error: return code = 0x%x\n", result);
935
936 if (driver_byte(result) & DRIVER_SENSE)
937 scsi_print_sense("", cmd);
938 }
939 /*
940 * Mark a single buffer as not uptodate. Queue the remainder.
941 * We sometimes get this cruft in the event that a medium error
942 * isn't properly reported.
943 */
944 block_bytes = req->hard_cur_sectors << 9;
945 if (!block_bytes)
946 block_bytes = req->data_len;
947 scsi_end_request(cmd, 0, block_bytes, 1);
948 }
949 }
950 EXPORT_SYMBOL(scsi_io_completion);
951
952 /*
953 * Function: scsi_init_io()
954 *
955 * Purpose: SCSI I/O initialize function.
956 *
957 * Arguments: cmd - Command descriptor we wish to initialize
958 *
959 * Returns: 0 on success
960 * BLKPREP_DEFER if the failure is retryable
961 * BLKPREP_KILL if the failure is fatal
962 */
963 static int scsi_init_io(struct scsi_cmnd *cmd)
964 {
965 struct request *req = cmd->request;
966 struct scatterlist *sgpnt;
967 int count;
968
969 /*
970 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
971 */
972 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
973 cmd->request_bufflen = req->data_len;
974 cmd->request_buffer = req->data;
975 req->buffer = req->data;
976 cmd->use_sg = 0;
977 return 0;
978 }
979
980 /*
981 * we used to not use scatter-gather for single segment request,
982 * but now we do (it makes highmem I/O easier to support without
983 * kmapping pages)
984 */
985 cmd->use_sg = req->nr_phys_segments;
986
987 /*
988 * if sg table allocation fails, requeue request later.
989 */
990 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
991 if (unlikely(!sgpnt)) {
992 scsi_unprep_request(req);
993 return BLKPREP_DEFER;
994 }
995
996 cmd->request_buffer = (char *) sgpnt;
997 cmd->request_bufflen = req->nr_sectors << 9;
998 if (blk_pc_request(req))
999 cmd->request_bufflen = req->data_len;
1000 req->buffer = NULL;
1001
1002 /*
1003 * Next, walk the list, and fill in the addresses and sizes of
1004 * each segment.
1005 */
1006 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1007
1008 /*
1009 * mapped well, send it off
1010 */
1011 if (likely(count <= cmd->use_sg)) {
1012 cmd->use_sg = count;
1013 return 0;
1014 }
1015
1016 printk(KERN_ERR "Incorrect number of segments after building list\n");
1017 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1018 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1019 req->current_nr_sectors);
1020
1021 /* release the command and kill it */
1022 scsi_release_buffers(cmd);
1023 scsi_put_command(cmd);
1024 return BLKPREP_KILL;
1025 }
1026
1027 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1028 {
1029 struct scsi_device *sdev = q->queuedata;
1030 struct scsi_driver *drv;
1031
1032 if (sdev->sdev_state == SDEV_RUNNING) {
1033 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1034
1035 if (drv->prepare_flush)
1036 return drv->prepare_flush(q, rq);
1037 }
1038
1039 return 0;
1040 }
1041
1042 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1043 {
1044 struct scsi_device *sdev = q->queuedata;
1045 struct request *flush_rq = rq->end_io_data;
1046 struct scsi_driver *drv;
1047
1048 if (flush_rq->errors) {
1049 printk("scsi: barrier error, disabling flush support\n");
1050 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1051 }
1052
1053 if (sdev->sdev_state == SDEV_RUNNING) {
1054 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1055 drv->end_flush(q, rq);
1056 }
1057 }
1058
1059 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1060 sector_t *error_sector)
1061 {
1062 struct scsi_device *sdev = q->queuedata;
1063 struct scsi_driver *drv;
1064
1065 if (sdev->sdev_state != SDEV_RUNNING)
1066 return -ENXIO;
1067
1068 drv = *(struct scsi_driver **) disk->private_data;
1069 if (drv->issue_flush)
1070 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1071
1072 return -EOPNOTSUPP;
1073 }
1074
1075 static void scsi_generic_done(struct scsi_cmnd *cmd)
1076 {
1077 BUG_ON(!blk_pc_request(cmd->request));
1078 scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1079 }
1080
1081 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1082 {
1083 struct scsi_device *sdev = q->queuedata;
1084 struct scsi_cmnd *cmd;
1085 int specials_only = 0;
1086
1087 /*
1088 * Just check to see if the device is online. If it isn't, we
1089 * refuse to process any commands. The device must be brought
1090 * online before trying any recovery commands
1091 */
1092 if (unlikely(!scsi_device_online(sdev))) {
1093 sdev_printk(KERN_ERR, sdev,
1094 "rejecting I/O to offline device\n");
1095 goto kill;
1096 }
1097 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1098 /* OK, we're not in a running state don't prep
1099 * user commands */
1100 if (sdev->sdev_state == SDEV_DEL) {
1101 /* Device is fully deleted, no commands
1102 * at all allowed down */
1103 sdev_printk(KERN_ERR, sdev,
1104 "rejecting I/O to dead device\n");
1105 goto kill;
1106 }
1107 /* OK, we only allow special commands (i.e. not
1108 * user initiated ones */
1109 specials_only = sdev->sdev_state;
1110 }
1111
1112 /*
1113 * Find the actual device driver associated with this command.
1114 * The SPECIAL requests are things like character device or
1115 * ioctls, which did not originate from ll_rw_blk. Note that
1116 * the special field is also used to indicate the cmd for
1117 * the remainder of a partially fulfilled request that can
1118 * come up when there is a medium error. We have to treat
1119 * these two cases differently. We differentiate by looking
1120 * at request->cmd, as this tells us the real story.
1121 */
1122 if (req->flags & REQ_SPECIAL && req->special) {
1123 struct scsi_request *sreq = req->special;
1124
1125 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1126 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1127 if (unlikely(!cmd))
1128 goto defer;
1129 scsi_init_cmd_from_req(cmd, sreq);
1130 } else
1131 cmd = req->special;
1132 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1133
1134 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1135 if(specials_only == SDEV_QUIESCE ||
1136 specials_only == SDEV_BLOCK)
1137 goto defer;
1138
1139 sdev_printk(KERN_ERR, sdev,
1140 "rejecting I/O to device being removed\n");
1141 goto kill;
1142 }
1143
1144
1145 /*
1146 * Now try and find a command block that we can use.
1147 */
1148 if (!req->special) {
1149 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1150 if (unlikely(!cmd))
1151 goto defer;
1152 } else
1153 cmd = req->special;
1154
1155 /* pull a tag out of the request if we have one */
1156 cmd->tag = req->tag;
1157 } else {
1158 blk_dump_rq_flags(req, "SCSI bad req");
1159 goto kill;
1160 }
1161
1162 /* note the overloading of req->special. When the tag
1163 * is active it always means cmd. If the tag goes
1164 * back for re-queueing, it may be reset */
1165 req->special = cmd;
1166 cmd->request = req;
1167
1168 /*
1169 * FIXME: drop the lock here because the functions below
1170 * expect to be called without the queue lock held. Also,
1171 * previously, we dequeued the request before dropping the
1172 * lock. We hope REQ_STARTED prevents anything untoward from
1173 * happening now.
1174 */
1175 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1176 struct scsi_driver *drv;
1177 int ret;
1178
1179 /*
1180 * This will do a couple of things:
1181 * 1) Fill in the actual SCSI command.
1182 * 2) Fill in any other upper-level specific fields
1183 * (timeout).
1184 *
1185 * If this returns 0, it means that the request failed
1186 * (reading past end of disk, reading offline device,
1187 * etc). This won't actually talk to the device, but
1188 * some kinds of consistency checking may cause the
1189 * request to be rejected immediately.
1190 */
1191
1192 /*
1193 * This sets up the scatter-gather table (allocating if
1194 * required).
1195 */
1196 ret = scsi_init_io(cmd);
1197 switch(ret) {
1198 /* For BLKPREP_KILL/DEFER the cmd was released */
1199 case BLKPREP_KILL:
1200 goto kill;
1201 case BLKPREP_DEFER:
1202 goto defer;
1203 }
1204
1205 /*
1206 * Initialize the actual SCSI command for this request.
1207 */
1208 if (req->rq_disk) {
1209 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1210 if (unlikely(!drv->init_command(cmd))) {
1211 scsi_release_buffers(cmd);
1212 scsi_put_command(cmd);
1213 goto kill;
1214 }
1215 } else {
1216 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1217 cmd->cmd_len = req->cmd_len;
1218 if (rq_data_dir(req) == WRITE)
1219 cmd->sc_data_direction = DMA_TO_DEVICE;
1220 else if (req->data_len)
1221 cmd->sc_data_direction = DMA_FROM_DEVICE;
1222 else
1223 cmd->sc_data_direction = DMA_NONE;
1224
1225 cmd->transfersize = req->data_len;
1226 cmd->allowed = 3;
1227 cmd->timeout_per_command = req->timeout;
1228 cmd->done = scsi_generic_done;
1229 }
1230 }
1231
1232 /*
1233 * The request is now prepped, no need to come back here
1234 */
1235 req->flags |= REQ_DONTPREP;
1236 return BLKPREP_OK;
1237
1238 defer:
1239 /* If we defer, the elv_next_request() returns NULL, but the
1240 * queue must be restarted, so we plug here if no returning
1241 * command will automatically do that. */
1242 if (sdev->device_busy == 0)
1243 blk_plug_device(q);
1244 return BLKPREP_DEFER;
1245 kill:
1246 req->errors = DID_NO_CONNECT << 16;
1247 return BLKPREP_KILL;
1248 }
1249
1250 /*
1251 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1252 * return 0.
1253 *
1254 * Called with the queue_lock held.
1255 */
1256 static inline int scsi_dev_queue_ready(struct request_queue *q,
1257 struct scsi_device *sdev)
1258 {
1259 if (sdev->device_busy >= sdev->queue_depth)
1260 return 0;
1261 if (sdev->device_busy == 0 && sdev->device_blocked) {
1262 /*
1263 * unblock after device_blocked iterates to zero
1264 */
1265 if (--sdev->device_blocked == 0) {
1266 SCSI_LOG_MLQUEUE(3,
1267 sdev_printk(KERN_INFO, sdev,
1268 "unblocking device at zero depth\n"));
1269 } else {
1270 blk_plug_device(q);
1271 return 0;
1272 }
1273 }
1274 if (sdev->device_blocked)
1275 return 0;
1276
1277 return 1;
1278 }
1279
1280 /*
1281 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1282 * return 0. We must end up running the queue again whenever 0 is
1283 * returned, else IO can hang.
1284 *
1285 * Called with host_lock held.
1286 */
1287 static inline int scsi_host_queue_ready(struct request_queue *q,
1288 struct Scsi_Host *shost,
1289 struct scsi_device *sdev)
1290 {
1291 if (scsi_host_in_recovery(shost))
1292 return 0;
1293 if (shost->host_busy == 0 && shost->host_blocked) {
1294 /*
1295 * unblock after host_blocked iterates to zero
1296 */
1297 if (--shost->host_blocked == 0) {
1298 SCSI_LOG_MLQUEUE(3,
1299 printk("scsi%d unblocking host at zero depth\n",
1300 shost->host_no));
1301 } else {
1302 blk_plug_device(q);
1303 return 0;
1304 }
1305 }
1306 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1307 shost->host_blocked || shost->host_self_blocked) {
1308 if (list_empty(&sdev->starved_entry))
1309 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1310 return 0;
1311 }
1312
1313 /* We're OK to process the command, so we can't be starved */
1314 if (!list_empty(&sdev->starved_entry))
1315 list_del_init(&sdev->starved_entry);
1316
1317 return 1;
1318 }
1319
1320 /*
1321 * Kill a request for a dead device
1322 */
1323 static void scsi_kill_request(struct request *req, request_queue_t *q)
1324 {
1325 struct scsi_cmnd *cmd = req->special;
1326
1327 blkdev_dequeue_request(req);
1328
1329 if (unlikely(cmd == NULL)) {
1330 printk(KERN_CRIT "impossible request in %s.\n",
1331 __FUNCTION__);
1332 BUG();
1333 }
1334
1335 scsi_init_cmd_errh(cmd);
1336 cmd->result = DID_NO_CONNECT << 16;
1337 atomic_inc(&cmd->device->iorequest_cnt);
1338 __scsi_done(cmd);
1339 }
1340
1341 /*
1342 * Function: scsi_request_fn()
1343 *
1344 * Purpose: Main strategy routine for SCSI.
1345 *
1346 * Arguments: q - Pointer to actual queue.
1347 *
1348 * Returns: Nothing
1349 *
1350 * Lock status: IO request lock assumed to be held when called.
1351 */
1352 static void scsi_request_fn(struct request_queue *q)
1353 {
1354 struct scsi_device *sdev = q->queuedata;
1355 struct Scsi_Host *shost;
1356 struct scsi_cmnd *cmd;
1357 struct request *req;
1358
1359 if (!sdev) {
1360 printk("scsi: killing requests for dead queue\n");
1361 while ((req = elv_next_request(q)) != NULL)
1362 scsi_kill_request(req, q);
1363 return;
1364 }
1365
1366 if(!get_device(&sdev->sdev_gendev))
1367 /* We must be tearing the block queue down already */
1368 return;
1369
1370 /*
1371 * To start with, we keep looping until the queue is empty, or until
1372 * the host is no longer able to accept any more requests.
1373 */
1374 shost = sdev->host;
1375 while (!blk_queue_plugged(q)) {
1376 int rtn;
1377 /*
1378 * get next queueable request. We do this early to make sure
1379 * that the request is fully prepared even if we cannot
1380 * accept it.
1381 */
1382 req = elv_next_request(q);
1383 if (!req || !scsi_dev_queue_ready(q, sdev))
1384 break;
1385
1386 if (unlikely(!scsi_device_online(sdev))) {
1387 sdev_printk(KERN_ERR, sdev,
1388 "rejecting I/O to offline device\n");
1389 scsi_kill_request(req, q);
1390 continue;
1391 }
1392
1393
1394 /*
1395 * Remove the request from the request list.
1396 */
1397 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1398 blkdev_dequeue_request(req);
1399 sdev->device_busy++;
1400
1401 spin_unlock(q->queue_lock);
1402 cmd = req->special;
1403 if (unlikely(cmd == NULL)) {
1404 printk(KERN_CRIT "impossible request in %s.\n"
1405 "please mail a stack trace to "
1406 "linux-scsi@vger.kernel.org",
1407 __FUNCTION__);
1408 BUG();
1409 }
1410 spin_lock(shost->host_lock);
1411
1412 if (!scsi_host_queue_ready(q, shost, sdev))
1413 goto not_ready;
1414 if (sdev->single_lun) {
1415 if (scsi_target(sdev)->starget_sdev_user &&
1416 scsi_target(sdev)->starget_sdev_user != sdev)
1417 goto not_ready;
1418 scsi_target(sdev)->starget_sdev_user = sdev;
1419 }
1420 shost->host_busy++;
1421
1422 /*
1423 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1424 * take the lock again.
1425 */
1426 spin_unlock_irq(shost->host_lock);
1427
1428 /*
1429 * Finally, initialize any error handling parameters, and set up
1430 * the timers for timeouts.
1431 */
1432 scsi_init_cmd_errh(cmd);
1433
1434 /*
1435 * Dispatch the command to the low-level driver.
1436 */
1437 rtn = scsi_dispatch_cmd(cmd);
1438 spin_lock_irq(q->queue_lock);
1439 if(rtn) {
1440 /* we're refusing the command; because of
1441 * the way locks get dropped, we need to
1442 * check here if plugging is required */
1443 if(sdev->device_busy == 0)
1444 blk_plug_device(q);
1445
1446 break;
1447 }
1448 }
1449
1450 goto out;
1451
1452 not_ready:
1453 spin_unlock_irq(shost->host_lock);
1454
1455 /*
1456 * lock q, handle tag, requeue req, and decrement device_busy. We
1457 * must return with queue_lock held.
1458 *
1459 * Decrementing device_busy without checking it is OK, as all such
1460 * cases (host limits or settings) should run the queue at some
1461 * later time.
1462 */
1463 spin_lock_irq(q->queue_lock);
1464 blk_requeue_request(q, req);
1465 sdev->device_busy--;
1466 if(sdev->device_busy == 0)
1467 blk_plug_device(q);
1468 out:
1469 /* must be careful here...if we trigger the ->remove() function
1470 * we cannot be holding the q lock */
1471 spin_unlock_irq(q->queue_lock);
1472 put_device(&sdev->sdev_gendev);
1473 spin_lock_irq(q->queue_lock);
1474 }
1475
1476 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1477 {
1478 struct device *host_dev;
1479 u64 bounce_limit = 0xffffffff;
1480
1481 if (shost->unchecked_isa_dma)
1482 return BLK_BOUNCE_ISA;
1483 /*
1484 * Platforms with virtual-DMA translation
1485 * hardware have no practical limit.
1486 */
1487 if (!PCI_DMA_BUS_IS_PHYS)
1488 return BLK_BOUNCE_ANY;
1489
1490 host_dev = scsi_get_device(shost);
1491 if (host_dev && host_dev->dma_mask)
1492 bounce_limit = *host_dev->dma_mask;
1493
1494 return bounce_limit;
1495 }
1496 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1497
1498 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1499 {
1500 struct Scsi_Host *shost = sdev->host;
1501 struct request_queue *q;
1502
1503 q = blk_init_queue(scsi_request_fn, NULL);
1504 if (!q)
1505 return NULL;
1506
1507 blk_queue_prep_rq(q, scsi_prep_fn);
1508
1509 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1510 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1511 blk_queue_max_sectors(q, shost->max_sectors);
1512 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1513 blk_queue_segment_boundary(q, shost->dma_boundary);
1514 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1515
1516 /*
1517 * ordered tags are superior to flush ordering
1518 */
1519 if (shost->ordered_tag)
1520 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1521 else if (shost->ordered_flush) {
1522 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1523 q->prepare_flush_fn = scsi_prepare_flush_fn;
1524 q->end_flush_fn = scsi_end_flush_fn;
1525 }
1526
1527 if (!shost->use_clustering)
1528 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1529 return q;
1530 }
1531
1532 void scsi_free_queue(struct request_queue *q)
1533 {
1534 blk_cleanup_queue(q);
1535 }
1536
1537 /*
1538 * Function: scsi_block_requests()
1539 *
1540 * Purpose: Utility function used by low-level drivers to prevent further
1541 * commands from being queued to the device.
1542 *
1543 * Arguments: shost - Host in question
1544 *
1545 * Returns: Nothing
1546 *
1547 * Lock status: No locks are assumed held.
1548 *
1549 * Notes: There is no timer nor any other means by which the requests
1550 * get unblocked other than the low-level driver calling
1551 * scsi_unblock_requests().
1552 */
1553 void scsi_block_requests(struct Scsi_Host *shost)
1554 {
1555 shost->host_self_blocked = 1;
1556 }
1557 EXPORT_SYMBOL(scsi_block_requests);
1558
1559 /*
1560 * Function: scsi_unblock_requests()
1561 *
1562 * Purpose: Utility function used by low-level drivers to allow further
1563 * commands from being queued to the device.
1564 *
1565 * Arguments: shost - Host in question
1566 *
1567 * Returns: Nothing
1568 *
1569 * Lock status: No locks are assumed held.
1570 *
1571 * Notes: There is no timer nor any other means by which the requests
1572 * get unblocked other than the low-level driver calling
1573 * scsi_unblock_requests().
1574 *
1575 * This is done as an API function so that changes to the
1576 * internals of the scsi mid-layer won't require wholesale
1577 * changes to drivers that use this feature.
1578 */
1579 void scsi_unblock_requests(struct Scsi_Host *shost)
1580 {
1581 shost->host_self_blocked = 0;
1582 scsi_run_host_queues(shost);
1583 }
1584 EXPORT_SYMBOL(scsi_unblock_requests);
1585
1586 int __init scsi_init_queue(void)
1587 {
1588 int i;
1589
1590 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1591 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1592 int size = sgp->size * sizeof(struct scatterlist);
1593
1594 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1595 SLAB_HWCACHE_ALIGN, NULL, NULL);
1596 if (!sgp->slab) {
1597 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1598 sgp->name);
1599 }
1600
1601 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1602 mempool_alloc_slab, mempool_free_slab,
1603 sgp->slab);
1604 if (!sgp->pool) {
1605 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1606 sgp->name);
1607 }
1608 }
1609
1610 return 0;
1611 }
1612
1613 void scsi_exit_queue(void)
1614 {
1615 int i;
1616
1617 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1618 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1619 mempool_destroy(sgp->pool);
1620 kmem_cache_destroy(sgp->slab);
1621 }
1622 }
1623 /**
1624 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1625 * six bytes if necessary.
1626 * @sdev: SCSI device to be queried
1627 * @dbd: set if mode sense will allow block descriptors to be returned
1628 * @modepage: mode page being requested
1629 * @buffer: request buffer (may not be smaller than eight bytes)
1630 * @len: length of request buffer.
1631 * @timeout: command timeout
1632 * @retries: number of retries before failing
1633 * @data: returns a structure abstracting the mode header data
1634 * @sense: place to put sense data (or NULL if no sense to be collected).
1635 * must be SCSI_SENSE_BUFFERSIZE big.
1636 *
1637 * Returns zero if unsuccessful, or the header offset (either 4
1638 * or 8 depending on whether a six or ten byte command was
1639 * issued) if successful.
1640 **/
1641 int
1642 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1643 unsigned char *buffer, int len, int timeout, int retries,
1644 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1645 unsigned char cmd[12];
1646 int use_10_for_ms;
1647 int header_length;
1648 int result;
1649 struct scsi_sense_hdr my_sshdr;
1650
1651 memset(data, 0, sizeof(*data));
1652 memset(&cmd[0], 0, 12);
1653 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1654 cmd[2] = modepage;
1655
1656 /* caller might not be interested in sense, but we need it */
1657 if (!sshdr)
1658 sshdr = &my_sshdr;
1659
1660 retry:
1661 use_10_for_ms = sdev->use_10_for_ms;
1662
1663 if (use_10_for_ms) {
1664 if (len < 8)
1665 len = 8;
1666
1667 cmd[0] = MODE_SENSE_10;
1668 cmd[8] = len;
1669 header_length = 8;
1670 } else {
1671 if (len < 4)
1672 len = 4;
1673
1674 cmd[0] = MODE_SENSE;
1675 cmd[4] = len;
1676 header_length = 4;
1677 }
1678
1679 memset(buffer, 0, len);
1680
1681 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1682 sshdr, timeout, retries);
1683
1684 /* This code looks awful: what it's doing is making sure an
1685 * ILLEGAL REQUEST sense return identifies the actual command
1686 * byte as the problem. MODE_SENSE commands can return
1687 * ILLEGAL REQUEST if the code page isn't supported */
1688
1689 if (use_10_for_ms && !scsi_status_is_good(result) &&
1690 (driver_byte(result) & DRIVER_SENSE)) {
1691 if (scsi_sense_valid(sshdr)) {
1692 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1693 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1694 /*
1695 * Invalid command operation code
1696 */
1697 sdev->use_10_for_ms = 0;
1698 goto retry;
1699 }
1700 }
1701 }
1702
1703 if(scsi_status_is_good(result)) {
1704 data->header_length = header_length;
1705 if(use_10_for_ms) {
1706 data->length = buffer[0]*256 + buffer[1] + 2;
1707 data->medium_type = buffer[2];
1708 data->device_specific = buffer[3];
1709 data->longlba = buffer[4] & 0x01;
1710 data->block_descriptor_length = buffer[6]*256
1711 + buffer[7];
1712 } else {
1713 data->length = buffer[0] + 1;
1714 data->medium_type = buffer[1];
1715 data->device_specific = buffer[2];
1716 data->block_descriptor_length = buffer[3];
1717 }
1718 }
1719
1720 return result;
1721 }
1722 EXPORT_SYMBOL(scsi_mode_sense);
1723
1724 int
1725 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1726 {
1727 char cmd[] = {
1728 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1729 };
1730 struct scsi_sense_hdr sshdr;
1731 int result;
1732
1733 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1734 timeout, retries);
1735
1736 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1737
1738 if ((scsi_sense_valid(&sshdr)) &&
1739 ((sshdr.sense_key == UNIT_ATTENTION) ||
1740 (sshdr.sense_key == NOT_READY))) {
1741 sdev->changed = 1;
1742 result = 0;
1743 }
1744 }
1745 return result;
1746 }
1747 EXPORT_SYMBOL(scsi_test_unit_ready);
1748
1749 /**
1750 * scsi_device_set_state - Take the given device through the device
1751 * state model.
1752 * @sdev: scsi device to change the state of.
1753 * @state: state to change to.
1754 *
1755 * Returns zero if unsuccessful or an error if the requested
1756 * transition is illegal.
1757 **/
1758 int
1759 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1760 {
1761 enum scsi_device_state oldstate = sdev->sdev_state;
1762
1763 if (state == oldstate)
1764 return 0;
1765
1766 switch (state) {
1767 case SDEV_CREATED:
1768 /* There are no legal states that come back to
1769 * created. This is the manually initialised start
1770 * state */
1771 goto illegal;
1772
1773 case SDEV_RUNNING:
1774 switch (oldstate) {
1775 case SDEV_CREATED:
1776 case SDEV_OFFLINE:
1777 case SDEV_QUIESCE:
1778 case SDEV_BLOCK:
1779 break;
1780 default:
1781 goto illegal;
1782 }
1783 break;
1784
1785 case SDEV_QUIESCE:
1786 switch (oldstate) {
1787 case SDEV_RUNNING:
1788 case SDEV_OFFLINE:
1789 break;
1790 default:
1791 goto illegal;
1792 }
1793 break;
1794
1795 case SDEV_OFFLINE:
1796 switch (oldstate) {
1797 case SDEV_CREATED:
1798 case SDEV_RUNNING:
1799 case SDEV_QUIESCE:
1800 case SDEV_BLOCK:
1801 break;
1802 default:
1803 goto illegal;
1804 }
1805 break;
1806
1807 case SDEV_BLOCK:
1808 switch (oldstate) {
1809 case SDEV_CREATED:
1810 case SDEV_RUNNING:
1811 break;
1812 default:
1813 goto illegal;
1814 }
1815 break;
1816
1817 case SDEV_CANCEL:
1818 switch (oldstate) {
1819 case SDEV_CREATED:
1820 case SDEV_RUNNING:
1821 case SDEV_OFFLINE:
1822 case SDEV_BLOCK:
1823 break;
1824 default:
1825 goto illegal;
1826 }
1827 break;
1828
1829 case SDEV_DEL:
1830 switch (oldstate) {
1831 case SDEV_CANCEL:
1832 break;
1833 default:
1834 goto illegal;
1835 }
1836 break;
1837
1838 }
1839 sdev->sdev_state = state;
1840 return 0;
1841
1842 illegal:
1843 SCSI_LOG_ERROR_RECOVERY(1,
1844 sdev_printk(KERN_ERR, sdev,
1845 "Illegal state transition %s->%s\n",
1846 scsi_device_state_name(oldstate),
1847 scsi_device_state_name(state))
1848 );
1849 return -EINVAL;
1850 }
1851 EXPORT_SYMBOL(scsi_device_set_state);
1852
1853 /**
1854 * scsi_device_quiesce - Block user issued commands.
1855 * @sdev: scsi device to quiesce.
1856 *
1857 * This works by trying to transition to the SDEV_QUIESCE state
1858 * (which must be a legal transition). When the device is in this
1859 * state, only special requests will be accepted, all others will
1860 * be deferred. Since special requests may also be requeued requests,
1861 * a successful return doesn't guarantee the device will be
1862 * totally quiescent.
1863 *
1864 * Must be called with user context, may sleep.
1865 *
1866 * Returns zero if unsuccessful or an error if not.
1867 **/
1868 int
1869 scsi_device_quiesce(struct scsi_device *sdev)
1870 {
1871 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1872 if (err)
1873 return err;
1874
1875 scsi_run_queue(sdev->request_queue);
1876 while (sdev->device_busy) {
1877 msleep_interruptible(200);
1878 scsi_run_queue(sdev->request_queue);
1879 }
1880 return 0;
1881 }
1882 EXPORT_SYMBOL(scsi_device_quiesce);
1883
1884 /**
1885 * scsi_device_resume - Restart user issued commands to a quiesced device.
1886 * @sdev: scsi device to resume.
1887 *
1888 * Moves the device from quiesced back to running and restarts the
1889 * queues.
1890 *
1891 * Must be called with user context, may sleep.
1892 **/
1893 void
1894 scsi_device_resume(struct scsi_device *sdev)
1895 {
1896 if(scsi_device_set_state(sdev, SDEV_RUNNING))
1897 return;
1898 scsi_run_queue(sdev->request_queue);
1899 }
1900 EXPORT_SYMBOL(scsi_device_resume);
1901
1902 static void
1903 device_quiesce_fn(struct scsi_device *sdev, void *data)
1904 {
1905 scsi_device_quiesce(sdev);
1906 }
1907
1908 void
1909 scsi_target_quiesce(struct scsi_target *starget)
1910 {
1911 starget_for_each_device(starget, NULL, device_quiesce_fn);
1912 }
1913 EXPORT_SYMBOL(scsi_target_quiesce);
1914
1915 static void
1916 device_resume_fn(struct scsi_device *sdev, void *data)
1917 {
1918 scsi_device_resume(sdev);
1919 }
1920
1921 void
1922 scsi_target_resume(struct scsi_target *starget)
1923 {
1924 starget_for_each_device(starget, NULL, device_resume_fn);
1925 }
1926 EXPORT_SYMBOL(scsi_target_resume);
1927
1928 /**
1929 * scsi_internal_device_block - internal function to put a device
1930 * temporarily into the SDEV_BLOCK state
1931 * @sdev: device to block
1932 *
1933 * Block request made by scsi lld's to temporarily stop all
1934 * scsi commands on the specified device. Called from interrupt
1935 * or normal process context.
1936 *
1937 * Returns zero if successful or error if not
1938 *
1939 * Notes:
1940 * This routine transitions the device to the SDEV_BLOCK state
1941 * (which must be a legal transition). When the device is in this
1942 * state, all commands are deferred until the scsi lld reenables
1943 * the device with scsi_device_unblock or device_block_tmo fires.
1944 * This routine assumes the host_lock is held on entry.
1945 **/
1946 int
1947 scsi_internal_device_block(struct scsi_device *sdev)
1948 {
1949 request_queue_t *q = sdev->request_queue;
1950 unsigned long flags;
1951 int err = 0;
1952
1953 err = scsi_device_set_state(sdev, SDEV_BLOCK);
1954 if (err)
1955 return err;
1956
1957 /*
1958 * The device has transitioned to SDEV_BLOCK. Stop the
1959 * block layer from calling the midlayer with this device's
1960 * request queue.
1961 */
1962 spin_lock_irqsave(q->queue_lock, flags);
1963 blk_stop_queue(q);
1964 spin_unlock_irqrestore(q->queue_lock, flags);
1965
1966 return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1969
1970 /**
1971 * scsi_internal_device_unblock - resume a device after a block request
1972 * @sdev: device to resume
1973 *
1974 * Called by scsi lld's or the midlayer to restart the device queue
1975 * for the previously suspended scsi device. Called from interrupt or
1976 * normal process context.
1977 *
1978 * Returns zero if successful or error if not.
1979 *
1980 * Notes:
1981 * This routine transitions the device to the SDEV_RUNNING state
1982 * (which must be a legal transition) allowing the midlayer to
1983 * goose the queue for this device. This routine assumes the
1984 * host_lock is held upon entry.
1985 **/
1986 int
1987 scsi_internal_device_unblock(struct scsi_device *sdev)
1988 {
1989 request_queue_t *q = sdev->request_queue;
1990 int err;
1991 unsigned long flags;
1992
1993 /*
1994 * Try to transition the scsi device to SDEV_RUNNING
1995 * and goose the device queue if successful.
1996 */
1997 err = scsi_device_set_state(sdev, SDEV_RUNNING);
1998 if (err)
1999 return err;
2000
2001 spin_lock_irqsave(q->queue_lock, flags);
2002 blk_start_queue(q);
2003 spin_unlock_irqrestore(q->queue_lock, flags);
2004
2005 return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2008
2009 static void
2010 device_block(struct scsi_device *sdev, void *data)
2011 {
2012 scsi_internal_device_block(sdev);
2013 }
2014
2015 static int
2016 target_block(struct device *dev, void *data)
2017 {
2018 if (scsi_is_target_device(dev))
2019 starget_for_each_device(to_scsi_target(dev), NULL,
2020 device_block);
2021 return 0;
2022 }
2023
2024 void
2025 scsi_target_block(struct device *dev)
2026 {
2027 if (scsi_is_target_device(dev))
2028 starget_for_each_device(to_scsi_target(dev), NULL,
2029 device_block);
2030 else
2031 device_for_each_child(dev, NULL, target_block);
2032 }
2033 EXPORT_SYMBOL_GPL(scsi_target_block);
2034
2035 static void
2036 device_unblock(struct scsi_device *sdev, void *data)
2037 {
2038 scsi_internal_device_unblock(sdev);
2039 }
2040
2041 static int
2042 target_unblock(struct device *dev, void *data)
2043 {
2044 if (scsi_is_target_device(dev))
2045 starget_for_each_device(to_scsi_target(dev), NULL,
2046 device_unblock);
2047 return 0;
2048 }
2049
2050 void
2051 scsi_target_unblock(struct device *dev)
2052 {
2053 if (scsi_is_target_device(dev))
2054 starget_for_each_device(to_scsi_target(dev), NULL,
2055 device_unblock);
2056 else
2057 device_for_each_child(dev, NULL, target_unblock);
2058 }
2059 EXPORT_SYMBOL_GPL(scsi_target_unblock);